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CHAPTER I 

 

INTRODUCTION 

 

Nutrients significantly influence health and disease in the management 

of both minor and major medical illnesses as fast growing field in research. 

Different fatty acids and other lipids like cholesterol and its derivatives are 

examples of nutrients capable of regulating their own metabolism as well 

as general energy turnover in many organs. Mitochondria play a key role in 

energy metabolism in many tissues, for example in the key metabolic 

tissues skeletal muscle, liver, and adipose tissue (Rolfe & Brown, 1997); as 

the main site of the oxidative process, changes in their metabolic activity 

could result from changes in mitochondrial mass and specific capacity 

(Iossa et al.  2002).  

Chronic elevation of plasma fatty acid levels is a characteristic feature 

of obese diabetic and non-diabetic individuals (Opie LH and Walfish PG 

1963), where increased levels of intracellular lipid intermediates like acyl-

CoAs, DAGs activating protein kinase c – theta (PKC- Ѳ) and IκB kinase 
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β (IKKβ) interfere with intracellular insulin signaling; leading to an 

unfavorable balance between fatty acid catabolism to CO2 and the onset of 

β oxidation. Sustained oversupply of metabolic fuel (glucose and fatty 

acids), as seen during type II diabetes (T2D) and obesity, impairs the 

ability of mitochondria to shift between use of lipid during fasting and use 

of carbohydrate in the post-prandial state, which is critically important for 

energy homeostasis. This metabolic inflexibility imposes a major substrate 

burden on the oxidative machinery of muscle and the continued oversupply 

of carbon fuel eventually surpasses the respiratory drive and cellular 

demand for ATP synthesis.  

Fatty acids (FAs) undergo incomplete oxidation and greater 

partitioning into lipotoxic derivatives (e.g. diacylglycerol (DAG) and 

ceramides) that have been strongly implicated in the pathogenesis of 

insulin resistance (Yu C et al., 2002). Reactive oxygen species (ROS) 

generation associated with mitochondrial overload has been strongly 

implicated as a stimulus promoting expression/signalling of 

proinflammatory proteins that may further dysregulate mitochondrial 

function by suppressing expression of PGC1α (a major regulator of 

mitochondrial biogenesis) and of genes encoding components of the 

respiratory chain.  

Increased supply of certain FAs has an effect on processes regulating 

fuel and energy balance within skeletal muscle and liver. In particular, 
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saturated fatty acids impair Akt signalling to key end-points of insulin 

action such as glucose uptake; inhibit major ATP-consuming processes 

(e.g. DNA and protein synthesis). Reduced mitochondrial respiratory 

capacity has also been linked to aberrant control of skeletal muscle 

mitochondrial dynamics.  

The anti-inflammatory AMPK action may itself be a consequence of 

the kinase alleviating substrate-induced mitochondrial stress by: (i) 

promoting FA oxidation, (ii) restraining mitochondrial ROS production 

and (iii) stimulating mitochondrial biogenesis via modulation of PGC1α-

dependent transcriptional activity. It has been suggested that PPARα 

activation in the liver might be related to the anti-obesity and anti-steatotic 

effects. This was concomitant with improved insulin sensitivity and insulin 

action in skeletal muscle and liver, and ameliorated glucose tolerance in 

these mice, suggesting a potential therapeutic activity for ω-3 in obesity 

(White PJ et al. 2010). 

Therefore, the amount and type of fat in the diet can play an important 

role in regulating whole body metabolic health.  In particular, diets high in 

saturated fat have been linked with the onset of both obesity and T2D 

(Vessby B et al., 2001; Summers L.K.M et al., 2002).  Remarkably, 

provision of polyunsaturated fatty acids confers protection against 

mitochondrial insufficiency and counters the proinflammatory and insulin 

desensitising effects of saturated fat (Ebbesson S.O.E. et al., 2005; Bang 
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H.O et al., 1980). PUFAs may be linked to reduced ROS generation which 

is a feature of mitochondrial uncoupling. This project aims to investigate 

the influence of different quality of dietary fatty acids on the metabolic 

processes focusing on the role played by the mitochondria in the sites with 

highest metabolic activity such as liver and skeletal muscle. This study 

could be useful to explore new mechanistic insight and opportunities for 

treating obesity-induced insulin resistance and its associated metabolic 

disorders. 

Our work will determine if PUFA from fish oil and cow milk mediates 

its effect via AMPK; a molecule that crucially regulates cellular energy 

balance.  

 

Obesity and Diabetes mellitus  

               Obesity arises from an imbalance between energy intake and 

expenditure increasing the risk of developing diabetes (Schmidt M et al., 

2013). The prevalence of obesity has been rising globally during the last 

century. According to the latest projections by the World Health 

Organization (WHO) approximately 2.3 billon adults will be overweight 

and more than 700 million obese worldwide by the year 2016. Obesity, 

T2D and insulin resistance are interconnected so strongly and termed as 

metabolic syndrome (Luna-Luna M et al., 2015). 
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Diabetes mellitus can be classified as type 1, type 2, or maturity onset 

diabetes of the young (MODY) which accounts for a number of hereditary 

forms of diabetes caused by genetic mutations. Type 1diabetes, also 

referred to as juvenile or insulin-dependent diabetes is a result of an 

autoimmune destruction of β cells which leads to a loss of insulin 

production. Alternatively, type 2 diabetes, termed insulin-independent, is 

the most common form of diabetes, comprising 90–95% of those 

diagnosed. This type is caused by a combination of genetic predisposition 

and environmental pressures that result in the progressive desensitization 

of peripheral tissues to insulin. This reduction in sensitivity triggers the 

existing β cells to produce more insulin, leading to increased 

desensitization of the β cells, and this cycle ultimately leads to decreased β 

cell function and β cell death, which results in hyperglycaemia. 

 

Insulin Resistance 

Fatty liver, oxidative stress and mitochondrial dysfunction are key 

pathophysiological features of insulin resistance and obesity and type 2 

diabetes. Reduced response to insulin (i.e. insulin resistance) may affect 

several organs, but skeletal muscles, liver and adipose tissues seem to play 

the major roles in insulin-induced glucose clearance with reduced capacity 

for complete mitochondrial fatty acid oxidation. (Schenk S et al., 2008) 
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Insulin regulated glucose metabolism: 

a. In skeletal muscle and adipose tissue, insulin enhances glucose uptake 

by translocation and fusion of intracellular vesicles containing the 

specific glucose transporter GLUT4. Skeletal muscle may further 

accumulate the incoming glucose as glycogen or catabolize it partly to 

lactate, or completely to CO2 by mitochondrial oxidation. Adipocytes on 

the other hand do not generate glycogen or oxidize glucose to a 

significant extent; instead glucose is utilized to produce the glycerol 

backbone of TAGs, or broken down to acetate in mitochondria and to be 

further utilized as substrates for de novo fatty acid synthesis via the 

enzyme fatty acid synthase (FAS) located in the cytosol. Insulin also 

increases fatty acid uptake in skeletal muscle and adipocytes, and 

inhibits lipolysis of TAG stored in adipose depots.  

 

b. In the liver, however, insulin functions differently as the liver cells do 

not exhibit GLUT4-mediated insulin-stimulated glucose uptake. Instead 

glucose uptake is regulated downstream of membrane transport 

(facilitated by GLUT2) by a liver specific hexokinase (also called 

glucokinase; GK) (Matschinsky FM et al., 2006; Okamoto Y et al., 

2007) e) and glutathione synthetase (GS), the rate limiting step in 
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glycogen synthesis.  Glucose entering the hepatocyte may become 

incorporated into glycogen, oxidized or used as substrate for de novo 

fatty acid synthesis. Insulin regulates glycogen synthesis positively and 

gluconeogenesis negatively, thereby increasing storage and reducing 

output of hepatic glucose into the blood stream, respectively. 

 

 

 

 

 

 

 

 

Fig 1.1. Insulin regulated glucose metabolism (Hvammen AW, 2010): The fate of glucose 

entering the blood after a meal and responses to insulin. After entering the cell, glucose may either 

be stored as glycogen (mainly in skeletal muscle and liver), catabolized partly to lactate by working 

muscle exceeding its oxidative capacity, converted to glycerol to form the backbone of TAG 

(mainly adipocytes), catabolized completely to CO2 to produce energy carriers like ATP and NADP 

(most organs including brain). In adipose tissue glucose may also be oxidized to acetate and be 

further utilized as substrates for de novo fatty acid synthesis via FAS. Glucose transporter 1,2 

(GLUT1,2), fatty acid synthase (FAS), fatty acid (FA), triacylglycerol (TAG), non-esterified fatty 

acid (NEFA), very low density lipoprotein (VLDL), adenosine triphosphate (ATP).  
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The aim of this thesis was to examine the influence of high forage 

milk on hepatic function. Since, in our previous studies, we had observed 

the effects of different milk on skeletal muscle, in the current study we 

focused on the effects of different fatty acids administration on skeletal 

muscle mitochondria. 

Liver: Plays a main role in energy expenditure and lipid and glucose 

metabolism by conversion of carbohydrates into fatty acids, but a small 

part of triglycerides is synthesized in adipocytes. Although fatty acids and 

triglycerides synthesis take place in the cytosol, mitochondria provide key 

intermediates needed for lipogenesis, like glycerol 3-phosphate and acetyl-

CoA. Key enzyme in glycerol 3-phosphate synthesis is mitochondrial 

pyruvate carboxylase that converts pyruvate into oxaloacetate. Pyruvate 

also undergoes decarboxylation to acetyl-CoA by the mitochondrial 

pyruvate dehydrogenase complex, which facilitates fatty acid and 

triglyceride synthesis. As liver greatly contributes to whole-body energy 

expenditure and lipid utilization (Yu T et al., 2006), thus protein mass, 

oxidative capacity and energy efficiency were evaluated in mitochondria 

isolated from the liver of differently treated rats with milk from cows fed 

with high forage.  
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Skeletal muscle 

Skeletal muscle constitutes the largest organ in the body accounting 

for approximately 40% of body weight in normal individuals (Snyder WS 

et al., 1975). The share mass of this organ renders its importance for 

energy homeostasis, and even at rest it utilizes approximately 30% of total 

body energy expenditure, whereas during hard physical activity energy 

expenditure rises several-fold (Zurlo F et al., 1990). Lack of muscle 

activity has been associated with increased risk of developing obesity, T2D 

and cardiovascular diseases (Hamilton MT et al., 2007), and reduced 

muscle energy turnover is associated with development of both obesity 

(Zurlo F et al., 1990) and T2D (Handschin C et al., 2008). Glucose and 

fatty acids are quantitatively the primary energy sources for skeletal 

muscle, with resting muscles consuming more fatty acids during fasting, 

and more glucose when carbohydrate uptake increases postprandially 

(Kelley DE et al., 1993). Skeletal muscles are responsible for more than 

80% of insulin-stimulated glucose disposal (DeFronzo RA et al., 1981). 
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Mitochondrial metabolism, dysfunction & metabolic disorders 

Mitochondria are essential for the maintenance of normal 

physiological function of tissue cells and mitochondrial dysfunction often 

accompanies and underlies the pathogenesis of disease (Wang C.H et al., 

2010). Mitochondria are the cytoplasmic organelles in human and animal 

cells that house crucial metabolic processes like fatty acid oxidation, 

oxidative phosphorylation, and ROS production. It is not surprising that 

impaired mitochondrial activity often has an association with metabolism 

by contributing to (i) oxidative stress and (ii) insulin resistance, (iii) 

genetic factors’ (N. Turner and L. K. Heilbronn 2008).  

The principal role of mitochondria is to synthesize more than 95% of 

adenosine triphosphate (ATP) for cellular utilization (Wang C.H et al., 

2010). Production of ATP requires two major steps, oxidation of highly 

reducing metabolites and coenzymes such as nicotinamide adenine 

dinucleotide (NADH) and flavin adenine dinucleotide (FADH2) and 

phosphorylation of adenosine diphosphate to generate ATP to support 

various cellular functions (OXPHOS, oxidative phosphorylation) (Kim J.A 

et al., 2008).  

The mitochondrial respiratory system consists of four enzymatic multi 

heteromeric complexes (I–IV) embedded in the inner membrane of 

mitochondria and two individual mobile molecules, coenzyme Q (CoQ) 
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and cytochrome c, along which the electrons liberated by the oxidation of 

NADH and FADH2 are passed and ultimately transferred to molecular 

oxygen. This respiratory function creates the electrochemical gradient of 

protons by a mechanism called “proton leak” and reduce membrane 

potential (ΔΨ) generating heat instead of energy about 180 mV through the 

inner membrane that has the potential to do work (Kim J.A et al., 2008).  

Given their central role in energy production, it is perhaps not 

surprising that mitochondrial dysfunction has been implicated in the 

aetiology of skeletal muscle insulin resistance, a precursor of frank 

diabetes. The higher levels of lipid intermediates in insulin resistant 

subjects could be a consequence of a lower fat oxidative capacity, which is 

low in insulin resistance. This blunted oxidative capacity is due to fewer 

mitochondria and/or compromised mitochondrial function. In combination 

with elevated intramyocellular lipids content, mitochondrial dysfunction 

could result in increased availability of lipid intermediates (Nielsen J et al., 

2010). 

Oxidative stress 

 Mitochondria are also deeply involved in the production of reactive 

oxygen species (ROS) through electron carriers in the respiratory chain 

(Lenaz G, 1998) leading to a disturbance in the balance between the 

production of ROS and antioxidant defence (Betteridge D. J, 2000). 



~ 25 ~ 

 

Mitochondria are a major source of cellular free radicals that might 

damage proteins, lipids, and DNA. Defects in the transfer of electrons 

across the mitochondrial membrane can cause electrons to accumulate on 

the respiratory chain complexes, which results in an increase of the 

potential for electrons to bind with free oxygen and stimulation of ROS 

production (Johannsen D. L and Ravussin E, 2009). Furukawa et al. have 

shown that elevated levels of fatty acids increased oxidative stress via 

NADPH oxidase activation in cultured adipocytes causing dysregulated 

production of various adipokines (Furukawa S et al., 2004). 

 

Mitochondrial activity insulin resistance and metabolic dysfunction in 

skeletal muscle 

The influence of nutrition on skeletal muscle has the potential to 

substantially impact whole body metabolism. Skeletal muscle constitutes 

the largest organ in the body plays a well-established role in maintaining 

glucose homeostasis and defects in optimal muscle insulin sensitivity and 

function cause metabolic disease (Abdul-Ghani MA etal., 2010). Skeletal 

muscle (depending on adiposity levels) accounts for approximately 40% of 

total body mass and is highly adaptable to environmental changes such as 

diet and physical activity levels (Zhao X  et al., 2013; Kim J et al., 2002). 

Skeletal muscle is a major site of glucose disposal (Meyer C et al., 2002, 
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Kelley DE e al., 1993). Since ATP is not stored within skeletal muscle in 

great abundance (∼20–25 mmol (kg dry muscle)−1), during heightened 

metabolic demand there is an essential requirement for rapid and sustained 

ATP production, a role fulfilled primarily by mitochondria. As such, 

skeletal muscle cells are densely populated with these complex organelles.  

Maintaining skeletal muscle metabolic health is therefore key to 

maintain glycaemic control. Strategies that improve skeletal muscle 

metabolic function and insulin sensitivity could therefore have a major 

impact on the obesity induced development of insulin resistance and 

diabetes to improve quality of life. Circulating fatty acids in the muscle can 

be incorporated into triacylglycerol (TAG), which is the main component 

of Intromyocellular lipids (IMCL), i.e. saturated fats inside the cells 

predominantly dispersed into small lipid droplets throughout the muscle 

cells interfering with the action of the insulin receptor’s, making the cells 

resistant to insulin (DeFronzo RA et al., 1981) or can be oxidized by the 

mitochondria. In TAG synthesis, three fatty acids bind to glycerol. The 

first step in the TAG formation is an ester bond between one fatty acid and 

glycerol, resulting in monoacylglycerol (MAG). Subsequently another 

fatty acid is bound to MAG facilitated by MGAT forming diacylglycerol 

(DAG). The final step for TAG formation is the addition of a third fatty 

acid to DAG by DGAT. TAG is the final product of this chain of anabolic 
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processes designed for storage of energy, and this storage occurs in small 

TAG-containing lipid droplets. 

Lipolysis of TAG occurs when fatty acids are required for oxidation. 

In this process fatty acids are subsequently released from glycerol. Upon 

complete lipolysis this results in the release of three fatty acids. The first 

step in lipolysis is catalyzed by adipose triglyceride lipase (ATGL) 

resulting in DAG and one fatty acid. 

Subsequently another fatty acid is hydrolyzed from glycerol catalyzed 

by hormone sensitive lipase (HSL). Finally, MAG is hydrolyzed by 

monoglyceride lipase (Bergman BC et al., 2012). Lipid droplet lipolysis is 

a complex and strictly orchestrated process with many more players like 

(co-) activators and suppressors involved. Spillover of fatty acids from the 

white adipose tissue along with a reduced fat oxidative capacity may 

promote fat storage in muscle.   

 

Inflammatory signalling pathway and insulin resistance degree in 

skeletal muscle Inflammation is a key component of the etiology of 

obesity-linked insulin resistance and type 2 diabetes (T2D) (White PJ et 

al., 2008). Metabolic targets for the prevention and treatment of insulin 

resistance such as adiponectin have been shown to counter-regulate 

inflammation. Consequently, developing our understanding of mechanisms 
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involved to allow development of novel strategies aimed at preventing the 

development or limiting the progress of inflammation are of great interest 

to the field.  

We seek to define the role of one of the key player in metabolism, e.g. 

the AMP-activated protein kinase (AMPK), an energy sensor and a potent 

counter-regulator of inflammatory signaling pathways (Salt and Palmer 

2012; Hernández-Aguilera et al., 2013). Adenosine monophosphate-

dependent kinase (AMPK), an evolutionary conserved serine/threonine 

kinase, is a hetero trimeric complex formed by a catalytic a subunit and 

regulatory b and g subunits. The phosphorylation of the a subunit, at Thr 

172, turns AMPK into the activated form pAMPK.  AMPK is a sensor of 

the cellular energy status that, when activated by metabolic stress, is able 

to maintain cellular energy homeostasis. 

Tumour necrosis factor-α (TNF-α) is also known to induce IR through 

the phosphorylation of IRS-1 on serine 307 similar to lipid intermediates 

(Aguirre V  et al., 2000) and EPA reduces TNF-α expression (Figueras M  

et al.,2011). Furthermore, in macrophages and adipocytes the G-protein 

coupled receptor GPR120 is an omega-3 sensitive receptor that exhibits 

anti-inflammatory properties through the suppression of TNF-activation. 

While transient inflammation is an important process in muscle adaptation, 

failure to effectively resolve inflammation leading to a chronic state of 

inflammation is associated with IR/T2D and obesity (Arkan MC et al., 
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2005). There is growing evidence that omega-3 PUFAs have potent anti-

inflammatory actions (Calder, P.C 2010). Synergistically, EPA and DHA 

play a role in the resolution of inflammation through the EPA and DHA 

derived inflammatory mediators (Stables MJ et al., 2011) such as 

prostaglandins, leukotrienes, lipoxins, resolvins and protectins. The anti-

inflammatory effect of EPA and DHA are predominantly dependent on 

incorporation into phospholipids. Although inflammation may not have a 

primary role in the development of IR in skeletal muscle, it may accentuate 

the metabolic dysfunction caused by the onset of IR/T2D (Turner N et al., 

2013). Furthermore, a number of animal studies where inflammatory 

pathways are genetically down regulated demonstrate that preventing 

obesity induced inflammation can prevent the development of insulin 

resistance (Uysal K.T et al., 1997).  

Controlling inflammation may, therefore, be an important factor in the 

long term management of skeletal muscle IR by assessing the immune 

modulatory effect of omega-3 PUFAs.  
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Fig 1. 2. Inflammation and related cellular events in obesity (André Marette et al., 2014): 

resolution by ω-3 PUFA derived mediators and adiponectin. In obesity, a vicious cycle of cellular 

events ensues and the crosstalk between these exacerbates the associated clinical complications. 

Evidence suggests that LC ω-3 PUFA-derived mediators reduce inflammation and improve insulin 

sensitivity by numerous mechanisms, one of which is via enhancing adiponectin action. 

 

Adiponectin, insulin resistance and skeletal muscle metabolism 

Various dietary and nutritional factors have the capacity to enhance 

adiponectin expression (Li FY etal., 2012). Recent evidence suggests that 

mitochondria in adipose tissues might play plentiful roles in the regulation 

of the whole body energy homeostasis. By this study we aim to understand 

the molecular mechanisms of action via which inflammation, insulin 
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resistance and metabolic dysfunction occur in skeletal muscle, and also 

how they crosstalk with each other by contributing role of adiponectin and 

inflammation, so that we can generate new and improved therapies for 

obesity-linked metabolic complications. Adiponectin plays an important 

role in the pathophysiology of diabetes in obesity via regulating 

metabolism in skeletal muscle (Liu Y et al., 2014).   

Adiponectin is a white and brown adipose tissue hormone, known as 

highly abundant plasma gelatin-binding protein-28 (GBP28), AdipoQ, 

adipocyte complement-related protein (ACRP30), or apM1 (~2–20 ug/ml) 

and a decreased level is observed in obese individuals and this correlates 

strongly with various features of the metabolic syndrome. The beneficial 

effects of adiponectin, including anti-inflammatory and insulin-sensitizing 

actions, have been well established (Yamauchi T et al., 2013) that exerts its 

action through its receptors AdipoR1, AdipoR2, and T-cadherin. AdipoR1 

is expressed abundantly in muscle, whereas AdipoR2 is predominantly 

expressed in the liver. Adiponectin increases fatty acids oxidation, which 

lowers circulating free fatty acids and prevents insulin resistance with 

distinct potential for being of therapeutic value (Adeeb Shehzad et al., 

2012). 

Adiponectin directly stimulates fatty acid metabolism in skeletal 

muscle by increasing fatty acid uptake and oxidation and suppressing fatty 

acid synthesis via mechanisms involving AMPK, p38 MAPK and PPARα 
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signaling (Ceddia RB et al., 2005; Fruebis J et al., 2001).  Adiponectin also 

confers beneficial metabolic effects in muscle by enhancing mitochondrial 

biogenesis (Iwabu M et al., 2010). Indeed, an important link between 

adiponectin and activation myocyte enhancer factor 2C (MEF2C) may be 

important in the PGC1α-mediated increase in mitochondrial biogenesis as 

well as a fiber type switch, both of which will provide more oxidative 

capacity (Civitarese AE et al., 2006). 

 

Adipocyte, Inflammation, and Insulin resistance  

Adipocyte’s role in insulin resistance is broader than what it was 

initially expected. It has been well established that the adipocytes play a 

role in inflammation, because it is capable of secreting cytokines related to 

insulin resistance like tumoral necrosis factor-a (TNF-α). TNF-α interferes 

with insulin receptor signalling cascade, by the activation of kinases that 

phosphorylate serine residues in the substrate of the receptor (IRS-1 and 

IRS-2), preventing the insulin signal transfer, creating a insulin resistance 

scenario, which results in the release of lipolysis in adipocytes, generating 

more availability of FFA to the skeletal muscle; this favours insulin 

resistance as well. 

The mechanism that explains adiponectin effects in muscle, 

establishes that it activates a kinase called AMP-activated protein kinase 
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that in turn has 2 metabolic results: (1) activates glucose transport into the 

cell and (2) enhances fatty acid oxidation, all done through the activation 

AMPK (AMP activated protein kinase).  Which inhibits acetyl CoA 

carboxylase, main enzyme for lipogenesis, and which in turn lowers 

producing malonyl CoA levels within cytosol. When malonyl CoA 

decreases, this stops inhibition of carnitin–palmitoyl transferase-1 or 

carnitin transporter, which is the enzyme responsible for fatty acid 

transport from the cytosol to the mitochondria, this way this allows the 

entrance of fatty acids from cytosol to the mitochondria, fuelling the b 

oxidation (ACC, acetyl CoA carboxylase; CPT-1, carnitin–palmitoyl 

transferase-1; GLU, glucose) activating mitochondrial b oxidation (Ferre´ 

P 2004) Shown in Fig 1.3. 

 

Fig 1.3.: adiponectin has 2 main metabolic routes: activation of glucose entrance to the cell 

and enhancement of fatty b oxidation; all done through the activation AMPK (AMP activated 

protein kinase). (Valmore Bermu´ dez et al., 2010). 
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CHAPTER II 

 

OVERVIEW AND AIM OF DISSERTATION 

 

The cure of any disease depends on a fundamental understanding of 

identifying the elements involved in the initiation and progression of a 

disease. As an excellent example we show nutritional therapy to treat 

diabetes and obesity. To enhance evidence based efforts that aim to 

generate homeostasis of both energy balance and glucose metabolism.  

  The purpose of this project is to understand (i) how mitochondrial 

insufficiency induced by nutrient overload contributes to increase 

inflammatory signalling and insulin resistance in muscle cells, (ii) how 

inflammatory signalling may potentiate mitochondrial dysfunction and (iii) 

how impaired mitochondrial function and pro-inflammatory signalling 

induced by fuel oversupply can be mitigated to improve skeletal muscle 

insulin sensitivity. 

 In this study we look for insulin resistance and type 2 diabetes 

emphasizing these disorders by metabolism in mitochondria which prove 

beneficial. We assess the coupling efficiency of mitochondrial oxidative 

phosphorylation and its potential as a target for future anti-obesity 

interventions. Coupling efficiency is the proportion of oxygen 
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consumption used to make adenosine triphosphate (ATP) and do useful 

work. High coupling efficiency may lead to fat deposition; low coupling 

efficiency to a decrease in fat stores. Thus, it is logical that a deeper 

understanding of the various molecular reactions would serve to accelerate 

the efforts pertaining to the effects of different diets on mitochondrial cells. 

To facilitate development of improved glycemic properties, the research 

described herein represents only a portion of a larger scheme focused on 

generating and characterizing a series of profiles representing key stages in 

the blood parameters that occur naturally in the mouse. 

 We focused on the potential therapeutic benefit of a diet with high 

omega-3 content, with an emphasis on fish oil derived omega-3 PUFAs, in 

the regulation of skeletal muscle metabolic function with the hypothesis: 

Exposure to PUFAs from fish oil or milk interventions reduce 

mitochondrial ROS production and help lessen pro-inflammatory 

signalling and insulin resistance associated with nutrient overload. 

 

• Dietary PUFA, High Fat Diet and Inflammation  

At a cellular level, fatty acids are not only structurally important, as 

the main component of cellular membranes, but also have an important 

function in a number of metabolic processes such as regulating the activity 

of certain enzymes and by acting as signalling molecules (Burdge, G.C.; 
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Calder, P.C. 2015). Therefore, alterations in the composition of the muscle 

lipid pool may have profound effects on skeletal muscle metabolic and 

physical function. 

 Diets rich in saturated fatty acids (SFAs) have been associated with 

an increased risk for obesity, IR and the high fat diet (HFD) rich in lard 

induces obesity, inflammation and oxidative stress, on the other hand 

dietary PUFA from fish oil mainly those of the n-3 family, are known to 

play essential roles in the maintenance of energy balance and in the 

reduction of body fat deposition through the up regulation of mitochondrial 

uncoupling that is the main source of reactive oxygen species by protecting 

against the metabolic diseases (Abete I et al., 2011; Gonzalez-Periz A et 

al., 2009; Nakatani T et al., 2003; Xin YN et al., 2008) Fatty acid species 

are classified by their varying degrees of saturation into three main classes; 

saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs) and 

polyunsaturated fatty acids (PUFAs). SFAs are a simple carbon chain 

containing no double bonds, MUFAs contain one double bond and PUFAs 

are classified as carbon chains containing two or more double bonds. The 

differences in the chemical structure of these different classes can lead to 

different physiological effects. While the human body cannot synthesize 

omega-3 and omega-6 PUFAs, it does have the capacity to further 

metabolize these fatty acids through stages of elongation and desaturation. 
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The Omega (ω)3 PUFAs, docosahexaenoic acid (DHA) and 

eicosapentaenoic acid (EPA), are dietary compounds that are intensively 

studied as potent anti-inflammatory products, able to reduce the risk of 

insulin resistance and ameliorate obesity-associated disorders affecting 

hormonal control and modulating AMPK activity (Xue et al., 2012; 

Martínez-Fernández etal., 2015).  

 

 

Fig 2.1 Highlights some of the mechanisms of action by which omega-3 PUFAs EPA and 

DHA may influence skeletal muscle health and function. (Stewart Jeromson et al., 2015) 
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We hypothesized that the beneficial effects of PUFA may be mediated 

by AMPK. To this aim, rats were fed a control diet (CD), or isocaloric 

HFD containing either fish oil (FD; rich in ω3-PUFA) or lard for 6 weeks, 

and the activation of AMPK, inflammatory state (IKKβ, TNF-α) and 

oxidative stress were analyzed in the skeletal muscle. In addition, we also 

studied serum lipid profile, homeostatic model assessment (HOMA) index, 

and pro-inflammatory parameters.  

Milk:  Milk contains a number of essential nutrients. Cow milk (CM), 

the primary marketed product consumption in the first months of life has 

been suggested as a potential factor contributing to the increasing burden 

of obesity and related disorders.  

Nutritional composition of Milk can be improved by the feeding 

regime. Organic milk, from grass fed cows, has a much more favourable 

nutrient profile than milk from conventional, grain-fed cows. A diet based 

on grass results in double the omega-3 fat content with more and richer 

milk as conventional milk. Cow’s milk that's higher in an essential fatty 

acid called alpha-linolenic acid (ALA), an omega-3 fat may promote 

positive health effects on lipid metabolism, redox status, and inflammatory 

response with lower risk of heart disease, stroke and type 2 diabetes.  
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Experimental/research methods used 

This work involved extensive use of rat skeletal muscle and liver for use in 

an array of biochemical techniques that will allow us to determine 

mitochondrial respiration rates through analysis of oxygen consumption 

and expression/activation status of proteins with key roles in mitochondrial 

function, insulin and inflammatory signalling. 
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CHAPTER III 

 

POLYUNSATURATED FATTY ACIDS ATTENUATE DIET 

INDUCED OBESITY AND INSULIN RESISTANCE, 

MODULATING MITOCHONDRIAL RESPIRATORY 

UNCOUPLING IN RAT SKELETAL MUSCLE 

 

 

Objectives 

Omega (ω)-3 polyunsaturated fatty acids (PUFA) are dietary compounds 

able to attenuate insulin resistance. Anyway, the precise actions of ω-

3PUFAs in skeletal muscle are overlooked. We hypothesized that PUFAs, 

modulating mitochondrial function and efficiency, would ameliorate pro-

inflammatory and pro-oxidant signs of nutritionally induced obesity. 

 

Study Design Rats were fed a control diet (CD) or isocaloric high fat diets 

containing either ω-3 PUFA (FD) or lard (LD) for 6 weeks. 
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Introduction  

When food intake chronically exceeds metabolic needs, efficient 

metabolism causes continued energy storage and results in obesity, a 

common condition associated with diabetes, hyperlipidemia and 

inflammatory state. 

 

Although the peripheral insulin resistance is still not fully understood, 

several mechanisms have been proposed, including an increase of 

intracellular lipid metabolites, inflammation, and endoplasmic reticulum 

(ER) stress and mitochondrial dysfunction (Savage DB et al., 2007; 

Yuzefovych LV et al., 2013; Szendroedi J 2012). In particular, ER stress 

appears to act directly as a negative modulator of insulin signaling, and 

indirectly promoting lipid accumulation (Hotamisligil GS 2010; Zhang K 

et al., 2008). Activation of AMP-activated protein kinase (AMPK) protects 

against lipid-induced hepatic (Wang Y et al., 2011) and skeletal muscle 

disorders, reducing ERstress (Salvadó L et al., 2013).  

 

The beneficial effects of adiponectin, including anti-inflammatory 

and insulin-sensitizing actions, have been well established (Ye R et al., 

2013; Liu Y et al., 2014; Yamauchi T 2013). Adiponectin plays an 

important role in the pathophysiology of diabetes in obesity, at least in part 

via regulating metabolism in skeletal muscle (Liu Y et al., 2014). 

Adiponectin, as well as leptin, directly modulate fatty acid metabolism in 
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skeletal muscle by increasing fatty acid oxidation and suppressing fatty 

acid synthesis via mechanisms involving AMPK activation (Yamauchi T et 

al., 2002; Minokoshi Y et al., 2002). Adiponectin also confers beneficial 

metabolic effects in muscle by enhancing mitochondrial biogenesis (Iwabu 

M et al., 2010). 

 

 Mitochondria are at the centre of glucose and fatty acid metabolism. 

In fact, mitochondrial dysfunction, increased production of reactive 

oxygen species (ROS), and impaired mitochondrial biogenesis are 

considered the key determinants of insulin resistance and obesity 

(Yuzefovych LV et al., 2013; Szendroedi J et al., 2012). Mitochondrial 

uncoupling, which reduces the proton gradient across the mitochondrial 

inner membrane, creates a futile cycle of glucose and fatty acid oxidation 

without generating ATP (Terada H 1990; Nedergaard J et al., 2005; Si Y et 

al., 2009; Tseng YH et al., 2010) increasing lipid oxidation and reducing 

intracellular lipid content (Harper JA et al., 2001; Harper ME et al., 2008). 

Promoting inefficient metabolism, such as the generation of heat instead of 

ATP, is a potential treatment for obesity. In fact, the modulation of 

mitochondrial function and efficiency has been suggested for the 

prevention/treatment of obesity and insulin resistance (Li B et al., 2000); 

therefore, drugs or natural molecules modulating the mitochondrial 

function and efficiency may be useful in the treatment/prevention of 

obesity and insulin resistance.  
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The ω-3polyunsaturated fatty acids (PUFA), docosahexaenoic acid 

(DHA) andeicosapentaenoic acid (EPA), are dietary compounds that are 

intensively studied as potent anti-inflammatory products, able to reduce the 

risk of insulin resistance and ameliorate obesity-associated disorders 

through affecting hormonal control and modulating AMPK activity 

(Casanova E et al., 2014; Jelenik T et al., 2010).  

 

Recently, we have demonstrated that the replacement of lard, rich in 

saturated fatty acids (SFA), with fish oil(rich in ω-3PUFA)in high-fat diet 

is able to limit the development of systemic and tissue inflammation 

(Lionetti L et al., 2014). In addition, the reduction of hepatic lipid 

accumulation by PUFAs resulted by an improved mitochondrial fatty acid 

utilization associated with mitochondrial mild uncoupling, which 

counteracted the hepatocyte damage induced by long-term over feeding 

(Lionetti L et al., 2014).  

 

Skeletal muscle, the main site of insulin-mediated glucose disposal and 

triglyceride clearance, is another attractive site for altering metabolism and 

adiposity, through engineered respiratory uncoupling. In fact, skeletal 

muscle is a chief determinant resting metabolic rate, whose reduction is 

associated with weight gain (Ravussin E et al., 1988). 
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Synopsis     Here, we hypothesized that the ω-3PUFAs, showing an 

increased ability to modulate mitochondrial function and efficiency, would 

also ameliorate pro-inflammatory and pro-oxidant signs off at over 

nutrition. To test this hypothesis, rats were fed a control diet (CD) or high 

fat isocaloric diets containing either ω-3PUFA (FD) or lard (LD) for 6 

weeks. We focused on mitochondrial function, efficiency and biogenesis of 

mitochondria located beneath the sarcolemmal membrane 

(subsarcolemmal[SS]) or between the myo fibrils (intermyofibrillar [IMF]) 

in skeletal muscle. Infact, these two mitochondrial populations exhibit 

different energetic characteristics (Cogswell AM et al., 1993; Mollica MP 

et al., 2006) and therefore can be differently affected by physio-

pathological stimuli. Finally, cytoprotective enzymes activities and ER 

stress modulation by ω-3PUFAs were analyzed. 

 

Experimental procedures with animals  

Young male Wistar rats (60 days old; 345±7g; Charles River, Calco, 

Lecco, Italy) were individually caged in a temperature- controlled room 

and exposed to a daily 12h–12hlight–dark cycle with free access to chow 

diet and drinking water. Rats were divided into 3 experimental groups 

(n=8) according to a different 6 weeks dietary regimen: the first group 

(control diet, CD) received a standard diet (10.6% fat J/J); the second 

group (LD) received the high fat diet rich in lard (40% fat J/J); the third 

group (FD) received the high fat diet rich in fish oil (40% fat J/J). The 
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composition of all dietary regimens is reported in (Tables 3. 1–2). An 

additional group (n=8) was sacrificed at the beginning of the study to 

establish baseline measurements of body compositions.  

 

After 6 weeks feeding, the animals were anaesthetized by injection of 

chloral hydrate (40 mg/100 g body weight, i.p.), and blood was taken from 

both the inferior cava and portal vein. Skeletal muscle was removed; 

samples not immediately used for mitochondrial preparation were frozen 

and stored at-80°C. 

 

 

Table 3.1 Diet Composition 
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Evaluation of body composition and energy balance: 

During the experimental time, the body weight and food intake were 

monitored daily to calculate weight gain and gross energy intake. Spilled 

food and faeces were collected daily for precise food intake calculation. 

Energy balance assessments were conducted over the 6 weeks of feeding 

by the comparative carcass evaluation (Iossa et al., 2002). The gross 

energy density for the standard diet or high fat diets (15.8 or 20.0 kJ/g, 

respectively), as well as the energy density of the faeces and the carcasses, 

were determined by bomb calorimetric (Parr adiabatic calorimetric, Parr 

Instrument Co.,Moline, IL,USA). Energy, fat and protein content in animal 

carcasses were measured; according to Iossa et al. Metabolisable energy 

(ME) intake was determined by subtracting the energy measured in faeces 

and urine from the gross energy intake, which was determined from the 

daily food consumption and gross energy density. Energy efficiency was 

calculated as the percentage of body energy retained per ME intake, and 

energy expenditure was determined as the difference between ME intake 

and energy gain. 

 

Measurement of oxygen consumption (VO2), carbon dioxide 

production  

(VCO2) and respiratory quotient (RQ) Upon an adaption period to the 

experimental environment (atleast1 day), VO2 and VCO2, were recorded 
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by a monitoring system (Panlab s.r.l., Cornella, Barcelona, Spain) 

composed of a four-chambered indirect open-circuit calorimeter, designed 

for continuous and simultaneous monitoring. VO2 and VCO2 were 

measured every 15min (for 3 min) in each chamber for a total of 6 hours 

(from 8:00amto 14:00 pm). The mean VO2, VCO2 and RQ values were 

calculated by the “Metabolism H” software (Dominguez JF et al., 2009). 

 

 

Table 3.2:   Fatty acid composition (g/100g fatty acid) of experimental 

diets 
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Oral glucose tolerance test, insulin tolerance test, and serum analysis  

For the oral glucose tolerance test, overnight fasted rats received oral 

administration of glucose (3g/kg body wt) dissolved in water. For the 

insulin tolerance test, rats were fasted for 5 h and then injected intra 

peritoneally with insulin (homolog rapid-acting, 10units/kg body wt in 

sterile saline; Novartis, Basel, Switzerland). Samples of blood were 

collected before the oral glucose and insulin tolerance tests and at various 

times thereafter, and glucose and insulin values were determined by means 

of a glucose monitor (BRIO,Ascensia,NY), calibrated for use with rats and 

ELISA (Mercodia rat insulin; Mercodia, Uppsala, Sweden), respectively.  

 

Basal fasting values of serum glucose and insulin were used to 

calculate Homoeostatic Model Assessment (HOMA) index as (Glucose 

(mg/dL) Insulin (mU/L))/405 (Cacho J et al., 2008).  

 

Plasma concentrations of triglycerides and cholesterol, and non-

esterified fatty acids (NEFAs) were measured by colorimetric enzymatic 

method using commercial kits (SGM Italia, Italy and Randox Laboratories 

ltd., UnitedKingdom). Commercially available ELISA kits were used to 

determine adiponectin and leptin (B-Bridge International, Mountain 

View,CA), lipopolysaccharide (LPS) (Limus Amebocyte Lysate QCL-

1000, LonzaGroup Ltd), TNF-α and monocyte chemo attractant protein 

(MCP)-1(ThermoScientific, Rockford, IL). 
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Analysis in skeletal muscle and mitochondrial parameters  

Hindleg muscles were freed of excess fat and connective tissue, 

finely minced and washed in a medium containing 100mM KCl, 50mM 

TRIS, pH 7.5, 5mM MgCl2, 1mM EDTA, 5mM EGTA, 0.1% (w/v) fatty 

acid free bovine serum albumin (BSA). Tissue fragments were 

homogenized with the above medium (1:8, w/v) in a Potter Elvehjem 

homogenizer (Heidolph,Kelheim, Germany) setat 500 rpm (4strokes=min) 

and filtered through sterile gauze. Homogenate was then centrifuged at 

500×g for 10min and the resulting precipitate was subsequently used for 

the preparation of the IMF mitochondria. The supernatant was centrifuged 

at 3000×g for 10min and the resulting pellet, containing SS mitochondria, 

was washed twice and resuspended in suspension medium. The pellet from 

the 500×g centrifugation was resuspended in a small amount of 

homogenization solution and treated with protease nagarse (9U/g tissue) 

for 5 min. The suspension was then homogenised, filtered through sterile 

gauze and centrifuged at 3000×g for 10 min. The resulting supernatant was 

rapidly discarded and the pellet was resuspended and centrifuged at 500×g 

for 10min. The supernatant containing the IMF mitochondria was 

centrifuged at 3000×g for 10min, the pellet was washed once and 

resuspended in suspension medium. Mitochondrial oxygen consumption 

and basal/palmitate induced proton-leaks were evaluated (Iossa S et al., 
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2002). Oxygen consumption was measured polarographically with a Clark-

type electrode (Yellow Springs Instruments, Yellow Springs, Ohio) in a 3-

ml glass cell, at a temperature of 30°C. Isolated SS or IMF mitochondria 

(0.1 mg protein/ml) were incubated in a medium containing 30mM KCl, 6 

mM MgCl2, 75mM sucrose,1mM EDTA, 20mM KH2PO4 pH 7.0, and 

0.1% (w/v) fatty acid-free BSA. In the presence of 10mM succinate, 3.75 

mM rotenone and 0.6 mM ADP, state 3 oxygen consumption was 

measured. State 4 was obtained in the absence of ADP. The respiratory 

control ratio (RCR) was calculated as the ratio between states 3and 4. In 

control experiments, we assured the quality of our mitochondrial 

preparation by checking that contamination of mitochondria by other 

ATPase-containing membranes was lower than 10%, and addition of 

cytochrome c (3nmol/mg protein) only enhanced state 3 respiration by 

approximately 10%. Measurements of basal proton leak kinetics were 

performed as below reported. Mitochondrial oxygen consumption was 

measured polarographically, and membrane potential recordings were 

performed in parallel with safranin O using a Jasco dual-wave length 

spectrophotometer (511–533 nm). The absorbance readings were 

transferred to milli volt membrane potential using the Nernst equation, 

ΔC=61 mV×log([K+]in/[K+]out), and calibration curves made for each 

preparation. Measurements were carried out at 30°C in a medium 

containing 30mmol/lLiCl, 6mmol/lMgCl2, 75mmol/l sucrose, 

1mmol/lEDTA,  20mmol/l Tris-P, pH 7.0, and 0.1% (wt/vol) BSA in the 
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presence of succinate (10 mmol/l), rotenone (3.75 μmol/l), oligomycin (2 

μg/ml), safranin O (83.3 nmol/mg), and nigericin (80ng/ml). Oxygen 

consumption and membrane potential were titrated by sequential additions 

of malonate upto 5mmol/l for SS and 3 mmol/l for IMF mitochondria. 

Palmitate-induced proton leak kinetics was evaluated as above in the 

presence of palmitate (45 μmol/l and 65 μmol/l for SS and IMF 

mitochondria, respectively). Carnitine-palmitoyl-transferase (CPT) activity 

was followed spectrophotometrically as CoA-sH production by the use of 

5,5'-dithiobis (nitrobenzoic acid) (DTNB) and as substrate palmitoyl co a 

10 μM. The medium consisted of50mM KCl, 10mM Hepes(pH 7.4), 

0.025% Triton X-100, 0.3mM DTNB,  and 10–100 pg of mitochondrial 

protein in a final volume of 1.0 ml. The reaction was followed at 412nm 

with spectrophotometer, and enzyme activity was calculated from an E412 

=13,600/ (M Xcm). The temperature was thermostated to 25°C (Alexson 

SE et al., 1988). Determination of aconitase specific activity was carried 

out in a medium containing 30mM sodiumcitrate, 0.6 mM MnCl2, 0.2mM 

NADP, 50mM TRIS-HCl pH 7.4, and 2 units of isocitrate dehydrogenase. 

The formation of NADPH was followed spectrophotometrically (340nm) 

at 25°C. The level of aconitase activity measured equals active aconitase 

(basal level). Aconitase inhibited by ROS in vivo was reactivated so that 

total activity could be measured by incubating mitochondrial extracts in a 

medium containing 50mM dithiothreitol, 0.2 mMNa2S, and 0.2mM 

ferrous ammonium sulphate (Hausladen A et al., 1996). Rate of 
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mitochondrial H2O2 release was assayed by following the linear increase 

influorescence (ex 312nm and em 420nm) due to the oxidation of 

homovanillic acid in the presence of horseradish peroxidase (Barja G 

1998).  

 

Skeletal muscle lipid content was determined using Folch method 

(Folch J et al., 1957) and lipid droplets were assessed in haematoxylin-

eosinstained sections. Adipocyte differentiation-related protein (ADRP) 

expression in rat gastrocnemius was assessed immune histochemically and 

glycogen staining with periodic acid-Schiff (PAS).  

 

Oxidative stress markers (Carbonylated Proteins, PC and the 

GSH/GSSG ratio) were measured in skeletal muscle. PC concentration was 

spectrophotometrically measured in blood plasma and tissue samples, and 

total thiols (GSH+GSSG) in plasma and the GSH and GSSG 

concentrations in rat muscles were determined with the 

dithionitrobenzoicacid (DTNB) GSSG reductase recycling assay (Bergamo 

P et al., 2007).  

 

NF-E2-related factor 2(Nrf2) is considered the main mediator of 

cellular adaptation to redox stress and its translocation into the nucleus, 

upon the dissociation from the Kelch-like ECH-associated protein 1 

(Keap1), triggers the transcription of several enzymes involved in 
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detoxification and chemopreventive mechanisms (glutathione S-

transferases, GSTs; NAD(P) H:quinone oxidoreductase, NQO1; heme 

oxygenase-1). To investigate the possible involvement of NF-E2-related 

factor 2(Nrf2) in the diet-induced stress, cytoplasmic and nuclear extracts 

were prepared from rat muscle tissue ((Bergamo P et al., 2007). The 

enzymatic activities of GST and NADPH quinone oxidoreductase 

1(NQO1) were evaluated spectrophotometrically in cytoplasmic extracts 

(Benson M et al., 1980; Levine RL et al., 1990; Habig WH et al., 1981) 

and the levels of Nrf2 levels in the nucleus were immune detected by 

Western blotting analysis. 

 

For p-Akt detection in skeletal muscle, additional six rats for each 

group were feed deprived for 6h, then were administered insulin (10 U/Kg) 

and were killed 15min after insulin injection for Western blot analysis. 

 

Western blot analysis  

Skeletal muscle was homogenized and total protein lysates were 

subjected to SDS-PAGE. Blots were probed with p-Akt(Ser473) and Akt 

(Cell Signalling, MA, USA, diluted 1:1000 in blocking buffer) or TNFα, 

BiP/ glucose regulated protein (GRP)78, p-eukaryotic translation initiation 

factor (eIF)2α,t-eIF2α,p-AMPK,t-AMPK (Santa Cruz Biotechnology, 

Santa Cruz, CA,USA). Western blot for tubulin or lamin was performed to 

ensure equal sample loading. 
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Quantitative real-time PCR analysis 

 Total RNA was extracted from skeletal muscle using the TRIzol 

Reagent (Ambion). After DNase treatment (Ambion), RNA was quantified 

using a Nanodrop 2000c spectrophotometer (ThermoScientific) and 

reverse-transcribed (1 μg) using the Advantage RT-PCR kit (Clontech) and 

oligo dT primer. Universal Probe Library Assay Design Center 

(https://www.roche-applied-cience.com/sis/ 

rtpcr/upl/index.jsp?id=UP030000) was used for designing primers. The 

Real Time-PCR reactions were performed using a 7500 Real-Time PCR 

System (Applied Biosystems) in the presence of 1X Power Sybr Green 

PCR Master mix (Applied Biosystems) and 0.1 μM of each primer and 

30ng of cDNA. The thermal protocol was as follows: 2min at 50°C, 10min 

at 95°C, followed by 40 cycles of 15 sec at 95°C and 1min at 60°C. For all 

of the genes examined the reactions were conducted in technical 

duplicates. For each well, the evaluation of PCR efficiency and optimal 

threshold cycle (CT) of the target genes peroxisome proliferator-activated 

receptor γ co activator (PGC) 1α, PGC1β, fibroblast growth factor (FGF) 

and the endogenous control gene (β-actin) were performed using the 

REAL TIME PCR MINER online tool (Zhao S et al., 2005). The mean 

relative expression ratio (rER) of the target genes was calculated using β-

actin as the endogenous control gene and cDNA as the reference sample 

applying the formula:  
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rER = (1 + E target gene) -ΔCT target gene/ (1 + E endogenous control) -

ΔCT endogenous control  (Schefe JH et al., 2006), where ΔCT target gene is the 

difference between the CT value of the target gene in the skeletal muscle 

of the FD, LD rats and the CT value of the target gene in the skeletal 

muscle of the control rats, ΔCT endogenous control is the difference 

between the CT value of the β-actin gene in skeletal muscle of the FD, LD 

rats and the CT value of the β-actin gene in the skeletal muscle of the 

control rats (Schefe JH et al., 2006). 

 

Primer sequences used for Real-Time Polymerase Chain Reaction are 

the following:  

β-actin  5’-ATTGCTGACAGGATGCAGAA-3’  

5’-TAGAGCCACCAATCCACACAG-3’ 

FGF21  5’-CACACCGCAGTCCAGAAAG-3’  

   5’-GGCTTTGACACCCAGGATT-3’.  

PGC1-α  5’-AAAGGGCCAAGCAGAGAGA-3’  

5’-GTAAATCACACGGCGCTCTT-3’  

PGC1-β  5’-TTGACAGTGGAGCTTTGTGG-3’ 

5’-GGGCTTATATGGAGGTGTGG-3’ 
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Statistical analysis: 

All data are presented as means ± SEM. Differences among groups 

were compared by ANOVA followed by the Newman-Keuls test to correct 

for multiple comparisons. Differences were considered statistically 

significant at p<0.05. All analyses were performed using GraphPad Prism 

(GraphPad Software, San Diego, CA) 

 

Results: Energy balance 

 

As shown in Table 3.3, LD rats were characterized by a significant 

increase of body weight and weight gain, lipid accumulation and body 

energy levels compared to CD and FD animals; in addition, LD rats 

contained significantly lower percentages of water and protein compared to 

CD or FD rats. Despite a comparable ME intake, LD rats showed energy 

efficiency, body weight gain (expressed in g and kJ), lipid gain and lipid 

gain/ME intake values significantly higher than those of FD-fed animals. 

Decreased lipid accumulation in FD- compared to LD-fed animals was 

associated with higher energy expenditure, increased O2 consumption/CO2 

production and lower energy efficiency. Moreover, LD and FD rats 

showed a lower respiratory quotient (RQ) compared to CD rats. Therefore, 

the low lipid gain and lipid gain/ME intake of FD animals (vs LD) 

indicates an improved ability to utilize fat, as a metabolic fuel. 
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Table 3.3 Body Composition, energy balance and calorimetric 

parameters: 
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Table 3.4. Blood Parameters: 

 

 

Serum metabolite levels and glucose homeostasis  

Blood parameters and hormonal determination are reported in Table 

3.4. Serum metabolic (triglycerides, cholesterol, and insulin), and pro-

inflammatory (TNFα, MCP1 and LPS) parameters in LD-fed animals were 

increased compared to those measured in rats on CD and, interestingly, no 

significant difference was shown in the same parameters between FD and 

CD. In contrast, NEFA and leptin concentrations were significantly higher 

after both high fat diet regimens compared to CD, however values from 
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LD were significantly higher than those of FD rats. In addition, 

adiponectin concentration was reduced in LD compared to CD or FD 

animals, while glucose level was significantly increased both in LD or FD. 

The HOMA-IR index was significantly greater in LD than in CD or FD-

fed animals (Fig 1A). Accordingly, FD rats exhibited a higher tolerance to 

glucose loading than LD rats; in fact, despite similar glucose levels, FD 

rats exhibited a significantly lower insulin concentration and a reduced 

insulin area under the curve (AUC) than LD rats (Fig 1Band 1C),. Insulin 

tolerance test revealed less glucose reduction, following insulin 

administration in LD and FD rats compared to control animals (Fig 1D), 

however rats on ω-3 PUFA high fat diet showed an increased reduction of 

glucose levels compared to LD, indicating that fat present in the diet (lard 

or fish oil) can differently modify glucose metabolism. In fact, even if FD 

did not improve glicemic profile HOMA and insulin secretion results in 

part recovered, suggesting that in high fat diet the substitution of lard with 

ω-3PUFA can ameliorate insulin sensitivity. Data obtained on insulin 

signal transduction on skeletal muscle support this hypothesis. We 

evaluated Akt phosphorylation in skeletal muscle by western blot analysis 

after in vivo stimulation with the hormone. Insulin-stimulated Akt 

phosphorylation was less in LD-fed rats than in FD or CD-fed animals (Fig 

1E). Significantly higher total lipid content in skeletal muscle (Fig 1F) and 

the widest glycogen-depleted areas in PAS sections were observed in LD-

fed rats (Fig 1G upper panels). LD animals also exhibited a weaker 
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immunostaining signal for ADRP in the muscle periphery and around 

adipocytesin connective tissue (Fig 1G lower panels), while it was similar 

in CD and FD. 

 

Mitochondrial function: oxidative capacity, efficiency, and oxidative 

stress 

  We found that IMF mitochondria from LD or FD-fed rats exhibited a 

significant lower State 3 respiration rate than control in presence of 

succinate, as substrate; conversely, State 3 in SS sub-population of LD-fed 

rats was less than that of FD- or CD-fed rats (Fig 2A). State 3, in presence 

of palmitoyl carnitine, was similar in IMF sub-population of LD and FD-

fed animals and significantly higher than those measured in CD rats (Fig 

2B). Conversely, in the same conditions, SS subpopulation from LD and 

FD showed a higher State 3 compared to CD-fed animals. Notably, SS 

mitochondrial sub-populations of FD exhibited a further increase in State 3 

compared to LD group, paralleled by higher levels of CPT activity; no 

significant difference was found in CPT activity in the IMF sub-population 

(Fig 2C). Proton-leakage from IMF was not influenced by the different 

diets (data not shown), and comparable basal proton-leak values were 

measured in SS mitochondria obtained from different groups (Fig 2D). 

With regard to fatty-acid-induced proton leak (measured using 
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physiological amounts of palmitate), SS mitochondria of LD rats had the 

lowest proton leak among the three groups, and FD rats had the highest 

proton leak among the three groups analyzed (Fig 2E). To compare the 

kinetic curves, oxygen consumption was also reported at a membrane 

potential of 160 mV (the highest membrane potential common to all 

obtained curves). FD-fed rats consumed more oxygen than LD- or CD-fed 

rats to maintain a given membrane potential (Fig 2E, upper insert). In IMF 

and SS mitochondrial populations, a significantly lower aconitase activity 

(Fig 2F) and a higher H2O2 yield (Fig 2G) clearly demonstrated that LD 

feeding enhanced the levels of pro-oxidant markers in muscle 

mitochondria compared to FD and CD regimens (P<0.01).  

In addition, we analyzed the expression of the FGF21, PGC1α and 

PGC1β genes. FGF21 mRNA levels in LD rats were significantly 

increased compared with CD and FD rats (Fig 2H). PGC1-α and PGC1-β 

mRNA levels significantly increased in FD compared to the other groups 

and significantly decreased in LD compared to the other groups (Fig 2I–

2L). 

The protective effects produced by FD feeding on skeletal muscle 

redox status were clearly indicated by the significant increased GSH/GSSG 

ratios respect to LD (Fig 3A upper insert). Moreover, the pro-oxidant 

effect produced by LD intake was demonstrated by a significantly lower 

GSH content (Fig 3A) and higher PC level in skeletal muscle (Fig 3B) and 
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in serum (Fig 3B upper insert); these parameters were unchanged between 

FD rats and controls (Fig 3A and 3B), confirming the beneficial effect of 

fish oil in the high fat diet. 

The negligible differences in Nrf2 protein translocation into cell 

nuclei together with comparable GST and NQO1 activities measured in 

skeletal muscle (Fig 3C) indicate that the Nrf2 pathway is not involved in 

both different high fat diet-mediated modulation of redox status. Increased 

TNFα, BiP/GRP78 and eIF2-α levels (Fig 3D–3F) were detected in the 

skeletal muscle of LD, whereas the levels in FD rats were similar to CD 

rats.  

Finally, pAMPK protein content was significantly lower in the 

skeletal muscle of LD-fed rats than in those of the other experimental 

groups (Fig 3G). LD-diet exhibited an inhibitory effect on AMPK activity, 

as indicated by a concomitant decline of ACC phosphorylation (Fig 3H), 

which is an indicator of AMPK activity (Ruderman NB et al., 1999). 
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Figure 3.1 Effect of ω-3 PUFA on glucose and lipid metabolism. HOMA-IR index (A); Plasma 

insulin (B), and glucose (C) concentrations at different time intervals after glucose load and 

respective area under curve (AUC) (upper inserts) and insulin tolerance test (D) are shown. 

Representative western blots of insulin-induced Akt phosphorylation (Ser473) (E), and lipid content 

(F)in skeletal muscle are also reported. The graphic reported in panel 1E represent the densitometric 

analysis of protein band obtained in three separate experiments. Haematoxylin-eosin sections of 

glycogen (G upper panels), ADRP expression (G lower panels) are shown. PAS positive material 

was stained magenta at a magnification of 20x. Values are expressed as means±SEM from n = 8 

animals/group. Different superscripted letters indicate statistically significant differences (P<0.05). 
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Figure 3.2 Effect of ω-3 PUFA on mitochondrial functions and energy efficiency. IMF and SS 

mitochondrial respiration in the presence of succinate (A) or palmitoyl-carnitine (B) as substrates 

were determined. CPT activity (C); basal (D) or palmitate-induced (E) proton leakage in SS 

mitochondria and respiration rates at 160 mV (the highest membrane potential common to all the 

curves) (upper insert); aconitase activity (F); H2O2 yield (G), relative mRNA expression of FGF21 

(H), PGC1α (I), PGC1β (L) are also shown. Values are expressed as means±SEM from n = 8 

animals/group. Different superscripted letters indicate statistically significant differences (P<0.05). 
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Figure 3.3 Effect of ω-3 PUFA on oxidative- and ER-stress and AMPK activation. Total thiols 

(A) and GSH/GSSG ratio (upper insert); protein carbonyl levels in skeletal muscle (B) and in serum 

(upper insert). Cytoplasmic GST and NQO1 activities and Nrf2 levels in nucleus (C). 

Representative immunoblots of TNFα (D) and BiP/GRP78 (E) p-eIF2-α (F), pAMPK (G) and 

pACC (H) are shown. Densitometric analysis of protein bands are reported: after normalization 

Fatty Acid and Skeletal Muscle Metabolism the levels are expressed as the density ratio of target to 
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control (tubulin, lamin or total protein). Values are expressed as means±SEM from n = 8 animals/ 

group. Different superscripted letters indicate statistically significant differences (P<0.05). 

 

Discussion 

The main finding of this study is that the intake of ω-3 PUFAs 

enriched diet, at high percentage, reduces fat accumulation in skeletal 

muscle and decreases metabolic/mitochondrial efficiency, attenuating 

insulin resistance, ER- and oxidative-stress, compared to an isocaloric high 

fat diet rich in SFAs. Moreover, SS mitochondria were identified as the 

main target of diet induced alterations in function and efficiency. The 

effects exerted by ω-3 PUFAs intake (Holness MJ et al., 2005; Lanza IR et 

al., 2013) have been associated to mitochondrial uncoupling and 

AMPK/ACC, rather than to Nrf2 pathway activation in skeletal muscle. 

Here, LD-feeding was associated with high metabolic efficiency, 

weight gain, body lipid levels, and also with metabolic alterations, such as 

dyslipidemia, and insulin resistance, accompanied by an increase in low 

grade inflammation compared to a standard diet. As reported, despite 

comparable ME intake between LD and FD groups, the substitution in 

lard-based diet with ω-3 PUFA in high fat fed animals showed a reduction 

in metabolic efficiency, body weight and body lipid levels, accordingly 

with a correction of dyslipidemia and insulin resistance. These data are 

consistent with previous findings, indicating a reversal of insulin resistance 
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by ω-3 PUFA intake. The effects on body weight and lipids, we observed 

in FD-fed rats, can be explained, at least in part, by an increase in energy 

expenditure/O2 consumption and reduced energy efficiency. Moreover, the 

decreased RQ index observed in LD and FD-fed animals, which reflects 

the ratio of carbohydrate to fatty acid oxidation, demonstrates that these 

animals used a higher amount of fatty acids, as a fuel source, compared to 

controls. These data indicate that FD intake improves the ability to utilize 

fat, as a metabolic fuel, which suggests that the large part of the higher 

energy intake was dissipated through increased metabolic activity in these 

animals. 

An interesting finding is that high-fish oil diet despite to any effect 

on glycaemia in confront of LD, it is able to attenuate the development of 

insulin resistance, preventing the alteration of glucose tolerance related to 

an impairment of insulin signalling due to fat over nutrition. The 

improvement in insulin sensitivity may be, at least in part, a consequence 

of the anti-inflammatory effect of ω-3 PUFAs in this nutritional model. 

Our previous study showed that high-fish oil diet attenuated the 

development of systemic and tissue inflammation (Lionetti L et al., 2014) 

and decreased hepatic lipid accumulation through improved mitochondrial 

fatty acid utilization supported by mitochondrial uncoupling (Lionetti L et 

al., 2014). 
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Here, HOMA index and oral glucose and insulin tolerance tests 

showed that high-fish oil diet attenuated alteration of glucose homeostasis 

compared to an isocaloric lard-based diet, indicating that fat present in the 

diet (lard or fish oil) can differently modify insulin sensitivity. 

Consistently, at skeletal muscle level, FD also attenuated tissue insulin 

resistance, modulating insulin signaling, restoring protein kinase B 

(PKB/Akt) phosphorylation and decreased lipid accumulation, increasing 

ADRP levels, involved in the proper TG storage (Bosma M et al., 2012) 

and AMPK activation. All these metabolic effects of fish oil fat diet are 

strengthened by the suppression of inflammatory process, evidenced by 

reduced serum levels of TNFα, MCP-1 and LPS, and of ER stress at 

skeletal muscle level, where GRP78 expression and eif2α activation were 

down-regulated. 

The effects of ω-3 PUFA overload on the prevention of weight gain 

excess and the development of insulin resistance may be mediated by 

adiponectin and leptin, two adipokines that regulate glucose and lipid 

metabolism, through AMPK activation (Yamauchi T et al., 2002; 

Minokoshi Y et al., 2002). Our results demonstrate decreased serum leptin 

levels in FD, consistently with fat mass reduction, compared to LD rats, 

and restored serum adiponectin levels to those of CD rats, suggesting a key 

role of fish oil in the reduction of the development of insulin resistance in 

an animal model of fat over nutrition. The reduced adiponectin values 
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found in LD rats were consistent with those reported by (Kalupahana et al., 

2010) It is well known the lipid sensor activity of AMPK, an important 

metabolic regulator (Long YC et al., 2006). Notably, the activation of 

AMPK exhibits multiple protective effects, including a reduction in 

inflammation, oxidative stress and insulin resistance (Long YC et al., 

2006). Recently it has been reported that AMPK activation protects against 

lipid-induced disorders (Wang Y et al., 2011; Salvadó L et al., 2013) by 

reducing ER stress. Previous findings by Jelenik et al. (Jelenik et al., 2010) 

showed that ω-3 PUFAs intake induced AMPK activation in liver, 

reverting insulin resistance and steatosis in mice. 

      Here, we found that FD, in a different way by LD, modulated 

AMPK/ACC pathway restoring adiponectin and fatty acid metabolism in 

skeletal muscle. Skeletal muscle is the primary tissue involved in the 

regulation of glucose metabolism, energy expenditure and lipid utilization 

and it is inherently linked to the development of whole-body insulin 

resistance (Stannard SR et al., 2004). The recognized link between insulin 

resistance and mitochondrial dysfunction prompted us to evaluate the 

effect of dietary fat regimens on mitochondrial oxidative capacity, energy 

efficiency, and oxidative stress in both SS and IMF mitochondrial 

populations. Indeed, SS mitochondria provide energy for membrane-

related processes, such as substrate oxidation and insulin action, whereas 

IMF mitochondria support muscle contraction (van Loon LJ et al., 2004). 
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In addition, SS mitochondria may be more susceptible to damage by 

ectopic lipid deposition, because lipid content decreases exponentially 

from immediately below the sarcolemma toward the central region of the 

muscle fiber (Nielsen J et al., 2010). Because of their proximity to the 

sarcolemmal membrane, SS mitochondria can more easily interfere with 

key proteins involved in the insulin-signalling cascade (Nielsen J et al., 

2010), anyway a pivotal role in insulin-mediated glucose transporter 

trafficking has been shown also for t-tubules structure (Lauritzen HP 

2013). Interestingly, we demonstrate that both fat diets mainly affect SS, 

rather than IMF mitochondria, indicating that the observed mitochondrial 

alterations may contribute to the pathogenesis of insulin resistance. In 

particular, no difference was observed in IMF mitochondria uncoupling, 

while SS subpopulation demonstrated an increased uncoupling in FD fed 

rats. Association between diet-induced ectopic fat storage in skeletal 

muscle and mitochondrial dysfunction (Szendroedi J et al., 2012; 

Crescenzo R et al., 2006) is well known. Accordingly, LD-rat skeletal 

muscle mitochondria exhibited reduced respiratory capacity, as indicated 

by the decrease in succinate State 3 oxygen consumption, and increased 

oxidative stress, even when the ability to utilize fat as a metabolic fuel was 

elevated. The increased mitochondrial fatty acid oxidation could be a result 

of a diet-induced increase of FFA uptake and/or enhanced CPT activity 

which would further increase the entry of long-chain FFA into the 

mitochondria. However, as such increased lipid oxidation is likely not 
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sufficient to handle the greater FFAs load, resulting in the ectopic 

triglyceride storage in skeletal muscle. Moreover, a further mechanism 

contributing to fat accumulation can be the increase in mitochondrial 

efficiency, as shown by the decrease in the induced proton leak in LD rats. 

Therefore, a higher mitochondrial efficiency, suggestive of a reduced 

amount of substrate to be burned to obtain ATP, together with an increase 

in NEFA serum levels could account for the triglyceride accumulation in 

skeletal muscle. 

In our experimental conditions, mitochondrial dysfunction in LD rats 

was related to an increase in FGF21 gene expression in skeletal muscle, 

which follows a stress response (Keipert S et al., 2014). Increased 

mitochondrial oxidative stress parameters were found in LD rats as showed 

by hydrogen peroxide yield, aconitase activity, protein carbonyls amount 

and GSH/GSSG ratio. 

This effect can be attributable to the concomitant increase in fatty 

acid oxidation rate, resulting in NADH and FADH2 generation and thus 

electron delivery to the respiratory chain, and to respiratory chain 

impairment (as indicated by the decrease in succinate State 3 oxygen 

consumption, which would partially block electron flow within the 

respiratory chain). Further, the decreased proton leak can contribute to 

excessive ROS formation (Skulachev VP 1991) in LD rats. In fact, one of 

the postulated roles of uncoupling is known to be the maintenance of 
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mitochondrial membrane potential below the critical threshold for ROS 

production (Korshunov SS et al., 1997) 

The improvement of respiratory capacity, fatty acid oxidation, CPT 

activity and the decreased mitochondrial efficiency, exhibited by the FD 

rats, may be interpreted as the result of converging protective mechanisms 

against insulin resistance. In addition, the significant alteration of all the 

considered oxidative stress markers mirrors the differential ability of ω-3 

PUFA- and SFA-based diets to trigger oxidative stress in skeletal muscle 

(Lanza IR et al., 2013). In addition, in FD-fed animals the increased 

respiratory capacity is associated with the increase in gene expression 

levels of FGF-21, PGC-1α and PGC-1β, involved not only in the 

regulation of mitochondrial activities and biogenesis (Arany Z et al., 2007; 

Lin J et al., 2002; Meirhaeghe A et al., 2003; Puigserver P et al., 1998), but 

also to the development of insulin resistance in skeletal muscle (Holloway 

GP et al., 2008). The increase in mitochondrial biogenesis was supported 

by changes in mitochondrial protein mass calculated by two different 

approaches, namely 1) by measuring the activity of a mitochondrial marker 

enzyme citrate synthase in skeletal muscle homogenates and in isolated SS 

and IMF mitochondria and 2) by evaluating the mitochondrial yield (i.e., 

milligrams isolated protein per gram starting wet tissue) in each 

mitochondrial subpopulation. Independent of the methodology applied, we 

found that the mitochondrial mass was significantly increased in both SS 
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and IMF compartments in FD rats and significantly reduced in LD rats. 

Therefore, ω-3 PUFAs, in addition to their positive effect on mitochondrial 

respiration, also act on the level of mitochondrial gene expression in 

skeletal muscle cells: the increase in PGC-1α should play a role in the 

recovery of mitochondrial respiration, promoting both oxidative 

phosphorylation-linked and uncoupling-linked respiration in differentiated 

myotubes oxidative capacity in skeletal muscle cells (Barbosa MR et al., 

2013; Wu Z et al., 1999; Zechner C et al., 2010). 

 Conversely, the negligible alteration of Nrf2-pathway, which plays a 

key role in cellular protection against oxidative stress, is consistent with 

evidence demonstrating that transient and low-levels of ROS are needed 

for Nrf2-antioxidant responsive element pathway activation (Gloire G et 

al., 2006). 

In conclusion, our data strengthened the capability of high dietary 

PUFA intake to reduce fat mass and insulin resistance associated to fat 

over nutrition, modulating energy efficiency. In particular, at skeletal 

muscle level, ω-3 PUFAs enriched diet promotes inefficient metabolism, 

generating heat instead of ATP, increases lipid oxidation, activating the 

pathway AMPK/ACC, and reduces ROS generation in mitochondria. 

Therefore, modulating mitochondrial function and efficiency in the skeletal 

muscle, they lessen pro-inflammatory, pro-oxidant signs and insulin 

resistance also in condition of nutritionally-induced obesity. 
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CHAPTER IV 

 

 

MILK FROM COW FED WITH HIGH 

FORAGE/CONCENTRATE RATIO DIET IMPROVES 

INFLAMMATORY STATE, OXIDATIVE STRESS AND 

MITOCHONDRIAL FUNCTION IN RATS 

 

 

 

Abstract 

 

Excessive energy intake may evoke complex biochemical processes 

characterized by inflammation, oxidative stress, and impairment of 

mitochondrial function that represent the main factors underlying 

noncommunicable diseases. Because cow milk is widely used for human 

nutrition and in food industry processing, the nutritional quality of milk is 

of special interest with respect to human health. In our study, we analyzed 

milk produced by dairy cows fed a diet characterized by a high forage: 

concentrate ratio (high forage milk, HFM). In view of the low n -6: n-3 
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ratio and high content of conjugated linoleic acid of HFM, we studied the 

effects of this milk on lipid metabolism, inflammation, mitochondrial 

function, and oxidative stress in a rat model. To this end, we supplemented 

for 4 wk the diet of male Wistar rats with HFM and with an isocaloric 

amount (82 kJ, 22 mL/d) of milk obtained from cows fed a diet with low 

forage: concentrate ratio, and analyzed the metabolic parameters of the 

animals. Our results indicate that HFM may positively affect lipid 

metabolism, leptin: adiponectin ratio, inflammation, mitochondrial 

function, and oxidative stress, providing the first evidence of the beneficial 

effects of HFM on rat metabolism. 

 

Introduction 

Recently, awareness of the importance of diet to human health has 

increased. Excessive energy intake, and particularly the excess or 

inadequate processing of fat in the body, may lead to activation of complex 

biochemical processes such as inflammation, oxidative stress, and 

impairment of mitochondrial function (Hernandez-Aguilera et al., 2013). 

These processes are the main factors that underlie aging and 

noncommunicable diseases, the main types of which are cardiovascular 

and chronic respiratory diseases, cancers, and diabetes. Indeed, an 

unhealthy diet often leads to obesity and metabolic disturbances, which 

have become a serious public health issue worldwide. In this regard, it 
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bears emphasizing that understanding the cellular and molecular 

mechanisms underlying these metabolic diseases is a crucial step in their 

prevention and treatment.   

Mitochondria, the primary cellular energy-generating system, are 

known to synthesize key molecules during inflammation and oxidation and 

thereby serve as the main source of free radicals. Therefore, it is no 

surprise that mitochondrial dysfunctions are associated with inflammation 

and other energy-dependent disturbances where cellular oxidative damage 

is caused by the generation of reactive oxygen species (ROS) exceeding 

the natural antioxidant activity (Chan, 2006). A growing body of evidence 

has suggested that a low-grade, chronic inflammatory state may be linked 

to obesity and its comorbidities, as well as to noncommunicable diseases 

(Hernandez-Aguilera et al., 2013). It is important to underline that the 

metabolic changes induced by inflammation include alterations in 

mitochondrial function. Therefore, mitochondrial dysfunction can be both 

the cause and consequence of inflammatory processes and elicit metabolic 

adaptations that might be either protective or become progressively 

detrimental (Currais, 2015). 

Various nutritional components are known to modulate the 

inflammatory state, mitochondrial function, and ROS production, thus 

influencing metabolic homeostasis. To prevent or limit metabolic 

disorders, special attention should be paid to the choice of appropriate 
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nutritional strategies. The fatty acid profile, in particular the content of the 

essential fatty acids n-3 and n-6, is considered an important parameter to 

determine the nutritional value of food (Daley et al., 2010). These 2 classes 

of essential fatty acids, not interconvertible, are metabolically and 

functionally distinct and often have different physiological functions (i.e., 

pro- and anti-inflammatory activity for n-6 and n-3, respectively). In 

particular, a low n -6: n-3 ratio, ranging from 2 to 4, is considered optimal 

for human health (Simopoulos, 2002). Recent studies have shown that diet 

is the decisive factor determining the fatty acid profile of cow milk (Sterk 

et al., 2011); for instance, a high forage: concentrate ratio (F:C) results in a 

milk with low n -6: n -3 ratio.  

 The conjugated linoleic acids are a group of healthy fatty acids. They 

are positional and geometric isomers derived from octadecadienoic acid, 

whose content is high in milk fat, and the CLA have been suggested to 

have immunomodulating, anticarcinogenic, and antiatherosclerosis 

properties (Dilzer and Park, 2012). The major isomer of CLA, cis-9,trans-

11 (rumenic acid), represents up to 80% of total CLA in food. Ruminant 

CLA comes from 2 sources: (1) rumen biohydrogenation and (2) 

endogenous synthesis in the mammary gland and adipose tissue by the 

activity of stearoyl- CoA desaturase on trans-11 18:1, the 

biohydrogenation intermediate of several 18-carbon UFA (Shingfield et 

al., 2010). The CLA level in the milk from different ruminant species is 
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significantly increased when animals are fed with fresh forage (Jahreis et 

al., 1997; Kelly et al., 1998; Griinari and Bauman, 1999; Tudisco et al., 

2010, 2012, 2014). 

 Based on this data, some Italian breeders are feeding dairy cows with 

a high F:C (70:30), which is different from that used in intensive farms 

(which range from 55:45 to 35:65). By feeding animals a diet with high 

F:C, milk with a low n -6: n -3 ratio and high CLA level was obtained to 

satisfy consumer demand for healthy foods (Rubino, 2014). 

 Several studies have indicated that administration of CLA and n-3 

fatty acids to rats improves fatty acid oxidation and decreases 

inflammation and oxidative stress through the modulation of mitochondrial 

function (Lionetti et al., 2014; Mollica et al., 2014; Cavaliere et al., 2016). 

We hypothesized that milk from cows fed a high-forage diet (hereafter, 

high forage milk, HFM), by modulating mitochondrial function, and 

would ameliorate the inflammatory state and oxidative stress in consumers. 

To test this hypothesis, we evaluated, in a rat model, the effects of HFM 

administration on energy balance, lipid metabolism, and anti-inflammatory 

and antioxidant defenses, compared with those rats fed isoenergetic 

amounts of milk obtained from cows fed with a diet with a low F: C ratio 

(low forage milk, LFM). 
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MATERIALS AND METHODS 

Cow feeding 

Milk was obtained from a farm located in a hilly area of central Italy 

(Segni, Rome, Italy; 13°0’E, 41°41’N, 668 m above sea level). The farm 

produced 2 types of commercial milk (LFM and HFM) from Italian 

Friesian cows (~40 animals for each type of milk) fed 2 different diets 

(lower or higher F:C ratio, respectively).  

 

Table 4.1. Energy intake via chow and milk (kJ; % of total in parentheses) 

of rats fed with milk from cows consuming a low forage (LFM) or high 

forage (HFM) diet 

Energy intake Control LFM- treated HFM-treated 

Total Energy (KJ) 11,899 13,975 14010 

Chow (KJ) 11,899 11,968 (85.64) 12,003 (85.67) 

Milk (KJ)  2,007 (14.36) 2,007 (14.33) 

 

Ingredients, F:C ratio, chemical composition, and nutritive value of the 2 

cow diets as well as feed intake are reported in Table 4.2. 
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Table 4.2. Diets fed to cows1  

 

 

Rat Handling and Feeding 

Male Wistar rats (Charles River, Calco, Lecco, Italy) were 

individually caged in a temperature controlled room and exposed to a daily 

12h–12h light–dark cycle with free access to chow and drinking water. 

Young animals (60 days old; about 350 g of BW) were used; one group 
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(n=7) was killed at the beginning of the study to establish baseline 

measurements. The remaining rats, fed with a standard diet, were divided 

into 3 experimental groups (n=7 each): 2 groups were supplemented with 

equicaloric intakes (82 kJ) of LFM or HFM (22 mL/d) for 4 wk; the group 

that did not receive milk supplement was used as control (the energetic 

intake of diets is reported in Table 4. 1). After 4 wk, the animals were 

anaesthetized by intra-peritoneal injection of chloral hydrate (40 mg/100 g 

of BW), and blood was taken from the inferior cava. The liver was 

removed and sub-divided; samples not immediately used for mitochondrial 

preparation were frozen and stored at -80°C. All experiments were 

conducted in compliance with Italian guidelines for the care and use of 

research animals.  

 

Analysis of milk composition 

Samples of milk (LFM and HFM) were analyzed for protein, fat, and 

lactose contents by the infrared method using a MilkoScan 133B 

(Fossomatic, Hillerod, Denmark). In addition, total fat of milk samples was 

separated using a mixture of hexane: isopropane (3:2, vol/vol; Tudisco et 

al., 2010). Transmethylation of fatty acids was conducted by a base-

catalyzed procedure. Fatty acid methyl esters were quantified using a GC 

(ThermoQuest 8000TOP gas chromatograph, equipped with flame-
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ionization detector; ThermoElectron Corp., Rodano, Milan, Italy) equipped 

with a CP-SIL 88 fused-silica capillary column [100 m × 0.25 mm 

(internal diameter) with 0.2-μm film thickness; Varian, Walnut Creek, CA; 

Shingfield et al., 2003]. The GC conditions were set as follows: initial 

oven temperature maintained at 70°C for 4 min, increased at 13°C/min to 

175°C and maintained for 27 min, increased to 215°C at 3°C/min and 

maintained for 38 min, before reverting to 70°C at 10°C/min. Inlet and 

detector temperatures were 250 and 260°C, respectively. The split ratio 

was 100:1, the helium carrier gas flow rate was 1 mL/min, the hydrogen 

flow to the detector was 30 mL/min, airflow was 350 mL/min, and the 

flow of helium make-up gas was 45 mL/min. Fatty acid peaks were 

identified using pure standards from Sigma-Aldrich (St. Louis, MO) except 

CLA cis-9,trans-11 methyl ester, CLA trans-10,cis-12 methyl ester, 

methyl cis-9,cis-11 octadecadienoate, and methyl trans-9,trans-11 

octadecadienoate, which were from Larodan Fine Chemicals AB (Malmo, 

Sweden). Fatty acids in samples were identified by comparing the retention 

times of peaks with that of the standard mixture. 

Body Composition, Energy Balance, and Liver Lipid Content 

 

During treatments, BW and food intake were monitored daily to calculate 

weight gain and gross energy intake. Spilled food and feces were collected 

daily for precise calculation of food intake. Energy balance assessments 
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were conducted over 4 wk of treatment by comparative carcass evaluation 

(Iossa et al., 2002). Metabolisable energy intake was assessed by 

subtracting the energy measured in feces and urine from gross energy 

intake, which was determined from the daily food consumption and gross 

energy density. The gross energy density for the standard diet (15.8 kJ/g), 

and LFM and HFM (2.70 kJ/g) as well as the energy density of the feces 

and the carcasses were determined by bomb calorimetry (adiabatic 

calorimeter, Parr Instrument Co., Moline, IL). Evaluation of the energy, 

fat, and protein content in animal carcasses was conducted according to a 

published protocol (Iossa et al., 2002). Energy efficiency was calculated as 

the percentage of body energy retained per ME intake, and energy 

expenditure was determined as the difference between ME intake and 

energy gain. Total hepatic lipid content was estimated by using the Folch 

method (Folch et al., 1957). 

 

Oral Glucose Tolerance Test and Insulin Tolerance Test 

 

For the oral glucose tolerance test, rats were fasted overnight and then 

orally dosed with glucose (3g/kg of BW) dissolved in water. For the 

insulin tolerance test, rats were fasted for 5 h and then injected 

intraperitoneally with insulin (rapid acting homolog, 10 units/kg of BW in 

sterile saline; Novartis, Basel, Switzerland). Blood was collected before 

the oral glucose and insulin tolerance tests and at various times thereafter, 
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and glucose and insulin levels were determined using glucose monitor 

(BRIO, Ascensia, NY) calibrated for rats, and ELISA (rat insulin; 

Mercodia, Uppsala, Sweden), respectively. Basal fasting values of serum 

glucose and insulin were used to calculate Homoeostatic Model 

Assessment (HOMA) index as follows: [glucose (mg/ dL) × insulin 

(mU/L)]/405. 

 

Mitochondrial Parameters 

Mitochondrial isolation, oxygen consumption, and proton leakage 

measurements were performed as previously reported (Mollica et al., 

2014). Oxygen consumption (polarographically measured using a Clark-

type electrode) was measured in the presence of substrates and ADP (state 

3) or with substrates alone (state 4), and their ratio (respiratory control 

ratio) was calculated. The rate of mitochondrial fatty acid oxidation was 

assessed in the presence of palmitoyl-l-carnitine. Mitochondrial proton 

leakage was assessed by a titration of the steady-state respiration rate as a 

function of the mitochondrial membrane potential in liver mitochondria. 

This titration curve is an indirect measurement of proton leakage because 

the steady-state oxygen consumption rate (i.e., proton efflux rate) in 

nonphosphorylating mitochondria is equivalent to the proton influx rate 

due to proton leakage. Carnitinepalmitoyl- transferase (CPT) system and 
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aconitase and superoxide dismutase (SOD) specific activities were  

measured spectrophotometrically (Flohe and Otting, 1984; Mollica et al., 

2014). Rate of mitochondrial H2O2 release was assayed by following the 

linear increase in fluorescence caused by the oxidation of homovanillic 

acid in the presence of horseradish peroxidase (Barja, 1998). 

 

Statistical Analyses 

Data were presented as the means ± standard errors. Differences among 

groups were compared by ANOVA followed by the Newman-Keuls post-

hoc test. Differences were considered statistically significant at P<0.05. 

Analyses were performed using GraphPad Prism software (GraphPad 

Software, San Diego, CA). 

 

 

RESULTS 

Milk composition 

Milk protein, fat and lactose were not significantly affected by cow dietary 

treatment (Table 4.3). Regarding the fatty acid profile of milk (Table 4.4), 

no difference was seen in SFA and MUFA content, whereas C18: 3n -3 

(linolenic acid was significantly higher in HFM than in LFM (1.117 vs. 

0.23%; P < 0.05) as were total n-3 fatty acids (1.212 vs. 0.317%; P < 0.05) 
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and PUFA (3.615 vs. 2.554%; P < 0.05). In addition, the n -6: n -3 ratio 

was significantly lower in HFM than in LFM (1.98 vs. 6.96%; P < 0.05). 

In contrast, total CLA and cis-9,trans-11 CLA were significantly higher in 

HFM than in LFM (0.79 vs. 0.45% and 0.73 vs. 0.41%, respectively; P < 

0.05). 

 

Table 4.3. Chemical composition of milks from cows consuming a low 

forage (LFM) or high forage (HFM) diet. 

 

Item LFM HFM 

Protein (%) 3.3 3.3 

Fat (%) 3.5 3.7 

Lactose (%) 4.8 4.7 

 

Body Composition and Energy Balance 

As shown in Figure 1, we observed no differences in body composition or 

energy balance between the LFM and HFM groups. In detail, LFM- and 

HFM-treated rats exhibited a diminished body water percentage (Figure 

1A) and increased body lipids percentage (Figure 1B) and body energy 
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(Figure 1C) compared with controls. No difference in body protein content 

was observed in the 3 groups of rats (Figure 1D). The LFM-treated animals 

had increased hepatic lipid content compared with the other 2 groups 

(Figure 1E). The 2 milk treatments provided similar ME intake, which was 

significantly higher than that of controls (Figure 1F). The LFM and HFM-

treated animals exhibited higher BW, body lipids, and body protein gains 

compared with control (Figure 1G-I), whereas no difference in energy 

expenditure was observed in the 3 groups (Figure 1L). Finally, gross 

energy efficiency was significantly increased in LFM and HFM groups 

compared with controls (Figure 1M). 

 

Serum Metabolites and Inflammatory Parameters 

Glucose, insulin, triglycerides, cholesterol, alanine aminotransferase, and 

IL-6 serum levels and HOMA index were not significantly different in the 

3 groups of animals (data not shown), indicating that these parameters 

were not affected by LFM or HFM administration. Confirming the HOMA 

index results, we did not observe any variation in oral glucose tolerance 

test or insulin tolerance test (Figure 2G–I). Leptin significantly increased 

in the LFM and HFM groups compared with control (Figure 2A), whereas 

adiponectin significantly was decreased in LFM compared with the other 2 

groups, and the highest level was found in HFM rats (Figure 2B). 
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Accordingly, the leptin: adiponectin ratio significantly increased in LFM 

compared with the other 2 groups (Figure 2C). Interestingly, levels of 

tumor necrosis factor-α (TNF-α) and IL-1 were significantly decreased in 

HFM-fed rats compared with controls and LFM-fed rats (Figure 2D, E), 

indicating a possible anti-inflammatory role of HFM. This hypothesis was 

further supported by the fact that IL-10, an anti-inflammatory cytokine, 

was found to increase 2-fold in the LFM group and 2.5-fold in the HFM 

group compared with controls (Figure 2F). 
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Table 4.3. Fatty acid profile (%; means ± SE) of milk from cows 

consuming a low forage (LFM) or high forage (HFM) diet 
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Mitochondrial Efficiency and Oxidative Stress 

Mitochondrial state 3 and state 4 respiration, evaluated using succinate and 

palmitoyl-carnitine as substrates, respectively (to detect fatty acid 

oxidation, was increased in LFM- and HFM-fed rats compared with the 

control (Figure 3A, B). Activity of CPT was increased in HFM-fed animals 

compared with the other 2 groups (Figure 3C). The high quality of 

mitochondrial preparations was tested by evaluation of respiratory control 

ratio values (data not shown). Mitochondrial basal and fatty acid–induced 

proton leakage was increased in LFM- and HFM-treated rats compared 

with the controls (Figure 3D, E). Finally, the beneficial effects produced 

by the HFM supplement on liver redox status were clearly indicated by the 

marked decline in the H2O2 yield and the significantly increased aconitase 

and SOD activities (Figure 3F–H). 

 

DISCUSSION 

In this study, we analyzed the fatty acid profiles of LFM and HFM and 

surveyed how the differences in milk composition affected metabolic 

parameters of rats fed with the different milks. Milk from cows fed the 

higher F:C ratio (HFM) had a higher, albeit not significant, fat percentage. 

Digestion of fiber in the rumen produces 2 lipogenic VFA—acetate and 

butyrate. Butyrate provides energy for the rumen wall, and much of it is 
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converted to BHB in the rumen wall tissue. About half of the fat in milk is 

synthesized in the udder from acetate and BHB. The other half is 

transported from the pool of fatty acids circulating in the blood. These can 

originate from body fat mobilization, absorption from the diet, or from fats 

metabolized in the liver. 

 α-Linolenic acid (C18: 3n -3), total n-3, and CLA were higher in 

HFM than LFM, confirming previous findings with milk from cows 

receiving a significant portion of daily DM from pasture and conserved 

forage-based feeds (Griinari and Bauman, 1999). Fresh forage contains a 

high percentage of UFA, with α-linolenic acid (C18:3) being the 

predominant n-3 fatty acid (Bergamo et al., 2003). Griinari and Bauman 

(1999) noted that grazing pasture is a good way of increasing the level of 

milk PUFA. In our study, C18: 3n -3 was higher in HFM, probably 

because of the higher content of this acid in the cow diet (higher F:C ratio), 

as suggested by the results obtained in milk from cows (Kelly et al., 1998) 

and dairy goats (Tsiplakou et al., 2010). Dietary treatment affects milk 

content of cis-9,trans-11 CLA and total CLA (ƩCLA), according to 

previous findings in goats and sheep (Tsiplakou et al., 2010). The higher 

concentration of milk CLA found in HFM could be due to the different 

type of diet, which may influence the rate of microbial fermentation in a 

way that alters the rate of CLA production or utilization by rumen 

microbes and, therefore, the concentration of CLA in milk fat (Kelly et al., 
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1998). Indeed, the higher levels of linoleic and α-linolenic acid—the main 

precursors of cis-9,trans-11 CLA—in the forage could explain the higher 

CLA content in HFM. 

 We hypothesized that the different compositions of LFM and HFM 

may affect metabolic parameters in the rats. One of our main findings was 

that the intake of HFM is able to reduce oxidative stress and serum pro-

inflammatory cytokines and to increase oxidation of fatty acids in hepatic 

mitochondria, which eventually reduces fat liver. 

 Our experiments allowed a comparison of nutritional, 

immunomodulatory and antioxidant effects of isoenergetic 

supplementation with 2 types of cow milk, HFM and LFM. No difference 

between the HFM and LFM groups was observed in body composition, 

energy balance, triglycerides, cholesterol, or alanine aminotransferase 

levels, or in parameters related to glucose homeostasis. Both groups 

showed an increase in ME intake and BW gain compared with control rats. 

The enhanced energy efficiency of LFM- and HFM-fed animals was 

associated with higher BW and lipid gain compared with control rats. 

Consistent with increased body lipid level, LFM and HFM groups showed 

increased levels of leptin compared with controls, and LFM also resulted 

in a decreased adiponectin level. Surprisingly, the adiponectin level 

significantly increased in HFM fed rats. Leptin and adiponectin are 

hormones derived from fat cells that are secreted into the serum, but the 
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leptin level increases with accumulation of fatty mass, whereas adiponectin 

level decreases (Oda et al., 2008). In some animal models, a decrease in 

adiponectin level occurred in parallel to decreased insulin sensitivity and 

preceding the onset of type 2 diabetes (Chakraborti, 2015). Adiponectin 

secretion is inhibited by several factors, including high level of TNF-α and 

oxidative stress (Chakraborti, 2015). Therefore, our data, showing an 

increased adiponectin level in the HFM group associated with decreased 

levels of TNF-α and H2O2, may indicate a lower inflammatory state in 

these animals. It has been proposed that a useful index of metabolic 

diseases is the leptin: adiponectin ratio, which is better correlated with 

insulin resistance than the level of leptin or adiponectin alone (Oda, et al. 

2008). Our data indicate a significantly higher leptin: adiponectin ratio in 

LFM than in the control and HFM groups, although LFM animals did not 

show changes in insulin sensitivity. Further studies, using different 

amounts of milk and administration times, will be required to fully 

investigate the possible variation of insulin sensitivity in LFM. 

 The diminished inflammatory state with HFM administration was 

confirmed by lower levels of TNF-α and IL-1 and an increased level of IL-

10 in HFM-fed animals compared with the other 2 groups. Both TNF-α 

and IL-1 are pro-inflammatory cytokines involved in the progression of 

metabolic diseases. Conversely, IL-10 is a potent anti-inflammatory 

cytokine, which drives a negative feedback process during inflammation 
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(Kwilasz et al., 2015). The major roles of TNF-α and other inflammatory 

cytokines in the progression of metabolic complications are likely to be 

related to oxidative stress (Rolo et al., 2012). Indeed, ROS and products of 

lipid peroxidation activate nuclear factor-ƙB, which induces the synthesis 

of TNF-α and increases the expression of several pro-inflammatory 

cytokines, leading to metabolic diseases (Rolo et al., 2012; Hernandez-

Aguilera et al., 2013). The recognized link among inflammation, redox 

status, and mitochondrial function prompted us to evaluate the effect of 

dietary regimens on mitochondrial oxidative capacity and oxidative stress 

in liver mitochondria in view of the central role played by this organ in 

energy metabolism. The LFM- and HFM-fed rats exhibited higher hepatic 

mitochondrial respiratory capacity than did rats in the control group. 

However, compared with the LFM group, the HFM group exhibited an 

increased rate of mitochondrial fatty acid oxidation due to enhanced 

activity of CPT, the rate-limiting enzyme for fatty acid entry into the 

mitochondria. Thus, the consequent increase in lipid oxidation explains the 

decreased load of hepatic lipid content found in these rats. Interestingly, 

compared with the LFM group, in the HFM group we observed a reduction 

of oxidative stress, as indicated by a decrease in H2O2 production and an 

increase in activities of aconitase and SOD. A concomitant decline in 

mitochondrial energy efficiency (thermogenic effect), as evidenced by 

increased proton leakage, may also contribute to burn fat and reduce 

mitochondrial oxidative stress parameters. Indeed, an increase in proton 
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leakage was reported as one of the major mechanisms involved in the 

modulation of membrane potential to control mitochondrial ROS emission 

(Mailloux and Harper, 2011). 

 In conclusion, our data provide the first evidence that dietary 

supplementation with HFM in a rat animal model decreased liver lipid 

accumulation through an increase in fatty acid oxidation, and decreased 

inflammation and oxidative stress. The beneficial effects of HFM are 

similar to those resulting from n-3 PUFA and CLA intake (Lionetti et al., 

2014; Mollica et al., 2014; Cavaliere et al., 2016), allowing us to 

hypothesize that n-3 PUFA and CLA may be some of the key components 

of HFM. Further studies will be addressed to verify the specific role of 

these components. 
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Figure 4.1 Body composition and energy balance of rats fed with milk 

from cows consuming a low forage (LFM) or high forage (HFM) diet: 

 

 

(A) water, (B) body lipid, (C) body energy, (D) body protein, (E) hepatic lipid content, (F) energy 

intake, (G) BW gain, (H) lipid gain, (I) protein gain, (L) energy expenditure, and (M) energy 

efficiency (means ± SE; n = 7 animals/group). Different letters indicate statistically significant 

differences between treatment groups (P < 0.05).  
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Figure 4.2 Serum metabolites, inflammatory parameters, and glucose 

and insulin tolerance test in rats fed with milk from cows consuming a 

low forage (LFM) or high forage (HFM) diet: 

 
(A) leptin (L), (B) adiponectin (A), (C) leptin:adiponectin (L/A) ratio, (D) tumor necrosis factor-α 

(TNF-α), (E) IL-1, (F) IL-10, (G) plasma glucose concentration, (H) plasma insulin concentration at 

different times after glucose load (oral glucose tolerance test), and (I) plasma glucose concentration 

at different times after insulin injection (insulin tolerance test). In panels G, H, and I, the upper inset 

shows the area under curve (AUC) for each group (mean ± SE; n = 7 animals/group). Different 

letters indicate statistically significant differences between treatment groups (P < 0.05).  
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Figure 4.3. Mitochondrial parameters of rats fed with milk from cows 

consuming a low forage (LFM) or high forage (HFM) diet: 

 

(A and B) hepatic mitochondria respiration rates at states 3 and 4 in the presence of succinate (A) or 

palmitoyl-carnitine (B) substrates; (C) carnitinepalmitoyl transferase (CPT) activity; (D) basal and 

(E) fatty acid-induced proton-leakage; (F) intracellular H2O2 yield, (G) basal aconitase/ total 

aconitase ratio, and (H) superoxide dismutase (SOD) activity (means ± SE from 7 animals/group). 

Different letters indicate statistically significant differences between treatment groups (P < 0.05). 
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CHAPTER V 

 

CONCLUSION AND FUTURE DIRECTIONS 

 

Progress in learning how to direct the mitochondrial energy balance rests 

upon a foundation of knowledge gained over the past two decades 

concerning the mechanisms of metabolic disorder development, and most 

of this information has been gained from studies in mice. However, as our 

understanding of mitochondrial energy balance mechanisms upon dietary 

fats in the mouse has expanded, it has become apparent that greater efforts 

must be made to translate this information into new human nutritional 

therapies.  

 

Numerous prior studies have shown the central importance of nutrients on 

metabolic disorders. It is widely believed that developing our 

understanding of the mechanisms regulating skeletal muscle metabolism 

will allow development of novel therapeutic targets for the treatment of 

metabolic disorders.  

 

Dietary fat sources may differentially affect the development of 

inflammation in insulin-sensitive tissues during chronic 
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overfeeding. Considering the anti-inflammatory properties of ω-3 fatty 

acids, this thesis aimed to compare the effects of high-fish oil and high-lard 

diets on obesity-related inflammation by evaluating serum following with 

the effects of High forage milk and low forage milk in insulin-sensitive 

tissues (skeletal muscle and liver).  

 

In Paper I, our data strengthened the association of high dietary ω3-PUFA 

intake with reduced mitochondrial energy efficiency in the skeletal muscle. 

FD rats showed lower weight, lipid gain and energy efficiency compared 

to LD-fed animals, showing higher energy expenditure and O2 

consumption/CO2 production. Serum lipid profile and pro-inflammatory 

parameters in FD-fed animals were reduced compared to LD. 

Accordingly, FD rats exhibited a higher glucose tolerance revealed by an 

improved glucose and insulin tolerance tests compared to LD, 

accompanied by a restoration of insulin signalling in skeletal muscle. 

PUFAs increased lipid oxidation and reduced energy efficiency in 

subsarcolemmal mitochondria, and increase AMPK activation, reducing 

both endoplasmic reticulum and oxidative stress. Increased mitochondrial 

respiration was related to an increased mitochondriogenesis in FD skeletal 

muscle, as shown by the increase in PGC1-α and -β. 

 

In paper II, to explore changes in liver mitochondria our choice was to 

follow the impact of High forage milk with replacement of low forage milk 
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in order to observe our important preferences since High forage milk is 

rich in ω3-PUFA. We observed the attenuated development of tissue 

inflammation degree and insulin resistance in the liver mitochondria. In 

conclusion, our data indicate that the substitution of saturated by 

unsaturated fatty acids in the diet has beneficial effects on modulation of 

inflammation and mitochondrial function in obesity. 

 

Continued research to uncover novel mechanisms of action and establish 

potential therapeutic targets is expected to provide new opportunities for 

prevention or treatment of inflammation, skeletal muscle insulin resistance 

and metabolic dysfunction. 
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