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Chapter 1

Introduction

This Ph.D. thesis addresses the problem of Group Recommendation Systems (GRSs) with

the aim to define a general framework to integrate in the process of generation of the

recommendations for a specific group social aspects related to the interactions between

group’s members, to the type and the status of the social relationship within the group,

and even aspect related to the personality of the group’s members. The objective is the

realization of techniques that permit to better model the real interactions characterizing the

group decision-making process and obtain most suitable recommendations.

1.1 The Addressed Problem

Recommendation Systems (RSs) are software systems supporting users in a decision-making

process. An RS provides suggestions for items on which a user have to choose, trying to

suggest items that can be of interest for the user in relation to his/her preferences. Such

systems can be applied in several domains, as touristic applications that provide suggestions

to plan a vacation, or systems that help users choosing movies to watch, music to listen.

Recently, RSs have been applied in smart museum scenarios, as a way to improve the users’

satisfactions in their visit.

In many of these cases, there is the possibility that not a single user, but a group of people,

must choose an activity to perform together. In this case, Group Recommendation Systems

(GRSs) give a support to group decision-making giving recommendations to a group of users,

trying to suggest items that can be of interest for all considering the preference of all the

group’s members. General approaches for GRSs starts from the individual recommendations,

provided by an individual RS, and merge them in way to determine the best choice for the

whole group. Unfortunately, with this approach, it results very difficult to consider aspects

that influence the real group decision-making process. Hence, the system has to consider
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not only the preferences of the group members but also the key factors in such process [38]

taking into account the type of control in the group decision-making process [46]. On the

basis of these considerations some advanced approaches proposed in literature try to integrate

social information about the group members with the classical techniques, in way to derive

new strategies more applicable in real scenarios. In this context, the most common approach

to integrate such factors in the group recommendation process is to apply weights derived

from social interactions between the members of the group.

Hence, the problem on which this work is focused, is to study the social dynamics that

occur when a group of people interact to make a group choice, determine the factors that can

be useful to consider in the process of generation of the recommendations, and then define

advanced aggregation techniques to generate groups recommendations. The aggregation

strategies are used to merge individual recommendations obtained from an individual RS for

each user in the group and obtain a recommendation for the whole group.

1.2 The Proposed Approach

In this thesis, a two-step approach for the design of a Group Recommendation Systems

(GRSs) is proposed. The basic idea is that the general approach, that focuses on how to

aggregate individual’s utilities to determine the best choices for the group, have a limitation

since it only focuses on the merging of the utilities estimated by an individual RS. Our

hypothesis is that such utilities should be modified in relation to the specific group in which

the users must perform the recommended items since, as suggested by the work about social

influence, emotional contagion and other-regarding preferences, individual utilities may

change when there are other people that can influence the individual. Hence, we propose an

architecture characterized by two subsystems:

• Group Context Adaptation System, that has the task to adapt the individuals’ utilities to

the group’s context;

• Aggregation System: that must determine the best choice for the group, starting from

these adapted utilities, even using information about the social dynamics between

group’s members and the individual’s profile.

Hence, this work is composed of two parts, one for each of the subsystems described.

Regarding the adaptation phase, the work is focused on the determination of the factors that

can have an impact on the Emotional Contagion phenomenon. It is assumed that individual

utilities are determined by individual RS, hence the adaptation system must evaluate the

impact, on such utilities, of the presence of other people. Regarding the merging step, instead,
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two weighted social choice functions are defined, where the weights are determined through

a dominance measure, that indicates the most influencing user in the group. Furthermore, a

second negotiation-based approach is illustrated. Here, the agents acting in the negotiation

replicate the corresponding users behaviour with respect to their conflict management styles,

obtained through the Tomas-Kilmann Instrument [47].

1.3 Innovative Aspects of the Work

An important aspect of the proposed work is that is a multidisciplinary work that integrate

studies on Economics, Multi-Agent Systems, Psychology, Sociology, and so on. The def-

inition of the two weighted aggregation strategies, introduced in section 4.2.1, apply the

concept of Dominance of a person in a group of people, in order to assign a different impor-

tance to each user according to it. The negotiation based approach, defined in section 4.2.2,

uses a psychological model of Conflict Resolution Styles in way to model the behaviour

of the agents that take part in the negotiation. Furthermore, the analysis of the factors that

have an influence on the Emotional Contagion phenomenon start from results obtained in

psychological field in the study of social behaviours.

Moreover, going beyond these methodological aspects, the obtained results represent the

many important parts of this work. The study presented in chapter 5 permit to relate some

of the main results on the relation between personality traits and social behaviour, to the

study of emotional contagion and how the utilities of an individual change when it is in a

group of people. Furthermore, the two proposed aggregation strategies have been showed

to outperform their standard implementations, and the negotiation based approach provides

high success rate in finding a solution, reporting satisfying results in terms of the negotiation

success rate, and of the quality of the recommendations provided.

1.4 List of Publications

1. F. Barile, S. Rossi and Judith Masthoff, “The Adaptation of an Individual’s Satisfaction
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Chapter 2

Recommendation Systems

As suggested by the name, Recommendation Systems (RSs) are software tools that support

users in a decision-making process by providing suggestions for items that they have to chose

[66]. Examples are systems that suggest movies to watch like Netflix 1, music to listen like

Spotify 2, items to buy like Amazon 3, and so on. Hence, RSs can be applied to several

different domains and usually try to suggest items that can be of interest for the specific user.

The use of RSs can lead advantage both for users and even for the providers of the services

to recommend, raising the sales, the users satisfaction and users fidelity, helping to better

understand the users needs and to diversify the items bought by the users [66].

Following [66], a RS is characterized by a set of Users that interact with the system and

a set of Items that are the object of the recommendation process. In relation to the specific

domain different kinds of items can be considered. The sequence of interactions between a

user and the system is denoted as Transactions. A transaction can be every interaction that

the user has with the system. For example, a transaction can be an explicit rating given by

the user to an item, but even a click on a particular web page, a purchase made by the user, a

song listened, and so on. Almost every interaction that the user has with the system can be

analyzed to better understand what kind of item can be of interest for him.

More formally, we define:

• A = a1,a1, ...,an as the set of the n users of the system.

• Ω = ω1,ω2, ...ωm as the set of the m items of the system.

Often, the transactions between the users and the system are used to derive an estimation

of the satisfaction of the users with respect to a specific item. We define as U(ai,ω j), or quite

1https://www.netflix.com
2https://www.spotify.com
3https://www.amazon.com/
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briefly Ui, j the Utility that a user ai have with respect to an item ω j. Following this definition,

we can imagine that all the information about the utilities of the users are stored in a matrix,

with n row (one for each user) and m columns (one for each item). This matrix is known as

User Item Matrix. If we could fill out all the cells in the matrix, we could easily determine

which are the preferred items for each user. However, usually we only have information about

few cells that are often explicit ratings given by the users. Hence, generally the problem is

reduced to an estimation of the missing values. In the more simplistic and, at the same time,

more used scenario, the utility Ui, j coincides with the explicit ratings given by the users ai to

the item ω j, that we indicate as r(ai,ω j) or, equivalently, ri, j. In this case, the problem is

usually addressed as a prediction of the missing ratings and a determination of the best item

in relation to this prediction.

2.1 Approaches for individual RSs

According to [16, 66], the strategies used to implement an individual RS can be classified

into the subsequent categories:

• Content-based: the RS recommends items similar to items that the user showed to

like in the past, and such similarity is evaluated on the base of the feature used to

represent the items in the system;

• Collaborative filtering: the system recommends to the user items that are liked by

users that are similar to him. Here, the similarity can be defined on the user profiles,

based on the transactions with the system;

• Demographic: in this case the demographic data of the users are used to generate a

recommendation. Generally, recommendations are based on categories of users;

• Knowledge Based: this kind of RSs uses a knowledge on a specific domain to infer

how determinate item features meet users needs and preferences to derive the utility of

the items;

• Community Based: here, the system recommends items based on the preferences of

a set of friends of the user;

• Hybrid RSs: An hybrid RS combines two or more techniques in way to obtain a more

robust system that integrate the advantages of all the used strategies.

Two of the most challenging issues related to many of these techniques are the so-called

Sparsity and Cold Start problems. The Sparsity problem occurs when a similarity based
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• Merging of Recommendations: Even in this case the system starts from users’ Pref-

erence Profiles; for each user the system determines the recommendations with an

Individual RS. The recommendations are then merged to find the suggestion for the

group.

Intuitively, in the Merging of Preference a sort of “group user” is created, reflecting, in

his profile, all the group’s members preferences. Hence, we can evidence a first problematic

of this approach that is the flexibility. If the group changes, the preference profile must be

recomputed. For this reason, the most used approach is the Merging of Recommendations,

since it provides a greater flexibility in the group formation process. In fact, individual’s

recommendations are built independently for each group’s member, and the users’ recom-

mendations are merged at the time of providing the group recommendations (e.g., only once

the group is established).

Formally, we define:

• A = {a1,a1, ...,an} as the set of the n users of the system;

• Ω = {ω1,ω2, ...ωm} as the set of the m items of the system;

• U(ai,ω j) =Ui, j is the utility of the user ai for the item ω j;

• for each ai ∈ A we define as Ωi ⊂ Ω the set of items for which we have an estimation

of the utility Ui, j derived from the transaction of the user with the system;

• for each ω j ∈ Ω we define as A j ⊂ A the set of users for which we have an estimation

of the utility Ui, j derived from the transaction of the user with the system;

• for each ai ∈ A we have a User Profile UPi = {Ui, j|ω j ∈ Ωi}. The profile can be partial

if Ωi ⊂ Ω, or complete if Ωi = Ω.

Starting from this definition, we can see an Individual RS as a system that starts from a

partial user profile UPi and derives a complete user profile UPi, in way to determine the best

item (or the best k items) to recommend to the user. Hence, in the Group Recommendation

domain, we have:

• G ⊂ A as the set of g group’s members;

• U(G,ω j) =UG, j is the utility for the item ω j for the whole group;

The Merging of Preferences approach, starting from the user profiles UPi for each

ai ∈ G, determines a partial Group Profile GP on which applies an Individual RS to obtain
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a complete Group Profile GP = {U(G,ω j)|ω j ∈ Ω}. On the contrary, in the Merging of

Recommendation approach, for each ai ∈ G the system applies an Individual RS on the

correspondent user profile UPi obtaining a complete user profile UPi. Then, these profiles

are merged to obtain a complete Group Profile GP = {U(G,ω j)|ω j ∈ Ω}.

2.2.1 Strategies for Group Recommendations

In a Multi-Agent perspective, the problem of generating a recommendation for a group of

users can be addressed defining a set of agents, one for each group member, the utility of

which is defined on the bases of the users’ one, for each item to recommend. In particular,

since we focus on the merging of recommendation approach, we suppose that the utilities that

each agent will have for each item is known (computed by an individual recommendation

system). Here, we focus on the MAS strategies, that start from a complete user profile (as

defined in section 2.2) and derive the group recommendations computing the complete Group

profile (containing the utility for the whole group for each item) or determining the group

choices as a result of the agents’ interactions.

Social Choice Theory

In [51], Social Choice Theory is defined as the study of collective collective decision

processes and procedures, resulting in a collection of models and strategies concerning the

aggregation of individual inputs, as votes or preferences, into collective outputs. These

strategies, according to [71], can be classified as majority-based, mainly implemented as

voting mechanisms to determine the most popular choices among alternatives, consensus-

based, that try to average among all the possible choices and preferences, and role-based,

that explicitly take into account possible roles and hierarchical relationships among members.

Here, the most used strategies are described. A more deeply description can be find in [57].

Average Strategy: The average strategy is a consensus-based strategy that, as described in

[54, 38], consists in aggregating the utilities of the single agents for an item computing the

average of all the utilities. More formally:

U(G,ω j) =
1

g
∑

ai∈G

U(ai,ω j) (2.1)

where U(G,ω j) is the utility for the group of agents G ⊂ A, g is the size of G, and

U(ai,ω j) is the utility of the agent ai with respect to the item ω j ∈ Ω. This strategy is com-

monly used as a benchmark for comparison or as base to define more complex approaches.
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ω 1 2 3 4 5 6 7 8

U(a1,ω) 1 5 3 1 2 5 4 3

U(a2,ω) 3 4 1 2 5 3 2 4

U(a3,ω) 1 3 2 5 1 4 3 2

U(G,ω) 1 7 3 2 5 8 4 6

Table 2.1 An example of fairness strategy appli-

cation. Users are ordered from 1 to 3 and K = 3.

The numbers in bold represent the ratings of the

user’s K preferred items, while the rating values

corresponding to the items that causes the least

misery are underlined.

Fairness Strategy Even the fairness strategy is a consensus-based approach, and is de-

scribed in [17, 54]. It is used when a set of k items must be selected for the group. The idea

behind the fairness strategy is trying to accommodate everyone in the group. A user can

agree to perform activities that he/she does not like so much as long as he/she will be able to

do something he/she likes with his/her friends. The strategy needs of an ordering among the

users of the group that, in the simplest case, can be random. The strategy is the following:

1. The first agent ai is selected, and considering the corresponding profile UPi, the K

items with the higher utility value are selected;

2. Among them, the one that causes the least misery to the others is selected (in case

of items with the same rating a non-deterministic choice is made), and the process is

repeated with the successive user in the rank;

3. The utilities U(G,ω j) of the group for each item ω j ∈ Ω are assigned in a descending

order from m to 1.

4. Finally, the group recommendation will correspond to the K item with the highest

utility U(G,ω j).

The table 2.1 provides an example of a possible application of the fairness strategy. One

of the main issues with the use of this strategy is that, by changing the users’ ordering, the

selection process will produce a different result in the outcome.

Borda Count Strategy The Borda Count is a Majority-based strategy introduced in [27].

As explained in [17, 39, 55], consists into two phases:

1. Initially, the individual utilities of each agent is replaced with scores. Such scores are

computed assigning a zero score to the item with the lowest utility, a one score to the

next item, and so on. If two or more activities have the same rating they are assigned

with the average of the scores that should have.

2. After that, an average strategy is used on those scores to obtain the group utilities.
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Plurarity Voting Strategy A second majority-based strategy is the Plurality Voting [17,

55]. It is very similar to the fairness strategy hence, even in this case, an ordering among the

users is required. Then, the strategy is the following:

1. The first agent ai is selected, and considering the corresponding profile UPi, the K

items with the higher utility value are selected;

2. Among them, the most voted item from the other agents is selected, and the process is

repeated with the successive user in the rank;

3. The utilities U(G,ω j) of the group for each item ω j ∈ Ω are assigned in a descending

order from m to 1.

4. Finally, the group recommendation will correspond to the K item with the highest

utility U(G,ω j).

Least Misery and Most Pleasure Strategies Finally, we present two role-based strategies.

The Least Misery strategy [61] can be used when one or more users give a rating particularly

low for some activities. In case of small groups, it is reasonable to assume that the satisfaction

of the group that performs an activity could decrease if one or more components really dislike

the item.

On the contrary, if some user really likes one activity that is acceptable for other group

members it should be rational to use, as group rating, the greatest given rating for the activity.

Here, the motivation is the opposite, since the satisfaction of the group can increase if one or

more component really like an item.

Hence, Least Misery strategy consists in assigning to each activity the minimum of the

utilities of the agents:

U(G,ω j) = min
ai∈G

U(ai,ω j) (2.2)

On the other hand, the Most Pleasure strategy assigns the maximum utility among all the

agents:

U(G,ω j) = max
ai∈G

U(ai,ω j) (2.3)

Alternative MAS Approaches

Another set of approaches derived from MAS theories to address the group recommendation

problem is based on the use of Negotiation methodology. Even in this case, a set of agents act
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on behalf of human group members, participating in a cooperative negotiation for generating

the choice for the group. Generally, in negotiation based approaches there is not an estimation

of the utility for the whole group for each item; on the contrary, each agent estimates the

corresponding user’s utility for a set of items and a negotiation protocol is applied since an

agreement is find between all agents.

In some cases, group members could have more different interests conflicting with each

other. In case of great heterogeneity, the attempt to resolve the conflict by applying a

cooperative approach can lead to a failure in the negotiation [21]. In this scenario, it can be

reasonable to apply non-cooperative approaches. The idea is that users can be viewed as

self-interested agents and the recommendation system can be modelled as a classical Non-

Cooperative Game in normal form. In this case, group members are viewed as the players

of the game, the items to recommend are viewed as game actions, and the recommendation

problem is modelled as a problem of finding the Nash Equilibrium for the game.

A different approach is based on the use of coalitions. Since coalitions require the

groups formation at run-time, this approach is not straightforward. The idea is to organize

group members into smaller and cohesive groups, so it is possible to provide more effective

recommendations to each of them. The problem is modelled as a Coalitional Game, where

people are grouped into disjoint coalitions to maximize the social welfare function of the

group [20]. The payoff function considers the similarity between coalition members’ ratings,

and a weighting factor for the coalition size. The approach is compared with a classic

K-Means clustering, on randomly formed groups, and the results show better performances

in the formation of larger coalitions. In some cases, however, this approach is not applicable,

because it is not possible to reorganize the group into more cohesive sub-groups, but it is

necessary to provide a recommendation for the whole group of users.

2.3 Context-Aware Recommendation Systems

Recent studies evidenced one of the most important and, at the same time, neglected aspect

of RSs, that is the context in which the recommended items have to be used [4]. Generally

speaking, when we talk about context-aware computing, we refer to systems that use infor-

mation about the context to adapt dynamically their behaviors [28]. RSs, in most cases, use

very simplistic models, ignoring the fact that the users interact with the system in a particular

context [4] (e.g., the external environment, or the user’s internal state, such as, for example,

the mood).

Context-aware recommender systems (CARSs) try to adapt recommendations to the

specific contextual situation of the user, to generate more relevant recommendations [4]. It
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is a relative recent field of recommendation systems, and is based on the consideration that

users’ preferences may vary in relation to the context, even for the same item [83]. The

question of what we have to consider as context in recommendation systems is still an open

problem [4]. For example, a RS that suggests places to visit should consider that same

destination can be more or less valuable in relation to the time of the year. In the same way, a

system that recommends music should consider the mood of the user. As we can see from

these basic examples, we have many possible factors that can be considered as context.

To consider contextual information in the recommendation process it is necessary to ex-

tend the traditional model, that usually considers only Users and Items, to multi-dimensional

settings [3]. In [82], authors recall that there are different kinds of contextual information

that can be considered, and, in relation to the activity to perform, we should focus on some

of them, and [2] shows that by extending the traditional collaborative filtering approach to

take into consideration the contextual information, such as when, where and with whom

a movie is seen, the resulting recommender system could outperform the pure traditional

collaborative filtering method.

In [4], starting from an analysis of the characteristics that a context can have, different

classifications are proposed, and a survey of research in CARS is provided. The context

is classified in Partially Observable, Fully Observable and Unobservable in relation to

the knowledge of the RS about it, and can even be Static or Dynamic, if the factors that

characterize it changes seldom or often. Four types of context are considered:

• Physical Context, that refers to the conditions in which the recommendations are

supposed to be used;

• Social Context, that is the presence and role of other people when the recommendations

are used;

• Interaction Media Context, which refers to the device used to access the system;

• Modal Context, representing the mental state of the person that uses the recommenda-

tions.

As for individual RS, also in Groups Recommendation Systems (GRS) the context is

a key factor that must be considered in the recommendation process. Nevertheless, few

studies on GRS consider these aspects, usually trying to determine factors that can be used as

weights in the aggregation process, or to determine the best strategies to apply for the specific

group on the basis of the characteristics of the relationship between group’s members [57].

Here, we can assume that the Social Context should be always considered by the GRS, since
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the presence of other people, and the satisfaction of the other group’s members, can influence

the other individual ones [58, 31, 10].

2.4 Evaluation of GRSs

One of the major problems in designing group recommendation techniques relates to the

difficulty of evaluating the effectiveness of group recommendations. As for Individual Rec-

ommendation Systems, also for group recommendations the principal evaluation strategies

are on-line and off-line evaluation. However, in case of GRSs, since the evaluation should

consist in comparing the generated recommendations for a group with the true preferences of

real groups, there are problems for both the approaches:

1. The on-line evaluation consists in interviewing real users. It is clear that such eval-

uation can be performed on a very limited set of test cases and cannot be used to

extensively test alternative algorithms. Furthermore, it may require a beta implemen-

tation of the real system since aspects like the user interface and the presentation of

the recommendations can influence on users final choices and even supposing to not

consider this factor, each test case requires more subjects, hence to reach a reasonable

set of evaluations can be very difficult and expensive;

2. In off-line evaluations, the recommendations generated by the GRS is compared with

a real choice stored in a dataset. This approach is largely used in the evaluation

of Individual Recommendation Systems, since there are many datasets available for

different application domains. Unfortunately, up today, no freely available dataset

exists that consider groups choices.

.

An approach to get round the problem is to compare the predicted group recommendations

with the individual observed in a dataset for individual RS. As shown in [8], the most

popular datasets (e.g. Movielens or Netflix) that contain just evaluations of individual users

can be used to perform a such evaluation of GRSs. In fact, in [8], the Authors analyzes

the effectiveness of group recommendations obtained aggregating the individual lists of

recommendations produced by a collaborative filtering system.

2.5 Personality and Social Influence

As final part of this introduction chapter, the concept of Social Influence is introduced,

considering works on Personality. In [45], Social Influence is defined as a “change of
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attitudes, beliefs, opinions, values and behaviour as a result of being exposed to other

individuals’ attitudes, beliefs, opinions, values and behaviour”, and it is divided into two

categories, Incidental and Deliberate Social Influence. The evidence of such influence is

confirmed by studies in psychology fields [81]. In [81], authors show that the presence of

others can lead to improving performances or, on the contrary, can even lead to performance

impairment, in relation to the difficulty and the knowledge of the task to perform, hence,

Social Influence affects many aspects of an individual, from behaviours to evaluations and

opinions.

Recent studies on Opinion Shifting assume the possibility of positive and negative

interpersonal influence [75], and the individual’s personality is a key factor to understand

how an individual is incline to be influenced by others. Positive influence occurs when

the initial opinion of an individual shifts towards the opinion of another person, when the

individual is exposed to it, while, on the contrary, when Negative influence happens, the

individual shifts his opinion increasing the difference with the opinion of another person

[75]. In the case of Negative influence, there is the possibility that opinion differences

between groups intensify, leading groups to positions that are the two extremes of an opinion

spectrum, in the phenomenon known as Bi-polarization [53]. Bi-polarization can be amplified

if the model supports homophily, the process with whom people like similar people, and

heterophobia, that, on the contrary, is the disliking of dissimilar others [75]. The authors

of [75] also analyze the opinion shift in relation to the initial differences in the evaluation

of specific items, showing that the largest positive shift occurs when the initial differences

between individuals’ ratings are higher. Unfortunately, no studies show a robust explanation

on how Negative Influence works.

There are many models proposed in psychological studies to model different aspects of

the human beings personalities. Here, we introduce two widely used models. The first one is

the Five Factor Model (FFM), that models the personality through five factors also known

as the “Big Five”. The second one is the Thomas-Kilmann, that models people’s conflict

resolution profiles.

2.5.1 Five Factor Model

The Five Factor Model (FFM), also referred as the Big Five personality traits, is a personality

framework identifying five major dimension of personality [42]. Despite some opposition

based on the lack of theoretical rationale, the Five Factor model has reached a good deal of

consensus in psychological communities [45], and several studies find empirical evidence to

support this classification [34]. The taxonomy indicates five personality factors [23]:
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• Neuroticism is the tendency to experience negative emotions (anxiety, depression,

anger), while calm and relaxted personalities are related to low Neuroticism;

• Extraversion is related to impulsiveness, assertiveness, and a tendency toward social

behaviour and to experience positive emotions, while low Extraversion (or Introversion)

characterizes quiet and restrained people;

• Openness to Experience refers to the tendency to experience new sensations and ideas

or to engage in intellectual activities;

• Agreeableness represent a friendly, considerate and modest behaviour, and a high level

of this factor describes people with a general predisposition to prosocial behaviour;

• Conscentiousness is generally associated with proactivity, responsibility and self-

discipline, that reflect in an efficient, organized and determined person.

To evaluate Big Five personality traits several inventories have been proposed. The NEO

Personality Inventory [24, 25] is composed of 60 items, but recently alternative methods have

been presented, in order to provide shorter personality instruments requiring few time to be

completed. In [65], a short version based on 10 items is presented. A valuable alternative,

validated as accurately measuring the FFM, is the Personality Sliders method [72]. This is

based on a series of stories, two stories for each personality trait, illustrating person that was

low or high for that trait. Hence, participants use a slider to indicate which person they were

most like, resulting in a value for each trait between 18 and 162.

2.5.2 Conflict Management Style

The Conflict Management Style describes the human beings’ strategies to resolve conflicts

arising during negotiation. In literature, several models of conflict management have been

proposed. In 1974 H. Kilmann and W. Thomas [47] identified five different categories of

interpersonal conflict management styles. Such styles are identified with respect to two

fundamental dimensions: cooperation, i.e., the extent to which the individual attempts to

satisfy the other person’s interests, and assertiveness, i.e., the extent to which the individual

attempts to satisfy his/her interests. These two dimensions are used to define five methods of

dealing with conflicts, as follows:

• Accommodating: this style prioritizes cooperation at the expense of assertiveness. A

person with this conflict resolution style will generally put aside its own goals, allowing

the other person to achieve their own;
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• Avoiding: this style avoids conflicts by searching for a solution in a diplomatic way,

i.e. going forward in the decision process until a solution is found, but withdrawing or

postponing any threatening issue;

• Collaborating: this style models a collaborative approach that aims to resolve conflicts

by making the involved parties working together;

• Compromise: this style models people that aim to build a solution in such a way to

meet both parties preferences;

• Competitive: this style relies on assertiveness, so each member of the group tries to

pursue its own interests.

In order to assess the conflict management style of users, the Thomas-Kilmann Conflict

Mode Instrument (TKI) is used, a powerful tool to measure a person’s behavior in conflicting

situations, rather than the user’s competence in managing conflicts. It is based on interviews

consisting in a questionnaire of 30 questions that allow to associate user’s preferences for

different styles in handling conflicts to a specific profile.





Chapter 3

Related Works

In this section a survey of the most recent techniques proposed in literature to address the

group recommendation problem is presented. We focus on the techniques based on the

Merging of Recommendations approach. The problem has been widely analyzed in Mathe-

matics, Economics and Multi-agent systems (MAS). In section 2.2.1 the most commonly

used approaches, based on MAS techniques, have been showed. Here, the more recent work

presented in literature are illustrated. In particular, techniques that take into account social

influence between users are illustrated, from an Economic point of view, with the definition

of the Other-Regarding Preferences (ORP) models, and from a Psychological perspective,

talking about the Emotional Contagion phenomenon and the possible factors that have an

impact on it.

3.1 Integrate Social Factors in Group Recommendations

The results presented in the literature showed that there is no strategy can be defined as the

“best”, but different approaches are better suited in different scenarios, depending from the

characteristics of the specific group. Besides, traditionally MAS techniques do not seem

to capture all the features of real-world scenarios. For example, automatic voting/ranking

mechanisms often require that all the agents involved have the same influence on the decision

procedure, while real group interactions take into account intra-group roles and mutual

influences. Again, some members of the group could have a particular influence on the

others, based on their personal experiences or on the strength of their mutual relationship.

Furthermore, there may be situations where the participants follow a democratic process in

order to find a possible solution, and cases where the group is supported by a human leader.

Usually the decision of a group member whether or not to accept a given recommendation

may depend not only on his/her own evaluation of the content of the recommendation, but also
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on his/her beliefs about the evaluations of the other group members [17]. Recommendation

systems for groups need to capture both the preferences of the group members but also these

key factors in the group decision process [38] taking into account the type of control in the

group decision-making process [46].

On the basis of these considerations some advanced approaches try to integrate informa-

tion from the social relationships among group members with the classical MAS techniques

and so to derive new strategies more applicable to the considered settings.

PolyLens [61] has been one of the first approaches to include social characteristics (such

as the nature of a group, the rights of group members, and social value functions for groups)

within the group recommendation process. It uses a Collaborative Filtering (CF) approach

to produce recommendations for each user of the group, and a Least Misery (LM) strategy

to aggregate these recommendations. Moreover, in [6] intra-group relationships, such as

children and the disabled were contemplated; each group is subdivided into homogeneous

subgroups of similar members that fit a stereotype, and recommendations are predicted for

each subgroup and an overall preference is built considering some subgroups more influential.

An approach that provides group recommendations with explicit relationships within a family

is proposed in [13], while in [5], the authors propose to use the disagreement among users’

ratings to implement an efficient group recommendation algorithm. The problem of defining

the proper decision strategy is crucial in group decision support systems. In Choicla [74], for

example, a decision support system is proposed that provides users with the possibility to

choose among different decision strategies for independent decision tasks, so allowing to

personalize the application to the user’s preferences by providing different heuristic functions

and trustworthiness levels to the group members.

3.1.1 Weighted Utility functions

The most common approach to integrate social factors in the group recommendation process

is to apply weights derived from social interactions between the members of the group. In

this context, a very interesting work is proposed by Gartrell et al. in [38]. Here, authors starts

to evaluate the group members’ weights, in terms of their importance or influence in a group,

for movies recommendations. The work introduces some important concept:

1. the use of a “social value”, determined from questionnaires on the social interactions

between group members, used to determine the aggregation strategy to use for the

specific group.
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2. the use of weights for the individual utilities in the aggregation procedure. In particular,

they rely on the concept of “expertise”, computed as the percentage of item used (e.g.

the movie watched).

3. finally, a “group dissimilarity” factor is introduced, to consider the possibility of high

disagreement between group’s members.

The work was then used in an application helping users to find an agreed solution

regarding the choice of a restaurant, the Social Dining system [37], with the peculiarity that

recommendations are generated by collecting real data from social networks.

3.1.2 Advanced Negotiation

In [11] there is a negotiation agent for each group member. An individual recommendation

system gives recommendation for a set of items, and, in addition to this, an individual

utility of each product for each user is evaluated, introducing a user preference model. The

Negotiation protocol is different according to the size of the group. For groups of two people,

the used protocol is the alternating offers, while for groups of more people, a merging

ranks protocol is used, with a mediator agent that uses strategies to help in choosing among

proposals and offering an agreement to the group (i.e, by maximizing the average utilities

of group members or maximizing the utility of the least happy member). The framework is

tested by simulating the negotiation protocols.

Even in [36] an alternating offers protocol is used. In this approach there is not a

mediation, but groups size is restricted to two users. There is an agent for each user, and there

is a two-level user profiling, which includes a recommendation profile, containing personal

information and preferences, and a negotiation profile, used to distinguish agent behaviors

in the negotiation among three degrees of collaboration (self-interested, collaborative and

highly collaborative). If the negotiation finishes with an agreement among all the agents, the

result is a list of constraints that match the preferences of the group members.

The original idea was then developed in a subsequent work [35], where user agents

are configurable in order to exhibit the desired behavior of the corresponding user. The

negotiation model is a multi-party negotiation that centralize the communications through a

negotiator agent, acting as mediator. It receives the proposals of the user agents, combines

them into a single proposal, which is later broadcast by the negotiator agent and analyzed

by the user agents. The system uses a domain ontology to describe the user’s likes and the

items to recommend. The user agent is responsible for building and updating a user profile,

of obtaining the individual preference model, of participating in the negotiation process and

of informing the user about the result of the negotiation. Besides, there are two support
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Fig. 3.1 MCP Negotiation proposed in [78].

agents that help in computing the individual preference model (preferences agent) and in

selecting the list of items that satisfy the group preferences, given the group preference model

(items selector agent). The protocol used in the negotiation is a generalization of the bilateral

alternating offers protocol [68] for the multi-party negotiation.

A different approach is proposed in [77, 78] where a Monotonic Concession Protocol

(MCP) is used [32]. As in previous cases, an agent for each group member is present that

is responsible for computing the utility of the corresponding user for the necessary items.

Furthermore, agents compute the “willingness” to risk a conflict and a concession strategy

based on this value. There is even a Moderator agent that is responsible in checking the

agreement or to select the agents that must concede. The protocol is summarized in figure

3.1 [78].

3.2 Not Self-Interested Agents

The approached displayed until now show how to model aggregation functions with the

aim to obtain a group utility or a group shared choice. Another recent field of research in

Economics and Multi-Agent System regards the necessity to define utility models where

the agents voluntary fail to maximize their utility [29]. Even if this seems to be in contrast

with the Rationality Assumption used in the modelling of Rational Agents, there are many
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evidences of such behaviours in the observation of human being [73]. This phenomenon can

be studied under different perspective.

An interesting work is proposed by Salehi and Boutilier in [69] and explore the Consensus

decision-making in social networks. Here, the authors introduce the concept of empathetic

utility on social networks: the satisfaction of an individual depends from both his intrinsic

utility and his empathetic utility deriving from the happiness of his neighbors in the social

network [69]. Based on this idea, individual preferences are aggregated in a weighted social

choice function that takes into account local relationships with neighborhoods in the network.

However, in [69] the Authors do not specify how to evaluate such numerical relationships,

while they focus on computational aspects of scaling up with large networks of friends.

Other approaches that try to model this phenomenon are described under an Economic

view, with the works on “Other-Regarding Preferences” models [29, 73] and, from a Psycho-

logical point of view, with the studies on the “Emotional Contagion” phenomenon. In our

view, these are two different aspect of the same story and we introduce them in the following

sections.

3.2.1 Other-Regarding Preferences

Only recently Economists have begun to recognize the need for explicit models considering

the possibility that an agent will bear a personal cost in terms of payoff to increase that of

another one [26]. There are many aspects that can have an impact on this phenomenon, in

particular [26] evidence that the status of the relationship can have an impact and even the

possibility of reciprocity, that means that an agent can concede to another if there is the

possibility that the favour will be returned in the future. There is, also, the possibility of

Negative reciprocity, since an agent can be glad in decreasing another agent’s payoff if it is

viewed as enemy [26].

Other-Regarding Preferences (ORP) models try to consider these possibilities, modelling

agents that do not maximizes their own utilities in way to give a greater (or, in some cases,

lower) payoff to some other agents. In this section, an overview of the principal models

proposed is presented.

Inequality Aversion

The Inequality Aversion model is the simplest ORP model. A first version of the model,

known as Fehr-Schmidt model [33] is in equeation 3.1. For simplicity we refer on a two-agent

version.
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U(m,y) =







m−α ∗ (y−m) if m < y

m−β ∗ (m− y) if m ≥ y
(3.1)

where U(m,y) indicates the ORP utility for the agent when m is the payoff of the agent (m

stands for “my payoff”) and y is the payoff of the other agent (y stands for “your payoff”). The

parameters α and β are denoted as marginal rate of substitution and must satisfy 0 ≤ β ≤ α

and β < 1. In this model, the considered agent is interested in its own income, and the sign

of the marginal rate of substitution between its income and that of the other agent depends

on which has higher income [26].

An alternative model is the Bolton-Ockenfels two-player model [14], that also assumes

that an agent like its own income and dislike income inequality. Here, the the utility function

is defined as in equation 3.2.

u(m,y) = v(m,m/(m+ y)) (3.2)

Again, m is the agent’s payoff, and y is the payoff of another agent. The equation present

a non-linear form and assume that the function v is globally non-decreasing and concave

in the first argument, strictly concave in the second argument, that is the relative income

m/(m+ y) [26].

Interdependent Preferences

The Interdependent Preferences model can be viewed as a generalization of inequality

aversion models [73]. Supposing to have a set A = {a1, ...,an} of agents. Indicating with

Ω(s) = {x1, ...,xn}= x the payoff of each agent, the utility is defined as in equation 3.3

Ui(x) = xi +∑
i̸= j

λi, j(xi − x j)∗ x j (3.3)

Here, the parameter λi, j can define altruistic or, on the contrary, spiteful behaviours,

assigning to it a positive or a negative constant value. Other variants can give a non-constant

value to the parameter λi, j [73]. In his work [73], Sobel specifies the relation between this

model and the Inequality Aversion models seen before. In the Fehr-Schmidt model, λi, j is

positive if xi > x j and negative if xi < x j, in way to have an agent that cares about his payoff

but, at the same time, would like to reduce the inequality in payoffs between the two players.

On the contrary, in the Bolton-Ockenfels model the utility of the agent ai is a non-linear

function of is payoff xi and its relative income.
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Fairness and Reciprocity

An alternative approach try to define the reciprocity in terms of agents’ beliefs regarding

the intentions of the other agents [26, 73]. The model proposed by Rabin [64] evaluates the

utility of an agent ai in terms of his strategy si, the beliefs about the strategy of a second

agent a j, denoted as b j, and the beliefs of the agent ai about the beliefs of the agent a j about

its strategy, denoted as ci. Hence, the utility is modelled as in equation 3.4. We use the

definition provided in [26].

Ui(si,b j,ci) = πi(si,b j)+ f̄ j(b j,ci)[1+ fi(ai,b j)] (3.4)

Here, πi(si,b j) is the payoff of the agent ai, while f̄ j(b j,ci) is the belief of the agent ai

about how kind the agent a j is being to him and fi(ai,b j) is how kind agent ai is being to

player j.

3.2.2 The Emotional Contagion

The model presented in the previous section consider the possibility in which the utility of an

agent depends not only on its own payoff but also on those of other agents, with the possibility

of altruistic or egoistic behaviours. In the psychology field, the phenomenon for which the

satisfaction of an individual is influenced by the satisfaction of other people is known as

Emotional Contagion, that is defined as “the process by which a person or group influences

the emotions or behavior of another person or group through the conscious or unconscious

induction of emotion states and behavioral attitudes” [70, 31]. Many empirical studies show

the evidence of this influence between people [58], but how this influence works is very

difficult to explain, and so many theories have been proposed. However, the motivations,

mechanism of working, and many other aspects, are still open research problems in the

psychology field [31]. It is recognized that understanding the sharing process of emotions

that occurs in groups is necessary, and to limit the analysis on how people share ideas in

group dynamics is not enough [10].

Empirical studies showed that factors like the personality or the type of relationship

between people can influence the willingness of a person to be affected by the emotional

contagion. For example, in [56] has been showed that it is easier that a person is influenced

by people with whom they have a good and strong relationship, with respect to other people.

Another factor that could influence the emotional contagion between two individuals is

the type of relationship between them and the state of this relationship. In [58], different types

of relationship and the relative influence between members are analyzed, divided into four

types: communal sharing, authority ranking, equality matching, and market pricing. Each
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type corresponds to different parameters in a model of variation of the individual satisfaction

on the basis of other group members’ satisfaction.



Chapter 4

A Framework for Context-Aware GRS

In this thesis, a two-step approach for the design of Group Recommendation Systems

(GRSs) is proposed. Generally, the common approach in GRSs focuses on how to aggregate

individual’s utilities to determine the best choices for the group, while the most recent studies

try to replicate the real dynamics in small groups decision-making. In our view, this approach

has a limitation, since it only focuses on the merging of the utilities estimated by an individual

RS. Our hypothesis is that such utilities should be modified in relation to the specific group in

which the users must perform the recommended items. As suggested by the work about social

influence, emotional contagion and other-regarding preferences introduced in the chapter 3,

individual utilities may change when there are other people that can influence the individual,

and this aspect should be considered by the GRS before aggregating the utilities.

The proposed architecture is showed in figure 4.1, and it is characterized by two sub-

systems, a Group Context Adaptation System and an Aggregation System. The first one has

the task to adapt the individuals’ utilities to the group’s context, while the second one must

determine the best choice for the group, starting from these adapted utilities, even using

information about the social dynamics between group’s members and the individual’s profile.

We suppose that individual utilities are determined by individual CARS, hence the adaptation

system must evaluate the impact, on such utilities, of the presence of other people.

The work presented in this thesis is divided into two parts, corresponding to the two steps

of such architecture. In the rest of this chapter an overview of the methodology is presented.

In particular, regarding the adaptation phase, the work is focused on the determination of the

factors that can have an impact on the Emotional Contagion phenomenon, with the future aim

to define a ORP model to perform the adaptation; on the contrary, regarding the merging step,

two weighted social choice functions are defined, where the weights are determined through

a dominance measure, that indicates the most influencing user in the group. Furthermore, a

second negotiation-based approach is illustrated. Here, the agents acting in the negotiation
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the impact of ties strength and the status of the relationship. Then, we analyze the impact

of users’ personalities, investigating possible relations between them and the changing in

individual utilities.

4.1.1 Tie Strength

The concept of ties strength was introduced in [43] as a combination of the amount of time,

the emotional intensity, the intimacy (mutual confiding), and the reciprocal services which

characterize the ties. It can be viewed as the importance of a social relationship between two

individuals [7], and, despite there being a great amount of research in this field, the evaluation

of this concept still results in being a great research problem. Recent studies try to estimate

the strength of the tie using information derived from Online Social Networks [67]. In [40],

an approach to distinguish between strong and weak ties is proposed. A similar classification

was proposed in [43], where tie strength is distinguished between weak, intermediate and

strong.

It appears reasonable that the variation in individuals’ utilities deriving from the Emotional

Contagion can be influenced by the strength of the tie between them. Our starting hypothesis

is that the tie strength directly impacts on the variation in the individuals’ utility, determining

how the individuals can be influenced by each other in a pair. We start from the assumption

that the “perceived tie strength” is not bidirectional, hence the same tie could have a different

“strength value” for each person in the pair.

4.1.2 The State of a Relationship: Conflict and Negative Influence

Many studies analyze the problem of how to model social influence between people, espe-

cially in social dynamics field, and, in recent years, theories of opinion dynamics assume the

possibility of positive and negative interpersonal influence [75]:

• Positive influence occurs when the initial opinion of an individual shifts towards the

opinion of another person, when the individual is exposed to it;

• When Negative influence happens, the individual shifts his opinion increasing the

difference with the opinion of another person [75].

In the case of Negative influence, there is the possibility that opinion differences between

groups intensify, leading groups to positions that are the two extremes of an opinion spectrum,

in the phenomenon known as Bi-polarization [53]. Bi-polarization can be amplified if

the model supports homophily, the process with whom people like similar people, and

heterophobia, that, on the contrary, is the disliking of dissimilar others [75].
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A factor that can influence the opinion shift between two individuals is the type of

relationship between them and the state of this relationship. In [58], different types of

relationship and the relative influence between members are analyzed, divided into four

types: communal sharing, authority ranking, equality matching, and market pricing. Each

type corresponds to different parameters in a model of variation of the individual satisfaction

on the basis of other group members’ satisfaction.

The literature on Social Influence evidences that in presence of a peaceful and friendly

relationship, Positive Influence, usually, occurs. The authors of [75] also analyze the opinion

shift in relation to the initial differences in the evaluation of specific items, showing that

the largest positive shift occurs when the initial differences between individuals’ ratings

are higher. Unfortunately, no studies show a robust explanation on how Negative Influence

works.

Hence, an objective of the study conducted in this work focuses in particular on the

analysis of the impact of the presence of conflicts in the variation of individual’s utility. It

is clear that the problem is close to the Opinion Shifting problem, but not exactly the same.

Hence, it is reasonable to expect that, in case of peaceful relationships, a positive variation

of utility should occur, as in the Positive Opinion Shifting phenomenon. On the contrary, a

Negative variation may take place when there is a conflict between people. Hence, a second

objective of this study is trying to underline such considerations.

4.1.3 The Impact of Personality

Since the purpose of this part of the work is to model the changing in individual’s utilities

with respect to determinate activities when they must perform such activities with a group

of people, considering the mutual influences between group’s members, an analysis of

the relation between individual’s personality and their propensity to positive and negative

variations has been performed. To do this, it is necessary to consider a standard framework to

model the personality traits of individuals and then to relate them to the considered pro-social

and antisocial behaviours. In the Psychological field, the Five Factor Model (FFM), described

in section 2.5.1, has been mostly recognized as the basic model on the number and nature of

traits that are necessary to describe the basic psychological differences between individuals

[45]. Furthermore, many Psychological studies analyze the relation between the five factors

and social behaviours.
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Prosocial and Antisocial Behaviour

Prosocial behaviour refers to action intended to improve the situation of the help-recipient,

not motivated professional obligations and not based on an organization, and a particular case

is characterized by altruism, where the ultimate goal of the helper is to benefit another person

[45]. In general, prosocial behaviour could be egoistically motivated, when the motivation is

a benefit for oneself, or altruistically motivated, when the goal is to benefit another person

[45]. There are many psychological studies that try to relate personality factors with prosocial

behaviours. In most cases, the magnitude of such relations is relatively small [19]. This

because the relations between traits and behaviour can be mediated by motives, and traits

can interact with each other and even with motives to jointly influence behaviours [19, 18].

However, an empirical evidence of a relation between Agreeableness and prosocial behavior

has been shown in [44], while [19] evidences a correlation between prosocial behaviour and

Agreeableness and Extraversion factors, and this is also showed in [63]. Finally, in [44],

authors conceptualize prosocial behavior as a form of Agreeableness.

Antisocial behaviours include crime, substance abuse and truancy, and has been wider

analyzed from researchers in psychological fields. Here, generally, the aim is to derive

models to predict these behaviours. Low Conscientiousness has been used to predict conflict

between adolescents, substance abuse and criminal acts [23]. Antisocial behaviour has also

been associated with low Agreeableness [59]. It has been also showed that, contrary to

what one could imagine, prosocial and antisocial behaviours are uncorrelated tendencies

stemming from different sources, and not two opposite extremes of the same dimension

[23, 48]. This is supported also by the absence of a negative correlation between them, that

could be observable otherwise, while antisocial behaviours seem to be correlated mostly to

low Conscientiousness and low Neuroticism [23].

The main correlations evidenced in psychological studies are reported in figure 4.2 [23].

However, these studies presented quite low correlations, and more complex models are

needed. For the purpose of the present work, we have a phenomenon, the variation in

individual utility, that can be related to both prosocial and antisocial behaviours. Hence, a

third objective of the present work is to explore the possible correlations between personality

traits and utility variations, to investigate the factors related to the Emotional Contagion

phenomenon.

4.1.4 Extended Social Graph

As final part of the section on the Adaptation step, an extended social graph is defined, to

extend the formal definition introduced in section 2.2. Such graph contains the information
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– P(ai) = Pi = (conc,extr,agre,open,neur) as the Big Five Personality Profile of

the user ai, where conc ∈ [0,1], extr ∈ [0,1], agre ∈ [0,1], open ∈ [0,1] and

neur ∈ [0,1];

– CM(ai)=CMi ∈{Accommodating,Avoiding,Collaborating,Compromise,Competitive}

as the Conflict Management Style of the user ai;

• Finally, we define:

– UG(ai,ω j) = UG
i, j as the utility of the user ai for the item ω j adapted to the

specific group G.

– ∀ai ∈ A, UPG
i = {UG

i, j∥ω j ∈ Ω} is the user adapted utility profile.

4.2 The Merging phase

The second part of this work consist of the definition and evaluation of advanced aggrega-

tion techniques to apply on the adapted utilities. In particular, two approaches have been

designed. The first one is based on weighted social choice functions. Starting from a measure

of dominance between group members, used as weight, two aggregation strategies have

been realized, one based on the weighted average defined in [38] and the other defined as

variant of the basic fairness strategy. Regarding the second approach, we decide to define a

negotiation based approach, where each agent replicate the conflict management style of the

corresponding user. The strategies are illustrated in the next sections.

4.2.1 Two Dominance Weighted Social Choice Functions

In section 3.1.1 some of the most interesting works applying weighted social choice functions

has been illustrated. The first two aggregation strategies defined in the present work follow

this direction. Here, we suppose to have a complete adapted utility profile UPG
i = {UG

i, j|ω j ∈

Ω} for each user ai ∈ G. The objective is to define an aggregation strategy to derive the

complete group profile GP = {U(G,ω j)|ω j ∈ Ω}. Regarding the choice of the aggregation

strategies, according to [56], users involved in real interaction seem to care about fairness

and to avoid misery. For these reasons we decided to use a fairness strategy and one based

on average satisfaction, weighting such functions with a measure of the influence of each

user on the other group’s members, and, consequently, on the group’s final decision. We

start discussing how information about the social interactions on Online Social Networks

(OSNs) can be used to derive the influences between group’s members. Then, we describe a
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Dominance ranking on social networks, defined in [22]. These Dominance values are, hence,

used as weights into the two social choice strategies.

Estimate Social Interactions Weights With Online Social Networks

Online Social Networks (OSNs) are widely recognized as effective ways to interact, com-

municate and collaborate with friends, but also to drive people’s opinions. Moreover, OSNs

interaction analysis can provide a viable way to obtain, without intruding the users with

questionnaires, information about the social relationships and pattern of activities among

the group’s members. Some recent work has seen the emergence of a class of socially

enhanced applications that leverage relationships from OSNs, especially to improve security

and performance of network applications and online advertising [79]. While the attempt

to infer meaningful relationships from social networks connectivity is often criticized from

sociology researchers, the analysis of the interaction graphs in controlled situations (e.g.,

small and close groups) may provide useful insight. Furthermore, social networks analysis

may lead to a misinterpretation of popularity as leadership that sometimes are highly cor-

related, but sometimes they are not. It was shown that cohesiveness of a group determines

the correlation between these two concepts [76]. Moreover, the cohesiveness of a group is a

fundamental issue in facilitating the decision process. In a cohesive group, users self-needs

can be sacrificed for the well-being of the whole group. OSNs keep tracks of the type of

interaction among the users that can be used for modelling intra-user relationships [80] and

considering some of the communication activities between couple of users on a OSN, as, for

example, Facebook.com, is it possible evaluate the weight of the relationship between pairs

of users, deriving a measure of the influence that an user can have on the other in the pair.

A Dominance Ranking

In order to define our social choice functions, we analyze the possibility to evaluate, in a first

approximation, the “role” of a specific relationship from the analysis of interactions on a

social network, without the help of semantic features. In [1], the Authors showed that the

analysis of only the user behaviors is practically equivalent, in terms of ability to determine

the different types of relationships between pairs of individuals interacting in social media,

to methods based on text analysis. Information exchanges between actors are dependent on

social attachments that produce expectations of trust and reciprocity.

In particular, in this work, we are interested in dominance and relationship-focused

leadership or influence, from the analysis of group members’ interactions in a social network.

Many social networks analysis approaches assume binary, symmetric relationships of equal
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value between all directly connected users with the main focus in analyzing big networks,

while, in our approach, we deal with small groups of friends that are, most of the time,

totally connected one to the others. Moreover, differently from binary networks, in reality, an

individual has relationships of varying quality [9, 41].

There is a number of attempts to generalize the three node centrality measures to weighted

networks [60, 62]. Here, to compute the users’ ranking, we decided to use a simple “non-

semantic” approach defined in the work of Caso et al. [22]. For each user ai ∈ G we evaluate

his/her dominance value, as the value D(ai) ∈ [0,1]. Dominance values are computed by

analyzing the popularity of each user within the group, and evaluating the number of directed

interactions of each user towards the other group’s members. Such popularity values are

obtained implementing an extension of the well-known PageRank algorithm [15] starting

from the users’ interactions on the social network facebook.com.

Given a group G ⊂ A of users, and the corresponding graph SNG(A,E
G) (that is the

subgraph of SN induced from G), we define:

• ∀(ai,ak) ∈ EG, w(ai,ak) = wi,k is the weight of the communications from the agent ai

to the agent ak;

• ∀ai ∈ G, w(ai) = wi is the weight of all the communications from the agent ai to all

the other agents.

Hence, the ranking function is defined as follows:

D(ax) =
1−d

|G|
+d ∑

ai∈G

wi,x

wi
D(ai) (4.2)

where, |G| is the total number of friends in the group and d (with 0 ≤ d ≤ 1) is a

dampening factor set to 0.85 (this value is often considered the default value for PageRank

calculations [49]). In the second part of Equation 4.2, the user ax inherits a portion of

popularity from the other ai group’s members. In detail, this proportion is calculated by

considering both the popularity of the user ai and the weight of the communication activity

of the user ai towards the user ax (wi,x), normalized with respect to the total communication

activity of the user ai with all the members of the group (wi). The rationale of this choice is

that the frequency of directed communication (or interaction) from the user ai towards the

user ax is an index of influence that the user ax have on the user ai. Hence, wi,x evaluates the

edges from the user ai to the user ax, which represent the activities with ai as source and ax

as receiver.
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ωx 1 2 3 4 5 6 7 8

U(a1,ωx) 1 5 3 1 2 5 4 3

U(a2,ωx) 3 4 1 2 5 3 2 4

U(a3,ωx) 1 3 2 5 1 4 3 2

U f air(G,ωx) 1 7 3 2 5 8 4 6

Table 4.1 An example of application of the

weighted fairness strategy. Users are ordered

from 1 to 3 and K = 3. The numbers in bold

represent the ratings of the user’s K preferred

items, while the rating values corresponding

to the item that causes the least misery are

underlined.

Weighted Fairness Strategy

The first proposed approach is based on the Fairness Strategy illustrated in section 2.2.1. the

idea behind the fairness strategy is trying to accommodate everyone in the group, since a

user can agree to perform activities that he/she does not like so much as long as he/she will

be able to do something he/she likes with his/her friends. One of the main issues with the use

of this strategy is that, by changing the users’ ordering, the selection process will produce

a different result in the outcome. Hence, we propose to use the D(ai) values to provide a

ranking and use such ranking to sort the users.

Average Satisfaction Strategy

As a second strategy, we developed an average satisfaction strategy inspired by [38]. We

defined a strategy that takes into account the dominance as a weight for the utility provided

by the user (note that the sum of the dominance values in a group is equal to one). Moreover,

a second factor which can be considered in the evaluation is a measure of dissimilarity among

the users individual utilities. The proposed strategy to evaluate the group utility for the item

ωx is:

Uavg(G,ωx) = α ·
1

g
∑

ai∈G

[D(ai) ·U(ai,ωx)]+β · [1−σ2
U(ai,ωx)

] (4.3)

where, U(ai,ωx) is the utility for the item ωx, made by the user ai, D(ai) is evaluated

according to [22], and σ2
U(ai,ωx)

is the variance of U(ai,ωx) that accounts for the dissimilarity

among the ratings of all the ai ∈ G for the item ωx. α and β are weights. Once that all the

groups’ utilities of each item are computed, they are normalized, and the items with the

higher value are given as result of the recommendation process. An example of a possible

application of this strategy is provided in Table 4.2.
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ωx 1 2 3 4 5 6 7 8

U(a1,ωx) 1 5 3 1 2 5 4 3

U(a2,ωx) 3 4 1 2 5 3 2 4

U(a3,ωx) 1 3 2 5 1 4 3 2

Uavg(G,ωx) 0.51 1.21 0.61 0.16 0.45 1.14 0.88 0.94

Table 4.2 An

example of the

group choice se-

lection using an

average satisfac-

tion evaluation.

The considered

dominance values

are D(a1) = 0.44,

D(a2) = 0.41 and

D(a3) = 0.15.

4.2.2 Negotiation Approach based on Thomas Killman Conflict Man-

agement Styles

As second strategy a consensus approach based on a negotiation mechanism is proposed.

Hence, a Multi-Agent System (MAS) is defined, composed of a set of agents, called User

Agents (UAs), each one acting on behalf of a group member, and of a special agent, called

Mediator Agent (MA), acting as a mediator that interacts with the others to build a recom-

mendation for the group. A key aspect of this work is that the UAs represent users with

different behaviors in conflict resolution. Even in this case, it is assumed that there is a

group G of g users and a set Ω of m items. In this case, we consider the possibility to

have a complete user profile for each user or, alternatively, to only have a restricted set of

utilities, but the possibility to estimate the utilities for each user in each moment if requested.

Finally, we suppose that the agents chose a subset of K items, hence, there is the possibility

to find a compromise among the users’ preferences, i.e. a solution that maximizes the group

satisfaction also guaranteeing a minimum utility value for each member of the group.

Interaction Protocol

The proposed negotiation process is based on an alternation of a Merging Ranks step, made by

the MA, to aggregate preferences and compute a subset of POI to propose to the group, and a

Negotiation step, where each UA may accept the received proposal or reject the suggested

solution, and reply with an alternative proposal. The process is showed in figure 4.3- In

detail, such alternating protocol is composed of the following steps:

1. the MA generates a suggested solution for the group, denoted as P(t), where t is the

negotiation round, hence, initially t = 0;
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The Mediator Agent Strategy

The MA is responsible for building and sending proposals to the group members. Such

proposal is a set of items P(t)⊂ Ω, where |P(t)|= K and t indicates the negotiation round.

If this solution is accepted by all the UAs, it becomes the group solution. In order to build a

proposal, the MA refers to a set of item it is aware of, that is defined Mediator Domain. To

provide a larger flexibility, we consider the case in which the MA do not have a complete

knowledge of the user agent preference profiles. This can happen when the individual RS,

used to estimate the individual utilities, is not used on all the items in the set Ω, for example,

for computational issues.

More in detail, for each User Agent UAi we define a set Ωi as the set of items ω j for

which we have an estimation of the individual utilities U(ai,ω j). Hence, if Ωi = Ω we have

a Complete Knowledge. Otherwise, we have a situation of Partial Knowledge. In case of

partial knowledge, the UA are requested to initially provide the evaluation of utility for b

items that are the b best items for the corresponding agent. The number b is set as 20/g,

where g = |G| is the number of users in the group G.

The MA asks to each UAi his set Ωi and the utilities associated to each item. Then, the

MA construct the set MDG =
⋃

ai∈G Ωi, that is the Mediator Domain. After, the MA asked to

each UAi the utilities for each item in MDG for which it has not the estimation of the utility.

At this point the MA can construct a fist solution proposal. It firstly calculates a group

utility UGω j for each item ω j ∈ MDG, as follows:

UG(ω j) = ∑
ai∈G

U(ai,ω j) · p j

g
(4.4)

where g = |G|. Such formula represents a weighted mean of the individual utilities. Here,

the weight p j ∈ [0,1] is a measure of the popularity of the item ω j, hence, p j = 1 if at the

start of the process the MA have an estimation of the utility U(ai,ω j) for all the ai ∈ G.

The first proposal P(0) hence is composed by selecting the K items with the highest

group rank, so it is the solution that maximizes the Social Welfare (i.e., the weighted sum of

the individual utilities). Once the first proposal is computed, the MA sends it to all UAi that

privately evaluate it according to their own utility function.

In case the proposal is rejected, the mediator receives a number of counteroffers, each

one composed of a possible new set of K items from each user agent UAi that rejected the

proposal. If a counteroffer contains items that are not in the mediator domain MDG, the MA

adds such items to its domain and asks the user agents to provide an evaluation of the utility

for them.
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Then, the MA generates a new proposal on the new domain MDG, by applying the same

strategy used to build the first proposal. If the new proposal is different from the previous

one, it is sent to the UA; otherwise, the mediator modifies it, according to the received

counteroffers, by replacing the item that in its previous solution was discharged by the

highest number of UA (when the counteroffers were generated) with the one that had the

highest number of new occurrences in the generated counteroffers.

The User Agent Strategy

Each user agent UAi evaluates the proposal sent by the mediator according to its behavior in

conflict resolution. This behavior is assigned to the agent once the corresponding user filled

the TKI questionnaire [47].

For each user agent UAi, an individual Optimal Value, that is the value corresponding to

the solution with the highest utility for it, and a Reservation Value, representing the minimum

utility value up to which the user agent is willing to concede during the negotiation, are set.

Given Ωi the set if items for which we have an estimation of the utility of the user ai, and ΩK
i

the set of K items with the highest utility for the user ai, the optimal value at time t = 0 is

given by:

OPTi(0) = ∑
ω j∈ΩK

i

˜U(ai,ω j)

K
(4.5)

where ˜U(ai,ω j) is the utility for user ai of the item ω j normalized in [0,1]. The reservation

value is set to the half of OPTi(0) for all the user agents UAi.

When the user agent receives an offer P(t) from the mediator, at negotiation round t, it

evaluates the utility of the received offer as follows:

U(ai,P(t)) = ∑
ω j∈P(t)

˜U(ai,ω j)

K
(4.6)

This value is compared with the agent utility value of the previous negotiation round

OPTi(t −1). Now, there can be the following situations:

1. if U(ai,P(t)) ≥ OPTi(t − 1), then the agent accepts the offer and sets OPTi(t) =

U(ai,P(t));

2. if U(ai,P(t))≥ OPTi(t −1)−∆i(t), then the agent accepts the offer by conceding in

its utility of a value smaller or equal of ∆i(t), and it sets OPTi(t −1) =U(ai,P(t));
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3. in all the other cases, the agent rejects the offer, and it makes a counteroffer either by

randomly conceding in utility (OPTi(t) = OPTi(t − 1)−∆i(t)) or by not conceding

(OPTi(t) = OPTi(t −1)).

The utility concession value ∆i(t), at time t, depends on the user profile in the conflict

resolution style. In particular, in [52] the authors associated with each conflict resolution

style of the TKI model different concession strategies depending on the negotiation round.

Inspired by this work, we defined the agent concession strategies as follows:

• Accommodating, it is not assertive and cooperative, and it accommodates the objectives

of the other group members, so helping them in finding a shared solution by conceding

a constant utility value during all negotiation rounds, so being the most collaborative

profile;

• Competing, it is assertive, and it prioritizes agent own objectives, by conceding low

utility values at the beginning of the negotiation, while increasing the concession value

at the end of negotiation to try to reach an agreement before a negotiation failure

occurs;

• Compromising, it is a compromise between assertive and cooperative, and it tries to

find a solution that accommodates the objectives of all involved parties, by conceding

high utility values at the beginning and at the end of the negotiation, while conceding a

constant utility value in the intermediate rounds;

• Collaborative, it is both assertive and cooperative, by trying to make all agents working

together to find a common solution. In [52] it was showed that this behavioral style

does not have a strong impact on the TKI model, hence, for this reason, it was decided

to adopt constant concessions throughout the negotiation phase;

• Avoiding, it is a passive style of conflict resolution, meaning that the agent would not

pursue a negotiation in the first place. So, in this work, we consider a smaller constant

concession value.

For each profile, three concession steps are defined by the model proposed in [52]: initial,

intermediate, and final concession. The corresponding concession values depend on the

considered application domain. Here, the concession values for the different profiles were

empirically derived from a set of experiments carried out adopting different conflict resolution

strategies.

In case a user agent rejects a proposal, it has to generate a counteroffer whose utility

value is calculated taking into account whether a concession takes place or not. Once fixed a
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utility value, there could be potentially many items combinations that result in having the

same utility value. So, in order to compute a counteroffer, we defined two different heuristic

strategies to reduce the search space, Search in Domain and Reference Point. Moreover,

the mediator agent communicates to the user agents which strategy to use according to the

negotiation state, i.e., the number of rounds, or the number of conflicts in the offers. The

proposed mechanism allows to find a solution that is a compromise between a maximization

of the Social Welfare (as evaluated by the mediator), and the individual user utilities. The

two heuristics are detailed below:

• Search in Domain: With this heuristic, the user agent orders the items of the proposal

P(t) received by the mediator according to its own ranking, and it generates a coun-

teroffer by modifying the proposal to obtain an admissible proposal (i.e., a proposal

with the required utility) by making the less possible number of items substitutions

searching in its private domain (the items for which it has an estimation of utility).

However, in case the mediator domain is greater than a value τ , the mediator suggests

a subset of items where a solution has to be found according to its own knowledge.

The number of items τ can be derived from experiments carried out on the algorithm

performances, and it strongly depends on the application domain.

• Reference Point: This strategy applies when there is only one agent conflicting with a

given proposal that is admissible for the other members of the group. In such a case the

mediator sends a proposal to that agent that represents a reference point for the agent

to build a counteroffer. In fact, the agent tries to meet as much as possible the received

proposal since it already satisfies the group. So the conflicting agent is required to

adapt its objectives to the proposal satisfying the majority of the group.



Chapter 5

A Study of the Factors That Influence the

Emotional Contagion

In this chapter, an analysis of the factors influencing the Emotional Contagion phenomenon in

two-people sized groups is presented. Such analysis is performed through two experimental

study conducted on the Amazon Mechanical Turk platform. In the first study, an analysis

of the impact of the tie strength and the status of the relationship, intended as conflicting

or peacefully relation, is realized. The second study explores the impact of the personality

profile of the users, evaluated through the well-known Five Factor Model, to determine

if traits related to prosocial and antisocial behaviours can be even related to positive and

negative shifting of individual utilities.

5.1 First Experiment: The Role of Tie Strength and Con-

flicts

We conducted a first experiment, to determine if the tie strength and the presence of conflicts

can influence on the direction and on the magnitude of the emotional contagion. The

experiment is focused on two-sized group and is conducted with an online questionnaire,

using the Amazon Mechanical Turk platform. Our objective is to evaluate if the tie strength

have an impact with the Positive influence, that increases when the strength became stronger,

and if the presence of conflict can lead to a Negative influence, mostly in case of weak ties.
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Fig. 5.2 Screenshot of the online questionnaire.

After this explanation, we presented the view shown in Figure 5.2. The view contains

two evaluations for the same eight activities. We do not show any information about the

activities, to avoid the participant’s answers being influenced by this knowledge. The first set

of evaluations is presented with the sentence:

"Imagine that you rated the activities below, on a scale from 1 to 9 (where 9 indicates

the highest level of satisfaction when you are performing an activity, and 1 is the lowest), as

follows:"

After that, a second set of evaluations, for the same activities, is presented. Here, we

asked the participants to think about someone with whom they have a relationship with

determinate characteristics, given by the possible combinations of the type of tie strength

and conflicts explained before. More precisely, the sentences are the following:

• Weak and Like: "Think about someone you have a weak relationship with and with

whom you are in a peaceful relationship, namely, in this moment, you like him/her and

you are on good terms

• Weak and Indifferent: "Think about someone you have a weak relationship with and

with whom you are neither in a conflict nor in a peaceful relationship, therefore you

are indifferent to him/her
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• Weak and Dislike: "Think about someone you have a weak relationship with and with

whom you are in conflict, namely, in this moment, you dislike him/her and you are on

bad terms

• Intermediate and Like: "Think about someone you have an intermediate relationship

with and with whom you are in a peaceful relationship, namely, in this moment, you

like him/her and you are on good terms

• Intermediate and Indifferent: "Think about someone you have an intermediate

relationship with and with whom you are neither in a conflict nor in a peaceful

relationship, therefore you are indifferent to him/her

• Intermediate and Dislike: "Think about someone you have an intermediate relation-

ship with and with whom you are in conflict, namely, in this moment, you dislike

him/her and you are on bad terms

• Strong and Like: "Think about someone you have a strong relationship with and with

whom you are in a peaceful relationship, namely, in this moment, you like him/her and

you are on good terms

• Strong and Indifferent: "Think about someone you have a strong relationship with

and with whom you are neither in a conflict nor in a peaceful relationship, therefore

you are indifferent to him/her

• Strong and Dislike: "Think about someone you have a strong relationship with and

with whom you are in conflict, namely, in this moment, you dislike him/her and you

are on bad terms

To help the participant to view the scenario as accurately as possible and to better identify

herself into the proposed situation, we asked to write the name of the person that they are

thinking about. Obviously, we do not store this information. Then, we ask the participants to

imagine that the second evaluations have been provided by the person they are visualizing.

Finally, we ask the participants to rate their current preferences for the proposed activities,

knowing their old preferences and the preferences of the other person and assuming that they

have to do the activities with the other person. More accurately, the question that we present

is the following:

Now, knowing your old preferences and the preferences of the other person, rate your

current preferences for the activities (assuming that you may need to do one or more with the

other person):
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All the evaluations are requested on a scale between 1 and 9 included. Each participant

was asked to perform the test three times, answering for only 3 different configurations out

of the 9 possible combinations, keeping the tie strength the same but varying the conflict.

This choice is made to guarantee that the test occupies only few minutes, since, as suggested

in [30], questionnaires that take more than a few minutes to complete may produce a loss of

concentration in participants. Hence, the designed questionnaire has been designed to require

only 5 minutes to be completed.

Setting of Initial Evaluations

The two sets of initial evaluations have been designed in order to cover different situations.

Namely, the differences between the participant’s initial ratings and other person’s ratings are

set to present cases of agreement on the evaluation of the activity and cases of disagreement.

Furthermore, the given ratings are set in order to have in half of the cases that the participant’s

rating is greater than the ranting by the other person, and in the other half of the cases, the

opposite. Firstly, we are interested in the analysis of participant’s behaviour for different

initial differences, distinguish between Large and Small initial differences, and even between

Positive and Negative differences. Large difference maps an initial disagreement between the

two people, while a small difference indicates an initial agreement in the evaluations. On

the other hand, a positive difference indicates that participant’s initial rating is lower than

the other person’s one and, on the contrary, negative difference is the case of a participant’s

rating higher than the other person’s one.

Focusing on the large initial difference, since we use a rating scale between 1 and 9, we

can notice that such configurations give more chances to positive shifting, while negative

shifting are very limited because the initial participant’s rating is very near the boundaries of

the scale. We decided to set four configurations with large difference, two positive and two

negative, as showed in figure 5.3.

Regarding small initial differences, we have an initial agreement between people. Here,

we have a very small possibility for positive shifting, since the initial ratings are very similar,

with a difference of one value. Even in this case, we have four configurations, two positive

and two negative 5.4.

5.1.2 Result Analysis

We recruit 60 participants, obtaining 180 answers. Since each answer contains 8 evaluations,

we collected more than 1,400 evaluations. The participants were recruited through Amazon

Mechanical Turk and paid $ 0.50 for the participation in the test. In Table 5.1, we report
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In Figure 5.10, the trends for the case in which there are positive initial differences are

shown. Recall that, in this case, the initial individual’s ratings are lower than those of the

other person. In this case, we can notice a small negative shifting in the conflict relationship.

Data indicates a general trend in which people are more likely to change their opinion to

a lower value: in the case of a conflicting relationship, if the individual’s rating is higher,

then the individual, on average, decides to have a small shift towards the other person’s

opinion, while, if the individual’s rating is lower, the individual prefers to shift in the opposite

direction.

Correlation Analysis

The previous results suggest an impact of the tie strength and the conflict on the opinion shift

phenomenon. Here, we analyze the correlations between the new evaluations, considered

dependent variable, and the old and the other evaluations, considered independent factors,

for the different combinations of the tie strength and conflicts parameters.

First, we focus on the correlation between the shift Γ(ai,ω j), here computed as the

difference between the new evaluation Unew(ai,ω j) of the user ai with respect to the item

ω j and the old evaluation, that is the starting utility U(ai,ω j), and the initial difference

∆(ai,ak,ω j), computed as the difference between the old evaluation U(ai,ω j) and the other

person’s evaluation U(ak,ω j). More formally, we define:

Γ(ai,ω j) =Unew(ai,ω j)−U(ai,ω j) (5.1)

∆(ai,ak,ω j) =U(ak,ω j)−U(ai,ω j) (5.2)

Here, we consider as Unew(ai,ω j) the new evaluation given by the participant, U(ai,ω j)

is the initial evaluation given by the setting of the experiment, and U(ak,ω j) is the other

person’s evaluation. The Pearson correlation between Γ and ∆ has a value of 0.439, with a

p− value < 0.001, that indicates a statistically significant general positive correlation. We

even analyze the correlations splitting the data in relation to the different configurations of tie

strength and conflicts in the relationship. The results are summarized in table 5.3 and even

reported in figure 5.11.

We can see that the correlations are statistically significant for most cases, except for

the case of conflicts (Dislike in the table). The correlation increases when the tie strength

became higher. The same thing happen when the status of the relationship became more

peaceful. Hence, we could assume that the initial difference can be used as a predictor for

the shift in such cases.
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As expected, in the general case the old evaluation factor has the biggest impact on the

new evaluation, but in the previous section we showed that the phenomenon has different

patterns in relation to the state of the relationship, so we can deepen the analysis performing

different regressions considering the different configurations of tie strength and conflict. The

results of this analysis are reported in table 5.5.

Tie Strength Conflict α β1 β2 R2 Sig.

Weak Dislike 1.630 ** 0.719 ** -0.088 ** 0.535 0.000 **

Weak Indif 1.183 ** 0.737 ** 0.031 0.590 0.000 **

Weak Like 0.785 0.686 ** 0.124 ** 0.546 0.000 **

Interm Dislike 1.535 ** 0.705 ** -0.060 0.578 0.000 **

Interm Indif 0.438 0.733 ** 0.177 ** 0.595 0.000 **

Interm Like 0.481 0.555 ** 0.316 ** 0.443 0.000 **

Strong Dislike 1.750 ** 0.628 ** 0.003 0.365 0.000 **

Strong Indif 1.530 ** 0.635 ** 0.072 0.466 0.000 **

Strong Like 0.962 * 0.460 ** 0.370 ** 0.468 0.000 **

Table 5.5 Results of the Multiple Regression Analysis for the different configurations of Tie

Stregth and Conflict. The regression coefficients are intended for a regression line of the

form specified in equation 5.3.

All the models have a statistical significance (with a p−value < 0.0005), and, in average,

a good explanation of the dependent variable, as indicated in the R2 column. We have better

values for the rows that have Weak and Intermediate tie strength, that could have a more

linear pattern. As we can see from the coefficient, the old evaluation factor has a great impact

in such cases, while in the rows with a peaceful status we have an increasing impact of the

other evaluation factor, and even in the case of Intermediate tie strength and Indifferent status

we have a bigger impact of the other evaluation factor.

5.1.3 Discussion

The analysis provided on the opinion variations shows an impact of tie strength on positive

influence, that increases according to the strength of the relationship if this is in a friendly

status, and, to a lesser degree, also in a conflicting status. Also, there is evidence that

negative shifting can occur in the case of a conflicting relationship. There is a clear difference

in the opinion shift if we analyze results in relation to the initial difference between an

individual’s ratings and others’ ratings; in case of initial disagreement, opinion tends to

shift positively, with more marked variations in case of strong and peaceful relationship,

and lower for conflicting and weak ties. On the contrary, if we start with an agreement,

the variation is close to zero in a strong and friendly relationship, while a negative shift is
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shown in conflicting ties. The analysis of the variations in relation to the direction of the

initial difference between ratings shows that participants are more likely to shift their ratings

towards the other person’s ratings if they start from a higher evaluation, and, on the contrary,

they move ratings in the opposite direction when they start from a lower rating and there is a

conflict.

Finally, the correlation analysis confirm that the old evaluations and the other evaluations

are strictly correlated with the new evaluation, hence is it possible to apply a model like

that defined in equation 4.1. Furthermore, the correlations varying in relation to the strength

and the status of the relationship. This suggests that we can use different parameters for the

model in relation to the state of the relationship.

5.2 Second Experiment: The Role of Personality

We conduct a second experiment to explore the impact of personality traits in the emotional

contagion. As in the previous test, we focus on two-sized groups. Our hypothesis is

that positive influence is related to personality traits generally associated with pro-social

behaviour, and, on the contrary, personality traits that may cause antisocial behaviours are

related to negative influence. Even this experiment is conducted using an online questionnaire

on the Amazon Mechanical Turk platform.

5.2.1 Description of the Experiment

The methodology used is similar to the one used in the previous test, hence, we refer to the

section 5.1.1 for the details. Here, we specify the differences. The first one is that we perform

a personality test before performing the questionnaire. The second one is about the initial

evaluations used.

Personality Slider Test

To determine the Big Five personality traits of the participant in the experiment, the Per-

sonality Slider method [72] have been chosen. In this way, we can obtain the five factors

in a really small amount of time. In fact, the personality slider method only requires five

evaluations, one for each personality trait. In each one two stories are showed to participants,

describing two people that are low or high for that trait. An example is showed in figure 5.13.

Participants are asked to set the slider between the two stories, getting it closer to the person

they are most like. For each personality trait, the story related are specified above:

• Agreeableness
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Fig. 5.13 Screenshot of one of the five questions of the personality test.

– Low: "Mary has a sharp tongue and cuts others to pieces. She suspects hidden

motives in people. She holds grudges and gets back at others. She insults and

contradicts people, believing she is better than them. She makes demands on

others, and is out for her own personal gain. Mary tends to be calm and quite

likes exploring new ideas."

– High: "Charlie has a good word for everyone, believing that they have good in-

tentions. He respects others and accepts people as they are. He makes people feel

at ease. He is concerned about others, and trusts what they say. He sympathizes

with others’ feelings, and treats everyone equally. He is easy to satisfy. Charlie

tends to be quite anxious."

• Conscientiousness

– Low: "Oliver procrastinates and wastes his time. He finds it difficult to get down

to work. He does just enough work to get by and often doesn’t see things through,

leaving them unfinished. He shirks his duties and messes things up. He doesn’t

put his mind on the task at hand and needs a push to get started. Oliver tends to

enjoy talking with people."

– High: "Jennifer is always prepared. She gets tasks done right away, paying

attention to detail. She makes plans and sticks to them and carries them out. She

completes tasks successfully, doing things according to a plan. She is exacting in
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his work; she finishes what she starts. Jennifer is quite a nice person, tends to

enjoy talking with people, and quite likes exploring new ideas."

• Neuroticism

– Low: "Susan often feels sad, and dislikes the way she is. She is often down in

the dumps and suffers from frequent mood swings. She is often filled with doubts

about things and is easily threatened. She gets stressed out easily, fearing the

worst. She panics easily and worries about things. Susan is quite a nice person

who tends to enjoy talking to people and tends to do her work."

– High: "Helen seldom feels sad and is comfortable with herself. She rarely gets

irritated, is not easily bothered by things and she is relaxed most of the time. She

is not easily frustrated and seldom gets angry with herself. She remains calm

under pressure and rarely loses her composure."

• Extraversion

– Low: "David has little to say to others, preferring to stay in the background. He

would describe his life experiences as somewhat dull. He doesn’t like drawing

attention to himself, and doesn’t talk a lot. He avoids contact with others and is

hard to get to know. He retreats from others, finding it difficult to approach them.

He keeps people at a distance. David is quite a nice person."

– High: "Alexander feels comfortable around people and makes friends easily. He

is skilled in handling social situations, and is the life and soul of the party. He

knows how to start conversations and easily captivates his audience. He warms

up quickly to others, and likes talking to a lot of different people at parties. He

doesn’t mind being the centre of attention and cheers people up."

• Openess to Experience

– Low: "Steven is not interested in abstract ideas, as he has difficulty understanding

them. He does not like art, and dislikes going to art galleries. He avoids

philosophical discussions. He tends to vote for conservative political candidates.

He does not like poetry and rarely looks for a deeper meaning in things. He

believes that too much tax money goes to supporting artists. He is not interested

in theoretical discussions. Steven is quite a nice person, and tends to enjoy talking

with people."
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Tie Strength Conflict α β1 β2 R2 Sig.

Weak Dislike 1.294 ** 0.692 ** 0.024 0.469 0.000 **

Weak Indif 0.340 0.741 ** 0.170 ** 0.704 0.000 **

Weak Like 0.671 ** 0.671 ** 0.199 ** 0.655 0.000 **

Interm Dislike 1.555 ** 0.644 ** 0.006 0.413 0.000 **

Interm Indif 1.058 ** 0.613 ** 0.157 ** 0.555 0.000 **

Interm Like 1.097 ** 0.557 ** 0.212 ** 0.522 0.000 **

Strong Dislike 1.156 ** 0.733 ** 0.008 0.520 0.000 **

Strong Indif 0.667 ** 0.655 ** 0.228 0.669 0.000 **

Strong Like 0.578 ** 0.546 ** 0.349 ** 0.675 0.000 **

Table 5.10 Results of the Multiple Regression Analysis for the different configurations of

Tie Stregth and Conflict. The regression coefficients are intended for a regression line of the

form specified in equation 5.3.

the previous experiment. Both the considered variables added statistically significantly to the

prediction, with p < 0.0001, and the general form of the equation is:

Unew(ai,ω j) = 0.935+0.650∗U(ai,ω j)+0.150∗U(ak,ω j) (5.5)

As we can see, the parameters are very close to that of the previous experiment, confirming

that the old evaluation factor has the biggest impact on the new evaluation in the general case.

However, we perform a deeper analysis for the different configurations of tie strength and

status of the relationship. Results are reported in table 5.10.

As in the previous test, all the models have a statistical significance (with a p− value <

0.0001). In average, we have a good explanation of the dependent variable, as by the R2

values. Analyzing the coefficient, we can notice that the impact of the old evaluation factor

is higher in almost all the cases, while in the rows with an intermediate or peaceful status we

have an increasing impact of the other evaluation factor.

5.2.3 Exploring Personality Traits Influence

Finally, we perform an analysis to explore the relations between personality traits and

Emotional Contagion. The Big Five Personality traits have been divided into two categories

(Low and High). Hence, we want to analyze if there are any difference in the behaviour of

the subject in relation to low and high level of the traits. We start reporting the number of

participants for each level of each trait of personality 5.11.

As we can see, while some of the traits is well balanced, there are traits, like the

Agreeableness and the Conscentiousness, with a great imbalance towards the high level.
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Trait Low High

Neuroticism 46 74

Extraversion 66 54

Openness to Experience 26 94

Agreeableness 18 102

Conscentiousness 19 101

Table 5.11 Number of participants for each level of each trait of personality.

Here, we have to report some consideration. This scenario should indicate that the great

part of our participant are highly conscentious and with a great agreeableness. Hence, we

can speculate that the population of workers on Amazon Mechanical Turk (AMT) mainly

is composed of such subjects. Another possible explanation is that by accident we selected

only this kind of personalities. A third hypothesis, that is the most likely in our view, is that,

even if the participation in this test on the AMT platform is totally anonymous, people do not

want to appear as egoistic or, in general, as bad people. This aspect must be highlighted and

more deeply analyzed because it could have an implication on the studies conducted through

the platform. However, we start analyzing the average values of the shifting for the different

levels of each trait. Such difference are showed in table 5.12.

Low High Sig.

Neuroticism 0.170 ± 1.407 0.140 ± 1.771 0.601

Extraversion 0.080 ± 1.801 0.170 ± 1.539 0.241

Openness to Experience 0.310 ± 1.490 0.130 ± 1.597 0.025 *

Agreeableness 0.190 ± 1.627 0.140 ± 1.553 0.470

Conscentiousness 0.040 ± 1.767 0.190 ± 1.525 0.030 *

Table 5.12 Average values of the shift in relation to the different level of each of the Big Five

personality traits.

As we can see, only few data are statistically significant, according to the “Sig.” column

reporting the p-values. However, there is not any level characterized by a negative average

shifting. When the Openess to Experience increases then the shift tends to decrease. On the

contrary, when the Conscentiousness decreases, we have a decreasing shifting that become

very close to zero. These relations are in line with the results in the Psychological field.

Furthermore, the average values seem to indicate a positive relation between Extraversion

and shifting.

We also perform a Pearson Correlation analysis between each trait and the shift. As we

can see in table 5.13, such correlations are quite near zero. In our opinion this result could

depend by the impact on the shift of the other factors, that are not included in this analysis.
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Pearson Sig.

Neuroticism -0.066 0.000 **

Extraversion -0.023 0.221

Openness to Experience -0.039 0.034 *

Agreeableness 0.010 0.603

Conscentiousness -0.068 0.000 **

Table 5.13 My caption

Source Sum Sq. d.f. Mean Sq. F p-value

Cons 34.630 1 104.515 14.232 0.000 **

Cons * Extr 13.239 1 10.165 5.441 0.020 *

Cons * Agre 10.534 1 10.534 4.329 0.038 **

Cons * Neur 38.281 1 38.281 15.733 0.000 **

Neur * Open 20.379 1 20.379 8.375 0.004 **

Cons * Extr * Agre 28.240 1 28.240 11.600 0.001 **

Extr * Agre * Neur 40.865 1 40.865 16.794 0.000 **

Cons * Agre * Neur 20.505 1 20.505 8.427 0.004 **

Table 5.14 Table of ANOVA analysis.

We have seen in the previous sections that the tie strength and the conflict have a big impact

on the phenomenon. Furthermore, we should consider the possibility that the phenomenon

is not directly related to each trait, but it is related to an interaction between two or more

traits. To analyze such aspect an ANOVA analysis has been performed, and the significant

interactions are reported in table 5.14.

The analysis presents a significant effect of the Conscentiousness trait over the shift, but

even many significant interactions. The Conscentiousness interacts with the Extraversion, the

Agreeableness and Neuroticism, that has even an interaction with the Openness. Furthermore,

we have interactions between 3 traits, in particular, the first one is between Conscentiousness,

Extraversion and Agreeableness, the second one between Extraversion, Agreeableness and

Neuroticism and the last one between Conscentiousness, Agreeableness and Neuroticism.

Hence these interactions should be considered in the design of the general model in future

experiments.

Finally, we performed a multiple regression analysis dividing the dataset into two sets for

each trait, according to the level Low or High, with respect to the regression line defined in

5.3. Hence, we want to analyze if there are any difference between the two levels of each

trait in the impact, as predictors of the new evaluation, of the old evaluation and even of the

other evaluation. The table 5.15 report such results.
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Factor Level α β1 β2 R2 Sig.

Extraversion Low 0.761 ** 0.701 ** 0.137 ** 0.635 0.000 **

High 1.148 ** 0.587 ** 0.166 ** 0.465 0.000 **

Agreeableness Low 1.492 ** 0.535 ** 0.145 ** 0.646 0.000 **

High 0.837 ** 0.670 ** 0.151 ** 0.761 0.000 **

Conscentiousness Low 0.663 ** 0.651 ** 0.208 ** 0.616 0.000 **

High 0.986 ** 0.650 ** 0.139 ** 0.543 0.000 **

Neuroticism Low 1.074 ** 0.616 ** 0.158 ** 0.524 0.000 **

High 0.849 ** 0.671 ** 0.145 ** 0.572 0.000 **

Openness to Experience Low 1.363 ** 0.597 ** 0.114 ** 0.455 0.000 **

High 0.817 ** 0.664 ** 0.160 ** 0.583 0.000 **

Table 5.15 Results of the Multiple Regression Analysis grouped for Low and High levels of

the Big 5 personality traits. The regression coefficients are intended for a regression line of

the form specified in equation 5.3.

We can see that all the models have a statistical significance (with a p− value < 0.0001)

with a good explanation of the dependent variable, as by the R2 values. Regarding the

Extraversion factor, we can see that when the trait is High we have an increase of the β2

parameter, while the β1 decrease. Hence, the importance of the other evaluation become more

strong when the Extraversion increases. A different situation is showed by the Agreeableness,

where we have a decreasing of the β2 factor, even if the β1 even decrease. Here, we

suppose that the analysis is too influenced by the limited number of individuals with Low

Agreeableness, that determines a difficulty in rightly represent the trait. The same thing

happens for the Conscentiousness factor, where the coefficients do not substantially change.

Regarding the Neuroticism trait, we have a small increasing in the β1, while the β2 coefficient

decrease.

5.2.4 Discussion

The analysis of this second experiment confirm, in general, the results of the first test, showing

an impact of tie strength on positive influence, and an impact of conflict on negative influence.

Results even confirm a difference in the opinion shift analyzing the results in relation to the

initial difference between an individual’s ratings and others’ ratings, showing a positive shift

in case of initial disagreement, and, on the contrary, negative shift for conflicting ties if we

start with an agreement. Besides, the analysis of the variations in relation to the direction

of the initial difference between ratings do not show great differences, hence the higher

inclination to shift positively when the individual starts from a higher evaluation seems not

confirmed.
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However, the correlation and multiple regression analysis confirm that the old and the

other person’s evaluation can be used as predictor of the new evaluation. Furthermore, we

derive that is it possible to define a variation of the Interdepentent Preferences model using

different parameters in relation to the tie strength, the status of the relation and the users’

personality.

5.3 Conclusion

In this chapter, two experimental study have been analyzed, with the aim to analyze the

Emotional Contagion phenomenon and the impact of the tie strength and of the status,

peaceful or conflicting, of the relation between them. Hence, we explored the impact of the

personality profile of the users, trying to underline if the big five personality traits related

to prosocial and antisocial behaviours are even related to positive and negative shifting of

individual utilities.

From the analysis carried out in the first experiment, we can conclude that ties strength

and conflicts are important factors to determine how opinions shift when people know the

evaluations of other people which whom they must perform some activities, and these results

can be used in the definition of a general model for the adaptation of users’ satisfaction

to group context. Furthermore, we derive that such factors can be used to apply different

model for each configuration depending from the old evaluation of the individuals and the

others. The second user study confirm such results, highlighting that the configurations with

indifferent status and intermediate tie strength should be deeper analyzed.

Furthermore, the second study shows a positive relation between Extraversion and

positive shifting and even confirm a positive relation between Neuroticism and negative

shifting. Unfortunately, the little number of participants with Low levels of Agreeableness

and Conscentiousness does not permit fully analyze this phenomenon, and some future

experiments will be required in way to derive the ORP models to be used for the framework.



Chapter 6

Evaluation of the Aggregation Strategies

In this chapter the aggregation strategies introduced in section 4.2 is presented, in way to

determine if the proposed approaches can provide an increasing in the performance of a GRS.

Firstly, we analyze the two weighted social choice functions, performing two user study in a

touristic domain. Here, we compare the performances of our algorithm with respect to two

basic strategies used as baseline even asking to the users to evaluate the recommendations

provided by the system. Then, we evaluate the negotiation approach based on the conflict

resolution styles in terms of the accepted recommendations generated.

6.1 Evaluation of the two Weighted Social Choice Func-

tions

In section 4.2.1 two weighted social choice functions have been defined, that use a dominance

ranking between the group’s members as weight in the aggregation process. Here, an

evaluation of the approaches is presented. To evaluate the proposed functions, we had to

address the problem that, as seen in section 2.4 there is no dataset that can be used for the

evaluation. In fact, our strategies would require a dataset containing information about users

interactions on a social network, information on the preferences of individual users, and

information on the final choices of the groups, in order to apply the proposed techniques and

compare the obtained results. A dataset like this does not exist, so we decided to conduce two

pilot studies with real users. We decide to focus on travel domain, involving the participants

in the task of planning a trip in a city. In the first study, the aim is to evaluate the benefits of

the introduction of the dominance values as weights in the proposed functions. In the second

one, we focus on the users’ satisfaction with respect to the recommendations proposed by

the system.
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6.1.1 A User Study With Binary Decisions

In the first case study, we evaluated the behavior of 14 groups composed, in the average,

of 3.36 close friends. 46 users took part in the experimentation (26 men and 20 women).

The average age was 27.3 with a graduate education. Regarding the estimation of individual

utilities, to avoid that some wrong estimation given by an individual RS can negatively

influence the performance of the aggregation functions, we decide to ask an evaluation of

the item directly to the users. In this way we have a more accurate result, but we have to

restrict the number of items in the system, in order to require a small amount of time for the

evaluation by the participant in the test. In this first test, such evaluations are simple choice

on a set of item. Since we decide to focus on the travel domain, the items of the system are

activities to perform and restaurants in a city. The task required is the planning of a one-day

visit.

Description of the Experiment

At the beginning, each user was asked to register on a specific web site using the credentials

of facebook.com. Once registered, they were asked to imagine to plan a one-day visit in a

specific city and to select three activities (from a checklist of ten items) and two restaurants

(from a check list of eight) for the day. Since, in this first test, we do not want the users to

be involved in strategic reasoning, we did not ask the users to express numerical ratings for

the selected choices in this first setting. Hence, we will assign U(ai,ωx) = 1 if the user ai

selects the item ωx and U(ai,ωx) = 0 otherwise. A screen-shot of the interface used to select

the activities to perform is shown in Figure 6.1. In a second phase, the group was asked to

discuss face-to-face, in order to obtain a shared and unique decision for the group. This final

decision corresponds to the set ≻GT used to evaluate our functions.

Result Analysis

In order to evaluate our results, we apply our aggregation strategies and compare the results

with the real choices of the group. Regarding the fairness strategy, we adapted it to binary

selections. Since a single vote is associated with each item (0 or 1), at each iteration a user

(selected according to his/her dominance value in a descending order) proposes its first K

choices (with K = 3). For each of the K proposals the votes made by the other users are

summed, and the choice with the higher sum is selected. Note that if K is equal to the number

of possible outcomes (as in this case), an activity, selected by all the member of the group,

will be selected in the final decision. Finally, in order to evaluate the impact of the users’
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suffers more of random choices made by the function in the case of activities with the same

final score.

6.1.2 A User Study with Rankings

In this second case study, we evaluated the behavior of 17 new groups of friends composed,

in the average, of 3.1 people. 53 users took part in the experimentation (26 men and 27

women). The average age was 26.8 with a graduate education. Differently from previous

case, we asked the real users to give an estimation of the utilities necessary to our approaches,

providing an explicit rating for each item. Also in this case, the items are in a touristic

domain. The overall process is detailed in the next section.

Description of the Experiment

This experiment was divided into two phases. In the first, as in the previous user study, each

person was asked to register on a specific web site using the credentials of facebook.com.

Once registered, he/she was asked to imagine planning a one-day visit in a specific city, but

this time also to provide ratings (from one to five stars) to the ten proposed activities for the

day and to the eight restaurants. Each rate corresponds to how likely it would be for the

user to visit such place (or to eat in). The interface for the rating process is shown in Figure

6.2. For each activity/restaurant, a picture and a short description was provided to the users,

plus a link to tripadvisor.com that provides additional information and a way to evaluate the

popularity of the item. Once that all the member of a group completed this first phase, we

separately invited each member to login again and to complete the process by evaluating the

proposed recommendations. Since the first phase was more time-consuming with respect to

the previous user study, in the second phase users were only asked to evaluate the proposed

results.

In the fairness strategy the users were selected according to their dominance values in a

descending order, with K = 3. On the contrary, regarding the average strategy, the weights

associated to Equation 4.3 were α = 0.8 and β = 0.2 as suggested in [38].

Users were presented with both the recommendation provided by using the two functions

(as in the previous case the top five activities were recommended). Moreover, the associated

ratings for the proposed activities provided by all the members of the group in the first phase

were shown. A screenshot of this interface is shown in Figure 6.3.

Finally, each user was requested to answer the following questions:

1. Which of the two proposed itineraries do you prefer? [None/First/Second/Both]
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6.1.3 Discussion

From these first analysis we can observe that our dominance weighted functions show

encouraging results; in the first user study with binary selections, a bigger improvement

was noted for the average satisfaction function, while the fairness seems to suffer more of

random choices. On the contrary, in the second one, which involved item ranking, fairness

strategy has a bigger acceptance rate and appreciation evaluation. A more deep analysis is

necessary, involving greater number of users and possibly items to choice in the pilot studies,

to evaluate the scalability of the approach.

6.2 Evaluation of the Negotiation approach based on Con-

flict Resolution Styles

In this section an evaluation of the negotiation based approach, presented in section 4.2.2, is

proposed. In order to evaluate the performances in terms of the accepted recommendations

generated, a first preliminary analysis was carried out on simulated data, i.e. assigning

random rating values to the items extracted from the social network Foursquare. Two types

of simulations were carried out in the cases of mediator complete and partial knowledge of

items utilities. Successively, the same experiments were executed in a pilot case study, where

a group of real end users were asked to provide real data. Final users interact with a Group

Decision Support System based on our negotiation approach. Users are involved only in

providing their utilities on items (to obtain reliable data), and in the final decision approval.

We decided not to rely on any recommendation algorithm to estimate individual utilities,

but to have the users explicitly expressing them. Whenever a user accesses the system,

he/she is able to rate as many items as he/she wants. This allows guaranteeing the quality,

the attainability, and accuracy of the system data. A user ai ∈ G assigns a value Uai,ω j
∈

{1,2,3,4,5} to an item ω ∈ Ω. In principle, in order for the mediator to search for a solution,

each group member ai should evaluate all the items that have been evaluated by the other

members, but not by him/herself. This configuration is denoted as Complete Knowledge)

and allows finding optimal solutions. However, this process would potentially require each

user to be involved in a long process to provide all the needed information, so an upper

bound to the number of items to be rated can be set, in the Partial Knowledge configuration.

Subsequently, whenever the mediator requires additional information to proceed, additional

ratings could be requested to the users. Of course, in the partial knowledge case, it is not

guaranteed to find an optimal solution. If all the allowed negotiation rounds take place

without reaching an agreement, the process ends by proposing a solution to the end user that



84 Evaluation of the Aggregation Strategies

Initial

Rounds

Intermediate

Rounds

Final

Rounds

Accomodating 0.08 0.08 0.08

Competiting 0.01 0.025 0.05

Compromising 0.06 0.025 0.06

Collaborative 0.07 0.07 0.07

Avoiding 0.01 0.01 0.01

Table 6.4 Concession strategies and ∆ values.

maximize the Social Welfare in the mediator current domain. After using the system, users

filled a questionnaire concerning both the goodness of the recommendations provided by the

system, and its usability.

Regarding the User Agent Strategy, the used concession values, depending from the

conflict resolution style and the phase of the negotiation, are reported in Table 6.4.

6.2.1 Complete Knowledge

First, the performances of the heuristics for the generation of counteroffers, the Search in

Domain and the Reference Point, were evaluated together with the negotiation success rate

when the mediator has a complete knowledge, i.e. in the case it knows all the rating for

all the POI in the dataset. The generated recommendations were evaluated in the different

experimental setting by varying the number m of items, from 20 to 1000, the group size

g from 3 to 5 members, and the number K of items in the solution from 1 to 5. The size

of a group is kept within the chosen range because the focus of the present work is to test

decision-making mechanisms for small groups that rely on mechanisms (e.g., interpersonal

relationships and mutual influences) that are different with respect to the ones adopted for

larger groups [50]. The group size determines the significant number of POI in the solution

in the case of simulated experiments. In fact, from a preliminary experimental analysis, we

derived that for cases with K > g a solution is always found, so we set K ≤ g.

Each algorithm is executed 100 times for each possible configuration, and for each

execution, the users’ behaviors, i.e. their conflict resolution styles, are randomly generated.

The maximum number of allowed negotiation rounds was empirically set to 30.

The success rate for the first heuristic is 99%, against 77% of the second one. In Figure

6.4(a), the average number of rounds to reach an agreement is plotted, varying the number of

available POI, and discharging the cases of negotiation failures. As shown in Figure 6.4(a),

the Reference Point heuristic requires a greater number of rounds to reach an agreement

with respect to the Search in Domain case, reaching similar performances when the number
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(a) Average number of rounds to reach

an agreement.
(b) Average execution time to reach an

agreement.

Fig. 6.4 Results in case of complete knowledge.

of items is greater than 1000. Therefore, the Reference Point does not represent a feasible

solution for sets of items that vary from 20 to 1000, by making more complicated for user

agent to build counteroffers, so leading to failures in the negotiation process.

Moreover, notice that by increasing the number of items up to 500, the number of rounds

necessary to reach an agreement increases, as expected, because of the increased dimension

of the solution search space. On the contrary, by further increasing the number of items,

the number of rounds to reach an agreement decreases because the chances to generate

acceptable counteroffers increase, so potentially reducing the number of conflicts.

The execution time of the Reference Point algorithm is slightly greater than the Search in

Domain one, as reported in Figure 6.4(b). Moreover, the trend of execution time differs from

the one of negotiation rounds. While, for a number of items greater than 500, the number

of rounds to reach an agreement starts to decrease, the average execution time increases. In

this case, in fact, it is the time required to compute a counteroffer that impacts more on the

execution time.

We also evaluated the performances of the two heuristics by varying the size of the group

from 3 to 5 members. The success rate is very high, ranging from the 100%, for groups

of 3, to 98% for groups of 5, in the case of complete knowledge for the mediator. As we

expected, when the number of agents increases, the number of negotiation rounds necessary

to reach a shared solution increases, reaching the value 7 when the number of items varies

from 250 to 500 (see Figure 6.5(a)). Again, when the number of items is more than 500,

fewer negotiation rounds are necessary to find a solution (3 rounds). As showed in Figure

6.5(b), when the number of items and the number of agents increase, the execution time of

both algorithms also increases, even though the execution time is more dependent on the

number of items than the number of agents.
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(a) Average number of rounds to reach

an agreement.
(b) Average execution time to reach an

agreement.

Fig. 6.5 Results in case of complete knowledge w.r.t. the number of users.

(a) Average number of rounds to reach

an agreement.
(b) Average execution time to reach an

agreement.

Fig. 6.6 Results in case of partial knowledge.

6.2.2 Partial Knowledge

In the second set of experiments the performance of the whole system using both heuristics,

the Search in Domain one in the first rounds, and the Reference Point one in case of few

conflicts, is analyzed with datasets varying from 20 to 1000 items, the number of group’s

members varying from 3 to 5, and solutions with a number of items varying from 1 to 4. The

algorithm is executed 10 times for each setting, with a maximum number of 30 negotiation

rounds. Also in this case, for each execution, the users’ behaviors are randomly generated.

The success rate of the heuristics decreases by increasing the number of agents (98%

with 3 agents, 92% with 4 agents, and 85% with 5 agents). The success rate in the case of

partial knowledge is lower than the one obtained in the case of complete knowledge (from

99% to 91%), and the highest number of negotiation failures occurs in the case of a solution
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Strongly

Disagree
Disagree Neutral Agree

Strongly

Agree

Q1 0% 13% 0% 56% 31%

Q2 0% 0% 0% 69% 31%

Q3 0% 6% 6% 75% 13%

Q4 6% 19% 44% 31% 0%

Q5 0% 0% 0% 100% 0%

Q6 0% 0% 0% 31% 69%

Q7 0% 19% 25% 50% 6%

Table 6.5 Percentage of answers for each question.

we propose to each user a questionnaire containing 9 questions which aims to obtain an

evaluation of the goodness of the recommendation and of the usability of the system. The

questionnaire is composed of two sets of statements that the users are asked to rate with a

score ranging from 1 to 5 (respectively, strongly disagree, disagree, neutral, agree, strongly

agree). The first set concerns the evaluation of the user interaction with the system, while the

second one concerns the evaluation of the quality of the proposed recommendations.

• System-User Interaction:

Q1 The system is easy to use;

Q2 Specific expertise is not required to use the system;

Q3 The system does not require several user interaction steps;

Q4 The number of required ratings is fair;

• Recommendations evaluation:

Q5 The system produced a recommendation;

Q6 The system produced a satisfying recommendation;

Q7 The system allowed discovering new POI.

The users’ answers percentages reported in Table 6.5 show that the system is user-friendly,

rapid, easy to use and effortless. Conflicting opinions concern the number of ratings required

by the system to end users (Q4).

Regarding, the evaluation of the recommendations, we initially observe that the agents

always find an agreement without the necessity to use the majority voting criterion. The

evaluations assigned by the users to the provided recommendations show a great satisfaction,

with the 70% of the users strongly satisfied, and the remainder 30% simply satisfied. In
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addition, the users positively replied to the question regarding if the system helped them in

discovering new items.

6.2.4 Discussion

The results show that the system, that models users’ behavior in a conflict situation through

the well-known Thomas Kilmann Instrument, provides high success rate in finding a solution

with a number of negotiation rounds lower than 30, both in the case of complete knowledge

and of partial knowledge. The user case study reported satisfying results in terms of the

negotiation success rate, and of the quality of the recommendations provided. These results

are promising and even suggests that such system can be a useful approach to increase the

performances of a GRS. To extend this analysis, it can be possible to evaluate if there are

any difference in the performances when the individual utilities are estimated through an

individual RS. Even a comparison of the negotiation approach with other classical approaches

can be useful, to understand if such strategies is more suitable for determinate kind of groups.

A possibility is to apply this approach to conflicting groups.

6.3 Conclusion

The analysis carried out on the aggregation strategies defined in this thesis present very

interesting and encouraging results. Firstly, we showed that the two dominance weighted

social choice functions provide an improvement on the goodness of the recommendations

provided. We can notice that in case of binary selection the greater improvement is related to

the weighted average strategy, while the weighted fairness performs better in the test with

items ranking. Even the results on the user’s acceptance of the recommendations and on their

satisfaction about them evidence very good results. However, both the approach must be

analyzed with a larger number of items and users, in way to analyze the scalability of the two

strategies.

Regarding the negotiation based approach, we have a high success rate in finding a

solution with a number of negotiation rounds lower than 30, both in the case of complete

knowledge and of partial knowledge. Furthermore, the user case study reported satisfying

results in terms of the negotiation success rate, and of the quality of the recommendations

provided. Hence, even in this case, we have promising results indicating that such system

can be a useful approach to increase the performances of a GRS.

The next step is to understand if there are substantial difference in the performance on

a specific group applying both the weighted social choice functions and the negotiation
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approach, in way to determine if there are kinds of group on which a determinate strategy

performs better. A possibility is to apply this approach to conflicting groups and use the

social choice functions on more cohesive and similar groups.



Chapter 7

Conclusion

The problem to provide a shared solution that can be a good recommendation for a group of

people can be a challenging problem, because the users’ interests can be conflicting, and it can

be difficult meeting all users’ tastes. The Group Recommendation Systems (GRSs) have the

objective to solve such problem, helping groups of users in a group decision-making process

providing suggestions that can be of interest for all the group’s members. In this context,

approaches taken from Economics and Multi-Agent Systems (MAS) fields are usually used,

to merge the individual recommendation obtained by an individual Recommendation System

(RS) for each user in the group, end obtain a shared solution for the group. Unfortunately,

the results presented in the literature showed that there is no strategy can be defined as the

“best”, but different approaches are better suited in different scenarios, depending from the

characteristics of the specific group. Besides, traditionally MAS techniques do not seem to

capture all the features of real-world scenarios. Hence, it appears necessary that GRSs need

to capture both preferences of the group members but also these key factors in the group

decision process [38] taking into account the type of control in the group decision-making

process [46]. On the basis of these considerations some advanced approaches try to integrate

information from the social relationships among group members with the classical MAS

techniques and so to derive new strategies more applicable to the considered settings.

Another important aspect to be considered is that, as showed from Economics studies

on Other-Regarding Preferences (ORP) and from Psychological studies on the Emotional

Contagion, people tend to influence each other, hence the utility of each person related to a

particular item can change with respect to the utilities of the individuals which whom he/she

has to use the item. Hence, in GRS it is necessary to consider this influence in the process of

generation of the group’s recommendations.

In this context, the work presented in this Ph.D. thesis trying to address the problem of

GRSs defining a two-step architecture, composed by an adaptation module that, using an
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ORP model, try to adapt the individual utilities estimated by an individual RS to the specific

context of the group in which the item will be used, and a merging module that aggregate

such adapted utilities with advanced aggregation strategies that considers social aspects in

the merging of such utilities.

Hence, we presented two study performed to explore the factors that should be considered

in the adaptation step and, in particular, a first study analyze the impact of tie strength and

the status of the relationship in two-sized groups, while a second study focuses on the impact

of the personality of the individual trying to derive a relation between big five personality

traits and the variation of the utility.

Furthermore, we define two different approach for the aggregation step. The first one is

based on weighted social choice functions. Here, a dominance ranking, derived from the

interaction between users on a social network, is used as weight in two classical aggregation

strategies, a weighted average strategy and a fairness strategy. The second approach is a

negotiation based strategy, where the agents acting in the negotiation on behalf of group’s

members have a behaviour that depends on the Conflict Resolution Style of the corresponding

user.

The analysis performed show very interesting results. First, the analysis of the factor

influencing the emotional contagion phenomenon shows clearly that the tie strength and the

status of the relationships has an impact on the phenomenon, in fact we register a positive

variation that increase when the tie strength tends to be strong, and, also, the possibility of

negative variations when the relationship became conflicting. Also, the size of the initial

difference between the utility of the individual and the utility of the other person has an

influence on the phenomenon since we registered more marked variations in case of initial

large difference. Furthermore, the analysis on the personality factors shows some interesting

results, showing a positive relation between Extraversion and positive shifting and even

confirming a positive relation between Neuroticism and negative shifting. Unfortunately, the

little number of participants with Low levels of Agreeableness and Conscentiousness does

not permit fully analyze this phenomenon, and some future experiments will be required in

way to derive the ORP models to be used for the framework.

Regarding, instead, the aggregation strategies defined, the analysis carried out present

very interesting and encouraging results. Firstly, we showed that the two dominance weighted

social choice functions provide an improvement on the goodness of the recommendations

provided. We can notice that in case of binary selection the greater improvement is related to

the weighted average strategy, while the weighted fairness performs better in the test with

items ranking. Even the results on the user’s acceptance of the recommendations and on their

satisfaction about them evidence very good results. However, both the approach must be
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analyzed with a larger number of items and users, in way to analyze the scalability of the two

strategies. Regarding the negotiation based approach, we have a high success rate in finding

a solution with a number of negotiation rounds lower than 30, both in the case of complete

knowledge and of partial knowledge. Furthermore, the user case study reported satisfying

results in terms of the negotiation success rate, and of the quality of the recommendations

provided. Hence, even in this case, we have promising results indicating that such system

can be a useful approach to increase the performances of a GRS.

7.1 Open Problems and Future Works

As evidenced from our results, there are promising results, but many aspects should be

analyzed in future works. Firstly, regarding the study of the Emotional Contagion, a further

analysis on the personality traits can be useful to confirm the result evidenced in this work,

and even to better analyze the influence of the Agreeableness and the Conscentiousness

traits. In particular the Agreeableness factor, according to [45], should have an impact both

for prosocial and antisocial behaviour and, hence, can be an important factor in our model

of utilities adaptation. Furthermore, the definition and the evaluation of the ORP model

performing this adaptation is necessary. Finally, a study on other aspects that can have an

influence on the phenomenon like, for example, the nature of the items and the relative cost,

in terms of time or money spent for it, could be useful to better explain the phenomenon.

On the other hand, regarding the merging strategies, as evidenced in the analysis, regard-

ing the two weighted social choice functions, a larger evaluation, comprising more users and

more items, is necessary to evaluate the scalability of the approaches. Furthermore, it will

be interesting to investigate other social factors that could be integrated in the functions to

provide more accurate recommendations. Regarding, on the contrary, the negotiation based

approach, it could be useful to compare it with other approaches, using different negotiation

protocols or other completely different strategies, in way to determine the type of groups

for which this approach performs better. Our final objective is to define several aggregation

strategies and determine, at run time, on the base of the characteristics of the specific group,

the best strategy to use to generate the recommendations.
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