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The emergence of drug resistant strains of HIV represents a major challenge in the treatment of

patients who contract the virus. We investigate the use of classical molecular dynamics to give

quantitative and qualitative molecular insight into the causes of resistance in the two main drug

targets in HIV, protease and reverse transcriptase.

We initially establish a simulation and free energy analysis protocol for the study of resistance

in protease. Focussing on the binding of the inhibitor lopinavir to a series of six mutants with

increasing resistance we demonstrate that ensemble simulations exhibit significantly enhanced

thermodynamic sampling over single long simulations. We achieve accurate and converged rel-

ative binding free energies, reproducible to within 0.5 kcal mol−1. The experimentally derived

ranking of the systems is reproduced with a correlation coefficient of 0.89 and a mean relative

deviation from experiment of 0.9 kcal mol−1.

Our protocol is then applied to investigate a patient derived viral sequence for which contradic-

tory resistance assessments for lopinavir were obtained from existing clinical decision support

systems (CDSS). Mutations at only three locations (L10I, A71I/V and L90M) influenced the

ranking. Free energies were computed for HXB2 wildtype sequences incorporating each muta-

tion individually and all possible combinations, along with the full patient sequence. Only in the

case of the patient sequence was any resistance observed. This observation suggests an explana-

tion for the discordance found using the CDSS. The effects on drug binding of the mutations at

positions 10, 71 and 90 appear to be highly dependent on the background mutations present in

the remainder of the sequence.

In preparation for the extension of our simulation and free energy protocol to reverse tran-

scriptase the impact of binding both natural DNA substrates and two non nucleoside reverse

transcriptase inhibitor (NNRTI) class drugs on the dynamics of reverse transcriptase are investi-

gated. Free energies of both inhibitors (efavirenz and neviripine) are determined which are seen

to be independent of the subdomain motions of the protein observed during simulation. Prelim-

inary calculations of the free energies for a set of NNRTI resistant mutants bound to efavirenz

are also presented.
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Chapter 1

Proteins

Proteins are a diverse class of macromolecules which form the majority of the dry mass

of all cells and are responsible for the structure and functioning of all biological systems.

The functions performed by proteins span every level of cellular processes and include

the maintenance of cell shape, selective transport of small molecules, intra and inter-

cellular messaging and the catalysis of chemical reactions. Despite their phenotypic

variation all proteins share a common underlying construction, they are all polypeptide

chains formed from a set of only 20 basic units. From these simple building blocks a

huge diversity of structures can be formed, ranging in size from a few units to many

thousands [1]. This variety of structure allows proteins to form the complex networks

of interactions necessary for life.

Many biological processes involve the catalysis of chemical reactions. The class of pro-

teins that performs the role of a catalyst are called enzymes. Nearly all processes in cells

require enzymatic activity in order to occur at appreciable rates. Key to the ability of

enzymes to perform this function in the crowded cellular environment is their ability to

selectivity bind only their target substances. The study of the strength and specificity

of enzyme binding has been central to the way we understand the operation of biological

systems. The pharmaceutical industry exploits this property to allow the creation of

inhibitory drugs, which are designed to interfere with the natural operation of target

enzymes without causing harm by perturbing other cellular processes.

Detailed overviews of protein structure and function can be found in a range of standard

molecular biology textbooks [2–4]. In this chapter the basic structure and function of

proteins will be explored, although the description will be confined to the features which

are observed and briefly noting how this may impact upon function. A number of the

experimental techniques used to elucidate the structures are described in Chapter 2 and

1
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Figure 1.1: a) shows the structure of an amino acid. b) shows two amino acids linked
by a peptide bond.

further details of protein-ligand interactions and experiments used to probe them are

given in Chapter 3.

1.1 Peptide Chains and Primary Structure

The basic units which provide the monomers used to construct proteinaceous polypeptide

chains are called amino acids. All amino acids share the same basic structure (see

Figure 1.1a) in which a central carbon atom (designated Cα) is joined to a hydrogen

atom (H), a carboxyl group (COOH) and an amino group (NH2) as well as a side chain

(R). It is the side chain which distinguishes one amino acid from another. In all amino

acids (with the exception of glycine) all four groups attached to the Cα are different.

This asymmetry means that amino acids are chiral molecules (i.e. it is not possible to

superimpose one onto its mirror image, see Figure 1.2) and so can exist in one of two

distinct forms whose properties are almost identical. The two forms are known as L-

and D- form amino acids. Biological systems have evolved to almost exclusively use the

L-form.

In the process of protein synthesis individual amino acids are joined together by the

formation of peptide bonds (Figure 1.1b). A peptide bond is formed when the carboxyl

group of one amino acid is involved in a condensation reaction with the amino group

of another. The repetition of this process results in a chain with a repeated backbone

joined together by peptide bonds from which the side chains project. The termini of

this chain are the same as those in an individual amino acid. The chain is said to run

from its amino (or N) terminus to its carboxyl (or C) terminus [3].

In living organisms, the sequence of amino acids which form a specific protein is provided

by an RNA template (which is transcribed from the DNA genome). The RNA template
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Figure 1.3: The RNA code which specifies which amino acids to be included in a protein
uses four bases (U, A, C and G) to make up one codon. There are thus 64 possible
codons which code for 20 amino acids, leading to a high level of redundancy. The
direction of the mRNA is 5′ to 3′. The codon AUG not only codes for methionine but
also acts as an initiation site: protein translation begins at the first AUG in an RNA
coding region[5].

codes for 20 different amino acids using a three base code (each base can be one of

four different options (A)denine, (C)ytosine, (G)uanine or (U)racil) [2, 5]. The code is

degenerate and is shown in Figure 1.3. The 20 naturally occurring amino acids have been

given both single and three letter codes. Figure 1.4 shows all of these amino acids (with

both forms of code) categorised according to the chemical properties of their side chains.

Proteins do not, in general, take the form of simple extended chains but form complex

structures. The process by which the polypeptide chain adopts this conformation is

known as ‘folding’. The sequence in which the amino acids occur plays a decisive role

in determining the eventual structure of the protein and for this reason it is known as

the primary structure.

When thinking of the three dimensional structure of proteins a more helpful grouping
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Figure 1.4: The 20 naturally occurring amino acids, grouped according to the properties
of their side chains. This figure has been removed due to copyright restrictions but is
available in Mat [6]
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Figure 1.5: The shaded area in a) indicates a peptide unit. The rotational angles φ and
ψ are labelled within the unit. b) A Ramachandran plot showing the “allowed” regions
of ψ/φ space. The regions labelled αR and αR correspond to those angles permitted in
right and left handed α helices respectively. The region labelled β contains the angles
associated with β sheets.

than the amino acid is the peptide unit. A peptide unit is defined as running from one

Cα to the next (see Figure 1.5a). This means that all Cαs, except the first and last,

belong to two such groups. These units exclude the amino acid sidechains and can be

well described as rigid groups. As such they enjoy two degrees of freedom: they can

rotate around the N-Cα or the Cα-C′ bonds. The rotational angles around these bonds

are conventionally known as phi (φ) and psi (ψ) respectively.

Due to the steric constraints imposed upon them by the attached sidechains the areas of

φ/ψ conformational space which are accessible by the protein backbone is limited. For

most units (except those involving glycine, whose short sidechain is much less restrictive

than any other) this limits the possible conformations to those areas shown as shaded in

Figure 1.5b. This type of plot is known as a Ramachandran plot [7] after the biophysicist

who first calculated the sterically allowed regions.

In common with the backbone, the side chains of the amino acids can, in general, adopt

a variety of conformations known as rotamers. The sidechains will preferentially adopt

the rotamers with the lowest energy. Which rotamer of a given amino acid has the

lowest energy will depend upon its environment and in particular the conformation of

the backbone at the position where it is attached as well as the position and rotameric

state of other side chains which interact with it.
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Figure 1.6: Hydrogen bonding in α helices. The protein backbone is shown in CPK
representation with hydrogen bonds as dashed green lines.

1.2 Secondary Structure

The creation of peptide bonds in the polypeptide chain results in partial electron delocal-

isation, leaving each peptide unit capable of forming two hydrogen bonds. The networks

of bonds formed can organise regions of the peptide chain into structural elements in

proteins, the two most common are called α helices and β sheets [3, 8]. These structural

elements correspond to the two “allowed” regions on the left of the Ramachandran plot

in Figure 1.5b and are said to form the secondary structure of proteins.

1.2.1 α Helices

α helices form when the ψ, φ angle pair of consecutive residues are approximately -60◦

and -50◦. This creates a helical structure with approximately 3.5 residues per turn,

with the nth residues C′=O hydrogen bonding to the amino group of the (n+4)th (see

Figure 1.6). Hence, all but the terminal NH and C′O groups are involved in hydrogen

bond formation. As a result, the ends of α helices are polar and consequently they are

most frequently found on the surface of proteins.

α helices contain between 4 and 40 residues (averaging approximately 10) with each

additional residue extending the helix by 1.5 Å along the helical axis.

1.2.2 β Sheets

Unlike the α helix, which is formed of one continuous region, β sheets form from a series

of adjacent strands separated by turn regions. These strands are usually around five
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Figure 1.7: Hydrogen bonding in (a) parallel and (b) antiparallel β sheets.

Figure 1.8: Secondary structural elements combine together to form the tertiary struc-
ture. This figure has been removed due to copyright restrictions but is available from
http://www.press.uillinois.edu/epub/books/brown/ch6.html

residues long and can either run parallel or anti-parallel to one another (Figure 1.7).

The residues in the strands adopt an extended conformation which allows the adjacent

C′O and NH groups to hydrogen bond. The ψ, φ values of the constituent amino acids

are contained within the large range shown in the top left of Figure 1.5b.

1.3 Tertiary Structure

These secondary structure elements are joined together by regions called loops. Loop

regions rarely contain hydrogen bonds between residues but often hydrogen bond with

surrounding water molecules. The lack of internal bonding results in these regions

being much less well ordered than the structural elements and consequently they exhibit

greater flexibility.

The three dimensional arrangement of the various secondary structure elements and

loops is known as the tertiary structure (Figure 1.8). The process by which the protein

arrives at its final conformation is known as folding. The process of folding occurs on a

timescale ranging from microseconds to milliseconds.

The folding of the protein is driven by the dispersion of hydrophilic and hydropho-

bic residues in water, the consequent packing of the hydrophobic residues within the

molecule and non-covalent interactions between residue side chains. Some sections of a

 http://www.press.uillinois.edu/epub/books/brown/ch6.html
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Figure 1.9: Structure of human haemoglobin (from the 1GZX PDB structure [10]) in
cartoon representation, α and β subunits are shown in red and blue, respectively. The
iron containing haem groups are in green.

polypeptide chain can independently fold into stable tertiary structures and are known as

‘domains’. The tertiary structure of many proteins can be subdivided into functionally

important domains linked by loop regions.

1.4 Quaternary Structure

Proteins frequently do not act alone and often form part of larger biological structures

and complexes [3]. In this context, the individual protein chains are often referred to

as ‘subunits’. The conformation adopted by the subunits within the overall oligomeric

protein is known as its quaternary structure. This higher level organisation is what

allows proteins to perform their specific functions, providing sites for substrates to bind

and creating the precise geometries required to catalyse specific reactions. One well

known example of quaternary structure is that of haemoglobin, an enzyme key to oxygen

transport in vertebrates [9], in which two α and two β chains combine to form a roughly

tetrahedral assembly as shown in Figure 1.9.

The binding of either another protein or a small molecule in a location other than any

active site can alter either the tertiary or quaternary structure of a protein (or complex of

proteins). These changes underly the phenomenon of allosteric regulation in which they

act to either increase or decrease activity [4]. Small molecule binding to regions other

than the active sites of a complex can also impact upon protein function, for example

in haemoglobin carbon dioxide binding to the α subunits alters the conformation of the

complex and decreases its affinity for oxygen [11].
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1.5 Sequence-Structure Relationships

It is often postulated that the native structure of a protein is solely dependent on its

amino acid sequence, a proposal often attributed to Christan B. Anfinsen [12] and hence

known as Anfinsen’s dogma. This implies that for given conditions (temperature, pH,

etc.) a unique minimum of the free energy exists for every protein and that it must be

both stable and kinetically accessible. The process of folding and the ability to predict

structure from protein sequence is one of considerable interest. If we assume that each

bond connecting amino acids can have three possible states, a protein of, for example,

100 amino acids could exist in 3100 = 5×1047 configurations. Even if new configurations

are sampled at a rate of 1013 per second it would take 1027 years to try them all. This

would mean that a sequential search would take longer that the age of the universe to

arrive at the native structure of a protein, whereas protein folding generally occurs on a

microsecond timescale. This problem was first considered by Levinthal [13] in 1968 and

has become known as Levinthal’s paradox. It is thus clear that proteins do not use this

approach and that they follow specific pathways defined by their composition and the

environment in which they fold.

Protein sequence data is much easier to generate experimentally than the related struc-

ture. Levinthal’s paradox highlights the difficulty of the theoretical challenge of mod-

elling the process of protein folding. This has resulted in the adoption of modelling

techniques which use similar and possibly evolutionarily related sequences to help pre-

dict unknown protein structures. Some of the experimental techniques used to determine

protein structures and methods of predicting those which are not amenable to these ap-

proaches are described in Chapter 2.

1.6 Dynamics and Function

In addition to the structure another factor which defines the way in which proteins

function is their dynamics. Even at equilibrium proteins are not static structures and in

many instances their inherent flexibility is necessary for them to perform their biological

function, it is for example frequently important in the recognition of substrates. At

the extreme end, some proteins are thought to be largely disordered until they bind

a ligand that stabilises their structure [14]. Even small changes which result in only

subtle alterations in structure can still have a marked effect on the dynamics of the

system and have significant effects on the functioning of a protein. Such changes are

of particular interest for the class of proteins responsible for catalysing biochemical

reactions, known as enzymes. By enhancing the rates of chemical reactions between
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106 and 1014 times, enzymes make possible the vast array of processes which are crucial

in sustaining biological life [2, 3]. Enzymes are frequently classified by the types of

reaction they catalyse. Common enzyme groups include oxidoreductases, which catalyse

redox reactions, transferases, which catalyse reactions in which one chemical group is

transferred between substrates, and hydrolases, which catalyse hydrolysis reactions.

In order to function in the densely packed environment of biological cells, enzymes must

be highly selective about the substrates with which they interact. The specificity of

enzymes is enhanced by the strong dependence of their efficiency on the pH and temper-

ature of the local environment, which can allow them to be efficacious in some compart-

ments or organelles of a cell and not others. The relationship between protein dynamics

and their interactions with other chemicals will be further examined in Chapter 3.

The key role that enzymes play in the life cycles of biological entities has made them

major targets for pharmaceutical treatments. In this context, there is major interest in

the impact of subtle sequence changes on dynamic behaviour, and consequently substrate

specificity, due to the emergence of drug resistant variants of proteins within etiological

organisms. The changes in these proteins are often as small as the substitution of single

amino acids, which result in almost undetectable alterations in the structure but which

can dramatically alter the specificity of action of the protein. In many cases the impact of

these changes not just on the binding of drugs, but also on how the target interacts with

its natural substrate must be considered. The evaluation and prediction of selectivity

hence represents a major challenge in molecular biology. In Chapter 4 drug resistance

and the effect of mutations on selectivity will be discussed in detail for the case of two

HIV viral proteins which are major targets for antiviral drugs.



Chapter 2

Protein Modelling and Molecular

Dynamics

2.1 Atomistic Modelling Of Proteins

The importance of protein structure and function was discussed in Chapter 1 but how do

we gain knowledge of these properties? Experimental techniques such as x-ray crystallog-

raphy and NMR spectroscopy allow us to “see” protein structures and in the latter case

even provide information on protein motions. However, in many cases protein structure

and dynamics are not amenable to investigation using experimental techniques. In such

cases in silico techniques such as homology modelling and molecular dynamics can pro-

vide insight which cannot be achieved without computational modelling. In this chapter

we describe a variety of such modelling techniques, focusing on molecular dynamics.

All simulation methodologies require some experimental data to ground them in biolog-

ical reality and so we begin our discussion with a brief review of the most commonly

used techniques for determination of protein structure.

2.2 Structural Models From Experiments

The structures of proteins can be determined experimentally in two main ways, X-

ray crystallography and nuclear magnetic resonance [3]. It is not, however, always

possible to gain an experimental structure. In that eventuality it is sometimes possible

to use a combination of the existing structures and knowledge of the protein sequence to

construct a model of the unknown structure in a process known as homology modelling.

This chapter gives a brief introduction to these three techniques.

10
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2.2.1 Crystal Structures

The resolution of any image is determined by the wavelength of radiation used to produce

it. In the case of protein structures we require atomic resolution, meaning that we wish

to distinguish objects of approximately 1 Å (10−10 m), radiation of this wavelength is

known as X-ray radiation. In practice X-rays with wavelengths between 0.4 Å to 1.6 Å

are used to image proteins. The production of high quality images requires a regular

array of objects to scatter the incoming x-rays. Hence, rather than illuminating proteins

in a biologically relevant context it is necessary to crystallise them first.

2.2.2 X-ray Scattering

When X-rays are targeted at a protein crystal most will travel straight through, however

some will encounter the electrons and nuclei of the target. When an X-ray photon

encounters an electron it may be absorbed, increasing the vibrational energy of the

electron. This vibrating electron then emits an X-ray photon of the same wavelength in

a random direction. This process is known as coherent scattering, and is key to the X-ray

crystallographic technique. More often, though, the X-ray will cause the electron to make

orbital transitions which result in the emission of a photon of a different wavelength.

This is known as incoherent scattering and can lead to radiation damage of the crystal.

Luckily there are so many atoms (∼ 1015) in a protein crystal that this is not too serious

a problem. X-rays may also interact with nuclei in the sample, however their greater

mass means that the scattering is negligible, resulting in X-ray imaging techniques only

being able to “see” electrons [15].

Most of the rays scattered by a crystal sample will destructively interfere but some

will constructively interfere and form a diffraction pattern which can be detected on a

film or image plate. Analysis of this pattern using Bragg’s law allows the spacing of the

diffraction peaks to be related to the spacing of the atoms within the illuminated crystal.

Techniques which involve the addition of heavy atoms to the crystal structure are used

to gain estimates of the phase of the scattered waves. The amplitudes and phases of

the diffraction pattern are then input to computer software used to reconstruct a map

of the electron density of the repeating unit of the crystal [3, 15].

2.2.3 Model Production

A model of the protein structure is produced by fitting the known sequence of the protein

to the electron density map. The production of the initial model is a process of trial

and error as there will be experimental uncertainties and errors in the electron map. In
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most cases there will be discontinuities in the map to which the polypeptide chain is

being fitted. In general, a 5 Å resolution map can be used to obtain the shape of the

protein, at 3 Å it is usually possible to trace the polypeptide chain and most amino acid

sidechains. At 1 Å each atom is resolvable as a discrete ball of density [3].

The initial model is bound to contain some inaccuracies; these can be reduced by a

process known as refinement. In this process the model is altered to minimise the

difference between the experimental diffraction data and the equivalent information

produced from a simulation using the hypothetical model structure. A measure called

the R factor [16] (the R stands for residual disagreement) is used to express the quality of

agreement. An R factor of 0.0 indicates perfect agreement and 0.6 comparison of a model

with random reflections. For a large molecule (anything containing more that around

300 atoms) 0.2 would represent a well refined macro-molecular model at a resolution of

2.5 Å.

2.2.4 Model Quality

X-ray crystallography is highly accurate but presents many challenges when applied to

proteins. These are mainly connected to the requirement of well ordered crystals. The

better ordered the crystal the higher the resolution of the diffraction data and conse-

quently the more accurate the model of protein structure. High quality protein crystals

are hard to produce as proteins are often large, near spherical objects with irregular sur-

faces, which makes packing hard without leaving gaps and channels that become filled

with disordered solvent. Further to this, proteins may exist in multiple conformations.

Another difficulty is the fact that protein crystals may take months to grow and are

highly sensitive to factors such as temperature, pH and enzyme concentration [15]. It

should be noted that the extremely high protein concentrations and non-physiological

conditions required to form crystals represent a significant potential source of error,

which can produce considerable distortion of the target structure.

A frequently quoted measure of the positional error in a crystal structure is the B factor

(also known as the temperature or Debeye-Waller factor). It is calculated for each atom

during model refinement. Unfortunately, the calculation of this factor does not allow

the discrimination between thermal motion, genuine structural flexibility or modelling

error [3, 15].
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2.2.5 Nuclear Magnetic Resonance

Nuclear magnetic resonance (NMR) is a technique in which the intrinsic magnetic mo-

ment of the 1H, 13C, 15N or 31P nuclei are used to probe their chemical surroundings

[3, 17]. Large magnetic fields are used to align the nuclear spins of the atoms in a sam-

ple. Then the atoms are exposed to radio frequency pulses which move them into an

excited state. When the atom reverts to its equilibrium position it emits radio frequency

radiation. The precise frequency of the emitted signal depends both on the particular

atom type and its environment. This resonant frequency is compared to a reference

signal, the shift in the signal is called the chemical shift and is measured in parts per

million (ppm). By varying the frequency of radiation to which the sample is exposed

different properties can be probed.

In terms of three dimensional protein structures, the most important types of probes

are called correlation spectroscopy (COSY) and nuclear Overhauser effect (NOE) exper-

iments [3]. These give information on 1H atoms which are covalently connected through

one or two other atoms (i.e. they are very close in the protein sequence) and atoms which

are close in space irrelevant of where they occur in the sequence respectively. Combin-

ing information from these two protocols with knowledge of the protein sequence allows

distances between atoms to be computed. The distances between atoms can be used to

create constraints on the atomic positions, which can then be used to compute the three

dimensional dimensional protein structure. Usually this process results not in a single

structure but a selection of structures all of which equally well satisfy the constraints, as

the problem is under determined. This means that it is hard to quantify the accuracy

of protein structures determined by NMR experiments but has the advantage that en-

sembles of structures representative of genuine conformational flexibility of the protein

can be produced [18].

Samples for NMR are usually dissolved in 0.5 ml of water in a setup which allows

the temperature and pH to be much closer to physiological conditions than is possible

with crystallography. Another advantage of NMR is that there are no crystal packing

effects. However, the concentration of protein needed for good result is of the order of 5

mM or higher, which is much greater than that of most proteins in vivo although it is

comparable with the total enzymatic concentration in many bodily fluids. The biggest

drawback to NMR is that it can only be used on small proteins (in general only up to

32 kDa) [3, 17].
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2.2.6 Homology Modelling

While the number of proteins with a structure in the PDB1 continues to grow, it remains

the case that the structure of the vast majority of proteins in existence remains unknown.

Many of these proteins may never have an experimental structure as they are too large

for NMR analysis and cannot be crystallised. Although the sequence of a protein plays

a key role in defining its structure, as discussed in Section 1.5, we cannot simply explore

all of the astronomical number of possible conformations it could adopt. Attempts have

been made to use direct simulation (such as molecular dynamics) to perform a biased

search but this approach remains too computationally expensive.

One approach that has been applied to help gain insight into unknown structures is

homology modelling. This type of modelling based on the observation that whilst the

structure of a protein is determined by it’s amino acid sequence, the structure is more

stable, changing more slowly than the associated sequence. The assumption made in

this type of modelling is that similar sequences will fold almost identically and that

even more distantly related sequences will retain a high level of structural similarity. A

comparison between the sequence of a protein of unknown structure and those of known

structures can thus be used to predict the unknown structure. The implementation of

this approach has been described as a seven step process [19]:

1. Template identification and initial alignment

2. Alignment correction

3. Backbone generation

4. Loop modelling

5. Sidechain modelling

6. Model optimisation

7. Model validation

What follows is a brief description of what is involved in each of these stages.

2.2.7 Template Identification

The first stage of homology modelling is to identify a suitable template structure upon

which to base the prediction of the protein structure of interest. Templates are usually

1PDB: http://ww.pdb.org

http://ww.pdb.org
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acquired by performing a search using standard sequence comparison tools (such as

BLAST [20] or FASTA [21]) against all of the structures in a database such as the

PDB. These methods apply a scoring system for differences between sequences, with

the substitution of chemically similar residues incurring a small penalty and insertions,

deletions and substitutions of non-similar residues having larger penalties associated

with them. The sequences with the lowest penalty scores are identified as possible

templates. If areas of the template structure are poorly defined in one template then it

is sometimes possible to use multiple structures and to take the most well defined areas

from each [19].

2.2.8 Sequence Alignment and Correction

Sequence alignment is the process of matching the order of amino acids in one protein

sequence against that of another [22]. Allowance has to be made for the fact that some

mutations are conservative (i.e. the change in amino acid side chain only slightly alters

the biochemical properties) but some represent a more significant alteration. Attempts

to align a pair of sequences can be hard in regions of low identity. The alignment can in

some cases be improved by using a third intermediate sequence which is more similar to

the target in the low identity region. Programs such as CLUSTALW [23] can perform

these multiple sequence alignments. This can be particularly useful when aligning areas

where there are insertions or deletions between the sequences.

2.2.9 Backbone Generation

Once an alignment has been made, model building can begin. The first stage is to

model the backbone (N, Cα, C and O) atoms. For most of the model the coordinates

can simply be copied directly from the template [19]. Rigid side chains are also often

copied at this stage.

Modelling with multiple templates can easily be achieved by using servers such as Swiss-

Model [24] which perform the alignment between the two structures as well as performing

the modelling stages described here. An experienced modeller may, however, find that

automatic alignments can be improved by hand using software such as Deep View (pre-

viously known as Swiss-PdbViewer) [25] which allows the user to visualise and refine

structural alignments.
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2.2.10 Loop Modelling

Loop sections in models often contain insertions, deletions and mutations all of which

can alter the backbone conformation. The effects of these changes are notoriously hard

to predict [19]. One widely used approach is to search for loops within structures from

the PDB which have endpoints that match the sequence being modelled and then copy

the loop conformation. An alternative approach is to use fold prediction where an energy

function is used to judge the quality of a given loop conformation. The energy function is

then minimised using Monte Carlo or molecular dynamics techniques (see Section 2.3.3

and Section 2.4 respectively for more details on these techniques).

2.2.11 Sidechain Modelling

In areas of high sequence identity it is usually safe to simply copy the side chain confor-

mation from the template [19]. In regions of lower sequence identity it is necessary to

use a library of possible rotamers (low energy conformations are generated by rotating

the sidechain around the bond to the backbone) [26, 27]. These libraries are built by

identifying the rotamers which occur most often for particular backbone conformations.

The backbone of the model is compared to those in the library and the best matches

used to select which rotamer is incorporated into the model.

2.2.12 Model Optimisation

From the description above, it is clear that the predicted backbone position and sidechain

rotamers are interdependent. Thus an iterative process is often adopted using the pre-

dicted side chains to update the backbone and this updated backbone to re-predict the

sidechains and so on. One frequently used method of model optimisation is to run a

molecular dynamics minimisation (see Section 2.4 for details of this approach) hoping

that this will mimic the true folding process [19].

2.2.13 Model Validation

There are two main sources of error in the modelling process which are the quality of

the template, and the level of similarity between the modelled sequence and that of

the template. When there is a 90% or greater level of identity the model accuracy

can reasonably be compared to crystallography (with a few exceptional sidechains), but

once the identity drops below this level model quality is highly variable with large local

deviations often being introduced [19, 28].
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Checking the quality of models is usually done by examining the energy of the system

using a molecular dynamics forcefield and examining the bond lengths, bond and torsion

angles and distribution of polar and apolar residues to ensure that they are within normal

bounds. A detailed verification of any model is an essential part of the modelling process.

2.3 Enhancing Structural Understanding Using Computa-

tional Modelling

Computational models are key parts of the experimental techniques used to interpret

experimental data on protein structure but they can also be used to explore beyond

this. Models derived from fundamental physical considerations can be used to refine

structures, investigate the effects of protein environment, explore dynamics and enzyme

chemistry in order to provide insights which cannot be obtained from experiments.

Simulation techniques are available that range in detail level from those that describe

the electrons which govern chemistry to those which focus on the long range interactions

of proteins and ligands. Here we give a brief overview of a variety of techniques which

have been used to investigate the proteins of HIV. Later, in Section 2.4, a more detailed

account of the molecular dynamics methodology is provided, which will be used in the

studies presented in this thesis.

2.3.1 Quantum Mechanics

The most fundamental description of the world available to us at the atomic level is

quantum mechanics and it provides the only way we can realistically model chemical re-

actions in atomic detail. In principle protein structure and dynamics can be understood

by using quantum mechanics. To take this approach would require the solution of the

time dependent Schrödinger equation for the entire protein. In practice, even for very

small systems, all that can be achieved is an approximation to the true solution.

The approximate methods used to solve Schrödinger equation are generally divided

into two categories; those which include empirical parameters, known as semi-empirical

methods, and those derived directly from theoretical principles, with no inclusion of

experimental data, known as ab initio methods.

One, almost ubiquitously used, simplification employed is the Born-Oppenheimer ap-

proximation, which assumes that owing to their relatively large mass the nuclei of atoms

are fixed with respect to the electrons. This reduces the problem to calculation of the,
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approximate, wavefunction of the electrons in the field of the fixed nuclei. This wave-

function can be used to calculate the forces on the nuclei, whose positions are updated

using classical mechanics. The process can then be iterated with the electrons assumed

to move instantaneously with the nuclei to continue the evolution of the system. Other

approaches, such as Car-Parrinello method, are available which can calculate the coupled

nuclear and electron motions at further computational cost.

The calculation of the wavefunction remains exceptionally computationally expensive

even when further approximations such as Hartree-Fock or Density Functional Theory

(in which the basic quantity calculated is the electronic density not the wavefunction)

are applied, as is done in commonly used packages such as Gaussian 03 [29]. This

means that it is not feasible to use this method to study the dynamics of entire proteins.

Detailed descriptions of quantum mechanical simulation techniques can be found in the

literature [30–32]

Despite this limitation, quantum mechanical simulation still plays an important role in

biological simulations. It can be used to optimise or minimise small structures, inves-

tigate enzymatic reactions and, perhaps more importantly, quantum level simulations

are often used, in conjunction with experimental data, to provide parameters (such

as atomic charges derived from the electron density distribution) used in more coarse

grained approaches such as molecular dynamics. Furthermore, it is also increasingly

used in conjunction with molecular dynamics in what are regularly called quantum me-

chanical/molecular mechanical (QM/MM) hybrid models (see Section 2.3.4) [32, 33].

2.3.2 Molecular Dynamics

A very common method of atomistic simulation is molecular dynamics (MD), sometimes

also known as molecular mechanics (MM). In this formalism the atoms of the system are

modelled as points with a given mass and charge. The charges are used to calculate an

electrostatic forcefield from which the force on each atom in the system can be calculated.

The force is then used to update the positions of each atom using classical mechanics.

This process is then iterated to evolve the system configuration. This approach allows

us to gain information not only of the conformations explored by protein systems but

also their dynamics [32, 33].

The reason for the widespread use of molecular dynamics is that it is much less com-

putationally expensive than quantum mechanics whilst still allowing all of the atoms of

a protein to be simulated. It has been found that neglecting the electrons does not, in

general, prevent the method from generating realistic protein dynamics. The focus of
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this thesis is upon the use of classical MD and consequently the method is described in

more detail in Section 2.4.

A variant of molecular dynamics in which small groups of atoms are represented by sin-

gle interaction sites, known as coarse grained (CG) models, are becoming increasingly

popular. In particular this methodology is often applied to study systems containing

lipids [34, 35]. This allows the exploration of the dynamics of bigger systems and longer

timescales using the same computational resources but at the expense of atomic resolu-

tion and hence physical fidelity.

2.3.3 Monte Carlo Simulation

Monte Carlo methods are a class of algorithms based upon the repeated sampling of

random numbers [33]. In the context of protein simulations they provide a stochastic

approach to explore the molecular level configurational space available to a protein at

equilibrium. Unlike MD this class of simulation cannot provide dynamic information

about the system of interest.

The underlying concept is to take a three dimensional protein structure and use this

as the starting point for a random walk in conformational space [33, 36]. At each step

along this walk the probability of a given change in conformation is dependent on the

change in energy required from the previous state. In order to ensure thermodynamically

correct sampling the probability of visiting a particular state r is proportional to the

Boltzmann factor, e
−U(r)
kBT .

The most commonly used method for choosing the next state is the Metropolis algorithm

[36] where a move from state r to r′ happens with probability:

P (r′|r) = min
(

1, e
−1

kBT
(
U(r′)− U(r)

))
(2.1)

Monte Carlo simulations are frequently used in energy minimisation problems as well

as to calculate thermodynamic properties of systems. In general, the difficulty in effi-

ciently choosing conformational steps for the random walk results in high rejection rates,

making Monte Carlo simulations less attractive for biomolecular systems than molecular

dynamics.



Chapter 2. Protein Modelling and Molecular Dynamics 20

2.3.4 Quantum Mechanical/Molecular Mechanical Hybrid Models

While molecular dynamics can probe many of the properties of biological systems, the

inability to treat important chemical events such as bond breaking (lysis) and the move

into transition states during reactions is a considerable limitation. A full QM treatment

is, as has been mentioned, usually impractical. This has led to the development of

the hybrid QM/MM methodology in which most of the system is treated by molecular

dynamics but a critical segment is described at the quantum level. The main challenge

faced in this form of modelling is how to handle the transition between the two scales of

model [37]. Considerable progress has been made using several methods to bridge the

divide including link atoms and local self-consistent field formulations [38, 39].

2.3.5 Brownian Dynamics

Protein-protein and protein-ligand association involves processes on different length and

time scales. At large distances, only the relative motion of the two centres of mass

is important. In this regime, the system evolution can be sampled using Brownian

dynamics. The Brownian dynamics simulation technique is a mesoscopic method in

which explicit solvent molecules are replaced by a stochastic force [40]. The technique

takes advantage of the large separation in time scales between the rapid motion of

solvent molecules and the much slower motion of polymers or colloids. The elimination

of the fast modes of the solvent the simulation of much longer time scales than can be

explored in a molecular dynamics simulation. Brownian dynamics simulation is based

on the integration forward in time of a stochastic differential equation in order to create

molecular trajectories. The incorporation of time in the governing equation, coupled

with the reduced computational demands compared to fully atomistic simulations, allows

for the study of the temporal evolution and dynamics of complex fluids (such as polymers,

large proteins, DNA molecules and colloidal solutions) [41]. Brownian dynamics can be

viewed as a limit of Langevin dynamics, which will be discussed in Section 2.5.1 in the

context of temperature control in MD. The main disadvantage of the approximations

made in this approach is that the use of a random force independent of particle positions

means that momentum is not conserved locally. A related technique known as dissipative

particle dynamics (DPD) has been developed which solves this problem by incorporating

a dissipative force [42, 43] but which has not been widely applied to HIV protein systems.
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2.3.6 Network Models

Network models provide a minimalist, coarse grained, method for understanding protein

motions. The prototypical form is the Gaussian network model (GNM) where the basic

model is to take the Cα of the proteins as the nodes of a network and to model the

connections between the nodes as harmonic springs (with spring constant γ). With two

nodes being connected if they fall within a cut off distance rc (usually between 7 and

10 Å) of one another in the three dimensional protein structure [44, 45]. Due to the

simplistic nature of the model it is a computationally very inexpensive method. the

protein structure is described as an elastic network of N nodes. This description is then

encoded in an N ×N matrix (where N is the number of residues in the protein), known

as the Kirchoff matrix, Γ, with elements given by

Γij =


−1 if i 6= j and Rij ≤ rc
0 if i 6= j and Rij > rc

−
∑

i,i 6=j Γij if i = j

where Rij is the equilibrium distance between two atoms and rc a cut off distance

beyond which two atoms are deemed unconnected. The motion of the protein can also

be decomposed using normal modes by diagonalising Γ. The slowest modes contribute

most to the fluctuations of the protein and are often seen to represent collective motions

of domains or other structural elements [46–48]. It is these modes which are though to be

most likely to relate to protein function. It is also possible to calculate the expectation

values for the fluctuations of individual residues from Γ.

2.4 Details of the Molecular Dynamics Methodology

The behaviour of proteins is inherently dynamic, so in order to understand them better

we need to create models which capture their motion. Perhaps, the most popular method

for modelling the interactions of the large numbers of atoms involved in such systems is

molecular dynamics. Essentially the methodology of molecular dynamics is very simple.

Initially all of the atoms in a system of interest are assigned coordinates, velocities and

charges. The positions and charges are then used to calculate a potential. This potential

is used to compute the force felt by each of the atoms in the simulation. By integrating

Newton’s laws of motion over a short time step a new set of positions and velocities

is produced for each of the atoms. The updated values can now be fed back into the

first step of the calculation and the process repeated, creating a trajectory of atomic

locations and velocities through time. What follows is a short description of the steps
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described above; a more thorough treatment can be found in standard texts (such as

Leach [32] or Frenkel & Smit [33]).

Despite the conceptual simplicity of molecular dynamics, the computational load re-

quired to achieve numerical stability of the integration schemes used remains high. The

main factors in this are the need to use very small time steps (typically of the order of 1

fs) in order to capture the fastest dynamic processes in the system (in protein systems

this is usually the vibration of hydrogen atoms) and the calculation of the force.

2.4.1 Equations of Motion

The mechanical state of an N particle system can be completely described by 3N gen-

eralised coordinates qi (where i = 1,2,3. . . 3N), 3N generalised velocities q̇i and a po-

tential energy function V (qi). The potential energy function describes the interactions

between the particles and is dependent only on the coordinates, qi. Both the Lagrangian

and Hamiltonian formalisms can be used to derive equations of motion from these con-

stituents. The former is naturally associated with configuration space, extended by time,

while the latter is the natural description for working in phase space. Here we present

condensed derivations of the equations of motion in both formalisms; more detailed ones

can be found in standard texts such as Landau & Lifshitz [49].

The derivation in the Lagrangian framework proceeds from Lagrange’s equations,

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0, (2.2)

where the Lagrangian function L (qi, q̇i) is defined as:

L (qi, q̇i) = K (q̇i)− V (qi), (2.3)

with K (q̇i) representing the kinetic and V (qi) the potential energy of the system. In

Cartesian coordinates, representing the position, velocity and acceleration vectors as ri,

ṙi and r̈i respectively, the kinetic energy is defined as:

K =
1

2

N∑
i=1

miṙ
2
i . (2.4)

Substituting from equations Equation 2.3 and Equation 2.4 into Lagrange’s equations

allows the derivation of Newton’s equations of motion in the form of 3N second order

differential equations:
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fj = mj r̈j , (2.5)

where fj is the force on the jth particle and is given by the spatial derivative of the

potential function:

fj = −∇rjV . (2.6)

We now proceed to give a simplified account of the steps involved in the derivation using

the Hamiltonian formalism. The Hamiltonian, representing the total energy, of a system

is defined as

H (pi, qi) =

3N∑
i=1

piq̇i −L , (2.7)

where the generalised momentum, pi, conjugate to qi is defined as pi = ∂L /∂q̇i. The

total differential can be expressed in terms of the Hamiltonian such that:

dH = −
3N∑
i=1

ṗidqi +
3N∑
i=1

q̇idpi. (2.8)

From this we can derive Hamilton’s equations of motion in the independent variables pi

and qi:

q̇i =
∂H

∂pi
, (2.9a)

ṗi =
∂H

∂qi
. (2.9b)

Whereas the Lagrangian derivation produced 3N second order equations, here we have

the equations of motion expressed as 6N first order equations. Both sets of equations

describe the evolution of a many-body system in time and form the basis of the theory

of classical molecular dynamics.

The classical equations of motion are deterministic and time-reversible and, conse-

quently, a mechanical system is completely described by the positions and momenta

of its N atoms. This means that we can conceive of the position and momentum as the

coordinates of a single point in a (6N + 1)-dimensional phase space which represents the

state of the system. The point moves through phase space according to the equations of



Chapter 2. Protein Modelling and Molecular Dynamics 24

motion derived in this section. The concept of phase space is very useful when relating

the microscopic mechanics of a system to thermodynamic properties, a process we will

discuss in Chapter 3.

2.4.2 Force Fields and the Potential Energy Function

In order to calculate the force felt by each atom it is first necessary to compute the

potential energy function, V . Although a precise calculation of the potential energy

of a N atom system would have to consider the contribution of each individual atom,

pair, triplet and so forth, most molecular dynamics programs (including the NAMD [50]

package used to perform all simulations reported in this thesis, more details of available

packages for performing MD are provided in Section 2.5.3) describe the potential energy

using a more simplistic five component picture. In this scheme the potential energy has

the following basic form:

Vtotal = Vbonded + Vnon−bonded (2.10a)

Vbonded = Vbond + Vangle + Vdihedral (2.10b)

Vnon−bonded = VvdW + VCoulomb (2.10c)

The first three components can be described as representing the stretching, bending and

torsional bonded interactions. These are usually represented in terms of the deviation

of the bond length r, angle θ and dihedral angle ψ (see Figure 2.1) from a reference, or

equilibrium value, see Equation 2.11.

Vbond =
∑
bonds

kr(r − req) (2.11a)

Vangle =
∑
angles

kθ(θ − θeq) (2.11b)

Vdihedral =
∑

dihedrals

Vn
2

(1 + cos(nφ− γ)) (2.11c)

The last two terms represent the van der Waal’s forces and the electrostatic interactions

between the non-bonded atoms. The former is approximated as a Lennard-Jones 6-12

potential (Equation 2.12a), the later is given by the Coulomb potential (Equation 2.12b).
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Figure 2.1: The coordinates used to describe bonded interactions in the interatomic
interaction potential of an MD forcefield: r governs bond stretching, θ the bond angle
and φ the dihedral angle between two atoms connected by three covalent bonds.

VvdW =
∑
i

∑
j>i

4εij

[(
σij
Rij

)
−
(
σij
Rij

)]
(2.12a)

VCoulomb =
∑
i

∑
j>i

qiqj
4πε0rij

(2.12b)

The constants kr, req, kθ, θeq, etc. are then taken from standard parameterisation

schemes such as CHARMM [51] and AMBER [52]. The required parameters are deter-

mined by grouping combinations of atoms of varying types and fitting to either experi-

mental or ab initio quantum mechanical calculations. This approach assumes that the

parameters derived from these small subsets of atoms can provide a sufficiently accurate

approximation of the properties of the same groupings of atoms embedded in a larger

molecular structure. Forcefields may differ in their functional form and in the systems

and physical conditions (such as temperature and pressure) for which they are param-

eterised. The simulations performed in this thesis use the AMBER values, which are

parameterised to be suitable for studying proteins, nucleotides and lipid bilayers.

There are a number of limitations which are inherent in the use of any forcefield. The

parameters in commonly used forcefields, such as AMBER, have been validated for

equilibrium structures over short timescales but inaccuracies may arise when systems

move away from equilibrium or for pressure or temperature conditions far from those

used in their parameterisation. Furthermore, the number of atomic combinations used to

create the parameter set are limited and whilst the configurations of all amino acids have
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been parameterised this is not true for many molecules of interest. An example, which

is relevant to the simulations described in this thesis, is that of novel compounds used

as drugs. The General AMBER forcefield (GAFF) attempts to extend the coverage to

encompass the majority of organic and pharmaceutical compounds [53]. The additional

parameters were primarily obtained through fitting results from ab initio calculations.

2.4.3 Updating the Atomic Positions

Once the force on, and consequent acceleration of, each particle are calculated (from

Equation 2.6 and Equation 2.5) they can be used in conjunction with standard finite

difference numerical integration methods to advance the atomic positions over a small

time step. In molecular dynamics the main criteria which govern the choice of integration

scheme are the requirement that energy be conserved and the need for computational

efficiency. The Verlet class of integrators are the most commonly used methods employed

by molecular dynamics codes. Other approaches are available but are used less frequently

and we shall not discuss them here.

The Verlet method[54] begins by assuming that the positions r(t + δt) and velocities

v(t+ δt) can be approximated by Taylor expansions

r(t+ δt) = r(t) + vδt+
a(t)

2
δt2 +

b(t)

6
δt3 + . . . , (2.13a)

v(t+ δt) = v(t) + aδt+
b(t)

2
δt2 + . . . (2.13b)

where a(t) is the acceleration and b(t) = ȧ(t). The equivalent expansion of r(t− δt) is

r(t− δt) = r(t)− vδt+
a(t)

2
δt2 − b(t)

6
δt3 + . . . (2.14)

Adding or subtracting Equation 2.14 from Equation 2.13a and substituting for the ac-

celeration using F = ma then yields the following expressions for r(t+ δt) and v(t)

r(t+ δt) = 2r(t)− r(t− δt) +m−1F(t) · δt2, (2.15a)

v(t) =
r(t+ δt)− r(t− δt)

2δt
(2.15b)
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This is the Verlet algorithm. It has many attractive properties as it is simple, time

reversible and conserves energy. However, the expressions for position and velocities

involve differences between large, similar numbers which leads to numerical inaccuracies.

A variant of the method known as the velocity Verlet algorithm [55] removes these

disadvantages (by replacing the subtractions of quantities by sums) and is consequently

numerically preferable when using computers of finite precision. The expressions for the

positions and velocities using this algorithm are

v(t+
δt

2
) = v(t) +m−1F(t) · δt

2
, (2.16a)

r(t+ δt) = r(t) + v(t+
δt

2
)δt, (2.16b)

v(t+ δt) = v(t+
δt

2
) +m−1F(t+ δt) · δt

2
(2.16c)

It is this method that is employed by the NAMD code used to perform the simulations

presented in this thesis.

The size of timestep required in order to describe the fastest motions in biochemical

systems and maintain the stability of numerical integration is a major factor in the high

computational expense of MD. Typically step sizes of 0.1-1 femtosecond are required. In

Section 2.5.2.4 and Section 2.5.2.5 two methods used to reduce computational workload

and increase the size of the timestep are described.

2.5 Interpreting Trajectories

In principle the trajectories of atomic positions (and velocities) can be used as the basis

for a wide range of qualitative and quantitative assessments of protein dynamics and

functions. However, an important issue that needs to be addressed when dealing with

computer simulations is the robustness of results to perturbations in the initial conditions

[32, 33]. Consider the time evolution of a system trajectory Γ, where Γ = (p,q), in a

system defined by a Hamiltonian, H , giving us Equation 2.17.

dΓ

dt
= ∇ΓH (Γ). (2.17)

If the trajectory is slightly perturbed we then obtain Equation 2.18.

d(Γ + δΓ)

dt
= ∇ΓH (Γ + δΓ). (2.18)
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If the right hand side of Equation 2.18 is expanded using the first term of the Taylor

expansion and then comparing terms we get Equation 2.19b.

d(Γ + δΓ)

dt
' ∇ΓH (Γ) +∇Γ (∇ΓH (Γ)) δΓ (2.19a)

dΓ

dt
= ∇2

ΓH (Γ)δΓ. (2.19b)

It is found from this analysis that a small disturbance develops exponentially with an ex-

ponent characteristic of the particular system, known as the Lyapunov exponent [56, 57].

At first glance this result may seem to indicate that accurate simulation is impossible.

The way out of this problem is to consider the simulation not as producing a time

course but as exploring the allowed areas of phase space. If the sampling is well enough

performed then we should be able to calculate thermodynamic properties.

Here we define phase space as the 6N dimensional space described by the position and

momentum vectors, q and p, of the system. Each point defined in this space is known

as a microstate of the system. Functions of the position and momentum, such as free

energies, can now be thought of as forming a complex topological landscape in phase

space. In this conception we can think of a molecular dynamics simulation exploring this

landscape and sampling the properties of interest at each microstate it visits. Correct

statistical treatment of this sampling can then be used in order to evaluate macroscopic

thermodynamic properties of the system (such as temperature, pressure and volume).

Statistical mechanics uses the concept of an ensemble of systems, with different mi-

crostates but the same macrostate, exploring phase space independently [58]. The aver-

age of a property across this ensemble then provides the measurement at the macroscopic

level. This conception leads to the construction of a density function, ρ, representing

the distribution of the ensemble members over all possible microstates of the system.

Liouville’s theorem (see Equation 2.20) states that ρ is invariant over time (this applies

to both equilibrium and non-equilibrium situations). If this is also true of the integrator

used to perform molecular dynamics then we can make use of the ergodic hypothesis

which suggests that if the sampling interval used is greater than the correlation interval

and the simulation is of sufficient length then the distribution of any thermodynamic

variable measured should converge on that of the theoretical ensemble average used to

define the macroscopic quantity.

dρ

dt
=
∂ρ

∂t
+

3N∑
i=1

(
∂ρ

∂qi
q̇i +

∂ρ

∂pi
ṗi

)
= 0 (2.20)
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The functional form of ρ is dependent on which quantities are held constant when av-

eraging is performed. Properties which can be kept constant over a MD simulation are

the number of particles N, the energy E, the pressure P and the chemical potential

µ. Classical MD can sample in so called NVE (“microcanonical”), NPE, µVT (“grand

canonical”), NVT (“canonical”) and NPT ensembles. Modifications to the MD algo-

rithm as described so far are required in order to sample ensembles other than NVE,

alterations which maintain temperature and pressure are known as thermostats and

barostats respectively and are described in the next section.

2.5.1 Thermostats and Barostats

Most experiments occur in conditions approximating the NPT ensemble. In order to

sample system states from such an ensemble requires methods to keep the temperature

and pressure constant. A method which maintains the temperature at a set value is

known as a thermostat, one which maintains a constant pressure a barostat. A wide

variety of both thermostats and barostats are available [32, 33] but we will confine

ourselves to a discussion to those implemented in NAMD [50].

A measure of temperature may be obtained by making use of the equipartition theorem

T =
2K

NkB
(2.21)

where K is the total kinetic energy of the system, N the number of degree of freedom and

kB is the Boltzmann constant. As this may suggest, the temperature can be controlled

by altering the velocities of the components of the system. The approach adopted by

Berendsen et al. [59] couples the simulation unit cell to a large heat bath, with the

velocities scaled such that the change in temperature is proportional to the difference in

temperature between unit cell and heat bath. The rate of change of the temperature is

then given by

dT (t)

dt
=

1

τT
(Tbath − T (t)) (2.22)

where T is the temperature calculated from the simulation, Tbath that of the heat bath

and τT is the coupling parameter. As this approach simply scales the velocities already

found in the system it will maintain discrepancies in the velocity distribution. The

consequent “hot solvent, cold solute” problem can be overcome by instead using a model

in which heat is transferred from heat bath to unit cell via collisions between particles
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from the bath and those of the main simulation. In NAMD this is implemented via the

Langevin equation [60, 61]:

mi
d2ri(t)

dt2
= Fi(ri(t))− γi

dri(t)

dt
mi + Ri (2.23)

where a frictional force with coefficient γi and a stochastic force Ri, simulating thermal

noise, are applied to the system and mi and Fi represent the mass and force calculated

from the potential on the ith particle. The stochastic force does no net work on the

system (i.e. 〈Ri(t)〉 = 0 where 〈· · · 〉 denotes a time average). The magnitude of the

stochastic force can be related to the friction coefficient using the fluctuation dissipation

theorem:

〈Ri(t)Ri(t
′)〉 = 2γimikBTδ(t− t′) (2.24)

where δ(t − t′) is the Dirac delta function. The choice of γi determines whether the

frictional or stochastic forces dominate. Appropriate choices of γi allow the effective

maintenance of a constant temperature. If γi is set too high then the system moves

from the inertial to the diffusive regime and Brownian dynamics are obtained. Clearly,

the use of a stochastic force for temperature control means that simulations employing

a Langevin thermostat are not deterministic.

Pressure is maintained in molecular dynamics simulations by scaling the coordinates

(and hence volume) of the system. The Berensen barostat [59] employs a pressure bath

analogous to the heat bath described above. In fact, the change in instantaneous pressure

has a similar form to Equation 2.22

dP (t)

dt
=

1

τP
(Pbath − P (t)) (2.25)

where P (t) is the instantaneous pressure, Pbath the pressure of the bath and τP the

pressure coupling parameter. The volume of the system is then scaled by a factor µ

µ = 1− κ δt
τP

(P − Pbath) (2.26)

where κ is the isothermal compressibility. The new coordinates are given by

r′i = µ
1
3 ri (2.27)
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Barostats are key to molecular dynamics simulations as it is not generally practicable to

build simulation systems in which the particle density is high enough to ensure that the

pressure is close to atmospheric pressure. Additionally, most solvation methods leave

a gap between solute and first solvation shell. The use of a barostat increases particle

density and removes such gaps in the solvent [32].

2.5.2 Improving Computational Efficiency

A range of different techniques have been developed which improve the efficiency of

the computation involved in simulation or increase the verisimilitude of small scale

simulations to the conditions encountered in real experiments. Here we detail a few

of the most commonly used.

2.5.2.1 Periodic Boundary Conditions

Periodic boundary conditions are used to increase the effective size of the simulation

environment. This enables the simulation of a relatively small number of atoms in such

a way that they feel forces as if they were in a bulk fluid. This allows the method to

obtain results which are valid in the thermodynamic limit, in which we can use statistical

mechanics to relate the microscopic behaviour observed to macroscopic thermodynamic

quantities [32, 33].

The concept is to effectively create an infinite array of images which repeat the contents

of the simulation box. The images are created by using integer multiples of the atomic

coordinates from the simulated box. In order to conserve the number of particles in

the periodic system any atom which moves past the boundary of the simulation box is

replaced by an image particle entering from the opposite side of the simulation box. In

order for this approximation to work it is necessary to construct the simulation box in

such a way that the system does not feel the effects of the boundary. Ensuring a large

enough box is used to minimise interactions between proteins and their images is usually

the most important factor in avoiding such ‘finite size’ effects [32].

2.5.2.2 Handling Short Range Force Contributions

One of the most computationally expensive parts of a molecular dynamics simulation is

the calculation of the non-bonded energies. In a pairwise model the cost of these calcu-

lations scales with the particles simulates, N as O(N2). The Lennard-Jones potential is

only significant over a very short range (reflecting the r−6 dependence of the dispersion
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reaction) and to calculate it’s value for distant atoms will make very little effect. A

common way to reduce the computational effort of calculating its effect is to impose a

distance cut off beyond which the potential is set to zero [32, 50]. It is conventional in

periodic systems to set the cut off such that each atom only interacts with one image of

each other atom in the system.

On its own the distance cut off may not result in significant gains in efficiency. This is

because it requires the additional computation of the distances between all of the atoms

and their comparison with the cutoff (introducing N(N −1) additional calculations). In

order to avoid this problem, advantage is taken of the fact that an atoms neighbours are

unlikely to change radically over 10–20 timesteps. A list of the atoms which fall within

the cut off is created on this timescale, meaning that distance comparisons need to be

calculated much less frequently. In many MD codes a list of those atoms just outside the

cut off is also calculated, with these atoms being used in the Lennard Jones potential

computation only if they move within the cut off distance [32, 50].

The inclusion of a cut off distance introduces a discontinuity in the potential energy (and

hence the force) at the cut off. In order to prevent problems with energy conservation

most simulation codes multiply the real potential by a switching potential which goes

smoothly to zero at the cut off. This alteration to the potential is often only introduced

a short distance before the cut off.

2.5.2.3 Handling Long Range Force Contributions

Unlike the Leonard-Jones contribution, the Coulombic, electrostatic, contribution to

the potential is significant at long distances as it decays as the inverse of the distance

between two atoms. This means that cut offs cannot be implemented without leading

to spurious dynamics and consequently the full electrostatic calculation would scale as

O(N2). When periodic boundary conditions are used the system can be thought of

as being infinitely periodic. This can be exploited to help calculate the electrostatic

potential. The Ewald sum (first described in 1921 [62]) decomposes the potential into

short and long range contributions. The long range contribution can be represented as

a sum over the Fourier transforms of the potential and the charge density. This sum

converges rapidly and so can be truncated with little error but significant gain in terms

of computational workload.

The first term of the Ewald sum requires a Gaussian distribution of width β and equal

magnitude but opposite charge to be centred at each atomic position. This has the

effect of screening the atomic charges, diminishing the rapid changes at small separations

and ensuring a real space summation converges rapidly. This shielding effect must be
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corrected for by a second term of identical but oppositely charged Gaussians. This second

term is not efficiently summed in real space and therefore the cancelling distribution is

Fourier transformed and summed in reciprocal space before conversion back into real

space. The self interaction of each Gaussian is removed by a third term. Although more

complicated than the simple summation of Coulombic terms the Ewald sum converges

as O(N3/2) rather than O(N2).

A further improvement can be implemented by using the particle-mesh Ewald (PME)

method [63] which speeds up the second term summation by interpolating charges onto

a three dimensional grid. This allows Fast Fourier Transform (FFT) techniques to be

applied to efficiently calculate the Fourier transforms. Increasing the width of the added

Gaussians, β, allows faster convergence of the real space sum but slows the computation

in reciprocal space. The value of β must be tuned in order to achieve optimal perfor-

mance. PME scales as O(N lnN), permitting the routine calculation of electrostatics

without any cut off for periodic systems. This method of dealing with electrostatics is

employed throughout this thesis.

2.5.2.4 Multiple Time Step Algorithms

The majority of the time consuming force calculation step of any MD algorithm is spent

calculating long range forces that vary slowly with time. It is therefore possible to

compute the forces more efficiently by computing these contributions less frequently

than the more rapidly varying short range forces. This is the approach used in multiple

time step (MTS) algorithms [64, 65]. Most MTS implementations divide forces into three

categories. The first, most frequently updated category, is the bonded forces (usually

updated approximately every femtosecond). The second includes all non-bonded forces

between atoms within a set distance (usually the short range force cut off) of one another

updated less often. The final class is the long range electrostatic forces between distant

atoms which are updated the least frequently.

2.5.2.5 Constrained Dynamics

The integration timestep that can be used in a simulation is determined by the fastest

motions in the system. In biomolecular systems this is the vibrations of hydrogen atoms

bound to heavy atoms. If one assumes that these vibrations do not contribute strongly

to the overall dynamics of the system then the lengths of these bonds can be constrained

and the integrator allowed to proceed more quickly. The SHAKE method, developed

by Ryckaert et al. [66], assumes that the constraint forces always act along the bonds

which they are constraining. In this approach the unconstrained equations of motion
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are solved first and then the atomic positions corrected. An analytical variant of the

SHAKE algorithm, called SETTLE, is designed specifically to constrain bonds in water

molecules [67]. The NAMD code used to perform the simulations presented in this thesis

makes use of SETTLE to constrain hydrogen atoms within water molecules and SHAKE

for those in all other atoms. This combination allows for the extension of the timestep

to 2 fs, rather than 1 fs as required in unconstrained dynamics.

2.5.2.6 Accelerating Dynamics

The dynamics seen during a simulation can be accelerated by adding biasing potentials

[68] or external forces into the calculation [69]. When a force is applied to a set of atoms

to guide it in a particular direction (or set of directions over time) the technique is known

as steered molecular dynamics (SMD). Two variants of SMD are widely implemented,

‘constant velocity’ and ‘constant force’ steering. A further variation of the technique has

been developed in which a subset of atoms in the simulation is guided towards a final

‘target’ structure by means of the steering forces, this is known as targetted molecular

dynamics (TMD).

2.5.3 Available Packages For Biomolecular Molecular Dynamics

A variety of molecular dynamics codes are available designed specifically for the simula-

tion of biomolecular systems. The first packages to gain widespread usage were AMBER

[70] and CHARMM [51]. Both packages consist of a suite of programs allowing the con-

struction of the solvated system for simulation, it’s potential energy to be minimised and

molecular dynamics performed. In both cases forcefields were developed that are syn-

onymous with their simulation software. The extensive validation and optimisation of

these forcefields has led them to be accepted as benchmarks for other forcefields which

are developed. The desire to better exploit larger super computers in the mid-1990s

led to the a second generation of simulation software. Codes which emerged at this

time include GROMACS [71, 72], NAMD [50], LAMMPS [73, 74]. More recently the

Desmond [75] code has been produced motivated by further developments in computa-

tional resources. These packages allow the use of existing forcefields including variants

of AMBER and CHARMM.

The NAMD code has been used to perform all simulations in this thesis, primarily due

to its excellent scaling and performance on the large number of processors (CPUs) now

available on super computing resources. However, the tools of the AMBER suite were

used both to build and analyse systems. This illustrates a common theme in molecular
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dynamics where a single package is often unable to fulfill all of the requirements of a

particular study necessitating the use of elements of multiple codes.

2.5.3.1 Parallel Algorithms

The turn around times possible for any given system depend on two types of optimisation

- that of the raw speed of the computation code and the ability of the code to make

use of an increasing number of CPUs. As the scale of computational resource available

have increased, the ability to partition and execute MD simulations across a larger and

larger number of CPUs has been a key determinant of both the size of system and the

timescales that simulations can be run on.

There is no unique way in which to parallelise an algorithm and many different techniques

have been applied in molecular dynamics codes. The degree of speed up achieved as

increasing numbers of processors are made available to a code is known as the scaling

and is dependent on the precise algorithms used. In general as more CPUs are used the

level of communication between processors increases resulting from a departure from

linear scaling. For a given system size a compromise is eventually reached between the

performance gained in increasing the usage of an increasing number of CPUs and the

penalty imposed by communication between them.

Older MD codes, such as CHARMM and the SANDER module of AMBER, were initially

designed using serial algorithms but have been developed more recently to take advantage

of parallel computing resources. Initially, this involved the replication of the data of the

entire system for each processor and correspondingly poor performance due to memory

and communication overheads. A reduced version of SANDER (called PMEMD) has

now been included in the AMBER suite which provides improved scaling [70].

Newer codes such as NAMD, GROMACS and LAMMPS decompose the calculations

required for the entire system across different processors, using a variety of strategies

to achieve this. LAMMPS uses ‘force decomposition’ in which the pairwise forces are

evenly distributed across all CPUs [73, 74]. Until recently GROMACS used ‘particle de-

composition’ where each atom is assigned to a particular CPU throughout the simulation

[71]. In common with NAMD it now uses a scheme known as ‘domain decomposition’,

in which the system is divided into a number of spatial regions whose size is greater than

the cut off for the non-bonded terms of the potential [50, 72]. In NAMD the non-bonded

interactions are additionally grouped into ‘patches’ which are also distributed across the

available CPUs. At regular intervals the computational load is then balanced in order

to maximise efficiency [50]. This latter strategy has proved to be highly successful for

larger systems, allowing scaling to thousands of CPUs.
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It is, of course, also the case that for smaller systems the bottleneck is the intrinsic speed

of the algorithms used to solve the equations of motion. For example, GROMACS is very

fast and for many systems will outperform codes such as NAMD or PMEMD up to 32

CPUs [71, 76]. A different approach that has emphasised sampling of small systems over

timescale is that of ensembles of simulations run on single processors by Folding@Home

[77] (which uses GROMACS).

More recently the ACEMD code [78] has been developed to take advantage of newly

available graphics processing unit (GPU) based processors, which are more efficient than

traditional CPUs for many numerical calculations. Versions of NAMD [79], GROMACS

and LAMMPS have also been developed to take advantage of GPU technology.

2.6 High Performance Computing

The simulation of biological systems using molecular dynamics is a highly computation-

ally intensive endeavor. In order to exploit its power it is necessary to couple the use

of high performance computing with suitably designed codes. In recent years efficiently

parallelised codes have become widely adopted within the community of molecular biol-

ogists. In order to fully utilise the power of these packages it is necessary to have access

to supercomputing resources which allow the user to run programs on large numbers of

processors at once.

One of the more appealing methods of being able to do this is called Grid computing.

Grid computing has been defined as “distributed computing performed transparently

across multiple administrative domains” [80] and aims to provide a common framework

for scientists to run their simulations on local clusters or on more powerful national,

or international, resources. The original vision of the Grid was to provide uniform

methods of access to geographically and organisationally distributed resources (where

the resources in question need not be computational but might include storage or even

scientific instrumentation) and the name reflects the dream of making these resources

available as seamlessly as electrical power is obtained from the electrical grid. In reality

although access can be gained to a wide variety of spatially disparate supercomputing

resources there is still considerable work needed on middleware that makes the process

transparent. These problems continue to apply despite the existence of numerous grid

projects spanning those which are national and international in scope and those general

in purpose to those designed for specific purposes, examples include the UK National
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Grid Service (NGS)2, DEISA in Europe3, the US TeraGrid [81]4 and the QCDGrid5

(dedicated to investigating quantum chromodynamics).

The US TeraGrid in particular provides access to machines with many thousands of

processors (currently the largest system on the network is Jaguar at the Oakridge Na-

tional Laboratory6 which can perform a maximum of 2.3 petaFLOPS (floating point

operations per second) if all 224,256 cores are used). Use of such petascale resources

offers the potential to achieve scientific results at unprecedented scales and resolution

[82]. In realistic terms these resources now allow us to produce microseconds of all atom

molecular dynamics trajectory for a wide variety of biomolecular systems.

A GPU based system called Lincoln7 has recently been installed at the National Centre

for Super Computing Applications (NCSA) in Illinois, as part of the Teragrid. The lower

cost of GPUs mean that in the future the number of large scale GPU systems is likely

to increase. Lincoln has a maximum processing power of 47.5 teraFLOPS provided

by 1536 cores and 96 accelerator units. GPUGRID8 is a distributed supercomputing

infrastructure made of many commodity graphics cards joined together to deliver high-

performance all-atom biomolecular simulations [83] which also offers the possibility of

reaching similar levels of sampling to the CPU systems available on the TeraGrid.

An even more specialised approach than the use of GPUs comes from the development of

the single purpose Anton machine by D. E. Shaw Research. It is designed solely for the

purpose of performing MD simulations of proteins and other biological macromolecules

[84]. Anton uses specially designed hardware to accelerate compute intensive parts

of the simulation such as force calculation, which is claimed to offer much improved

overall performance. A 512 node Anton machine will be made available to the research

community at the National Resource for Biomedical Supercomputing (NRBSC) at the

Pittsburgh Supercomputing Center (PSC)9 during 2011.

In general, access to high performance computational resources continues to require

knowledge of the target resource and can often involve considerable amounts of wait-

ing before a job is processed. Some of the issues with using different middleware and

submission processes can be hidden from the user by using the Application Hosting En-

vironment (AHE) [85]. In this thesis we make extensive use of a set of scripts built upon

2NGS: www.ngs.ac.uk
3DEISA: www.deisa.eu
4TeraGrid: www.teragrid.org
5QCDGrid: www.gridpp.ac.uk/qcdgrid/
6Jaguar: http://www.nccs.gov/computing-resources/jaguar/
7Lincoln: http://www.ncsa.illinois.edu/UserInfo/Resources/Hardware/Intel64TeslaCluster/

Doc/
8GPUGRID: http://www.gpugrid.net/
9Anton machine at NRSBC: http://www.nrbsc.org/anton_rfp/

www.ngs.ac.uk
www.deisa.eu
www.teragrid.org
www.gridpp.ac.uk/qcdgrid/
http://www.nccs.gov/computing-resources/jaguar/
http://www.ncsa.illinois.edu/UserInfo/Resources/Hardware/Intel64TeslaCluster/Doc/
http://www.ncsa.illinois.edu/UserInfo/Resources/Hardware/Intel64TeslaCluster/Doc/
http://www.gpugrid.net/
http://www.nrbsc.org/anton_rfp/
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the AHE known collectively as the Binding Affinity Calculator (BAC). A full description

of BAC is provided in Appendix A.

2.7 Conclusions

Focussing on the classical molecular dynamics approach, which is to form the basis of

the research in this thesis, a variety of experimental and computational approaches to

investigating protein structure and conformational change have been discussed. In the

case of molecular dynamics, the representation of interatomic interactions by a forcefield

function and several widely used methods for integrating the equations of motions have

been described. A brief review of a number of molecular dynamics packages and some

of the techniques they employ in order to increase computational performance has also

been presented.



Chapter 3

Binding Affinities and Molecular

Simulation

3.1 Binding Constants and Equilibrium

Molecules which bind to proteins are termed ligands. Whilst in some cases ligands form

covalent bonds with proteins (in a process often referred to as ‘irreversible’ binding),

most bind via non-covalent bonds (the process of binding in this way is, unsurprisingly,

known as ‘reversible’ binding) [4]. We concentrate here on the second case, as it is

relevant in the majority of cases in which drugs are designed to inhibit a target enzyme.

Consider a solution containing fixed total concentrations of a protein, A, and ligand, B,

dissolved in a suitable solvent. If the protein and ligand non-covalently bind then ligands

will constantly be binding to, and dissociating from, the proteins. These processes can

be expressed as the chemical reaction

A+B
k1


k−1

AB (3.1)

where k1 and k−1 are the rate constants for binding and dissociation respectively. In

equilibrium the rate of the forward and backward reactions are equal, resulting in a stable

mixture of free protein, A, free ligand, B and the complex, AB. The concentrations of

each of these species at equilibrium determine the equilibrium association constant, Ka

(in units of M−1), and the equilibrium dissociation constant, Kd (in units of M), given

by

Ka =
1

Kd
=

k1

k−1
=

[AB]eq
[A]eq[B]eq

, (3.2)

39
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where the brackets [· · · ] indicate a concentration and the subscript eq indicates that

these values must be considered at equilibrium. Rewriting Equation 3.2 in the form

[AB]eq
[A]eq

= Ka[B]eq, (3.3)

equating the ratio of bound protein to free protein to the product of the binding constant

and the free ligand helps to clarify the meaning of Ka. It can be seen from Equation 3.3

that the probability that a given protein atom is bound to a ligand goes up as more ligand

is present, and that the odds are increased for a higher value of Ka. Thus, it is clear

that Ka is a measure of the level of attraction between protein and ligand, consequently

it is often referred to as the binding affinity. Despite simply being the reciprocal of Ka

the dissociation constant, Kd, is often quoted due to its intuitive interpretation as the

concentration of ligand for which the probability of any protein being bound within a

complex is a half. To obtain this result we take the occupied protein fraction, σ, given

by:

σ =
[AB]eq

[A]eq + [AB]eq
(3.4)

and multiply both the numerator and denominator by
[B]eq

[AB]eq
to obtain

σ =
[B]eq

[B]eq +
[B]eq ·[AB]eq

[AB]eq

=
[B]eq

[B]eq +Kd
(3.5)

from which expression the interpretation of Kd is self evident.

3.2 Thermodynamics and Binding Affinity

An alternative analysis of binding processes is provided by thermodynamics. In this view

reactions are driven by the minimisation of a potential, the appropriate thermodynamic

potential being determined by the conditions in which the reaction occurs. Here we

present a brief overview of the thermodynamics (and related enzyme kinetics) relevant

to protein-ligand binding, thorough descriptions and analyses of the concepts broached

here can be found in the literature [4, 86, 87].

In standard experimental conditions (also known as the NPT ensemble because the num-

ber of molecules, pressure and temperature are kept constant) the appropriate potential

is known as the Gibbs free energy, G, which is given by
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G ≡ U + pV − TS

≡ H − TS (3.6)

where U is the internal energy, p the pressure, V the volume, T the temperature, S

the entropy and H the enthalpy of the system. Only if the difference in this potential

between the free reactants and the complex is negative can the binding process occur

spontaneously. If this is the case then the process will occur until the free energy

is minimised and equilibrium is reached. The difference between the potential of the

bound and free reactants, ∆G, can be calculated:

∆G = G(AB)−G(A)−G(B) (3.7)

and provides a measure of the strength of binding (the more negative the stronger the

attraction between the reactants). This change can also be related to the equilibrium

association constant, Ka, via the van’t Hoff equation:

∆G = −RT lnKa (3.8)

where R is the universal gas constant and T the temperature. This equation states that

for a given temperature the more negative the value of ∆G the higher the concentration

of complex at equilibrium. The close relationship between the two quantities has led

∆G to also be known as the ‘binding affinity’, although it is interchangeably referred to

as the free energy of binding. It is often instructive to break the overall change into its

component enthalpic and entropic changes:

∆G = ∆H − T∆S (3.9)

3.3 Enzyme Catalysis

The catalytic function of enzymes requires them to accelerate the rate of reactions with-

out themselves being consumed. Thermodynamics allows us to characterise the equilib-

rium reached by such processes but cannot describe the rate at which it is achieved. The

rate at which a reaction proceeds is determined by the ‘activation energy’, the difference

in energy between the free reactants and the highest energy state along the reaction
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Figure 3.1: Comparison of the free energy barrier of a catalysed, ∆GC , and uncatalysed,
∆GU reaction, showing the reduction caused by a catalysing enzyme which causes the
reaction to proceed at a more rapid rate. In the uncatalysed reaction the enzyme, E, and
substrate, S, do not interact and the substrate forms the product P via the transition
state S∗ at the natural rate of this reaction. In the catalysed reaction the enzyme binds
the substrate forming a complex, ES, which then converts into a transition state ES∗

which proceeds to a complex of enzyme and product, EP , which then disassociates to
give free enzyme and product at a much faster rate than the uncatalysed reaction.

path to the end state of the reaction. It is this barrier that is lowered by enzymes in

order to catalyse the reaction (see Figure 3.1). The energy required to do this comes

from the binding free energy between the protein and bound substrate. The tighter the

binding the greater the amount of energy available to reduce the activation energy. In

order to demonstrate the impact this we require a model of the reaction. The most

commonly used model to describe catalytic reactions is the Michaelis-Menton equation.

This formulation describes a kinetic scheme in which an enzyme (E) binds a substrate

(S) which undergoes a reaction and produces a product (P ):

E + S
k1


k−1

ES
kcat→ E + P (3.10)

where k1 and k−1 are the rate constants of the binding and unbinding of the enzyme and

substrate respectively and kcat the rate constant of catalysed reaction. The Michaelis-

Menton equation (Equation 3.11) is reached by applying the ‘law of mass action’, in

which the reaction rate is proportional to the product of the concentrations of enzyme

and substrate, and assuming that the overall enzyme concentration (i.e. of free and

substrate bound enzyme) remains constant. Furthermore it is assumed that the en-

zyme concentration is much less than that of the substrate. The original derivation of
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the equation also assumed that the substrate is in instantaneous equilibrium with the

complex, this is known and the ‘equilibrium’ approximation. For this to be valid it is

necessary that the condition k−1 � kcat is met. The equation can then relate the reac-

tion velocity, vo, to the substrate concentration [S], the theoretical maximum velocity

vmax and the Michaelis constant, Km:

vo =
vmax[S]

Km + [S]
(3.11)

The maximum rate of reaction, vmax will occur at the saturation point, when all enzyme

molecules are bound in a complex. At this point the concentration of the complex, [ES],

is equal to the total enzyme concentration [E]tot, allowing vmax to be written as:

vmax = kcat[E]tot. (3.12)

Using the equilibrium approximation the Michaelis constant, Km, is defined as:

Km =
k−1

k1
. (3.13)

In this conception Km is clearly equal to the dissociation constant of the enzyme sub-

strate complex (see Equation 3.2) and it is apparent that the stronger the binding affinity

between enzyme and substrate the faster the reaction will occur. This underlines the

importance of an understanding of Km in ascertaining the rate at which an enzyme

catalysed reaction proceeds.

An alternative assumption which yields the same form of Equation 3.11, but altering

the meaning of Km, is known as the the ‘quasi-steady state’ model. Here the complex

is assumed to be short lived (i.e kcat � k1) and its concentration, [ES], assumed to be

constant. In this approach the the Michaelis constant is given by:

Km =
k−1 + kcat

k1
. (3.14)

3.4 Enzyme Inhibition

The treatment of many medical conditions is facilitated by the prevention of the enzymes

of an etiological agent or malfunctioning host cell performing their function. Drugs de-

signed to perform this function are known as inhibitors. Most inhibitors bind reversibly
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to their targets, leaving them with no permanent alteration and unlike substrates they

do not usually undergo chemical reactions upon binding. Reversible inhibitors are fre-

quently classified into four groups according to their mode of interaction with their tar-

get; competitive, uncompetitive, mixed and non-competitive. Competitive inhibitors,

as the name implies, are generally understood to compete with the substrate to bind in

the same site in the enzyme. this is not always the case as some operate allosterically,

but in all cases the enzyme can only bind either inhibitor or substrate at any one time.

Competitive inhibitors do not alter kcat, but do increase Km. Inhibitors of this type can

be out-competed by increasing concentrations of substrate, meaning that vmax remains

unaltered by their presence. Uncompetitive inhibitors do not interact directly with the

binding site but allosterically alter the function of the enzyme, reducing kcat but leav-

ing Km unchanged. It is generally assumed that uncompetitive inhibitors bind to the

enzyme-substrate complex. Mixed inhibitors are those which interact in someway with

the substrate binding site (partially blocking it or becoming part of a modified binding

site). This will reduce kcat but may increase or decrease Km. Non-competetive binding

is a special case of mixed inhibition in which substrate binding is unaffected but kcat is

decreased.

Competitive binding is probably the most frequently employed mode of inhibition and

the kinetic scheme described in Equation 3.10 can easily be amended to incorporate such

an inhibitor, I, alongside the enzyme, E, and substrate, S:

E + S + I
k1


k−1

ES
kcat→ E + P + I

E + S + I
k2


k−2

EI + S (3.15)

where the rate constants k1, k−1 and kcat are preserved unchanged from Equation 3.10

and a reversible reaction is included for the inhibitor bound to the enzyme with rate

constants k2 for the forward and k−2 for the reverse reactions respectively. The modified

Michaelis-Menton equation can again be derived in identical form by applying either the

equilibrium or quasi-steady state assumptions are applied;

vo =
vmax[S]

Km(1 + [I]
Ki

+ [S]
, (3.16)

with the same differences in the definitions of Km (see Equation 3.13 and Equation 3.14),

[I] and [S] being the concentrations of inhibitor and substrate respectively and Ki is the

disassociation for the enzyme-inhibitor complex (defined in Equation 3.17).
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Ki =
k−2

k2
. (3.17)

Thus Ki has an identical form to the disassociation constant, Kd, as described for more

general ligands in Section 3.1. Consequently, Ki is an obvious metric for estimating the

strength of inhibitor binding. The lower the Ki the stronger the binding and, conse-

quently, the more effective the inhibitor is at preventing the target enzyme performing

its catalytic function; hence inhibitor minimising this quantity is of great importance in

the optimisation of inhibitor design. As previously noted, minimising the disassociation

constant is equivalent to maximising the free energy of binding, ∆G.

3.5 Experimental Measurements of Binding

The free energy of reactions cannot be measured experimentally at the molecular level,

meaning that experiments are generally designed to follow the binding kinetics of the

enzyme in a mixture with the inhibitor (and often a natural substrate). A repository

of experimentally obtained binding free energies for a wide range of proteins and small

molecules can be found at the BindingDB1 [88, 89] along with details of the methods

used to obtain them. Here we give details of the three methods most frequently used to

produce the binding affinity data for protein-inhibitor binding.

3.5.1 Inhibition Assays

In steady state inhibition assays the generation of products or the consumption of sub-

strate in a reaction is monitored in order to measure the rate of the reaction being

catalysed by the enzyme. A fitting procedure can then be used to convert the observed

rate into the parameters of the Michaelis-Menton model (see Equation 3.11), Km and

kcat. The inhibitor to be studied can then be added to the mixture and its binding

affinity derived from the impact this has on the reaction rate (and hence Km and kcat)

using the modified Michaelis-Menton model described by Equation 3.16.

The results of such assays are frequently not reported as Ki (or equivalently Kd) values

but in terms of the concentration of inhibitor which reduces enzyme activity by 50%,

which is known as the IC50. This will depend on both the substrate concentration

with which the experiment is performed but also how tightly it binds the enzyme. For

competitive inhibitors the IC50 can be converted to a Ki value using the Cheng-Prussof

equation [90]:

1BindingDB:http://bindingdb.org

http://bindingdb.org
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Ki =
IC50

1 + [S]
Km

, (3.18)

where [S] is the substrate concentration and Km is the Michaelis constant of the reaction

involving the enzyme and substrate. As can easily be seen in general, the IC50 will

typically be larger than Ki but when [S] is low then the two values will be essentially

equal. The dependence on Km means that, unlike Ki, it is not strictly correct to compare

IC50 values for the same inhibitor bound to different enzymes but only those for different

inhibitors binding to the same enzyme.

In many situations enzyme inhibition assays are particularly convenient as the fact that

each enzyme molecule can generate many reactions means that it acts as an amplifier.

The main problem with the technique is the need to devise a method of detecting the

removal of substrate or generation of product. A common approach is to devise a

substrate for which the fluorescence properties are altered by the reaction and use a

fluorimeter to measure enzyme activity as a function of inhibitor concentration [4, 91].

3.5.2 Pre-Steady State Assays

After the addition of a ligand to an enzyme containing solution there is an initial stage of

rapid complex formation before equilibrium is reached. The study of product formation

during the first few milliseconds of the reaction, i.e. in the first turnover, is called pre-

steady state (transient) kinetics. Observations of this phase of the reaction are much

more demanding to make than those at equilibrium due to the requirement of rapid

mixing and high temporal resolution measurements. Such experiments can be used

to determine rate limiting steps and the transition states through which the reaction

proceeds. The advantage of experiments probing this regime in the context of enzyme

inhibition assays is the ability to determine both the forward and reverse rate constants

of the reaction, k1 and k−1 (and hence Ki, Kd, calculated as in Equation 3.2) [4, 91].

Rapid kinetic experimental techniques, such as stopped-flow methods or rapid chemical

quench-flow, allow the rate of the reaction to be observed via the detection of changes in

protein florescence or light scattering. The reaction rate observed in such experiments

will be given by:

kobs = k1[I] + k−1 (3.19)
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where [I] is the inhibitor concentration (which in these assays is in excess compared to

that of the enzyme). By changing the concentration of inhibitor and fitting to this linear

relationship the forward and reverse constants k1 and k−1 can be obtained.

3.5.3 Isothermal Titration Calorimetry

The binding of an inhibitor and enzyme will often lead to small amounts of either heating

or cooling (i.e. the reaction may be exothermic or endothermic). The detection of these

changes via isothermal titration calorimetry (ITC) allows the calculation not only of the

binding free energy, ∆G, but also the enthalpic and entropic components thereof (∆H

and ∆S). In ITC a cell containing a solution of one reactant is maintained at a constant

temperature using a thermostat. Small injections of aliquots of the second reactant are

then titrated into the cell. The chemical heat release or uptake is evaluated based upon

the energy required by the thermostat to keep the solution at constant temperature.

Each injection, i, of the second reactant causes the absorption or release of a quantity

of heat, qi. This heat can be related to the amount of ligand that binds to the protein

and the enthalpy of the reaction ∆H via the relation:

qi = v∆H∆Li (3.20)

where v is the cell volume and ∆Li is the increase in concentration of bound ligand upon

the ith reactant injection[4, 91]. The energy requirement for each successive injection

becomes less as the free reactant becomes bound. The heat change during each injection

is proportional to the amount of complex formed. Consequently, the change in heat over

the course of the titration can be used to calculate the binding affinity constant, Ka

(and hence the Gibbs free energy, ∆G, via Equation 3.8). ∆H is calculated from the

experiment directly and using Equation 3.9 the value of ∆S can also be calculated.

3.5.4 Experimental Errors

Experimental free energy differences are often quoted with errors of the order of 0.1 kcal

mol−1 (often less than 1% of the total values) [92–96]. This does not seem credible given

the number of factors that can affect measurements and the difficulty in controlling

them. Sources of error include instrumentation accuracy, inadvertent inactivation of

some enzymes and incorrect assessment of concentrations (for example proteins may

stick to vessel walls). In some cases, results published by the same group for the same

enzyme and inhibitor pairing show significant variability. For example binding affinities

for the anti-cancer drugs Gefitinib and AEE788 to the human epidermal growth factor



Chapter 3 Binding Affinities and Molecular Simulation 48

receptor (EGFR) in two studies published within a year of one another vary by 0.4 kcal

mol−1 [97, 98].

3.6 The Theoretical Basis of Computational Free Energy

Calculations

An alternative approach to calculating the binding energetics of protein-ligand inter-

actions is via computational techniques. It is this method of investigation which will

provide the main focus of this thesis. These methods have a number of advantages over

experiments as they can be used to study molecules which are difficult, or impossible,

to synthesise and can provide atomistic insight into the systems under study. Molec-

ular simulations (as described in Chapter 2) generally describe single enzyme systems

and consequently in order to understand how they can be used to calculate macroscopic

thermodynamic variables requires a brief description of the relevant statistical mechanics

that provide the theoretical link between these two scales. Here we describe how some

basic statistical mechanical concepts apply to molecular simulations and how they help

understand the power and limitations of using them in free energy calculations. Again

more detailed treatment of the subject is available in standard texts [49, 58].

3.6.1 Free Energy and Statistical Mechanics

As noted in Section 3.2, binding reactions are driven by the minimisation of the relevant

thermodynamic potential depending on conditions. The Gibbs free energy, G, used in the

usual isothermal-isobaric (NPT) experimental conditions has already been described. In

this section we will turn to the Helmholtz free energy, A, which is used in the canonical

ensemble (constant particle number (N), volume (V) and temperature (T) conditions,

also known as NVT) in order to derive results in order to simplify the mathematics. The

form of the two potentials is:

G ≡ H − TS,

A ≡ U − TS, (3.21a)

where H is the enthalpy, S the entropy, T the temperature and U is the internal energy

of the system. Consideration of the partition function in both ensembles is instructive

both as to the differences between the ensembles and the simplifications allowed by using
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the Helmholtz free energy. The partition function is the sum of the energies of all the

microstates accessibly by the system and can be used to calculate many thermodynamic

quantities. In the isothermal-isobaric ensemble the partition function is given by:

QNPT =
1

h3NN !

∫ ∫ ∫
e−β(E(p,r)+pV ) dp dr dV, (3.22)

where p and r represent the momentum and position coordinates of the system respec-

tively, E(p, r) the energy of a particular microstate, V is the volume, p the pressure, β

is the inverse temperature (1/kBT , where kB is the Boltzmann constant), h is Plank’s

constant and N the number of particles. The prefactor here assumes that the particles

are indistinguishable. In the canonical ensemble the equivalent quantity is given by:

QNV T =
1

h3NN !

∫ ∫
e−βE(p,r) dp dr. (3.23)

The form of this equation is clearly simpler than that of Equation 3.22, the difference

being that no volume integral is required and the Boltzmann factor does not include the

pV term. Both partition functions can be interpreted as sums over phase space weighted

by the Boltzmann factor. This factor is a function of the microstates of the system and

it is this property that means that the partition function provides the link between the

microstates and macrostates of the system it describes.

The partition function can be used to calculate the internal energy and Helmholtz free

energy of the system. We will now use these connections to show that it is significantly

more difficult to calculate converged values of the later than it is the former. The

relationship between the partition function, Q, and internal energy, U is:

U = − 1

Q(p, r)

∂Q(p, r)

∂β
. (3.24)

Substituting for the canonical partition function from Equation 3.23:

U =

∫ ∫
E(p, r)e−βE(p,r)

Q(p, r)
dp dr. (3.25)

If we define the probability density, ρ(p, r) as:

ρ(p, r) =
e−βE(p,r)

Q(p, r)
, (3.26)

then we can relate U to the ensemble average of E(p, r):
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U =

∫ ∫
E(p, r)ρ(p, r) dp dr = 〈E(p, r)〉 . (3.27)

The integral involved in this expression is over all of phase space but the linear depen-

dence on E(p, r) means that those areas visited with a low probability do not make

significant contributions to the overall value. A consequence of this is that calculations

of U converge quickly.

Where the internal energy is related to the partition function through a derivative the

relationship for the Helmholtz free energy is direct:

A = − 1

β
lnQ(p, r). (3.28)

Again we substitute for the canonical partition function from Equation 3.23 to give:

A = − 1

β
ln

(
1

h3NN !

∫ ∫
e−βE(p,r) dp dr

)
. (3.29)

Multiplication of both numerator and denominator by
∫ ∫

e−βE(p,r)eβE(p,r) and the dis-

carding of constant prefactors gives:

A =
1

β
ln

(∫ ∫
e−βE(p,r)eβE(p,r) dp dr∫ ∫

e−βE(p,r) dp dr

)
. (3.30)

Substituting for the probability density we obtain:

A =
1

β
ln

(∫ ∫
eβE(p,r)ρ(p, r) dp dr

)
. (3.31)

As for the internal energy this can be recast in terms of ensemble averages:

eβA = e〈βE(p,r)〉. (3.32)

The exponential nature of this relationship indicates that high energy regions of phase

space, which will be infrequently visited, contribute significantly to the free energy (a

similar result is obtained for the Gibbs free energy, see Equation 3.33). This means

that free energy values will be considerably more difficult to converge than those of the

internal energy
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eβG = e〈βE(p,r)+pV 〉. (3.33)

3.6.2 Convergence and Sources of Error

Just as in experimental approaches, theoretical calculations contain various errors. This

section reviews the causes of these inaccuracies.

3.6.2.1 Incomplete Sampling of Phase Space

As highlighted by Equation 3.32 the level of phase space sampling is key to obtaining

converged and hence reliable free energy values. The phase space of proteins is too large

for all of it to be explored, consequently we must confine our ambitions to sampling it

in a representative fashion. To understand the proposition of representative sampling it

is instructive to consider the traditional picture of the free energy landscape of a folded

protein as a series of free energy minima separated by high energy barriers. If our sim-

ulation only visits a single local minimum then it is clear that it has not sufficiently

sampled the free energy surface; if it has sampled from a large number of such minima

then the chances are higher that phase space has been adequately explored. In general

the topology of the phase space under investigation is unknown and consequently, in or-

der to validate our computational results, we must use comparisons with experimentally

measured values.

3.6.2.2 Accuracy of the Interatomic Potential Energy Force Field

No matter how thoroughly the free energy landscape is sampled, the accuracy of the

calculations will be limited by how well our model of the protein describes the real system

.In general as quantum mechanical calculations are impractical for systems the size of

proteins this usually means that the accuracy of computational free energy calculations

is dependent on the quality of the forcefield potential (a definition of which is given in

Chapter 2) used to describe the inter atomic interactions.

3.7 Formally Exact Free Energy Calculations

A number of formally ‘exact’ methods, containing no empirically fitted parameters, for

calculation of free energy differences from molecular simulation have been developed.

In this section we shall explore two techniques illustrative of those available: (i) free
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Figure 3.2: A thermodynamic cycle illustrating the indirect calculation of the relative
binding free energy difference, ∆∆Gbind (using Equation 3.35). Two ligands A (green)
and B(red) bind to the same protein (represented in yellow). The free energies of ligand
binding (∆GA and ∆GB) and the alchemical transformation of one ligand into another
(∆G1 and ∆G2) are labeled

energy perturbation (FEP) which is based on exponential averages of the change in the

potential energy, and (ii) thermodynamic integration (TI), which is based on integrating

the the change in energy as one system description is gradually changed into another. A

number of reviews of a wider range of methods, many of which share similar conceptual

foundations to those described here, are available in the literature [33, 99–101]. In gen-

eral, considerations of computational efficiency lead to ‘exact’ methods being employed

to compute free energy differences arising from non-physical system transformations

(known as alchemical changes). Thermodynamic cycles can then be used to relate these

changes to the free energy differences and relative differences which are of real interest.

3.7.1 Thermodynamic Cycles

Free energy is a function of state and as such cumulative variations around a closed

thermodynamic cycle sum to zero. Figure 3.2 depicts such a cycle which could be used

to calculate the relative binding affinity, ∆∆Gbind, of two different ligands to the same

target where

∆∆Gbind = ∆GB −∆GA (3.34)
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The vertical paths describe the binding of the two ligands, A and B, to the receptor with

binding free energy differences of ∆GA and ∆GB respectively. This paths involve sub-

stantial rearrangements as the ligands move towards the target before binding (which

may itself involve conformational changes) and consequently the binding free energy

measurements will be very slow to converge using molecular dynamics. The horizontal

paths (and associated free energy differences ∆G1 and ∆G2) describe the alchemical

transformation of one ligand into another in the bound and unbound states. The con-

version of one ligand into another is clearly unphysical but is easily accomplished in a

computational model. If the ligands are similar the system reorganization will be minor

and the alchemical free energy calculations will converge much more quickly than the

physical ones. We can now make use of the properties of state functions and calculate

the relative binding affinity in terms of the alchemical free energies as

∆∆Gbind = ∆G1 −∆G2. (3.35)

The value obtained is independent of the path taken from system A (protein P bound

to ligand X) to system B (protein P bound to ligand Y ). The path taken is represented

by the alchemical Hamiltonian employed, which is conventionally given as a function of

a parameter λ where 0 ≤ λ ≤ 1. The only constraint on the form of the Hamiltonian is

then that it satisfies the boundary conditions that a value of 0 represents the Hamiltonian

of system A and 1 that of system B. An identical argument applies in the situation in

which the same ligand is bound to two slightly different targets (for example mutated

forms of the same protein).

Thermodynamic cycles can also be constructed to calculate absolute free energy differ-

ences and this approach is beginning to be more widely used. The two most commonly

used approaches are know as the ‘double decoupling’ and ‘double annihilation’ meth-

ods. These make use of constraints and more complicated cycles than those presented

here. Excellent reviews on the topic are available by Deng & Roux [101] and Shirts

et al. [100]. We will confine the discussion in the following sections to the calculation of

relative binding free energies.

3.7.2 Free Energy Perturbation

The free energy perturbation (FEP) method calculates free energy differences of alchem-

ical transformations from one system to another (see Figure 3.2 for a relevant example

for relative binding free energy differences in protein-ligand systems). The kinetic and
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potential energy contributions to the system Hamiltonian are separated and it is as-

sumed that there is no change in the kinetic component between the two systems. The

potential energy contribution will obviously be altered along with the change in the

molecular composition of the system. The free energy change of the system can be

obtained from the ensemble average of the difference in the potential between the two

systems A and B using

∆G =
1

β
ln〈e−β∆V 〉A, (3.36)

where β is 1/kBT and ∆V = VB − VA, 〈· · · 〉 represents an ensemble average and the

subscript A denotes an average calculated from MD trajectories using the potential

for system A. The values of VB are calculated from the coordinates generated by the

simulation using the potential for system A. For this approach to be valid the potential

for system B calculated in this manner is required to represent a low energy state.

In practice, this is not usually the case and a series of unphysical intermediate states

between those of A and B are used, with an independent simulation run for each one.

The sum of the ∆G values obtained for each step provides the value for the complete

transformation. A parameter, λ, with values between 0 and 1 is used to transform the

potential of one system into the other via:

Vm(λm) = (1− λm)V1 + λmV2 (3.37)

with the subscript m denoting a step number which increments over the transformation

process.

3.7.3 Thermodynamic Integration

The thermodynamic integration (TI) methodology requires a series of simulations to

be run at different values of the parameter λ. This parameter runs from 0 to 1 and

describes the gradual conversion of the system from one set of molecular constituents to

another. The ensemble average of the derivative of the potential energy with respect to

λ is then numerically integrated as seen in Equation 3.38. As in FEP λ is coupled to the

MD potential and with values other than 0 and 1 represents an unphysical transition

between the two systems.

∆G =

∫ 1

0

〈
∂V (λ, x)

∂λ

〉
∂λ. (3.38)
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Thermodynamic integration has the advantage over FEP that each average required is

independent of the others (in FEP ∆V values are averaged, meaning that values from two

trajectories must be considered). On the other hand, the fact that sufficient simulations

need to be run to calculate the numerical integral further increases the computational

load.

In both FEP and TI calculations for the alchemical transformation of both bound and

unbound states need to be performed in order to estimate the relative binding free

energy difference of two systems. Furthermore, they both require that the increments

of λ are small. In the case of FEP this is to ensure phase space overlap between the two

states and in TI it is necessary in order to provide enough points for accurate numerical

integration. Typically this requires of tens of simulations to be run, all long enough to

gain sufficient sampling of the potential. These requirements mean that both methods

suffer from the fact that they are exceptionally computationally intensive [102]. For

this reason, and to allow the comparison of a wider range of ligands, more approximate

methods have been developed.

3.8 Approximate Methods

The use of formally exact methods for calculating free energies has hitherto been enor-

mously time consuming and obtaining well converged values difficult. The computational

expense also means that limited numbers of systems have been studied and definitive

comparison between methodologies has not yet proved possible. In response to this

and the need for rapid measurements of different systems in applications such as drug

discovery, a range of approximate methods have been developed. These methods em-

ploy less accurate physical models and empirically fitted parameters to allow faster turn

around of calculations. In this section a variety of such methods are described in order

of increasing physical rigour; excellent reviews are also available in the literature such

as those by Gilson & Zhou [103] and Steinbrecher & Labahn [104].

3.8.1 Docking and Empirical Surface Area Based Methods

In applications such as the identification of drug candidates and the identification of

binding poses of known drugs it is often necessary to rapidly assess the binding affinity of

a variety of drugs, or drug-protein conformations. A wide variety of ‘scoring functions’

both physical and empirical, have been developed for this purpose, examples include

AutoDock [105], X-Score [106], DrugScore [107], ChemScore [108], GOLD [109], FlexX

[110], LigScore [111] and LUDI [112]. In general single structures are evaluated and
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little or, more commonly, no protein motion is incorporated into the evaluation. The

simplest version of this concept is that of the empirical surface area based methods,

based on the observation that ligand binding induces a reduction in the protein surface

area accessible by surrounding solvent. Often the scoring function assumes that the

change in free energy is lineary dependent on the changes in the areas of polar and

non-polar regions which can come into contact with solvent. There is little evidence

that such simplistic models have any predictive power and as such they are infrequently

used. More sophisticated models accounting more accurately for the physics involved

are frequently used for purposes such as deciding which preliminary drug candidates

can be discarded in drug design applications where they are found to give a useful first

approximation to the free energy. In these high throughput scenarios the emphasis is on

the speed of calculations despite the inevitable, major trade-off in accuracy. The form

of both empirical and physics based scoring functions designed for these type of docking

applications is under constant development with insights from more rigorous binding

free energy calculations becoming incorporated over time [113].

3.8.2 Linear Interaction Energy

The Linear Interaction Energy (LIE) is another approximate method which considers

the end points of the binding process. At its core LIE simply considers the van der

Waals, VvdW , and electrostatic, Velec, interactions of the ligand with its surrounding

environment [114, 115]. A contribution which considers the solvent accessible area of

the ligand, A, can also be added [116]. The averages of these quantities are used to

compute the change in free energy according to the equation

∆G = α∆ 〈Velec〉+ β∆ 〈VvdW 〉+ γ∆ 〈A〉 (3.39)

where the constants α, β and γ are semiempirically derived for each system. The initial

variant of the method proposed a theoretical value of 0.5 for β assuming a linear response

of the surroundings to electrostatic fields [114]; more recent formulations allow it to

vary with the chemical composition of the ligand [117]. The requirement to fit these

parameters make it ill suited to screening novel ligands in most cases.

3.8.3 Molecular Mechanics Poisson-Boltzmann Surface Area

The Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) [118, 119] method-

ology is the most rigorous of the approximate methods presented here and has been used

successfully to perform free energy calculations on a variety of biological systems. It is
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a good candidate for use in drug comparisons as it can treat widely varying systems

and can be calculated from a single MD run, unlike FEP or TI. The combination of

a reasonably detailed physical model and rapidity of calculation (compared to exact

methods) has led to its widespread usage. As it is the methodology utilised in much of

the quantitative analysis presented in this thesis we will discuss its basis in some detail.

The application of the MMPBSA method involves the computation of absolute binding

free energies by calculating average free energies of the enzyme/inhibitor complex, the

enzyme alone and the inhibitor alone. These values are then used to calculate the change

in free energy using

∆G = 〈Gcomplex〉 − 〈Genzyme〉 − 〈Gligand〉 , (3.40)

where 〈· · · 〉 indicates an ensemble average over the values calculated by post processing

a series of representative frames from molecular dynamics trajectories. The MD simula-

tions are typically performed in a periodic box solvated with explicit solvent and counter

ions. Two strategies are employed to help facilitate the calculation of converged free en-

ergy differences. Firstly, the solvent and counter ions are removed from the frames and

they are replaced by a continuum solvent representation and, secondly, a thermodynamic

cycle is employed.

3.8.3.1 Thermodynamic Cycle

The ultimate objective of free energy calculations is the absolute free energy of binding

in an appropriate (usually aqueous) solvent, ∆Gaqb . However, in simulations of solvated

protein ligand systems the majority of the energy contributions would come from solvent-

solvent interactions, resulting in fluctuations in total energy an order of magnitude larger

than the binding energy. Hence, direct calculations would require inaccessible levels

of sampling to converge. The solution to this employed by MMPBSA is to use the

thermodynamic cycle pictured in Figure 3.3. The in vacuo binding free energy, ∆Gvacb ,

is calculated along with the solvation energies of the complex (∆Gsolcomplex), enzyme

(∆Gsolenzyme) and ligand (∆Gsolligand). The binding free energy of the solvated system is

then given by

∆Gaqb = ∆Gvacb + ∆Gsolcomplex − (∆Gsolenzyme + ∆Gsolligand) (3.41a)

= ∆Gvacb + ∆Gsol (3.41b)
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Figure 3.3: Solvation thermodynamic cycle used to indirectly calculate the absolute free
energy of binding, ∆Gaqb , of a ligand to a target in aqueous solvent in the MMPBSA
methodology. The binding free energy change in vacuo, ∆Gvacb and the solvation free
energies for the complex (∆Gsolcomplex), enzyme (∆Gsolenzyme) and ligand (∆Gsolligand) are

calculated and the ∆Gaqb computed via Equation 3.41.

The ∆Gvacb and ∆Gsol components of the binding affinity are calculated separately, using

different methodologies. We now discuss how they are decomposed, before discussing in

detail the approaches used to compute each component of the binding affinity.

3.8.4 Decomposition of the Free Energy

The in vacuo binding free energy, ∆Gvacb , is calculated using the molecular mechanics

forcefield used to describe the system during the molecular dynamics simulation. It can

be separated into a sum of electrostatic, van der Waals and internal molecular mechanics

interactions:

∆Gvacb = ∆GMM
ele + ∆GMM

vdW + ∆GMM
int . (3.42)

The calculation of ∆Gsol is more complicated. This term represents the free energy

change associated with taking the solute from vacuum into a solvent environment. This

can be decomposed into contributions from polar and non-polar interactions between

the solute and solvent:
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∆Gsol = ∆Gsolpol + ∆Gsolnonpol. (3.43)

The polar solvation energy is calculated using a numerical solution of the Poisson-

Boltzmann equation with an implicit solvent modelled as a high dielectric constant

medium and the solute as one with a lower dielectric constant (more details are given

in Section 3.8.6). The non-polar contribution is estimated using a term related to the

solvent accessible surface area (see Section 3.8.6).

3.8.5 Single and Component Trajectories

The necessary elements of Equation 3.40 can be calculated either from separate trajec-

tories or from one single trajectory. In the latter case the the individual components are

calculated using the snapshots for the entire system but effectively removing the parts

which are not of interest. This approximation has been seen to be a good approximation

in several instances [115, 118, 120]. The single trajectory approach has the advantage

that contributions from parts of the system that do not affect binding exactly cancel

as the same coordinates are used for the components both as part of the complex and

separated (∆GMM
int is, trivially, zero in this approach). If separate trajectories are used

then this cancellation of errors does not occur as each trajectory is free to explore dif-

ferent conformations. On the other hand the single trajectory approach will obviously

not be able to account for alterations in the dynamic properties of the enzyme or drug

induced by binding and consequently may ignore important contributions to the overall

binding affinity.

3.8.6 Poisson-Boltzmann

In order to estimate the polar solvation energy, ∆Gsolpol, we need to model the electrostatic

potential surrounding the system of interest in an appropriate solvent environment. As

the name suggests the approach taken within the MMPBSA methodology is to numer-

ically solve the Poisson-Boltzmann equation. The Poisson-Boltzmann equation uses an

implicit solvent model in which the solvent is treated as a high dielectric constant con-

tinuum, aqueous ions as a diffuse “charge cloud” and the solute as a collection of fixed

point charges embedded in a lower dielectric continuum.

The Poisson-Boltzmann equation may be derived from statistical mechanical considera-

tions [121] but a more straight forward approach is to begin with Poisson’s equation[122,

123]
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∇ · [ε0ε(r)∇φ(r)] = −4πρ(r), (3.44)

used to describe the electrostatic potential φ(r) at a point r generated by a charge dis-

tribution ρ(r) in an environment of dielectric coefficient ε(r) (relative to the permittivity

of free space, ε0). The dielectric coefficient describes the local polarizability within the

system. In the context of biomolecular simulations the functional form of ε(r) will de-

pend on the geometry of the system being studied with the biomolecule represented as

continuum region of low polarizability embedded in a surrounding continuum region of

higher polarizability representing the solvent. Typically, for biomolecular systems the

dielectric constant ε(r) of the solute is chosen to be in the range 1 to 4 (although values

as high as 20 are sometimes used) and a value of 80 is used to represent water [123, 124].

The boundary between the two regions is imprecisely defined with several methods used

in practice [125–128]. The most common method is to use the centre of a hypothetical

rolling sphere with a radius of a water molecule on the van der Waals surface of the

molecule to determine the position of the boundary [129]. The charge distribution ρ(r)

can be decomposed into two parts, the fixed solute charge density, ρf (r), and a contribu-

tion from the ions present in the solvent, c(r). The former is generally described as a set

of delta functions centred on each solute atom’s centre and scaled by the atom’s charge.

The ion contribution is modelled as a continuum with charge distributed according to

the Boltzmann distribution. For M ion species with charges qj and bulk concentrations

c∞j the ion charge distribution is given by

c(r) = 4π
M∑
i=1

qjc
∞
j e
−βqjψ(r), (3.45)

with β = 1/kBT . Substituting this into (3.44), we obtain the following:

∇ · [ε0ε(r)∇φ(r)] + 4π

M∑
i=1

qjc
∞
j e
−βqjψ(r) = −4πρf (r); (3.46)

this can be simplified for the case of two ions of equal bulk concentration, c∞, which

have opposite charges of equal magnitude, q, providing electrostatic neutrality, to

∇ · ε0ε(r)∇φ(r)− 8πqc∞sinh[βqψ(r)] = −4πρf (r). (3.47)
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This equation can be linearised by expanding the hyperbolic sine function as a Taylor

series and retaining only the first term. This process results in what is known as the

linearised Poisson-Boltzmann equation:

∇.ε(r)∇φ(r)− 8πq2c∞βψ(r) = −4πρ(r) (3.48)

A wide variety of numerical methods can be employed to solve the linearized Poisson-

Boltzmann equation. In applications involving biomolecules the finite difference ap-

proach is the most widely adopted [130, 131]. This is the approach which is adopted

within the AMBER software suite [70]. This method involves imposing a 3D grid onto

the system with the atomic charges mapped onto the grid points (charges are distributed

to neighbouring grid points weighted by their displacement), the grid points are also as-

signed a dielectric constant depending upon whether they lie within or outside the solute

and boundary conditions are invoked at the edges of the grid (often φ(r) = 0). This

reduces the original partial differential equation into a simple linear system of the ma-

trix equation form Ax = b in which x represents the unknown electrostatic potential

at the grid points, b the charge distribution upon the grid points that are the source

of x and A, the coefficient matrix, combines the dielectric constant on the grid edges

and any salt related terms. This form of the equation is then solved iteratively until

the potential converges to within a predefined tolerance. In order to obtain the polar

contribution to the solvation free energy the system must be solved twice, once with

the solvent dielectric constant chosen to represent water and then again with a choice

representative of vacuum (values of 80 and 1 are normally used respectively). The polar

solvation energy, ∆Gsolpol, is then given by:

∆Gsolpol =
1

2

∑
i

qi(φ
wat
i − φvaci ), (3.49)

where qi is the charge assigned to each point i on the finite difference grid and φwati and

φvaci the potential at the same points in water and vacuum respectively. This calculation

must be performed for the complex, protein and ligand separately in order for the total

∆Gsolpol to be determined (in line with Equation 3.40).

3.8.7 Solvent Accessible Surface Area

The non-polar contribution to the solvation energy, ∆Gsolnonpol, can be thought of as being

composed of two contributions: one due to the van der Waals interaction, ∆Gvdwnonpol, and

the other originating from the cost of creating the cavity in the solvent occupied by the
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solute, ∆Gcavnonpol. The approximation made in MMPBSA is to assume, as most of the

solvent reorganisation occurs in the first solvation shell around the protein and the van

der Waals interaction is short ranged, that the non-polar solvation energy is linearly

related to the solvent accessible surface area (SASA) of the protein, A:

∆Gsolnonpol = ∆Gvdwnonpol + ∆Gcavnonpol = γA+ b (3.50)

The constant of proportionality γ is often referred to as the surface tension and along

with the constant b its value is determined empirically [119, 132]. It is likely, given their

empirical nature, that these terms implicitly incorporate some purely quantum mechani-

cal contributions to the solvation energy. For example it is known that experimental free

energies include a contribution, which is always positive, due to the polarisation of the

electronic wave function in response to the change from a gas phase to condensed phase

environment [133, 134]. As is the case with the other components of the MMPBSA cal-

culation the SASA computation must be performed for the complex, protein and ligand

separately in order for the total ∆Gsolnonpol to be determined (in line with Equation 3.40).

3.8.8 Calculating The Configurational Entropy Using Normal Modes

The cavity term in the non-polar solvation term of the MMPBSA calculation provides

an estimate of the entropic changes associated with the insertion of a solute into the

solvent. However, no account is made for the entropic impact of changes in the con-

figurational freedom of the enzyme and ligand upon complex formation in vacuo. In

general, protein-ligand binding events cause restrictions to the number of conformations

available to both and consequently a reduction in entropy; this contribution is known as

the configurational (or conformational) entropy. This results in a free energy penalty to

binding, which can be included into a calculation of the absolute binding affinity,∆Gb,

using Equation 3.51, where ∆GMMPBSA
b is the MMPBSA estimate, T is the temperature

and ∆Sconf the configurational entropy.

∆Gb = ∆GMMPBSA
b − T∆Sconf . (3.51)

The change in entropy is calculated from the difference between the values estimated

for the complex and the separate enzyme and ligand contributions (as shown in Equa-

tion 3.53). In cases in which relative binding affinities alone are under investigation

then the entropic contribution can be neglected for cases in which very similar systems

are under comparison. To obtain absolute binding affinities or to treat a wider range
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of systems it must be calculated. A variety of approaches have been used with the

most commonly invoked in biological systems being normal mode and quasi-harmonic

analyses.

The configurational entropy comprises of three components associated with transla-

tional, rotational and vibrational motions. These are summed to give the overall con-

tribution:

Sconf = Straconf + Srotconf + Svibconf . (3.52)

The enzyme and ligand have 3 rotational, 3 translational and 3N -6 vibrational degrees

of freedom (where N is the number of particle in the system) which can be impacted

by binding into a complex. Like the MMPBSA contribution to ∆G the change in the

configurational entropy is calculated from the difference between the values calculated

for the complex and free enzyme and ligand:

∆Sconf = Scomplexconf − (Senzymeconf + Sligandconf ). (3.53)

The entropic changes associated with the contributions shown in Equation 3.52 are well

described from statistical mechanics [135–137] considerations by:

Straconf =
3

2
RT −RT

[
5

2
+

3

2
ln

(
2πmkBT

h2

)
− ln(ρ)

]
(3.54a)

Srotconf =
3

2
RT −RT

[
3

2
+

1

2
ln (πIAIBIC) +

3

2
ln

(
8π2kBT

h2

)
− ln(σ)

]
(3.54b)

Svibconf =

3N−6∑
i=1

[
1

2
hνi +

hνi

ehνi/kBT

]
−

3N−6∑
i=1

[
hνi

ehνi/kBT
−RT ln

(
1− ehνi/kBT

)]
(3.54c)

where ρ is the number density at 1 mol L−1, m is the mass, IA, IA and IA the principal

moments of inertia and σ the symmetry factor. The Svibconf contribution depends on the

normal modes νi of the molecule. Consequently normal mode analysis has become a

popular way of estimating the change in entropy upon binding. Normal modes describe

the concerted motions of the constituent atoms of the system under study, which are

assumed to behave harmonically close to an energy minimum. The higher the frequency

of a normal mode the smaller the amplitude. This makes normal modes useful for

separating the slow, global, motions of the protein from local vibrations (for example

those of hydrogen atoms).
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The assumption made in normal mode analysis that the oscillations of the protein occur

within a single minimum is a major limitation of the method due to the rugged nature

of free energy landscape of real proteins. This means that normal mode analysis can

be ineffective for systems which undergo large structural changes. This has led to the

use in some circumstances of alternative approaches such as quasi-harmonic analysis

[135, 138] which allow sampling over several minima, although there is evidence that it

overestimates vibrational entropy in such systems [139].

3.9 Conclusion

In this chapter, the thermodynamics which govern the binding of proteins and ligands

have been discussed and a brief outline of the statistical mechanical considerations, which

allow us to link these considerations to the interactions of the microscopic constituents

of the systems under study, presented. The property which allows us to quantify the

strength of protein and ligand association was identified as the free energy of binding.

A discussion of a variety of methods by which the binding free energy can be estimated,

both experimentally and from molecular simulations, was presented. Particular attention

has been given to the description of the MMPBSA and normal mode methodology, as

this is the approach used to approximate the values for HIV enzymes binding inhibitory

drugs in the rest of this thesis.



Chapter 4

HIV & AIDS

4.1 Introduction

Acquired Immunodeficiency Syndrome (AIDS) was the only major epidemic of the 20th

century to be caused by a previously unknown infectious agent. The disease is charac-

terised by the susceptibility of sufferers to opportunistic pathogens and increased risk of

Kaposi’s sarcoma and other rare forms of cancer. Since its identification in 1981 AIDS

has been responsible for the deaths of more than 25 million people with 2.8 million loos-

ing their lives in 2005 alone [140], while 38.6 million people are currently infected with

Human Immunodeficiency Virus (HIV), the causative agent of AIDS [141]. As these

vast numbers suggest HIV/AIDS has become a global pandemic and is found through

out the world.

As its name suggests, HIV primarily infects vital components of the human immune

system including CD4+ T cells (a sub-group of lymphocytes, a type of white blood cell,

which express the surface protein CD4) and macrophages (a variety of white blood cell

which absorb and then digest both pathogens and cellular debris). One of the primary

symptoms of HIV infection is the loss of CD4+ T cells. When enough T cells have been

destroyed by HIV the immune system can no longer fully perform its function. This loss

of immune system response is the cause of AIDS.

HIV has itself been further classified into two groups HIV-1 and HIV-2. HIV-2 is endemic

in West Africa (and has begun to spread into India) but most AIDS worldwide is caused

by the more virulent HIV-1 [140]. For this reason most studies of HIV (including this

thesis) concentrate on the HIV-1 subtype.

As the worldwide AIDS epidemic continues, a cure of HIV-1 remains elusive. In the ab-

sence of a cure, research has focused on suppressing viral replication. Modern treatment
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Figure 4.1: The time course of the populations of CD4+ and CD8+ T-cells and the
viral load over the course of a clinical HIV infection. An initial peak in both CD4+
cells and viral load is observed, the viral load then stabilises while the CD4+ cell are
gradually depleted. Eventually the CD4+ cell population declines terminally and the
viral population explodes causing full blown AIDS. Adapted from [143]

strategies (discussed in Section 4.5) have achieved considerable successes, indeed for

those with access to modern combination therapy HIV infection has been transformed

from a ‘death sentence’ to a controllable disease which requires early diagnosis and life

long treatment. However, the efficacy of treatment is compromised by the emergence of

drug resistant mutant strains of the virus [142].

The development of effective treatments has been built upon an understanding not only

of the clinical impact of infection but also of the replicative process of HIV. What follows

is a description of the clinical progression of the HIV infection, a description of the life

cycle of the virus and the methods of treatment currently in clinical use.

4.2 The Clinical Course of HIV Infection

Infection by HIV is characterised by complex interactions with the host and a chronic

course of disease. From the point of initial infection there is usually a period of between 8

and 12 years before the patient experiences the chronic stage of infection known as AIDS

[144, 145]. Disease progression happens in several phases, as indicated in Figure 4.1 and

described below.
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Initial infection with HIV-1 is often associated with an illness referred to as ‘acute

retroviral syndrome’ or ‘primary HIV infection’. The syndrome exhibits many similar

symptoms to the flu: infected individuals commonly experience fevers, sore throats,

swollen lymph nodes and rashes [146, 147]. These symptoms usually subside within 1

to 2 weeks as this phase of the disease is self limiting (many HIV positive people remain

asymptomatic during these early stages of infection or at least report no significant

symptoms) [146, 148].

This early stage of the infection leads to the loss of mucosal CD4+ T helper lymphocytes

[149]. These are the main targets of HIV, although the virus can infect several other cell

types including macrophages [150, 151]. It is the loss of CD4+ lymphocytes which brings

about the suppression of the immune system, resulting in AIDS. The main function of

the T helper cell is to regulate immune responses by the secretion of specialised factors

that activate other white blood cells to fight infections [152]. In particular they control

CD8+ lymphocytes which are responsible for directly killing certain tumour cells, cells

infected by viruses and some parasites.

Significant declines in the levels of CD4+ cells occur within the first 2 to 8 weeks of

infection [149]. The initial fall in the number of CD4+ cells is accompanied by a rise

in HIV-specific CD8+ killer cells which target infected CD4+ cells [150, 153]. Levels of

both, however, quickly return to close to their pre-infection values Figure 4.1. During

this period, although most CD4+ cells remain uninfected, there is a high level of viral

replication in the peripheral blood system [154].

The body launches a strong immune defense to the initial high levels of virus, with

infected CD4+ cells rapidly being eliminated. The initial results of this response are a

lowering in the amount of viral particles in circulation and the temporary recovery of

CD4+ cell levels [143]. The destruction of infected cells is balanced by the body’s pro-

duction of new CD4+ cells and a steady state, in which most CD4+ cells are uninfected,

is attained [148].

CD4+ cells have two states, one activated and the other a resting memory state [155,

156]. While most of the infected cells are destroyed some survive long enough to revert

to the quiescent state. In this state CD4+ cells no longer express viral antigens and

hence cannot be recognised as infected by the immune system [143]. Such quiescent

cells can persist for many years, still carrying the viral genome, only to be reactivated

at a later time, thus acting as a latent viral reservoir.

The result of this is that, although the virus continues to replicate and persists through-

out the body, the patient enters a period of clinical latency [144, 145]. This period
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regularly lasts for 10 years or more during which time the number of CD4+ cells grad-

ually reduces. This decrease can partly be accounted for by the ingestion of infected

cells by CD8+ killer T cells and the rupturing of infected cells as millions of viral par-

ticles bud out of the host cell. However, fewer than 1 in 100,000 CD4+ T cells in the

blood of AIDS patients are actually infected with the virus [157]. The loss of other cells

can be explained by the fact that infected CD4+ cells can induce apoptosis (death) in

uninfected cells [158, 159].

Eventually, CD4+ levels reach a point where they can no longer perform their vital sig-

nalling role in the immune system and the patient’s immune response drops precipitously

with an accompanying increase in viral load (again shown in Figure 4.1) [143]. Once

this stage in the infection has been reached normally benign opportunistic pathogens

are able to infect the patient. It is this catastrophic loss of immune function which is

termed AIDS.

4.3 The Structure And Genome Of HIV

HIV belongs to the class of viruses known as retroviruses. These are enveloped viruses,

possessing an RNA genome and rely on the enzyme reverse transcriptase (RT) to convert

it into DNA [160]. This DNA copy of the viral genome can then be integrated into the

chromosomal DNA of a target cell [161]. All retroviral genomes contain three coding

regions - gag (group specific antigen), pol (polymerase) and env (envelope) - which al-

ways occur in this order in the genome and contain the information for the structural

proteins and enzymes necessary for replication in all retroviruses [162]. All three of

these genes encode multiple proteins, which perform vital roles in virion production and

the viral lifecycle, the names and functions of which are given in Table 4.1. The gag

and env genes are transcribed into separate Gag and Env polyproteins but pol is only

read in combination with gag (utilising a shift in reading frames) to form Gag-Pol. The

polyprotein chains are later cleaved to form functional proteins. HIV is further sub-

classified as a lentivirus, a class of retrovirus which share the characteristics of having

high pathogenicity, complex genomes and long incubation periods (the name is derived

from lenti- the Latin for “slow”) [162, 163]. The genomes of lentiviruses (such as HIV,

Simian Immunodeficiency Virus (SIV) and Feline Immunodeficiency Virus (FIV)) con-

tain regulatory genes in addition to the gag, pol and env found in all retroviruses which

are thought to be responsible for their increased pathogenicity [162]. The regulatory

genes included in the HIV genome include; tat, rev, nef, vif, vpr and vpu [162, 164]. The

regulatory genes can be divided into two categories. Transactivator genes are respon-

sible for changing host gene expression and are essential for viral replication in vitro.
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Table 4.1: Descriptions of all protein products of the gag, pol and env genes. All
information in this table taken from [164, 165]

Chain Protein Description

Gag

MA (p17) Mysrylated matrix protein. Stabilizes the viral par-
ticle by remaining attached to the inner surface of
the virion lipid bilayer after viral maturation.

CA (p24) Core antigen capsid protein. Forms the conical core
of the viral particle.

p6 Mediates interactions between Gag and Vpr, leading
to the incorporation of Vpr into assembling virions.

NC (p7) Nucleocapsid protein. Binds to the HIV packaging
signal on viral RNA and is sufficient for incorpora-
tion of RNA into virions.

Pol
PR (p11) Protease enzyme. Catalyses the proteolytic cleavage

of the polypeptide chains into functional proteins.
RT (p51/p66) Reverse transcriptase enzyme. Forms a heterodimer

with two active sites which reverse transcribes viral
RNA into DNA.

IN (p34) Integrase enzyme. Mediates the insertion of viral
DNA into the host genome.

Env
SU (gp120) Surface glycoprotein. Acts as a receptor on the sur-

face of the viral particle, and binds to CD4 and
secondary receptors on macrophages and T lympho-
cytes.

TM (gp41) Transmembrane glycoprotein. Transverses the viri-
ons lipid membrane and along with SU is involved in
viral entry to the host cell.

Accessory genes are those which have not been found necessary for the production of

viable virions in vitro [164].

Retroviral genomes, such as that of HIV, are encoded in RNA. The HIV genome is carried

in two identical, 9.2 Kb (kilobase), single strands of RNA (ssRNA) [161]. In order to

be integrated into a host cell’s genome these strands must be translated into DNA in a

process known as reverse transcription (see Section 4.4.3). The DNA produced by the

reverse transcription process is known as the proviral genome. As well as transcoding

the HIV genome into DNA, reverse transcription replicates some regions at the 3′-end of

the HIV genome at the 5′-end of the viral DNA (see Figure 4.2) creating long terminal

repeats (LTRs) at either end of the genome [162].

Figure 4.3 shows the organisation of these genes in the proviral genome. As this picture

shows, the information carried within the HIV genome is increased by having some re-

gions code for more than one product. This is achieved by a process known as frameshift-

ing [162, 163].

The structural arrangement of the gene products in an assembled virion is shown

schematically in Figure 4.4. Each virion contains two copies of the ssRNA genome

contained within a nucleus along with PR, RT and IN. The nucleus is a bullet shaped
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a short repeated sequence (R) are duplicated. The resultant DNA is longer than the
transcribed RNA. This is the origin of the long terminal repeats (LTRs). Adapted from
[162]
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Figure 4.3: The HIV genome. The positions of the LTRs and genes which code for
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vpr and vpu) are shown. Where two sections of the genome forming one product are
separated (such tat and rev) this indicates that splicing is required to form the full
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structured formed from CA protein units. The nucleus itself is contained first within a

casing made of MA matrix protein and then a host cell derived lipid bilayer. The mem-

brane bilayer is transversed by trimeric units of TM non covalently bonded to trimers

of SU on the surface [161, 162]. The overall virion is a near spherical structure.



Chapter 4. HIV & AIDS 71
15HIV-1 Replication

crystal structure of the gp120 “core” reveals two major domains, the “inner” and “outer” do-
mains, connected by a “bridging sheet”.3  One of the interesting features of the gp120 structure
evident from this work is that the CD4 binding site in gp120 is deeply recessed and flanked by
heavily glycosylated variable regions. A number of direct gp120/CD4 contacts are resolved in this
structure.

As a consequence of the high affinity interaction between gp120 and CD4, these two
molecules associate during their transport to the surface of infected cells in the late phase of the
replication cycle.4 This intracellular Env/CD4 interaction leads to the downmodulation of
CD4 from the cell surface, rendering infected cells partially resistant to further infection by
HIV Env-bearing viruses. This Env-mediated “superinfection interference” is not operative
against virions bearing heterologous Env glycoproteins [e.g., those of amphotropic murine
leukemia virus (A-MuLV) or the vesicular stomatitis virus G glycoprotein (VSV-G)] as such
pseudotyped viruses bind and enter the target cell in a CD4-independent manner.

Coreceptor Interactions
After the identification of CD4 as the major HIV receptor, it was soon appreciated that

CD4 was not sufficient for HIV Env-mediated membrane fusion and virus entry. This conclu-
sion was based in part on the observation that primary virus isolates from infected individuals
display variable tropism for CD4+ cells. Certain isolates, referred to as macrophage-tropic (or
“M”-tropic) replicate efficiently in primary macrophage cultures, whereas other isolates, re-
ferred to as T-cell-line tropic (“T”- or “TCL”-tropic) cannot productively infect macrophages
but replicate to high levels in T-cell lines. Both M- and TCL-tropic isolates replicate in acti-
vated peripheral blood mononuclear cells (PBMC). A decade-long search ultimately identified
members of the G protein-coupled receptor superfamily of seven-transmembrane domain pro-
teins as coreceptors for HIV entry. 5,6  These molecules serve as receptors for the α and β

Fig. 2. Schematic representation of a mature HIV-1 particle. Positions of the major viral proteins, the lipid
bilayer, and the genomic RNA are indicated. Modified from Freed, 1998 (ref. 22)

Figure 4.4: A schematic representation of the locations of the various proteins contained
within an HIV-1 virion. This figure has been removed due to copyright restrictions but
is available in Freed [161]

4.4 Life Cycle

A major factor in facilitating the development of anti-HIV treatment strategies has been

the detailed understanding of the viral life cycle. Here we give an overview of how the

virus reproduces and the roles played by several of the proteins described in the previous

section within this process.

4.4.1 Virus Entry

The infection of a target cell is initiated by the binding of the envelope glycoprotein

SU (also known as gp120), expressed on the virion surface, to CD4+ receptors on the

surface of the target cell [167]. SU forms the surface exposed element of the viral envelope

assemblage. This assemblage consists of a trimer of SU non-covalently linked to a trimer

of the transmembrane protein TM (also known as gp41) [168–170]. CD4+ binding causes

an alteration in the conformation of SU which exposes a chemokine receptor binding

surface, facilitating the interaction of the envelope proteins with coreceptors (usually

the chemokine receptors CXCR4 or CCR5) also found on the target cells surface [171–

173]. The formation of the ternary complex between SU and the coreceptor is believed

to lead to changes in the conformation of TM. The organization of many such complexes

at the fusion site allows formation of a fusion pore [174]. The creation of the fusion pore

initiates the membrane fusion reaction between the lipid bilayers of the viral envelope

and the target cell plasma membrane. The contents of the virion, including the RNA

genome and viral enzymes, are then released into the host cell’s cytoplasm [161].
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4.4.2 Post-Entry Events

The events which follow membrane fusion remain some of the least well characterised in

the HIV life cycle. The first step that needs to occur is a process known as uncoating. In

this process the core of the virion (defined as the structural remains of the virion after

the membrane has been lost) is reconfigured to create a complex known as the reverse

transcription complex (RTC), which later in the cycle is converted into the preintegration

complex (PIC) [161]. During these steps most, if not all, of the viral capsid (CA) protein

is lost, while at least some of the matrix (MA) and nucleocapsid (NC) proteins are used

to form the RTC and PIC along with the viral enzymes reverse transcriptase (RT) and

integrase (IN), and the regulatory protein Vpr [175].

4.4.3 Reverse Transcription

Once the viral core is within the host cell, the next key stage in the life cycle is con-

version of the single stranded viral RNA genome into double stranded DNA which can

be incorporated into the host cell chromosomes [161]. This task is performed by the

RT enzyme. The enzyme uses the single stranded RNA viral genome as a template to

create a single strand of DNA which is in turn used as a template to create a double

stranded DNA (dsDNA) copy of the genome [161]. The dsDNA copy is then suitable for

integration into the chromosomes of human host cells. HIV-1 RT is a multifunctional

enzyme with distinct polymerase and RNaseH active sites [161, 162]. At the polymerase

active site incoming nucleotides matching the template RNA or DNA are incorporated

into the growing complementary DNA chain (see Figure 4.5). The RNaseH active site

catalyses the breakdown of the RNA genome, freeing the DNA copy to act as a template

for the creation of the final double stranded DNA genome. The copying process is known

as reverse transcription (a more detailed description of the steps within the process is

given in Appendix B).

The reverse transcription process contains a number of events (known as strand trans-

fers) in which the enzyme must change template. One example of this is the switch

from the original viral RNA template to the ssDNA copy. As a consequence of the need

to change template, the interaction between the reverse transcriptase and the template

is of relatively low affinity [176] and template switching is frequent. If the two RNA

genomes in the original virion are not identical (or if the host cell is infected by multiple

virions of varying genomic make up) this can lead to the creation of novel recombinant

genomes [177]. The reverse transcription process in HIV replication also has a very low

fidelity with an in vivo mutation rate of 3×10−5 per base pair per replicative cycle [178].

In comparison to other RTs that of HIV is 10 to 100 times more likely to incorporate
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Figure 4.5: The reverse transcriptase catalyses the incorporation of nucleotides into the
3′ end of a DNA chain, causing it to be elongated in the 5′-3′ direction. The reaction
pairs the incoming nucleoside triphosphate with the complementary base in a template
strand, releasing two phosphate molecules in the process. Initially the template is the
viral RNA genome. As it is copied the RNA strand is degraded at the RNaseH active
site. Once transcription of the RNA genome is complete then the resultant single
strand of DNA is used as the template to create a double strand of DNA capable of
being incorporated into the host genome.

errors into DNA [179, 180]. It is the high frequency of recombination allied to the low

replicative fidelity and high level of viral production (approximately 108 to 109 are pro-

duced per day [181]) which accounts for the high level of genetic diversity of the viral

populations in a single patient. The generation of such diversity allows for the rapid se-

lection of resistant strains when the virus encounters an environment in which anti-HIV

drugs are present if replication suppression is incomplete [182].

4.4.4 Nuclear Import and Integration

The next stage of the viral life cycle requires the DNA genome to be transported to

the host cell nucleus for integration into the chromosomal DNA. In order to achieve

this the RTC (with which the genome is associated throughout reverse transcription) is

converted into the PIC [161]. As mentioned above the PIC is known to contain MA, NC

and accessory proteins including Vpr. Early models suggested that MA was the main

signal responsible for nuclear import [183]; however, it is now believed that this is not

the case, with Vpr being the most important viral factor. Vpr does not contain a viral

import signal itself but is believed to attach the PIC to the cellular import machinery

[184].
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Once the PIC has entered the nucleus, the viral enzyme IN catalyses the insertion of

the viral DNA into the host cell’s chromosomal DNA. First IN processes the 3′ termini

of both strands of the viral dsDNA, resulting in a DNA duplex with staggered ends. It

then creates a staggered cleavage in the host DNA, inserting the viral DNA into the gap

created in the host genome [161]. Integration is accompanied by the duplication of a

short sequence from the target site, typically 5 base pairs long [162]. This process results

in an intermediate with gaps flanking the inserted element. Repair enzymes, from the

host cell, then fill these gaps, joining the host and viral DNA [185]. Once the viral DNA

is integrated it is known as the “provirus” and effectively acts like a cellular gene.

4.4.5 Gene Expression

The integrated provirus provides a template which the host cell translates into RNA. In

fact it actually encodes more than 30 RNAs including the HIV genome [162, 186]. These

different RNA transcripts are created by splicing of the complete genome product. In

order to form the full range of of products some RNAs must be doubly spliced. This

presents a challenge for HIV as most cellular protein coding RNAs (known as messanger

or mRNAs) are only exported to the cytoplasm for translation when fully spliced. To

overcome this potential problem HIV uses the viral Rev protein. This binds to a cis-

acting RNA element called the Rev responsive element (RRE) [187], which is located in

the env gene and is present in all unspliced and partially spliced genes. Over time Rev

forms a multimer around the RRE which results in a complex capable of binding to the

cellular export machinery. Once in the cytoplasm the RNAs can be translated in the

same way as cellular mRNAs to produce proteins.

4.4.6 Virus Particle Production

The next stage of the lifecycle is the assembly of the Gag and Gag-Pol chains. It is

thought that the Gag chain is responsible for the formation of multimers with Gag-Pol

which then recruit a copy of the viral RNA genome. This complex is then transported to

the cell membrane assisted by host factors and cellular machinery [188]. The assembled

protein complex attaches to the inner membrane of the host cell via covalent bonds

involving the myristic acid moiety of the Gag chains [189]. The complex now induces

curvature of the host cell membrane, which leads to the formation of a bud. The new

virion is formed as a section of the host membrane breaks away from the host cell.
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Table 4.2: List of all ARVs approved by the FDA for the treatment of HIV broken
down by drug class. The classes are: protease inhibitors (PIs), nucleoside analogue
reverse transcriptase inhibitors (NRTIs), non-nucleoside analogue reverse transcriptase
inhibitors (NNRTIs), integrase inhibitors (INIs) and fusion inhibitors (FIs).

PI NRTI NNRTI INI FI
Amprenavir Abacavir Delavirdine Raltegravir Enfuvirtide
Atazanavir Didanosine Efavirenz Maraviroc
Darunavir Emtricitabine Etravirine
Indinavir Lamivudine Nevirapine
Lopinavir Stavudine
Nelnavir Tenofovir
Ritonavir Zalcitabine
Saquinavir Zidovudine
Tipranavir

4.4.7 Maturation

At this point although a new virion is formed it is not infectious. This is because the

essential viral proteins remain inactive within the Gag and Gag-Pol chains. The last

step in the HIV lifecycle is the maturation of the virus. It is at this stage that the viral

protease plays its vital role by cleaving the polypeptide chains into active enzymes (this

process includes extracting itself from the Gag-Pol chain) [182, 190]. If the protease does

not perform it’s role correctly then the virion will not be able to infect another cell, and

consequently the virus will not be able to replicate further [191].

4.5 HIV-1 Drug Treatment

Understanding of the life cycle of HIV has led to the development of a variety of drugs

targeted at specific steps in the viral reproductive process. The first drug developed

was Zidovudine, targetted at the reverse transcriptase, which was approved for clinical

use in 1987 [192]. As more drugs were developed it became apparent that combining

several drugs, which are active against different target enzymes, was the most effective

way to treat HIV infection [193]. This treatment approach is often referred to as highly

active antiretroviral therapy (HAART). HAART based combination therapy is usually

capable of reducing viral loads to undetectable levels [193, 194] and where available has

extended life expectancy to 21.5 years [195].

Currently, 24 antiretroviral drugs (ARVs) have been approved by the US Food and Drug

Administration (FDA)1 for the treatment of HIV. These drugs are usually separated

1FDA:www.fda.gov

www.fda.gov
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into five classes: protease inhibitors (PIs), nucleoside analogue reverse transcriptase in-

hibitors (NRTIs), non-nucleoside analogue reverse transcriptase inhibitors (NNRTIs),

integrase inhibitors (INIs) and fusion inhibitors (FIs) [196]. A list of all currently ap-

proved inhibitors broken down by class is presented in Table 4.2. The different classes

of ARV affect separate steps in the HIV life cycle and most HAART cocktails feature

drugs intended to inhibit at least two different targets [194]. Most initial (known as

‘first line’) drug cocktails comprise two NRTIs and one NNRTI or PI. Other types of

inhibitor are usually used as part of so-called ‘salvage regimes’ after failure of previous

treatment selections [194].

PIs and NRTIs are competitive inhibitors and will be described further in Section 4.6.4

and Section 4.7.4.1 respectively. NNRTIs bind to the RT altering its conformation and

preventing the enzyme from correctly performing its DNA polymerase function [197].

Further details of this class of drug are provided in Section 4.7.4.2

INIs are designed to inhibit the IN enzyme and prevent the incorporation of the HIV

provirus into the host DNA [198]. INIs are recent additions to the library of clinically

available ARVs, with Raltegravir, the first INI to gain FDA approval, in use only from

2007 [199]. Despite the relatively short period of clinical use, mutations at three locations

within the IN enzyme (at positions 143, 148 and 155) [200] have been strongly linked

to Raltegravir resistance and other mutations suggested to have some impact [201]. A

further drug, known as Elvitegravir is currently undergoing phase 3 clinical trials [202].

FIs operate by preventing viral entry via the CD4 receptor and CCRC5 coreceptor. The

two FDA approved FIs operate in different ways: Enfuvirtide binds to TM and prevents

conformational changes required in order to create an entry pore for the viral capsid into

the target cell [203], whereas Maraviroc blocks binding of the viral envelope protein, SU,

to CCR5 [204]. In the case of Maraviroc a test is required to determine the tropism of

the virus infecting the patient being treated (the virus may make use of either the CCR5

or CXCR4 coreceptor) as it is only effective in blocking entry using the CCR5 coreceptor

[205].

4.5.1 Drug Resistance

As mentioned in Section 4.4.3, the low fidelity and high throughput of HIV RT results in

acquisition of mutations in the viral genome. Most mutations will have an adverse impact

on enzymatic function. However, in the presence of ARVs a trade off between reduced

efficacy and the ability to evade inhibition allows some mutations, which induce reduced

affinity to drugs, to gain an evolutionary advantage [206]. Hence, if viral replication

is not complete then these strains will come to predominate within a patient and the
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Figure 4.6: The structure of the HIV-1 protease dimer is shown in cartoon represen-
tation. The structural elements identified in the ‘bulldog’s face’ description of the
structure are shown highlighted in the right hand monomer with the ‘whiskers’ in blue,
‘nose’ in red, ‘cheek turn’ in black, ‘eyes’ in brown, ‘ears’ in green, ‘flaps’ in purple,
‘cheek sheet’ in yellow, ‘wall turn’ in cyan and the final helix in pink. The catalytic
dyad is depicted in chemical structure. The HXB2 wildtype protease sequence is also
shown with the positions within it of each of the structural elements indicated using a
colour bar.

treatment employed will no longer be effective. This is a particular problem in situations

in which monotherapy is used [182].

In order to ensure that a drug regimen will work for the HIV strain present in a particular

patient it is now routine for viral sequences to be taken upon diagnosis and treatment

failure [207, 208]. The relationship between resistance causing mutations are complicated

and clinical decision support systems, based on statistical analysis of data collected from

patient databases and the published literature, are used to assess the likely susceptibility

to particular drugs [209–213]. The focus of this thesis is on investigating the possibility

of extending these existing systems through the use of predictive modelling to assess the

impact of mutations upon drug binding. This topic will be discussed in more detail in

Chapter 6.

4.6 Protease Structure, Function and Inhibition

The HIV-1 protease is a homodimer, meaning that it is formed from two identical

monomeric subunits. Each monomer is a protein chain 99 amino acid residues in

length [214]. The complete protease structure exhibits approximate rotational sym-

metry through the dimer interface. In cases when it is necessary to distinguish residues

of the two monomers that form the homodimer, the two chains are conventionally num-

bered from 1 to 99 and 101 to 199 respectively. A great deal of effort has been expended
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Figure 4.7: Schematic representation of the location of substrate residues in the protease
active site. Towards the C-terminus of the substrate peptide chain they are labelled S1′,
S2′, S3′ . . . and S1, S2, S3 . . . towards the N-terminus. The complementary protein
pockets retain the numbering of the substrate position but are denoted with a P.

in investigating the structure of HIV-1 PR and 342 crystal structures are available in

the PDB at the time of writing.

In order to describe the structure of the protease, we will be adopting the terminology set

out by Perryman et al. [215]. According to this naming scheme the various sections of

the protease structure are labelled according to the resemblance of the protease backbone

to a bulldogs face (see Figure 4.6). The active site of the protease is situated in a cleft,

which is covered by the region known as the ‘flaps’ (residues 43-58). The flaps are

connected to the ‘ears’ (residues 33-42), the catalytic ASP containing ‘eyes’ (residues

23-32, which form the base of the active site), the ‘cheek sheet’ (residues 59-78), the

‘wall turn’ (residues 79-85), the ‘cheek turn’ (residues 11-22), the ‘nose’ (residues 6-10)

and the ‘whiskers’ (residues 1-5 and 95-99).

The two dimers interface at three points; the whiskers, the eyes and the flaps. The

whiskers are the terminal domain, in which the N and C termini of each subunit interlock

to form a compact four-stranded β sheet. The interlocked structure is crucial for the

formation and stability of the active protease. The whiskers connect to the rest of the

protease via the wall turn, which terminates at a helix formed by residues 86 to 94 and

a turn encompassing residues 4 to 9.

The core domain is made up of the eye and cheek sections of the protease chains. The

eye section of each monomer is not only involved in the dimer interface but also includes

the triad D25-T26-G27. This motif is responsible for the cleavage of the Gag and

Gag-Pol polypeptides and is consequently referred to as the active site. Despite the

infidelity of the HIV reverse transcriptase, the active site structure is highly conserved

over generations as it is essential to the enzymes function. The D-T-G motif is common

to a wide range of retroviral proteases, with the T and G residues implicated in both

correct alignment of the catalytic Asp and dimer stability [216–218]. The pair of D25

residues (one from each monomer) is often referred to as the ‘catalytic dyad’.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8: The amino acid composure of the subsites of the protease subsites in the
saquinavir bound 1HXB crystal structure. The amino acids that form the binding
pocket and the substrate sidechains which fit into them are shown explicitly for the (a)
S3/P3, (b) S2/P2, (c) S1/P1, (d) S1′/P1′ and (e) S2′/P2′ subsites. The position of all
of the subsites within the overall PR structure is shown in (f).

The interface between the core domain and the wall turn is mostly made up of small,

hydrophobic residues, while the ear section is a mostly solvent exposed loop, which

precedes the flaps. The flaps not only form part of the dimer interface but also play a

crucial role in substrate capture. In order for the catalytic processing of a substrate to

occur it must pass into the active site containing the catalytic Asp dyad. The entry of

the substrate into this area is controlled by the flaps, which form a flexible gate for an

approaching ligand [219, 220].

When a substrate is bound the protease forms a closed conformation. In this state either

side of the active site predominantly hydrophobic pockets are formed. These pockets
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are made up of residues 23, 50, 81, 82 and 84 from one monomer and residues 28, 32 and

48 from the other and interact with the sidechains of any bound substrate. Despite the

hydrophobic nature of the residues, substrate side chains with varying chemical character

can be found within these pockets [162]. The natural substrates of the protease are

cleavage sites within an extended polypeptide chain and a labelling system is required

in order to specify the location of specific interactions. Conventionally, the positions of

the substrate amino acids are numbered from the cleaved peptide bond (often known as

the scissile bond), towards the C-terminus of the substrate peptide chain they are given

a labelled S1′, S2′, S3′ . . . and S1, S2, S3 . . . towards the N-terminus. The pockets in

the protease structure into which they fit are correspondingly names P1′ - P4′ and P1 -

P4 as shown in Figure 4.7. The precise protease residues involved in each pocket varies

depending on the ligand bound. The same naming convention is adhered to for inhibitors

as is used for natural substrates. The composition of the pockets in the 1HXB crystal

structure [221] (which is bound to the inhibitor saquinavir) is shown in Figure 4.8.

4.6.1 Flexibility and Conformations

NMR and crystal structure evidence suggest that the PR flaps are highly flexible and

it is intuitive that they would play a role in the recognition and binding of the natural

substrate and inhibitory drugs [222–224]. All ligand bound proteases have shown the

flaps to be overlapping and closed over the active site (this conformation can be seen

in Figure 4.9) in a conformation that is relatively insensitive to the particular ligand

[224]. This contrasts with NMR, molecular dynamics and crystal structure evidence

that suggests that the apo enzyme exists in an ensemble of more open states where the

structure freely interconverts between the closed, open and an intermediate semi-open

state [220, 222–225]. Recent NMR data indicates that the predominant conformation

in this ensemble involves weak interactions between the flaps [226] suggesting that it is

dominated by semi-open forms of the enzyme similar to those seen in some crystal struc-

tures (such as that shown in Figure 4.9). While any such definition is inevitably some

what arbitrary, the 1HHP crystal structure has been used in previous studies to define

the semi-open conformation [225, 227]. Figure 4.9 shows that accompanying the opening

of the flaps is a change in the curling of the flap tips. In the closed conformation the flap

tips are seen to curl into one another and in the semi-open conformation the flaps cross

over with the tips curling away from one another. This change in relative orientation

is known as handedness, with the closed structure said to display cis handedness and

conversely the semi-open structure is said to have trans handedness. Unfortunately, only

one crystal structure of the fully open protease exists (the 1TW7 PDB structure) and

it has been shown that this is stabilised by crystal packing effects [228].
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Figure 4.9: The two different protease conformations identified by crystallography. On
the left the apo PR is seen in the semi-open form (based on PDB 1HHP), whilst on the
right is the the inhibitor bound PR (based on PDB 1HVR) in the closed conformation.
Above the main figures the flaps region is pictured from above, showing the change
in handedness that accompanies flap opening. The semi-open structure exhibits trans
handedness where the flaps cross over, whereas the closed conformation (seen in all
substrate bound structures) does not and is said to have cis handedness.

Flap dynamics is an attractive area for study via molecular simulation. The free energy

penalty of changing the conformation of the protease flaps from semi-open to closed

upon ligand binding has been investigated, with recent studies suggesting a change of

2.4 ± 0.4 kcal mol−1 [229]. The model of ligand access to the active site being mediated

by the flaps has also been given credence by molecular dynamics simulations, which

indicate that when a ligand is introduced to the semi-open apo enzyme it closes [225]

and when an inhibitor is removed from a closed structure it moves to a semi-open one

[230]. In addition, coarse-grained, Brownian dynamics models have shown that the flaps

act act as a gate controlling substrate entry to the active site [231, 232]. This type

of simulation distinguished between the binding pathway of long polypeptide chains,

where the substrate must enter from the top of the PR, inducing full flap opening, and

shorter ligands, such as typical inhibitors, which can enter directly from the ends of the

substrate binding cleft.

4.6.2 Catalytic Mechanism

The exact nature of the mechanism involved in the cleavage of peptide bonds by the HIV-

1 protease remains a matter of debate. Mutational studies have, however, shown that
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the aspartic acid residues in position 25 play a vital role in enzyme function [191, 233]

and the HIV PR is only active in dimeric form [234, 235]. Experimental evidence has

long suggested an acid-base mechanism and indicated that a contribution is made by a

lytic water molecule in the catalytic process [236, 237]. Many different reaction pathways

have now been suggested, most of which posit that the active site Asp dyad activates

a water molecule which then acts as a nucleophile and attacks the carbonyl carbon of

the scissile bond [236–240]. Crystallographic studies in conditions which greatly reduce

catalytic activity suggest that the reaction proceeds via a tetrahedral intermediate as

shown in Figure 4.10 [241, 242]. In this mechanism one of the catalytic aspartic acids

must be negatively charged (i.e. unprotonated) in order to activate the water molecule

bound between the catalytic dyad [243].
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Figure 4.10: Schematic diagram of the HIV-1 PR reaction mechanism based on recently
acquired crystal structure snapshots (PDBs 3MIM and 2NPH). The initial Michaelis
complex is converted via a tetrahedral intermediate into the product complex. Adapted
from from [242].

The potential impact on the catalytic function of the aspartyl dyad protonation state

has prompted a range of studies of this property [243]. Four possible states are available

dianionic (D-), diprotonated (D25/D125), position 25 protonated (D25) and position 125

protonated (D125). Aspartic proteases function over a wide range of pH values (2 to 7.4)

[244]. An experimental study of how HIV protease activity varies with changing pH by

Hyland et al. [236] produced a bell shaped profile, centred on pH 5. These results also

suggested that substrates bind only to a form of HIV-1 protease in which one of the two

catalytic aspartyl residues is protonated. In contrast NMR studies of the 13C enriched

apo enzyme at pH 6 suggest that the dianionic, D- state, is prevalent. NMR evidence,

from studies with inhibitors bound, suggests that the protonation state depends on the

character of the ligand. Results for a symmetric inhibitor [245] indicate a diprotonated

state, whereas those for an asymmetric one indicate monoprotonation [246]. A high level

of dependence on local chemical environment or ligand induced structural distortion is

also suggested by a wide range of computational studies [243, 247–250].
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4.6.3 Substrate Processing

A fully detailed description of the process by which PR cleaves Gag and Gag-Pol into

functional proteins has yet to emerge, however, it is clear that in order to perform

it’s function HIV-1 PR must recognise specific sites in the polyprotein chains where

cleavage is necessary. Cleavage sites differ in their amino acid composition, but HIV

protease most efficiently cleaves peptide substrates seven amino acids long (running

for S4 to S3′) [162, 251, 252]. Whilst the cleavage sites show significant variation some

properties are well conserved with P1 and P1′ largely hydrophobic and asparagine found

in P2 for four of the sequences. These two positions are thought to play significant roles

in substrate specificity although prediction of cleavage sites remains an active area of

research [253–255].

Both in vitro and tissue culture studies have been used to elucidate the maturation

process. These studies strongly suggest that the processing of the various cleavage sites

in the Gag and Gag-Pol precursors occurs sequentially and is tightly regulated, with

mature proteins formed as products of primary, secondary and tertiary lytic events

[234, 256, 257].

4.6.4 Inhibitory Drugs

As a consequence of the quantity of available crystal structures, protease has become a

canonical example of structure assisted drug design [216, 258]. Currently, nine protease

inhibitors (PIs) are approved for clinical use by the FDA and they play a key role in

many recommended HAART drug cocktails [194]. The structures of all of these drugs

are shown in Figure 4.11.

All licensed PIs act competitively and a general principle of their design has been to

mimic the natural peptide substrate of PR but with the cleavable bond replaced by an

uncleavable hydroxyethylene moiety (with the exception of tipranavir, which is based

on a coumarin scaffold and was discovered using high throughput screening) [192, 196,

216, 258]. This moiety is known to bind to the catalytic dyad and the side chain groups

of peptidomimetic inhibitors are conventionally labelled using the same convention as

the natural peptide substrate (as illustrated in Figure 4.7). As might be expected,

given the commonalities of their design, the clinically used PIs all bind to PR in a

broadly similar fashion. In all cases a water molecule (referred to as WAT301) is bound

above the inhibitor, tetrahedrally hydrogen-bonded to oxygen molecules either side of

the hydroxyethylene moiety of the drug and the backbone nitrogens of residues 50 and

150 of the PR. This observation has inspired an alternative design strategy, based around



Chapter 4. HIV & AIDS 84

H2N

O

OO

OH

N
S

O

O

N

CH3

CH3

H

(a) Amprenavir (APV)

O

O N

O

N

OH

N

O

N

O O

H3C

H3C
CH3

CH3
CH3

CH3

CH3

H3C

NH

N
H H

H

(b) Atazanavir (ATZ/ATV)

NH2

O

O

O

O

O

N

OH

S
O

O

CH3

CH3

H

(c) Darunavir (DRV)
CH3

CH3CH3

N

N

N

O NH

OH

O

N

HO
H

(d) Indinavir (IDV)

H
H

CH3

H3C

N

O

O

O

N

O

NN

O

H

CH3H3C

H

(e) Lopinavir (LPV)

H
N

HO

O
S

CH3

OH

N

O NH

CH3

CH3H3C

H

H

(f) Nelfinavir (NFV)

H

H

H
OH

O

N N

O

N

S

O

N

N
ON

S

H3C

H3C
CH3

CH3H3C

(g) Ritonavir (RTV)

O

N

O

O

N

N

HO

N

H

H2

HCH3
H3C

N

O

H

H

H3C

(h) Saquinavir (SAQ/SQV)

O O

S

O

O
N

HN

OH

CH3

CH3

F
F

F

(i) Tipranavir (TPV)

Figure 4.11: Chemical structures of each of the nine FDA approved HIV protease
inhibitors.

central cyclic urea groups, in which sections of the inhibitor aim to displace this water

molecule [259]. As yet no inhibitor based on this design principle has been approved for

clinical use.

Saquinavir was the first approved inhibitor and, like other early inhibitors, achieved a

binding affinity in the sub-nM range to wild type protease. However, the emergence of
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Table 4.3: Binding affinity values for all FDA approved HIV-1 protease inhibitors with
the wild type protease. The first six values are taken from Ohtaka et al. [92] and were all
produced using the same experimental conditions. The remaining values were obtained
from the BindingDB database [88] and were produced under a variety of conditions.

Inhibitor ∆G (kcal mol−1) Ki (nM)
APV -13.2 0.20
IDV -12.4 0.76
LPV -15.1 0.008
NFV -12.8 0.44
RTV -13.7 0.098
SQV -13.2 0.28
ATZ -13.2 0.48
DRV -14.8 0.014
TPV -15.1 0.014

resistant mutations (discussed in Section 4.6.5) has forced the continuing development

of inhibitors with recent inhibitors such as lopinavir and tipranivir achieving sub-pM po-

tencies [196]. A comparison of the binding affinities of all nine FDA approved inhibitors

is given in Table 4.3.

Increasing inhibitor potency is obviously desirable, but is not the only factor determining

the usefulness of a drug in vivo. Factors such as solubility can have a significant impact

on the ability of an inhibitor to reach it’s intended target. Administered alone, lopinavir

suffers from low bioavailability (a measure of the fraction of the administered drug

that reaches the circulatory system) and so is combined with sub-therapeutic doses

of ritonavir, which increase the quantities of lopinavir reaching the bloodstream [260].

The addition of ritonavir to other PIs to gain the same benefits is now commonplace,

and combined PI tablets are known as ‘boosted’ PIs [261]. Further to the issue of

bioavailability, it is vital that inhibitors are highly selective in order to reduce side

effects induced by binding to non-target human proteins. Despite efforts to minimise

them in the design and trial stages of drug development all of the available PIs are

associated with some level of toxicity.

4.6.5 Drug Resistance in Protease

The structure of PR is able to tolerate mutations in up to 50% of the amino acids in

its 99 residue sequence and remain functional [224]. This observation is in line with the

finding that monomers of HIV-1 and HIV-2 protease are functionally interchangeable in

the dimeric enzymes, despite differing by between 45 and 50 mutations [262]. Such high

levels of mutational robustness suggest that many mutations have little, or no, effect on

catalytic function. Competition between multiple viral strains ensures that only highly

efficient phenotypes survive and some sections of the protein, such as the catalytic Asp

containing ‘firemans grip’ motif, are highly conserved [263]. Studies of HIV-1 sequences
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Figure 4.12: The mutations associated with PI resistance in clinical studies. The lo-
cations within the protein sequence are given within the horizontal bar with the wild
type amino acid above and the mutant form(s) beneath. This figure has been removed
due to copyright restrictions bit is available in [200].

taken from patients have identified 17 polymorphisms2 and 37 locations which are rarely

seen to mutate [264].

It is unsurprising that many mutations that leave the protease functional alter its speci-

ficity. The use of PIs introduces a selective pressure, which may give an evolutionary

benefit to enzymes which are more likely to bind natural substrate than an inhibitor

even if this comes at the cost of reduced catalytic efficacy. This phenomenon is the

basis for the emergence of resistance protease mutants. Many clinical studies have been

undertaken to characterise mutations that are associated with resistance [200, 264–266].

Figure 4.12 shows a summary of the key mutations associated with PI treatment failure

for all of the FDA approved inhibitors. Mutations have arisen for all of the currently

licensed PIs. However, the most worrying development has been the emergence of viral

strains which exhibit cross class resistance, known as multi-drug resistant (MDR) viruses

[267, 268]. MDR viruses have limited the effectiveness of salvage therapy in which one

PI is replaced by another once resistance is acquired.

The primary cause of resistance is the reduction in binding affinity to inhibitors. For re-

sistance associated mutations which occur in the PR active site (such as V82A and I84V)

this can intuitively be understood as resulting from direct alteration of the contacts be-

tween drug and protein. Other mutations, such as L90M, are located far from the active

site yet influence the binding of a range of inhibitors and their impact is much harder

to explain. At least a partial explanation for this observation is that most resistant

PR sequences contain multiple mutations [264, 269] with several studies indicating that

protease accumulates mutations in a ordered fashion under selective pressure from PIs

[270–273]. Resistance associated PR mutations are frequently divided into two classes;

primary mutations which are highly correlated with treatment failure, and accessory

mutations which either only exhibit resistance when many mutations are combined or

enhance the resistance of existing primary mutations. Sometimes as many as 7 or 8

accessory mutations are observed to accrue in resistant sequences.

Studies of the positioning of many resistance associated mutations have suggested that

PIs that fit within the overlapping consensus van der Waals volume of the natural

substrates are less likely to be impacted by their presence. The hypothesis is that

mutations impacting such inhibitors would simultaneously reduce the processing of the

2Polymorphisms are locations at which more than one type of amino acid coexists in a population
without dependence on specific selective pressure.
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substrates [274–276]. The inhibitor darunavir is designed to fit snuggly within this

envelope and has been observed to present a higher genetic barrier to the development of

resistance and higher efficacy against multi-drug resistant HIV relative to other protease

inhibitors [277].

Commonly, resistant protease sequences involve point mutations and double mutations,

such as G48V/L90M which arises after saquinavir treatment [278] and V82F/I84V in

response to ritonavir [279], which may evoke more than thousand fold reductions in

binding affinity. In other cases similar reductions in affinity occur through the combina-

tion of several mutations which do not alone induce significant energetic changes. It is

becoming increasingly recognised that super additive combinatorial effects may lead to

significant levels of resistance [92, 269, 280]. It is however more common that accessory

mutations act to enhance the effects caused by existing primary mutations [281, 282].

In many cases the mechanism by which mutations away from the active site cause reduced

inhibitor binding is unclear. The difficulty of kinetic experiments makes this a fertile

ground for molecular simulation. One area that has been extensively studied is the

impact of mutations upon flap dynamics [220, 225, 229, 232]. For example, studies have

suggested that M46I stabalises the closed PR conformation [283] and that V82F/I84V

induces greater sampling of the semi-open flap positions [284]. MD studies by Foulkes-

Murzycki et al. [285] have also suggested that 19 residues, which form a hydrophobic

core in PR3, facilitate conformational changes in the flaps. These residues slide by one

another with little energy penalty as they simply exchange one van der Waals contact

for another as they move. They hypothesise that mutations to residues in this area (such

as L90M) change the packing in the hydrophobic core, altering flexibility and hence the

selectivity of PR. Other simulations have suggested that the G48V/L90M mutations

may increase the accessibility of a lateral unbinding pathway for inhibitors [286]. MD

simulations have also been widely used to directly calculate binding free energies of PR

mutants [279, 287–289].

In some cases resistance-causing mutations can only be supported by PR in the presence

of polymorphisms elsewhere. One example of this phenomena is the D30N mutation

which is associated with resistance to nelfinavir. Alone D30N renders PR non-functional

but the presence of N88D rescues catalytic activity [290]. This is an extreme case of

what is known as a ‘compensatory’ mutation. This describes an accessory mutation

which becomes fixed in the viral population as it reduces the fitness cost associated with

associated resistance causing mutations [291, 292]. It is worth noting that in vivo viral

fitness does not necessarily correlate directly with enzymatic efficacy, for example the

3The following positions are identified as forming the PR hydrophobic core: 5, 11, 13, 15, 22, 24, 33,
36, 38, 62, 64, 66, 75, 77, 85, 89, 90, 93 and 97
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L90M mutation has been seen to improve protease activity [293, 294], but its absence in

the wildtype suggests that overall it carries a fitness cost to the virus.

Some mutations that arise during treatment with one inhibitor may, in fact, cause the

protease to be more susceptible than wild type to other drugs. Two examples of this are

I47A, a rare LPV resistant mutation which enhances saquinavir binding [295], and I50L,

which emerges in response to ATZ treatment and is hypersusceptible to other PIs[296].

Another form of resistance associated with PI treatment is the mutation of Gag pre-

cursor cleavage sites [297]. Mutations in the substrate are generally believed to act as

compensatory mutations, restoring the fitness of the virus when primary resistance mu-

tations in the PR alter substrate specificity [293, 294] (although recently this idea has

been challenged [298]). An example is the A431V mutation in the P2 subsite of the

NC/p1 cleavage site which is seen to emerge in virus populations containing the V82A

mutation in response to treatment with ritonavir [299].

4.7 Reverse Transcriptase Structure and Inhibition

Active reverse transcriptase consists of an asymmetric heterodimer. This structure is

created from a homodimer of two 66 kDa subunits, both subunits containing 560 residues.

One of the subunits is subsequently proteolytically cleaved by the viral protease. This

results in one 51 kDa subunit which is missing 120 C-terminal residues compared to

the larger unit. The removal of these residues induces a considerable difference in the

conformation of the two units, which are now referred to as p66 and p51 respectively.

The p66/p51 heterodimer is resistant to further hydrolysis by the protease [300].

The p66 subunit contains both the polymerase and RNaseH active sites. The residues

which were cleaved from the p51 subunit included the RNaseH domain and the residues

which form the polymerase active site in p66 are buried in the RT structure and perform

no catalytic function.

A large number of crystal structures of RT have been produced and the structure which

has emerged has been likened to that of a right hand. The analogy has led to the naming

of the subdomains as see in Figure 4.13. The template/primer duplexes bind in a large

cleft between the fingers and thumb domains [301].

4.7.1 Active Sites

The polymerase and Ribonulease H (RnaseH) active sites are separated by a distance of

17 to 18 nucleotides of the template (approximately 60Å) [301]. The polymerase active
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(a) (b)

Secondary Structure p66 p51 Secondary Structure p66 p51
Fingers (1–84) Thumb (244–322)
β0 7–12 7–12 αH 255–268 254–270
β1 18–24 19–22 αI 278–286 277–283
αA 28–44 28–44 αJ 298–311 289–310
β2 49–51 49–51 β15 316–321 316–321
β3 56–63 56–63
β4 73–77 72–76 Connection (323–437)
αB 78–83 78–84 β16 326–333 325–333

β17 336–341 336–343
Palm (85–119) β18 350–358 350–358
β5a 86–90 87–90 αK 364–382 364–381
β5b 94–96 94–96 β19 388–391 386–392
β6 105–112 105–112 αL 395–404 395–404
αC 114–117 112–115 β20 406–412 410–416

β21 421–424 –
Fingers (120–150) β22 427–430 –
αD 122–127 122–127
β7 128–134 128–134 RNaseH (438–560)
β8 141–147 141–147 β1′ 438–447

β2′ 452–459
Palm (151–243) β3′ 462–470
αE 155–174 155–174 αA′ 474–488
β9 178–183 179–183 β4′ 492–497
β10 186–191 186–191 αB′ 500–508
αF 195–212 198–212 αD′ 516–527
β11a 214–217 214–219 β5′ 530–536
β11b 219–222 – αE′ 544-555
β12 227–229 –
β13 232–235 –
β14 238–242 239–242

(c)

Figure 4.13: The RT subunits (a) p66 and (b) p51. The domains are named after the
structures supposed likeness to a right hand. It is in fact, the folding of the p66 seen
which results in the likeness. However the subdomains retain their name in p51 as seen
in (b). The secondary structure elements and their position in the amino acid sequence
of both subdomains are shown in (c).
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site is located in the palm domain between the fingers and thumb subdomains with the

RNaseH domain at the far end of the enzyme (see Figure 4.13 and Figure 4.14).

The polymerase active site consists of residues D110, D185, D186 all of which mutational

studies have found to be essential for the enzyme to exhibit polymerase activity [302].

Further to this, studies which mutated these residues in p51 alone showed this had no

effect on catalytic activity [303], placing the catalytic site in the β6-β9-β10 area of the

palm subdomain of p66.

The RNaseH active site is responsible for the degradation of RNA/DNA and RNA/RNA

duplexes. It consists of D443, E478, D498 and D549. Mutagenetic studies show that

mutations of D443 and E478 [304, 305] result in the loss of catalytic function whereas

changes to D498 destabilise the dimer [304].

4.7.2 dNTP Binding Pocket

The crystal structure of RT in complex with an incoming dNTP shows that, upon

binding of the dNTP, the loop between residues 60 and 75 of the fingers subdomain

bends inwards towards the active site. In particular, residues K65 and R72 make contact

with the incoming dNTP, forming salt bridges with the γ and α phosphates [306]. R72

also interacts with Q151 resulting in a flexible binding pocket which accommodates the

3′ OH of the incoming dNTP. The rest of the binding pocket consists of the sidechains

of A114, Y115 and the backbones of D113 and Y115. The interaction of R72 and Q151

is found to be template dependent. With a DNA template the amide nitrogen of Q151

interacts with the nucleotide base, where in the RNA template structures the amide

oxygen is seen to interact with the first primer base and stabilises the side chain of R72

[306]. Additionally M184, which takes the X position in the YXDD motif conserved in

all reverse transcriptases, is positioned close to both the 3′ OH primer terminus and the

bound dNTP [307].

Mutations at these locations have been seen to result in changes in the specificity of RT.

M184V and Q151M do not significantly alter the error rate but change the type of errors

made [308, 309], whereas Y115A results in a four fold decrease in transcription fidelity

[310]. These results indicate that Tyr115 plays an important role in selecting the dNTP

to be bound.

4.7.3 Global Conformational Variation

It is well established that crystallised RT structures show large scale conformational

changes when bound to either a template/primer or NNRTI ligand [311]. Comparison
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(a) (b) (c)

(d)

Figure 4.14: The structure of the reverse transcriptase enzyme is shown bound in apo
form (based on the 1DLO PDB structure) and bound to both DNA and the NNRTI
NVP (based on the 2HMI and 3HVT PDB structures respectively). The fingers domain
is shown in blue, the palm in orange, the thumb red, the connection in grey and the
RNaseH in green (the darker shades indicate the regions of the p66 subunit, lighter ones
p51). The locations of the residues involved in the polymerase and RNaseH active sites
are shown in purple. (a), (b) and (c) show the enzyme viewed along the DNA binding
cleft for the apo enzyme and DNA and NVP bound systems respectively. The DNA
strand is shown in cyan and pink, while the NNRTI NVP is shown in black, highlighting
the location of the NNRTI binding pocket. (d) shows the entire enzyme bound to DNA
from above the binding cleft.
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of the apo and ligand bound structures in Figure 4.14 shows the movement of the

thumb and fingers away from the binding cleft along the middle of the RT structure, a

change which is often described using the analogy of an opening hand [312]. The apo

structures 1JLE and 1RTJ both show RT in an open conformation, similar to that of

the NNRTI or template/primer ligated structures; however, this can be explained by the

fact that they were created by soaking out an NNRTI [313, 314]. For this reason, here

we the analyse a subset of 92 RT crystal structures (details of the selected PDBs are

provided in Appendix C) separated into three classes ignoring the open apo structures;

the closed form unliganded, the NNRTI bound and the template/primer bound. In order

to investigate the structural differences between the classes, average structures of the

three conformations were created4.

Information about differences between two structures can be gained by using difference

distance matrices (DDMs). The first stage of the process of creating a DDM, is to create

a difference matrix (DM) describing the conformation of each structure. A DM consists

of a N × N matrix (where N is the number of residues in the structure) holding the

distances between each pair of elements, in all of the matrices calculated here these will

be the Cαs of each residue in RT. Using internal coordinates avoids the need to align

the structures being compared. In order to calculate the DDM from a pair of DMs you

simply need to subtract one from the other and take the magnitude of this change. Thus

each element of the DDM is given by

D(i, j) =
∣∣∆rAij −∆rBij

∣∣ , (4.1)

where ∆rAij is the distance between the Cα of residues i and j in one structure and ∆rBij

is the same distance in a different structure. Each element of the DDM represents the

change in distance between a pair of residues [316] and hence higher values show where

the greatest degree of conformational change has occurred.

The average structures were used to create the DDMs shown in Figure 4.15. These

show that the dominant change in both liganded forms is the expected movement of

the p66 thumb subdomain relative to all of the other subdomains. In the DNA bound

form the thumb is the only section to show significant rearrangement with respect to

the apo structure, whereas the NNRTI structure shows alteration in the p66 palm,

connection and RNaseH subdomains as well. The differences between the two structures

seen in Figure 4.15c are almost all in the p66 subunit beginning with the section of palm

immediately preceding the thumb (which contains the NNRTIBP), with the biggest

4This was achieved by aligning all of the structures using VMD [315] and then taking the mean value
of the coordinates for each residue.
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(a) (b)

(c)

Figure 4.15: DDMs showing the differences between average structures of differently
ligated RT: (a) compares DNA bound and closed apo structures, (b) NNRTI bound to
closed apo and (c) the NNRTI to the DNA bound. The colouring is normalised in each
panel with the bar to the side indicating the scale used in each picture.

being in the distance between the thumb and the palm and fingers. This is consistent

with the general observation that the thumb to fingers separation is greater in the NNRTI

bound structures than the template/primer liganded.

In order to examine the variation of the separation between thumb and fingers subdo-

mains exhibited in the different classes of structure, the distance between the Cα of W24

(located in the fingers, close to the thumb in the apo structure 1DLO) and K287 (the

top of the thumb subdomain) was measured. Table4.4 confirms that the ‘opening of

the hand’ is found throughout the available liganded structures. The average separa-

tion between the thumb and fingers subdomains of the NNRTI containing complexes is

considerably larger (around 7 Å on average) than that of the template/primer liganded

systems. In fact, the smallest separation seen in the NNRTI bound structures is still

greater than the distance seen in any of the template bound systems.
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Table 4.4: Distance in Å between the Cαs of residues 24 (in the fingers) and 287 (in
the thumb)

Ligand Type Min. Max. Average Std Dev.
Unliganded 12.01 12.85 12.48 0.36
Template/Primer 30.09 36.15 34.54 2.33
NNRTI 37.43 46.44 41.58 2.61
Unliganded (open) 39.48 40.23 39.86 0.53

Table 4.5: The average angles between the thumb subdomain and αF which runs across
the front of the palm and αK in the connection (in degrees) in different classes of crystal
structures.

Ligand Thumb to αF Thumb to αK
Unliganded 32.75 115.34
Template/Primer 57.6 146.5
NNRTI 72.24 144.24
Unliganded (open) 71.64 145.11

The changes in the separation of the thumb and fingers are a result of a rotation of the

thumb induced by ligand binding. The angles between αJ of the thumb and αF (which

runs across the front of the active site between the base of the thumb and the base of the

fingers) and αJ and αK (which is part of the connection and runs between the thumb

and the RNaseH subdomains) both change (see Table 4.5). On average NNRTI binding

induces a 40◦ increase in the αJ-αF angle from the unliganded form compared to 25◦ in

the template/primer case. Both, however, show similar rotations of αJ relative to αK

(of around 30◦) when compared to the unliganded structures.

As described in Section 4.4.3, RT must bind both RNA/DNA and DNA/DNA tem-

plate/primer duplexes in order to elongate the primer strand by adding additional nu-

cleosides. In order to accommodate the template and primer the RT undergoes con-

siderable structural rearrangement. The most obvious change is the positioning of the

thumb subdomain, which rotates approximately 20◦ and consequently moves away from

the fingers opening a binding cleft into which the template (and primer) can fit (see

Figure 4.14). Only crystal structures of the unliganded RT are all in the closed confor-

mation (1JLE [314] and 1RTJ [313] are discounted here as they were created by soaking

out a weakly bound NNRTI) but a spin labelling study has shown that it exists in a

temperature dependent equilibrium between open and closed states. At 273 K 65% of

the population was found to be closed, rising to 95% at 313 K [317].

4.7.4 Inhibitory Drugs

Two classes of drugs have been developed which target the HIV-1 RT. Here we briefly

describe their structure and method of operation. We focus upon the non-nucleoside
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Figure 4.16: Chemical structures of each of the 11 FDA approved NRTIs.

analogue inhibitor (NNRTI) class of drug as these are the subject of the simulations

presented in Chapter 7.

4.7.4.1 Nucleoside Analogue Inhibitors

As the name implies NRTIs compete with the natural dNTP substrate of RT, however,

once incorporated into the nascent DNA chain they prevent further elongation (they are

designed to have no 3′ OH) [318]. As expected crystal structures show that NRTIs bind

to and interact with the residues of the dNTP binding pocket, with R72 in particular

playing a role in stabilising the sugar moiety [318].

NRTIs are administered as pro-drugs, which need to be recognised and processed by cel-

lular kinases to become active (this facilitates their penetration of the target call mem-

brane). Nucleoside analogues must be tri-phosphorylated [319, 320], while nucleotide

analogues need only be di-phosphorylated (as they already contain one phosphate group)

[321]. Currently there are seven nucleoside and one nucleotide analogue approved by

the US FDA, the structures of which are shown in Figure 4.16. Nucleotide analogues

are an advance over the nucleoside analogues as they require cellular processing before

they become active [318]

4.7.4.2 Non-Nucleoside Analogue Inhibitors

NNRTIs are, in general, small (less than 600 Da) hydrophobic compounds but have a

diverse range of structures (Figure 4.17) [197]. Three have been licensed by the US FDA;
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Figure 4.17: Chemical structures of each of the four FDA approved NNRTIs.

efavirenz (EFV), delavirdine (DLV) and Nevirapine (NVP). Delavirdine is not licensed

in the UK and Etravirine is approved for treatment-experienced patients only in both

the US and the UK [322]. NNRTIs bind in a pocket which does not exist in RT when

there is no drug bound [323–325]. The so-called NNRTI binding pocket (NNRTIBP)

is situated approximately 10 Å from the polymerase active site, between the β6-β10-

β9 and β12-β13-β14 sheets[324, 326]. This is in the area where the thumb and palm

subdomains are hinged. The pocket is hydrophobic in character and made up of L100,

K101, K102, K103, V106, T107, V108, V179, Y181, Y188, V189, G190, F227, W229,

L234 of p66 and E138 of p51 [323]. In the unliganded enzyme the sidechains of Y181 and

Y188 fill the pocket but upon NNRTI binding they rotate away from the hydrophobic

core creating space for the ligand [323, 324]. Twisting of the β12-β13-β14 sheet also

expands the binding pocket [323]. Several entrances to the pocket have been proposed.

The most commonly described is the area surrounded by K101, K103 and V179 near

the p66/p51 interface. It has also been proposed that some NNRTIs may enter via an

opening near P236 or from the active site region [327, 328].

Method of Inhibition

A number of theories have been proposed to explain the inhibition of reverse transcrip-

tase by NNRTIs. Below is a short description of the main candidates.

NNRTI liganded crystal structures show short range deformation of the palm domain. In

particular the YMDD motif containing two of the catalytic aspartates (residues 185 and

186) is distorted, altering the geometry of the polymerase active site [313]. It is proposed

that the process of polymerisation is highly dependent on the alignment of the catalytic

aspartates and this distortion of the active site prevents catalytic function. Similarly,
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the structures also show that the primer grip is also distorted and it is proposed that

this may prevent the primer from being correctly aligned for catalysis [323].

Another hypothesis is that the NNRTIBP may disrupt the hinge between the thumb

and palm subdomains resulting in a reduction in the mobility of the thumb (called the

“arthritic thumb” model). It is contended that the motion of the thumb is essential

to allow the translocation of the template/primer duplex to facilitate continuing DNA

strand elongation [329].

As has already been noted the NNRTIBP is at the dimer interface, with p66 residues

L100 K101, K103, V179 and Y181 along with p51 residue E138 being involved in both

the interface and the NNRTIBP. Several experiments have shown that NNRTI binding

affects the stability of the dimer, either increasing or decreasing it depending on the

specific NNRTI [197]. It has been suggested that as dimerisation is essential for enzyme

function [330], changes in dimer stability may prevent correct enzyme function.

There is no reason to assume that any of these explanations are exclusive and it may

well be that a combination of factors contribute to inhibition. One study examined the

steps of reverse transcription in the presence of NNRTIs and found that they blocked

the polymerisation reaction but did not interfere with the binding of dNTPs [331].

Nevirapine is also known to alter the rate at which RT can flip orientation along a

nucleic acid substrate[332], although it is not clear whether this is related to inhibition

or a side effect of the structural changes induced by drug binding.

Molecular simulations have been employed to investigate the arthritic thumb model but

the results have been inconclusive. A steered molecular dynamics study has demon-

strated a reduction in the motion of the thumb [333], however another study, using a

network model, disagreed. This second study compared the motions available to the

unliganded RT with those available to RT with NNRTI bound, finding that the binding

of an NNRTI did not reduce the flexibility of the thumb but did change the way it was

correlated with the motion of the rest of the enzyme [47].

Binding Modes

The first three clinically approved NNRTIs were found by random screening but ETR

[334, 335], along with more recent drug candidates, was rationally designed, with molec-

ular level studies playing an important role. The first set of drugs are referred to as ‘first

generation’ NNRTIs with the new drugs, which are usually found to be more potent than

their predecessors, referred to as ‘second generation’ [197].

All of the clinically relevant, and several other, first generation inhibitors have been

crystallised bound to RT. Examination of these structures reveals a common binding
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Figure 4.18: Nevirapine shown in the NNRTIBP in PDB 3HVT. a) shows the position
of the drug resting on the β6-β10-β9 sheet. In b) the residues shown in green interact
with Wing I of the drug those in purple with Wing II.

mode [197]. The appearance of the bound NNRTIs has frequently been likened to a

butterfly. The drugs rest on the β6-β10-β9 sheet, as seen in Figure 4.18a. The head of

the butterfly points down towards the hypothetical binding pocket entrance near residues

101 and 103 of p66 (from now on when describing residues within the NNRTIBP they

should be assumed to be from p66 unless otherwise stated). Figure 4.18b shows an

example of this type of binding by Nevirapine. Wing I of the butterfly interacts with

the K101, K103, V106, V179 and Y318 sidechains (it may additionally interact with the

backbone of H235 and P236). The body of the butterfly interacts with the backbone

of residues Y188, Y189 and G190 and the sidechains of L100 and L134 (which also

interact with both wings). Wing II has considerable hydrophobic contacts, interacting

with Y181, Y188 and W229. There is one exception to this mode of binding in the first

generation of NNRTIs and that is exhibited by DLV. DLV is considerably larger than the

other NNRTIs and its elongated shape means that it extends out from the NNRTIBP

and into the solvent surrounding it [336].

Etravirine has been designed to have a large degree of flexibility. It is one member of a

class of drugs called DAPY derivatives, which have been rationally designed and show

significant ability to rotate around the torsion angles, τ1 and τ2, shown in Figure 4.17d

[334]. The very flexibility which is designed to allow it to retain activity against drug

resistant RT variants has the side effect of preventing its crystallization in complex

with wild type RT. A complex is available bound to the K103N resistant mutant and

further insight into its binding conformation can be made by analogy with other DAPY

derivatives. These studies along with molecular dynamics simulations indicate that the

drug can adopt two different binding modes Figure 4.19, one more extended than the

other. The more compact of these, called the “horseshoe” conformation, is almost U
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Figure 4.19: (a) shows TMC120 in the “horseshoe” binding mode which modelling
shows that Etravirine can also adopt. (b) shows Etravirine exhibiting a second bind-
ing mode closer to residues 100 and 103 with substantially different wing orientations
relative to the body. This figure has been removed due to copyright restrictions but is
available in Das et al. [334]

Figure 4.20: The mutations associated with NRTI resistance in clinical studies. The
locations within the protein sequence are given within the horizontal bar with the wild
type amino acid above and the mutant form(s) beneath. This figure has been removed
due to copyright restrictions but is available in Johnson et al. [200].

Figure 4.21: The mutations associated with NNRTI resistance in clinical studies. The
locations within the protein sequence are given within the horizontal bar with the wild
type amino acid above and the mutant form(s) beneath. This figure has been removed
due to copyright restrictions but is available in Johnson et al. [200].

shaped and shows one wing of the drug surrounded by P95, K100, Y181, Y188, W229

and K234. The τ1 and τ2 angles appear to orient the wings relative to one another in

such a way as to give the drug favourable self interactions. The second conformation seen

in the crystal structures shows the pyramidine ring undergoing enhanced interactions

with K100 and N103 and wing 2 with Y318. Computational studies have shown that

the energetic barrier between these conformations is low (around 1.2 kcal mol−1) [334].

4.7.5 Drug Resistance in Reverse Transcriptase

4.7.5.1 Resistance to NRTIs

Figure 4.20 shows the most important NRTI resistance mutations found in clinical se-

quences. There are two routes via which HIV-1 RT can gain resistance to NRTIs. The

first is for the enzyme to evolve greater specificity for the natural substrates [337–339],

the second is for it to increase the efficiency of an excision reaction [340, 341]. The mu-

tations can be divided into two distinct categories, those close to the dNTP binding site

which result in increased specificity and those which are distal and generally result in an

increase in the efficacy of the template removal reaction. The distal mutations function

by altering the position of the template/primer complex at the polymerase active site.

The consequence of this is a change in the primer position which favours the excision

reaction [318].
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4.7.5.2 Resistance to NNRTIs

Figure 4.21 shows the locations of the most common clinically relevant NNRTI resistance

implicated mutations in the RT sequence. All of these mutations are seen within the

NNRTIBP and are generally believed to reduce binding affinity by sterically interfering

with the specific interactions of the NNRTIs with residues of the binding pocket [197].

In general, unlike the case of PIs, single NNRTI mutations often produce significant

reductions in binding affinity.

However, this is not true of the K103N mutation which is not seen to alter the drug

enzyme contacts in crystal structures in any significant way [342]. Both crystal struc-

tures and modelling studies [342–344] have suggested that the observed resistance is

a consequence of N103 to Y188 hydrogen bonding which increases the energy barrier

that must be overcome to create the binding pocket. What is clear from Figure 4.21

is that mutations which cause resistance to one NNRTI will in general cause resistance

to all of the clinically administered drugs. This is a problem exacerbated by the fact

that single mutations are generally enough to produce resistance against NVP and DLV

[197, 345]. TMC125 was specifically designed to exploit conformational flexibility to

be active against resistant strains of RT [334]. In vitro trials have shown that signif-

icant resistance to TMC125 is associated with double or more usually triple mutants

[197, 334].

The explanation of NNRTI resistance as solely caused by mutations in the binding pocket

is an incomplete one. Statistical analysis of sequence data has shown that high levels

of resistance in addition to the primary mutations in the NNRTIBP are associated with

mutations at a range of other codons which do not directly interact with the drugs.

Twenty five positions have been implicated (6, 20, 35, 39, 43, 53, 68, 90, 98, 101, 122,

179, 200, 203, 208, 218, 221, 223, 228, 284, 318, 320, 348, 359 and 371) as the locations

of these so-called accessory mutations [346]. It has become apparent that mutations in

the connection subdomain may also play a part in NNRTI resistance. N384I has been

linked with NVP resistance [347] and the D549N, Q475A, and Y501A mutants (known

to reduce RNase H cleavage) have been observed to produce resistance to NVP and

DLV, but not to EFV or ETR [348]. Furthermore, combining the D549N mutant with

known resistance causing mutations in the NNRTI binding pocket results in increased

loss of NNRTI binding affinity.

Intriguingly, some NRTI resistance associated mutations (at positions 41, 128 and 210)

have been found to be associated with an increased susceptibility of RT to inhibition

by NNRTIs, this phenomena is known as hypersusceptibility [349]. At least 23 different

codons in RT have been shown to be associated with an increase in NNRTI susceptibility
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[350, 351]. The method by which this occurs is unknown but clinical data indicates that

they have a significant effect on drug efficacy [351].

4.7.6 Computational Modelling of Reverse Transcriptase

Despite its importance as a drug target, RT has been less extensively computationally

modelled than PR. This is due in large part to the greater size of RT (it contains

approximately five times the number of residues) and number of the simulations which

have been conducted use implicit solvents [312, 342, 344], restrained atoms [352] or

only investigate subsections of the enzyme [333] in order to reduce the computational

workload. Although it has been claimed that up to one third of the residues of RT are

immobile [352] it is not clear that this practice, particularly when applied to residues

close to the NNRTIBP or hinge areas of the enzyme, does not affect the dynamics of the

system. As available computational power increases more studies are being undertaken

and the design of etravirine involved considerable use of computer simulation [334].

Further discussion of MD simulations of RT is provided in Chapter 7.

4.8 Conclusions

In the last 30 years significant progress has been made in the treatment of HIV. Nonethe-

less drug resistant viral strains provide a continuing challenge with mutations often

interacting with one another in non linear ways in order to produce resistance. The

assessment of such mutants is key to successful treatment of patients. Currently, this

task is performed using clinical decision support tools relying on statistical analysis of

existing data. One possible approach that could enhance such systems would be to

apply the molecular modelling techniques discussed in Chapter 2 and Chapter 3 to pre-

dict the resistance level of patient derived viral sequences. In Chapter 5 and Chapter 6

we develop and apply a MD protocol designed to perform exactly this function for PI

resistance. In Chapter 7 we focus on extending the system to NNRTIs.



Chapter 5

Analysing the Effects of

Multi-drug Resistance Causing

Mutations on the Binding of

Lopinavir to HIV-1 Protease

Molecular association, such as that between drugs and their protein targets, is governed

by changes in free energy. This has led binding free energy differences to become one of

the most studied physical quantities in biochemistry. It is through the lowering of the

free energy difference between the free drug and protein and the bound complex of both

that mutations in pharmaceutical target enzymes induce drug resistance.

As described in Chapter 3, a wide variety of experimental and theoretical methods are

available to determine free energy differences. It is neither feasible nor economic to

perform high throughput experimental studies and those studies that are possible can

offer little insight into the atomic origin of changes in the binding affinity. To differing

degrees molecular dynamics (MD) simulations can be used to address both of these

issues. The atomic detail inherent in the MD approach is ideally suited to gaining

structural and dynamic information alongside thermodynamic quantities. The methods

available for calculating free energy differences from MD trajectories vary from the

accurate but extremely slow to highly approximate methods designed to produce rapid

results. In this chapter the MMPBSA and normal mode methodology, which seeks to

reach a compromise between these two extremes, is used to assess the binding affinity

of a series of HIV-1 protease sequences to the inhibitory drug lopinavir. The aim of

the study is investigate the level of phase space sampling required to reliably reproduce

existing experimental free energy values and to define an efficient simulation protocol

102
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Figure 5.1: Wildtype protease structure (based on entry 1MUI from the PDB) with
the locations of the residues whose effects are investigated highlighted in the following
colours: L10 dark blue, L90 light blue, M46 red, I54 pink, V82 dark green and I84 light
green.

that achieves this. Structural factors which may lead to resistance are also examined.

The work presented in this chapter was performed in collaboration with colleagues within

the CCS and published as Sadiq et al. [353].

5.1 Multiple Drug Resistance

As described in detail in Chapter 4, the HIV-1 protease allows the virus to form new

infectious virions by cleaving the Gag-Pol polypeptide chain into functional enzymes.

This vital role in the viral life cycle has made it a major target for drug design, with

ten protease inhibitors currently approved by the FDA (http://www.fda.gov). These

drugs all act competitively with the natural gag-pol substrate and, as a consequence of

their common peptomimetic design, mutations which confer resistance to one often also

have lowered susceptibility to several others. This phenomena is known as multi-drug

resistance.

Recently, strains of HIV-1 which are resistant to all available FDA approved protease

inhibitors have emerged. The main mutations implicated in conferring this resistance

occur at the following residues 10, 46, 54, 82, 84 and 90 [354]. The most common

mutations seen in patients are L10I, M46I, I54V, V82A, I84V and L90M and it is these

that we will focus upon in this study. These mutations are not clustered in particular

parts of the protease structure but spread throughout the enzyme (Figure 5.1). The set

of mutations can be split into pairs according to where in the tertiary structure of the

http://www.fda.gov
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protease they occur; residues 10 and 90 appear in the dimer interface, 46 and 54 in the

flaps and 82 and 84 in the wall turn which flanks the active site. Four of these residues

lie in locations which are close to the active site (46, 54, 82 and 84) and are hence likely

to directly affect ligand binding: the remaining pair (10 and 90) can only affect binding

indirectly.

Table 5.1: Two letter codes and sequence composition for the protease sequences in-
vestigated.

Code Description Mutations
WT Wildtype HXB2
HM MDR hexa-mutant L10I, M46I, I54V, V82A, I84V, L90M
QM MDR quatro-mutant M46I, I54V, V82A, I84V
AS Active site mutant V82A, I84V
FL Flap mutant M46I, I54V
DM Dimer interface mutant L10I, L90M

Experiments carried out by Ohtaka et al. [92], on all of the FDA approved inhibitors,

investigated these pairs of similarly located mutations and their combined affect upon

binding affinities. In this study, the pairs and combinations thereof have been labeled

with two letter codes which are shown in Table 5.1 and this nomenclature will be used

for the remainder of this thesis. The group of six sequences will be referred to as the

MDR Test Set.

The results for lopinavir are summarised in Table 5.2. The greater the affinity between

protein and ligand the more negative the binding free energy difference. A useful term

to be introduced here is the relative binding free energy, ∆∆G, which is defined as

∆∆G = ∆Gsystem −∆Gref , (5.1)

where ∆Gsystem and ∆Gref are the binding affinities of the system of interest and

a reference system respectively. In this case, the reference system is the values for

wildtype; elsewhere in this chapter differences between experimental and theoretical

values are expressed in this way.

Experimentally the DM and FL pairs exhibit only minor reductions in binding affinity,

0.2 kcal mol−1 in magnitude, whereas the AS mutant shows a considerably greater

change of 1.2 kcal mol−1. When combined in the QM and HM mutants the reduction in

affinity is superadditive, resulting in binding affinity changes of 3.3 and 3.8 kcal mol−1

respectively, indicating cooperative interactions between the mutational pairs. The aim

of this study is to reproduce the relative ranking of these resistant mutant genotypes from

molecular dynamics simulations, analysed using MMPBSA and normal mode analysis

to calculate binding free energies.
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Table 5.2: Experimental free energy values (and differences compared to wildtype) for
all protease sequences studied here, taken from Ohtaka et al. [92] with errors shown in
brackets. All values are in kcal mol−1.

Sequence ∆Gexpt ∆∆G
WT -15.1(0.09) -
HM -11.3(0.08) 3.8(0.17)
QM -12.8(0.04) 3.3(0.13)
AS -13.9(0.10) 1.2(0.19)
FL -14.9(0.09) 0.2(0.18)
DM -14.9(0.05) 0.2(0.14)

5.2 Methods

The first step towards the aim of reproducing the experimental binding affinity ranking

obtained by Ohtaka et al. [92], using fully atomistic molecular dynamics simulations, is

to establish a methodology which achieves sufficient phase space sampling to produce

converged the binding affinities. In order to investigate how the relevant regions of phase

space might most efficiently be sampled two simulations strategies were employed: (i)

single simulations generating 50 ns of production trajectory and (ii) ensembles of 50

simulations of shorter duration. Individual simulations in both cases were conducted

using the protocol established in a previous study of HIV-1 protease binding to the in-

hibitor saquinavir [288], with the sole source of initial variation between replicas within

an ensemble being the randomly seeded velocity distribution assigned to the atoms of

the system. The protocol involves the in silico incorporation of the mutations into a

wildtype crystal structure before using them as the basis for molecular dynamics simu-

lations. The simulation runs are divided into an equilibration phase during which the

model is restrained and heated to physiological temperatures followed by an unrestrained

production run. The production run is then analysed using the MMPBSA and normal

mode methodology to provide binding free energies. Much of this process has now been

automated in a tool called Binding Affinity Calculator (BAC) [355] which is described

in detail in Appendix A.

5.2.1 Model Preparation

The 1MUI crystal structure [356] was used as the basis of all the models of protease

bound to lopinavir created in this study. In order to distinguish the residues of the

two identical monomers that form the HIV-1 protease homodimer, the two chains are

numbered from 1 to 99 and 101 to 199 respectively. The monomer with the lower indices,

labelled chain A in the PDB, contains the P1 and P2′ subsites whilst the monomer

containing the higher indexed residues contains P2′ and P1, and is labelled chain B
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Figure 5.2: Chemical structures of the HIV-1 protease inhibitors (a) lopinavir (LPV),
(b) ritonavir (RTV) and (c) saquinavir (SAQ). The structures of LPV and RTV bind
to the protease with similar moieties occupying each of the protease subsites (dotted
lines surrounding sections of each drug indicate the sections which interact with each
subsite). This is unsurprising as LPV was originally designed as a refinement of RTV
[260].

in the PDB (protease subsites were discussed in Chapter 4). The mutant protease

models were derived from the 1MUI structure using the mutational protocol of the

VMD [315] visualisation package, which was also used to insert the hydrogen atoms not

contained in the crystal structure. Each dimeric mutation corresponds to two amino

acid substitutions, one on each monomer. In addition to the substitutions required

to recreate the mutant sequences under study, the mutation S37N was incorporated

into all of the models in order that the model sequence matches the canonical HXB2

subtype B sequence (Genbank accession number K03455) used by Ohtaka et al. [92].

Inserting mutations into the structure is not expected to disrupt the protease structure

as comparisons of crystal structures indicate that the tertiary structure of the enzyme

is stable despite considerable variation in the amino acid sequence [224]. The wildtype

system bound to saquinavir was created from the 1FB7 crystal structure [278] using the

same method but requires the additional mutations V3I, V48G and M90L to recreate

the HXB2 sequence.

Uniquely among crystal structures of the HIV-1 protease bound to peptomimetic in-

hibitors, 1MUI does not contain a water molecule bound between the drug and flap

residues 50 and 150 (this molecule is conventionally labelled WAT301). In order to

investigate whether this was an artifact of the crystal structure or an important distin-

guishing feature of lopinavir, two sets of simulations were conducted: the first used the

unprocessed 1MUI structure lacking an active site water molecule; in the second a water

molecule was inserted into the WAT301 position. The precise location of water insertion

was determined by superimposing the 1MUI structure onto that of 1HXW, which con-

tains the inhibitor ritonavir (RTV), and copying the location of WAT301. The 1HXW

structure was chosen as ritonavir has a similar structure and chemical composition to

lopinavir and exhibits a similar binding mode, with analogous moieties in each of the

protease subsites (see Figure 5.2). The two structures have very similar conformations,

with all atom and backbone RMSDs of 1.47 Å and 0.69 Å respectively (Figure 5.3 shows
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Figure 5.3: Superimposition of the backbones of the 1MUI (displayed in white) and
1HXW (shown in red) HIV-1 protease crystal structures. Minimal deviation is observed
between the structures (the backbones of which have an RMSD of 0.69 Å). The active
site water molecule (WAT301) of the ritonavir bound 1HXW is highlighted in blue.

Figure 5.4: Conformation of the active site of the 1MUI crystal structure after minimi-
sation with a water molecule inserted between the bound inhibitor, lopinavir (LPV),
and the protease flaps. A water molecule, tetrahedrally hydrogen bonded to the in-
hibitor and residues 50 and 150, is present in this position (referred to as WAT301) in
all other crystal structures of peptomimetic inhibitors bound to the HIV-1 protease.
The green lines indicate the positions of putative hydrogen bonds between the water
molecule and lopinavir, and the backbone nitrogens of I50 and I150 (these are analogous
to those found in other inhibitor bound HIV-1 protease crystal structures).

a superimposition of the two structures where the only significant deviation is in the

ear region of the first monomer). Figure 5.4 shows the final positioning of WAT301

in the 1MUI structure indicating that the putative hydrogen bonds between the water

molecule and the inhibitor, and the backbone nitrogens of I50 and I150 observed in

crystal structures of other drugs, are reproduced.

The drug coordinates were extracted from the crystal structure and missing hydrogens
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incorporated using the PRODRG tool1 [357]. The resultant structure was then opti-

mised employing Gaussian 98 [358] using the Hartree-Fock method and 6-31G** basis

functions. The partial atomic charges were then assigned using the Restrained Electro-

static Potential (RESP) procedure, which is part of the AMBER 9 package [70]. The

forcefield parameters were described using the General Amber Force Field (GAFF) [53].

The processed inhibitor and mutated protease structures were recombined using the Leap

module from the AMBER 9 suite of programs. The system was then solvated by placing

it in a cubic box of TIP3P [359] water molecules with at least 14 Å surrounding the

complex at all points. Cl− counter ions were added to neutralise the system. The protein

potential parameters were taken from the standard AMBER forcefield for bioorganic

systems (ff03) [360].

5.2.2 Minimisation and Equilibration Protocol

The molecular dynamics package NAMD2 [50] was used throughout the minimisation,

equilibration and production phases of the simulations. The minimisation phase was

conduced using the conjugate gradient algorithm in NAMD2 for 2000 iterations with all

heavy atoms (of both protease and lopinavir) restrained using a force constant of 4 kcal

mol−1Å−2.

The equilibration protocol used was the same as that employed in Stoica et al. [288]

(which was itself adapted from that used by Perryman et al. [215]). Non-bonded inter-

actions were cut off at 12 Å and long range Coulomb interactions were handled using

the Particle Mesh Ewald (PME) method. In order to obtain an integration timestep

of 2 fs the SHAKE algorithm was applied to all atoms covalently bonded to hydrogen

atoms in both the equilibration and production simulations.

Each system was heated from 50 to 300 K over 50 ps and then maintained at a tempera-

ture of 300 K using a Langevin thermostat, with a 5 ps−1 coupling constant, for the rest

of the equilibration and production phases. Once the system had been heated to the

correct temperature in all subsequent simulation steps a Berensen barostat [59], with a

target pressure of 1 bar and a pressure coupling constant of 0.1 ps, was applied to the

system. This resulted in the system sampling an isothermal isobaric (NPT) ensemble.

The restraining forces were applied for a further 200 ps in order to avoid premature flap

collapse, as has been reported elsewhere [361].

The next stage of the equilibration process is a mutational relaxation protocol in which

each mutated residue and residues within 5 Å are released in turn from the restraints for

1PRODRG: davapc1.bioch.dundee.ac.uk/prodrg

davapc1.bioch.dundee.ac.uk/prodrg
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50 ps. This should allow the residues to reorientate into more favourable conformations

if necessary. After the 50 ps relaxation period the restraints are reapplied to each region.

The final equilibration stage is the gradual reduction of the restraining force on the

ligand from 4 to 0 kcal mol−1Å−2 during a 200 ps period. The restraints on the protease

were then reduced from 4 to 1 kcal mol−1Å−2 over 150 ps. In both cases the force was

reduced in equal steps of 1 kcal mol−1Å−2. Following this all restraints were removed

and the system allowed to evolve freely. The entire equilibration stage was designed to

take 2 ns for all systems meaning that this final stage varied in length according to the

number of mutations which required relaxation in the previous stages.

5.2.3 Production Simulations

In both sampling strategies, the equilibrated systems were maintained in the same

isothermal isobaric ensemble defined for the final equilibration stage. Ensemble sim-

ulations were initially extended for 1 ns whilst those for the single trajectory strategy

had a total duration of 50 ns. In all simulations snapshots of the system coordinates

were output every 10 ps for analysis. Henceforth simulation durations will always refer

to the length of the production phase alone, as the equilibration phase is equivalent for

all runs. The simulations described in this chapter were performed on the Ranger and

Kraken machines on the US Teragrid achieving a simulation rate of approximately 4

h/ns on 64 Opteron cores/replica.

5.2.4 Data Analysis

The use of the MMPBSA and normal mode methodologies to calculate binding free

energies was described in detail in Chapter 3. Equation 5.2 shows how the enthalpically

dominated MMPBSA estimation of the Gibbs free energy (∆GMMPBSA) is combined

with a normal mode assessment of the configurational entropy (−T∆SNM) to produce

an overall value for the free energy of binding (∆Gtheor).

∆Gtheor = ∆GMMPBSA − T∆SNM . (5.2)

In the following sections we describe the specific implementation and parameters used

during this study.
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5.2.4.1 MMPBSA Calculations

The MMPBSA estimate of the free energy is given by

∆GMMPBSA = ∆GMM
vdW + ∆GMM

ele + ∆Gsolpol + ∆Gsolnonpol (5.3)

where ∆GMM
vdW and ∆GMM

ele represent the decomposition of the molecular mechanics

free energy difference into van der Waals and electrostatic components, and ∆Gsolpol and

∆Gsolnonpol the polar and non polar contributions to the solvation free energy difference,

respectively. Modules of the AMBER 9 package [70] were used in the evaluation of

all components of the MMPBSA calculation. The SANDER module was employed to

calculate both molecular mechanics terms (∆GMM
vdW and ∆GMM

ele ), with no cut off being

applied to the non-bonded energies. The electrostatic free energy of solvation, ∆Gsolpol,

was calculated by the PBSA module. Internal and external dielectric constants were of

1 and 80 were used respectively. A thousand iterations of the linear Poisson-Boltzmann

equation were performed on a cubic lattice grid with a spacing of 0.5 Å. The non-

polar solvation energy, ∆Gsolnonpol, was calculated from the solvent accessible solvent area

(SASA) using the MSMS program [132] with a 1.4 Å radius probe. The surface tension

(γ) and offset (b) were set to the standard values of 0.0052 kcal mol−1 and 0.92 kcal

mol−1, respectively.

Every output snapshot was post-processed using MMPBSA, meaning that a hundred

sets of coordinates were analysed for each nanosecond of simulation. Thus both the 1

× 50 ns single trajectory and 50 × 1 ns ensemble strategies generated a total of 5000

measurements of ∆GMMPBSA.

5.2.4.2 Normal Mode Calculations

The changes in configurational entropy, ∆S, were evaluated by normal mode analysis

performed using the AMBER NMODE module. In order to ensure that the protease

structure used in the calculation is within an energetic minimum, each snapshot was

subjected to a minimisation with a distance dependent dielectric constant ε = 4r and

a RMS gradient convergence tolerance of 10−4 kcal mol−1Å−1. Every twentieth output

snapshot was post processed using normal mode analysis, meaning that 5 sets of coordi-

nates were analysed for each nanosecond of simulation. Thus both the 1 × 50 ns single

trajectory and 50 × 1 ns ensemble strategies generated a total of 250 measurements of

−T∆SNM .
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5.2.4.3 Convergence Analysis

The convergence of the free energy calculations is a vital property which requires consid-

eration when comparing the two simulation strategies under investigation. Assessment

of convergence was performed using two primary methods, the assessment of the extent

to which the data sets could be described as having a Gaussian distribution and the

root mean squared difference between forward (< ∆X >forτ ) and reverse (< ∆X >revτ )

cumulative means. This metric as a function of the snapshot number, ε, was designated

σ(ε) and was calculated such that:

∆∆Xτ =< ∆X >forτ − < ∆X >revτ =
1

τ

[
τ∑
i=1

∆Xi −
N∑

i=N+τ+1

∆Xi

]
(5.4)

where X denotes either ∆GMMPBSAor −T∆SNM , i is the i, τ the number of snapshots

over which the mean was evaluated, N the total number of snapshots available in the

trajectory for analysis and ∆∆Xτ the instantaneous difference, giving:

σ(ε) =

√√√√ 1

ω

ε−1+ω∑
j=ε

∆∆X2
j (5.5)

where ω is the number of snapshots over which the RMS difference was calculated. The

value of ω was set to represent the number of snapshots analysed per nanosecond; 100

for the MMPBSA calculation and 5 for the normal mode analysis. The value of σ(N/2),

representing a comparison of the first and second halves of the trajectory, utilises the

maximum possible sample size for non-overlapping datasets. Beyond this value σ(ε)

will decay to zero at the point of equivalence of the forward and reverse trajectories

by definition. With this consideration in mind, σ(ε) was only calculated up to the mid

point of the trajectory.

The Gaussian nature of the measurements was assessed by comparing the data produced

from the simulation analysis with an expected normal distribution, centred on the same

mean and of the same standard deviation.

5.2.5 Model Finalisation

The choice of initial model required two further decisions to be made. Firstly, the

necessity and desirability of inserting a water molecule in position WAT301, between

the flaps and the inhibitor lopinavir, in the active site of the 1MUI crystal structure
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Table 5.3: The number of replicas in 10 member ensembles for which water molecules
have entered the initially unoccupied WAT301 position by the end of the equilibration
and production phases of simulation. Results are shown for each of the four possible
protonation states of the HIV-1 catalytic dyad. The production phase in each case
lasted for 4 ns and in all systems, once a water molecule entered the WAT301 position,
it persisted there until the end of the simulation.

No. Replicas Containing WAT301
Protonation State Equilibration Simulation
D25 4 4
D125 1 2
D25/D125 1 2
D- 3 6

was assessed and secondly, the protonation state of the catalytic aspartic acid dyad was

determined.

In the following discussions the protonation states of the catalytic aspartic acid dyad are

denoted as the dianionic (D-), diprotonated (D25/D125), position 25 protonated (D25)

and position 125 protonated (D125) states.

5.2.5.1 Active Site Water Insertion

In order to ascertain whether the initial system studied should contain a water molecule

placed at the WAT301 position, ensemble simulations containing ten replicas were per-

formed for all four possible protonation states of the HIV-1 protease catalytic aspartic

acid dyad both with and without this additional water molecule. Each replica was run

for 4 ns of production simulation in addition to the 2 ns of equilibration detailed above.

Table 5.3 shows the frequency of water entering position WAT301 in the ensembles

containing no water when intialised. For all protonation states in at least two of the

ten replicas water was observed moving to occupy the WAT301 locality and once this

had occurred, in all instances, it persisted until the end of the production phase.2 For

those systems where a water molecule was inserted into the WAT301 locus prior to the

execution of molecular dynamics it was observed to remain for the full simulation du-

ration. Due to the unpredictable length of time taken for water to enter the active site

it was decided that for the rest of the study the systems used would be based upon the

structures with an inserted water molecule in the WAT301 position.

2Once the protonation state was determined a D25 protonated system was extended to 27 ns of
production simulation. A water molecule entered the WAT301 position around 7 ns into the production
phase and persisted for the remainder of the run.
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5.2.5.2 Protonation State Assignment

As discussed in Chapter 4, the question of which protonation state of the catalytic

aspartic acid dyad is favoured in physiological conditions remains an open one, but the

answer is believed to be an important factor in accurately determining binding affinities

[362] and to vary depending upon the particular ligand to which the protease is bound

[247–250].

Table 5.4: Assessment of protonation state performed on the lopinavir bound wildtype
HIV-1 protease.

Protonation State ∆GMMPBSA −T∆SNM ∆Gtheor

D25 -47.70 (0.05) 37.29 (0.79) -10.41 (0.84)
D125 -46.13 (0.05) 38.92 (0.80) -7.21 (0.85)
D25/D125 -47.67 (0.05) 39.85 (0.83) -7.82 (0.88)
D- -32.15 (0.11) 38.23 (1.23) 6.08 (1.34)
Mean energies are in kcal/mol. Standard errors are shown in parentheses.

In order to determine the protonation state to be used for the rest of the study, the

MMPBSA and normal mode methodology was applied to wildtype systems in all four

possible protonation states of the catalytic dyad. Ensembles of twenty replicas were run

for each system (except for D- for which only ten were performed due to the consistently

positive ∆Gtheor values obtained). The computed binding affinities along with the de-

composed enthalpic and entropic contributions are presented in Table 5.4. The D25

protonated system is observed to have the most attractive binding affinity, ∆Gtheor, by

over 2.5 kcal mol−1. The D25 state is substantially favoured over the other monoproto-

nated state both by the total binding affinity but also by the enthalpically dominated

∆GMMPBSA. The D25 and D25/D125 systems exhibit much closer ∆GMMPBSA values

but the level of separation between them in ∆Gtheor allows the confident selection of D25

as the protonation state to be used in the rest of the study (we will assume this to be

invariant for all the mutant systems under investigation). This determination is in line

with a number of other experimental and theoretical studies of HIV-1 protease-inhibitor

complexes [246, 247, 363, 364] which find the catalytic dyad to be monoprotonated and

in particular with the findings of Wittayanarakul et al. [362] and Ode et al. [365] for

lopinavir which both suggest a D25 protonation state.

It should be noted that this analysis of the protonation state takes no account of the

possibility of the protonation state of the protease altering during binding. Wittaya-

narakul et al. [362] noted that this omission affects all the comparisons between the

systems except that between the two monoprotonated systems.
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5.3 Comparison of Single Trajectory and Ensemble Simu-

lation Strategies

Key to the calculation of meaningful free energies is the need to obtain sufficient sampling

and the assessment of the convergence of the values computed. The aim of this study

is to investigate the sampling and convergence properties of the single trajectory and

ensemble simulation strategies for computing binding free energies with the combined

MMPBSA and normal mode methodology. In order to compare the two approaches

protocols were defined for each strategy which produced identical numbers of system

configurations to be analysed. The protocols selected were a single 50 ns simulation

(henceforth referred to as the 1 × 50) and 50 replica simulations each of 1 ns duration

(labelled 50 × 1 ns). Both strategies produced 50 ns of production trajectory for each

system run, containing 5000 snapshots. All of these snapshots were analysed using

MMPBSA with 250 additionally processed using normal mode analysis.

5.3.1 Sampling and Convergence

The normalised frequency distributions of both the enthalpically dominated MMPBSA

values, ∆GMMPBSA, and configurational entropies, −T∆SNM , are shown in Figure 5.5 for

all systems in the MDR Test Set using both sampling strategies. Most of the systems for

both the 1 × 50 ns and 50 × 1 ns strategies exhibit approximately normal distributions

of the ∆GMMPBSA values. However, the AS and QM in the 1 × 50 ns data set are

significant exceptions. The distributions for both of these systems show multiple peaks,

for AS these are located at approximately -45 and -37 kcal mol−1 and for QM close to

-26 and -28 kcal mol−1. These divergences from normality indicate that the simulations

are visiting at least two specific energy minima but sampling them inadequately. The

lack of such deviations in the 50 × 1 ns data set indicates that the minima visited by

these simulations are well sampled. The sampling of the configurational entropy shows

greater similarity between the two strategies (see Figure 5.5b). The distributions are

shallower than those seen for the MMPBSA calculations and range between 0 and 80

kcal mol−1 in all systems. The approximation to a normal distribution is less convincing

than in the ∆GMMPBSA case for both the 1 × 50 ns and 50 × 1 ns strategies. A number

of points fall substantially above or below the expected normal distribution curve, with

several systems showing significant variation between the mean and modal averages. A

plausible explanation of this is that it is indicative of the entropy values being derived

from a reduced subset of specific minima which have varying levels of accessibility for

each system.



Chapter 5. Protease Multi-drug Resistance 115

0
0.02
0.04
0.06
0.08

0
0.02
0.04
0.06
0.08

0
0.02
0.04
0.06
0.08

N
or

m
al

is
ed

F
re

q
u

en
cy

D
is

tr
ib

u
ti

o
n

F
u

n
ct

io
n

0
0.02
0.04
0.06
0.08

0
0.02
0.04
0.06
0.08

0
0.02
0.04
0.06
0.08

-60 -50 -40 -30 -20

∆GMMPBSA (kcal mol−1)

0
0.01
0.02
0.03
0.04

0
0.01
0.02
0.03
0.04

0
0.01
0.02
0.03
0.04

0
0.01
0.02
0.03
0.04

0
0.01
0.02
0.03
0.04

0 10 20 30 40 50 60 70

0
0.01
0.02
0.03
0.04

−T∆SNM (kcal mol−1)

WT

DM

FL

AS

QM

HM

(a) (b)

Figure 5.5: Normalised frequency distribution analysis of (a) the mainly enthalpic
,∆GMMPBSA, and (b) the entropic, −T∆SNM , components of the binding free energy for
the 1 × 50 ns (red triangles) and 50 × 1 ns trajectories (blue circles) for each system
in the MDR Test Set. The expected normal distribution given the same mean and
standard deviation for each data set is shown by the red and blue lines, respectively.

The sampling achieved by the two strategies is also differentiated by the convergence

analysis performed here. The RMS difference in cumulative means for the MMPBSA

component, σMMPBSA, in particular shows the 50 × 1 ns ensembles to be achieving much

higher levels of internal consistency that 1 × 50 ns simulations. Figure 5.6a shows the

σMMPBSA value to be greater than 2 kcal mol−1 at 25 ns for all the 50 × 1 ns systems

(with the DM and AS sequences particularly poorly converged with values of 5 and 9 kcal

mol−1, respectively). In contrast all of the systems in the 50 × 1 ns data set converge

to within 1.5 kcal mol−1, with four (WT, FL, AS and QM) below 0.5 kcal mol−1.

The consistently low values of σMMPBSA(ε) seen for the 50 × 1 ns systems indicates

that statistically relevant sampling of different minima is being achieved independent of

which set of replicas are used. The differences seen in the values of σNM(ε) derived from

the measurements of the entropic component of the binding free energy show much less

marked differences between the two strategies (see Figure 5.6b). With the exception of

the DM and HM sequences in the 1 × 50 ns data set (which fall to approximately 6 and

4 kcal mol−1 respectively) all systems are seen to converge to within 2 kcal mol−1 at 25

ns.
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Figure 5.6: RMS difference in cumulative means, σ(ε), of (a) the mainly enthalpic
,∆GMMPBSA, and (b) the entropic, −T∆SNM , components of the binding free energy
for the 1 × 50 ns trajectory (red lines) and 50 × 1 ns concatenated trajectories (blue
lines).

5.3.2 Absolute and Relative Binding Free Energy Rankings

Table 5.5 shows the means computed for all six mutants within the MDR Test Set using

both simulation strategies. The absolute binding affinity, ∆Gtheor, values calculated

from the 1 × 50 ns simulations show poor agreement with the experimental results, with

a RMS ∆∆Gtheor−expt of 11.42 kcal mol−1 and individual sequence deviations varying

by up to 18 kcal mol−1. The positive binding affinity observed for the QM system in

particular stands out as particularly difficult to explain. The binding affinities for the 50

× 1 ns also show a significant RMS ∆∆Gtheor−expt of 5.11 kcal mol−1 but the range of

deviation is much smaller at 4.30 kcal mol−1. In only one case (the WT sequence) does

the 1 × 50 ns approach produce a result closer to the experimentally derived binding

free energy than that from the 50 × 1 ns strategy. Neither strategy reproduces even

the correct relative ranking order of the sequences The 1 × 50 ns results having the

HM system less resistant than the FL (which was experimentally barely distinguishable

from WT) and the QM system as by far the most resistant. The 50 × 1 ns data set

has the DM as slightly more attractive that WT (although the separation is much less

than the standard error) and reverses the ordering of the AS and QM sequences. This

failure is reflected in the low correlation coefficients, κ, of the ∆Gtheor values relative to

experiment (0.56 and 0.55 for the 1× 50 ns and 50× 1 ns datasets, respectively). Despite
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these observations the 50 × 1 ns dataset exhibits separation between the susceptible WT,

DM and FL systems and the highly resistant AS, QM and HM sequences.

Further to this, limited, ability to distinguish resistant mutants using ∆Gtheor the 50 × 1

ns ensemble exhibits a very strong correlation (having a κ of 0.98) between enthalpically

dominated ∆GMMPBSA values and the experimental results. This indicates that using

the ∆GMMPBSA values alone, at least in the ensemble strategy, is a viable approach if

all that is required is reproduction of the relative ranking of sequences.

Table 5.5: Computed free energy differences of binding (∆Gtheor) compared with ex-
perimental results (∆Gexp) for all six HIV-1 protease sequences in the MDR Test Set
with LPV using both 1 × 50 ns single-trajectory, 50 × 1 ns ensemble strategies. The
enthalpically dominated MMPBSA and the normal mode entropic components are also
shown. Correlation coefficients, κ, are provided for each theoretically computed dataset
compared to the experimental data.

Sequence ∆GMMPBSA −T∆SNM ∆Gtheor ∆G∗exp ∆∆G∗theor−exp
Single Trajectory (1 × 50 ns)

WT -49.72 (0.07) 35.85 (1.01) -13.87 (1.08) -15.1 (0.09) 1.23 (1.17)
HM -38.52 (0.10) 35.20 (1.10) -3.32 (1.10) -11.3 (0.08) 7.98 (1.18)
QM -28.71 (0.10) 35.86 (1.20) -7.15 (1.30) -12.8 (0.04) 19.95 (1.34)
AS -38.91 (0.10) 37.17 (1.06) -1.74 (1.16) -13.9 (0.10) 12.16 (1.26)
FL -39.41 (0.09) 37.35 (1.04) -2.06 (1.13) -14.9 (0.09) 12.84 (1.22)
DM -46.70 (0.08) 34.28 (1.11) -12.47 (1.19) -14.9 (0.05) 2.43 (1.24)
κ 0.62 0.56

Ensemble (50 × 1 ns)
WT -47.79 (0.06) 37.12 (1.00) -10.67 (1.06) -15.1 (0.09) 4.43 (1.15)
HM -43.63 (0.10) 34.95 (0.98) -8.68 (1.08) -11.3 (0.08) 2.62 (1.16)
QM -44.40 (0.10) 37.33 (1.01) -7.07 (1.11) -12.8 (0.04) 5.73 (1.15)
AS -46.15 (0.08) 39.17 (1.01) -6.98 (1.09) -13.9 (0.10) 6.92 (1.19)
FL -47.95 (0.07) 38.74 (1.08) -9.21 (1.15) -14.9 (0.09) 5.69 (1.24)
DM -47.62 (0.07) 36.87 (1.06) -10.75 (1.13) -14.9 (0.05) 4.15 (1.18)
κ 0.98 0.55
∗Experimental results are taken from Ohtaka et al. [92].
Mean energies are in kcal mol−1. Standard errors are shown in parentheses.

5.3.3 Structural and Energetic Sampling

The root mean square deviation (RMSD) of the HIV-1 backbone provides a measure

of the gross structural changes which each simulation undergoes. Figure 5.7 shows

the backbone RMSD compared to the average structure over the trajectories for each

sequence. The values for all systems under study in both the 1 × 50 ns and the 50 × 1

ns data sets exhibit stable behaviour fluctuating around 1.5 Å. This measure indicates

none of the systems, simulated using either strategy, undergoes significant structural

rearrangement during the production phase of the simulation. In the ensemble case this

is also indicative that all of the replicas remain close to the initial crystal structure. The

RMSD can say nothing, however, about motions on the scale of individual residues (such
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(Å

)

0.5
1.5
2.5
3.5

0.5
1.5
2.5
3.5

0.5
1.5
2.5
3.5

5 10 15 20 25 30 35 40 45
Time (ns)

0.5
1.5
2.5
3.5

0.5
1.5
2.5
3.5

0.5
1.5
2.5
3.5

0.5
1.5
2.5
3.5

0.5
1.5
2.5
3.5

5 10 15 20 25 30 35 40 45

0.5
1.5
2.5
3.5

Time (ns)

WT

DM

FL

AS

QM

HM

(a) (b)

Figure 5.7: The RMS fluctuations of the backbone of all six sequences in the MDR Test
Set compared to the average structure for the trajectories produced by both (a) 1 × 50
ns and (b) 50 × 1 ns strategies.

as the exploration of different rotamers) which are likely to be important in determining

the binding free energies. A comparison with the binding affinities shown in Figure 5.8

indicates that changes in the binding affinity occur without the need for gross structural

changes.

Clear differences in the energetic sampling between the two strategies can be seen.

Figure 5.8 shows running averages of the ∆GMMPBSA values for both strategies, with

both exhibiting a wide range of free energies. The 1 × 50 ns track however shows

long periods of sampling around a single energy level potentially indicating that the

simulations become trapped in local minima. This phenomena is most easily observed

in the AS and QM systems. The more extreme values seen in the ensemble strategy

are only seen as brief peaks and troughs. Each individual member of the ensembles in

the 50 × 1 ns strategy may similarly become trapped and sample only a small region of

phase space but the randomised initial velocities makes the sampling of a larger number

minima more probable. Whilst it is likely that the same arguments can be applied to

measurements of the configurational entropy the large variability of individual normal

mode measurements make the effect less apparent. The 1 × 50 ns −T∆SNM values

in Figure 5.9 do not show the clustering apparent in the single trajectory ∆GMMPBSA

values.

The differences in sampling seen between the two strategies is consistent with the widely
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Figure 5.8: Convergence of the enthalpically dominated ∆GMMPBSAcomponent of the
binding free energy difference for (a) 1 × 50 ns and (b) the 50 × 1 ns strategies.
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Table 5.6: The population density of catalytic water occupancy (ρ) in the 50 × 1 ns
simulations of all sequences in the MDR Test Set.

Sequence ρ

WT 0.011
HM 0.382
QM 0.319
AS 0.131
FL 0.019
DM 0.010

believed picture of the protein-ligand free energy landscape being rugged with many low

energy minima separated from one another by high energy barriers. It is the potential to

visit a large number of these minima which motivates the use of ensembles of simulations.

The MMPBSA method is an end point approach and hence the only area of phase space

which it is relevant to sample is that where the complex is well defined. In a previous

study the inhibitor saquinavir bound to a mutant HIV-1 protease was seen to exhibit

structural drift on a multi-nanosecond timescale. It is thus reasonable to conclude that

for simulations on this timescale conformations that form part of the exit pathway of

the drug may be sampled. MMPBSA analysis of such conformations in the intermediate

region of phase space between the free and bound states should be avoided. The use of

shorter simulation timescales in ensembles serves to limit the structural drift whilst also

enhancing the energetic sampling.

A recent accelerated dynamics study of HIV-1 protease bound to a short section of its

natural polypeptide substrate by Pietrucci et al. [366] indicates that a number of inter-

converting states exist around that seen in the ligand bound crystal structure. One of

the defining features differentiating these states is the number of water molecules that

enter into two separate locations in the active site; the catalytic cavity (between the

ligand and the catalytic dyad) and the area around WAT301 (between the ligand and

the protease flaps). The presence of water molecules in the latter position is generally

associated by Pietrucci et al. [366] with states further along the exit pathway. To investi-

gate whether these states were sampled in the simulations presented here the number of

water molecules in each location was counted for each snapshot in all simulations. Water

molecules within 3 Å of the D25/D125 dyad were counted as within the catalytic cavity,

the criteria for those counted as between drug and flaps was within 7 Å of the central

carbon of lopinavir and within 5 Å of residues 50 or 150. In the 50 × 1 ns data set no

water molecules (other than that inserted pre-simulation in position WAT301) appear

in the region between lopinavir and the flaps. Water entry into the catalytic cavity is

also infrequent, although it is much more common in the resistant than the susceptible

sequences (see Table 5.6). In the 1 × 50 ns data set water entry into both locations
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Figure 5.10: The number of water molecules entering the active site during the 1 × 50
ns separated into those which (a) enter within 3 Å of the catalytic dyad and (b) those
that enter between the protease flaps and the bound lopinavir. The criteria for the
second location was that the molecules were within 7 Å of the oxygen bound carbon
of the lopinavir hydroxyethylene moiety and within 5 Å of residues 50 and 150 in the
protease flaps.

is observed in several system. The sequences differ in the number of water molecules

entering each location and in the duration of their stay once present. Figure 5.10 shows

the number of water molecules occupying each location over the course of each 50 ns

simulation. The frequent discontinuities in the lines represent the dynamic nature of

the configurations, which often change as confined water molecules exchange with those

in the free solvent. The QM system, which exhibits the largest deviation between ex-

perimental and theoretical binding affinities, shows large numbers of water molecules in

both locations. This suggests that when water molecules are present both above and

below the inhibitor the simulation is moving into regions of phase space in which the

MMPBSA methodology may not be applicable. Similar, if less pronounced, effects can

be observed in the other highly resistant mutants (AS and HM). In the FL system one

water molecule is present in the catalytic cavity almost constantly between 6 ns and 44

ns into the trajectory. The presence of this water molecule coincides with a reduction

in attractiveness in ∆GMMPBSA (see Figure 5.8a). In this system only fleeting entry of

an extra water molecule around WAT301 is detected. Other than this exception, in all

other systems once water has entered between flap and inhibitor the system remains

in a state with additional water present in this region. The failure to convert back to

the original state in these circumstances contrasts with the situation for the catalytic
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cavity water molecule in FL, where the water molecule returns to the solvent and the

computed ∆GMMPBSA value returns to a similar average value to before water entry.

Water entry into the catalytic cavity is observed in the 50 × 1 ns ensemble simulations

which show strong correlation between ∆GMMPBSAand ∆Gexp but water entry between

flap and inhibitor is not. This suggests that water entry in the former region can be

reasonably modelled within the framework of MMPBSA, whereas the latter is more

problematic. This is in line with the evidence from Pietrucci et al. [366] indicating that

HIV-1 protease-substrate complexes with water molecules beneath the ligand are close in

free energy to the conformation seen in crystal structures without one, and that states

involving water between flaps and substrate are only observed further along the exit

pathway.

5.3.4 Evaluation of Single Trajectory and Ensemble Strategies

Both of the methods employed to investigate the convergence of the free energy calcula-

tions presented here indicate that the 50 × 1 ns strategy performs more comprehensive

sampling of the minima relevant to the MMPBSA calculations than the 1 × 50 ns

approach. Despite the fact that the 1 × 50 ns WT calculation exhibits the smallest de-

viation from the experimental values, none of the systems using this strategy exhibited

convergent ∆GMMPBSA values. This contrasts strongly with the 50 × 1 ns case, where

all systems produced values converged to a state where σMMPBSA was below 1 kcal mol−1

at the trajectory mid point and exhibit sampling of a correct Gaussian distribution. Not

only do the ensemble ∆GMMPBSA values exhibit superior convergence properties to the

single trajectories but they are also much more highly correlated to the experimental

free energy values (with a correlation coefficient, κ, of 0.98 compared to 0.62).

Neither strategy, however, can exhibit satisfactory Gaussian sampling of the configu-

rational entropy (despite convergence of σNM to within 2 kcal mol−1 in the 50 × 1 ns

case). Furthermore, the absolute free energy differences produced by both strategies

are only marginally correlated to the experimental values. A distinction should however

be made between the two strategies as the discrepancy between the experimental and

computed values observed in the 1 × 50 ns data set are highly variable (ranging from

1.23 to 19.95 kcal mol−1), whereas those for the 50 × 1 ns simulations are more tightly

bounded. This makes the existence of a systematic error plausible in the later case but

not the former. The improved sampling observed in the ensemble data can, at least in

part, be attributed to the fact that the initial randomisation of velocities provides access

to a wider range of minima. It is also likely that the shorter simulation length avoids
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structural drift and exploration of configurations on the drug exit pathway for which

the MMPBSA approach is no longer valid.

5.4 Extended Ensemble Evaluation

The superior internal convergence and sampling properties of the 50 × 1 ns strategy

along with the increased level of correlation between the computed ∆GMMPBSA values

and experiment provided compelling reasons to investigate the effect on the calculations

of extending the ensemble runs. In order to do this each of the 50 replicas were ex-

tended to 4 ns in duration. This simulation length was chosen as being short enough to

minimise the probability of additional water molecules entering the active site between

the inhibitor and the protease flaps. This was observed to occur in the 1 × 50 ns data

set systems most often after 5 ns (see Figure 5.10b) and to lead to the sampling of

conformations that may form part of an exit pathway, where the MMPBSA approach is

no longer valid.

5.4.1 Sampling and Convergence

Figure 5.11a shows that the ∆GMMPBSA values for all systems in the MDR Test Set

using the 50 × 4 ns ensemble provide excellent agreement with the expected Gaussian

distribution. The −T∆SNM values for all sequences exhibit improved correspondence

with the expected normal distributions compared to the 50 × 1 ns data set with modal

values close to the mean in all cases (see Figure 5.11b). Despite this, significant de-

viations suggesting that the measured values remain grouped around distinct peaks.

Considering the level of sampling employed here it is likely that this result is an inher-

ent property of the normal mode methodology. By the mid point of the concatenated

trajectories the σ values for both components are below 0.5 kcal mol−1, with the ex-

ception of the DM sequence MMPBSA result which is nonetheless below 2 kcal mol−1

(see Figure 5.12). These results indicate that the computed free energy differences are

excellently converged and that, at least for ∆GMMPBSA, thorough statistical sampling of

all minima visited during the simulations has been performed. In both the convergence

and sampling, notable improvements have been made over that seen in the 50 × 1 ns

ensemble with greater consistency now seen across the different sequences. In particular

the sampling of the entropic contribution to the binding free energy is considerably en-

hanced even if fully Gaussian sampling is not possible using the approach taken in this

study.
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Figure 5.11: Normalised frequency distribution analysis of (a) the mainly enthalpic ,
∆GMMPBSA, and (b) the entropic, −T∆SNM , components of the binding free energy
for the 50 × 4 ns trajectories (blue circles) for each system in the MDR Test Set. The
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data set is shown by the blue lines.
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Figure 5.12: RMS difference in cumulative means, σ(ε), of (a) the mainly enthalpic,
∆GMMPBSA, and (b) the entropic, −T∆SNM , components of the binding free energy
for the 50 × 4 ns concatenated trajectories.



Chapter 5. Protease Multi-drug Resistance 125

-60
-50
-40
-30

-60
-50
-40
-30

-60
-50
-40
-30

∆
G

M
M

P
B

S
A

(k
ca

l
m

o
l−

1
)

-60
-50
-40
-30

-60
-50
-40
-30

-60
-50
-40
-30

0 20 40 60 80 100 120 140 160 180
Time (ns)

20
30
40
50
60

20
30
40
50
60

20
30
40
50
60

−
T

∆
S

N
M

(k
ca

l
m

o
l−

1
)

20
30
40
50
60

20
30
40
50
60

0 20 40 60 80 100 120 140 160 180

20
30
40
50
60

Time (ns)

WT

DM

FL

AS

QM

HM

(a) (b)

Figure 5.13: Convergence of (a) the enthalpically dominated ∆GMMPBSAand (b) the
entropic −T∆SNMcomponent of the binding free energy difference for the 50 × 4 ns
strategy. Forward and reverse cumulative means are shown in orange and magenta
respectively, 1ns running means are shown in blue.

5.5 Absolute and Relative Binding Free Energy Rankings

The change from single simulation to ensemble simulations brought a marked improve-

ment in both ranking and the consistency of the deviation from experiment, the ex-

tension of the individual replica length within the ensemble produces further, if only

incremental, benefits. This improvement can clearly be seen when the theoretical val-

ues produced by each strategy are plotted against those obtained experimentally (see

Figure 5.14). Unlike those for the shorter 50 × 1 ns ensemble the absolute binding

affinity, ∆Gtheor, values from the 50 × 4 ns dataset reproduce the experimental rank

order of the sequences (see Figure 5.14b and Figure 5.14d), which is reflected in the

improved correlation coefficient, κ, of 0.89 (compared to 0.55). The increase in replica

length has little impact upon the quality of the ∆GMMPBSA rankings (see Figure 5.14a

and Figure 5.14c) and the correlation coefficient is in fact unchanged (at 0.99).

The comparison of the relative binding free energy differences, ∆∆Gtheor, in Figure 5.15

shows how the ranking of each mutant relative to the wildtype calculation has been

improved by the extension of the replicas within the ensemble to 4 ns. The over estimate

of the resistance of the AS, QM and HM seen in the 50 × 1 ns results is reduced and the

DM mutant is now found to be less attractive than WT. Interestingly, this improvement

is due to the enhanced entropic sampling. The ∆GMMPBSA ranking of these mutants
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relative to WT is changed little in the longer ensemble compared to the shorter one. The

relative ranking of each mutant relative to wildtype is now within approximately 1.1 kcal

mol−1 of that seen experimentally for all sequences (except AS where the deviation is

around 1.52 kcal mol−1) with a mean deviation across all systems of 0.9 kcal mol−1 (see

Table 5.8). Despite the improvements bought about by the extension of the ensemble

they do not reproduce the superadditive behaviour seen in the experimental results.

Superadditivity is, however, exhibited by the ∆∆GMMPBSA values. Particular care is

required in interpreting the DM and FL results. In the experimental results both are

just distinguishable from WT (differing by only 0.1 kcal mol−1) and indistinguishable

from one another. The ∆∆GMMPBSA results computed here indicate that both mutants

are very close to the WT value (the DM marginally less attractive, the FL slightly more

attractive). The disparity in the absolute binding affinities indicate that both sequences

are slightly resistant, with The ∆∆Gtheor of approximately 1 kcal mol−1.

Table 5.7: Computed free energy differences of binding (∆Gtheor) compared with ex-
perimental results (∆Gexp) for all six HIV-1 protease sequences in the MDR Test Set
with LPV and for wildtype binding to saquinavir using 50×4 ns ensemble-trajectory
runs. The enthalpically dominated MMPBSA and the normal mode entropic compo-
nents are also shown. Correlation coefficients, κ, are provided for each theoretically
computed data set compared to the experimental data.

Sequence ∆GMMPBSA −T∆SNM ∆Gtheor ∆G∗exp ∆∆G∗theor−exp
Ensemble (50 × 4 ns)

WT -47.68 (0.03) 36.74 (0.49) -10.94 (0.52) -15.1 (0.09) 4.16 (0.61)
HM -42.86 (0.05) 35.45 (0.52) -7.41 (0.57) -11.3 (0.08) 3.89 (0.65)
QM -43.93 (0.05) 36.35 (0.51) -7.58 (0.56) -12.8 (0.04) 5.22 (0.60)
AS -45.75 (0.04) 37.53 (0.54) -8.22 (0.58) -13.9 (0.10) 5.68 (0.68)
FL -48.01 (0.04) 38.08 (0.50) -9.93 (0.54) -14.9 (0.09) 4.97 (0.63)
DM -47.37 (0.03) 37.39 (0.51) -9.98 (0.54) -14.9 (0.05) 4.92 (0.59)
κ 0.98 0.89
SAQ-WT -44.20 (0.04) 36.30 (0.53) -7.90 (0.57) -13.0 (0.04) 5.10 (0.61)
∗Experimental results are taken from Ohtaka et al. [92].
Mean energies are in kcal mol−1. Standard errors are shown in parentheses.

The full details of the binding affinities computed from the 50 × 4 ns ensemble are

shown in Table 5.7. The consistent deviation of approximately 5 kcal mol−1 (the RMS

deviation from the experimental values is reduced from 5.11 to 4.85 kcal mol−1with the

extension of replica length from 1 ns to 4 ns) of all of the ∆Gtheor values from the ex-

perimental values is suggestive of a possible systematic error. The limitations of the end

point approximation underlying the MMPBSA method employed here offer a potential

source of this discrepancy. This description cannot account for changes in the state of

the system upon binding. In the HIV-1 protease system a number of such changes have

been identified, and their free energy contributions evaluated, including the closing of

the flaps upon ligand binding, alteration of the catalytic dyad protonation state and

water mediated interactions. Two studies have investigated the free energy penalty of
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Figure 5.15: Comparison of the theoretical and experimental relative free energy dif-
ferences for both the (a) the overall binding free energies and (b) the enthalpically
dominated free energy calculated using MMPBSA. The values for the 50 × 1 ns and 50
× 4 ns ensembles are shown in light and dark blue respectively with the experimental
results in black.

changing the conformation of the protease flaps from semi-open to closed upon ligand

binding. The earliest of these calculated the free energy difference between these states

from umbrella sampling molecular dynamics simulations using the potential of mean

force [367]. Depending upon the choice of reaction path the penalty was calculated as

2 ± 2, 6 ± 6 or 13 ± 5 kcal mol−1. The later estimate in particular appears phys-

ically unreasonable, as the conformational change of the glycine rich flaps appears to

result in only minor overall reductions of the hydrophobic interactions (the loss of same

monomer interactions in the transition is compensated by increases in those between

the monomers). A more recent calculation, using µs scale ensemble molecular dynam-

ics simulations, estimates the change at a more feasible 2.4 ± 0.4 kcal mol−1[229] in

agreement with the lowest estimate from the earlier study. The protonation state of

the catalytic dyad is believed to be highly dependent on the local chemical environment

[247–250]. At physiological pH the binding of an inhibitor is thought to cause a change

from a dianionic to a monoprotonated state of the catalytic dyad [368]. This change is

believed to elicit a favourable free energy change of 1 to 2 kcal mol−1[362]. A final sig-

nificant contribution comes from the favourable contribution of WAT301 bound between

the inhibitor and flaps. Thermodynamic integration studies of this contribution for a

variety of inhibitors estimate it between 3 to 3.5 kcal mol−1[369, 370] and structural
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refinement based studies suggest it is between 4 and 6 kcal mol−1[371]. The sum of

these terms gives a correction of between 2 and 5.1 kcal mol−1, in good agreement with

the deviation of our results from the experimental values.

5.5.1 Thermodynamic Decomposition

Despite the difficulties in interpreting the results for the mutants with similar binding

affinities to wildtype the fact that the distinction between these sequences and the highly

resistant mutants (AS, QM and HM) is present in both the ∆GMMPBSA and ∆Gtheor

rankings means that decomposition of the former quantity may still offer insight into

the origin of the exhibited resistance. Table 5.9 shows the decomposition of ∆GMMPBSA

into van der Waals (∆GMM
vdw ), electrostatic (∆GMM

ele ), and polar (∆Gsolpol) and non po-

lar (∆Gsolnonpol) solvation terms. Across all sequences a similar breakdown is seen. The

binding is primarily driven by highly favourable van der Waals interactions. This is

supplemented by the much smaller contribution of the non polar solvation and par-

tially compensated by the net electrostatic repulsion (composed of favourable vacuum

electrostatics and an unfavourable polar solvation contribution). All of the highly resis-

tant sequences show a reduction in the attractiveness of the van der Waals component

(with the biggest change being of 2.4 kcal mol−1 in the HM system). This difference is

likely to be predominantly explained by the direct reduction of hydrophobic interactions

caused by the V82A and I84V substitutions common to all three sequences. The net

electrostatic component also becomes more repulsive in the HM and QM systems.

5.5.2 Reproducibility

The subtle differences in the binding affinities of several of the mutants in the MDR

Test Set highlights the importance of assessments of the accuracy in both parts of the

calculation. The convergence analysis already presented can only assess the internal

consistency of the data. Confidence in the comparison of values computed from different

data sets, such as those for different sequences, requires an understanding of the accuracy

of the method employed for a given sample size. In order to gain some quantitative

insight into this, a reproducibility analysis was performed upon the WT and HM systems.

The results of the reproducibility analysis are presented in Table 5.10. In the 50 × 1 ns

ensemble the variance in the MMPBSA derived binding affinity for both the WT and HM

systems was around 5 kcal mol−1, there was a large discrepancy in the reproducibility of

the entropic component however, with a difference of 0.05 for the WT compared to 2.03

for HM. Overall the error in the absolute free energy differences was 0.43 kcal mol−1for

WT and 1.50 kcal mol−1for the HM system. The increase in replica length actually



Chapter 5. Protease Multi-drug Resistance 130

T
ab

le
5.

8:
C

om
p

u
te

d
re

la
ti

ve
b

in
d

in
g

fr
ee

en
er

gy
d

iff
er

en
ce

s
(∆

∆
G
th
e
o
r
)

co
m

p
a
re

d
w

it
h

th
e

ex
p

er
im

en
ta

l
re

su
lt

s
(∆

∆
G
e
x
p
)

fo
r

a
ll

H
IV

-1
p

ro
te

a
se

se
q
u

en
ce

s
in

th
e

M
D

R
T

es
t

S
et

co
m

p
ar

ed
to

w
il

d
ty

p
e,

u
si

n
g

th
e

1
×

5
0

n
s,

5
0
×

1
n

s
a
n

d
5
0
×

4
n

s
d

a
ta

se
ts

.
R

el
a
ti

ve
fr

ee
en

er
g
y

d
iff

er
en

ce
s

fr
om

th
e

en
th

al
p

ic
al

ly
d

om
in

at
ed

M
M

P
B

S
A

ca
lc

u
la

ti
o
n

(∆
∆
G

M
M

P
B

S
A

)
a
n

d
th

e
co

rr
el

a
ti

o
n

co
effi

ci
en

ts
(κ

)
o
f

ea
ch

th
eo

re
ti

ca
l

d
a
ta

se
t

co
m

p
a
re

d
to

ex
p

er
im

en
t

ar
e

al
so

sh
ow

n
.

1
×

5
0

n
s

5
0
×

1
n

s
5
0
×

4
n

s
S

e
q
u

e
n

c
e

∆
∆

G
∗ ex

p
∆

∆
G

M
M

P
B

S
A

∆
∆

G
th

e
o
r

∆
∆

G
M

M
P

B
S
A

∆
∆

G
th

e
o
r

∆
∆

G
M

M
P

B
S
A

∆
∆

G
th

e
o
r

H
M

3.
8

(0
.1

7
)

11
.2

(0
.1

7)
10

.5
5

(2
.1

8)
4.

16
(0

.1
6)

1.
99

(1
.1

8)
4.

82
(0

.0
8)

3.
53

(1
.0

9)
Q

M
2
.3

(0
.1

3)
2
1.

01
(0

.1
7)

21
.0

2
(2

.3
8)

3.
39

(0
.1

6)
3.

60
(1

.2
1)

3.
75

(0
.0

8)
3.

36
(1

.0
8)

A
S

1.
2

(1
.1

9
)

1
0.

81
(0

.1
7)

12
.1

3
(2

.2
4)

1.
64

(0
.1

4)
3.

69
(1

.1
7)

1.
93

(0
.0

7)
2.

72
(1

.1
0)

F
L

0
.2

(0
.1

8)
1
0.

31
(0

.1
6)

11
.8

1
(2

.2
1)

-0
.1

6
(0

.1
3)

1.
46

(1
.2

2)
-0

.3
3

(0
.0

6)
0.

96
(1

.0
6)

D
M

0.
2

(0
.1

4
)

3
.0

2
(0

.1
5)

1.
40

(2
.2

7)
0.

17
(0

.1
3)

-0
.0

8
(1

.2
0)

0.
31

(0
.0

6)
0.

96
(1

.0
6)

κ
-

0.
62

0.
56

0.
98

0.
55

0.
98

0.
89

∗ E
x
p

er
im

en
ta

l
re

su
lt

s
a
re

ta
ke

n
fr

om
O

h
ta

ka
et

a
l.

[9
2]

.
M

ea
n

en
er

gi
es

ar
e

in
k
ca

l
m

ol
−

1
.

S
ta

n
d

ar
d

er
ro

rs
ar

e
sh

ow
n

in
p

ar
en

th
es

es
.



Chapter 5. Protease Multi-drug Resistance 131

T
ab

le
5.

9:
D

ec
om

p
os

ed
co

n
tr

ib
u

ti
on

s
to

th
e

fr
ee

en
er

g
y

o
f

b
in

d
in

g
fo

r
w

il
d

ty
p

e
a
n

d
a
ll

M
D

R
p

ro
te

a
se

s
w

it
h

lo
p

in
av

ir
a
s

w
el

l
a
s

w
il

d
ty

p
e

w
it

h
sa

q
u

in
av

ir
u

si
n

g
50
×

4
n

s
en

se
m

b
le

-t
ra

je
ct

or
y

ru
n

s.

S
e
q
u

e
n

c
e

∆
G

M
M

v
d
w

∆
G

M
M

e
le

∆
G

so
l

p
o
l

∆
G

so
l

n
o
n
p
o
l

∆
G

to
t

e
le

∆
G

M
M

P
B

S
A

−
T

∆
S

N
M

W
T

-7
2
.8

2
(0

.0
3
)

-5
1.

29
(0

.0
5)

84
.5

6
(0

.0
5)

-8
.1

3
(0

.0
0)

33
.2

7
(0

.0
4)

-4
7.

68
(0

.0
3)

36
.7

4
(0

.4
9)

H
M

-7
0.

43
(0

.0
4
)

-5
0.

51
(0

.0
8)

86
.1

7
(0

.0
6)

-8
.1

0
(0

.0
0)

35
.6

6
(0

.0
5)

-4
2.

86
(0

.0
5)

35
.4

5
(0

.5
2)

Q
M

-7
1
.6

2
(0

.0
3
)

-5
2.

03
(0

.0
8)

87
.8

8
(0

.0
6)

-8
.1

5
(0

.0
0)

35
.8

5
(0

.0
5)

-4
3.

93
(0

.0
5)

36
.3

5
(0

.5
1)

A
S

-7
1.

02
(0

.0
3)

-5
1.

97
(0

.0
7)

85
.3

8
(0

.0
5)

-8
.1

3
(0

.0
0)

33
.4

1
(0

.0
4)

-4
5.

75
(0

.0
4)

37
.5

3
(0

.5
4)

F
L

-7
3
.1

1
(0

.0
3
)

-5
2.

02
(0

.0
6)

85
.2

6
(0

.0
5)

-8
.1

4
(0

.0
0)

33
.2

4
(0

.0
4)

-4
8.

01
(0

.0
4)

38
.0

8
(0

.5
0)

D
M

-7
2.

71
(0

.0
3)

-5
2.

29
(0

.0
5)

85
.7

6
(0

.0
5)

-8
.1

3
(0

.0
0)

33
.4

7
(0

.0
4)

-4
7.

37
(0

.0
3)

37
.3

9
(0

.5
1)

S
A

Q
-W

T
-7

5.
79

(0
.0

3
)

-4
9.

18
(0

.0
6)

89
.0

8
(0

.0
6)

-8
.3

2
(0

.0
0)

39
.9

1
(0

.0
4)

-4
4.

20
(0

.0
4)

36
.3

0
(0

.5
3)

M
ea

n
en

er
gi

es
ar

e
in

k
ca

l
m

ol
−

1
.

S
ta

n
d

ar
d

er
ro

rs
ar

e
sh

ow
n

in
p

ar
en

th
es

es
.



Chapter 5. Protease Multi-drug Resistance 132

produces an small increase in the error, to 0.50 kcal mol−1, for the WT system (with

the majority of the discrepancy again to be found in ∆GMMPBSA). In contrast for the

HM sequence both the MMPBSA and configurational entropy components are found to

be more reproducible in the 50 × 4 ns ensemble, resulting in an reduced error of 0.82

kcal mol−1in ∆Gtheor. The net effect of this variation is to produce an uncertainty in

the relative binding affinities of the two systems of approximately 1.3 kcal mol−1. This

result suggests that in order for us to have confidence in the relative ranking of two

mutants the computed binding affinities must vary above this threshold.

Table 5.10: Reproducibility of ensemble calculations for 50×1 ns and 50×4 ns ensemble-
trajectory runs. Two ensemble simulations, labelled I and II, were performed for both
the WT and HM sequences. Ensemble I is that used in the intra-sequence comparisons
presented elsewhere in this chapter.

Sequence Sample ∆GMMPBSA −T∆SNM ∆Gtheor ∆∆GII−I
Ensemble (50 × 1 ns)
WT I -47.85 (0.05) 36.61 (0.68) -11.24 (0.73) -

II -48.33 (0.05) 36.66 (0.71) -11.67 (0.76) -0.43 (0.76)
HM I -43.63 (0.10) 34.95 (0.98) -8.68 (1.08) -

II -44.16 (0.07) 36.98 (0.74) -7.18 (0.81) 1.50 (1.89)
Ensemble (50 × 4 ns)
WT I -47.68 (0.03) 36.74 (0.50) -10.94 (0.53) -

II -48.38 (0.03) 36.94 (0.51) -11.44 (0.54) -0.50 (1.07)
HM I -42.86 (0.05) 35.45 (0.52) -7.41 (0.57) -

II -43.36 (0.05) 36.77 (0.52) -6.59 (0.57) 0.82 (1.14)
Mean energies are in kcal mol−1. Standard errors are shown in parentheses.

5.6 Structural Correlates of Resistance

The observation of the impact of water ingress into the active site of the HIV-1 pro-

tease in the 1 × 50 ns simulations suggests that the frequency of such events may play

an important role in determining the free energy differences observed in the ensemble

simulations too. As noted previously no additional water molecules enter the active site

in the vicinity of the conserved WAT301 in any of the 50 × 1 ns ensemble simulations.

This remains the case in the extended ensemble. However, water entry is observed in

many trajectories in the region between the hydroxyethylene moiety of lopinavir and the

catalytic dyad (close to the position posited for the entry of a water molecule during

the lysis of natural polypeptide substrates). Figure 5.16a shows the minimised initial

structure where a single water molecule in the WAT301 position and the catalytic dyad

both form hydrogen bonds with the bound lopinavir. The presence of water molecules in

this region between the catalytic dyad disrupts the hydrogen bonding networks between

the drug and D25 and D125. The occupancy of the hydrogen bonds formed between

lopinavir and the protease in each system is shown in Table 5.11. The influence of water
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(a) (b)

Figure 5.16: Conformations of the catalytic cavity of the HM mutant bound to lopinavir
for (a) the energy minimised initial structure and (b) a representative snapshot showing
water mediated alteration of the hydrogen bond network in the 1 × 4 ns ensemble.
The conserved water molecule which mediates hydrogen bonds between the flaps and
ligand is labelled WAT301. Two other water molecules mediating protein-inhibitor
interactions in the catalytic cavity are labelled WATA and WATB . Water molecules
shown in transparent representations are present but are not involved directly in any
interactions between drug and enzyme. Potential hydrogen bonds are shown as green
lines.

entry in the more resistant mutants is shown in the reduced occupancy of the bonds

between D125, G27 and the oxygen in the hydroxyethylene moiety of lopinavir. In the

mutant systems, in particular the AS and QM sequences, this change results in D125

being free to more frequently form bonds with the nearby lopinavir backbone nitrogen

(N4). Away from the active site, and the direct influence of water molecules in the

catalytic cavity, the bonds between residues 29 and 30 in the P2′ subsite and the in-

hibitor are also altered, reduced in the resistant mutant systems in the former case and

increased in the latter.

A typical conformation of the catalytic cavity after water entry is shown in Figure 5.16b.

In this conformation D25 maintains it’s hydrogen bond to the central oxygen of lopinavir

but WATB disrupts the bond between D125 and this moiety of the inhibitor. WATB now

mediates this interaction forming hydrogen bonds with both the D125 and lopinavir. An

additional water molecule, WATA in the picture, mediates interactions between D25 and

the backbone N4 nitrogen of lopinavir. The figure also shows a further water molecule
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present in the catalytic cavity but which despite being within 3 Å of both protein and

ligand does not obviously appear to be involved in any specific interaction between the

two.

The population density of water molecules within 3 Å of the catalytic dyad was calcu-

lated for each of the systems in the MDR Test Set. Comparison with the theoretical

and experimental binding free energy differences yields excellent correlation coefficients

of 0.89 and 0.98 respectively (see Table 5.12). This is indicative of water mediated inter-

actions playing a significant role in the causation of drug resistance. The rate of water

entry is also a likely consequence of alterations of the size and shape of the active site in

the MDR mutants relative to wildtype. In a recent study [372] a similar mutant to the

AS sequence in this study, containing A82F and I84V substitutions, was seen to exhibit

significant deformation of the active site geometry. In the case of the MDR mutants

structural changes in the active site volume caused or induced by the mutations may

explain both the increased accessibility of the catalytic cavity to water molecules and the

progressive decrease in inhibitor binding. The disruption of protein-ligand interactions

resulting from the presence of water molecules may also help to explain the increase in

the net electrostatic repulsion highlighted by the thermodynamic decomposition of the

binding free energy.

5.7 Cross Drug Thermodynamic Ranking

A further test of the ensemble methodology was made by simulating the first generation

inhibitor saquinavir (SAQ) bound to the WT sequence. Experimentally saquinavir is

seen to be bound 2.1 kcal mol−1 less strongly than lopinavir(LPV), a difference similar to

that between WT and AS bound to LPV. The theoretical binding free energy difference,

shown in Table 5.7, is -7.9 kcal mol−1 which is 5.1 kcal mol−1 less attractive than the

experimental value. This difference is consistent with the differences seen in the other

systems reported here. The difference between the value for SAQ and LPV bound to

WT is 3.04 kcal mol−1 which is in good agreement with experiment and is similar to the

difference between WT and AS in the theoretical LPV data set. These findings suggest

that the methodology presented here can distinguish between drugs with a similar accu-

racy, of approximately 1 kcal mol−1, to that demonstrated between different sequences

bound to the same inhibitor.

Decomposition of ∆Gtheor (shown in Table 5.9) suggests that the difference in binding

affinity is primarily due to changes in the enthalpically dominated ∆GMMPBSA compo-

nent, with the configurational entropy changes within a standard error of one another
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Table 5.12: Comparison of the computed relative free energy differences of binding
(∆Gtheor) and experimental results (∆Gexpt) with the population density of catalytic
water occupancy (ρ) for all sequences within the MDR Test Set with lopinavir using
50 × 4 ns ensemble trajectory runs. The values for both the main 50 × 4 ns data set
(labelled Ensemble I) and those run for the reproducibility analysis (Ensemble II) are
given for the WT and HM sequences. Correlation coefficients of the water occupancy
relative to the theoretical (κtheor) and experimental (κexp) free energy values are also
provided (the coefficients listed for Ensemble II are calculated with the values for FL,
DM, AS and QM taken from Ensemble I).

50 × 4 ns - Ensemble I 50 × 4 ns - Ensemble II
Sequence ∆G∗exp ∆Gtheor ρ ∆Gtheor ρ

WT -15.1 (0.09) -10.94 (0.52) 0.057 -11.44 (0.54) 0.020
HM -11.3 (0.08) -7.41 (0.57) 0.484 -6.59 (0.57) 0.335
QM -12.8 (0.04) -7.58 (0.56) 0.361 - -
AS -13.9 (0.10) -8.22 (0.58) 0.167 - -
FL -14.9 (0.09) -9.93 (0.54) 0.042 - -
DM -14.9 (0.05) -9.98 (0.54) 0.039 - -
κexp 0.99 0.93
κtheor 0.89 0.92
∗Experimental results are taken from Ohtaka et al. [92].
Mean energies are in kcal mol−1. Standard errors are shown in parentheses.

(suggesting similar levels of flexibility change upon binding). The ∆GMMPBSA compo-

nent is 3.48 kcal mol−1 less attractive for SAQ bound to WT compared to LPV. The

origin of this difference is a greater polar solvation penalty (89.08 compared to 84.56

kcal mol−1) which is only partially compensated by more favourable van der Waals

interactions (-75.79 compared to -77.82 kcal mol−1).

5.8 Conclusions

This study has explored the effectiveness of the approximate MMPBSA and normal

mode methodology to reproduce the experimental binding affinities of six multi-drug

resistant (MDR) HIV-1 protease mutants. The correct ranking was obtained with a cor-

rection coefficient of 0.89 and a mean deviation in the relative ranking of only 0.9 kcal

mol−1. The theoretical absolute binding affinities exhibit a systematically less attrac-

tive binding free energy by approximately 5 kcal mol−1 compared to the experimental

results. This can be explained as originating from a combination of contributions not

accounted for in the MMPBSA approach; conformational changes of the flaps between

semi-open and closed positions, alteration of the catalytic dyad protonation state and

the contribution of a water molecule bound between the inhibitor and flaps (known as

WAT301). Summing the estimates of these contributions from other studies provides a

correction of between 2 and 5.2 kcal mol−1 in good agreement with the deviation of the

theoretical results calculated in the study presented here.
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In order to obtain these results an ensemble of 50 replica simulations, each of 4 nanosec-

onds duration (varying only in the initial velocities assigned to each atom), was used.

A comparison of ensemble and single long trajectory simulations producing the same

length of production simulation showed that the ensemble approach samples relevant

areas of phase space more efficiently. The single trajectories are frequently trapped in

single minima resulting in inconsistent sampling and poor convergence. The ensemble

strategy, however, obtained accurate and converged results not possible with the single

trajectory approach. Reproducibility analysis of the 50 × 4 ns ∆Gtheor values for the

susceptible WT and highly resistant HM sequences suggests that the ranking of systems

can reliably be made as long as the difference in binding free energies is greater than 1.3

kcal mol−1.

A cross drug ranking of the wildtype sequence bound to lopinavir and the less potent first

generation inhibitor saquinavir was also successfully performed. In both the cross drug

and mutant ranking the majority of the inter-system differences are attributable to the

enthalpically dominated ∆GMMPBSA component of the calculation. The reduced affinity

of saquinavir is a consequence of a higher polar solvation penalty. The most significant

contributions to MDR resistance was attributable to direct reduction of the van der

Waals interactions by the V82A/I84V mutational pair (which has an impact of up to 2.5

kcal mol−1) and increased electrostatic repulsion induced by water mediated alteration of

the hydrogen bond network in the catalytic cavity (creating a maximum change of 2.5kcal

mol−1). The convergence analysis of the configurational entropy component computed

using normal mode analysis suggests that systems where this is the differentiating factor

may be less accurately calculated using this methodology. Even the extensive sampling

performed in this study (using 1000 snapshots) could not fully converge the normal

mode calculation, with grouped peaks still apparent. It appears that this is an inherent

limitation of the methodology.

In order to obtain the sampling required to gain the accurate, converged results pre-

sented here it was necessary to perform 200 ns of fully atomistic simulation. It is likely

that these computations represent the computational limit of approximate thermody-

namic end point methods such as MMPBSA. At this level we can discriminate systems

with binding affinities within 1 kcal mol−1 of one another. In order to get beyond the ac-

curacy presented here it is probable that more exact methods (such as thermodynamic

integration) are required. The advantage of the MMPBSA methodology is, however,

that theoretically the turn around time for the entire study presented here could be

three days (assuming that 9600 cores on a modern supercomputer such as Ranger were

available simultaneously). This rapid execution time highlights the potential of these

methods to play a role in patient specific clinical decision support systems designed to
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optimise treatment choice in situations in which mutations to the target protein affects

intervention efficacy.



Chapter 6

Virtual Patient Experiment

6.1 Introduction

The rapid acquisition of mutations conferring resistance to particular drugs remains a

significant problem in the treatment of HIV infection, potentially decreasing both the

magnitude and duration of the response to treatment [373]. Even for expert clinicians, it

is frequently impossible to identify straightforward relationships between genotype and

drug response. This has resulted in the production and use of computer based clinical

decision support systems (CDSS). Amongst the most popular of these are those pro-

duced by the Stanford HIVdb1, ANRS2 and RegaDB3. These systems use data collected

from patient databases and the published literature in order to give resistance scores to

individual mutations which can be combined additively to assess the resistance levels

of complete sequences. Clinicians then use the assigned levels of resistance to different

drugs to select a drug cocktail suitable for the viral sequence present in each individual

patient. Several studies have shown that the use of such genotypic resistance analysis

to guide the selection of drugs within a HAART regimen improves virological outcomes

[207, 208, 374–376].

The ANRS and Rega systems are rule based algorithms that both report three levels

of resistance: susceptible, resistant, and an intermediate level (the definition of which

is different for each algorithm). The HIVdb algorithm assigns a drug penalty score for

each drug resistance mutation. Summing the contributions from each mutation provides

an overall score which is then converted into one of the following levels of inferred drug

resistance: susceptible, potential low-level resistance, low-level resistance, intermediate

resistance, and high-level resistance. A variety of studies have compared the performance

1HIVdb: hivdb.stanford.edu
2ANRS: www.anrs.fr
3RegaDB: www.rega.kuleuven.be/cev/regadb/
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of these popular, freely available, systems at predicting in vivo virological response and

found them to be generally reliable [209–213]. Recently, a large study (looking at over

3000 treatment change episodes) by Frentz et al. [377] found little difference between

the performance of HIVdb, ANRS and RegaDB in predicting undetectable viral load at

a variety of time points after treatment initiation. This finding is perhaps unsurprising,

given that all of these systems rely on the same literature as the source from which their

rules are derived. However, detailed analysis of four widely used prediction systems

(those previously mentioned and the less commonly studied Visible Genetics version 64

[378]) reported that for a significant number of sequences the systems disagree on the

level of resistance to be expected [379]. The majority of tested sequences, 66.4%, pro-

duced concordant results from all systems, whilst results for 4.4% of sequences resulted

in complete discordance (with at least one system suggesting susceptibility and another

resistance) and the remaining 29.2% showed partial discordance (i.e. minor differences

are present in the level of resistance assigned by each system). Whilst, the overall suc-

cess of the systems indicates that these discordances are likely to be rare nonetheless

they represent a potential cause of suboptimal treatment choice for individual patients.

One factor complicating the assignment of resistance scores to sequences is the presence

of interactions between mutations that cause non-additive effects on phenotype and fit-

ness. Such interactions between mutations are termed ‘epistasis’. The term is often

used in the context of interactions between whole genes whose phenotype is altered by

mutation; in cases such as this where the relationship is between point mutations in

the same gene the term ‘intragenic epistasis’ is used to prevent ambiguity. Intragenic

epistatic effects are likely to play an important role in determining the level of viral

resistance [269, 280, 380]. The inclusion of insight into combinatorial mutational ef-

fects from a broader range of sources, including computational modelling, in decision

support software offers the potential to further improve automated treatment [381]. Mo-

tivated by this belief the EU ViroLab project5 created a virtual laboratory consisting

of complementary, multilevel computational tools aimed at comparing and enhancing

the existing repertoire of decision support approaches [382–384]. One of the simulation

techniques chosen to supplement the traditional resistance assignment tools was molec-

ular dynamics (MD). As seen in Chapter 5, molecular dynamics offers the ability to

derive quantitative, as well as qualitative, insight into the interplay of resistance causing

mutations. The facility to investigate the drug resistance phenotype of the particular

strain of HIV infecting a patient without the need for costly experiments by using in

4Since the publication of the study Visible Genetics has been bought by Bayer Diagnostics (http:
//www.bayerhealthcare.com) and their resistance assessment software incorporated into the TRUGENE
HIV-1 genotyping test and OpenGene sequencing systems.

5ViroLab: www.virolab.org

http://www.bayerhealthcare.com
http://www.bayerhealthcare.com
www.virolab.org
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silico homology modelling, simulation and free energy calculations offers an attractive

option to supplement existing CDSS.

In this chapter, we describe the use of MD simulations and free energy calculations to

investigate an instance where the HIVdb, ANRS and Rega prediction systems disagree

on the resistance levels produced by an HIV-1 protease derived from a real patient. The

performance of these simulations requires the use of substantial computational resources

and the management of large amounts of data, these requirements have prompted the

development of an automated simulation pipeline called the Binding Affinity Calculator

(BAC) [355]. The work flow from the creation of the system to be simulated to the

final analysis can be executed across multiple computational resources by making use

of two further tools developed within the ViroLab project, the Application Hosting

Environment (AHE) [385] and GridSpace Engine [386]. Molecular level simulations are

not only vastly cheaper than wet lab alternatives but potentially offer the ability to

generate atomistic understanding of the causes of resistance. This represents the lowest

level of the ViroLab philosophy of creating a multiscale holistic approach to decision

support, “from molecule to man” [384].

6.1.1 Virtual Patient Experiment

The ViroLab virtual laboratory (VL) contains a wealth of tools for investigating the

relationship between HIV genomic sequence and the level of resistance to anti retroviral

drugs [382]. To show the potential of integrating diverse systems such as traditional drug

ranking systems, literature mining, patient data and molecular simulations into a single

interface the Virtual Patient Experiment (VPE) was designed. The aim of the VPE

was to take a patient sequence for which the Virolab comparative drug ranking system

(cDRS) provided discordant results for one of the available protease inhibitors and to

use the other tools within the virtual laboratory to produce the sort of insight that could

help a clinician who was to be facing a decision on how to treat this virtual patient. The

cDRS allows the user to simultaneously obtain drug resistance rankings (susceptible,

intermediate or resistant) for an input sequence or set of mutations from three well

established drug ranking systems: Stanford HIVdb, ANRS and RegaDB.6 The Virolab

and EuResist7 databases were queried to find patient sequences that met these criteria

resulting in the choice of a sequence containing the mutations L10I, I13V, K14KR, I15V,

K20T, L63P, A71IV, V77IV, L90M, I93L in combination with the drug lopinavir. This

sequence was deemed to be susceptible by HIVdb but displayed intermediate resistance

according to ANRS and Rega. In instances such as this, the VL provides a tool which

6The following versions of the drug ranking systems rule sets were used in determining the sequence
used in the VPE: HIVdb 5.1.2, ANRS 17 and Rega 8.0.1.

7EuResist: www.euresist.org

www.euresist.org
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Table 6.1: Percentage of patient sequences within the HIVdb database containing the
mutations identified as potentially resistance causing in the VPE for both PI treatment
naive and experienced individuals. The figure in brackets is the percentage for those
undergoing LPV monotherapy.

Mutation Treatment Naive PI Treated

L10I 7.3 41.0 (12.5)
A71I 0.0 3.3 (0.0)
A71V 4.6 38.0 (7.0)
L90M 0.0 43.0 (5.2)

allows a clinician or researcher to investigate the cause of the discordance by inspecting

the rules used to determine the ranking by each system. The only mutations within this

set which influenced the ranking were L10I, A71IV and L90M.

In order to investigate whether these mutations caused resistance and if so how they

interacted to do so, all possible combinations were simulated. In addition the full patient

sequence was simulated (using the altered residues at positions where polymorphisms

were detected) with both valine and isoleucene present at position 71. For simplicity the

two full patient sequences shall be referred to as VPE-A71V and VPE-A71I, depending

on the amino acid present at position 71.

Table 6.1 shows that the mutations identified for study in the VPE occur with differing

frequencies in both naive and treated patients. L10I and A71V are infrequent poly-

morphisms in naive patients, which are strongly selected for under protease inhibitor

(PI) treatement. Neither A71I or L90M are observed in naive patients but are selected

for by treatment to very different degrees, with A71I only occurring in 3.3% of treated

patients and L90M in 43.0%. These figures are for treatment with either one or more PI.

The HIVdb only contains 57 sequences from patients undergoing lopinavir monotherapy.

The HIVdb only contains 57 sequences from patients undergoing lopinavir monotherapy,

analysis of this, limited data set, suggests that selection for the resistance linked muta-

tions in the VPE is less strong for lopinavir than when other PIs are used. Additionally, a

study of 1313 HIV infected individuals in Spain investigated the effects of therapies con-

taining LPV [387]. This study found similar occurrence frequencies to HIVdb amongst

naive patients (L10I, A71I, A71V and L90M were found in 7.7%, 0.0%, 5.4% and 2.9%

of individuals respectively) but found higher levels of selection under LPV treatment for

all mutations under consideration (L10I, A71I, A71V and L90M were found in 27.0%,

1.1%, 20.1% and 24.3% of patients respectively) although this was less than that found

in the HIVdb for general PI treatment.

In order to assess the impact of these mutations on the free energy of binding (and hence

upon resistance) we require comparison systems, that determine the binding affinity for
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Figure 6.1: HIV-1 protease (backbone shown in ribbon representation) bound to the
inhibitor lopinavir (shown in chemical structure representation along with the catalytic
dyad at position 25 of each protease monomer). The locations of the mutations found
in the multi drug resistant (MDR) mutants (described in Table 5.1) used for the bench-
mark simulations and residue A71 are highlighted and labelled. Protease is a homodimer
and the location of each mutation is given the same color on both monomers.

susceptible and resistant sequences. The binding affinity values presented in Chapter 5

for a series of mutants (referred to as the MDR Test Set) provide and ideal set of bench-

mark values, as they contain both the susceptible HXB2 wildtype sequence, labelled

WT, and several mutants which are known clinically, as well as experimentally, to cause

resistance. The sequence containing the mutations L10I, M46I, I54V, V82A, I84V and

L90M (and labelled HM) was chosen to provide the resistant benchmark for the VPE

as the most conclusively resistance sequence in the MDR Test Set. The double mutant

containing V82A and I84V (known as AS) was also used as it provides a useful compar-

ison for systems of intermediate, yet clinically relevant resistance. The location within

the protease structure of all mutations with known clinical relevance in the sequences to

be studied are shown in Figure 6.1. All three mutations which impacted the resistance

scoring of the CDSS are located more than 10 Å from the active site.

6.2 Methods and Analysis

The simulations and free energy calculations were performed using the automated BAC

tool[355]. The protocol used for structure preparation, simulation and analysis was the

same as that described in Chapter 5. The following is a brief overview of this process.
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6.2.1 Simulation and Free Energy Calculation Protocol

The required protein sequences were created from the 1MUI crystal structure using

the in silico mutational algorithms of the program VMD[315]. Each protein system was

solvated in a cuboid box of TIP3P water molecules [359], with a minimum 14Å buffering

distance in all three orthogonal dimensions. The system was then minimised with all

protein and ligand heavy atoms constrained to their positions in the initial structure.

Each system heated from 50 to 300 K over 50 ps after which the system was maintained

at a temperature of 300 K. Once the system had been heated to the correct temperature

in all subsequent simulation steps the pressure is maintained at 1 bar. This results

in the system sampling an isothermal isobaric (NPT) ensemble. Simulation proceeded

for 200 ps before a mutation relaxation protocol was enacted in which each mutated

residue and residues within 5 Å were released in turn from the constraints for 50 ps.

After the 50 ps relaxation period the restraints were reapplied to each region. The final

equilibration stage was the gradual reduction of the restraining force on the complex

from 4 to 0 kcal mol−1Å−2 during a 350 ps period. Following this the systems were

allowed to evolve freely. The entire equilibration stage was designed to take 2 ns for

all systems meaning that this final stage varied in length according to the number of

mutations which required relaxation in the previous stages. After the equilibration is

complete structures are output for analysis every 10 ps. Every output snapshot was post

processed using MMPBSA, meaning that a hundred sets of coordinates were analysed

for each nanosecond of simulation. The more computationally expensive normal mode

analysis was performed on every 20 snapshots, producing five entropy estimates per

nanosecond of simulation.

6.2.2 Principal Component Analysis

Principal component analysis (PCA) is a dimensional reduction technique that allows the

isolation of the most significant conformational differences between a set of structures.

Here the structures are provided by snapshots from the molecular dynamics trajectory.

The correlation matrix is calculated from an aligned molecular dynamics trajectory

and then diagonalised. This provides an orthogonal set of eigenvectors representing

linearly independent modes of conformational change called principal components. The

eigenvalues associated with each principal component are a measure of the variance in

the original dataset described by that component. The principal component analysis

presented here was performed on the backbone coordinates of a concatenated trajectory

of all mutant sequences under investigation along with the WT and HM benchmark

sequences. All structures used for MMPBSA calculations were included in the PCA.
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The trajectory concatenation and sidechain atom stripping were performed using VMD

[315] and the PCA conducted using the ptraj module of AMBER9[70]

6.3 Results

In order to simplify the presentation of the binding affinity results, the full set of se-

quences has been split into two sets; those containing alanine or valine as residue 71 and

those containing alanine or isoleucene at this position. As part of the discussion of these

results and as a natural extension of the consideration of the entropic component of the

binding free energy, protein flexibility will be analysed. Following this a comparison of

the structural differences observed across the entire dataset will be described.

6.3.1 Binding Affinity and Protein Flexibility

6.3.1.1 A71V

Figure 6.2 shows a comparison of the mutants within the VPE (considering only those

with alanine or valine at position 71) with the WT and HM benchmark systems us-

ing both the absolute binding affinity, ∆Gtheor, and the MMPBSA calculated value,

∆GMMPBSA. Whilst, the A71V mutation alone, or in any combination with the L10I

and L90M mutations, inserted into the HXB2 wild type sequence, induces no signifi-

cant reduction in affinity for lopinavir a significant level of resistance is exhibited by

the full patient sequence. A particularly striking difference is exhibited between the

triple mutant containing all mutations identified by the cDRS as potentially causing

resistance, L10I-A71V-L90M, and the same mutations incorporated in the full patient

sequence (VPE-A71V). The full patient sequence is 3.06 kcal mol−1 more resistance

using ∆Gtheor and 2.47 kcal mol−1 according to ∆GMMPBSA.

The VPE-A71V binding affinity, using either metric, is considerably less resistant than

the HM sequence. The change from WT is comparable with the AS mutant values

obtained in Chapter 5. Table 6.2 shows the detailed comparison and thermodynamic

decomposition of all sequences under investigation from the VPE , demonstrating that

in fact the ∆∆GMMPBSA value for the VPE-A71V sequence is marginally less attractive

(hence more resistant) than that for AS mutant, while the ∆∆Gtheor value is 0.48 kcal

mol−1 more attractive than this known resistance causing sequence. The decomposition

of the enthalpically dominated ∆GMMPBSA component of the binding free energy show in

Figure 6.2b indicates that the origin of the difference from wild type is the polar solvation

term, ∆Gsolpol, which is 3 kcal mol−1 more repulsive than in the WT case, with both the
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Figure 6.2: A comparison of the binding free energies computed for all mutants con-
taining either alanine or valine at position 71 studied in the virtual patient experiment
bound to LPV. The values for the known susceptible WT sequence and known resis-
tant HM sequence are also shown for comparison. a) shows the binding affinity value
calculated using MMPBSA, ∆GMMPBSA, and b) the absolute binding affinity, ∆Gtheor.
The black lines show the mean, the candle stick the standard error and the whiskers
the error based on the WT and HM reproducibility for each system. The grey and red
shaded region show the range of values deemed susceptible and resistant defined using
the WT and HM benchmark values.
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van der Waals and electrostatic contributions (∆GMM
vdw and ∆GMM

ele respectively) being

marginally more attractive. This is a different pattern to that seen in the AS and HM

sequences where small changes in polar solvation energy are augmented by considerable

reduction in the attractiveness of the van der Waals interactions (directly caused by the

mutation of the active site residues 82 and 84). Further differentiation of the resistant

VPE-A71V sequence from the resistant mutants in the MDR test set comes from the

observation that it (along with all other sequences containing A71V) maintains hydrogen

bonds between the hydroxyethylene moiety (labelled O3, nitrogen and oxygen atoms

are separately numbered from the left of the schematic shown in Figure 5.2a) and the

catalytic ASP 125 more frequently than the WT (see Table 6.3 for a list of hydrogen

bond frequencies between LPV and the protease systems under investigation). The

VPE-A71V sequence does, however, exhibit reduced frequency of bonding with residues

27 and 29 in a similar fashion to the known resistant mutants from the MDR test set.

In common with the AS and HM systems, but unlike any other we have investigated,

the VPE-A71V sequence also has substantial hydrogen bonds between the oxygen O1

and the backbone nitrogen of residue 30 in the P2′ subsite.

In the study presented in Chapter 5, the loss of bonding with residues 27 and other

changes in the hydrogen bonding network (involving residues 29 and 30), which is similar

to that observed in the VPE-A71V system, was correlated with both resistance and

the entry of water molecules into the catalytic site. Table 6.4 shows the population

density of water molecules within 3 Å of the catalytic dyad (ρ) for the sequences under

consideration here. Only the virtual patient sequence, VPE-A71V, shows substantial

water occupation in this area, with a frequency 0.324 compared to 0.057 for WT. This

is between the levels observed for the AS and HM known resistant mutants. The A71V

single mutant shows the opposite change in active site accessibility, with water ingress

exhibited by less than one percent of snapshots (a fifth of that seen for the WT sequence).

Figure 6.2a indicates that, according to the ∆GMMPBSA metric, three sequences (A71V,

A71V-L90M and L10I-A71V-L90M) may bind more strongly than the wild type. The

largest change in ∆GMMPBSA (of 0.81 kcal mol−1) appears in the A71V single mutant

but this increase in attraction is counteracted by a large change in entropic contribution

(−T∆SNM) which results in an absolute binding affinity, ∆Gtheor, value which is less

negative than that computed for the WT (see Figure 6.2b and Table 6.2a). The increase

in binding affinity for the A71V-L90M and L10I-A71V-L90M persists even when entropy

is accounted for in ∆Gtheor, indicating that at least these two mutants containing A71V

may be hyper-susceptible to LPV. The phenomenon of hyper-susceptibility to LPV has

been observed in a range of protease sequences (particularly those of subtype C viruses)

experimentally although the clinical impact remains uncertain[296, 388, 389].
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Table 6.4: Population density, ρ, of water within 3 Å of the catalytic dyad exhibited
by each of the sequences studied as part of the Virtual Patient Experiment for which
position 71 is occupied by either alanine or valine.

Sequence ρ

WT 0.057
L10I 0.042
A71V 0.009
L90M 0.035
L10I-A71V 0.053
L10I-L90M 0.039
A71V-L90M 0.084
L10I-A71V-L90M 0.031
VPE-A71V 0.324
AS 0.167
HM 0.484

0.5
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Figure 6.3: The root mean square fluctuation, RMSF, relative to the average structure
is shown for each residue, in number order, of the WT sequence. Beneath this is the
per residue difference in RMSF, ∆RMSF, exhibited by each of the sequences studied
as part of the Virtual Patient Experiment for which position 71 is occupied by either
alanine or valine. A positive ∆RMSF value indicates that the fluctautions observed at
that position in the mutant system are greater than those at the corresponding location
in WT.
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An assessment of the flexibility of a protein bound to LPV during a simulation can be

made using the root mean square fluctuation (RMSF) of the structures explored during

each ensemble relative to the average structure for that sequence. Figure 6.3 shows the

RMSF of each residue within the WT structure and the differences (∆RMSF) for all

positions in each of the sequences in the A71V related subset of the VPE relative to this.

In the WT there are two very stable regions in both monomers, one around the catalytic

ASP 25 (coinciding with the ‘eyes’ between residues 22 and 32) and the other the helix

formed by residues 86 and 94. The most flexible regions in that system are the ‘fulcrum’

(between residues 10 and 22), residue 41 and parts of the ‘cheek sheet’ preceding residue

70 (this applies to both monomers). With the exception of the A71V and VPE-A71V

sequences, all of the systems exhibit broadly similar flexibility to WT, some additional

flexibility is shown in the helix and whiskers particularly around residues 87, 90 and

93. In line with the increase entropic barrier to LPV binding, the A71V single mutant

exhibits reduced flexibility across the entire structure with an average ∆RMSF of -0.2

Å. Notable exceptions to this pattern are residues 29 and 108. The loss of mobility is

particularly large in the area of the fulcrum of both chains and the flaps of the second

chain where losses of up to 0.8 Å are observed. A noticeable reduction is also seen

in the ‘whiskers’ (residues 95 to 99) which are involved in the dimer β sheet and the

‘elbow’ (between residues 32 and 42). Many of the regions seen to be stabalised in

the A71V mutant are more flexible than WT in the VPE-A71V system. It is worth

noting that for both of these systems changes observed in one monomer are almost

invariably present also in the other. The region with the most prominently increased

fluctuations is the fulcrum where ∆RMSF values of 0.75 Å are observed but the flaps,

elbow and wall turn (containing residues 79 to 86) also gain flexibility. The wall turn

contains key hydrophobic residues involved in interactions with the drug such as V82 and

I84. The added flexibility in this region may allow the protein to gain more favourable

interactions with LPV partially explaining the more attractive ∆GMM
vdw component of the

binding affinity. The region of the cheek sheet around residue 69 in contrast to much

of the rest of the structure is seen to strongly stabalised with a ∆RMSF of under 0.5

Å. The observed overall gain in flexibility of the VPE-A71V system is not reflected in a

higher entropic barrier to binding, suggesting that this flexibility must also be present

in the free enzyme as well as the drug bound complex.

6.3.1.2 A71I

The binding affinity results for the VPE mutation set including A71I, shown in Fig-

ure 6.4, exhibit differences in response between the triple mutant and full patient
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Figure 6.4: A comparison of the binding free energies computed for all mutants contain-
ing either alanine or isoleucine at position 71 studied in the virtual patient experiment
bound to LPV. The values for the known susceptible WT sequence and known resis-
tant HM sequence are also shown for comparison. a) shows the binding affinity value
calculated using MMPBSA, ∆GMMPBSA, and b) the absolute binding affinity, ∆Gtheor.
The black lines show the mean, the candle stick the standard error and the whiskers
the error based on the WT and HM reproducibility for each system. The grey and red
shaded region show the range of values deemed susceptible and resistant defined using
the WT and HM benchmark values.
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sequence as observed for A71V, although the change is of considerably lower mag-

nitude. The difference in absolute binding affinity compared to WT, ∆∆Gtheor, for

the VPE-A71I sequence is 1.98 kcal mol−1, comparable with that seen for VPE-A71V

(where ∆∆Gtheor was 2.07 kcal mol−1) and indicative of at least intermediate resistance.

Whereas the change in enthalpically dominated ∆∆GMMPBSA is only 0.96 kcal mol−1.

The ∆∆GMMPBSA value if accurate would represent a low level of resistance (approxi-

mately equivalent to a 5 fold change in Kd/IC50) but is at the limit of the ability of our

method to distinguish systems. The reduced difference between the patient sequence

containing A71I and the L10I-A71I-L90M system compared to that seen when valine is

present at position 71 is also in part due to the fact that the triple mutant binds with

almost identical strength to the wildtype, using both the ∆GMMPBSA and ∆Gtheor mea-

sures (the L10I-A71V-L90M bind more tightly than WT). Similarly to the A71V data

set none of the sequences investigated here display any resistance other than VPE-A71I.

Again, as in the A71V data set, some sequences exhibit signs of hypersusceptibility.

Table 6.5b shows the thermodynamic decomposition of the ∆GMMPBSA values. The

resistance of VPE-A71I, like that of VPE-A71V, is primarily caused by changes in the

electrostatic components of binding. However, where the majority of the change in the

A71V containing variant was in ∆Gpolsol in this case ∆GeleMM was more significant (with

changes of 0.25 and 0.58 kcal mol−1 compared to WT respectively). This is reflected

in slightly different changes in the active site hydrogen bonding networks between the

two patient sequence derived systems. Unlike VPE-A71V the bond between catalytic

ASP 125 and the lopinavir hydroxyethylene moiety is reduced in occupation compared

to WT in VPE-A71I. As with all other resistant mutants under consideration there

is a shift away from bonds with residues 29 and 27 and towards those with 30. The

increase in bonding frequency with residue 30 is particularly pronounced in VPE-A71I

with occupation levels over 60% (compared to less than 30% in VPE-A71V). As with

the other resistant mutants investigated here the change in hydrogen bonding within

the active site is accompanied by water entry into the catalytic cavity. Water appears

within 3 Å of the catalytic dyad in 25% of snapshots (see Table 6.7). This is less common

than in the HM or VPE-A71V systems but more so than the AS mutant. The increase

in water population density in this region is not shared by any of the other systems

containing A71I.

The A71I, L10I-A71I and A71I-L90M systems have ∆∆GMMPBSA values considerably

more negative than the WT (-1.05, -1.02 and -1.29 kcal mol−1 respectively). While

these values are close to the resolution limit of our method they are greater than the

reproducibility variability seen in the WT and HM systems. This increase in the strength

of binding is conserved for the L10I-A71I and A71I-L90M systems when the entropic

contribution is included in the results (they have ∆∆Gtheor values of -1.09 and -1.06 kcal
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Table 6.7: Population density, ρ, of water within 3 Å of the catalytic dyad exhibited
by each of the sequences studied as part of the Virtual Patient Experiment for which
position 71 is occupied by either alanine or valine.

Sequence ρ

WT 0.057
L10I 0.042
A71I 0.025
L90M 0.035
L10I-A71I 0.037
L10I-L90M 0.039
A71I-L90M 0.058
L10I-A71I-L90M 0.064
VPE-A71I 0.253
AS 0.167
HM 0.484

mol−1 respectively) but not for the A71I single mutant (which is almost indistinguishable

from WT with a ∆∆Gtheor of -0.09 kcal mol−1). Unlike the A71V system, which also

exhibits an increased entropic barrier to binding, no change in the flexibility of the

protein within the complex can be detected in the residue RMSF values calculated from

the simulation (see Figure 6.5).

With the exception of the A71I single mutant the changes in RMSF relative to that

seen in WT observed for all systems containing isoleucene at position 71 follow similar

patterns to their valine containing counterparts. Only minor deviations from wildtype

flexibility are observed for any of the systems except for VPE-A71I, where substantial

increases in flexibility are seen in the fulcrum, flaps, elbow and wall turn. The gain in

flexibility in these regions is shared with the VPE-A71V system, but the magnitude of

the change is reduced.

6.3.2 Structural Changes

The changes in binding affinity and flexibility between systems described in this chapter

are accompanied by changes in the conformations explored. PCA is a useful tool for

gaining insight into which changes are most significant in a specific data set. The key

questions we wish to answer are which structural changes are associated with resistance

and which are associated with deformation caused by accommodation of mutated amino

acids and the general flexibility of the protease. In order to focus on the resistance

associated changes a combined trajectory of the backbone of the WT, L10I-A71I-L90M,

L10I-A71V-L90M, VPE-A71I and VPE-A71V systems was created and analysed to pro-

duce principal components (PCs) which capture the most significant variance between
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Figure 6.5: The root mean square fluctuation, RMSF, relative to the average structure
is shown for each residue, in number order, of the WT sequence. Beneath this is the per
residue difference in RMSF, ∆RMSF, exhibited by each of the sequences studied as part
of the Virtual Patient Experiment for which position 71 is occupied by either alanine
or isoleucene. A positive ∆RMSF value indicates that the fluctuations observed at that
position in the mutant system are greater than those at the corresponding location in
WT.

snapshots. The PCs can then be used to identify the most significant changes that

distinguish the systems which are susceptible and resistant to LPV according to the

binding affinity calculations presented above.

6.3.2.1 Principal Component Analysis

Figure 6.6 shows the level of variation captured by each of the first ten PCs. Only the

first three describe greater than 5% of the observed differences in structure between

snapshots. The first two components account for 46% of the total variation and the

focus of this section will primarily be on what they can tell us about the differences

between systems. In the context of protein conformational changes, the assumption of

PCA that the observed data set (in this case the coordinates of each protein atom)

is best expressed as a linear combination of certain basis vectors is significant. It is

likely that the real conformational changes are not optimally described using such an

assumption and hence PCA is better employed as an investigative tool to identify parts
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Figure 6.6: The percentage of the variation observed over the concatenated trajectory of
WT, L10I-A71I-L90M, L10I-A71V-L90M, VPE-A71I and VPE-A71V which is captured
by each principal component.

of the structure and general trends that can be explored further. Here the results of

PCA are used to identify metrics which help describe conformational changes associated

with resistance. Once such measurements have been identified they are applied to the

larger dataset of all the sequences studied within the VPE to ensure that the differences

can still be used to distinguish the resistant systems. If this is the case we can have

confidence that we have identified structural changes that are linked to the changes in

binding affinity.

The projections of the snapshots contained within the combined trajectory onto the first

two principal components shown in Figure 6.7a indicates that each of the systems can be

easily split into three groups using PC1 and PC2; the WT, two triple mutants and two

patient sequences form three well separated groups. This means that conformational

changes described by both PCs differentiate the susceptible and resistant systems and

may give information about the structural origin of resistance in the VPE sequences.

Figure 6.7b shows that PC3 has limited ability to distinguish the different systems and

consequently represents fluctuations to the overall structure which are present in all of

the systems used to generate the combined trajectory.

The changes described by PC1 across the combined trajectory are represented in Fig-

ure 6.8. The structure of the most negative projection from the trajectory is seen in

blue, that of the most positive in grey (this convention will be used in all other structural

figures from the PCA). The most pronounced change occurs as a global expansion of

the structure along the axis of the active site cavity (corresponding to the fact that the

PC1 shows variation for all residues in Figure 6.7c). This change is particularly visible

in the change in separation of residue 35 (in the elbow) and 45 (in the flaps) in both
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Figure 6.7: The description of the concatenated trajectory (consisting of tall frames
produced by the WT, L10I-A71I-L90M, L10I-A71V-L90M, VPE-A71I and VPE-A71V
production simulations) produced by PCA. (a) & (b) show the projections for each
snapshot of the trajectory along the PCs 1 and 2, and 2 and 3 respectively. All three
systems can easily be separated using PCs 1 and 2 but share a similar range of values
along PC3. (c) shows the magnitude of the variation described by each of the first three
principal components at each position along the backbone of the protease structure.
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(a)

(b)

Figure 6.8: The structural variation of the protease described by PC1. The most
negative projection observed is shown in blue, the most positive in grey. (a) shows
a view down from the PR flaps and (b) along the active site cavity. Residues which
undergo significant changes along PC1 are highlighted with lighter shades used for the
positions at the negative extrema, darker for the positive. In (a) red highlights the 77
to 79 loop and purple residues 35 and 45 and in (b) residues 68 and 69 are depicted in
brown.

monomers highlighted in blue in Figure 6.8a. The region around residue 79, between

the cheek sheet and wall turn, however, is seen to change conformation and move to-

wards the active site (this change is highlighted in red in Figure 6.8a). The separation

of residues 35 and 45, and 25 and 79 were chosen as metrics to investigate in the full

selection of sequences. Figure 6.7a shows that the projections corresponding to the WT

and two triple mutant systems have negative values whilst the VPE sequences have pos-

itive values. This gives us an expectation of structural expansion, including increased

separation between residues 35 and 45 in the VPE structures, and a reduced distance

between 79 and the catalytic ASP 25 relative to the WT. Figure 6.9 shows the averages

of the distance between the Cα atoms of residues 35 and 45, and residues 135 and 145.

In all cases except the two patient derived sequences the average distance between the

two pairs of residues were around 14 Å and 14.2 Å (the averages are slightly higher for
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Figure 6.9: Separation of residues 35 and 45, and residues 135 and 145 for all systems
under study, shown in red and blue respectively. Distances are measured between the
Cα atoms of both residues. The error bars indicate the standard deviation.

HM but the standard deviations on the measurements make it hard to evaluate the sig-

nificance of this change). The VPE systems, however, have separations of 16 Å and 15.4

Å for the first and second monomers respectively. This indicates that both systems do

indeed enlarge in this dimension and also that the change is asymmetric with the change

in the first monomer being around 2.0 Å and only 1.2 Å in the second. The predicted

movement of residues 79 and 179 towards the active site ASPs in the VPE sequences is

shown in Figure 6.10, the changes are relatively small however with a differences of only

0.8 Å and 0.4 Å for the first and second monomers respectively. The second monomer of

HM undergoes a similar change to that seen in the patient sequence based systems but

all other measurements in the figure exhibit no change from those of WT. The fact that

neither the enlargement of the structure nor the alteration of the position of residue 79

seen in the VPE systems are replicated in HM indicate that a different mechanism is

causing the resistance in the two cases.

Figure 6.11 shows the structural variations described by PC2. The elbow, fulcrum

and cheek sheet of the second monomer move as a unit in accordance with the large

magnitude variation seen in this area in Figure 6.7c. These sections of the protease

have previously been observed to move as a rigid unit and are believed to facilitate flap

opening and impact upon substrate specificity [390, 391]. Another potentially significant

shift occurs in the separation between the residues around 71 (in the cheek sheet) and

those around 93 (in the loop between the helix and whiskers), and those around 171 and

193. This rearrangement is of particular interest as it involves the area surrounding the

mutated residue in position 71. The separation between 71 and 93 increases along with

the value of the projection. This means that according to Figure 6.7b the two triple
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Figure 6.10: Separation of residues 25 and 79, and residues 125 and 179 for all systems
under study, shown in red and blue respectively. Distances are measured between the
Cα atoms of both residues. The error bars indicate the standard deviation.

Figure 6.11: The structural variation of the protease described by PC2. The most
negative projection observed is shown in blue, the most positive in grey. The (E)lbow,
(F)ulcrum and (C)heek sheet of the second monomer move as a unit. Red and purple
are used to highlight residues 71 and 93, and 171 and 193 respectively which undergo
significant shifts along PC2 (lighter shades are used for the positions at the negative
extrema, darker for the positive).
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Figure 6.12: Separation of residues 71 and 93, and residues 171 and 193 for all systems
under study, shown in red and blue respectively. Distances are measured between the
Cα atoms of both residues. The error bars indicate the standard deviation.

mutants (L10I-A71I-L90M and L10I-A71I-L90M) should have the largest value, then the

patient sequences and then the WT. In both cases when the sequences vary only by a

different residue at position 71 the system containing isoleucine has a higher projection

value than that containing valine. This observation is in line with these changes being

caused by the structure accommodating the mutation at position 71 as isoleucine is

bulkier than valine. Measurements of the separation of residues 71 and 93, and residues

171 and 193 for all systems under study are shown in Figure 6.12. These data show

the expected pattern of differing separation between 71 and 93 depending on the size

of the residue at position 71 (the wildtype contains alanine which is smaller than either

of the mutant residues). In both cases the VPE sequences have lower separation than

the other mutants containing the same residue at position 71 (in the first monomer the

differences are 0.3 Å for both sequences in the second they are are 0.2 and 0.4 Å for

VPE-A71I and VPE-A71V respectively).

Figure 6.13 and Figure 6.7c both show that PC3 largely describes fluctuations of the

flaps which are known to be highly flexible. The flap conformational changes are similar

to those seen in other studies of bound protease [392]. Only slight shifts in the projection

values are seen between the different systems studies in the PCA (see Figure 6.7b) and as

such the motions seem likely to be part of the fluctuations experienced by all structures.

The projections for the two VPE sequences show a slightly larger spread, reflecting the

added flexibility observed in this region in Figure 6.5 and Figure 6.3.
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Figure 6.13: The structural variation of the protease described by PC3. The most
negative projection observed is shown in blue, the most positive in grey. The most
significant changes occur in the flaps and nearby cheek sheet of the first (leftmost)
monomer.

6.3.2.2 Dimer Interface Conformation

Based on crystal structure evidence, Skalova et al. [393] suggested that one effect of the

A71V mutation was the alteration of the conformation of the dimer interface. They

claimed that this change is then communicated to the elbow, fulcrum and cheek sheet

regions. These are the same regions which exhibit conformational changes, correlated

with deformations around residue 71, in PC2 in the aforementioned principal component

analysis. Along with the evidence of changes induced in static structures, NMR evidence

suggests that the four stranded dimer β sheet is divided into two sections, allowing

bending about the centre line (shown in Figure 6.14) [394]. Changes in the relative

orientation of these sheets are hard to detect in the PCA analysis, so direct analysis was

applied to see if such changes are apparent in the simulations presented here.

The cross product of the vectors running between the first and last residue of each strand,

as identified in Figure 6.14b, was used to define the normal of a plane representing each

half of the β sheet. The dot product of the two normals was then used to calculate the

angle, θ, between the two planes. The average angle of each system under investigation

is shown in Table 6.8. The two VPE mutants increase θ and exhibit the largest change

from the WT of the other systems. The change produced by the VPE-A71V is 1◦

larger than that in the VPE-A71I sequence, however, the behaviour in the latter system

is particularly notable as all other A71I containing systems decrease θ. The change

in the angle is not reproduced in the resistant HM system, again suggesting that the

mechanism of resistance encountered in the VPE sequences is of a different character to

that of systems where direct active site mutations are involved.
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Table 6.8: The average of the angle, θ, between the planes formed by strands of the
dimer β sheet either side of the dashed line indicated in Figure 6.14b. The standard
deviation is given in brackets and the difference between each system and the WT value
is also shown.

Sequence 〈θ〉 ∆〈θ〉
WT 146.83 (7.04) -
L10I 147.69 (6.99) 0.85
A71I 145.77 (7.53) -1.06
A71V 147.28. (6.87) 0.44
L90M 146.11 (7.66) -0.72
L10I-A71I 146.09 (6.96) -0.74
L10I-A71V 147.04 (7.28) 0.20
L10I-L90M 146.87 (7.87) 0.03
A71I-L90M 145.28 (7.84) -1.55
A71V-L90M 147.15 (7.67) 0.31
L10I-A71I-L90M 145.32 (8.16) -1.51
L10I-A71V-L90M 147.15 (8.47) 0.32
VPE-A71I 149.19 (7.75) 2.36
VPE-A71V 150.18 (7.55) 3.35
HM 146.38 (9.63) -0.45

The difference in conformation observed in the VPE structures is suggestive of an effect

being mediated by the mutation of the nearby residue 93 (from isoleucine to leucine).

Mutations at position 93 are strongly associated with substrate recognition [395]. If

this conjecture is correct, then a plausible hypothesis to explain the relative rarity of

the A71I at position 71 is that, without other mutations in the sequence, it distorts

the dimer interface in a way that diminishes the ability of the enzyme to discriminate

natural substrates, reducing viral fitness. The VPE sequences must be viable as they are

derived from patient data, this would suggest that the positive changes in θ which they

exhibit do not hinder recognition of natural substrate. The structural changes induced

in the A71V containing variants also result in positive changes in θ, in contrast to the

negative changes observed in the A71I containing sequences (except VPE-A71I). It is

plausible that this difference (allied to the smaller distortion of the region measured by

the separation between residues 71 and 93 presented in Figure 6.12) explains the lower

fitness penalty apparently associated with the introduction of A71V compared to A71I,

in the absence of compensatory mutations. Some credence is lent to this idea by in vitro

experiments that show HIV-1 sequences containing protease with A71V have increased

replicative capacity [292].
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(a)

(b)

Figure 6.14: The dimer β sheet location and conformation within the HIV-1 protease.
(a) shows the dimer β sheet in the context of the overall structure of the HIV-1 protease.
(b) shows the strands of the sheet with the first and last residues of each labelled. The
sections either side bend about the dashed line.

6.4 Conclusions

The aim of the Virtual Patient Experiment was to show the potential of molecular sim-

ulations to enhance or allow the assessment of predictions produced by existing clinical

decision support systems (CDSS). A patient derived sequence for which three existing

CDSS systems were found to give discordant resistance rankings for the drug lopinavir

was identified using the ViroLab comparative drug ranking system (cDRS). The Virolab

virtual laboratory was also used to identify the HIV-1 protease mutations that were

considered when producing these predictions. The list of mutations (L10I, A71IV and

L90M) were simulated in the context of the HXB2 wildtype and in all possible combi-

nations along with the full patient sequence (with both isoleucine and valine in position
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71). Using the BAC [355] tool to automate the system setup, data transfer, simulation

and analysis allowed us to easily run simulations across a variety of resources on both

the US Teragrid (Ranger and Kraken) and the EU DEISA network (HECToR, SARA

and LRZ). To simplify the analysis of the theoretical minimum turn around time (TAT)

of BAC orchestrated free energy calculations consider the case when only the Ranger

machine (with 62976 cores) at the Texas Advanced Computing Center (TACC) is used

for the production simulations. The optimally scaled rate of computation was approxi-

mately 4 h/ns on 64 Opteron cores/replica. The theoretical minimum turn around time

(TAT) for the 13 sequences investigated for this study (using 50 replicas each producing

4 ns trajectories) using 41600 cores (simulating 650 replicas simultaneously) could be as

short as 16 hours. In practice peak performance was around 300 ns/day and generally

far lower. MMPBSA and normal-mode post processing took 3 and 20 h/ns, respectively,

but was run in parallel for each nanosecond using the Leeds node (256 cores) of the U.K.

National Grid Service and the local Mavrino cluster (96 cores). The theoretical mini-

mum total turn-around time (simulation + free energy calculation) using this approach

was thus approximately a week. This TAT would allow such simulations to be provided

on a clinically relevant timescale assuming suitable levels of resources were available.

The BAC simulation workflow evaluated in Chapter 5 was used to simulate and provide

binding affinity calculations for each of these sequences determined that other than the

two full patient sequences (VPE-A71I and VPE-A71V) all were susceptible to lopinavir

(i.e. had a binding free energy as attractive, or more attractive than, the HXB2 wild

type within the resolution of our calculations)8. The full patient sequences, however,

would be ranked as having intermediate levels of resistance. Using the absolute binding

energy, ∆Gtheor, VPE-A71I and VPE-A71V have changes in binding affinity compar-

ative to WT of 1.98 and 2.07 kcal mol−1 respectively. These values are close to that

shown by the known resistance mutant AS, of 2.7 kcal mol−1, in the multiple drug resis-

tant mutants used to validate the ability of our simulation and free energy calculation

protocol to reproduce in vitro experimental results. Excluding the entropic component

of the calculation (which is known to have less reliable convergence properties compared

to the MMPBSA part of the free energy calculation) both systems remain resistant but

the VPE-A71I system has a ∆∆GMMPBSA value of only 0.98 kcal mol−1 whilst VPE-

A71V value remains high at 2.07 kcal mol−1. This ranking provides evidence that in

many circumstances the entire sequence may need to be considered in order to gain an

accurate assessment of the drug resistance of the virus infecting a particular patient. In

the case of the specific sequence considered here (containing L10I, I13V, K14KR, I15V,

K20T, L63P, A71IV, V77IV, L90M and I93L relative to HXB2 wildtype) the binding

8This is now the consensus result of the systems with their current rule sets, updated since the
instigation of this study. The rules of all CDSS referred to in this chapter are constantly revised as new
patient data and literature becomes available. The results of this study were not considered by any of
the CDSS.
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affinity calculation presented here is not the only evidence available as a correlational

study of resistance to patient genotype has identified a pattern of mutations at positions

10, 63, 71, 90 and 93 as being associated with protease inhibitor resistance (albeit few

patients treated with LPV were involved in the cohort) [264].

In addition to the binding affinity results, molecular simulation also allows us to gain

mechanistic insight into patterns of resistance. Here we have shown that the full patient

sequences both containing both A71I and A71V adopt substantially different conforma-

tions to those of other resistant mutants such as the hexamutant (HM) system used

as a high resistance benchmark. In the VPE mutants the overall enzyme conformation

is expanded compared to WT (and all other mutants investigated in this study) with

the distances between residues 35 and 45 on both monomers increased by 2.0 Å for

the first and 1.2 Å for the second. Contrary to this overall movement, residue 79 on

both monomers bends in towards the active site. The structural deformation caused by

replacing alanine with the bulkier valine or isoleucine and seen in all other structures

containing A71I or A71V is reduced. Some correspondences in the mode of resistance

compared to AS and HM do exist, the active site hydrogen bond network is similarly per-

turbed and water molecules more commonly occupy the catalytic cavity in all resistant

systems we have simulated.

Further structural changes can be observed in the dimer β sheet. The four strands of

which form two sub sheets which can bend relative to one another. The angle between

the two pairs of strands is substantially increased in the resistant VPE mutants compared

to WT. This is notable in the case of VPE-A71I as all other mutants studied containing

the A71I substitution have a decreased angle. It is possible that such deformations may

impact upon the enzymatic fitness of the protease sequence and hence at least partially

explain the rarity of the A71I mutation compared to A71V which is known to increase

the replicative capacity of HIV-1 in vitro [292].



Chapter 7

Towards an Understanding of

NNRTI Binding in HIV-1

Reverse Transcriptase

7.1 Introduction

As discussed in Chapter 4, the most common drug cocktails used in clinical treatment

of HIV-1 infection contain inhibitors of two enzymes which play vital roles in the HIV-1

life cycle: protease (PR) and reverse transcriptase (RT). In the last two chapters we

have detailed the application of molecular simulation and the MMPBSA method of free

energy estimation to the investigation of drug resistant variants of the HIV-1 protease.

An obvious question is whether this simulation and analysis protocol can be adapted to

successfully assess free energy differences in HIV-1 RT. The Binding Affinity Calculator

(BAC) tool, developed to automate protease simulations, was enhanced to allow the

construction, simulation and analysis of RT models.

HIV-1 RT is approximately five times the size of HIV-1 PR and the consequent increase

in computational effort required to simulate it has led to it being a much less popular

target for such investigations. In addition, the complexity and flexibility of many regions

of the structure (as described in Chapter 4) make the challenge of investigating the RT

more daunting, albeit potentially more rewarding.

An important question, that remains a topic of debate, is the precise method of inhibition

of the RT polymerase activity by the Non-Nucleoside RT Inhibitor (NNRTI) class of

drugs. Molecular dynamics simulations offer the possibility of gaining insight into this

mechanism, an enticing prospect motivating our study of both the free energy of binding

169



Chapter 7. Towards an Understanding of NNRTI Binding 170

of this class of drugs and their impact on the structural and dynamic properties of HIV-1

RT.

Although far fewer molecular simulation studies of HIV-1 RT have been conducted

compared to protease, some insights into the system have been produced in this fashion.

One of the earliest MD studies of RT, conducted by Madrid et al. [312] investigated

the stability of the open conformation of the apo enzyme. A structure bound to double

stranded DNA (PDB structure 2HMI) with the template and primer removed was used

to create a series of eight one nanosecond simulations in implicit solvent. Six of these

showed the p66 thumb moving towards a configuration similar to that seen in the closed

crystal structures where it stabilises. In the remaining two simulations the thumb was

seen to move further from the active site before stabilising. These results show reasonable

agreement with the experimental results of Kensch et al. [317], where it was observed

that 65% of RT was in the closed form at 273 K and 95% at 313 K (the simulation

was run at 298 K). The conformational change, however, happens on an unrealistically

fast timescale of 30 ps to 120 ps due to the use of an implicit solvent. A more recent

study by Carvalho et al. [396] used a range of crystal structures to create a homology

model of the unliganded enzyme with the p66 conformation largely based on that of

the 1DLO structure. Simulations in explicit solvent indicated that the closed form was

stable through out the 1 ns run. Despite this stability, few contacts between the thumb

and fingers were observed. Whilst overall the structure showed only small fluctuation

the fingers between residues 120 and 150 were seen to be flexible.

Another study by Madrid et al. [397] compared the motions of the unliganded system

to that of the DNA liganded system. They found that the DNA bound system was

more flexible and that the binding of the ligand affected the way the different domains

interacted (as measured by the cross correlation of the constituent residues). Major

changes were observed in the p66 connection, which was anticorrelated to the other

p66 domains and correlated to the p51 thumb in the unliganded case. In the DNA

case, the connection shows no strong correlations at all, however strong anticorrelations

between the p66 thumb and RNaseH domain, which are not seen in the unliganded case,

are present. The unliganded form simulation saw the RNaseH as anticorrelated with

the p66 fingers, palm and connection. These flexibility results qualitatively agree with

Gaussian network models of the same systems [398].

While in the DNA case the motions seen in MD simulations agree with those of network

models, a different picture is seen in the comparison of MD simulations of the NNRTI

liganded system and the network models of Temiz & Bahar [47]. Two MD simulations

which look at the comparative dynamics of unliganded and NNRTI bound RT are avail-

able, one performed by Shen et al. [333] and one by Zhou et al. [399]. The former is
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a steered molecular dynamics study which showed that the motility of the thumb is

severely reduced by the binding of an NNRTI, although the simulation did not include

the p51 subunit or the RNaseH domain. This does not agree with the network model

findings, which show that the thumb retains motility while the interdomain correlations

are altered. The network models of Temiz & Bahar [47] consider the apo RT structure

and two examples of the NNRTI bound enzyme (nevirapine and efavirenz were the drugs

involved). In the NNRTI bound forms the motion of the p66 fingers and thumb were

seen to decouple but the size of motions were altered only slightly. The efavirenz model

did actually exhibit slightly lowered thumb motility. It has been posited that this may

be a partial explanation for the greater effectiveness of efavirenz as an inhibitor [47].

There are reasons to be cautious about the findings of both of these models. The lack

of inclusion of much of the enzyme by Shen et al. [333] is a major weakness, considering

the fact that the NNRTIBP involves residue 138 of p51 and the interdependency of the

domain motions seen in the earlier work by Madrid [397]. The network model, by its

nature, is a course grained model and may not include important interactions, which

may determine the interaction and motility of the enzyme. The results shown in [399]

however come from simulations involving the entire enzyme in atomistic detail. This

study shows a reduced motility of the p66 thumb when Nevirapine binds, but that some

of this motion is restored by in a triple mutant (V106A, Y181C, Y188C). This simulation

was, however, only 1 ns long and the level of motion was not large over this timescale,

meaning that motility was judged by the spread of points in a principal component

analysis of the systems motion.

The motions of mutant forms of RT have been little studied in comparison with those of

PR. There is one major exception to this, Rodŕıguez-Barrios & Gago [342], Rodŕıguez-

Barrios et al. [344] have used targeted molecular dynamics, in which forces are imposed

on a structure to guide it into a target conformation, to suggest that the K103N may

not be related to the ability of NNRTIs to remain bound to the NNRTIBP but instead

that it creates a greater energy penalty to the creation of the binding pocket in the first

place. In the earlier of the two studies [342] the sidechain of Y188 was seen to rotate

before that of Y181 when the NNRTIBP was created. This preference disappeared in the

second study when NNRTIs were placed at the putative entrance to the binding pocket,

with the order of change seemingly being defined by the plasticity of the incoming drug

[344].

In addition to the dynamic properties previously discussed, Zhou et al. [399] report that

using MMPBSA they see a reduction in binding affinity in the mutant system, although

this is unsurprising considering that this triple mutant replaces a number of the bulkier

NNRTIBP residues with smaller ones. There is, however, evidence from earlier work

[120] which showed that the MMPBSA in conjunction with molecular docking techniques
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could predict the lowest energy binding mode of efavirenz using simulations of only the

20 Å area of RT surrounding the binding pocket. The same group have also attempted

to use the technique as part of a screening protocol for drug candidates [400]. The

simulations used in that case, however, completely neglected the motion of the enzyme

concentrating on simulating the ligand motion alone. The results showed some ability

to discriminate drug candidates but failed to identify several known NNRTIs within

the test set and the ranking between those that could be identified was only moderate.

This may well reflect the combination of using a single simulation and the failure to

describe the motion of the binding pocket. A more recent study has indicated that

short simulations combined with the MMPBSA free energy can correctly reproduce the

experimental relative ranking of different NNRTI binding affinities [401]. Modelling

studies of the NVP bound RT (with the system truncated to contain only the protein

and water molecules within 10 Å of the NVP drug) have indicated that water bound

along side the inhibitor can increase ∆G by as much as -5.45 kcal mol−1[402]. All of

these studies have been based on short simulations (of less than 2 ns) and provided no

indication of the level of convergence of the reported free energy values.

The longest RT molecular simulations to date were performed by Ivetac & McCammon

[311]. This study looked at the dynamics of the apo and NNRTI bound enzyme and

a structure in which an NNRTI had been removed. Their work ran 4 copies of each

system, with every run producing 30 ns of simulation. They found that half of the

copies of the closed system opened to a similar binding cleft width as that in DNA

bound crystal structures. Four simulations of the system with NVP removed explored a

similar conformation after 10 ns of simulation. They did not report any binding energy

data.

The results reported in this chapter aim to bring together an understanding of the

domain scale motions of HIV-1 RT with that of the binding free energies of NNRTIs.

It is hoped that such insights will provide the foundations for the assessment of the

impact of mutations on inhibitor binding in this system. The first section of this chapter

focuses on a comparison of the conformational exploration of HIV-1 RT in its apo form,

in complex with a natural DNA substrate and when bound to two widely used NNRTIs

(efavirenz, EFZ, and nevirapine, NVP). This study culminates in a comparison of the

binding energies of the two inhibitors and a determination of the impact of the larger

subdomain motions of RT upon them. The second part of this chapter is concerned with

establishing the feasibility of using the BAC workflow to assess the resistance level of

mutant HIV-1 RT strains.



Chapter 7. Towards an Understanding of NNRTI Binding 173

Table 7.1: The names of the HIV-1 RT systems simulated listed with their bound
ligands and the PDB entry of the crystallographic structures used to create them. A
structure is designated as open if a separation of greater than 15 Å exists between
residue 24 in the p66 fingers and residue 287 in the p66 thumb (the locations of these
residues are indicated in Figure 7.1a). The number of atoms in the fully solvated model
used for our molecular dynamics simulations is also shown.

System Conformation Ligand Type PDB No. Atoms

CSD Closed None 1DLO [323] 164,486
OPN Open None 2HMI [403] 182,668
DNA Open Double stranded DNA 2HMI [403] 196,721
RMD Open None 1IKW [93] 186,096
EFZ Open NNRTI 1IKW [93] 186,126
NVP Open NNRTI 3HVT [404] 181,197

7.2 Investigation of the Impact of NNRTI Binding on

HIV-1 RT Structure and Dynamics

The focus of this part of the chapter is twofold: firstly, to gain a qualitative understand-

ing of the changes in dynamics that affect the RT enzyme under a variety of ligation

states in order to inform future studies and, secondly, to determine whether MMPBSA

can differentiate the binding energies of different NNRTIs. The inhibitors efavirenz

(EFZ) and nevirapine (NVP) are chosen to represent the NNRTI class of drugs (the

chemical structures of both drugs are shown in Figure 7.1). The intention is to develop

insights which will facilitate the use of the same approach which has been successfully

applied to the HIV-1 protease system where qualitative studies [286] have informed

quantitative studies of the binding affinity of inhibitory drugs [288].

In this study six different HIV-1 RT systems representing the unliganded, drug bound

and natural double stranded DNA substrate bound enzyme were simulated for a total of

26 nanoseconds each. The ligands bound and the crystallographic structures upon which

the simulated systems are based are listed in Table 7.1. The available crystal structures,

discussed in Chapter 4, can be divided into two broad conformational classes, one of

which is called ‘open’ and the other ‘closed’. In this study an ‘open’ conformation is

defined as one in which there is a separation of greater than 15 Å between residue 24 in

the p66 fingers and residue 287 in the p66 thumb; below this, a structure is designated

as ‘closed’. The locations of residues 287 and 24 in the open conformation are shown in

Figure 7.1a.
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(a)

(b) (c)

Figure 7.1: The structure of HIV-1 RT bound to the drug nevirapine is shown in a)
with the inhibitor shown in pink surface representation, the fingers in blue and the
thumb in red. The polymerase catalytic triad is depicted in chemical structure and
the positions of residues 24 (green ball) and 287 (yellow ball) in the p66 subunit, the
separation of which is used in this study to define open and closed structures, are also
shown. (b) and (c) show the chemical structures of the two NNRTIs used in this study
which are nevirapine and efavirenz, respectively.

7.2.1 Methods

The simulations and free energy calculations were performed using the automated BAC

tool [355]. The protocol used for structure preparation, simulation and analysis was

derived from that described in Chapter 5. The following is a brief overview of this

process, highlighting the changes made to the protocol for use with HIV-1 RT.
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7.2.1.1 Model Creation

Unfortunately, all available HIV-1 RT crystal structures are incomplete and a number of

loop residues in the p51 subunit of the NNRTI bound structures are missing (residues 217

to 231 in 1IKW, 225 to 260 in 3HVT and 365 to 352 in both structures). The models were

completed by copying in the coordinates from 1HQU [343] (this structure was chosen due

to its high resolution (2.7 Å) and the fact it was bound to an NNRTI) after alignment

of the surrounding residues using VMD [315]. In each case the final model contains 556

residues in the first (p66) chain and 427 in the second (p51) chain for a total of 983

residues. Once the manual editing of structures was complete the rest of the simulation

workflow was automated using the Binding Affinity Calculator (BAC) scripts created to

automate simulations and free energy calculations for the HIV-1 protease [355]. Each

system was solvated using a cubic box of TIP3P water molecules [359] with at least 14

Å distance around the protein. The systems were neutralised by the addition of Cl−

ions in the non-DNA bound systems (8, 8, 12, 12 and 10 Cl− were required respectively

for the closed apo system, open apo system, DNA bound, EFZ bound, EFZ removed

and NVP bound systems) and (22) Na+ ions in the DNA bound case.

Inhibitor potential parameterisation was performed by extracting the drug coordinates

into separate files, using the PRODRG tool [357] to insert missing hydrogens. The

geometries were then optimised using Gaussian 98 [358] (with the 6-31G** basis func-

tions). The Restrained Electrostatic Potential (RESP) procedure, part of the AMBER

package [70], was used to calculate the partial charges. The force field parameters for

the inhibitors were described using the General AMBER Force Field (GAFF) [53]. The

protein and DNA elements of all systems were described by the standard AMBER force

field (ff03) [360] which is parameterised for bio-organic molecules and including DNA in

particular. The default variants (such as protonation states) for amino acids in physio-

logical conditions were used for all residues.

7.2.1.2 Molecular Dynamics

The molecular dynamics package NAMD2 [50] was used throughout the minimisation,

equilibration and production stages of the simulations. Electrostatic interactions were

treated using the particle mesh Ewald (PME) [405] method and SHAKE [66] constraints

were applied to all bonds involving hydrogen atoms in order to employ a 2 fs integration

time step. Minimisation was conducted using the conjugate gradient and line search

algorithms for 2000 iterations of each system. During this process all heavy atoms were

restrained using a force constant of 5 kcal mol−1Å2.



Chapter 7. Towards an Understanding of NNRTI Binding 176

The next stage of the equilibration process was a mutational relaxation protocol in which

each mutated residue and residues within 5 Å are released in turn from the restraints

for 50 ps. This allowed the residues to reorientate into more favourable conformations if

necessary. After the 50 ps relaxation period the restraints are reapplied to each region.

The equilibration phase anneals the system taking the temperature from 50 K to 300 K

in 50 ps. Once achieved, the final temperature was maintained using a Langevin ther-

mostat with a coupling coefficient of 5 ps−1. This was followed by completely isothermal

equilibration for 200 ps in the canonical (NVT) ensemble. In both of these stages the

restraints imposed during minimisation were retained. The restraints were then gradu-

ally reduced in four steps of 1 kcal mol−1Å2, each step running for 50 ps. The restraints

applied are weaker than in the protease case as no regions are known to suffer solvation

induced deformities unlike the flap region of the protease. After this, the restraints were

removed completely and the systems allowed to evolve under isothermal-isobaric (NPT)

conditions using a Berendsen barostat [59] with a target pressure of 1 bar and a pressure

coupling constant of 0.1 ps. Coordinate trajectories were recorded every 1 ps throughout

all equilibration and production runs.

The simulations presented here were run using 512 cores on the Intrepid1 BlueGene P

machine at the Argonne National Laboratory, achieving a rate of 2 h/ns. Additional

simulations were run utilising both the 62,976 core Ranger machine2 at the Texas Ad-

vanced Computing Centre (TACC), part of the US Teragrid, and the 3,328 core Huygens

system3, administered by SARA in the Netherlands, which is part of the EU DEISA

grid. A simulation rate of approximately 3.5 h/ns was achieved on 256 cores per system.

These last two resources are comparable to those used to perform the protease simula-

tions described in Chapter 5 and Chapter 6 where only 64 processors provided optimal

processing speed.

7.2.2 Analysis

The analysis presented here has two main purposes; firstly to explore the changes to en-

zyme dynamics made by the binding of NNRTIs to HIV-1 RT and, secondly, to calculate

the binding affinities of the drugs NVP and EFZ to the enzyme. To investigate the former

problem two techniques are used: cross-correlation matrices and principal component

analysis. The reason for employing both related methodologies, is that cross-correlation

matrices provide a compact way in which to investigate changes in the relative subdo-

main motions between the very different closed and open overall enzyme conformations

1Intrepid: http://www.alcf.anl.gov/resources/storage.php
2Ranger: http://www.tacc.utexas.edu/resources/hpcsystems/
3Huygens: www.sara.nl/userinfo/huygens/index.html

http://www.alcf.anl.gov/resources/storage.php
http://www.tacc.utexas.edu/resources/hpcsystems/
www.sara.nl/userinfo/huygens/index.html
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without the gross structural variance dominating the analysis. PCA is used to analyse

the structures explored by the open conformation systems and the differences between

them.

7.2.2.1 Cross Correlation Matrices

Cross correlation matrices are used to identify concerted motions seen in simulation

trajectories. The matrices were constructed for the various systems by superimposing

the Cα coordinates of snapshots from the trajectory on an average structure using the

ptraj program which is part of the AMBER package[70]. The elements of the matrix

are given by

C(i, j) =
< ∆ri ·∆rj >

< ∆ri >
1
2< ∆rj >

1
2

, (7.1)

where ri and rj are the displacement vectors of the ith and jth atoms respectively.

Providing that the angle between two such vectors is reasonably close to 0 or 180◦,

then this value will identify pairs of atoms whose motion is correlated[406]. Complete

correlation is signified by a C(i, j) value of 1, anti-correlation by -1. The matrices

described in this chapter were calculated using the entire 20 ns post-equilibration stage

simulations for each system, although similar results were obtained on each individual

nanoseconds of simulation and with subsets of data down to 200 ps.

7.2.2.2 Principal Component Analysis

In this study, dimensional reduction via principal component analysis (PCA) is per-

formed upon a concatenated trajectory of the production phase of all open conforma-

tion systems (OPN, DNA, RMD, EFZ and NVP) in order to isolate the most significant

conformational differences between the structures explored. The correlation matrix is

calculated from the molecular dynamics trajectory (after alignment with the average

structure) and then diagonalised. This provides an orthogonal set of eigenvectors rep-

resenting linearly independent modes of conformational change which are the principal

components. The eigenvalues associated with each principal component are a measure

of the variance in the original dataset described by that component. The principal

component analysis presented here was performed on the backbone coordinates of the

concatenated trajectory using the bio3d package [407], in order to elucidate how binding

DNA or an NNRTI alters the conformations explored by HIV-1 RT in our simulations.

Structures were sampled from the combined trajectory every 10 ps.
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7.2.2.3 Free Energy Calculations

After the equilibration is complete, structures output every 10 ps were post-processed

using MMPBSA, meaning that a hundred sets of coordinates were analysed for each

nanosecond of simulation. Unlike the HIV-1 protease cases described in Chapter 5 and

Chapter 6 the free energy calculations presented here neglect the conformational entropy

component of the binding free energy and are produced from the MMPBSA method-

ology alone. The increased size of HIV-1 RT renders normal mode calculations on the

entire protein impractical, due to both the high computational cost and the slow con-

vergence of the method. Other studies have applied normal mode analysis to truncated

sections of the protein but no difference was produced in the ranking of systems [401].

In addition there are problems with such an approach as the physical interpretation of

the results is not clear and the truncation may prevent access to significant modes. As a

consequence of this it is not possible to reproduce absolute binding affinity values, ∆G,

from experiment but differences in binding free energy changes may be compared.

7.2.3 Equilibration

Physical properties can only be reliably calculated from systems which have been ad-

judged properly equilibrated. For all systems simulated here the minimisation applied

is sufficient to remove all bad contacts as measured by the decrease in potential en-

ergy which, after the heating phase, remains stable with a standard deviation of less

than 450 kcal mol−1 in all cases. A further test of whether the systems under study

have equilibrated can be made by investigating the structural variation seen over the

simulation.

7.2.3.1 Structural Equilibration

In order to assess whether the simulations have equilibrated, the root mean squared

deviations of the systems from their initial configurations have been calculated (see

Figure 7.2a). The deviations from the initial structure stabilise after approximately 6

ns, with fluctuations in all systems after this point being less than 1.5 Å. The HIV-1 RT

is known to be a flexible protein, with a number of loop regions for which conformational

changes might be expected throughout even equilibrated simulations and indeed some

potentially substantial deviations are observed after the 6 ns cut off (particularly those

approximately 8 ns into the simulation of the RMD system, from which the drug EFZ

has been removed). Using difference distance matrices, Keller et al. [316] determined a

set of residues which varied in relative position by less than 2 Å in a wide range of HIV-1
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Chain Residues

p66 4-6, 95-107, 162-163, 180-181, 188-200, 202-205, 226, 234-235, 237-
239, 317, 319, 323, 339-345, 349-353, 365-366, 368-402, 405-419,
428-436, 439, 493, 530

p51 6-7, 18-45, 54-64 71-84, 97-111, 113-117, 121, 123-138, 140-174,
176-184, 186-192, 197-198, 201-202, 208, 252, 254-264, 267, 274,
277, 280-282, 284, 296, 298-300, 303-307, 320, 322, 329, 331, 333-
335, 364-393, 397-417

Table 7.2: Residues determined to vary relative positions by less than 2 Å in a survey
of HIV-1 RT crystal structures by Keller et al. [316].
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Figure 7.2: Structural variation seen over the 25 ns of simulation performed on each
HIV-1 RT system under investigation measured by (a) RMSD of the protein backbone
relative to the initial structure and (b) the RMSF of the most structurally stable residues
(identified by Keller et al. [316] and listed in Table 7.2) compared to an average structure
generate from the full simulation trajectories. Values for the CSD system are shown in
light blue, OPN in black, DNA in red, RMD in green, EFZ in dark blue and NVP in
orange.

RT crystal structures. These residues are assumed to represent the most structurally

stable regions of the protein and are listed in Table 7.2. To investigate whether the

motions observed after the 6 ns estimated equilibration window are confined to regions

for which conformational changes are expected the RMSF of each system was calculated

relative to the average structure using only the residues identified by Keller et al. [316]

as not undergoing large structural rearrangements. Figure 7.2b shows that the RMSF

of the simulations is reduced to 1.5 Å at around 6 ns and continues at or below this

level throughout all the simulations. Consequently the trajectory between the start of

the simulation and 6 ns in is defined as being the equilibration phase and all subsequent

parts comprise the production phase.

The fluctuations of individual residues during the equilibration phase are shown in Fig-

ure 7.3 for the CSD system, together with the differences for each of the open conforma-

tion systems. In all systems the fluctuations in the p51 domain (shown in Figure 7.3a)
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Figure 7.3: RMSF of each residue of the CSD system is shown above the difference
in RMSF for each of the other (open conformation) systems under investigation. The
residues are divided into those in (a) p66 and (b) p51. Values for the CSD system
are shown in light blue, OPN in black, DNA in red, RMD in green, EFZ in dark
blue and NVP in orange. The subdomains are labelled F(ingers), P(alm), T(humb),
C(onnection) and R(Nase H). The p66 fingers domain is observed to undergo consider-
ably larger conformational change in the open conformation systems; the difference is
particularly pronounced in the OPN and NVP systems.
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are similar with the exception of the DNA system where regions of the palm and thumb

show larger deviations. The fluctuations in the CSD p66 chain (shown in Figure 7.3a)

peak in the fingers, RNaseH and at residue 223. This residue is part of the loop run-

ning across the front of the palm region. The open conformation systems show larger

deviations in the p66 fingers and thumb since, as expected, they lack the hydrogen

bonds which link these regions in the closed system. In the NVP system there is also

greater flexibility between the large peaks at residue 218 and residue 225. This differ-

ence is associated with the opening of a channel which allows water molecules to enter

the NNRTI binding pocket. The relative flexibility of different regions seen here is in

line with both the experimental temperature factors and other simulation results [397],

giving us confidence that our models are behaving correctly and that no anomalies have

been introduced during the editing of the structures.

7.2.3.2 NVP Water Entry

The additional flexibility, indicated by the increased RMSF values between residues 218

and 225, in the NVP system corresponds to deviations of a loop close to the region

containing the NNRTI binding pocket. It is associated with the formation of a channel

between residues 105, 106, 225, 227 and 236 during the period 0.2 to 0.7 ns into the

simulation. This is coincident with the entrance to the binding pocket posited by Esnouf

et al. [336] on the basis of the protrusion of the NNRTI delavirdine from the pocket. In

the simulation, opening of the channel is induced by a water molecule which subsequently

enters the NNRTI binding pocket (see Figure 7.4). The distances between the two water

molecules which enter the binding pocket during the equilibration phase and the oxygen

of NVP are shown in Figure 7.5. The first water entry occurs approximately 0.2 ns into

the simulation before the restraints on the protein are fully removed. Only one water

molecule occupies the binding pocket at a time with an exchange made between the

pocket and solvent (approximately 1.4 ns into the simulation) through the same channel

used for the initial water ingress. A water molecule is present in the NNRTI binding

pocket throughout the remainder of the simulation. After 0.4 ns the water molecule

occupying this position forms hydrogen bonds (defined as remaining within 3.5Å and

with an O-H-O angle of at most 30◦) with the backbone oxygen of L234 and the oxygen of

NVP. The 3HVT crystal structure upon which this simulation is based does not contain

any water molecules; however, one is present in this bridging location between drug and

protein in the 1VRT structure of the NVP bound HIV-1 RT [408].

The distance track of the first water molecule indicates that it moves positions from

approximately 7 Å to around 3 Å from the NVP oxygen between 0.2 ns and 0.4 ns

into the simulation. Coincident with this movement two loops in the fingers domain,
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(a) (b) (c)

Figure 7.4: The channel through which a water molecule enters the NNRTI binding
pocket is shown (a) at the start of the simulation, and after the water molecule enters at
(b) 0.2 ns and (c) 0.7 ns into the simulation of the NVP bound system. NVP is shown
in green with the residues which rearrange to allow water entry shown surrounding the
NNRTI binding pocket in blue.
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Figure 7.5: The distance between the two water molecules which enter the NNRTI bind-
ing pocket of the NVP bound HIV-1 RT during the equilibration phase of simulation
and the oxygen molecule of the drug. The first water molecule (represented by the dark
blue line) enters after 0.2 ns (before constraints are fully removed) and moves further
into the pocket after 0.4 ns before exiting approximately 1 ns into the simulation. The
second water molecule (represented by the light blue line) replaces the first after 1.4 ns.
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Figure 7.6: The largest conformational changes undergone by the NVP system during
equilibration occur in the fingers domain. The initial structure is shown in red, that 0.7
ns into the simulation in blue. The loop containing the residues 65 and 72, implicated
in dNTP binding and labelled A, and that between residues 135 and 140 (labelled B)
bend away from the binding cleft. The movement is towards the viewer of the figure
and from left to right, respectively.

the first between p66 residues 65 and 72 and the second running from p66 residues 135

and 140, undergo significant conformational rearrangements. Both loops move away

from the substrate binding cleft as shown in Figure 7.5. These motions account for

the additional flexibility observed in the per residue RMSF for the NVP system (see

Figure 7.3). Whilst it is tempting to conclude that the changes in fingers conformation

are induced by the changes in the NNRTI binding pocket produced by water entry,

caution should be exercised as both changes occur soon after the release of constraints

upon the system.

7.2.4 Production Phase Structural Analysis

Following the equilibration phase, 20 ns of simulation forms the production phase. The

motions of the enzyme during this stage of the simulation were analysed to investigate

how they are changed by NNRTI binding.
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7.2.4.1 Cross Correlation Matrices

The cross-correlation matrices (Figure 7.7) show strong correlations in all the intra-

domain regions, indicating that the domains in all of the systems retain their integrity.

The areas showing the strongest concerted motion are in broad agreement with both

previous molecular dynamics simulations [397] and network models of the unliganded

enzyme [398]. The concerted motions are most pronounced in the OPN system, perhaps

as a consequence of the larger motions of key subdomains observed over the trajectory

(see results presented later), and are weakest in the DNA model. There is no significant

evidence of NNRTI binding altering the relationship of the thumb to other domains

in either of the systems reported here, with the thumb correlations closely resembling

both the open unliganded and DNA bound behaviour (except with respect to the end

of p51 where anti-correlations are increased in the DNA simulation). There is varia-

tion, however, between the closed conformation system where the p66 thumb is seen to

correlate with the p66 fingers and the open conformation systems in which it is not.

This would suggest that the correlation may be a function of the specific conformational

state of the system (and the hydrogen bonding between domains in the closed system

as suggested by crystallographic evidence [323]) rather than the binding of either the

natural substrate or an inhibitor. This contradicts the findings of a previous study by

Madrid et al. [397] which investigated the correlated motions of the open conformation

of the apo and DNA bound enzyme and found that the p66 thumb did correlate with

the fingers in the open unliganded form of HIV-1 RT. The differences between the two

studies may reflect improvements in the AMBER force field used (the previous study

was implemented using ff94) and/or the fact that the simulations presented here are

substantially longer than those in the previous study (where only 1 ns trajectories were

produced) and consequently sampling will have been improved.

In all of the systems except DNA, the RNaseH domain is correlated with the thumb and

connection of the p51 subunit. A change in the relationship of this region’s behaviour

is in line with the fact that residues in both of these domains are seen to interact with

both DNA and RNA templates in the reported crystal structures [409].

7.2.4.2 Principal Component Analysis

Figure 7.8 shows the level of variation captured by each of the first ten PCs. Only

the first four describe greater than 5% of the observed differences in structure between

snapshots. The first two components account for 55% of the total variation and the focus

of this section will primarily be on what they can tell us about the differences between

systems but the third and fourth PC will also be considered. The results of PCA are used
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(c) (d)

(e) (f)

Figure 7.7: Cross-correlation matrices for the simulations of the HIV-1 RT: (a) CSD,
(b) OPN, (c) DNA, (d) RMD (e) EFZ and (f) NVP. Residues 1-556 represent the
p66 chain and the remaining residues (557-983) the p51 chain. The subdomains are
labelled F(ingers), P(alm), T(humb), C(onnection) and R(NaseH). The intensity of
each position represents the magnitude of the correlations; only those with a magnitude
greater than 0.3 are shown in the cross-correlation matrices. Correlations are shown
below the diagonal, anti-correlations above.
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Figure 7.8: The percentage of the variation observed over the concatenated trajectory
of all open conformation systems (OPN, DNA, RMD, EFZ and NVP) which is captured
by each principal component (PC No, horizontal axis).
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Figure 7.9: Projection of each snapshot of the concatenated trajectory for all open
conformation systems (OPN, DNA, RMD, EFZ and NVP) simulated along the first
four principal components. The first two PCs are shown in (a), the third and fourth in
(b).

to identify metrics which help elucidate conformational and dynamic changes associated

with NNRTI binding.

Figure 7.9 shows the projection of each snapshot of the concatenated trajectory along

the first four principal components. Projections along PC1 distinguish between the

three systems in which the NNRTI binding pocket is present (EFZ, RMD and NVP)

and those without as the former have negative values and those without positive ones.
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(a) (b)

Figure 7.10: Porcupine plot showing the RT structural variation described by PC1. The
structure in blue represents the most negative projection along the PC obtained from
the concatenated trajectory of all open conformation systems (OPN, DNA, RMD, EFZ
and NVP) simulated. The red cones show the direction of motion of the Cα atoms of
the structure along the PC with the point representing the position in the most positive
projection observed. The structure is shown (a) looking along the binding cleft from
the polymerase active site to the RNaseH and (b) looking down from a point beyond
the p66 fingers.

The projections along PC2 are similar for the EFZ and DNA systems which both have

slightly negative values, the NVP and OPN are more positive and the RMD is more

negative. In all systems except OPN the projections of both PC1 and PC2 are fairly

tightly clustered. The OPN system moves along both vectors over the duration of the

production phase (in both cases in the negative direction).

The conformational changes described by PC1 are illustrated in Figure 7.10. The key

changes that can be seen are that the region at the base of the p66 thumb is deformed in

the most negative projection, as is expected upon the formation of the NNRTI binding

pocket, explaining the separation of the systems observed in Figure 7.9a. The more

negative projections also have the thumb closer to the RNaseH and the loop containing
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(a) (b)

Figure 7.11: Porcupine plot showing the RT structural variation described by PC2. The
structure in blue represents the most negative projection along the PC obtained from
the concatenated trajectory of all open conformation systems (OPN, DNA, RMD, EFZ
and NVP) simulated. The red cones show the direction of motion of the Cα atoms of
the structure along the PC with the point representing the position in the most positive
projection observed. The structure is shown (a) looking along the binding cleft from
the polymerase active site to the RNaseH and (b) looking down from a point beyond
the p66 fingers.

resides 65 and 72 in the fingers located further away from the polymerase active site.

The RNaseH subdomain is also shifted to the side of the enzyme containing the p66

thumb in the more negative projections. The deformations creating the NNRTI binding

pocket being correlated with a forward rotation of the thumb are expected from crystal

structure evidence (as detailed in Section 4.7). However, changes in the p66 fingers are

not commonly noted as effects of NNRTI binding.

PC2 is dominated by the opening of the DNA binding cleft with the p66 thumb and

fingers moving in an anti-correlated fashion to close the cleft as the projection becomes

more positive, as shown in Figure 7.11. Interestingly projections along this component

do not separate the drug bound and apo or substrate bound systems. The projections

of the OPN, RMD, EFZ and NVP systems show a spread along this component (see

Figure 7.9a) indicating that they are undergoing motions in which the motions of p66
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(a) (b)

Figure 7.12: Porcupine plot showing the RT structural variation described by PC3. The
structure in blue represents the most negative projection along the PC obtained from
the concatenated trajectory of all open conformation systems (OPN, DNA, RMD, EFZ
and NVP) simulated. The red cones show the direction of motion of the Cα atoms of
the structure along the PC with the point representing the position in the most positive
projection observed. The structure is shown (a) looking along the binding cleft from
the polymerase active site to the RNaseH and (b) looking down from a point beyond
the p66 fingers.

finger and thumb domains are anti-correlated. This observation is counter to the es-

tablished picture in which NNRTI binding alters the correlated motions between these

subdomains.

The regions undergoing the most significant shifts in PC3 and PC4 are similar to those

varying in the first two principal components. The changes represented by PC3 are seen

in Figure 7.12a where the loop containing resides 65 and 72 in the fingers moves ‘up’

and away from the polymerase active site as the projections become more positive and

Figure 7.12b that shows the p66 thumb moves away from the RNaseH. Similar motions

in the fingers are described by PC4 as seen in Figure 7.13 but along with this as the

projections become more positive the tip of the thumb bends towards the DNA binding
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Figure 7.13: Porcupine plot showing the RT structural variation described by PC4. The
structure in blue represents the most negative projection along the PC obtained from
the concatenated trajectory of all open conformation systems (OPN, DNA, RMD, EFZ
and NVP) simulated. The red cones show the direction of motion of the Cα atoms of
the structure along the PC with the point representing the position in the most positive
projection observed. The structure is shown (a) looking along the binding cleft from
the polymerase active site to the RNaseH and b) looking down from a point beyond
the p66 fingers.

cleft.

The fact that so many of the PCs impact upon the same areas make it hard to establish

whether the less significant modes represent useful information about protein confor-

mational changes or are simply artifacts of the PCA method. Consequently it is more

instructive to concentrate on metrics suggested by the broad patterns observed in the

motions they highlight.
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mains of all systems simulated in this study tracked over the duration of the production
phase of simulation.
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7.2.4.3 Characterisation of Structural Changes

Principal component analysis of the open conformation systems under study indicates

that, as expected, the separation of the p66 thumb and finger domains plays a major

role in differentiating the different ligation states of the HIV-1 RT. In order to assess

the motions undergone by each system (including CSD) throughout the simulations

the distance between the centre of mass of the p66 fingers and thumb subdomains was

measured. Figure 7.14 shows the distribution of distances seen in each system. The

large difference between the closed and open conformations is maintained throughout

the simulations and, interestingly, in both the OPN and RMD systems (which contain

neither drug nor substrate) the separation increases over the duration of the simulation

(see Figure 7.15). The OPN and DNA bound systems originate in the same crystal

structure but whilst, the DNA structure is constrained to a similar separation (of around

45 Å) over the simulation, the OPN system has drifted to a more closed conformation

(with a separation of approximately 38 Å) by the start of the production phase of

simulation and then shows significant flexibility by returning to a cleft width only slightly

narrower than that exhibited with bound substrate. The changes observed in the OPN

system are much greater than that of any other system and are indicative that the open

conformation of the HIV-1 RT system is highly flexible when not bound to either natural

substrate or an NNRTI. The lower peak and greater spread of the distance distribution

of the NVP bound system compared to that containing EFZ can be interpreted as

indicating that the former drug induces a less pronounced change in the flexibility of

the protein.

The largest separation is exhibited in the RMD and EFZ systems with distribution peaks

at 49.5 Å and 48.5 Å respectively. This is in line with the differences of the original

crystal structure and suggests that the deformation of the structure to form the binding

pocket is retained and continues to influence the conformation and dynamics of the rest

of the system on the timescale of the simulations presented here, even after removal of

the drug which caused them.

All of the first four principal components indicate that an important difference between

the different systems resides in the conformation of the loop containing the residues K65

and R72, which form part of the dNTP binding pocket and are implicated in the binding

of incoming nucleotides and hence the polymerase catalytic activity of HIV-1 RT. Ex-

perimental evidence suggest it is the polymerisation step (in which incoming dNTPs are

incorporated into the nascent DNA chain) that is affected by NNRTI binding[331, 410]

and deformations of the loop induced by the drugs would provide a plausible explanation

of these results. The distance between the two key residues of this loop and residue 185

in the polymerase active site were measured to assess any changes caused by NNRTI
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Figure 7.16: The variation of the distances between K65 (black) and R72 (red), im-
plicated in dNTP binding and the polymerase active site residue 185 for all systems
studied.

Figure 7.17: The difference in conformation of the p66 fingers in the average structures
of the DNA and EFZ bound systems (shown in red and blue respectively) taken over
the production phase simulation. Residues K65 (gray balls) and R72 (yellow balls) are
shown in the dNTP binding loop and residue 185 is also highlighted (green balls) with
a lighter shade used for the residues in the DNA bound system in all cases. The loop
in the EFZ system is twisted over itself relative to the conformation seen in DNA.
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binding. Figure 7.16 shows that in both apo structures and that bound to DNA the loop

maintains a conformation in which residue 65 is further from the polymerase active site

(by approximately 6 Å in the case of both open structures and 2 Å for the CSD system)

in contrast both the EFZ and RMD systems have the two at an equal distance. This

change represents a twisting of the loop as illustrated in Figure 7.17. The NVP system

has a greater variability of behaviour, but in the second half of the production phase the

separation is similar to that observed in the other systems containing the NNRTI binding

pocket. These results seem to indicate that the formation of the NNRTI binding pocket

has an impact on the conformations explored by the p66 fingers. A relationship between

the two regions is also suggested by the coincidence of entry of water into the binding

pocket of the NVP system and conformational rearrangements during equilibration.

In a study by Ivetac & McCammon [311] a similar set of simulations were run for a NVP

bound system, a system with NVP removed, and the closed apo structure. Their work

ran each system with 4 copies each producing 30 ns of simulation. They found that half

of the copies of the closed system open to a similar binding cleft width as that in DNA

bound crystal structures and that one of the four simulations of the system with NVP

removed explored a similar conformation after 10 ns of simulation. No details of the

fingers conformation are provided in their paper. They conclude that NNRTIs function

by operating as a wedge that prevents the motion of a hinge between the the p66 thumb

and surrounding palm residues and the fingers and surrounding palm residues, located

with the pivot adjacent to the NNRTI binding pocket.

The largest stable changes in p66 thumb to finger distances observed in both the sim-

ulations by Ivetac & McCammon [311] and the simulations presented here are of the

order of 5 Å and occur rarely (seen in the OPN system alone here and in 3 out of 8

non NNRTI bound systems in the ensembles of Ivetac & McCammon [311]). This is

smaller than the variability of approximately 8 Å seen in the NVP bound system here.

This would suggest that to confirm any hinge hypothesis considerably longer simulation

lengths are needed. This is especially true as the direct structural rearrangement of the

polymerase active site induced by NNRTI binding (see Section 4.7 and Figure 7.10) is

hard to deconvolve from dynamic effects which may also impact upon polymerase func-

tion. Equally, confirmation of the impact of the conformational changes undergone in

the p66 finger domains would require greater sampling.

7.2.5 Binding Affinity Comparison of NVP and EFZ

Along with investigating the conformational impact of NNRTI binding, this study aims

to determine whether such changes impact upon the binding free energies of the drugs.
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Table 7.3: Experimental differences in binding affinity values for the NNRTIs NVP and
EFZ to the HXB2 wildtype HIV-1 RT sequence. In each case the results were originally
presented as Ki values (or IC50 values which can be used as an approximation) and
converted into binding free energy differences using the relation ∆G = RT ln(Ki).

Experiment ∆∆Gnvp−efz
expt

Butini et al. [94] 1.53
Högberg et al. [95] 2.23
Lindberg et al. [93] 2.50
Monforte et al. [96] 2.26

Energies are in kcal mol−1.

As described in Section 7.2.2.3, our aim is to evaluate the possibility of adapting the

MMPBSA protocols we have developed for HIV-1 protease (applications of which are

described in Chapter 5 and Chapter 6) to be reliably applied to NNRTI binding to HIV-1

RT. Without calculating an estimate of the entropic component of the binding affinity

it is not possible to reproduce experimental values for the absolute binding free energy

change, ∆G. It is, however, possible to compare the relative binding affinities of the

EFZ and NVP drugs, ∆∆G. A selection of estimates of ∆∆Gnvp−efz from a variety of

experiments are shown in Table 7.3, the average value is 2.13 kcal mol−1. The impact of

the water molecule observed entering the NNRTI binding pocket can also be investigated

using this method, by including it as part of the receptor in the MMPBSA calculation.

Over the course of the simulation, the water molecule in this position exchanges with

those in the free solvent on a number of occasions and for each snapshot analysed only

the closest water molecule to the NVP molecule was included in the computation.

The binding affinity computed for the 20 ns of production simulation of both EFZ and

NVP is shown in Table 7.4. The EFZ drug is correctly observed to bind more tightly

than NVP. However, the difference of binding affinity between the two inhibitors is much

higher than the average experimental value of 2.13 kcal mol−1. Including the water

molecule reduces the ∆∆GMMPBSA between the two NNRTIs from 8.28 to 6.14 kcal

mol−1. Accounting for the water molecule within the calculation as expected increases

the binding affinity. The change of -2.14 kcal mol−1 is considerably less than the -5.45

kcal mol−1 obtained by Treesuwan & Hannongbua [402] in a study which calculated the

difference from MD simulations based on a truncated system containing only the protein

and water molecules within 10 Å of the NVP drug. In addition to this truncation the

simulations performed by Treesuwan & Hannongbua [402] were ‘equilibrated’ (using the

entire enzyme) for only 1 ns and produced just 3 ns of production dynamics, even the

total duration of which would come within the equilibration phase of the simulations

presented here. The analysis presented in Section 7.2.3.1 indicates that these simulations

are likely to still be relaxing from the system setup and consequently it is possible that
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Table 7.4: Computed free energy differences of binding (∆GMMPBSA) form MMPBSA
analysis of NVP and EFZ bound to wildtype HIV-1 RT using 20 ns single simulations
trajectories. Values for NVP are shown with a bridging water molecule included as part
of the receptor (NVP WAT) and without.

Ligand ∆GMMPBSA ∆∆Gnvp−efz
MMPBSA

EFZ -35.00 (0.06) -
NVP -26.72 (0.07) 8.28 (0.13)
NVP WAT -28.86 (0.07) 6.14 (0.13)

Mean energies are in kcal mol−1.
Standard errors are shown in parentheses.

the discrepancy in results with the simulations presented here is caused by insufficient

equilibration in the earlier study.

A plausible explanation for the exaggerated difference between the binding affinities of

NVP and EFZ obtained from these simulations is that the EFZ encounters a higher

entropic barrier to binding. Evidence that this is a reasonable contention is provided by

the observation, in Section 7.2.4.3, that the NVP system shows greater changes in the

p66 fingers to thumb distance which is posited as the motion most impacted by NNRTI

binding.

Table 7.5 shows the thermodynamic decomposition of the binding affinity. The binding

of both NNRTIs is driven by strong attractive van der Waals interactions, as would be

expected for drugs binding into a largely hydrophobic pocket. The difference between

the NVP results including and excluding the bridging water molecule are largely due to a

6.97 kcal mol−1 more attractive electrostatic component, which more than compensates

for the 0.79kcal mol−1 loss of attraction in the van der Waals component and 3.88 kcal

mol−1 increase in the polar solvation penalty. The difference between NVP and EFZ is

due to a reduced polar solvation penalty (4.97 kcal mol−1 compared to the NVP value

computed including bridging water) and more attractive coulomb attraction (by 1.31

kcal mol−1).

The binding affinities, ∆GMMPBSA, of both systems remain stable throughout the 20 ns

of production simulation as shown in Figure 7.18. The lack of changes in the binding

affinities indicate that sampling of the free energy landscape using MMPBSA is largely

unaffected by the domain motions observed in Section 7.2.4.3. In all cases fluctuations

are present in both the polar solvation and electrostatic terms but, in general, they com-

pensate one another, resulting in minimal changes in ∆GMMPBSA. Significant deviations

in these terms are seen for the NVP system when the bridging water is included in the

calculation (Figure 7.18c) after 7 ns and 15 ns. These changes are associated with the

exchange of water molecules between the solvent and NNRTI binding pocket. Even the
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swapping of water molecules included in the calculation does not result in any notable

change in ∆GMMPBSA.

7.3 Free Energy Calculations For Drug Resistant HIV-1

RT Mutants

In order to assess the ability of MMPBSA to discriminate between more subtle changes

than those between the two drugs, NVP and EFZ, binding to the HIV-1 RT, a series

of resistant mutants have been simulated. The EFZ inhibitor was chosen to avoid the

complication of the bridging water molecule which enters the NNRTI binding pocket

alongside NVP. The most common mutation pathway for EFZ is that including K103N

and L100I [200, 411] and these are the mutations which are studied here. Commonly

the K103N mutation occurs first with L100I occurring as a secondary mutation [412].

Estimates of the binding affinities, obtained from a variety of experiments is shown

in Table 7.6 indicating that K103N and L100I make similar levels of difference to the

binding affinity and that the double mutant impact is more than the addition of the

two. It should be noted that these results were estimated using IC50 enzyme efficacy

measurements as a proxy for Ki and should consequently be viewed as approximations

to the real binding affinities. The impact of K103N is sometimes thought to be caused

by stabilising the closed structure of the NNRTI binding pocket [342–344]. This means

that it may not be possible to detect the changes induced by the K103N single mutant

via the MMPBSA methodology without using separate trajectories for the apo enzyme.

In RT structures containing other inhibitors, L100I is seen to directly influence the shape

of the binding pocket (and hence, presumably, the binding affinity) [413].

Table 7.6: Experimental differences in binding affinity values for the L100I, K103N and
L100I-K103N mutants compared to the wildtype HIV-1 RT. The experimental values
come from 1 Bacheler et al. [414], 2 Soriano & de Mendoza [415] and 3 Silvestri &
Maga [416]. In each case the results were originally presented as Ki values (or IC50

values which can be used as an approximation) and converted into binding free energy
differences using the relation ∆G = RT ln(Ki).

Sequence ∆∆G1 ∆∆G2 ∆∆G3

L100I 1.88 2.39 1.80
K103N 2.12 2.28 1.95
L100I-K103N 4.61 4.91 4.33

Energies are in kcal mol−1.

This study focuses on assessing the use of a single trajectory to represent complex, in-

hibitor and apo receptor. The intention is to investigate both whether the changes bind-

ing affinity produced by the mutations L100I and K103N can be detected by MMPBSA
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Figure 7.18: Binding free energy, ∆GMMPBSA, and component values tracked for each
snapshot throughout the 20 ns of production trajectory for (a) EFZ, (b) NVP and (c)
NVP with bridging water molecule. The total, ∆GMMPBSA, is shown in black with the
components; ∆GMM

vdw in red, ∆GMM
ele in orange, ∆Gsolpol in blue and ∆Gsolnonpol ∆Gtotele in

light blue.
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and evaluating the performance of single trajectory and ensemble approaches to sample

relevant conformations of the HIV-1 RT. Four systems are simulated the HXB2 wildtype

(labelled WT) and the L100I and K103N single mutants and the L100I-K103N double

mutant.

7.3.1 Methods and Analysis

All systems described in this section were based on the 1IKW crystal structure [93]. The

sequence of this structure is that of the HXB2 wildtype and all residue substitutions

described in this section are made with reference to this baseline. As in the HIV-1 pro-

tease case (see Chapter 5), mutations were inserted into the model using the VMD [315]

visualisation package via the BAC [355] automation scripts. The simulation, equilibra-

tion and analysis protocols used for these simulations are identical to those described

earlier for the simulations described in the Section 7.2. The single trajectory strategy is

represented here by runs with production phases of 20 ns (labelled 1 × 20 ns) and an

equivalent length of trajectory was generate using an ensemble of 5 replicas with 4 ns

generating 4 ns of production trajectory (labelled 5 × 4 ns).

Assessment of convergence was performed using two primary methods, the assessment

of the extent to which the data sets could be described as having a Gaussian distribution

and the root mean squared difference between forward and reverse cumulative means,

σMMPBSA, as described in Section 5.2.4.

7.3.2 Comparison of Binding Affinities From Single Trajectory and

Ensemble Simulation Strategies

Table 7.7 shows the calculated binding affinities, ∆GMMPBSA, for each of the four se-

quences under investigation using both the single trajectory, 1 × 20 ns, and ensemble,

5 × 4 ns, strategies along with the thermodynamic decomposition. The results from

neither strategy reproduces the experimental trend.In the single trajectory results both

the L100I and K103N single mutants are counted as resistant with relative binding

affinities to wildtype, ∆∆GMMPBSA, values of 3.18 and 1.08 kcal mol−1respectively. The

double mutants system is however assessed as binding more tightly than the WT by

0.91 kcal mol−1. The ∆GMMPBSA value of the WT system is altered by only 0.36 kcal

mol−1between the the two simulation strategies but the overall ranking of mutants is

very different. In the 5 × 4 ns data set the double mutant is ranked as highly resistant

with a ∆∆GMMPBSA of 2.40 kcal mol−1 but the K103N mutant is found to bind more

tightly than wildtype and the L100I is observed to be only marginally resistant.
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The thermodynamic decomposition shown in Table 7.7 does not present any single com-

ponent as being particularly unreliable, with all measurements having similar levels of

error associated with them. However, the systems showing the highest level of resis-

tance in each strategy (L100I for 1 × 20 ns and L100I-L103N for 5 × 4 ns) both show

substantially less attractive ∆GMM
ele . The trajectories, however, show no unambiguous

structural change that correlates with this. Furthermore, the only hydrogen bond (de-

fined as a potential donor and receptor atom pair within 3.5Å of one another with a

donor-hydrogen-receptor angle of less than 120◦) present in more than 5% of simulation

snapshots is between the backbone oxygen of residue 101 and the EFZ nitrogen and is

found in 99% of snapshots in all of the simulations of all of the sequences. The loss

of electrostatic attraction and the lowering of the polar solvation penalty compared to

WT are found to be common features of all the mutant systems, using both simula-

tion strategies. The balance of these two effects is predominantly responsible for the

∆∆GMMPBSA obtained for each system.

7.3.2.1 Evaluation of the Free Energy Sampling and Convergence

The ∆GMMPBSAvalues calculated here have limited success in reproducing the expected

experimental trends. There are a number of possible explanations for this, including

the failure to account for the energy cost of binding pocket formation, the failure of the

MMPBSA methodology in this system and lack of sufficient sampling. The large varia-

tions seen between the replicas, in the double mutant system in particular, suggest that

the last of these is at least plausible. The distribution of calculated ∆GMMPBSAvalues

in a well sampled system should be Gaussian. The real distribution for the values sam-

pled in both the 1 × 20 ns and 5 × 4 ns simulations are shown in Figure 7.19. Whilst

the results for the ensemble simulations are closer to replicating the correct distribution

than those from the single trajectories significant deviations exist for all systems in both

approaches. This observation would tend to suggest that we have not, as yet, obtained

sufficient sampling to gain correctly converged results.

The RMS difference in the forward and reverse cumulative means, σMMPBSA, provides

a metric indicating the level of variance in the average which is encountered as more

snapshots are taken into account. Figure 7.20 shows a comparison of the difference in

forward and reverse cumulative means, σMMPBSA (as defined in Section 5.2.4.3), for all

four sequences under study. The only sequence using either ensemble or single trajectory

strategies in which σMMPBSA fails to converges to below 2 kcal mol−1is L100I where the

5 × 4 ns values plateaus after approximately 2 ns of sampling to around 2.5 kcal mol−1.

The convergence of both strategies in the case of the L100I-K103N double mutant is

surprising considering the large discrepancy between the ∆GMMPBSA values obtained by
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Figure 7.19: Normalised frequency distribution analysis of the MMPBSA derived bind-
ing free energy, ∆GMMPBSA, for the 1 × 20 ns (red triangles) and 50 × 1 ns trajectories
(blue circles) for each of the WT, L100I, K103N and L100I-K103N reverse transcrip-
tase sequences. The expected normal distribution given the same mean and standard
deviation for each data set is shown by the red and blue lines, respectively.
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Figure 7.20: Comparison of the difference in forward and reverse cumulative means,
σMMPBSA, as a function of snapshot, ε, for each of the four HIV-1 RT sequences under
investigation. Values for the 1 × 20 ns, single trajectory computations are shown in
red, those for the 5 × 4 ns ensemble in blue.
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Table 7.8: Free energy differences of binding calculated using MMPBSA ,∆GMMPBSA,
from each of the replicas in the 5 × 4 ns ensemble strategy for four HIV-1 RT sequences
under investigation, showing the high variability between the replicas.

Sequence ∆Grep1
MMPBSA ∆Grep2

MMPBSA ∆Grep3
MMPBSA ∆Grep4

MMPBSA ∆Grep5
MMPBSA

WT -35.14 (0.14) -35.14 (0.14) -35.52 (0.16) -34.77 (0.16) -32.63 (0.14)
L100I -33.23 (0.13) -32.47 (0.13) -34.17 (0.13) -35.13 (0.12) -36.68 (0.12)
K103N -34.97 (0.15) -34.40 (0.14) -35.11 (0.18) -37.26 (0.13) -36.27 (0.12)
L100I-K103N -31.11 (0.13) -33.02 (0.12) -33.60 (0.11) -33.43 (0.18) -31.03 (0.16)
Mean energies are in kcal mol−1. Standard errors are shown in parentheses.

the different strategies. The small value of σMMPBSA in the 1 × 20 ns case is indicative

of the fact that the measured value does not drift over the course of the simulation and

hence that long timescale motions are unlikely to be responsible for the discrepancy

between the results of the two strategies. A possible explanation for these observations

would lie in the idea that the energy landscape is such that in most cases, on the

timescales accessed by these simulations, only a single minimum is explored and that

the minimum sampled by the single trajectory for L100I-K103N happens to be very

different to those explored by the replicas in the ensemble. If this is the case then

significant variation should be seen between the averages of each replica within each

ensemble. The mean values of ∆GMMPBSA for each replica in the ensemble for each

sequences is shown in Table 7.8. For each sequence there are replicas which vary by at

least 2 kcal mol−1 which is less than the 3.67 kcal mol−1 difference between the single

trajectory and ensemble results for the double mutant system but suggests that a variety

of energy wells are indeed being sampled by each ensemble.

The differences between replicas and comparative stability of the averages obtained

from single simulations suggest that, just as we found in the protease case, reverse

transcriptase simulations with a length scale of the order of tens of nanoseconds are

unlikely to be reproducible. The sampling presented here is far less extensive than

that obtained for the HIV-1 PR case in Chapter 5. The results here suggest that we

are seeing similar levels of variability between replicas to that in the protease system

and consequently that approximately 50 replicas would be required in order to obtain

reproducible results. Results obtained within our group have also shown that similar

levels of sampling are required in the case of the cancer drug target epidermal growth

factor receptor (EGFR) [417].

The σMMPBSA cannot be invoked to give any indication of the level of extra sampling

that might be required to access areas of phase space not seen within the simulations it

is used to analyse. It does, however, suggest a period of time beyond which sampling in

a single trajectory is unlikely to provide extra information unless considerably extended

time periods can be simulated, thereby increasing the chances of rare events that shift
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the system to a new area of phase space. In the case of the results presented here, the

plateauing of σMMPBSA, seen for all sequences from between 4 and 6 ns in Figure 7.20,

would indicate that this is a sensible length to adopt for replica simulations within an

ensemble.

7.4 Conclusions

In the first part of this study, different HIV-1 RT systems representing the unliganded,

NNRTI bound and natural double stranded DNA substrate bound enzyme were sim-

ulated. Principal component analysis of the conformers explored by the equilibrated

systems indicate that major differences in the systems under study here reside in the

conformation of the p66 thumb and fingers. Both of these regions are seen to be flexible

in all these systems, although different conformations are available in different ligation

states. In particular, the loop containing residues K65 and R72, which forms part of

the dNTP binding pocket implicated in the binding of incoming nucleotides, is seen to

exhibit different behaviour between the NNRTI bound and non-inhibited systems. In

the drug bound systems the loop is seen to twist over itself relative to the configuration

seen in the apo and DNA bound systems. This observation is consistent with experi-

mental findings, according to which it is the DNA polymerisation step that is affected

by NNRTI binding [331, 410]. The comparative importance of this indirect effect and

other explanations for NNRTI efficacy, such as the distortion of the polymerase active

site and surrounding residues, caused by the formation of the NNRTI binding pocket

and seen in the crystal structures [93, 404], remains unclear.

During the equilibration phase of the NVP bound system, an entrance pathway via

which water molecules enter the NNRTI binding pocket is observed. The water enters

through a channel which opens between residues V106, P225, F227, H235 and P236,

a locus which has been suggested as the entrance taken by NNRTIs to the binding

pocket [336]. The ingress of this water molecule to the binding pocket of the NVP

bound reverse transcriptase is coincident with several conformational changes, although

caution must be applied when ascribing a causal relationship as water entry initially

occurs as restraints on the system are being released.

Binding affinities were calculated for both the NNRTIs (EFZ and NVP) over the 20 ns of

production simulation using the MMPBSA methodology. In the case of NVP the influ-

ence of the water which entered the binding pocket was also assessed. EFZ is correctly

observed to bind more tightly than NVP whether or not the water molecule is included

in the calculation. The difference of binding affinity between the two inhibitors is, how-

ever, higher than the average experimental value of 2.13 kcal mol−1. The inclusion of
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the water molecule reduces the ∆∆GMMPBSA between the two NNRTIs from 8.28 to 6.14

kcal mol−1. A plausible explanation for the exaggeration of this difference is suggested

by the extra mobility seen in the thumb and fingers in the EFZ system suggesting that

it may face a lower entropic barrier to binding. The binding affinities calculated for

both NNRTIs remain stable throughout the 20 ns of trajectory they are calculated over.

The lack of changes in the binding affinities indicate that sampling of the free energy

landscape is largely unaffected by the domain motions observed in the protein. This

confirms the idea that meaningful free energy values can be computed from trajectories

on the time scales explored here.

The second part of this study investigated the plausibility of using the MMPBSA pro-

tocol, automated within BAC, to assess the resistance levels of HIV-1 RT sequences by

calculating the impact of the mutants L100I, K103N and L100I-K103N upon the calcu-

lated binding affinity, ∆GMMPBSA. These mutations are all seen experimentally to lead

to resistance, with the double mutant showing a greater than additive loss in binding

efficacy compared to the two single mutants [414–416]. The simulation results presented

here are unable to correctly reproduce this ranking. One potential explanation of this

is that the sampling available within these simulations is insufficient to obtain correctly

converged results. Convergence analysis of the ∆GMMPBSA values obtained in this study

suggest that neither simulation strategy obtains reliably converged results from 20 ns

of sampling. The variation seen between the replicas in the ensemble approach and the

stable values observed in most of the single trajectory mutant systems suggest that an

extension of the ensemble strategy is likely to be the most effective way of accessing the

necessary regions of phase space in order to obtain the required sampling. Analysis of

the cumulative means for the single trajectory strategy suggests that replica lengths of

between 4 and 6 ns sufficiently sample the local minima. Another possibility, suggested

by other studies [342–344], is that an important component of K103N related resistance

comes from the stabilisation of the apo RT structure without the NNRTI binding pocket.

Were this to be true, the MMPBSA methodology used in this study would have to be

amended to use separate trajectories for the unbound receptor, drug bound complex

and NNRTI under investigation. A third possibility is that conformational entropy,

neglected in the calculations presented here, has a significant effect on the relative bind-

ing free energies of the different systems. Currently, the ability to replicate fully the

MMPBSA and normal mode free energy analysis used is limited by the fact that none

of the available software solutions for calculating normal modes can accommodate the

memory requirements made by a system as large as the HIV-1 RT. Results, presented

elsewhere, in which a truncated HIV-1 RT structure have been analysed in this way have

failed to alter the ranking of systems from that given by MMPBSA and are likely to



Chapter 7. Towards an Understanding of NNRTI Binding 207

have excluded important modes that contribute to the entropic barrier to drug binding

[401].

Overall, our work in this chapter shows that differences in binding affinity produced by

gross changes such as altering the inhibitor considered can be identified using MMPBSA

in the case of NNRTIs binding to HIV-1 RT. The question of whether the same can be

done for subtle shifts such as those introduced by point mutations remains open. In order

to address this question, future studies will have to investigate extensions to the free

energy methodology used, in particular finding ways in which to assess the contributions

of binding pocket formation and entropy. The results presented here also suggest that

ensembles of simulations might be the most efficient way to enhance the sampling of the

available phase space compared to simply extending the time for which simulations are

run. This is in line with the findings presented in Chapter 5 and work on EGFR [417],

which both indicate that tens of replicas are required in order to produce converged,

reproducible, free energy values using MMPBSA.



Chapter 8

Conclusions

In this thesis, fully atomistic molecular dynamics (MD) simulations have been used to

investigate the binding of anti-retroviral drugs to target enzymes in HIV. In particular,

changes to both structure and thermodynamic properties in the drug target enzymes

protease and reverse transcriptase caused by mutations associated with drug resistance

have been elucidated. The development of such mutations in response to therapy is well

known, and represents the main obstacle to ultimate treatment success. The primary

cause of drug resistance is the lowering of the binding affinity between drug and target

protein. Whilst experimental techniques exist that measure this quantity, they cannot

provide detailed molecular insight into the causes of resistance.

The sampling required to obtain accurate, converged binding affinities for a series of

multi-drug resistant (MDR) protease mutants bound to the inhibitor lopinavir was in-

vestigated. An ‘approximate’ free energy method was applied to calculate the absolute

and relative binding free energies of these systems and a comparison of the sampling

achieved by ensembles of short simulations and longer single trajectories was evaluated.

Only the ensemble method was shown to achieve correctly distributed and converged

sampling of conformational microstates, implying that they explore conformational space

more effectively than single long time-scale simulations. Using the ensemble method-

ology (with 50 replica simulations producing 4 nanoseconds of production trajectory

each) a completely correct ranking for six HIV-1 protease variants was obtained, with a

correlation coefficient of 0.89 and a mean relative deviation from experiment of 0.9 kcal

mol−1. The issue of reproducibility, crucial for the validity of any free energy calcula-

tion, is tied to the convergence of such calculations. The results presented in this thesis

suggest that individual MD simulations are unlikely to be reproducible and caution must

be exercised when considering properties extracted from single trajectory calculations.

Further weight is given to these conclusions by preliminary calculations performed on

208
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reverse transcriptase bound to the inhibitor efavirenz, where again multiple copy simu-

lations are seen to sample varying areas of phase space and improve the convergence of

free energy calculations.

In clinical settings, the interpretation of the level of drug resistance is generally per-

formed using mutation lists and rules-based algorithms embedded in so-called clinical

decision support systems (CDSS)1. The EU funded 6th Framework Project (FP6) Viro-

Lab2 sought to enhance such systems by incorporating a wealth of tools for investigating

the relationship between HIV genomic sequence and the level of resistance to anti retro-

viral drugs[382]. In order to demonstrate the potential of integrating diverse systems

such as traditional drug ranking systems, literature mining, patient data and MD into a

single interface the Virtual Patient Experiment (VPE) was designed. The VPE identified

a patient sequence for which a range of CDSS gave differing resistance assessments, iden-

tifying three mutations within the sequence as being associated with resistance (L10I,

A71I/V and L90M). Applying the simulation and free energy protocol, validated by the

study on MDR protease systems, predictions of the resistance level of the identified mu-

tations singly, in combination, and as part of the full patient sequence were generated.

Only in the context of the full patient sequence was any reduction in binding affinity

observed. The variants containing resistant associated mutants here adopt substantially

different conformations to those of the MDR proteases previously investigated. In all

resistant protease mutants studied in this thesis similar perturbation of the active site

hydrogen bond network was observed and, additionally, water molecules were seen to

occupy the catalytic cavity more frequently than in the wildtype. Uniquely, in the VPE

mutants the overall enzyme conformation is expanded compared to wildtype with the

distances between residues 35 and 45 on both monomers increased but with residue 79

on both monomers moving towards the active site.

Investigations of the application of the same simulation protocol to reverse transcrip-

tase are still in the preliminary stages. The binding affinity of two common NNRTIs

(efavirenz and nevirapine) have been successfully distinguished, but sufficient sampling

to reliably evaluate resistance causing mutations has not yet been achieved. A com-

parison of simulations of the apo reverse transcriptase and the same enzyme bound

to NNRTIs or natural DNA substrate have suggested that conformational changes, in

regions of the p66 fingers domain key to catalytic function, are associated with drug

binding. The importance of this change in conformation in the mechanism of inhibition

of reverse transcriptase by NNRTIs compared to well established distortions of the active

site and changes in enzyme flexibility is, as yet, unclear. It is hoped that the simulations

1Examples of CDSS include the Stanford HIVdb: hivdb.stanford.edu, ANRS: www.anrs.fr and
RegaDB: www.rega.kuleuven.be/cev/regadb/.

2Virolab: http://www.virolab.org

hivdb.stanford.edu
www.anrs.fr
www.rega.kuleuven.be/cev/regadb/
http://www.virolab.org
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presented in this thesis will provide the foundations of future work that could see us

providing greater insight into drug binding in reverse transcriptase, comparable to that

obtained in the protease case.

In order to envisage MD simulations becoming integrated into CDSS it is necessary that

the results can be produced within a short and well defined turn around time. Given

the vast number of cores on petascale supercomputers, all replicas within an ensemble

simulation can, in principle, easily be run concurrently and be completed within a single

day. Even accounting for the requirement of another 24 hours to perform post-processing

analysis, the methodology applied in this thesis allows simulations to be turned around

on clinically relevant timescales (2–3 days), opening the way for its potential use in a

clinical setting to match proposed drug treatment to individual patients’ genetic profiles.

Such rapid turn around times are only achievable if the process of simulation creation,

deployment, execution and analysis can be automated. In response to this requirement

the Binding Affinity Calculator (BAC), which fully automates the free energy calculation

workflow (see Appendix A), has been developed.

The approach adopted in this thesis is theoretically applicable to any system in which

drugs bind to proteins and could be used to investigate the impact of mutations in a wide

range of systems. Indeed, a recent study by Wan & Coveney [417] used BAC to compute

binding affinities of anti-cancer drugs to genetic variants of the epidermal growth factor

receptor (EGFR). This work was conducted as part of the EU ContraCancrum project3

which aims to create a data warehouse collating data from both experimental and in

silico sources in the hope that it may be used to inform future CDSS. Unlike the HIV

case, genotypic testing is not currently standard for patients presenting with cancer, and

consequently a much more limited range of data is available. Encouragingly, however,

the U.K. National Health Service (NHS) has recently announced plans to deploy broad

genetic testing for people with various forms of cancer, including lung carcinoma, and to

implement personalised medicine based on individuals’ genetic information [418]. The

program will enroll up to 12,000 patients in its first phase, many more than any other

current clinical trials for cancer treatment. It is to be hoped that such developments

may well presage an era in which the use of genetic data to tailor treatment to individual

patients, providing more reliable healthcare, becomes de rigeur. In such a future, meth-

ods which aid the interpretation of genetic data, such as MD, would become increasingly

important in clinical practice.

3ContraCancrum: http://www.contracancrum.eu

http://www.contracancrum.eu


Appendix A

Binding Affinity Calculator

Here we present a description of a tool, known as the ‘Binding Affinity Calculator’

(BAC), developed to automate the work flow involved in molecular dynamics based

binding affinity calculations. It was originally designed for the simulations of HIV-1

protease (PR) bound to a variety of ligands [355] but has been extended for use with

both the HIV-1 reverse transcriptase (RT) and human epidermal growth factor receptor

(EGFR). We discuss the motivations that drove the development of the tool along with

the architecture and methodology adopted within the BAC.

A.1 Motivation

The introduction of grid technology and the increasing availability of high performance

computing (HPC) resources offers the opportunity to perform large numbers of CPU

intensive simulations. One area in which this is particularly attractive is the study

of biomolecular systems. The implementation of any such physically realistic molecular

simulation, however, is a complicated and multistage process, often requiring the scientist

to overcome a large manual overhead in the construction, preparation, and execution

protocols needed to complete a set of simulations, not to mention any analysis protocols

for determining desired properties post production. Within this context, provided a

robust simulation protocol exists for the target biomolecular system, automated tools

can relieve the user of the repetitive and time consuming steps involved in preparing

and running simulations, freeing them to concentrate on the scientific aspects of their

study. BAC was designed to be such an automation tool. Based around the simulation

protocol established for the HIV-1 protease [286, 288] and later extended to the HIV-1

RT (see Chapter 7) and human epidermal growth factor receptor [419] BAC automates

211
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the various model construction, MD simulation and post-production analysis protocols,

whilst requiring the specification of only a few biological input parameters.

BAC allows the execution of complete simulations with only the target protein, ligand

and any mutations (relative to a designated wildtype) to be inserted, being specified by

the user. The user is, however, limited to a selected range of initial crystal structures

(PDBs) and pre-parameterised drugs. In the case of protease it is also possible for the

user to specify a protonation state for the catalytic dyad.

A.2 BAC Workflow and Architecture

The workflow implemented by BAC incorporates model construction, simulation, and

post production analyses, which are implemented by the BAC-Builder, Sim-Chain and

FE-Calc applications, respectively. In this description we will assume the existence

of a starting crystal structure of the complex to be simulated and that forcefield and

charge parameters which describe both protein and ligand are available. In general,

the preparation of the crystal structure (including the incorporation of mutations, etc.)

and post production will be performed on a local cluster, whereas simulations execution

takes place on a remote, perhaps Grid based, resource. In order to manage the data

transfer this requires BAC is built upon the Application Hosting Environment (AHE)

[385] middleware.

BAC is designed as set of modular applications, implemented in the Perl language. The

overall architecture of the workflow is shown in Figure A.1. The overarching control

script encountered by a command line user is called the Unit-Executor. This provides

the information that the AHE requires to execute the BAC-Builder, Sim-Chain and

FE-Calc applications on the designated resources and transfer the data between them

at appropriate points of the work flow.

The BAC-Builder program, typically on a local resource that provides access to AMBER

9 [70] and VMD [315], builds all the pre-simulation and configuration files necessary

for all equilibration and productions simulations, prior to execution of any simulation

runs. An instance of the Sim-Chain application is then spawned. AHE stages all of the

required flies onto an appropriate resource for simulations execution. A compiled copy

of either the NAMD2 [50] or GROMACS 41 [72] molecular dynamics software, used by

Sim-Chain, must be available on the target resource. Upon successful completion of

each stage of simulation (either equilibration or production) data is staged back to a

storage resource. A check is performed by the Unit-Executor to ensure each step has

1Topology conversion for use in GROMACS 4 is performed via the program acpypi (http://www.
ohloh.net/p/acpypi).

http://www.ohloh.net/p/acpypi
http://www.ohloh.net/p/acpypi
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Figure A.1: Architecture of the BAC. Simulation workflow is managed by Unit-
Executor, a perl script designed to utilise the application hosting environment (AHE)
middleware. The components of the work flow, namely model construction, simula-
tion, and post production analyses, are implemented by the BAC-Builder, Sim-Chain
and FE-Calc applications, respectively. AHE automates the full workflow including
the execution of each component and marshalling data transfer to, between and from
distributed HPC resources.

successfully completed. If this check is passed the Sim-Chain program is then run again

for the next stage of the simulation. Once all stages in the simulation are complete (and

the data generated staged back to the storage resource) the post processing analysis can

be performed. This is performed by the FE-Calc program, again typically on a local

resource. Using parameters passed to it by the Unit-Executor the FE-Calc program

generates input files and execution scripts for the AMBER 9 MMPBSA and normal

mode analysis modules, which are used to calculate the total change in binding affinity.

The generated scripts are submitted for calculation. Upon completion of the binding

free energy computations AHE stages the output to the storage resource. Finally, a

script is used to retrieve summary results.

In many situations, it is either necessary or desirable that parts of the workflow are

executed in isolation. The module design of BAC allows all components, such as the

BAC-Builder, Sim-Chain and FE-Calc applications to be used independently in scenarios

when full automation is not required.

A.3 The BAC-Builder and Sim-Chain Applications

Simulation ready models of the target proteins are generated by the BAC-Builder ap-

plication. BAC-Builder consists of a Perl script which requires the user to specify the
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Figure A.2: Schematic representation of the BAC-Builder applications. The steps of
the workflow (labelled 1 to 8) use a library of pre-modified PDB structures, together
with standard forcefield and topology files and interface with the VMD and AMBER
applications to construct the input files necessary for subsequent simulations.

forcefield, the initial pdb crystal structure, the complexed status of the protein (either

ligand bound or apo) and only in the case of protease the protonation state of the cat-

alytic dyad. Additional, optional parameters with default values may be specified, such

as any desired mutations relative to the crystal structure chosen and the size of the

solvation box. The input information is used to generate ‘tcl’ scripts which are run in

VMD and input scripts executed using the ‘tleap’ module of AMBER 9. The locations

of AMBER 9, VMD and the choice of target MD code and details of the equilibration

protocol to be used are specified in a input file that is read when the script is run.

BAC-Builder contains a library of available, pre-prepared, PDB derived, crystal struc-

tures which includes 200 PR structures, 3 for RT and 2 for EGFR. In all structures the

atomic nomenclature has been edited to conform to the AMBER format and chain in the

PR and RT dimer chains are designated A and B sequentially. Atomic coordinates have

been left unaltered. Parameterisations are available for all 9 FDA approved protease

inhibitors, 3 NNRTI inhibitors and two drugs targeted at EGFR.

A schematic representation of the steps automated by the BAC-Builder is shown in

Figure A.2. Initially, proteins and any solvent molecules captured crystalographically

are separated into different files (protein dimers are split into two files, one for each

monomeric chain). In ligand bound simulations the ligand is also placed in a separate

file. If required, any mutations are inserted using VMD (in protease simulations the

catalytic dyad protonation state is also set at this stage in the same manner). The

separate coordinate files are merged and atomic nomenclature, which is reassigned by

VMD, is reverted to conform to AMBER conventions. An input file is then generated
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Table A.1: The steps involved in the BAC equilibration protocol. aM-region consists of
all heavy ligand or protein atoms within a 5Å centred on each mutated residue (ligands
are treated as a single residue). bNM-region consists of all heavy ligand or protein
atoms outside the M-region.

Force constraint (kcal/(mol Å2))
Stage Process Duration (ps) Ligand Protease

eq 0 Minimisation 2000 steps 4 4
eq 1 Annealing 50 4 4
eq 2 NPT solvation 200 4 4

Mutation Relaxation M-regiona NM-regionb

eq (2 + 1) M1-region relaxation 50 0 4
eq (2 + 2) M2-region relaxation 50 0 4
...

...
...

...
...

eq (2 + n ) Mn-region relaxation 50 0 4

Ligand Protease

eq (2 + n + 1) Constraint removal (NPT) 50 3 4
eq (2 + n + 2) 50 2 4
eq (2 + n + 3) 50 1 4
eq (2 + n + 4) 50 0 4
eq (2 + n + 5) 50 0 3
eq (2 + n + 6) 50 0 2
eq (2 + n + 7) 50 0 1
eq (2 + n + 8) Unconstrained (NPT) 1400 - 50n 0 0

in order to solvate and neutralise the system in the ‘tleap’ module of AMBER 9. A

directory is created into which all subsequent data corresponding to the system will be

stored, this is termed the ‘concourse’.

As part of this process the equilibration and simulation run files must be generated.

The precise contents depends on the choice of simulation package and the contents of

the equilibration protocol specified. In terms of the equilibration protocol, the user has

the ability to set the number of simulation steps performed at each equilibration stage

but the settings used during each one and the ordering of steps is pre-defined. The

default equilibration protocol for PR simulations is shown in Table A.1 and detailed in

Chapter 5 (changes appropriate for RT systems are provided in Chapter 7).

The simulation input files are transferred to a sub-directory within the concourse. A set

of submission scripts for target compute resources is generated and copied to another

concourse sub-directory. This collection of scripts is what we refer to as the Sim-Chain

application. The submission scripts use relative paths, which means that once the con-

course is transferred to a target resource, the Sim-Chain application can then be run

by executing each individual submission script from within the appropriate concourse

sub-directory. The submission scripts are designed to sequentially run a range of equili-

bration or simulation stages, executed by NAMD2 or GROMACS 4. By default all jobs

are run on 64 processors. These submission scripts can either be run through the Unit-

Executor, manually via AHE or the command line on the selected compute resource.

Using the last two methods it is incumbent on the user to check for job completion
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before submitting the subsequent steps of the simulation. The Unit-Executor checks for

completion of each stage via AHE and automatically submits any subsequent stages.

A.4 The FE-Calc Application

The FE-Calc application executes MMPBSA and normal mode analysis using the ap-

propriate modules of the AMBER 9 software package. Again the application consists

of a Perl script that generates all the input files necessary for a calculation and their

subsequently submission to an appropriate compute resource.

Both the MMPBSA and normal mode calculations in AMBER 9 require separate topol-

ogy files for the complex, ligand and receptor (stripped of solvent molecules) and input

trajectories written in the AMBER .traj format. The pdb produced by BAC-Builder

as input to the molecular dynamics simulations is split into 3 separate pdbs; for the

complex, ligand and receptor. A ‘tleap’ source file is produced and then executed in

order to produce the necessary topology files.

FE-Calc then generates and executes command files for the ‘ptraj’ module of AMBER

9 in order to convert the simulation trajectories into AMBER format. Whilst a com-

mon interface is provided in AMBER 9 for MMPBSA and normal mode analyses, the

BAC protocol uses different parameters for each step, necessitating separate input files.

These are generated from existing templates which are modified by FE-Calc. The atom

numbers of the first and last atoms in each component are determined and the input

scripts edited accordingly. The appropriate snapshot frequency and output filenames for

the analysis program are also altered. Both calculations are then launched using generic

job submission scripts on an appropriate compute resource.

A.5 Virolab Virtual Laboratory

As part of the EU ViroLab project2 the BAC workflow was integrated into a virtual

laboratory, consisting of a range of computational tools designed to investigate HIV

resistance in a clinical setting [382–384], as discussed in Chapter 6. This implementation

of BAC uses GridSpace Engine [386] to provide the User Interface component of the

architecture shown in Figure A.1.

2ViroLab: www.virolab.org

www.virolab.org
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Reverse Transcription in Detail

B.1 The Reverse Transcription Process

Reverse transcription of the viral genome proceeds via a number of steps, further details

of each stage are provided in the following sections.

B.1.1 Initiation

Reverse transcription is initiated by the binding of a cellular tRNALys primer to the

primary binding site (PBS) of the viral genome. The PBS is a region approximately 200

nucleotides downstream from the 5′-end of the genome which is complementary to the

18 nucleotides at the 3′ end of human tRNALys [420]. RT recognizes the tRNA/RNA

complex and initiates the process of reverse transcription by extending the 3′-end of the

annealed primer, using the RNA genome as a template for DNA synthesis.

The RT enzyme is a polymerase which is capable of using either RNA or DNA sequences

as the template for DNA synthesis[301, 421–423]. It contains two active sites. The

first catalyses the polymerisation reaction involved in extending DNA chains, while the

other, known as the ribonuclease H (RNaseH), specifically degrades the RNA strand of

RNA/DNA hybrids [301]. Further detail on the structure of RT is given in Section 4.7.

Once the RT has obtained a suitable template/primer complex it initiates the synthesis

of the minus strand DNA, the first step in the reverse transcription process shown in

Figure B.1 and described below.

217
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R U5 pbs cPPT CTS PPT U3 R 3'5'

tRNA First strand transfer
pbs cPPT CTS PPT U3 R

R U5DNA synthesis/
RNaseH activity

pbs cPPT CTS PPT U3 R

R U5
DNA synthesis/
RNaseH activity

Minus Strand Synthesis

pbs cPPT CTS PPT U3

R U5

R U5 pbs

Second strand transfer

U3 R U5 pbs

U3 R U5

cPPTCTS

pbs cPPT CTS U3 R U5

DNA synthesis/
RNaseH activity

U3 R U5

Central DNA flap 3' LTR5' LTR

Plus Strand Synthesis

Figure B.1: The steps involved in the reverse transcription process. RNA is shown as
a thin line, DNA as a thick one. The synthesis of DNA is punctuated by two transfers
which change the position at which the nascent chain is being extended. Adapted from
[161]

B.1.2 Minus Strand Synthesis

Following the initiation of reverse transcription, synthesis of minus strand DNA proceeds

towards the 5′-end of the RNA template [424, 425]. Concurrent with, but 18 nucleotides

further along the RNA template, the polymerisation reaction, the RNA component of the

newly created DNA/RNA hybrid is degraded by the RNaseH domain of RT [426, 427].

Experimental evidence has shown that RT pauses several times during the synthesis

of minus strand DNA [428]. In particular processivity is seen to stall early in reverse
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transcription 1 to 5 nucleotides after the primer terminus and at homopolymeric regions

of the template during minus strand elongation [429]. These observations have been

used as evidence to suggest that in vivo other factors, cellular or viral, are required to

complete viral DNA synthesis.

The first discrete product of this process is a strand of DNA known as minus strand

strong stop DNA (-ssDNA), created when the RNA genome is copied from the PBS

to the 5′ terminus of the viral genome [430]. Once the 5′-end of the RNA genome has

been reached continued minus strand synthesis requires a strand transfer reaction, with

-ssDNA being transfered to the 3′-end of the genomic RNA, allowing this to become

the template for continued synthesis. The transfer of the -ssDNA from one end of the

RNA genome to the other is facilitated by sections of the 97 nucleotide R region of the

viral genome (part of the LTR shown in Figure 4.2), which are present in DNA form

in the -ssDNA and complementary RNA form at the 3′-end of the RNA template. It is

also thought that NC plays some role in correct strand transfer [431]. This “jump” may

occur as an intramolecular or intermolecular event due to the presence of two identical

RNA genomes in the virion [432]. Once strand transfer has occurred synthesis of the

minus strand DNA proceeds to the end of the template (now the 5′ end of the PBS as

the R and U5 regions have been degraded by the RNaseH).

B.1.3 Plus Strand Synthesis

In order to create completed proviral DNA it is necessary to copy the minus strand DNA

to create a DNA:DNA duplex. Again RNA primers are needed to initiate the copying

of the template. Two sections of the RNA genome are resistant to degradation by

RNaseH; these are the polypurine tract (PPT) and the central polypurine tract (cPPT)

and it is these remaining fragments of the RNA genome which act as primers for the

synthesis of the plus strand DNA. The primary site is the PPT, a purine rich sequence

which is common to all retroviruses. The cPPT is unique to HIV and provides a second

efficient priming site[161]. Recent single molecule flourescence resonance energy transfer

(FRET) experiments by Abbondanzieri et al. [332] have shown that when arbitrary short

RNA segments are bound to DNA the enzyme binds almost exclusively in a position to

perform RNaseH activity. However, the when PPT primers are used a larger proportion

bind in a polymerase competent direction. This proportion is significantly raised by the

presence of dNTPs. Furthermore, in the case where a DNA primer is used RT binds

almost exclusively in an orientation to extend the nascent DNA chain. The enzyme was

also observed to flip orientation without dissociating from its nucleic acid substrate to

allow synthesis to begin.
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The PPT primed plus strand DNA is elongated until the 5′ end of the minus strand

template is reached. This copies the U3, R and U5 sections of the minus strand. Syn-

thesis continues using the tRNA minus strand primer as a template until a stop signal

is reached, this reproduces the PBS sequence [433]. This DNA fragment is known as the

plus strand strong stop DNA (+sssDNA).

At this stage the 3′ end of the +sssDNA is forming part of an RNA:DNA hybrid with

the complimentary section of the tRNA primer. This hybrid can be degraded by the

RNaseH leaving the newly synthesized PBS exposed [434]. Once this occurs the plus

strand PBS sequence is free to base pair with the PBS sequence of the minus strand.

The transfer of the +sssDNA to the 5′ end of the minus strand template facilitated by

these complementary sequences is called the second strand transfer and creates the full

LTRs at both end of the proviral genome.

Following the strand transfer plus strand synthesis continues until the central termi-

nation signal (CTS) is reached. As the CTS is at the 3′ end of the cPPT (which has

acted as a second primer location with synthesis initiated at this point as well as at the

PPT) approximately 100 nucleotides of plus strand DNA is displaced which results in

the creation of a DNA “flap” (see Figure B.1) [435]. There is some evidence to suggest

that this flap plays an important role in the transport of the PIC into the nucleus [436].

The minus strand is also completed, using the plus strand segment that originated as

the +sssDNA as a template to form the full double stranded LTRs [437, 438]. The PPTs

are removed during strand displacement or by RNaseH activity.

B.2 Template/Primer Binding and Positioning

In order allow to allow DNA synthesis RT must undergo significant changes in confor-

mation. When RT is ligated to a template/primer duplex areas of the fingers, thumb

and palm all contribute to keeping the ligand in the correct position to allow catalytic

activity to proceed [439]. Tyr183 and Met184, which are part of the conserved YMDD

motif[440] interact with the 3′ terminal nucleotide of the primer strand. The β12-β13

hairpin is known as the “primer grip” and interacts with the 3′ terminal phosphates

of the primer strand, helping to align it correctly relative to the active site [439, 440].

Mutational studies have shown that residues 229 to 232 which form this hairpin loop af-

fect both RNaseH and polymerase activity [441, 442]. Residues Asp76, Glu89, Glu151,

Gly152, Lys154 and Pro157 constitute the “template grip” and as the name implies

have close contact with and are responsible for maintaining the position of the template

strand. Further positional stability is added by the 259KLV GKL(X)16KLLR
284 motif
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which is found in the αH-turn-αI region, which is homologous to similar structures in a

number of other DNA polymerases [443]. The αH section is partially inserted into the

minor groove of the template/primer duplex with αI adjacent to the template strand.

Consistent with the multi-functional nature of RT in both RNA/DNA and DNA/DNA

duplexes the majority of protein interactions are with the sugar-phosphate backbone of

the template/primer [439].

B.3 Polymerase Function

The polymerase active site consists of residues Asp110, Asp185, Asp186 of the p66

subunit, all of which mutational studies have found to be essential for the enzyme to

exhibit polymerase activity [302]. Both modelling and kinetic studies suggest that the

polymerisation reaction proceeds with the three aspartate residues participating in the

initial binding of the nucleotide through chelation of two Mg2+ ions. It is believed that

Asp110 and Asp186 then stabilise the transition state of the polymerisation reaction.

The model proposed in [444] indicates that the first Mg2+ ion is bound to the β and

γ phosphates of the incoming deoxynucleotide triphosphate (dNTP) and to Asp110

and Asp186. The second ion creates an α-phosphate - Mg2+ - Asp185 complex. This

complex facilitates the nucleophilic attack of the oxygen atom of the 3′-OH of the primer

terminus. Evidence for this hypothesis comes from crystal structures which show two

Mg2+ ions (designated metal A and metal B) coordinated with residues in the active

site [306, 327, 439, 445]. In addition to this a recent structure of ATP crystallised with

RT [327] (in the absence of a any template or primer) has shown metal B coordinated

with the carboxylate oxygen atom of Asp185 and Asp110 and the N7 ATP nitrogen

(which in this structure is in a position equivalent to that the 3′-OH adopts when a

DNA primer is present [327] and a water molecule. This has been claimed as a model

of a transition state in the polymerisation (or the reverse excision) reaction. The model

suggests that when presented with a nucleotide Asp186 plays a role in the positioning

of the α phosphate and orientating the scissile P-O bond for catalysis, whereas Asp110

and Asp185 are primarily responsible for positioning the triphosphate.
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Reverse Transcriptase Crystal

Structures

A list of all RT sequences used in the structural comparisons in Chapter 4 with infor-

mation about any ligand present and any mutations within the sequence. The table was

compiled in May 2007 when there were 92 structures of the complete HIV-1 RT duplex

in the PDB, while more structures have been added since none containing substantial

conformational differences have been reported. All of the structures have very similar

sequences. The sequence shown in Table C.1 is that of the HXB2 wild type, and is re-

ferred to as sequence A in the following table. However, more than half of the sequences

contain the following list of mutations; K172R, S280C, K416R, P468T, N471D, K512Q

and I559V with respect to sequence A, the sequence with these present will be referred

to as sequence B.

The mutation Q258C is commonly used to facilitate crosslinking of the template/primer

duplex to RT and E478Q to eliminate RNaseH activity.

Table C.1: HXB2 wild type RT sequence.

1 PISPIETVPVKLKPGMDGPKVKQWPLTEEKIKALVEICTEMEKEGKISKIGPENPYNTPV

61 FAIKKKDSTKWRKLVDFRELNKRTQDFWEVQLGIPHPAGLKKKKSVTVLDVGDAYFSVPL

121 DEDFRKYTAFTIPSINNETPGIRYQYNVLPQGWKGSPAIFQSSMTKILEPFKKQNPDIVI

181 YQYMDDLYVGSDLEIGQHRTKIEELRQHLLRWGLTTPDKKHQKEPPFLWMGYELHPDKWT

241 VQPIVLPEKDSWTVNDIQKLVGKLNWASQIYPGIKVRQLSKLLRGTKALTEVIPLTEEAE

301 LELAENREILKEPVHGVYYDPSKDLIAEIQKQGQGQWTYQIYQEPFKNLKTGKYARMRGA

361 HTNDVKQLTEAVQKITTESIVIWGKTPKFKLPIQKETWETWWTEYWQATWIPEWEFVNTP

421 PLVKLWYQLEKEPIVGAETFYVDGAANRETKLGKAGYVTNKGRQKVVPLTNTTNQKTELQ

481 AIYLALQDSGLEVNIVTDSQYALGIIQAQPDKSESELVNQIIEQLIKKEKVYLAWVPAHK

541 GIGGNEQVDKLVSAGIRKIL

222
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Table C.2: Table of all the HIV-1 RT structures used in the structure comparisons in
Chapter 4. Also shown is the resolution (Res), R value, crystal space group, number of
amino acids of the p66 chain included (AA No.), whether the protein has sequence A
or B (Seq.), the mutations present relative to sequence A or B and the reference from
which each structure originates(Ref.)

PDB Ligand Res (Å) R Value Space Grp. AA No. Seq. Mutations Ref.

1BQM HBY 097 3.1 0.26 C 1 2 1 556 A [446]

1BQN HBY 097 3.3 0.25 C 1 2 1 558 A Y188L E248Q [446]

1C0T BM + 21.1326 2.7 0.21 P 21 21 21 560 B [447]

1C0U BM + 50.0934 2.52 0.23 P 21 21 21 560 B [447]

1C1B GCA-186 2.5 0.2 P 21 21 21 560 B [448]

1C1C TNK-6123 2.5 0.23 P 21 21 21 560 B [448]

1DLO None 2.7 0.25 C 1 2 1 556 A [323]

1DTQ PETT-1 (PETT131A94) 2.8 0.22 P 21 21 21 560 B [449]

1DTT PETT-2 (PETT130A94) 3 0.2 P 21 21 21 560 B [449]

1EET MSC204 2.73 0.21 C 2 2 21 557 A [95]

1EP4 DMP-266 (Efavirenz) 2.5 0.25 P 21 21 21 560 B [450]

1FK9 DMP-266 (Efavirenz) 2.5 0.22 P 21 21 21 543 B [451]

1FKO DMP-266 (Efavirenz) 2.9 0.21 P 21 21 21 543 B K103N [451]

1FKP Neviripine (Viramune) 2.9 0.22 P 21 21 21 543 B K103N [451]

1HMV None 3.2 0.25 C 1 2 1 560 A [325]

1HNI 2,6-Br2 -APA (R95845) 2.8 0.26 C 1 2 1 558 A [452]

1HNV 8-Cl TIBO (R86183) 3 0.25 C 1 2 1 558 A [453]

1HPZ 2,6-Cl2 -APA (R90385) 3 0.25 C 1 2 1 560 A K103N [343]

1HQE None 2.7 0.25 C 1 2 1 560 A K103N [343]

1HQU HBY 097 2.7 0.25 C 1 2 1 560 A K103N [343]

1HVU RNA Pseudoknot 4.75 0.34 C 1 2 1 554 A [454]

1HYS RNA/DNA 3 0.27 P 32 1 2 553 A [409]

1IKV DMP-266 (Efavirenz) 3 0.23 C 2 2 21 560 A K103N [93]

1IKW DMP-266 (Efavirenz) 3 0.22 C 2 2 21 560 A [93]

1IKX PNU142721 2.8 0.21 C 2 2 21 560 A K103N [93]

1IKY MSC194 3 0.21 C 2 2 21 560 A K103N [93]

1J5O DNA/FAB 3.5 0.26 P 32 1 2 558 A M184I [455]

1JKH DMP-266 (Efavirenz) 2.5 0.24 P 21 21 21 560 B Y181C [314]

1JLA TNK-651 2.5 0.2 P 21 21 21 560 B Y181C [314]

1JLB Neviripine (Viramune) 3 0.21 P 21 21 21 560 B Y181C [314]

1JLC PETT-2 (PETT130A94) 3 0.23 P 21 21 21 560 B Y181C [314]

1JLE None 2.8 0.26 P 21 21 21 560 B Y188C [314]

1JLF Neviripine (Viramune) 2.6 0.24 P 21 21 21 560 B Y188C [314]

1JLG UC-781 2.6 0.22 P 21 21 21 560 B Y188C [314]

1JLQ 739W34 3 0.22 P 21 21 21 560 B [456]

1KLM BHAP U-90152 (Delaviridine) 2.65 0.24 P 21 21 21 560 B [336]

1LW0 Neviripine (Viramune) 2.8 0.22 P 21 21 21 560 B T215Y [457]

1LW2 1051U19 3 0.21 P 21 21 21 560 B T215Y [457]

1LWC Neviripine (Viramune) 2.62 0.22 P 21 21 21 560 B [457]

1LWE Neviripine (Viramune) 2.81 0.21 P 21 21 21 560 B M41L T215Y [457]

1LWF Neviripine (Viramune) 2.8 0.23 P 21 21 21 560 B M41L D67N [457]

K70R M184V

T215Y

1N5Y DNA(AZTMP terminated)/FAB 3.1 0.26 P 32 1 2 558 A Q258C [445]

1N6Q DNA(AZTMP terminated)/FAB 3 0.25 P 32 1 2 558 A Q258C [445]

1QE1 None 2.85 0.26 C 1 2 1 558 A M184I [455]

1R0A DNA/FAB 2.8 0.24 P 32 1 2 558 A Q258C [458]

1REV 9-Cl TIBO (R82913) 2.6 0.22 P 21 21 21 560 B [459]

1RT1 MKC-422 (Emivirine) 2.55 0.2 P 21 21 21 560 B [460]

1RT2 TNK-651 2.55 0.21 P 21 21 21 560 B [460]

1RT3 1051U19 3 0.26 P 21 21 21 560 B D67N K70R [461]

T215F K219Q

1RT4 UC-781 2.9 0.24 P 21 21 21 560 B [462]

1RT5 UC-10 2.9 0.23 P 21 21 21 560 B [462]

1RT6 UC-38 2.8 0.24 P 21 21 21 560 B [462]

1RT7 UC-84 3 0.26 P 21 21 21 560 B [462]

1RTD DNA/dNTP 3.2 0.22 P 21 21 21 554 B P1K Q258C [306]

1RTH 1051U19 2.2 0.21 P 21 21 21 560 B [408]

1RTI HEPT 3 0.24 P 21 21 21 560 B [408]

1RTJ None 2.35 0.22 P 21 21 21 560 B [313]

1S1T UC-781 2.4 0.21 P 21 21 21 560 B L100I [413]

1S1U Neviripine (Viramune) 3 0.23 P 21 21 21 560 B L100I [413]

1S1V TNK-651 2.6 0.23 P 21 21 21 560 B L100I [413]

1S1W UC-781 2.7 0.21 P 21 21 21 560 B V106A [413]

1S1X Neviripine (Viramune) 2.8 0.24 P 21 21 21 560 B V108I [413]

1S6P R100943 2.9 0.25 C 1 2 1 560 A [334]

Continued on next page
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PDB Ligand Res (Å) R Value Space Grp. AA No. Seq. Mutations Ref.

1S6Q R147681 3 0.25 C 1 2 1 560 A [334]

1S9E R129385 2.6 0.25 C 1 2 1 560 A [334]

1S9G R120394 2.8 0.24 C 1 2 1 560 A [334]

1SUQ R185545 3 0.26 C 1 2 1 560 A [334]

1SV5 R165335(Etravirine-TMC125) 2.9 0.26 C 1 2 1 560 A K103N [334]

1T03 DNA(Tenofovir terminated)/FAB 3.1 0.26 P 32 1 2 558 A Q258C [463]

1T05 DNA/Tenofovir 3 0.25 P 31 1 2 558 A Q258C [463]

1TKT GW426318 2.6 0.21 P 21 21 21 560 B [464]

1TKX GW490745 2.85 0.22 P 21 21 21 560 B [465]

1TKZ GW429576 2.81 0.21 P 21 21 21 560 B [464]

1TL1 GW451211 2.9 0.22 P 21 21 21 560 B [464]

1TL3 GW450557 2.8 0.21 P 21 21 21 560 B [464]

1TV6 CP-94,707 2.8 0.26 C 1 2 1 560 A [328]

1TVR 9-Cl TIBO (R82913) 3 0.26 C 1 2 1 558 A [466]

1UWB 8-Cl TIBO (R86183) 3.2 0.27 C 1 2 1 558 A Y181C [466]

1VRT Neviripine (Viramune) 2.2 0.19 P 21 21 21 560 B [408]

1VRU 2,6-Cl2 -APA (R90385) 2.4 0.19 P 21 21 21 560 B [408]

2B5J JANSSEN-R165481 2.9 0.25 C 1 2 1 560 A [467]

2BAN JANSSEN-R157208 2.95 0.24 C 1 2 1 560 A [467]

2BE2 R221239 2.43 0.24 C 1 2 1 560 A [467]

2HMI DNA/FAB 2.8 0.27 P 32 1 2 558 A [403]

2HND Neviripine (Viramune) 2.5 0.2 P 21 21 21 534 B K101E [468]

2HNY Neviripine (Viramune) 2.5 0.21 P 21 21 21 534 B E138K [468]

2HNZ PETT-2 (PETT130A94) 3 0.23 P 21 21 21 534 B E138K [468]

2I5J DHBNH 3.15 0.27 C 1 2 1 552 A [469]

2IAJ ATP 2.5 0.23 C 1 2 1 560 A K103N Y181C [327]

2IC3 HBY 097 3 0.26 C 1 2 1 560 A K103N Y181C [327]

3HVT Neviripine (Viramune) 2.9 0.27 C 1 2 1 556 A [404]

It is generally contended that despite changes in overall conformation depending on the

bound ligand the individual subdomains of RT only undergo relatively minor rearrange-

ment. The average root mean squared deviations (RMSD) of the subdomains, calculated

by aligning the subdomains of each of the crystal structures to the unliganded average

structure, are shown in Table C.3. Almost all of these values are below 1.5 Å which indi-

cates that the internal conformation of the subdomains remains similar throughout the

structures. The notable exception to this is the palm subdomain of the NNRTI bound

structures, where the value rises to 2.23 Å due to the formation of the NNRTIBP. A very

similar value is obtained for the two open unliganded structures which adds credence

to the idea they are more representative of the NNRTI bound form than the true open

conformation of the apo enzyme.

Table C.3: Average subdomain RMSD in Å for all HIV-1 RT crystal structures in the
PDB, broken down by subdomain and according to the class of ligand present. Figures
in brackets are the standard deviations. All deviations are small, indicating that the
individual subdomain structures are stable and undergo minor rearrangement.

Ligand Type Fingers Palm Thumb Connection RnaseH
Unliganded 0.65 (0.16) 0.46 (0.03) 0.83 (0.11) 0.40 (0.04) 0.60 (0.13)
Template/Primer 1.27 (0.29) 0.85 (0.11) 1.46 (0.17) 0.57 (0.1) 0.77 (0.29)
NNRTI 1.26 (0.28) 2.23 (0.22) 1.21 (0.24) 0.88 (0.24) 0.85 (0.29)
Unliganded (open) 1.21 (0.16) 2.24 (0.09) 1.00 (0.04) 1.03 (0.05) 0.93 (0.31)
Overall 1.24 (0.31) 1.99 (0.59) 1.21 (0.26) 0.82 (0.26) 0.83 (0.28)
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K. Fridborg, H. Zhang and T. Unge. 2002. Structural basis for the inhibitory

efficacy of efavirenz (DMP-266), MSC194 and PNU142721 towards the HIV-1 RT

K103N mutant. Eur J Biochem, 269, 1670–1677.

[94] S. Butini, M. Brindisi, S. Cosconati, L. Marinelli, G. Borrelli, S. S. Coccone, A. Ra-

munno, G. Campiani, E. Novellino, S. Zanoli, A. Samuele, G. Giorgi, A. Bergamini,

M. Di Mattia, S. Lalli, B. Galletti, S. Gemma and G. Maga. 2009. Specific targeting

of highly conserved residues in the HIV-1 reverse transcriptase primer grip region.

2. Stereoselective interaction to overcome the effects of drug resistant mutations.

J Med Chem, 52, 1224–1228. URL http://dx.doi.org/10.1021/jm801395v.

(doi:10.1021/jm801395v)

http://dx.doi.org/10.1074/jbc.X400003200
http://dx.doi.org/10.1074/jbc.X400003200
http://dx.doi.org/gt;3.0.CO;2-N
http://dx.doi.org/gt;3.0.CO;2-N
http://dx.doi.org/10.1021/bi0350405
http://dx.doi.org/10.1021/jm801395v


Bibliography 234
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