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dalla magistrale e, con il quale ho avuto molte avventure non solo

universitarie, grazie a Massimiliano Di Mella, una persona capace di

implementare di tutto, con un qualsiasi linguaggio di programmazione

e che mi ha sempre osannato e sopravvalutato, sempre disponibile e

pronto a venire in mio soccorso in qualsiasi momento e dovunque, gra-

zie a Sabatino Daniele Iovino, una persona sempre presente, in pratica

non mi lascia mai da solo. Grazie a Marialuigia Malgeri Manzo e a

Valentina Malgeri Manzo per le loro premure e per l’immensa forza

che trasmettono. Grazie ai miei colleghi, nonché amici e, compagni di
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Chapter 1

Introduction

The present thesis explores two different application areas of combinatorial op-

timization, the work presented here, indeed, is two fold, since it deals with two

distinct problems, one related to data transfer in networks and the other to ob-

ject recognition. This Chapter is organized as follow: the Section 1.1 provides

an overview of the optimization methods, Section 1.2 and Section 1.3 provide an

overview of the coding and caching in networks and object recognition problem,

Section 1.4 provides a brief description of the thesis work contributions, finally,

Section 1.5 provides a dissertation outline.

1.1 Optimization Methods

The algorithms used to solve optimization problems are divided in 3 categories:

• Exact Algorithms that provide an optimal solution to a combinatorial opti-

mization problem, but take an exponential number of iterations when the

problem is intractable. They include cutting-planes, branch-and-bound, and

dynamic programming ;

• Approximation Algorithms that provide a solution, provably close to optimal,

to a combinatorial optimization problem. The approximation ratio of an

algorithm is the ratio between the result obtained by the approximation

algorithm and the optimal cost or profit. An algorithm with approximation

ratio n is called a n-approximation algorithm. Approximation algorithms

1



are typically used either, when finding an optimal solution is intractable or

a exact solution is not needed;

• Heuristic Algorithms that provide a suboptimal solution, but without a guar-

antee on its quality. A heuristic algorithm is any fast (polynomial) algorithm

that finds a feasible solution. Heuristic algorithms can be classified in the

following way:

– Constructive: start from an empty solution and iteratively add new

elements to the current partial solution until a complete solution is

found;

– Local Search: start from an initial feasible solution and iteratively try to

improve it by slightly modifying it, stop when local optimum is found;

– Meta-heuristics: an evolution of local search algorithms which avoid to

find local optima using specific techniques.

In our case we have used heuristic and exact methods to address the problems

studied in this thesis.

1.2 Index Coding and Caching

Caching is an essential technique to improve throughput and latency in a vast

variety of applications. The core idea is to duplicate content in memories dis-

tributed across the network, which can then be exploited to deliver requested

content with less congestion and delay. In particular, it has been shown that the

use of caching together with smart offloading strategies in a RAN composed of

evolved NodeBs (eNBs), AP (e.g., WiFi), and UEs, can significantly reduce the

backhaul traffic and service latency. The traditional role of cache memories is to de-

liver the maximal amount of requested content locally rather than from a remote

server. While this approach is optimal for single-cache systems, it has recently

been shown to be, in general, significantly suboptimal for systems with multi-

ple caches (i.e., cache networks) since it allows only additive caching gain, while

instead, cache memories should be used to enable a multiplicative caching gain.

Recent studies have shown that storing different portions of the content across the
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wireless network caches and capitalizing on the spatial reuse of device-to-device

(D2D) communications [53, 49], or exploiting globally cached information in or-

der to multicast coded messages simultaneously useful to a large number of users

[58, 56, 29, 67, 64, 77, 83], enables a global caching gain. In particular, the recently

proposed schemes in [53, 49, 54, 58, 56, 29, 67, 64, 77, 83] exhibit overall network

throughputs that are proportional to the aggregate cache capacity, such that, when

compared with today’s local caching and unicast transmission policies, gains on

the order of the number of users per cell (e.g., more than 100x in urban areas)

are possible. While these initial results are promising, the existing literature on

wireless caching and delivery (i) lacks understanding of fundamental limits beyond

two basic network structures, namely the D2D network [53, 49] and the shared link

network [53, 49, 54, 58, 56, 29, 67, 64, 77, 83], (ii) does not exploit properties of

video signals such as scalability and correlation for improved performance and ro-

bustness, (iii) does not take into account the losses and variations in the wireless

channel, (iv) lacks practical schemes in the finite file size and finite delay regime.

We focus on the case of a single server (e.g., a base station) and multiple users,

each of which caches segments of files in a finite library. Each user requests one

(whole) file in the library and the server sends a common coded multicast message

to satisfy all users at once. The problem consists of finding the smallest possible

codeword length to satisfy such requests. To solve this problem we present two

achievable caching and coded delivery scheme, and one correlation-aware caching

scheme, each of them is based on a heuristic polynomial-time coloring algorithm.

1.3 Object Recognition

At the core of this ability there is the solution of an object recognition task.

Automatic object recognition has become, over the last decades, a central top-

ing the in the artificial intelligence research, with a a significant burt over the last

new year with the advent of the deep learning paradigm.

In this context, the objective of the work discussed in the last two chapter of

this thesis is an attempt at improving the performance of a natural images classifier

introducing in the loop knowledge coming from the real world, expressed in terms

of probability of a set of spatial relations between the objects in the images. In
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different words, the framework presented in this work aims at integrating the out-

put of standard classifiers on different image parts with some domain knowledge,

encoded in a probabilistic ontology.

Standard ontologies are very much used for encoding a-priori information on

the application domain, but they do not perform very well when dealing with real

world uncertainty.

Probabilistic ontologies aim at filling this gap by associating probabilities to the

coded information, and provide then an adequate solution to the issue of coding

the context information necessary to correctly understand the content of an image.

Such information is then combined with the classifier output in order to correct

possible classification errors on the basis of surrounding objects.

In the framework proposed a probabilistic ontology is exploited for trying to

improve the performance of a classifier, by integrating the ontology with a proba-

bilistic model. This work presents two main aspects of novelty. The former is the

use of a probabilistic ontology for the solution of a computer vision problem. The

latter element of novelty lies in the integration of a probabilistic ontology with a

probabilistic model.

1.4 Synopsis

In Part I, we consider a shared link caching network, which is formed by a sin-

gle source node (a server or base station) with m files, connected via a shared

noiseless link to n user nodes, each with cache of size M files. For the shared link

structure, the performance metric is the number of time slots necessary to sat-

isfy all the demands. In Chapter 4, we first extend the analysis of the achievable

scheme in [51] to the case of heterogeneous cache sizes and popularity distribu-

tions, providing an upper bound on the limiting average performance where the

number of packets goes to infinity while the remaining system parameters are kept

constant. We then focus on finite regimes and show how the scheme achieving

this upper bound can very quickly loose its multiplicative caching gain for finite

content packetization. To overcome this limitation, we design a novel polynomial-

time algorithm based on greedy graph-coloring that, while keeping the same finite

content packetization, recovers a significant part of the multiplicative caching gain.
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In Chapter 5, we first extend the analysis of the achievable scheme in [51] to the

case of heterogeneous cache sizes and demand distributions, providing an upper

bound on the limiting average performance where the number of packets goes to

infinity while the remaining system parameters are kept constant. We then fo-

cus on finite regimes and show how the scheme achieving this upper bound can

very quickly loose its multiplicative caching gain for finite content packetization.

To overcome this limitation, we design a novel polynomial-time algorithm based

on greedy graph-coloring that, while keeping the same finite content packetiza-

tion, recovers a significant part of the multiplicative caching gain. In Chapter

6, we first provide an overview of the emerging caching-aided coded multicast

technique, including state of art schemes and their theoretical performance. We

then focus on the most competitive scheme proposed to date and describe a fully

working prototype implementation in CorteXlab [28], one of the few experimental

facilities where wireless multiuser communication scenarios can be evaluated in

a reproducible environment. We use our prototype implementation to evaluate

the experimental performance of state-of-the-art caching-aided coded multicast

schemes compared to state-of-the-art uncoded schemes, with special focus on the

impact of coding computation and communication overhead on the overall band-

width efficiency performance. Our experimental results show that coding overhead

does not significantly affect the promising performance gains of coded multicasting

in small-scale real-world scenarios, practically validating its potential to become a

key next generation 5G technology. In last Chapter (7) of the first Part, we propose

the use of video data present in persistent receiver-side memories as distributed

side information for video coding. We utilize index coding to efficiently transmit

coded messages that satisfy the new video demanded by multiple receivers.

In Part II, we present a framework which aims at integrating the output of stan-

dard classifiers on different image parts with some domain knowledge, encoded in

a probabilistic ontology. In fact, while standard ontologies are quite widespread

as a means to manage a-priori information, they fail in the important task of deal-

ing with real world uncertainty. Probabilistic ontologies aim at filling this gap by

associating probabilities to the coded information, and provide then an adequate
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solution to the issue of coding the context information necessary to correctly un-

derstand the content of an image. Such information is then combined with the

classifier output in order to correct possible classification errors on the basis of

surrounding objects. The framework presented aims at determining a set of key-

words describing the content of an image and the relations existing among them.

The framework presents two main aspects of novelty. First, the use of a proba-

bilistic ontology for a computer vision problem has, at the best of our knowledge,

never been proposed before. A second element of novelty is the integration of a

probabilistic model with a probabilistic ontology.

1.5 Dissertation Outline

This dissertation is organized in two Parts. Part I is related to data transfer

optimization in network and it is organized as follows: Chapter 3 provides an

overview of the caching-aided coded multicast technique, including state of the

art schemes and the network model used in our works. Chapter 4 and Chapter 5

provide a description of two achievable caching and coded delivery scheme, along

with the general upper bound of the average achievable rate. Each scheme is

based on a proposed polynomial-time coloring algorithm. In Chapter 6 we provide

a fully working prototype implementation of the most competitive caching and

coded delivery scheme. Then, in Chapter 7, we propose an achievable caching and

coded delivery scheme based on library correlation-aware. Part II is related to

object recognition and it is organized as follows: Chapter 9 provides a description

of the different modules of the our system, with a few details about the proba-

bilistic ontology, and to the model adopted to combine classification and ontology

probabilities.
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Part I

Networks Problems
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Chapter 2

Introduction

In this chapter, we consider a shared link caching network, which is formed by a

single source node (a server or base station) with m files, connected via a shared

noiseless link to n user nodes, each with cache of size M files. For the shared link

structure, the performance metric is the number of time slots necessary to satisfy

all the demands. In the case of symmetric links, the number of time slots can be

normalized by the number of times lots necessary to send a single file across a point

to point link. The performance metric is rate defined as in the index coding setting

[8, 7, 22, 63, 11, 17, 48, 46, 2, 82], i.e., the number of equivalent file transmissions.

2.1 An Efficient Coded Multicasting Scheme Pre-

serving the Multiplicative Caching Gain

Consider a network with one source (base station), having access to m files, and

n users (caches), each with a storage capacity of M files. In [50], the authors

showed that if the users can communicate between each other via Device-to-Device

(D2D) communications, a simple distributed random caching placement scheme

and TDMA-based unicast D2D delivery achieves the order-optimal1 throughput

Θ
(
max{M

m
, 1
m
, 1
n
}
)
,2 whose linear scaling with M when Mn ≥ m shows a re-

1Order-optimal means that the gap between the information theoretic converse and the achiev-
able throughput can be bounded by a constant number when m,n→∞.

2Given two functions f and g, we say that: 1) f(n) = O (g(n)) if there exists a constant c
and integer N such that f(n) ≤ cg(n) for n > N 2) f(n) = Θ (g(n)) if f(n) = O (g(n)) and
g(n) = O (f(n)).
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markable caching potential. Moreover, in this scheme each user caches entire files

without the need of partitioning files into packets,and missed files are delivered via

unicast transmissions from neighbor nodes, making it practically implementable

in real scenarios.

In the case that users cannot communicate between each other, but share a

multicast link from the content source, the authors in [68] presented a deterministic

caching and coded multicasting scheme achieving the same order-optimal through-

put as in the D2D caching network for the worst-case demand setting. However,

the scheme in [68] requires a centralized caching policy and each file to be parti-

tioned into a number of packets that grows exponentially with the number of users.

In [65], the authors presented an alternative scheme for the same network that uses

a simpler decentralized random caching policy while a more complex coded multi-

casting scheme requiring a number of computations that grows exponentially with

the number of users. Nonetheless, to guarantee the same throughput, the file size

(or equivalently the number of packets per file) is required to go to infinity.

In [51], the authors considered the same shared link network under random

demands characterized by a popularity distribution, and proposed a scheme con-

sisting of a distributed random popularity-based (RAP) caching policy and a

chromatic-number index coding (CIC) based multicasting scheme, referred to as

RAP-CIC, proved to be order-optimal in terms of average throughput. In order to

analytically quantify the performance of RAP-CIC, the authors in [51] resorted to

a polynomial-time approximation of CIC, referred as greedy constrained coloring

(GCC) that guarantees the order-optimal throughput given an infinite number of

packetizations. RAP-GCC is also shown to achieve the same performance as the

algorithm in[65] for the worst-case demand setting.

It is then of key importance to understand if using any of above mentioned

schemes, the promising linear throughput scaling with cache size (multiplicative

caching gain) can be preserved in practical settings with finite file packetization.

In this Chapter, we first extend the analysis of the achievable scheme in [51] to the

case of heterogeneous cache sizes and popularity distributions, providing an upper

bound on the limiting average performance where the number of packets goes to

infinity while the remaining system parameters are kept constant. We then focus

on finite regimes and show how the scheme achieving this upper bound can very
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quickly loose its multiplicative caching gain for finite content packetization. To

overcome this limitation, we design a novel polynomial-time algorithm based on

greedy graph-coloring that, while keeping the same finite content packetization,

recovers a significant part of the multiplicative caching gain.

2.2 An Efficient Multiple-Groupcast Coded Mul-

ticasting Scheme for Finite Fractional Caching

In a shared link network, where all the users, each of which only makes one re-

quest, share a multicast link from the content source, the authors in [68] presented

a deterministic caching and coded multicasting scheme achieving the order-optimal

throughput Θ
(
max{M

m
, 1
m
, 1
n
}
)

3 for the worst-case demand setting. However, the

scheme in [68] requires a centralized caching policy and each file to be partitioned

into a number of packets that grows exponentially with the number of users. In

[65], the authors presented an alternative scheme for the same network that uses a

simpler decentralized random caching policy while a more complex coded multicas-

ting scheme requiring a number of computations that grows exponentially with the

number of users. Nonetheless, to guarantee the same throughput, the file size (or

equivalently the number of packets per file) is required to go to infinity. In [52], the

authors extended these results to the case when each user make L = {1, · · · ,m}
requests and showed that the coloring based scheme used in [68, 65] is not suffi-

cient to capture the order-optimality. Instead, the local coloring scheme [76] can

achieve the order-optimality for the multiple requests scenario.

In [51], the authors considered the same shared link network, where each user

requests only one file, under random demands characterized by a demand distribu-

tion, and proposed a scheme consisting of a distributed random popularity-based

(RAP) caching policy and a chromatic-number index coding (CIC) based multi-

casting scheme, referred to as RAP-CIC, proved to be order-optimal in terms of

average throughput. In order to analytically quantify the performance of RAP-

CIC, the authors in [51] resorted to a polynomial-time approximation of CIC,

3Given two functions f and g, we say that: 1) f(n) = O (g(n)) if there exists a constant c
and integer N such that f(n) ≤ cg(n) for n > N 2) f(n) = Θ (g(n)) if f(n) = O (g(n)) and
g(n) = O (f(n)).
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referred as greedy constrained coloring (GCC) that guarantees the order-optimal

throughput given an infinite number of packetizations. RAP-GCC is also shown

to achieve the same performance as the algorithm in[65] for the worst-case demand

setting.

It is then of key importance to understand if using any of above mentioned

schemes, the promising linear throughput scaling with cache size (multiplicative

caching gain) can be preserved in practical settings with finite file packetization.

In this Chapter, we first extend the analysis of the achievable scheme in [51] to the

case of heterogeneous cache sizes and demand distributions, providing an upper

bound on the limiting average performance where the number of packets goes to

infinity while the remaining system parameters are kept constant. We then focus

on finite regimes and show how the scheme achieving this upper bound can very

quickly loose its multiplicative caching gain for finite content packetization. To

overcome this limitation, we design a novel polynomial-time algorithm based on

greedy graph-coloring that, while keeping the same finite content packetization,

recovers a significant part of the multiplicative caching gain.

2.3 Coding for Caching in 5G Networks

Along with the Internet revolution, IP traffic is growing at a tremendous pace and

it is expected to reach two zettabytes per year by 2019. Mobile data networks are

envisioned to support up to 14% of this global data traffic coming from a plethora

of different market segments. Among these segments, multimedia streaming is

the service with the highest penetration rate, having the major impact on the

overall traffic increase. On the other hand, current mobile network generations

cannot cope with this explosive traffic growth due to the capacity limitations of

radio access, backhaul, and core mobile networks, and the increasingly unicast

and on-demand nature of users’ content demands. In order to support this traf-

fic expansion, the fifth generation (5G) of mobile networks is under preparation.

Among the key performance challenges that 5G needs to address are: through-

put, latency, and energy efficiency. That is, 5G is expected to provide 1000x

higher throughput, sub-millisecond service latencies, and up to 90 percent overall
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energy savings [24]. Despite the myriad of technological advances at the physi-

cal (PHY) and medium access control (MAC) layers (e.g., inter-cell interference

coordination (ICIC), massive multiple-input-multiple-output (MIMO), carrier ag-

gregation), targeted data rates are still significantly out of reach. To this end,

5G envisions novel architectural components for the next generation radio access

network (RAN), including small cell densification, efficient wireless backhauling,

and network self-organization [24]. In this context, the use of inexpensive storage

resources within the RAN is emerging as a promising approach to reduce network

load, and effectively increase network capacity.

2.3.1 Prominence of Wireless Caching in 5G

Wireless caching, i.e., caching content within the wireless access network is gain-

ing interest, specially in ultra-dense networks where many connected devices try to

access various network services under latency, energy efficiency, and/or bandwidth

limitation constraints [24]. Proactively caching content items at the network edge

(e.g., at the RAN) helps in relieving backhaul congestion and meeting peak traffic

demands with lower service latency as Fig. 6.1 illustrates. For maximum bene-

fits, network operators can intelligently exploit users’ context information, classify

content by popularity, and improve predictability of future demands to proactively

cache the most popular content before being requested by end users. Such a strat-

egy is able to fulfill the quality of service (QoS) requirements while significantly

reducing the use of bandwidth resources and its associated energy consumption.

Content items can be cached at different locations of the mobile network. Within

the RAN, base stations (or small base stations), user equipment (UE) devices, and

access points (AP) can be enhanced with additional memory for content caching.

While caching can also happen within the evolved packet core (EPC), the main

benefit of caching at the EPC is to reduce peering traffic between internet service

providers (ISP). It is the additional deployment of cache memories within the RAN

that can crucially help minimizing intra-ISP traffic, relieving backhaul load, and

reducing service latencies [32].
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2.3.2 From Uncoded to Coded Content Distribution

A substantial amount of recent studies have analyzed the use of wireless caching

as a promising solution for 5G. Among these studies, [31] introduced the idea

of femtocaching and addressed the question of which files should be assigned to

which helper nodes (femtocell-like base stations), while [25, and reference therein]

considered the improvement in caching efficiency that can be obtained by dynami-

cally learning content popularity and updating cache contents at the network edge.

Despite considerable interest, such studies focus on the data placement problem

in isolation, assuming the use of unicasting or naive (uncoded)4 multicasting dur-

ing transmission, and hence ignoring the potential benefits of joint placement and

transmission code design.

In [26], the data placement problem is generalized to the coded content distri-

bution problem where the goal is to jointly determine the placement and routing

of (possibly coded) information over the network, showing that joint code design

significantly increases multicast efficiency, leading to substantial improvements in

reducing network load and access latencies. A number of information-theoretic

studies have then characterized the order-optimal performance of a caching net-

work of special practical interest, the shared link caching network, formed by a

single source node (e.g., base station) with access to a library of content files con-

nected via a shared multicast link to multiple user nodes (e.g., end devices or

access points), each with caching capabilities. In this context, the work in [66]

showed that under worst-case demands, caching portions of each file uniformly

at random and using index coding (IC) [12] during transmission yields an overall

load reduction that is proportional to the aggregate cache size. In [30], the authors

analyzed the case in which user demands follow a Zipf popularity distribution, de-

signing order-optimal achievable schemes5 that adjust the caching distribution as

4The term uncoded is used to refer to a scheme in which, at each use of the channel, the
transmission is composed of packets that belong to the same file, while the term coded refers to
a scheme in which transmissions can be composed of a mixture of packets from different files.

5An achievable scheme is said to be order-optimal if, as the file size goes to infinity, the
number of transmissions needed to satisfy the user demands scales as the information theoretic
optimal number of transmissions needed to satisfy the user demands; i.e the ratio between the
achievable and optimal number of transmissions is upper bounded by a constant independent of
all the system parameters.
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a function of the system parameters to balance the gains from local cache hits and

coded multicasting. Shortly after, [27] showed that the gains achieved by these

schemes require a number of packets per requested item that grows exponentially

with the number of caches in the system, leading to codes of exponential complex-

ity that compromise their theoretical gains. Efficient polynomial-time schemes

(e.g., [84]) have then been proposed to recover a significant part of the promising

multiplicative caching gain.

In terms of practical implementations, the work in [25] provided a big data

platform where learning algorithms can be used to predict content popularity and

drive caching decisions, but the benefit of the learning techniques on improving

caching efficiency is evaluated via numerical simulations. In addition, only con-

ventional uncoded schemes are considered, and aspects related to advanced coding

techniques such as caching-aided coded multicasting that can potentially provide

much larger gains are largely overlooked. It is also important to note that, so far,

only information-theoretic studies have shown the potential gains of such schemes,

and the emulation work in [71] only considers 2−4 users and 3 files, a very limited

scenario that does not allow showing the real impact of computational complexity

and coding overhead. Moreover, it is unclear whether existing schemes meet the

requirements of current technologies, thus leaving plenty of open questions regard-

ing practical performance benefits. In this Chapter, we first provide an overview

of the emerging caching-aided coded multicast technique, including state of art

schemes and their theoretical performance. We then focus on the most competitive

scheme proposed to date and describe a fully working prototype implementation

in CorteXlab [28], one of the few experimental facilities where wireless multiuser

communication scenarios can be evaluated in a reproducible environment. We

use our prototype implementation to evaluate the experimental performance of

state-of-the-art caching-aided coded multicast schemes compared to state-of-the-

art uncoded schemes, with special focus on the impact of coding computation and

communication overhead on the overall bandwidth efficiency performance. Our

experimental results show that coding overhead does not significantly affect the

promising performance gains of coded multicasting in small-scale real-world sce-

narios, practically validating its potential to become a key next generation 5G

technology.
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2.4 Video Coding Using Receiver-Side Memory

and Index Coding

Conventional video coding uses motion compensated block based interframe pre-

diction and transform coding with the Discrete Cosine Transform (DCT) or similar

transforms. This assumes the presence of a decoded picture buffer (DPB) at the

encoder and decoder that contains a set of frames used to search for the best

matching reference block(s) to the block in the current frame. These blocks are

used to produce a predictor for the current block, and the motion vector and

frame index in the DPB are encoded to identify the reference block. The predic-

tion residual is transformed, quantized and entropy coded. DPBs store only a few

whole frames(usually 32 or less) that are retained in memory for a relatively short

period of time. A frame at the start of a group of pictures or one which cannot be

efficiently encoded by interframe prediction (for example, due to a scene change) is

encoded by intra-prediction i.e. a block is encoded using a prediction signal from

neighboring blocks that are likely to be similar. An intracoded frame requires

many more bits to encode than an inter-coded frame.

Digital Video Recorders (DVRs) are commonly used to record and store video

downloaded from cable and satellite sources. These represent a large receiver-

side memory cache that contains video data which is similar to videos that are

likely to be downloaded by the consumer in the future. For example, a viewer

may watch weekly episodes of a TV serial while previous episodes are still in the

DVR, or recurring sports events at a given venue during a series. This presents an

opportunity to exploit textures, images etc. that occur frequently in a particular

video sequence, such as a TV serial, as reference signals when similar video is

downloaded in the future. These signals may occur too far apart to be retained in

a conventional DPB. For example, a scene may occur in an episode and may recur

in a later episode. Receiver-side memories commonly occur in PCs, smartphones,

digital TVs and other consumers of video, and can use the same principle.

Using such long range reference predictors should be especially useful for frames

that are conventionally intra-coded: these may be encoded similar to conventional

inter-coded frames using as reference the frames from previous episodes stored in

the DVR. This will result in bit rate comparable to an inter-coded frame. However
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such predictors should also be useful to improve the coding efficiency of inter-coded

frames due to better matches between the predictor signal and the pixel blocks

being predicted. In this Chapter, we propose the use of video data present in

persistent receiver-side memories as distributed side information for video coding.

We utilize index coding to efficiently transmit coded messages that satisfy the new

video demanded by multiple receivers.

2.5 Part I Outline

The first part of this dissertation is organized as follows.

In Chapter 3 we provide an overview of the caching-aided coded multicast

technique, including state of the art schemes and the network model used in our

works. In Chapter 4 and in Chapter 5 we propose two achievable caching and coded

delivery scheme, along with the general upper bound of the average achievable

rate. Each scheme is based on a proposed polynomial-time coloring algorithm.

In Chapter 6 we provide a fully working prototype implementation of the most

competitive caching and coded delivery scheme. Then, in Chapter 7, we propose

an achievable caching and coded delivery scheme based on library correlation-

aware.
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Chapter 3

Caching-Aided Coded Multicast

The use of caching together with smart offloading strategies in a RAN composed

of evolved NodeBs (eNBs), AP (e.g., WiFi), and UEs, can significantly reduce the

backhaul traffic and service latency. In this context, a shared link caching network

(SLCN) topology can be identified at different levels of the mobile network. Indeed,

a radio cell constitutes a SLCN where the eNB acts as the source node connected

to the UEs via a shared multicast link. In addition, a SLCN can also be formed by

a core network (CN) server (source node) connected to a set of eNBS via a shared

wireless backhaul. In both cases, user nodes are equipped with storage resources

for content caching. Accordingly, we focus on the analysis and implementation of

a SLCN composed of a source node, with access to a library F of m binary files,

connected to n user nodes via a shared multicast link. Each user node is equipped

with a cache of storage capacity equivalent to M files, and can make up to L file

requests according to a Zipf demand distribution. A multicast link is a shared

channel in which any transmission can be overheard by all receivers.

A caching-aided coded multicast scheme is performed over two phases: i) the

caching phase, where the source node populates the user caches with appropriate

functions of the content library, and ii) the delivery phase, where the source forms

a multicast codeword to be transmitted over the shared link in order to meet the

users’ content demands. These phases are generic for both coded and uncoded

schemes, but naively performed in the uncoded case. In fact, when relying on

uncoded or naive multicasting during the delivery phase, it is well known that the

optimal caching strategy is to cache the top M most popular files at each user
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cache. This is however, in general, far from optimal when coding can be used in

the delivery phase [30]. In the following, we discuss the potential of caching-aided

code design and illustrate its major advantages compared to the optimal caching

policy under uncoded (naive) multicasting.

3.1 Network Model and Problem Formulation

We consider a network consisting of a source node with access to a content library

F = {1, · · · ,m} of files with size F bits, and n user nodes U = {1, · · · , n}. We

assume the source node communicates to the user nodes through a shared multicast

link of finite capacity C. Without loss of generality, we can assume C = F bits/unit

time and measure the transmission rate of the scheme in units of time necessary

to deliver the requested messages to the users. User u ∈ U has a storage capacity

of size MuF bits (i.e., Mu files). The channel between the source and all the users

follows a shared error-free deterministic model. User u requests Lu files, each of

which follows the probability distribution qf,u, where qf,u ∈ [0, 1] and
∑m

f=1 qf,u = 1

(e.g., file f is requested with probability qf,u by one request made by user u.). All

the requests (by one user or across users) are assumed to be independently made.

We denote Q = [qf,u], u = 1, · · · , n, f = 1, · · · ,m, as the demand distribution.

Let the requested files by user u be fu = {f1,u, f2,u, · · · , fLu,u}. One example

of the network model is shown in Fig. 3.1. The goal is to design a content

distribution scheme (i.e., determine the information stored in the user caches and

the multicasted codeword to be sent to all users through the shared link) such

that all demands are satisfied with probability 1 and the expected rate R̄(Q) is

minimized.1 The expectation is over the demand distribution Q. We denote the

minimum achievable expected rate by R̄∗(Q).

3.2 RAndom Popularity-based caching

Each binary file f ∈ F is divided into Bf equal-size packets or chunks. Given the

caching distribution {pf}, with
∑m

f=1 pf = 1, each user caches chunks of file f with

1The expected rate is defined as the average minimum number of file transmissions, which is
inversely proportional to the average throughput

18



Mul$cast	  medium

wireless backhaul

Multiple Requests
Single Request

Cache

Served by the Macro Base 
Station

Served by Small Cell Base Stations

Figure 3.1: An example of the network model, which consists of a source node
(base station in this figure) having access to the content library and connected
to the users via a shared bottleneck (multicast) link. Each user (small cell base
station) may have different cache size, request files according to its own demand
distribution and different number of requests.

probability pf . That is, each user caches a number of chunks pfMBf (pf ≤ 1/M)

of file f chosen uniformly at random. It is important to note that the randomized

nature of the selection process allows users to cache different sets of chunks of the

same file, shown to be key in creating coded multicast opportunities during the

delivery phase. In [30], the authors showed that the optimal caching distribution

can be approximated by a truncated uniform distribution pf = 1/m̃,∀f ≤ m̃ and

pf = 0,∀f > m̃, without affecting order-optimality2, and referred to this caching

policy as random least frequently used (RLFU). Compared to the least frequently

used (LFU) caching policy (best option under naive multicasting) where the same

most popular files are entirely cached at each user, RLFU maximizes the amount

of distinct packets collectively cached by the network. The caching placement is

shown in Algorithm 1.

3.3 Coded multicasting

A simple example in Fig. 3.2 illustrates the key benefits of coded multicasting dur-

ing the delivery phase. The network is composed of a source and 3 user nodes re-

2Details about the selection of the optimal m̃ are given in [30] (see section IV).
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Algorithm 1 Distributed Random Caching Algorithm

1: for all f ∈ F do
2: Each user u caches a subset (Cu,f ) of pf,uMB distinct packets of file f uniformly

at random.
3: end for
4: return C = {Cu,f , u = 1, · · · , n, f = 1, · · · ,m}.

questing files from a library ofm = 4 binary files F = {A,B,C,D}. Each file (e.g.,

video segment) is divided into 2 chunks, yielding a library of chunks C = {A1, A2,

B1, B2, C1, C2, D1, D2}. During the caching phase, users 1, 2, and 3 randomly

fill their caches with chunks {A1, B2, D2}, {A2, B1, D2}, and {A2, B2, D1}, respec-
tively. During the delivery phase, at a given request round, users 1, 2, and 3 make

requests for video segments A, B, and D, respectively. Under an uncoded naive

multicasting transmission scheme, the source needs to transmit the missing chunks

A2, B2, and D2 over the shared multicast link using 3 time slots. In contrast, by

employing coded multicasting, the source can mix the three chunks A2, B2 and D2

via a XOR operation (binary addition) and multicast the coded chunk A2⊕B2⊕D2

using only one time slot. Clearly, in this case, coded multicasting reduces the num-

ber of transmissions (and hence the number of delivery time slots) by a factor of

three.

As illustrated in the above example, a given user is able to decode its requested

chunk from a mixture of combined chunks if and only if it has knowledge of all

other combined chunks. Such a problem can be seen as an IC problem [12], and can

be described by what is referred to as the conflict graph [30]. The conflict graph

is constructed such that each graph vertex corresponds to one requested chunk,

and an edge between two vertices is created if: i) they correspond to different

requested chunks and ii) for each vertex, the associated chunk is not included in

the cache of the user requesting the chunk associated with the other vertex. Notice

that an edge between two vertices indicates that their associated chunks must be

separately transmitted, while non-connected vertices can be modulo summed via

XOR operation [12]. The goal is to find the best chunk combinations such that

the total number of transmissions is minimized. A common approach, referred to

as chromatic index coding (CIC) [30], is to compute a minimum graph coloring

of the IC conflict graph, where the goal is to find an assignment of colors to the
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vertices of the graph such that no two connected vertices have the same color, and

the total number of colors is minimized. The multicast codeword is constructed

by generating sub-codewords obtained XORing the chunks with the same color,

and then concatenating the resulting sub-codewords. The conflict graph of the

example given in Fig. 3.2 is illustrated in the top left corner of the figure. The

graph consists of 3 vertices corresponding to the three requested packets A2, B2,

andD2. There are no edges between the vertices of the graph since, for each vertex,

the associated chunk is included in the cache of the users associated with the other

vertices. Therefore, all vertices can be assigned the same color and binary added

into a single coded transmission, as shown in 3.2.

The work in [30] showed that the combined use of RLFU caching and CIC

coded multicasting is order-optimal3 under any Zipf demand distribution, and that

RLFU-CIC provides multiplicative caching gains, that is, the per-user throughput

scales linearly or super-linearly with the cache size. In order to prove this result, the

authors resort to a polynomial-time approximation of CIC, referred to as greedy

constrained coloring (GCC). While GCC exhibits polynomial complexity in the

number of users and packets, both CIC and GCC can only guarantee the promising

multiplicative caching gain when the number of packets per file grows exponentially

with the number of users, significantly limiting their practical performance [27].

Subsequently, the works in [84] and [55] extended the RLFU-CIC and RLFU-

GCC schemes to the non-homogeneous SLCN and proposed two improved coded

multicasting algorithms: i) the greedy randomized algorithm search procedure

(GRASP) based on a greedy randomized approach, and ii) the hierarchical greedy

coloring (HGC). These algorithms have been shown to recover a significant part

of the multiplicative caching gain, while incurring a complexity at most quadratic

in the number of requested packets.

3.4 Decoding phase

From the observation of the received multicast codeword and its cached content,

each user has to decode its intended chunks via its own decoding function. In order

3Order-optimal in the sense that the number of transmissions needed to satisfy the user
demands scales (in number of users, number of files, and memory size) as the optimal scheme.
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1) The users inform the source about their requests
2) The source performs coding design and broadcast

the coded packet
3) Each user reads the overhead and decide whether to

decode the received packet or not

Figure 3.2: Joint design of caching-aided coded multicasting in a 3-user SLN where
each user is equipped with a storage capacity of 1.5 file and requests one file from
a library with 4 binary files.

to guarantee decoding, the receiver needs to be informed (e.g., via a packet header

that carries all necessary information, as shown in Fig. 3.3.a) of the sub-codewords

in the concatenated multicast codeword that contain any of its intended chunks.

For each of the identified sub-codewords, the receiver obtains its intended chunks

by performing the simple binary addition.

In the next section, we describe a fully working prototype implementation that

includes the design of the required packet header to ensure full decodability.
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Figure 3.3: An example of the proposed frame structure.
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Chapter 4

An Efficient Coded Multicasting
Scheme Preserving the
Multiplicative Caching Gain

In this Chapter, we address a non-homogenous caching network with a shared

multicast link, where users make requests according to possibly different demand

distributions and have possibly different cache sizes (see Fig. 4.1 as an example).

The considered network is a generalization of the one considered in [51], where all

the users are assumed to have the same demand distribution and equal storage

capacity. The contributions of this Chapter are as follows. First, we extend RAP-

CIC and RAP-GCC to the non-homogenous shared link network and quantify their

average performance. Next, we focus on the regime of finite file packetization and

numerically show that neither GCC nor the coded delivery scheme proposed in

[65], can guarantee the promising performance. Consequently, we introduce a

novel algorithm based on a greedy randomized approach referred to as Greedy

Randomized Algorithm Search Procedure (GRASP), which is shown to recover a

significant part of the multiplicative caching gain, while incurring a complexity at

most quadratic in the number of packets.

The Chapter is organized as follows. The achievable caching and coded de-

livery scheme, along with the general upper bound of the average achievable rate

are presented in Section 4.1. Section 4.2 describes the proposed polynomial-time

coloring algorithm. Finally, Section 4.3 presents the simulation results and related

discussions, and we conclude the Chapter in Section 4.4.
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having all the m

files in the library
Each user makes requests
according to its own
demand distribution

Different storage capacity
for each user

Figure 4.1: An example of the network model, which consists of a source node
(base station in this figure) having access to the content library and connected to
the users via a shared bottleneck (multicast) link. Each user may have different
cache size and request files according to its own demand distribution.

4.1 Achievable Scheme

In this section, we present an achievable scheme based on random popularity-based

caching and index coding based delivery.

4.1.1 Coded Multicast Delivery

Our coded delivery scheme is based on chromatic number index coding [11, 51].

The (undirected) conflict graph HM,W = (V , E), where V and E denote the set of

vertices and edges of HM,W, respectively, is constructed as follows:

• Consider each packet requested by each user as a distinct vertex, i.e., if the

same packet is requested by N > 1 users, it results in N distinct vertices.

• Create an edge between vertices v1, v2 ∈ V if: 1) they do not represent the

same packet, and 2) v1 is not available in the cache of the user requesting

v2, or v2 is not available in the cache of the user requesting v1.
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Example 1 We consider a network with n = 3 users denoted as U = {1, 2, 3} and
m = 3 files denoted as F = {A,B,C}. We assume M = 1 and sub-packetize each

file into three packets. For example, A = {A1,A2,A3}. Let pA,u = 2
3
, pB,u = 1

3

and pC,u = 0 for u ∈ {1, 2, 3}, which means that two packets of A, one packet

of B and none of C will be stored in each user’s cache. We assume a caching

realization M is given by: user 1 caches {A1,A2,B1} (M1,A = {A1,A2},M1,B =

{B1},M1,C = ∅); user 2 caches {A1,A3,B2}; user 3 caches {A1,A2,B3}. We let

user 1 request A, user 2 request B and user 3 request C (f = {A,B,C}) such that

W = {A3,B1,B3,C1,C2,C3}. The conflict graph is shown in Fig. 4.2.

A3

C1

B3

C2

C3

B1

Figure 4.2: An illustration of the conflict graph, where n = 3, U = {1, 2, 3}, m = 3,
F = {A,B,C} and M = 1. Each file is partitioned into 3 packets. For example,
A = {A1,A2,A3}. The caching realization M is that user 1 caches {A1,A2,B1};
user 2 caches {A1,A3,B2}; user 3 caches {A1,A2,B3}. The requests vector is
f = {A,B,C}. Hence, W = {A3,B1,B3,C1,C2,C3}. The color for each vertex in
this graph represents a vertex coloring scheme achieved by the algorithm given by
Fig. 2. Note that in this case, this vertex coloring is the minimum vertex coloring
and the resultant number of packet transmissions is 5. ♦

Next, given a minimum vertex coloring of the conflict graph HM,W (see Fig. 4.2),

the corresponding index coding scheme transmits the modulo sum of the packets

(vertices in HM,W) with the same color. Therefore, given M and W, the total

number of transmissions in terms of packets is given by the chromatic number

χ(HM,W). This achieves the transmission rate χ(HM,W)/B. In the following we

refer to this coding scheme scheme as CIC (chromatic index coding).
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4.1.2 Achievable Expected Rate

Given n,m,M and the popularity distribution Q, our goal is to find the caching

distribution P that minimizes the expected rate R̄(P,Q)
∆
= E[χ(HM,W)/B].1 The

upper bound of R̄(P,Q) is given by the following theorem:

Theorem 1 For any given m, n, M , and Q, when B → ∞, the expected rate

R̄(P,Q) achieved by a content distribution scheme that uses caching policy in

Fig. 1 with caching distribution {P = [pf,u] :
∑m

f=1 pf,u = 1,∀u; pf,u ≤ 1/Mu,∀f, u},
and CIC transmission, satisfies

R̄(P,Q) ≤ R̄ub(P,Q)
∆
= min{ψ(P,Q), m̄}, (4.1)

with high probability.2 In (4.1),

m̄ =
m∑

f=⌊minu{Mu}⌋+1

(
1−

n∏

u=1

(1− qf,u)

)
, (4.2)

and

ψ(P,Q) =
n∑

ℓ=1

∑

Uℓ∈U

m∑

f=1

∑

u∈Uℓ

ρf,u,Uℓ(1− pf,uMu)
n−ℓ+1(pf,uMu)

ℓ−1,

(4.3)

where

ρf,u,Uℓ
∆
=

P(f = arg max
fu∈f(Uℓ)

(pf,uMu)
ℓ−1(1− pf,uMu)

n−ℓ+1),

(4.4)

denotes the probability that f is the file whose pf,u maximizes the term (pf,uMu)
ℓ−1(1−

pf,uMu)
n−ℓ+1) among f(U ℓ) (the set of files requested by U ℓ). �

1HM,W denotes the random conflict graph, which is a function of the random caching and
demand configurations, M and W, respectively.

2The term ”with high probability” means that limF→∞ P(R̄(P,Q) ≤ R̄ub(P,Q)) = 1.
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Theorem 1 is proved in Appendix B.

Observe that under homogeneous popularity and cache size, qf,u = qf ,Mu =

M, ∀u ∈ U , then pf,u = pf ,∀u ∈ U , and (4.2) and (4.3) become

m̄ =
m∑

f=⌊M⌋+1

(1− (1− qf )n) , (4.5)

and

ψ(P,Q) =
n∑

ℓ=1

(
n

ℓ

) m∑

f=1

ρf,ℓ(1− pfM)n−ℓ+1(pfM)ℓ−1,

(4.6)

where ρf,ℓ
∆
= P(f = argmax

j∈Fℓ
(pjM)ℓ−1(1 − pjM)n−ℓ+1) denotes the probability

that file f is the file whose pf maximizes the term
(
(pjM)ℓ−1(1− pjM)n−ℓ+1

)

among F ℓ (the set of files requested by an arbitrary subset of users of size ℓ). Eq.

(4.6) is indeed the upper bound used in [51] to obtain the order-optimal caching

distribution for the homogenous network model.

Using the generalized upper bound R̄ub(P,Q) in Theorem 1, we can obtain the

desired caching distribution for a wide class of heterogeneous network models. We

use P∗ to denote the caching distribution that minimizes R̄ub(P,Q).

4.2 Polynomial-time Algorithms

In this section, we first recapitulate the polynomial-time coded multicasting used

in [51] to quantify the order-optimal performance of homogeneous shared link

networks by letting the number of packets B → ∞. This scheme is based on a

greedy constrained coloring (GCC) approach. In Appendix B, we prove that when

B → ∞, GCC achieves the upper bound of the average rate for heterogeneous

shared link networks given by (4.1). It is also easy to verify that GCC achieves

the same performance as the algorithm given in [65] for the worst-case demand

setting.

We then present a novel coded multicasting algorithm based on a greedy ran-

dom coloring approach that exhibits lower polynomial-time complexity than GCC

and refer to it as GRASP (Greedy Randomized Algorithm Search Procedure). In
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Section 4.3, we show that for finite file packetization, while GCC loses the multi-

plicative caching gain, GRASP is still able to approach the limiting performance

and recover a significant part of the multiplicative caching gain.

4.2.1 GCC (Greedy Constrained Coloring)

The GCC algorithm works by computing two valid colorings of the conflict graph

HM,W, referred to as GCC1 and GCC2. GCC compares the rate achieved by the

two coloring solutions and constructs the transmission code based on the coloring

with minimum rate.3

Algorithm 2 GCC1

Let V̂ = V;
Let C = ∅;
c1 = ∅;
while V̂ ̸= ∅ do

Pick an arbitrary vertex v in V̂. Let I = {v};
for all all v′ ∈ V̂/{v}→ do

if (There is no edge between v′ and I ∩ Kv′ = Kṽ : ∀ṽ ∈ I) then
I = I ∪ v′;

end if
end for
Color all the vertices in I by c /∈ C;
Let c1[I] = c;
V̂ = V̂ \ I;

end while
return (c1);

The greedy constrained coloring algorithm GCC1 (alg. 2) achieving (eq. 4.3)

for large enough F . Kv denotes the set of users that are either caching or requesting

packet v.

GCC1 computes a coloring of the conflict graph HM,W as described in Alg. 2.

Note that both the outer while-loop starting at line 4 and the inner for-loop starting

at line 6 iterate at most |V| times, respectively. The operation in line 7 has

complexity O(n). Therefore, the complexity of GCC1 is O(n|V|2) or equivalently
O(n3B2) since |V| ≤ nB, which is polynomial in n, |V| (or n,B).

3Recall that the transmission code (index code) is constructed by the modulo sum of all the
vertices (packets) in HM,W with the same color.
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On the other hand, GCC2 computes the minimum coloring of HM,W subject

to the constraint that only the vertices representing the same packet are allowed

to have the same color. In this case, the total number of colors is equal to the

number of distinct requested packets, and the coloring can be found inO(|V|2). It is
immediate to see that this scheme corresponds to the naive (uncoded) multicasting

transmission of all requested packets.

In Appendix B, we prove that GCC achieves the upper bound of the aver-

age rate for heterogeneous shared link networks given by (4.1) (when F → ∞).

However, as will be shown in Section 4.3, for finite F , GCC loses the promising

multiplicative caching gain.

4.2.2 GRASP (Greedy Randomized Algorithm Search Pro-
cedure)

In this section, we design an efficient metaheuristic to find suboptimal good solu-

tions of the coded multicasting scheme (coloring problem) given in Section 4.1.1

in reasonable running times (lower than GCC), and that allow preserving the

multiplicative caching gain.

The graph coloring problem is a well known NP-complete problem [43]; in-

deed, given an undirected graph H = (V , E), Garey and Johnson have shown that

obtaining colorings using s · χ(H) colors, where s < 2, is NP-hard [42]. So far,

Column Generation-based and Branch-and-Price are reputed the most efficient

exact methods to solve the problem. An implementation of a Branch-and-Price-

and-Cut approach was proposed by Hansen et al. [44], who in 2009 found a

family of valid inequalities that do not break the structure of the pricing sub-

problem. Despite this interesting idea, the practical impact of this approach is

limited. Regarding polynomial-time approximation frameworks, one of the most

recent results is an algorithm to color any k-colorable graph (for k constant) with

O(n
3
8 polylog(n)) colors [15]. It is based on examining second-order neighborhoods

of vertices, rather than just immediate neighborhoods of vertices as in previously

proposed approaches. Nevertheless, both exact and approximation algorithms pro-

posed for the coloring problem are able to solve consistently only small instances,
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with up to 80 vertices. Thus, the complexity of the problem requires the develop-

ment of heuristics for large problem instances. Among the hundreds of algorithms

that have been proposed in literature, the most recent, effective, and original con-

tributions for the heuristic solution of the problem include a Tabu Search-based

(TS) algorithm and a Variable Neighborhood Search (VNS). The TS-based al-

gorithm is called MIPSCLR (MInimal-state Processing Search algorithm for the

graph CoLoRing problem) and was proposed in 2000 by Funabiki and Higashino

[41]. It combines a Tabu Search technique that considers a number k of available

colors, and applies solution recombination technique in an attempt to expand a

feasible partial coloring to a complete coloring. The Variable Neighborhood Search

(VNS) was proposed by Avanthay et al. [4]. It is a technique based on the explo-

ration of a dynamic neighborhood model. When the algorithm is trapped in a local

optimum, the search continues in a new and increasingly distant neighborhood of

the current best found solution, which is usually not locally optimal with respect

to the new neighborhood. In 2001, Laguna and Mart̀ı [62] proposed a GRASP

to find suboptimal solution on instances characterized by sparse graph. GRASP

[36, 37, 38, 39, 40] is acronym of Greedy Randomized Algorithm Search Procedure

and its general framework will be detailed later in this Chapter.

To solve in reasonable running times problem instances characterized by any

graph topologies and by using a variable number of colors (and not a constant num-

ber k, as done in previous works), we propose a GRASP, whose general framework

is described in the following:

1. A GRASP performs a certain number of iterations, until a stopping criterion

is met (such as, for example, the total run of MaxIterations iterations or

the a fixed running time);

2. At each GRASP iteration,

(a) a greedy-randomized adaptive solution c is built;

(b) starting from c as initial solution, a local search phase is performed

returning a locally optimal solution c∗;
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3. At the end of all GRASP iterations, the best locally optimal solution cbest

(i.e., the solution corresponding to the best function objective value f(cbest)

is returned as final solution and the algorithm stops.

Our GRASP differs from the GRASP proposed by Laguna and Mart̀ı [62] in

two main aspects: 1) it is able to tackle problem instances characterized by any

graph topology, density/sparsity, and any size; 2) the local search strategy checks

for redundant color focusing on each vertex, one at the time; while Laguna and

Mart̀ı’s GRASP iteratively joins a pair of independent sets and focuses only on

illegal vertices (i.e., those vertices that after the union result colored with the same

color as one of their adjacent vertex).

Algorithm 3 GRASP GraphColoring(MaxIterations, V , E , d, Adj(·), f(·))
cbest := ∅; f(cbest) := +∞;
V̂ := sort(V);
for k = 1 to MaxIterations→ do
C := ∅;
β := random[0, 1];
c := BuildGreedyRandAdaptive(β, V̂, E , d, Adj(·), f(·), C)
c∗ := LocalSearch(V̂, E , c, f(c), C);
if (f(c∗) < f(cbest)) then

cbest := c∗;
f(cbest) := f(c∗);

end if
end for
return (cbest);

Alg. 3 depicts the pseudo-code of our GRASP heuristic for the Graph Coloring

Problem. In HM,W, for each vertex i ∈ V , Adj(i) = {j ∈ V | [i, j] ∈ E}. In the

following subsections, we will describe the construction solution method and the

local search method performed by our algorithm.

4.2.2.1 Building A Solution

Let Q be a set of |V| candidate colors. Then, the construction phase assigns to

each vertex i ∈ V a color c ∈ Q in such a way that c is not assigned to any vertex

adjacent to vertex i and that the total number of colors utilized is attempted to

be as much smaller as possible.
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Algorithm 4 BuildGreedyRandAdaptive(β, V̂ , E , d, Adj(·), f(·), C)
c := ∅;
for j = 1 to |V|→ do

RCL := MakeRCL (β, V, E , d, c);
i := SelectIndex (RCL);
c := GetColor (V, E , i, C, Adj(·), c);
c[i] := c;
if (c /∈ C) then
C := C ∪ {c};
f(c) := |C|;

end if
end for
return (c);

Algorithm 5 MakeRCL(β, V , E , d, c)
gmin := min

i∈V\c
d(i);

gmax := max
i∈V\c

d(i);

τ := gmin + [β · (gmax − gmin)];
RCL := {i ∈ V \ c | d(i) ≥ τ};
return (RCL);

Alg. 4 shows the pseudo-code of the construction procedure and the pseudo-

code of the functions in Alg. 4 are shown in Alg. 5 and 6. To build a feasible

solution, as shown in Alg. 4, starting from an empty solution (line 1) the GRASP

construction phase performs in for-loop in lines 2–11 |V| iterations assigning at

each iteration a color to a not yet colored vertex and proceeding in a greedy,

randomized, and adaptive manner. In more detail, at each iteration, the choice

of the next vertex to be colored is determined by ordering all candidate vertices

(i.e., those that are still uncolored) in a candidate list W = V \ c (see Alg. 5)

with respect to a greedy function g : W ↦→ R that measures the myopic benefit of

selecting each vertex and that in our case is related to the degree of a candidate

vertex. The construction is adaptive because the benefits associated with every

candidate vertex are updated at each iteration of the construction phase to reflect

the changes brought on by the selection of the previous vertex. The probabilistic

component is characterized by randomly choosing one of the best candidates in the

list W , but not necessarily the top candidate. The list of best candidates is called
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Algorithm 6 GetColor(V , E , i, C, Adj(·), c)
L := ∅;
for all each j ∈ Adj(i) L := L ∪ {c[i]} do

if (C \ L ≠ ∅) then
c′ := SelectColor (C \ L);

else
c′ := NewColor (C);

end if
end for
return (c′);

the Restricted Candidates List (RCL). We will see later how to build the RCL

(see Alg. 5) selecting the best candidates to be inserted into the list (line 3). Once

randomly selected one of the best candidate from the RCL (line 4), that vertex

will be assigned a color according to the colors assigned to its adjacent vertices

(line 5).

j

i

k

x y

(a) Scenario
6.i.: Adj(i) =
{j, k, x, y}, C = ∅.
Then, c =yellow
and C = {yellow}.

j

i

k

x y

(b) Scenario
6.ii.: Adj(i) =
{j, k, x, y},
C = {yellow,blue}.
Then, c =yellow.

j

i

k

x y

(c) Scenario
6.iii.: Adj(i) =
{j, k, x, y}, C =
{blue,green,red,gray}.
Then,
c =yellow and
C = C ∪ {yellow}.

j

i

k

x y

(d) Scenario
6.iv.: Adj(i) =
{j, k, x, y}, C =
{blue,green,red,gray}.
Then, c =blue.

Figure 4.3: The four possible scenarios that may occur once selected a vertex i to
be colored during the construction phase.

The construction phase performs the following steps (shown by Alg. 4, 5 and

6).

Let d(i) = |Adj(i)|, for all i ∈ V , be the degree of vertex i. Let c = ∅ be

the solution under construction (initially empty), i.e., the set of vertices already
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assigned to a color, and let C = ∅ (initially empty) be the set of colors that are

associated with at least a vertex in c. At each iteration, the following quantities

are computed and operations performed:

1. gmin, the minimum greedy value:

gmin = min
i∈V\c

d(i);

2. gmax, the maximum greedy value:

gmax = max
i∈V\c

d(i);

3. a threshold value τ :

τ = gmin + [β · (gmax − gmin)] , where β ∈ [0, 1];

4. the RCL as the subset of candidate uncolored vertices whose degree is at

least τ :

RCL = {i ∈ V \ c | d(i) ≥ τ};

5. a vertex i is randomly selected from the RCL (i = SelectIndex(RCL) in

Alg. 4).

Note that, from the value of β ∈ [0, 1] depends the percentage of greediness

versus randomness in the choice of the vertices to be inserted in the RCL

at each iteration. In fact, for β = 1, the choice is totally greedy and only

vertices with degree gmax are inserted. On the contrary, for β = 0, the choice

is totally random and all candidate vertices are inserted (i.e., RCL =W);

6. once selected vertex i, its adjacent vertices are analyzed and the four possible

scenarios that may occur are the following:

i. all adjacent vertices are still uncolored and the set C = ∅: in this case,

a new color c is assigned to vertex i and C = C ∪ {c} (Fig. 4.3(a));
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ii. all adjacent vertices are still uncolored and the set C ̸= ∅: in this case,

vertex i is colored with the first color c ∈ C available (Fig. 4.3(b));

iii. at least one adjacent vertex is colored with a color c ∈ C and all currently

used colors c ∈ C are already assigned to at least an adjacent vertex:

in this case, vertex i is colored with a new color c′ and C = C ∪ {c′}
(Fig. 4.3(c));

iv. at least one adjacent vertex is colored with a color c ∈ C and there is a

color c′ ∈ C that has not been assigned to any adjacent vertex: in this

case, vertex i is colored with color c′ (Fig. 4.3(d)).

7. vertex i is inserted into the solution under construction (c[i] = c′ or c[i] = c,

according to scenarios 6.i.–6.iv.) and the objective function value coherently

updated (i.e., f(c) = |C|).

4.2.2.2 Local Search

Solutions generated by the GRASP construction are not guaranteed to be locally

optimal with respect to simple neighborhood definitions. Given a solution c, the

neighborhood structure N (c) relates c to a subset of solutions N (c) “close” to c

and c is said to be locally optimal if there is no better solution inN (c). It is almost

always beneficial to apply a local search to attempt to improve each constructed

solution. A local search algorithm works in an iterative fashion by successively

replacing the current solution by a better solution in the neighborhood of the

current solution. It terminates when no better solution is found in the current

neighborhood. In our GRASP, the local search algorithm, whose pseudo-code is

reported in Alg. 7, has the purpose of checking redundancy of each color c ∈ C, in
order to eventually decrease the current objective function value |C|.

In more detail, in loop for in lines 1–19 in Alg. 7, the local search iteratively

for each color c ∈ C computes the set Gc of all vertices colored with color c (line

2) and performs the following steps:

1. for each vertex i ∈ Gc, it spans Adj(i), i.e., the vertices adjacent to vertex

i: if there is a color c′ ∈ C, c′ ̸= c, not assigned to any adjacent vertex

j ∈ Adj(i), then vertex i becomes colored with color c′;
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Algorithm 7 LocalSearch(V̂ , E , c, f(c), C)
for all each c ∈ C→ do
Gc := {i ∈ V | H[i] = c};
B:=∅;
ĉ := c;
for all each i ∈ Gc→ do
A := ∅;
for all each j ∈ Adj(i) A := A ∪ {c[j]} do

if (C \ A ≠ ∅) then
c′ := SelectColor (C \ A);
ĉ[i] := c′;
B := B ∪ {i};

end if
end for
if (|B| = |Gc|) then

c := ĉ;
C := C \ {c};
f(c) := |C|;

end if
end for

end for
return (c);

2. color c is removed from the set C if and only if in Step 1 it has been possible

to replace c associated with each vertex i ∈ Gc with some color c′, c′ ̸= c.

4.2.2.3 Computational complexity of the proposed GRASP

Given the input undirected graph HM,W = (V , E), the complexity analysis of the

designed GRASP algorithm to solve the Graph Coloring Problem of is as follows:

1. Sorting the set V according to a non-ascending order of the degree of the

vertices has a computational time equal to O(|V| log |V|);

2. The construction phase runs |V| iterations and at each iteration it performs

the following steps:

• construction of the RCL: since gmin, gmax, and τ can be computed in

O(1) (the vertices are sorted according to their degree), to identify the
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candidate vertices to be inserted in the RCL (according to the rule

described in Section 4.2.2.1) requires O(|V|);

• color assignment: to this end, it must be scanned the adjacent vertices

of vertex i randomly extracted from the RCL in order to choose the

color that will be assigned to it in an appropriate way. This task re-

quires O(|Adj(i)|). Therefore, summing all over vertices i ∈ V to be

colored, we obtain

|V|∑

i=1

|Adj(i)| = 2 · |E|. It is clear that the computa-

tional complexity of the construction procedure is equal to O(|E|).

3. For each used color c ∈ C and for each i ∈ Gc, the local search procedure

analyzes the adjacent vertices of vertex i in order to attempt to remove color c

from the set C. Since |C|+ |Gc| = O(|V|), this procedure has a computational

complexity equal to O(|E|).

Step 1) is performed only once, at the beginning of the algorithm. Since step 2)

and step 3) are performed a fixed number of iterations (MaxIterations), it results

that the overall computational complexity of the designed algorithm to solve the

Graph Coloring problem has a computational complexity equal to:

O(|V| log |V|+ MaxIterations ·max{|V|, |E|})

= O(|V| log |V|+ MaxIterations · |E|). (4.7)

Remark: we can see that complexity of GRASP is O(|V|2), which is a factor

of n lower than the complexity (O(n|V|2)) of GCC achieving R̄ub(P,Q) for large

enough B.

4.3 Simulations and Discussion

In this section, we numerically analyze the performance of the two achievable

schemes illustrated in Section 4.2 for finite file packetization. Specifically, assuming

the distributed random popularity-based caching policy in Alg. 1, we compare the

average performance of GCC and GRASP when files are partitioned into a finite

number (B) of packets. For comparison, we also plot 1) the performance of LFU
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(Least Frequently Used),4 shown to be optimal in uncoded networksand 2) the

performance of GCC for infinite packetization (B →∞), as given in Theorem 1.

For simplicity and to illustrate the effectiveness of GRASP, we consider a ho-

mogeneous network scenario, in which users request files according to a Zipf pop-

ularity distribution with parameter γ ∈ {0.2, 0.6} and all caches have size M files.

For all considered schemes, the caching distribution P∗ is obtained by minimizing

R̄ub(P,Q) in (4.1) among all P described by a m-dimensional vector taking value

in { 1
m̃
, 0}.5,

Further, we assume that when using GCC or GRASP, the source node pre-

evaluates the performance of LFU and chooses the minimum accordingly. Hence,

denoting by RLFU , RGCC and RGRASP the average rate achieved by LFU, GCC

and GRASP, respectively, Fig. 4.4 plots the performance of GCC and GRASP as

min{RLFU , RGCC}, and min{RLFU , RGRASP}, respectively.
Fig. 4.4(a), (b) and (c) plot the average rate for a network with n = 10 users,

m = 250 files and Zipf parameter γ = 0.2. Observe how the significant caching

gains (with respect to LFU) quantified by the order-optimal upper bound are com-

pletely lost when using GCC with finite packetization B = 20, and only slightly

recovered as the packetization increases to B = 100 and B = 200. On the other

hand, observe how GRASP remarkably preserves most of the promising multi-

plicative caching gains for the same values of file packetization. For example, in

Fig. ??, ifM doubles fromM = 50 toM = 100, then the rate achieved by GRASP

essentially halves from 4.2 to 2.2. For the same regime, it is straightforward to

verify that neither GCC nor LFU exhibits this property.6 Fig. 4.4(d) illustrates a

scenario with higher popularity skewness, e.g., γ = 0.6. Observe how, also in this

scenario, a finite number of packets (B = 50) completely limits the gains of GCC.

4LFU discards the least frequently requested file upon the arrival of a new file to a full cache
of size Mu files. In the long run, this is equivalent to caching the Mu most popular files.

5This constraint on the caching distribution introduced in [51], originates a scheme referred
to as Random Least-Frequently-Used (Random LFU), which approximates RAP and generalizes
the well known LFU caching scheme. In Random LFU, each user just caches packets from the
(carefully designed) m̃ most popular files in a distributed and random manner.

6While LFU can only provide an additive caching gain, additive and multiplicative gains may
show indistinguishable when M is comparable to the library size m. Hence, one needs to pick a
reasonably small M (mn < M ≪ m) to observe the multiplicative caching gain of GRASP.
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On the other hand, GRASP is still able to preserve significant gains. For exam-

ple, when M doubles from M = 70 to M = 140, the achievable rate by GRASP

goes from 8.8 to 5.5, approaching a half rate reduction even with only 50 packets

per file. Finally note from Fig. 4.4(b), that in oder to guarantee a rate R = 4,

GCC requires a cache size of M = 120, while GRASP can reduce the cache size

requirement to M = 50, a 2.4× cache size reduction.

4.4 Conclusions

In this Chapter, we show that the promising multiplicative caching gain analyti-

cally quantified for the shared link caching network can be completely lost in finite

regimes of the system parameters. We first extend the analysis of this caching

network to the case of heterogeneous cache sizes and popularity distributions, pro-

viding an upper bound on the limiting average performance when the number of

packets per file goes to infinity. We then focus on finite regimes of all system

parameters and show that the greedy constrained coloring (GCC) scheme used to

quantify this upper bound quickly loses the multiplicative caching gain for finite file

packetization. We then design a novel polynomial-time coded multicasting scheme

based on a greedy randomized algorithm search procedure (GRASP), which is

able to recover a significant part of the multiplicative caching gain with the same

finite file packetization. Our results, while initially negative, shed light on the

possibilities to preserve the multiplicative caching gain via careful design of coded

multicasting schemes for finite values of the system parameters.
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Figure 4.4: Average number of transmission for a shared multicast link. a) n =
10,m = 250, B = 20, and γ = 0.2; b) n = 10,m = 250, B = 100, and γ = 0.2;
c) n = 10,m = 250, B = 200, and γ = 0.2; d) n = 20,m = 500, B = 50, and
γ = 0.6.
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Chapter 5

An Efficient Multiple-Groupcast
Coded Multicasting Scheme for
Finite Fractional Caching

In this Chapter, we address a non-homogenous caching network with a shared

multicast link, where users make requests according to possibly different demand

distributions and have possibly different cache sizes (see Fig. 4.1 as an example).

The considered network is a generalization of the one considered in [51], where

all the users are assumed to have the same demand distribution, equal storage

capacity and one request per user. The contributions of this Chapter are as fol-

lows. First, we extend RAP-CIC and RAP-GCC to the non-homogenous shared

link network, where users may have different storage capacities, different demand

distributions, and different number of requests, and quantify their average perfor-

mance for infinite packetization by introduce the delivery scheme referred to as

greedy constraint local coloring (GCLC). It is worth to mention that the exten-

sion of the multiple requests is of importance. As shown in Fig. 4.1, the users can

be model as small cell base stations, each of which serves a set of users. In this

case, each small cell base station can be modeled as a user with multiple requests.

Next, we focus on the regime of finite file packetization and numerically show that

neither GCLC nor the coded delivery scheme proposed in [52], can guarantee the

promising performance. Consequently, we introduce a novel algorithm referred to

as hierarchical greedy local coloring (HgLC), which is shown to recover a signifi-

cant part of the multiplicative caching gain, while incurring a complexity at most
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quadratic in the number of packets.

The Chapter is organized as follows. The achievable caching and coded de-

livery scheme, along with the general upper bound of the average achievable rate

are presented in Section 5.1. Section 5.2 describes the proposed polynomial-time

coloring algorithm. Finally, Section 5.3 presents the simulation results and related

discussions.

5.1 Achievable Scheme

In this section, we present an achievable scheme based on random popularity-based

caching and index coding based delivery.

5.1.1 Coded Multicast Delivery

Our coded delivery scheme is based on local chromatic number index coding [76,

52]. The directed conflict graph HC,W = (V , E), where V and E denote the set of

vertices and edges of HC,W, respectively, is constructed as follows:

• Consider each packet requested by each user as a distinct vertex, i.e., if the

same packet is requested by N > 1 users, it results in N distinct vertices.

• For any pair of vertices v1, v2, we say that vertex (packet) v1 interferes with

vertex v2 if v1 is not in the cache of the user(s) who requests v2, and v1 and

v2 do not represent the same packet. Then, draw a directed edge from vertex

v2 to vertex v1 if v1 interferes with o2.

Based on this caching scheme, we design a delivery scheme based on linear

index coding. In particular, we focus on encoding functions of the following form:

for the request vectors fu, u ∈ U , the multicast codeword is given by

X{fu,u∈U} =
∑

v∈V

ωvgv = Gω, (5.1)

where ωv is the binary vector corresponding to packet v, represented as a (scalar)

symbol of the extension field F2F/B , gv ∈ Fν
2F/B is the coding vector of packet v

and where we let G = [g1, · · ·g|V|] and ω = [ω1, · · · , ω|V|]T. The number of rows
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ν of G yields the number of sub-packet transmissions. Hence, the coding rate is

given by ν/B file units.

To find the desired ν, we introduce the definition of the local chromatic number:

Definition 1 (Local Chromatic Number) The directed local chromatic number

of a directed graph Hd is defined as:

χlc(Hd) = min
c∈C

max
v∈V
|c(N+(v))| (5.2)

where C denotes the set of all vertex-colorings of H, the undirected version of Hd,

V denotes the vertices of Hd, N+(v) is the closed out-neighborhood of vertex v,1

and c(N+(v)) is the total number of colors in N+(v) for the given coloring c. ♦

It can be shown that based on each local coloring number maxv∈V |c(N+(v))|,
there exists an G such that a valid index code can be found. The design of G is

given by [76, 52]. 2 An example of the delivery scheme is described in Example 2

in the following for illustration.

Hence, given C and W, and a coloring scheme c of HC,W, there exists an

index code described by G, and the total number of transmissions in terms of

packets is given by the local coloring number maxv∈V |c(N+(v))|. This achieves

the transmission rate maxv∈V |c(N+(v))|/B. Ideally, the minimum transmission

rate given by local chromatic number is χlc(HC,W)/B. In the following we refer

to this coding scheme scheme as LCIC (local chromatic index coding). Due to the

difficulty of characterizing the exact value of χlc(HC,W), instead, in the following,

we will capture an upper bound of χlc(HC,W). In another word, we will propose

an efficient coloring scheme called Hierarchical greedy Local Coloring (HgLC) such

that the achievable local coloring number or transmission rate achieves a significant

gain compared with the conventional caching scheme in literature.

Example 2 We consider a network with n = 3 users denoted as U = {1, 2, 3} and
m = 3 files denoted as F = {A,B,C}. We assume M = 1 and sub-packetize each

file into three packets. For example, A = {A1,A2,A3}. Let pA,u = 1
3
, pB,u = 1

3
and

1Closed out-neighborhood of vertex o includes vertex v and all the connected vertices via
out-going edges of v.

2Instead of using local chromatic number it is also straightforward to use fractional local
chromatic number to design the coding vector G as illustrated in [76, 52].
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pC,u = 1
3
for u ∈ {1, 2, 3}, which means that one packet from each of A,B,C will be

stored in each user’s cache. We assume a caching realization C is given by: user

u caches {Au,Bu,Cu} (Cu,A = {Au},Cu,B = {Bu},Cu,C = Cu). We let each user

make one request. Specifically, we let user 1 request A, user 2 request B and user

3 request C (f1 = {A}, f2 = {B}, f3 = {C}) such that W1,A = {A2,A3},W2,A =

{A1,A3},W3,B = {B1,B2}. The conflict graph and the corresponding coloring

are shown in Fig. 5.1. We can see that the total number of colors needed, the

chromatic number in this case, is 5, while the local coloring number, or the local

chromatic number in this case, is 4. We construct V by using the parity-check

matrix of a (5, 4) MDS code, which is given by:

⎛
⎜⎜⎝

1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1

⎞
⎟⎟⎠ . (5.3)

Then, we allocate the same vector to the vertex (packet) with the same color as

shown in Fig. Fig. 5.1. Hence, the transmitted codeword is given by A1 ⊕ A2,

A1 ⊕ A3, A1 ⊕B1, A1 ⊕B2, of length 4/3 file units. ♦

A1
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B1

B2




1
0
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0
1
0
0







0
1
0
0







0
0
1
0







0
0
0
1







1
1
1
1




Figure 5.1: An illustration of the directed conflict graph and the corresponding
index code. The coloring of the graph is given by the colors of the fonts. The total
number of colors is 5, and the local coloring number is 4.
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5.1.2 Achievable Expected Rate

Given n,m,M and the demand distribution Q, our goal is to find the caching

distribution P that minimizes the expected rate R̄(P,Q)
∆
= E[χlc(HM,W)/B].3 Let

L = maxu Lu and we order Lu, u ∈ U as a decreasing sequence denoted as L[1] ≥
L[2] ≥ L[3], · · · , L[n], where L[i] is the ith largest Lu and [i] = u. It can be seen

that L[1] = maxu Lu and L[n] = minu Lu. Let nj =
∑

[i] 1{L[i]− j ≥ 0}, where 1{·}
is the indicator function. Let Unj

= {[i] ∈ U : 1{L[i] − j ≥ 0}}. The upper bound

of R̄(P,Q) is given by the following theorem:

Theorem 2 For any given m, n, M , and Q, when B → ∞, the expected rate

R̄(P,Q) achieved by a content distribution scheme that uses caching policy in

Fig. 1 with caching distribution {P = [pf,u] :
∑m

f=1 pf,u = 1, ∀u; pf,u ≤ 1/Mu,∀f, u},
and CIC transmission, satisfies

R̄(P,Q) ≤ R̄GCLC(P,Q)
∆
= min{ψ(P,Q), m̄− M̄}, (5.4)

with high probability.4 In (5.4),

m̄ =
m∑

f=1

(
1−

n∏

u=1

(1− qf,u)Lu

)
, (5.5)

and

M̄ =
m∑

f=1

min
u
pu,f

(
1−

n∏

u=1

(1− qf,u)Lu

)
, (5.6)

and

ψ(P,Q) =
L∑

j=1

n∑

ℓ=1

∑

Uℓ∈Unj

m∑

f=1

∑

u∈Uℓ

ρf,u,Uℓ(1− pf,uMu)
nj−ℓ+1(pf,uMu)

ℓ−1,

(5.7)

where

ρf,u,Uℓ
∆
= P(f = arg max

fu∈f(Uℓ)
(pf,uMu)

ℓ−1(1− pf,uMu)
nj−ℓ+1),

(5.8)

3HM,W denotes the random conflict graph, which is a function of the random caching and
demand configurations, M and W, respectively.

4The term ”with high probability” means that limF→∞ P(R̄(P,Q) ≤ R̄GCLC(P,Q)) = 1.
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denotes the probability that f is the file whose pf,u maximizes the term (pf,uMu)
ℓ−1(1−

pf,uMu)
n−ℓ+1) among f(U ℓ) (the set of files requested by U ℓ). �

Under homogeneous demand distribution, cache size and number of request

per user, we have the following corollary

Corollary 1 Let qf,u = qf ,Mu = M,Lu = L,∀u ∈ U and L = {1, · · · ,m}, then
pf,u = pf ,∀u ∈ U and when B →∞, R̄(P,Q) is given by (5.4), where

m̄ =
m∑

f=1

(
1− (1− qf )nL

)
, (5.9)

and

M̄ =
m∑

f=1

pf

(
1− (1− qf )nL

)
, (5.10)

and

ψ(P,Q) = L
n∑

ℓ=1

(
n

ℓ

) m∑

f=1

ρf,ℓ(1− pfM)n−ℓ+1(pfM)ℓ−1,

(5.11)

where ρf,ℓ
∆
= P(f = argmax

j∈D
(pjM)ℓ−1(1− pjM)n−ℓ+1) denotes the probability that

file f is the file whose pf maximizes the term
(
(pjM)ℓ−1(1− pjM)n−ℓ+1

)
among

D, which is a set of ℓ i.i.d. demands distributed as q. It can be seen that ρf,ℓ is

easy to evaluate. �

Corollary 1 can be obtained directly from Theorem 2.

Using the generalized upper bound R̄ub(P,Q) in Theorem 2, we can obtain the

desired caching distribution for a wide class of heterogeneous network models. We

use P∗ to denote the caching distribution that minimizes R̄ub(P,Q). It is worth

to notice that for the homogeneous case described above, where qf,u = qf ,Mu =

M,Lu = 1,∀u ∈ U , R̄ub(P∗,Q) is indeed order optimal, which is proved in [51].

5.2 Polynomial-time Algorithms

In Section 5.1.1, we can see that only the local coloring number maxv∈V |c(N+(v))|
and the corresponding coloring c are needed for the coded multicasting delivery.
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Hence, in this section, we only focus on the algorithms that achieve these goals. We

first introduce a polynomial-time coloring method, which generalizes the coloring

algorithm used in [51] to quantify the order-optimal performance of homogeneous

shared link networks by letting the number of packets B → ∞. This scheme

is based on a greedy constrained local coloring (GCLC) approach, which is a

generalization of greedy constrained coloring (GCC) used in [51]. We can prove

that when B → ∞, GCLC achieves the upper bound of the average rate for

heterogeneous shared link networks given by (5.4). It is also easy to verify that

GCLC achieves the same performance as the algorithm given in [51] for the worst-

case demand setting in the homogeneous network setting.

We then present a novel coded multicasting algorithm called hierarchical greedy

local coloring (HgLC) that fully exploits the structure of the problem and exhibits

also a polynomial-time complexity comparable to GCLC. In Section 5.3, we show

that for finite file packetization, while GCLC loses the multiplicative caching gain,

HgLC is still able to approach the limiting performance and recover a significant

part of the multiplicative caching gain.

5.2.1 GCLC (Greedy Constrained Local Coloring)

The GCLC algorithm works by computing two valid local colorings of the conflict

graphHC,W, referred to as GCLC1 and GCLC2. GCLC compares the rate achieved

by the two coloring solutions and constructs the transmission code based on the

coloring with minimum rate. Let f(v) be the packet represented by vertex v, we

defined Kv = {∀u ∈ U : f(v) ∈Wu∪Cu}, where Wu is the set of all the requested

packets by user u and Cu is the set of all the cached packets by user u. Then

GCLC1 is given by Algorithm 8.

GCLC1 computes a coloring and the local coloring number of the conflict graph

HC,W. Note that both the outer while-loop starting at line 3 and the inner for-

loop starting at line 6 iterate at most |V| times, respectively. For other operations

inside the loops, it take constant time. Therefore, the complexity of GCLC1 is

O(|V|2) or equivalently O(n2B2) since |V| ≤ nB, which is polynomial in |V| (or
n,B).
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Algorithm 8 GCLC1

1: Let C = ∅;
2: Let c = ∅;
3: while V ≠ ∅ do
4: Pick an arbitrary vertex v in V; Let I = {v};
5: Let V ′ = V \ {v};
6: for all v′ ∈ V ′ with |Kv′ | = |Kṽ| do
7: if {There is no edge between v′ and I} then
8: I = I ∪ v′;
9: end if
10: end for
11: Color all the vertices in I by c /∈ C;
12: Let c[I] = c;
13: V = V \ I.
14: end while
15: return maxv∈V |c(N+(v))| and the corresponding c(N+(v)) for each v;

On the other hand, GCLC2 computes the minimum coloring of HC,W subject

to the constraint that only the vertices representing the same packet are allowed to

have the same color. In this case, the total number of colors is equal to the number

of distinct requested packets, and the coloring can be found in O(|V|2). Then, it

remains to find maxv∈V |c(N+(v))|. It can be seen that this scheme achieve the

same results as the random combination of all the requested packets.

Indeed, [52] shows that GCLC is order-optimal when B →∞ for the homoge-

neous network with L requests per user when the worst-case demand is considered

instead of the average demand.

5.2.2 Hierarchical greedy Local Coloring (HgLC)

Similarly as GCLC, HgLC also works by first computing two valid local colorings

of the conflict graph HC,W, referred to as HgLC1 and HgLC2, then it compares

the rate achieved by the two coloring solutions and constructs the transmission

code based on the coloring with minimum rate.

Let Gi = {v : |Kv| = i}. We consider Gi as the original hierarchies. For HgLC1,

we start from hierarchy n. After color the vertices in Gn with the same |Kv| by the

same colors, we merge the rest of the vertices in Gn with Gn−1 (Gn−1 = Gn−1 ∪ Gn,
line 33 of Algorithm 9) to result a new hierarchy n − 1. In the hierarchy n − 1,
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Figure 5.2: Average number of transmission for a shared multicast link with n =
20, n1 = 5, L1 = {1, 5, 10, 20}, n2 = 15, L2 = 1, m = 100, B = 100 and α = 0.2.
a) L1 = 1; b) L1 = 5; c) L1 = 10; d) L1 = 20. Infinite File Length indicate the
rate of GCLC when B →∞ given in Theorem 2.
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we again first color the vertices in Gn with the same |Kv|, v ∈ Gn by the same

colors, and then we try to color the rest of the vertices in Gn−1. The criteria

are that first we randomly pick a vertex v from W2 ∈ Gn−1 shown in line 17 in

Algorithm 9, where W2 denote a set of vertices with “small” |Kv|, v ∈ Gn−1 or

“large degree” in HC,W and the value of a ∈ [0, 1] control the size of W2. For

example, if a = 0, then W2 denotes the vertex with the smallest |Kv|, v ∈ Gn−1,
which is n− 1. Second, we try to color the picked vertex v and the other vertices

v′ whose |Kv′|, v′ ∈ Gi \ {v} are “close” to |Kv| in a greedy manner. Similarly as

the parameter a ∈ [0, 1], this closeness is captured by another parameter b ∈ [0, 1]

as shown in line 20 in Algorithm 9. For example, if b = 0, then we start from

the vertex v′ such that |Kv′| − |Kv| is minimized. Here, we are looking for the

independent set with size at least i in the ith hierarchy in a greedy manner. After

this second coloring procedure, we union the uncolored vertices with the vertices of

next hierarchy, which, in this case, is Gn−2. Then, we repeat the same procedure

for all the hierarchies. Finally, we use a function called LocalSearch to further

reduce the number of colors needed in line 37 of Algorithm 9.

The detailed HgLC1 is given by Algorithm 9. Let N (j) denote the neighbors

of vertex j excluding vertex j. The function of LocalSearch is given by Algorithm

10. HgLC2 is the same as GCLC2. It can be shown that the complexity of HgLC1

is given by O(n3B2).

5.3 Simulations and Discussion

For finite file packetization by assuming the distributed random popularity-based

caching policy in Algorithm 1.

R̄LFU =
m∑

f=minu{Mu}+1

⎛
⎝1−

∏

u∈U{Mu<f}

(1− qf,u)Lu

⎞
⎠ , (5.12)

where U{Mu<f} denote the set of users with Mu < f .

For simplicity and to illustrate the effectiveness of HgLC, we consider a homo-

geneous network scenario, in which users request files according to a Zipf demand

distribution with parameter γ = 0.2 and all caches have size M files. We assume
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two types of users: n1 users with L1 requests and n2 user with L2 requests. More-

over, we let the caching distribution to be uniform, which means that P is chosen

as a m-dimensional vector taking value of 1
m
.5

Fig. 5.2 plots the average rate for a network with n = 20 users consisting of

n1 = 5 and n2 = 15, L1 ∈ {1, 5, 10, 20}, L2 = 1,m = 100 files and B = 100 packets.

Observe how the significant caching gains (with respect to LFU) quantified by

the upper bound are completely lost when using GCLC with finite packetization

B = 100. On the other hand, observe how HgLC remarkably preserves most of

the promising multiplicative caching gains for the same values of file packetization.

For example, in Fig. ??, if M doubles from M = 25 to M = 50, then the rate

achieved by HgLC essentially halves from 11.5 to 5. For the same regime, it is

straightforward to verify that neither GCLC nor LFU exhibits this property.6

Note from Fig. 5.2(a), that in oder to guarantee a rate of 7, GCLC requires

a cache size of M = 45, while HgLC can reduce the cache size requirement to

M = 18, a 2.5× cache size reduction.

Indeed, [52] shows that as the increase of Lu, the gain obtained by local coloring

is also increasing, which can be observed for both GCLC and HgLC in Fig. ??-

??. It is worth to notice that Fig. ??-?? also show a almost same or even better

performance of HgLC compare to GCLC with B → ∞, which tells that as L

increases, the local coloring can also compensate the loss due to the finiteness of

the packetization of each file. This can be explained by the fact that under a finite

library size, more requests can result in more correlation between the requests of

users. By using this correlation, each user can decode its requests jointly or can

use the previously decoded information to decode new packets.

5.4 Conclusions

In this paper, we show that the promising multiplicative caching gain analytically

quantified for the shared link caching network can be completely lost in finite

5The caching distribution P∗ can be obtained by minimizing R̄GCLC(P,Q) in (5.4) among all
P described by a m-dimensional vector taking value in { 1

m̃ , 0} in practice, as suggested in [51].
6While LFU can only provide an additive caching gain, additive and multiplicative gains may

show indistinguishable when M is comparable to the library size m. Hence, one needs to pick a
reasonably small M (mn < M ≪ m) to observe the multiplicative caching gain of HgLC.
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regimes of the system parameters. We first extend the analysis of this caching net-

work to the case of heterogeneous cache sizes, demand distributions and number

of requests per user, providing an upper bound on the limiting average perfor-

mance when the number of packets per file goes to infinity. We then focus on

finite regimes of all system parameters and show that the greedy constrained lo-

cal coloring (GCLC) scheme used to quantify this upper bound quickly loses the

multiplicative caching gain for finite file packetization. We then design a novel

polynomial-time coded multicasting scheme based on a greedy hierarchical local

coloring (HgLC), which is able to recover a significant part of the multiplicative

caching gain with the same finite file packetization. Our results, while initially

negative, shed light on the possibilities to preserve the multiplicative caching gain

via careful design of coded multicasting schemes for finite values of the system

parameters.
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Algorithm 9 HgLC1

1: C = ∅;
2: c = ∅;
3: choose a ∈ [0, 1]
4: choose b ∈ [0, 1]
5: for all i = n, n− 1, · · · , 2, 1 do
6: for all v ∈ Gi and |Kv| = i do
7: I = {v};
8: for all v′ ∈ Gi \ I with |Kv′ | = |Kv| do
9: if {There is no edge between v′ and I} then
10: I = I ∪ v′;
11: end if
12: end for
13: if |I| = i then
14: Color all the vertices in I by c /∈ C;
15: c[I] = c, C = C ∪ c;
16: Gi = Gi \ I;
17: end if
18: end for
19: for all Randomly pick a v ∈ W1 ⊂ Gi, with

W1 = {v ∈ Gi : minv∈Gi |Kv| ≤ |Kv| ≤ minv∈Gi |Kv| +
⌊a (maxv∈Gi |Kv| −minv∈Gi |Kv|)⌋} do

20: I = {v};
21: Qi = Gi \ I;
22: for all Randomly pick a v′ ∈ W2 ⊂ Qi, with W2 = {v′ ∈ Qi : minv′∈Qi

|Kv′ | ≤
|Kv′ | ≤ minv′∈Qi

|Kv′ |+ ⌊b (maxv′∈Qi
|Kv′ | −minv′∈Qi

|Kv′ |)⌋} do
23: if {There is no edge between v′ and I} then
24: I = I ∪ v′;
25: Qi = Qi \ {v′};
26: else
27: Qi = Qi \ {v′};
28: end if
29: end for
30: if |I| ≥ i then
31: Color all the vertices in I by c /∈ C;
32: c[I] = c, C = C ∪ c;
33: Gi = Gi \ I;
34: else
35: Gi = Gi \ {v}, Gi−1 = Gi−1 ∪ {v};
36: end if
37: end for
38: end for
39: c =LocalSearch(HC,W, c, C);
40: return maxv∈V |c(N+(v))| and the corresponding c(N+(v)) for each v;
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Algorithm 10 LocalSearch(HC,W, c, C)
1: for all c ∈ C do
2: Let Jc be the set of vertices whose color is c;
3: Let B = ∅;
4: Let ĉ = c;
5: for all i ∈ J do
6: A = ∅;
7: for all j ∈ N (j) do
8: A = A ∪ c[j];
9: if C \ A ≠ ∅ then
10: c′ is randomly picked from C \ A;
11: ĉ[i] = c′;
12: B = B ∪ {i};
13: end if
14: end for
15: if |B| = |J | then
16: c = ĉ;
17: C = C \ c;
18: end if
19: end for
20: end for
21: return c;
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Chapter 6

Coding for Caching in 5G
Networks

This Chapter aims at bridging the gap between theory and practice in order to val-

idate the benefits of caching-aided coded multicasting by designing a fully working

prototype implementation and testing it in a large network testbed. Such testbed

and prototype implementation provide a cornerstone for the evaluation of future

schemes with more advanced wireless caching protocols and cache-enabled PHY

layer techniques such as joint source-channel coding. We first provide an overview

of the caching and coded multicasting framework and discuss the key concepts

behind the ability to provide load reductions that are proportional to the aggre-

gate cache size. We then introduce a new frame structure that includes specific

fields to account for all the practical aspects required for a fully working real-

world implementation. The primary role of the newly designed frame structure is

to allow decoding of coded data at each receiver. Our MAC layer frame design

is combined with an orthogonal frequency division multiplexing (OFDM) PHY

layer, which makes it compatible with long term evolution (LTE) advanced mobile

networks or further PHY layer standards. The resulting fully working prototype is

implemented in a large-scale testbed facility, CorteXlab [28], composed of tens of

highly flexible radio nodes deployed in a controlled and reproducible environment.

We present experimental results in the context of key 5G challenges related to

transmission delay, bandwidth usage, and energy efficiency. Our experimentation

validates the fact that memory can be effectively turned into bandwidth leading

to substantial network throughput gains.
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6.1 Implementation of caching-aided coded mul-

ticasting

While Chapter 3 describes state of the art wireless caching and transmission code

design, the impact of real protocol overheads on the multiplicative caching gain

remains an open question that we address via a real prototype implementation in

the following.

Our prototype implementation is based on the following components: i) a

simplified application layer for generating and combining the requested chunks, ii)

a MAC layer extended with additional header fields to allow decoding of coded

packets, and iii) a PHY layer compliant with LTE standards. Our basic MAC

layer frame implementation does not account for a complete standardized frame

structure and the generated data is not encapsulated through the protocol stack,

since our main goal is a proof-of-concept of caching-aided coded multicasting and

its real-time feasibility. In the following, we describe in detail the MAC layer frame

structure.

6.1.1 Frame structure

For a clear understanding of the implementation process, the basic frame structure

is given in Fig. 3.3. Every accumulated packet is composed of two parts: header

and payload. The payload represents the coded packet (divided as: payload1, · · · ,
payloadK); a mixture of original data chunks with elements in the Galois Field

of order two GF(2), making it easy to encode and decode with a simple XOR

operation. The header illustrated in Fig. 3.3.c contains the minimal informa-

tion required for a successful extraction of each individual chunk. It carries the

combined chunks identities and consists of the following information:

• Header Length: This is the first element of the header, and its size is fixed

to one byte. It carries the number of header bytes.

• File IDs: These are the IDs of the files to which the combined chunks (pay-

load) belong. Each ID requires a multiple of one byte, depending on the

number of content files in the library.
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• Chunk IDs: These are the IDs of the combined chunks within the transmitted

packet. Each ID requires a multiple of one byte, depending on how many

chunks a file is partitioned into.

• Chunk sizes: These are the sizes of the combined chunks, and are encoded

with a multiple of four bytes to make the receiver able to recognize the size

of each chunk.

In a practical network scenario, it is unusual to have a header length exceeding

one byte since the number of requests and the number of simultaneously served

users is generally limited. Notice that the uncoded design will necessitate the same

header structure but only for one target user (unless the same packet is destined to

multiple users) because no packet combination is performed. This means that in an

uncoded scheme each packet is separately transmitted with its associated header,

without the need for additional overhead information. This is due to the fact that

we are assuming multicast transmission over the downlink shared channel (DL-

SCH). This LTE physical layer transport channel is the main channel for downlink

data transfer and it is used by many logical channels. The fact that the header

information in the coded scheme depends on the number of served users implies a

variable header length. An example of the header decomposition is illustrated in

Fig. 3.3.c, where the number of files and chunks are assumed to not exceed one

byte each, and the maximum size of a chunk is limited to four bytes. The payload

length of a coded packet is equal to the largest chunk’s length among the combined

ones. Before being transmitted, the coded packet is partitioned into small packets

and numbered such that the receiver can rebuilt the original coded packet. Each

coded packet (see Fig. 3.2) is dedicated to users with IDs indicated in the header

information. Aiming at decreasing the packet error probability (PER), the first

small packet will be limited to the header data, and the others are charged with

the payload. A 32−bit cyclic redundancy check (CRC) is appended to each small

packet for error detection. In the header information, if the CRC detects some

errors the whole coded packet is lost and the user drops all related small packets.

Otherwise, each user checks whether concerned or not. If so, the user proceeds

to the small packet decoding, based on its cached data and the reported files and

chunks IDs. Conversely, if the user is not concerned the packet is dropped and
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the user waits for the next header to check out its affiliation. In case of channel

erasure, the small packets are replaced with dummy bytes.

6.1.2 CorteXlab platform

The resulting fully working prototype is implemented in a large-scale testbed fa-

cility, CorteXlab [28] which is a testbed for cutting edge radio experimentation,

composed of a mix of radio nodes, including SISO and MIMO software defined

radio (SDR) nodes. The testbed shown in Fig. 6.2 is installed in a large (180 m2)

shielded room partly covered with electromagnetic wave absorbing material. User

nodes are placed over a regular grid with an inter-node distance of 1.8 meters,

and accept any PHY layer implementations on both hardware and software. A

unified server is available for starting, coordinating, and collecting the results of

experiments. As a development tool, the GNU Radio software is employed for

real-time experimentation.

6.2 End-to-end performance results and perspec-

tives

6.2.1 Setup Environment

Our SLN experimentation consists of one radio source node and n = 10 radio

user nodes. Each user requests L = 10 files from a library F of m = 20 binary

files, each of size 2.8 Mb. A cache of size M files is deployed at every user. Such

a scenario can be seen as if the users are APs carrying multiple requests from

different UEs, and the source is the eNB having access to the content library. The

file request distribution is drawn from a Zipf distribution with Zipf parameter α:

α = 0 returns a uniform request distribution; the higher the Zipf parameter α,

the more skewed is the request distribution. The binary files are partitioned into

equally sized B = 100 chunks yielding a library of mb = 2000 chunks. Both RLFU

with m̃ optimized as in [30] and LFU caching policies are adopted for the coded

and naive multicasting delivery schemes, respectively.

The output of multicast encoder goes into an OFDMmodulator with the follow-

ing transmission parameters. Each PHY frame is decomposed into small packets
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of size 100 bytes to which a CRC-32 and an OFDM header are appended for error

detection and OFDM demodulation, respectively. The OFDM header and payload

data are mapped into a binary phase shift keying (BPSK) and a quadrature PSK

(QPSK), respectively, and each symbol is transmitted over a sample duration of

Ts = 1µs. The data is carried over Lf = 48 subcarriers spaced by ∆f = 15KHz

and the central frequency is set to 2.45 GHz.

6.2.2 Experimentation results

The focus herein is on the gain at the MAC layer that is based on counting the

total number of required bytes to serve all UEs. Assuming the same number

of requests L from all users, the normalized minimum rate (NMR) is defined as

Rt/(L×file size), where Rt is the total number of required bytes at the MAC layer

to satisfy all user demands. Note that NMR is in general a non-decreasing function

of the number of users, and a decreasing function of cache size, M ; in particular,

for M = 0, the NMR is equal to the total number of distinct user requests. In the

following, we provide a numerical validation of the prototype performance in terms

of NMR. Specifically, we analyze the performance of our prototype solutions prot-

HGC and prot-GRASP in terms of NMR compared with: i) HGC and GRASP

for finite file packetization simulated in Matlab environment without taking into

account implementation overhead ii) Naive multicasting with LFU caching policy

at the rate of the worse channel receiver, and iii) the benchmark upper bound

GCC when B = ∞ (see [30]). The trend in terms of NMR demonstrated by the

prototype confirms the gains predicted by the theory. Figs. 6.3.a and 6.3.b show

the NMR as function of the cache size and the Zipf parameter α respectively.

This metric is specially illustrative of the amount of bandwidth resources the

wireless operator needs to provide in order to meet the receiver demands. In

Fig. 6.3.a, we assume a Zipf parameter α = 0. Observe first the performance

of naive-multicast. As expected, the load reduces approximately linearly with the

cache size M. Observe, now, how the significant multiplicative caching gains (w.r.t.

naive-multicast) quantified by the upper bound (RLFU-GCC with B = ∞) are

remarkably preserved by the prototype solutions (prot-HGC and prot-GRASP)

which achieve an NMR almost indistinguishable from the corresponding schemes
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implemented in Matlab environment without taking into account the encoding

and decoding overheard. Fig. 6.3.a clearly shows the effectiveness of the proposed

implementation in allowing receivers to decode their requested files at an NMR very

close to the theoretically optimal NMR. From Fig. 6.3.a, it is also apparent that

the two coloring algorithms have similar performance for α = 0. The effectiveness

of coded multicasting is highly influenced by the Zipf parameter α, as illustrated in

Fig. 6.3.b for cache size M = 2 files. Observe how the reduction in NMR enabled

via coded multicasting is much more attractive in the region of α ≤ 1.

In order to illustrate the behavior of the multiplicative gains, Figs. 6.3.c and

6.3.d show the prototype NMR gains as a function of the cache size M and the

Zipf parameter α, respectively. The gain of a given scheme is defined as the

ratio between the NMR achieved by naive multicasting with LFU caching policy

and the NMR achieved by that scheme. In particular, when the scheme is a

prototype implementation, then the NMR of naive multicasting is computed with

its associated overhead. From Fig 6.3.c, we can observe that the gain is a monotonic

non-decreasing function of the cache size. Note that we do not plot the point at

M = 20 since it is well known that the NMR is zero for all the schemes, and hence

the gain is given by an indeterminate form of type 0/0. Fig 6.3.c shows that the

gains achieved by prot-GRASP and prot-HgC are very close to the gains achieved

by the corresponding MATLAB simulated schemes, confirming the little impact of

the implementation overhead on the overall performance. Furthermore, it is worth

noticing that due to the reduced number of transmitted coded packets compared

to the number of uncoded packets transmitted by naive multicasting, the total

overhead size is also smaller. That is, even though each packet header length is

larger, the total number of header bytes over all transmissions is also reduced.

In terms of the Zipf parameter α, Fig. 6.3.d shows that for M = 2 files, a gain

close to 1.3 is obtained under uniform popularity (α = 0), and this gain tends to

1 as the popularity distribution becomes more skewed.

6.2.3 Turning memory into bandwidth

In this section, we evaluate the physical layer bandwidth gains enabled by coded

multicasting. To do so, we assume a fixed video transmission delay (e.g., according
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to users’ QoS) and evaluate the bandwidth required to serve the video segment

requests of all users. Fig. 6 illustrates the bandwidth gain (BG) evolution at the

PHY layer with respect to the number of users for different cache sizes. We define

the PHY BG as the bandwidth required to serve all requests via naive multicasting

over the bandwidth required via the use of coded multicasting. The increase in

BG can be clearly observed with respect to both the cache size and the number of

users. For instance, assuming a cache size M = 10% of the library size, the gain

starts with a value around 1.1 for 5 users and goes up to 1.31 for 40 users. Similarly,

at M = 30%, the gain increases from around 1.4 for 5 users and reaches around

1.68 for 40 users. The increase of the BG with respect to the number of users is

specially relevant, as it illustrates the scalability benefits of coded multicasting.

6.2.4 Future directions

In the above, coding overhead and computational complexity have been proven

not to limit the performance gain of wireless caching for coded multicasting. How-

ever, several open problems related to PHY layer protocols are currently under

investigation, among which we cite the following:

• Variation of the channel characteristics: Regarding the variations of channel

statistics across users (e.g., different SNRs), the work in [3] provided a the-

oretical analysis that takes into account the wireless channel characteristics

in the presence of any combination of unicast/multicast transmission and

wireless edge caching. They proposed a channel-aware caching-aided coded

multicast scheme based on joint source-channel coding with side information.

Such scheme is able to guarantee a rate to each receiver, within a constant

factor of the optimal rate, had the remaining users experienced its same

channel conditions. The scheme preserves the cache-enabled multiplicative

throughput gains by completely avoiding throughput penalization from the

presence of receivers experiencing worse propagation conditions. The imple-

mentation of this scheme in CorteXlab is part of our next steps for future

work. As opposed to network emulation platforms such as in [71], CorteXlab

will allow us to properly test user mobility and realistic channel degradation

across wireless end points.
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• Combination with MIMO schemes: The use of MIMO schemes is an inter-

esting topic with significant active research. Undergoing studies such as [72]

have shown that in a MIMO setting, coded multicasting is indeed comple-

mentary to MIMO, and the combination of both provides cumulative gains in

most practical scenarios. This is also object of future work, and again, Cor-

teXlab represents a key advantage in order to easily include next generation

radio technologies.

• Dynamic scenarios: Our current implementation setting is limited to static

scenarios with respect to file popularity and number of users. Ideas related

to cache adaptation with respect to dynamic popularity distributions and

varying number of users are of interest for future work and currently under

investigation.

6.3 Conclusions

This chapter discusses the potential of caching-aided coded multicasting for im-

proving bandwidth efficiency in next generation wireless access networks. A real-

time implementation for performance evaluation in real environments has been

presented. On the way from theory to practical evaluation, a complete frame

structure for the transmitter and the receiver has been proposed. Interestingly,

the additional coding overhead does not compromise performance and leads to an

overall positive multicasting gain, reducing bandwidth requirements and transmis-

sion delay when compared to the best uncoded schemes. We have integrated the

coded multicast design in an OFDM based PHY layer, and deployed the scenario

in CorteXlab, a shielded experimentation room, using radio nodes. Our work also

shows the potential of such facility to validate new concepts relative advanced radio

technologies for 5G networks. Finally, we have briefly described interesting open

problems related to PHY layer protocols that are currently under investigation.
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Figure 6.1: Caching within the radio access network: impact on network load and
traffic congestion.

Figure 6.2: CorteXlab platform and the nodes placement map.
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Chapter 7

Video Coding Using
Receiver-Side Memory and Index
Coding

In this Chapter, we utilize the tools of index coding to efficiently identify correla-

tions between video frames already in the receiver-side memory and frames that

are demanded by receivers in future requests. This results in a coded message that

aims to satisfy all the requests with minimal redundancy and thus saves bandwidth

utilization. Using video frames as side information has been extensively studied in

the context of Distributed Video Coding (DVC) –see [21] and references therein,

however to our knowledge none of these works consider video data already stored

in a receiver cache, instead, they make use of alternate frames or other subsets of

newly transmitted video as side information.

The remainder of this Chapter is organized as follows. We first introduce in the

Section 7.1 index coding and its application to video. The achievable correlation-

aware caching scheme are presented in Section 7.2. Section 7.2.1 describes the

proposed polynomial-time algorithm which exploits the library correlation in order

to minimize the total number of Conflict Graph’s edges. Finally, Section 7.3

presents the simulation results to show the performance gain of video transmitted

with correlation-aware caching scheme over conventionally transmitted video, and

we conclude the Chapter in Section 7.4.
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7.1 Index Coding

Index coding – see [69, 13, 7, 9, 57], is a coded multicast technique that aims to

satisfy the demands of multiple receivers while making using of distributed side

information stored in receiver-side caches. In the usual setting, multiple receivers

are attached to a single transmitter over a single bottleneck link. In the placement

phase, data is distributed and stored at receiver-side caches without definite knowl-

edge of future demands that the receivers may make. This is assumed to occur

at off-peak hours when network resources are abundant, or in the past to satisfy

earlier user demands, and not incur a cost. During the second delivery phase,

receivers make their demands known to the transmitter, and the transmitter uses

its knowledge of the contents of the caches to transmit a codeword that satisfies

the demands, utilizing the information already at the receivers to reduce band-

width requirements. Since placement occurs without knowledge of the demand

distribution, it may be implemented uniformly [69], or according to a probability

distribution [57]. In the DVR scenario considered here, placement occurs due to

previous viewer requests, and future requests are assumed to be at least partly

correlated to the previous ones due to unchanging viewer tastes.

Given the distributed cache contents and the new demand from the receivers,

a codeword is generated based on chromatic number index coding [13] or rank

minimization [7].

7.1.1 Application to Video

We illustrate index coding with a simple example. Consider two receivers R0 and

R1 with memories that each contain one bit value, denoted a and b. They now

request b and a respectively. An encoder that is aware of the contents of the

memories at R0 and R1 needs to transmit only a ⊕ b to satisfy both requests, at

a cost of 1 bit transmitted (instead of 2 bits for a naive encoder).

Now assume that an encoder contains uncoded video frames F0u and F1u, and

receiver R0 requests F0u and R1 requests F1u. Let Cb(X) denote intracoding

of a frame X with b bits per pixel. The encoder transmits the coded sequences

Cb(F0u) and Cb(F1u) at a total cost of 2b bits per pixel. At Ri, i ∈ {1, 2},
Cb(Fiu) is decoded to produce a reconstructed version Fi that is distorted with

67



respect to Fiu. Next R0 and R1 demand F1 and F0 respectively. (They may

demand F1u and F0u, but are satisfied with F1 and F0). The simplest method

is to xor the coded representations of F0 and F1, but additional bitrate savings

are possible by exploiting correlations between these frames. This motivates the

following methods for the encoder to satisfy the request.

1. Coded Domain XOR: Transmit C = Cb(F0u)⊕Cb(F1u), where ⊕ is bitwise

xor, with rate b bpp. At R0, C ⊕ Cb(F0u)→ Cb(F1u)→ F1, and similarly

R1 recovers F0. This reconstructs F0 and F1 exactly with rate b bpp.

2. Pixel Domain XOR:

(a) Let Fu = F0⊕F1, where ⊕ is bitwise xor in the pixel domain. Transmit

Cbp(Fu), with rate bp bpp, and reconstruct F , a distorted version of

F0 ⊕ F1, at each receiver. Reconstruct at R0: F ⊕ F0 → F1p, a

distorted version of F1; At R1: a distorted version F0p.

(b) Similar to above but with Fu = F0u ⊕ F1u.

3. Motion Estimation [78]:

(a) Let Ebe(F0, F1) represent motion estimation of F1 using F0 as reference

followed by residual coding using a total bit rate of be bpp. The motion

vectors and residual are transmitted with cost be bpp. At R0: Frame

F0 is used with the motion vectors and residual to reconstruct F1r,

a distorted version of F1. At R1: a distorted version F0r is obtained

using reversed motion vectors and F1 as reference.

(b) Similar to above but with Ebe(F0u, F1u).

Correlation may also be exploited in method (1), but correlation in the pixel

domain may translate inexactly into bitwise correlation between the coded rep-

resentations Cb(F0u) and Cb(F1u). Also, an additional coding step such as run

length encoding is needed to further reduce the bit rate below b bpp. It is unclear

which method yields the best rate-distortion performance for a given pair of frames

F0 and F1.

We will exploit the correlation between frames.
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7.1.2 Generating the codeword

We utilize chromatic number index coding[13, 57], further developed in [45] to

handle inexact correlations between cache contents and data demands. We assume

n receivers R1, R2, ..., Rn each with a cache that contains stored video frames.

Each frame in a cache stored in coded form, for example CF (Fiu), requires F

bits, and each cache has a capacity M frames. We denote by C = [C1, ..Cn]

the cache configuration, where Cu denotes the frame cached at receiver Ru. Let

Q = [Q1, ..Qn] denote the demands from the receivers, where Qu is the set of

frames requested by receiver Ru and not already in its cache.The encoder knows

both Q and C. In our case, we consider:

1. Ci ̸= Cj,∀Ci, Cj ∈ C, i ̸= j;

2. Qi ̸= Qj,∀Qi, Qj ∈ Q, i ̸= j;

3. Ci ̸= Qj,∀Ci ∈ C,Qj ∈ Q.;

We first describe a simple graph coloring based technique that exploits reci-

procity between the cache contents and the demanded frames to identify index

codewords. This is then extended using clustering to increase possible coding

opportunities.

Finding best-matching frame: For each frame a′ ∈ Q that is requested by a

receiver, the encoder searches all frames known to be in the caches (these are also

assumed present at the encoder) and all frames known to be in the demands, to

find the frame a that best matches a′. There are a lot of methods to compute the

best matching, for instance, we could computed the best matching in the sense

of minimizing the mean square error 1
N
||a − a′||2 where N is the frame size in

pixels. Other measures are also possible, such as the conditional entropy H(a′|a).
In our case we have used a very common algorithm used to compress the frames in

video. In the field of video compression a video frame is compressed using different

algorithms with different advantages and disadvantages, centered mainly around

amount of data compression. These different algorithms for video frames are called

picture types or frame types. The three major picture types used in the different

video algorithms are I, P and B [78] (see Figure 7.1). They are different in the

following characteristics:
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Figure 7.1: A sequence of video frames, consisting of two key-frames (I), one
forward-predicted frame (P) and one bi-directionally predicted frame (B).

• I-frames (Intra-coded picture) are the least compressible but don’t require

other video frames to decode. An I-frame is a complete image, like a JPG

or BMP image file. P and B frames hold only part of the image information

(the part that changes between frames), so they need less space in the output

file than an I-frame.

• P-frames (Predicted picture) can use data from previous frames to decom-

press and are more compressible than I-frames. For example, in a scene where

a car moves across a stationary background, only the car’s movements need

to be encoded. The encoder does not need to store the unchanging back-

ground pixels in the P-frame, thus saving space. P-frames are also known as

delta-frames.

• B-frames (Bidirectional predicted picture) can use both previous and forward

frames for data reference to get the highest amount of data compression.

Let H(a′) represent the bit rate of coding frame a′ without any reference (up-to

a certain distortion), andH(a′|a) the bit rate of coding a′ using a as reference(up-to
the same distortion). In our case the I-frame is a reference frame and the P-frame

is the requested frame. After the coding process, the coded P-frame will be our

refinement in order to get a′ from a. These costs include the bits needed to identify

a′ and a in sets C and Q, which we treat as generalized motion vectors. Denote by

C(a′) and by C(a′|a) the coded representations of a′ without any reference, and

with a as reference. These include index bits needed to identify a′ and a in sets C

and Q. Define a transmission list T which contains the set of codewords that will

be transmitted.
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Graph Coloring A conflict graph G = (V,E) is constructed as follows:

For each frame a′ ∈ Q requested by receiver Ri, if H(a′) > H(a′|a):

1. One vertex v ∈ V defined as v = {a,Ri} is constructed, unless

(a) It is already present.

(b) a is present at the same receiver cache Ri that requested a
′.

If the frame is requested by more than one receiver, a separate vertex is

constructed for each such request.

2. If any vertex containing a is constructed, T ← T ∪ C(a′|a).

If H(a′) ≤ H(a′|a), T ← T ∪ C(a′).

1. One vertex v ∈ V defined as v = {a′, Ri} is constructed, unless it is already
present.

If the frame is requested by more than one receiver, a separate vertex is

constructed for each such request.

2. If any vertex containing a′ is constructed, T ← T ∪ C(a′).

Denote by B(v) the frame indicated in vertex v, and by R(v) the receiver

indicated in vertex v.

Create an edge between vertices v1 and v2 if

1. B(v1) ̸= B(v2), and

2. B(v1) is not present in cache at R(v2), or B(v2) is not present in cache at

R(v1).

Next consider a minimum vertex coloring of the conflict graph G = (V,E). All

vertices with the same color are used to generate a single codeword, which contains

(i) indices to identify the frames in these vertices in the receiver caches, (ii) an

encoding of the frames themselves. This may be done by Coded Domain XOR,

Pixel domain XOR, or arithmetic difference. (For example, sum of first half - sum

of remaining frames). For each vertex set, all these options may be computed and
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the most compact one selected. If B(v) = a, ∀v ∈ V , the sender will send (in

Unicast) the refinement to R(v) in order to allow the receiver to get the frame a′

from its reference frame a.

Improved coding: Selecting the single best-matching frame in the caches

for the requested frame a′ may not be optimal. For example, consider the 3-

cache configuration C = {{b1}, {a}, {b2}} and demands Q = {{a′}, {b′}, {}} where
||b′ − b2||2 < ||b′ − b1||2 and ||a′ − a|| is small. Here the best matching frame for

b′ is b2, but b1 provides a reciprocal coding opportunity. (Transmit a⊕ b1, then a′

encoded with reference to a, and b′ with reference to b1.)

To take advantage of such opportunities, we extend the above. For each frame

a′ ∈ Q that is requested by a receiver, define a list La′ of frames a in the caches

such that H(a′|a) < H(a′), i.e. La′ contains frame that can be used as references

for coding a′ at less cost than coding a′ without reference. Assume that there are

n frames a′1, a
′
2..., a

′
n in Q.

Create a separate instance of the conflict graph G, denoted G(α1, α2..αn), for

each selection (α1, α2..αn) ∈ La′1
XLa′2

..XLa′n , where X denotes Cartesian product.

Then the optimal graph coloring is the one that yields minimum total rate over

all G(α1, α2..αn).

7.2 Achievable Scheme

In this section, we present an achievable correlation-aware caching scheme based

on random popularity-based caching and index coding based delivery.

7.2.1 Replacement Algorithm (REPA)

The sender (i.e. Base Station), in order to send to each receiver the requested

frames, it will construct a Conflict Graph [83] G = (V,E). In order to identify the

total number of data transfers needs to satisfy all the users requests, the Conflict

Graph’s vertices have to be colored, for this step the sender will use the HGLC [54]

algorithm which will provide to color each vertex based on the following constraint:

two vertices connected by a edge cannot be colored with the same color. The total

number of colors is the total number of data transfers, and the set of the frames
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indicated by the vertices which have the same color will be coded (Coded Domain

XOR) and will be sent together. The method that we used to reduce considerably

the number of colors tries to decrease the total number of edges in the Conflict

Graph, in detail, one vertex has a hight degree (total number of edges connected

to it) if the frame indicated by itself is required or is cached by few users, for

this reason the idea of our method is to try to find for each requested frame its

best reference frame which is requested or cached by a higher number of users.

We denote with C the cache configuration, with Q the demand, with a′ ∈ Q

the generic frame requested by the receiver and with a ∈ Q ∪ C the reference

frame of a′, moreover we denote with RAPq(a
′) the set of reference frames of a′

in the demand, with RAPc(a
′) the set of reference frames of a′ in the cache, with

RAP (a′) = RAPq(a
′) ∪ RAPc(a

′), with B(v) the frame indicated by the vertex

v ∈ V and, with R(v) the receiver indicated by the vertex v ∈ V .

For each a ∈ RAP (B(v)),∀v ∈ V , we compute the following quantities:

1. The score(a) is equal to the number of users have in their cache the frame a

plus the number of users have requested the frame a. This quantity is also

computed for B(v);

2. The w(a) is equal to the number of sets RAP which contain a divided by

the total number of the reference frames, in detail:

∑
B(v),∀v∈V isInSet(a,RAP (B(v)))
∑

B(v),∀v∈V |RAP (B(v))|
.

where:

isInSet(a,RAP (B(v))) ={
1, if a ∈ RAP (B(v))

0, otherwise

(7.1)

3. The dist(B(v), a) is the size in bits of the refinement;

4. The rank(a) is the total number of vertices indicating a, in detail:

rank(a) =
∑

B(v),∀v∈V

isInGraph(a,B(v))
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where:

isInGraph(a,B(v)) ={
1, if a = B(v)

0, otherwise

(7.2)

We want to find for each B(v),∀v ∈ V , the best reference frame a in terms of

hight score, low weighted distance and hight rank. We find the best reference frame

aq in the demand and the best reference frame ac in the cache and we first look at

the demand and we replace B(v) with aq if score(aq) ≥ score(B(v)) otherwise, we

look at the cache and we replace B(v) with ac if score(ac) > score(B(v)). When a

replacement has been done the score and the rank will be updated. The algorithm

works in two steps the first one is the following:

For each v ∈ V , it computes the following sets:

1. RAPqmr = {argsmaxa∈RAPq(B(v))(rank(a))};

2. RAPcmr = {argsmaxa∈RAPc(B(v))(rank(a))};

3. RAPqms = {argsmaxa∈RAPqmr
(score(a))};

4. RAPcms = {argsmaxa∈RAPcmr
(score(a))};

5. aq = {argmina∈RAPqms
(dist(B(v), a) · w(a))};

6. ac = {argmina∈RAPcms
(dist(B(v), a) · w(a))};

In the second step the algorithm checks the following conditions: if score(aq) ≥
score(B(v)) then it does the replacement and updates score(aq), score(B(v)),

rank(aq), otherwise, if score(ac) > score(B(v)) then it does the replacement and

updates score(ac), score(B(v)), rank(ac).

The running time of the designed algorithm is O(|V |mRap|n|), where:

• n is the total number of the receivers;

• mRap = maxB(v),∀v∈V (|RAP (B(v))|).
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Algorithm 11 Replacement Algorithm

for each v ∈ V do
RAPqmr = {argsmaxa∈RAPq(B(v))(rank(a))};
RAPcmr = {argsmaxa∈RAPc(B(v))(rank(a))};
RAPqms = {argsmaxa∈RAPqmr

(score(a))};
RAPcms = {argsmaxa∈RAPcmr

(score(a))};
aq = {argmina∈RAPqms

(dist(B(v), a) · w(a))};
ac = {argmina∈RAPcms

(dist(B(v), a) · w(a))};
if (score(aq) ≥ score(B(v))) then
vold = B(v);
B(v) = aq;
score(aq) + +;
score(vold)−−;
rank(aq) + +;

else
if (score(ac) > score(B(v))) then
vold = B(v);
B(v) = ac;
score(ac) + +;
score(vold)−−;
rank(ac) + +;

end if
end if

end for
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7.2.2 LFU algorithm for correlation among the frames (LFU-
CRR)

For simulations purpose we implemented a modified version of the LFU algorithm

in order to use the frames correlation, we get this choice because we want to

measure the performance of our scheme in a true and in a correct way. The

LFUCRR algorithm is simple and it’s based on the video compression scheme (see

Subsection 7.1.2), in detail, let L the number of requests per user, Qi the set of

the requests of user i, ni = 1 the number of I frames, np the number of P frames,

then we divide, for each user, the set Qi in two sets: Îi which is the set of I frames

requested by the user i and P̂i which is the set of P frames requested by the user

i, this two sets are defined for each user in the following way:

• Îi = {qi1 , qi1+(np+ni)
, qi1+2∗(np+ni)

. . . , qin−np} ⇒ |Îi| = L
np+ni

;

• P̂i = Q \ Îi ⇒ |P̂i| = L− L
np+ni

.

For each qÎk ∈ Îi and qP̂j
∈ P̂i, let H(qÎk) represent the bit rate of coding frame

qÎk without any reference, and H(qP̂j
|qÎk) the bit rate of coding qP̂j

using qÎk as

reference, then the algorithm, for each user, in the first step builds the sets Îi and

P̂i, and in the second step, for each qÎk ∈ Îi, it sends H(qÎk) and H(qP̃j
|qÎk), where

qP̃j
∈ P̃ and P̃ = {qP̂j

∈ P̂i|j = k + 1, k + 2, . . . , k + np}. In this way the sender

will send
∑

i |Îi| frames and
∑

i |P̂i| refinements.

Algorithm 12 LFU algorithm with frames correlation

for each user i do
build Îi and P̂i;
for each qÎk ∈ Îi do
send H(qÎk);

build P̃ ;
for each qP̃j

∈ P̃ do

send H(qP̃j
|qÎk);

end for
end for

end for
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7.3 Simulations and Discussion

In this section, we numerically analyze the performance of the scheme illustrated

in Section 7.2.1, specifically, assuming the distributed random popularity-based

caching policy [54], we compare the average performance of HGLC with and with-

out our scheme REPA.

For comparison, we plot:

• The average ratio between the total number of bytes sent with the classical

coloring, and the total number of bytes sent with the classical coloring with

REPA;

• The average ratio between the total number of bytes sent with the LFUCRR,

and the total number of bytes sent with the classical coloring with REPA;

• The average ratio between the total number of bytes sent with the LFU, and

the total number of bytes sent with the classical coloring;

For simplicity and to illustrate the effectiveness of REPA, we consider a ho-

mogeneous network scenario, in which users request frames according to a Zipf

popularity distribution with parameter γ = 0.2 and all caches have sizeM frames.

Fig. 7.2 plot the average ratio of bytes sent for a network with n = 4 users,

L = 26 requests per user (each user requests L consecutive frames), m = 1040

frames, M = {0, 128, 256, 512} memory, Zipf parameter γ = 0.2, and Q ∩ C = ∅
where Q is the demand set and C is the cache set and, qi ̸= qk,∀qi, qk ∈ Q.

In Fig. 7.2, you can see that: 1) Since Q ∩ C = ∅ and in Q there are no

repetitions the ratio between LFU and HGLC without our scheme is equal to 1

because the Conflict Graph is a complete graph; 2) The HGLC with our scheme

shows a very relevant gain which grows when the memory increases, of course the

performance of the LFUCRR algorithm is better then HGLC without our scheme

because it takes advantage of frames correlation but still the HGLC with our

scheme preserve significant gain.
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Figure 7.2: Average ratio of bytes sent for a shared multicast link.

7.4 Conclusions

In this Chapter, we have shown how exploiting the correlation among the library

frames can result in more efficient content delivery over cache-aided networks. We

proposed a correlation-aware caching scheme in which receivers store frames based

on their popularity in the caching phase, and receive the coded representations

of the requested frames saving a byte transfer by exploiting correlations between

the library frames during the delivery phase. The proposed scheme is shown to

significantly outperform state of the art approaches that treat library frames as

mutually independent. Ongoing and future work entail investigating how to im-

prove our scheme in order to get more important gain when the memory increases

because now when the memory grows we get a negligible gain.
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Part II

Object Recognition Problem
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Chapter 8

Introduction

When the aim is to design and implement a framework for the recognition of some

of the components of a natural image, simply applying classification is not a so-

lution as natural images classifiers only based on information extracted from the

images, can be, in the most general case, error prone. Our aim is to improve

the performance of a natural images classifier introducing in the loop knowledge

coming from the real world, expressed in terms of probability of a set of spatial

relations between the objects in the images. Not only the probabilistic ontology

can be made available for the considered domain: it could also be built or enriched

by using entities and relations extracted from a document related to the image.

For example, the picture could have been extracted from a technical report or a

book, where the text gives information which are related to the considered images.

We wish to stress the fact that we are not thinking of a text directly commenting

or describing the image, but of a text which is completed and illustrated by the

image. In this case, both the classes of objects which can appear in the image

and the relations connecting them could be mentioned in the text and could there-

fore be automatically extracted [5]. A probability can then be associated with

them on the basis of the reliability of the extraction or the frequency of the item

in the text. The framework presented in this part aims at integrating the out-

put of standard classifiers on different image parts with some domain knowledge,

encoded in a probabilistic ontology. In fact, while standard ontologies are quite

widespread as a means to manage a-priori information, they fail in the important

task of dealing with real world uncertainty. Probabilistic ontologies aim at filling
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this gap by associating probabilities to the coded information, and provide then

an adequate solution to the issue of coding the context information necessary to

correctly understand the content of an image. Such information is then combined

with the classifier output in order to correct possible classification errors on the

basis of surrounding objects.

The system we are considering, the logical scheme of which is depicted in

Figure 9.1, and better detailed in Section 9.1, aims at determining a set of keywords

describing the content of an image and the relations existing among them. The

idea is to design a system that, starting from an image, will first hypothesise the

presence of some objects in the scene through a battery of image based classifiers.

Considering for example the image of a building close to a water pool with some

boats, it is likely that a classifier might label the reflection of the building on the

water beneath the boats as a building, that is a wrong classification. We advocate

that such a mis-classification can be corrected introducing the spatial relation

between the boat-segment and reflected building, and the external knowledge that

an image segment beneath a boat and surrounded by water is more likely to be

water than a building. This world knowledge, that we plan to formalise in a

probabilistic ontology [20], together with the output of the classifier, will be fed

to a probabilistic model [10], in order to improve the performance of the single

classifiers.

The classes associated with each segment combined by the spatial relations

which can be directly extracted from an analysis of the image are eventually or-

ganized in a schematic description of its content. Relations could be further spe-

cialized by better specifing the reciprocal position of the segments. For example,

the fact that a segment is in the middle, or in the upper right part of the picture,

and so on.

The framework presents two main aspects of novelty. First, the use of a proba-

bilistic ontology for a computer vision problem has, at the best of our knowledge,

never been proposed before. A second element of novelty is the integration of a

probabilistic model with a probabilistic ontology. A preliminary description of the

general idea of the approach has been sketched in [1] in a very concise way. In

Chapter 9, we discuss all details and a first preliminary experimental assessment.
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8.1 Related work

Due to the large amount of images available on the web, for answering to tex-

tual image queries, it will be very helpful being able to automatically describe

the content of an image. However such a task is not easy at all for a machine,

as it requires a visual understanding of the scene, that is almost each object in

the image must be recognized, how the objects relate to each other in the scene,

and in what they are involved must be understood [85]. This task is tackled in

two different ways. The most classical one [35, 61, 23, 34] tries to solve the single

sub-problems separately and combines the solutions to obtain a description of an

image. A different approach [85, 18, 59] proposes a framework that incorporates all

the sub-problems in a single joint model. A method trying to merge the two main

approaches has been proposed recently in [88] using a semantic attention model.

The problem is, however, very far from being solved. In the context of textual im-

age queries, it can be enough to extract from the images a less complex description

(image annotation [86]), such as a list of entities represented in the image, and

information about their position and mutual spatial relation in the image. The

work proposed in this thesis addresses this task, that is also, as mentioned above,

a necessary sub-task of the more general problem of generating a description in

natural language. The use of ontologies in the context of image recognition is not

new [81]. For instance, in [73] it is proposed a framework for an ontology based

image retrieval for natural images, where a domain ontology was developed to

model qualitative semantic image descriptions. An ontology of spatial relations,

in order to guide image interpretation and the recognition of the structures it con-

tains was proposed in [47]. In [70], low-level features describing the color, position,

size and shape of segmented regions are extracted and automatically mapped to

descriptors forming a simple vocabulary termed object ontology. At the best of

our knowledge, a probabilistic ontology has never been used for the task of image

recognition and annotation. On the other hand spatial relations have been used for

image recognition in the past, for instance in the context of face recognition [80]

or medical image analysis [14], and it has been already shown [6] that the use

of spatial relations can decrease the response time and error rate, and that the

presence of objects that have a unique interpretation improves the identification
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of ambiguous objects in the scene. In the same way the use of probabilistic models

is not new in computer vision, in particular a probabilistic model combining the

statistics of local appearance and position of objects was proposed already in [75]

for the task of face recognition, and in [74] in an image retrieval task, showing

that adding a probabilistic model in the loop would improve the recognition rate.

In [90] it is proposed a probabilistic semantic model in which the visual features

and the textual words are connected via a hidden layer. More recently in the con-

text of 3D object recognition, a system that builds a probabilistic model for each

object based on the distribution of its views was proposed in [87]. In [89] a weakly

supervised segmentation model learning the semantic associations between sets of

spatially neighboring pixels, that is the probability of these sets to share the same

semantic label. Finally [33], in the context of action recognition, presents a gener-

ative model that allows for characterizing joint distributions of regions of interest,

local image features, and human actions. In our case, in order to recognize the

objects in a image we tried to design an heuristic algorithm but when we tested it

we got either, a bad results and a running-time problems, for this reason we have

chosen to treat it with machine learning methods therefore we present a system

aims at determining a set of keywords describing the content of an image and the

relationships existing among them.
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Chapter 9

Exploiting context information
for image description

Integrating ontological knowledge is a promising research direction to improve au-

tomatic image description. In particular, when probabilistic ontologies are avail-

able, the corresponding probabilities could be combined with the probabilities

produced by a multi-class classifier applied to different parts in an image. This

combination not only provides the relations existing between the different seg-

ments, but can also improve the classification accuracy. In fact, the context often

gives cues suggesting the correct class of the segment. This Chapter discusses

a possible implementation of this integration, and the first experimental results

shows its effectiveness when the classifier accuracy is relatively low. For the as-

sessment of the performance we constructed a simulated classifier which allows

the a priori decision of its performance with a sufficient precision. The Chapter

is organized as follows. Section 9.1 is devoted to the description of the differ-

ent modules of the system, with a few details about the probabilistic ontology

(Section 9.1.1), and to the model adopted to combine classification and ontology

probabilities (Section 9.1.2). Experimental assessment is considered in Section 9.2.

Some conclusions and proposals for extensions of the presented work conclude the

Chapter.
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Figure 9.1: Scheme of the proposed framework.

9.1 System Architecture

The proposed framework, depicted in Figure 9.1, is a chain of several logical mod-

ules, each corresponding to an element of a computational pipeline. The first step

is a classifier, or a set of classifiers, detecting a predefined set of interesting objects

in the image, identifying then a set of segments of interest in the image.

The hypotheses formulated for each segment in the image by a statistical clas-

sifier are then fed to a probabilistic model, that has been trained off-line. The task

of this module is to validate, or correct, the hypothesis formulated in the previous

step, integrating the output of the classifier with the world knowledge given by

a probabilistic ontology, and expressed in terms of probability of a spatial rela-

tionship between instances of two classes of image objects. The class associated

with each segment, together with the relations existing between segment pairs,

constitute the image description output by the system.

9.1.1 Probabilistic Ontology

This section discusses the construction of a fragment of Probabilistic Ontology

(PO) providing the information needed by our system. We need such fragment for

the experimental assessment.
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Class # of items
sink 371
chair 3,604
table 558
computer/monitor 256+417=673
bed 407
flower 1,822
total 7,435

Table 9.1: Data set statistics.

The main drawback of ontologies when facing real world problems is related to

their inability to cope with uncertain information. Due to this, in the last years

much work has been devoted to the design of effective tools to attach probabilities

to the information contained in ontologies, among whose the most important is

probably PrOWL [19]. From the so obtained POs, it is therefore possible to obtain

a priori knowledge for applications effective also in complex contexts.

As a consequence, the research area concerning POs is very active and we

expect that a number of POs in different domains will be available soon. However,

we need a PO in the domain of the image data set we will adopt to assess the

system performance, before we can start experimentation. We therefore design

and implement an ontology to use in the experiments. In particular, the schema of

the ontology will contain the classes to associate to the segments and the spatial

relations among them considered in our analysis. On the other hand, probabilities

are estimated from the training set after segments are automatically classified and

spatial relations are constructed between segment pairs. In particular, we estimate

the probability that two classes are in a given relation by the frequency of such

event in the data set. More precisely denoting with D a set of segments used to

compute the probabilities, with R = {r1, . . . , ri} the set of types of relation, with

C the set of segments classes, we compute the probability that c1 ∈ C is in relation

r ∈ R with c2 ∈ C as:

Pr(r, c1, c2) =
Dr(c1, c2)∑

cx∈C,cy∈C
Dr(cx, cy)

(9.1)
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where Dr(cx, cy) is the number of times that pairs of segments in D of classes

respectively c1 and c2 satisfy the relation r. In general, as the relations are not

necessarily symmetric, we have Pr(r, c1, c2) ̸= Pr(r, c2, c1).

Since there are no tools for directly constructing a PO, we use Protégé 1 for the

construction of the schema of the ontology, while we use Pronto [60] as a reasoner

for POs, as it adopts the standard OWL 1.1. The import of the schema developed

by Protégé into Pronto is performed by editing the corresponding XML files and

adding the probabilities. An example is given in Figure 9.2, where the element

tagged pronto:certainty is added to the axiom prepared by Protégé. Although

Pronto accepts probability ranges, as we use simple values, the two extremes of

the interval coincides (0.070990; 0.070990 in the example).

<owl11:Axiom>
<r d f : s u b j e c t r d f : r e s o u r c e=”URI#x”/>
<r d f : p r e d i c a t e r d f : r e s o u r c e=”&rd f s ; subClassOf ”/>
<r d f : o b j e c t r d f : r e s o u r c e=”URI#y”/>
<p r on t o : c e r t a i n t y>0 .070990 ;0 . 070990</ p r on t o : c e r t a i n t y>

</owl11:Axiom>

Figure 9.2: Piece of the XML of the PO corresponding to an axiom with an
associated probability.

9.1.2 Combination Models

This section investigates which model to use to integrate the classifiers and the

ontological knowledge. In the task we are considering the role of POs requires

providing probabilities describing the domain of interest, to be integrated with the

ones associated by the classifier to each class for each input segment. The main goal

of our system is the classification of the segments in the input image. We aim to

exploit the relations between pairs of segments to improve this classification. More

formally, every image contains a set of segments S and there are a number of pos-

sible relations R connecting segment pairs, i.e. R = {isClose, intersects, isInside}.
The first two relations are symmetrical, while the last one is asymmetrical: details

1Freely available from http://protege.stanford.edu/.
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about this implementation in the assessment description. For each segment in the

image, the classifier associates a probability distribution to the set of all possible

classes C. When we consider only the classification step, we classify the segment

with the most probable class: this represents our baseline, as it only considers the

classifier output, without any information coming from the PO. However, we can

see the output of the classifier for each segment s in the image as a random variable

c(s) with values in C. In the following we discuss how such random variable is

integrated with the ontological probabilities.

In fact, the ontology produces, for every pair of classes c1, c2 ∈ C and every

possible relation r ∈ R, the probability Pr(r, c1, c2) that in the real world two

segments of classes c1 and c2 respectively are in relation r: its expression is given in

Equation 9.1. By integrating this information with the probabilities computed by

the classifier, the classification performance could improve. Moreover, the solution

output by this integration is likely to be consistent with the ontological knowledge,

which can be an important feature in systems where the post-processing requires

a set of properties on the considered candidates. In fact, whenever a relation can

not hold between two classes, the corresponding ontological probability is null, and

this also lowers the probability of the corresponding couple of classes.

We associate the following log-linear probability to the two classes associated

with each context x = (s1, s2, r : r(s1, s2)) built around the relation type r con-

necting segments s1 and s2:

Pr(c1, c2|x) =
evc1fC(s1,c1)+vc2fC(s2,c2)+vr,c1,c2fPO(r(s1,s2),c1,c2)

Zx,c1,c2

(9.2)

where fC(s, c) = Pr(c(s) = c) and fPO(r, c1, c2) = Pr(r(c1, c2)), while Zx,c1,c2 is

a normalisation factor depending on x and on the classes assigned to the two

segments. Note that the features fC(·) are produced by the classifier, while fPO(·)
depends on the probabilistic ontology. In conclusion, we consider two families of

parameters: class parameters vc for each class c and relation parameters vr,c1,c2 for

each type of relation r and pair of classes (c1, c2). All in all, there are |C| class
parameters and |R||C|2 relation parameters.

The parameters are estimated during the training, which maximises the like-

lihood of the training set. For this optimisation, we use the Toolkit for Advanced
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Optimisation (TAO) library, which implements a variety of optimisation algo-

rithms for several classes of problems (unconstrained, bound-constrained, and

PDE-constrained minimisation, nonlinear least-squares, and complementarity). In

our work we focus on unconstrained minimisation methods which are used to min-

imise a function of many variables without any constraints on the variables. The

method that we have used is Limited Memory Variable Metric, it is a quasi-Newton

optimisation solver and it solves the Newton step using an approximation factor

which is composed using the BFGS update formula.

Once we have estimated all the parameters V = {vc, vr,ci,cj} with c, ci, cj ∈ C
and r ∈ R, we aim to assign the correct class to each segment in the input image.

To do so, we consider two different models: in the former, to which we refer as

M1, we assign to the classes in a given context a score which is equal to the

Pr(c1, c2|x) as given by Equation 9.2, while in the latter, M2, the score is given by

its logarithm. In fact, when adopting, as in our case, a log-linear expression, only

considering exponents is much more efficient than directly summing probabilities.

We therefore obtain the following expressions for the scores sc1 and sc2 respectively

corresponding to M1 and M2.

sc1(c1, c2|x) = Pr(c1, c2|x) =
evc1fC(s1,c1)+vc2fC(s2,c2)+vr,c1,c2fPO(r(s1,s2),c1,c2)

Zx,c1,c2

(9.3)

sc2(c1, c2|x) = log Pr(c1, c2|x) = vc1fC(s1, c1) + vc2fC(s2, c2) +

+ vr,c1,c2fPO(r(s1, s2), c1, c2)− logZx,c1,c2

(9.4)

For each context x, we then compute the score that a given class c is associated

with one segment, by summing the scores that every class is associated with each

segment and that the relation assumes any of all possible relation types. We then

associate to the first segment the class which maximises such a score in all segment

pairs including it:

SC(c|s) = max
s2:∃r,r(s1,s2)

∑

c2∈C

∑

r∈R

sc(c, c2|(s1, s2, r : r(s1, s2)). (9.5)

In this expression, sc stays for sc1 or sc2 depending on the adopted model. Note

that since all relation types we consider are symmetrical, for every context x =
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(s1, s2, r : r(s1, s2)) also the symmetrical one x′ = (s2, s1, r(s2, s1)) is defined, and

therefore we can express the score as considering only the first of the two cases.

However, when asymmetrical relations are also considered, the expressions can be

easily generalised.

Finally, we assign to each segment the class which maximises the score of the

class given the segment:

c∗(s) = argmax
c∈C

SC(c|s) (9.6)

To complete the textual description, the relations existing between segment pairs

and used for determining the contexts defined above are added.

9.2 Experimental Assessment

This section describes and discusses the quantitative assessment of the performance

of the proposed approach.

9.2.1 Experimental Protocol

The system performance is evaluated in terms of classification accuracy, i.e. the

rate of segments which have been correctly classified. In particular, we considered

six classes obtained by clustering the data set ones and then taking the six with a

larger number of items: the adopted classes and the number of times they occur in

the data set are reported in Table 9.1. Furthermore, we considered three relation

types corresponding to the relative position of two segments in an image: near,

very near and intersecting. Clearly, all three the relations are symmetrical.

The role of the classifier in our system is to produce a probability distribution

on the set of classes for every input segment. The literature on object recognition

is very rich [79]. The risk in choosing one approach or the other is that the final

results would depend on this choice and its influence can not be distinguished by

the one of the combination model. We therefore decided to substitute the actual

classification with a random simulation able to produce any given performance. In

this way, it is possible to describe the dependence of the system performance on

the classification accuracy. All in all, we therefore need a method to simulate the

behaviour of a multi-class classifier with an assigned accuracy a.
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For this goal, we use the strategy described by the pseudo-code in Alg. 13.

Given a segment, we randomly choose a score in [0, 1] by the function U(0, 1) for

each class in the class set C. We then assign, with a probability given by the

desired accuracy a, the maximum score to the gold class, while the other scores

are randomly assigned to the remaining classes. The scores are finally normalised

to obtain a probability distribution. As the classifier assigns to each segment the

maximum probability class, we have that this corresponds to the right choice in

the a percentage of cases, resulting in the desired accuracy. The use of a simulated

classifier is not novel (see, for instance, [91]).

Algorithm 13 Pseudo-code of the simulated classifier.
maxClassProb←0.0;
BestClass← ∅;
for CurrentClass ∈ ClassSet do

NewClassProb ∼ U(0, 1);
ClassProb[CurrentClass]← newClassProb;
if ClassProb[CurrentClass] > MaxClassProb then

MaxClassProbValue← ClassProb[CurrentClass];
BestClass ← CurrentClass;

else
if TossingACoin == Head then

RandomClass ← CurrentClass;
end if

end if
end for
Accuracy ∼ U(0, 1);
Gold ← GoldClass(Segment);
if Accuracy < DesiredAccuracy then

Swap(ClassProb[BestClass],ClassProb[Gold]);
else

swap(ClassProb[RandomClass],ClassProb[Gold]);
end if
normalize(ClassProb);

As we aim to assess the improvement we can obtain by introducing the onto-

logical knowledge, we compare the system performance with a baseline consisting

in the (simulated) classifier alone. The two approaches discussed in Section 9.1.2

are applied to combine the PO into the system: M1 and M2.

9.2.2 Dataset Used

Since the main goal of the project is to assess the goodness of the probabilistic

model and probabilistic ontology proposed, and due to the fact that image seg-

mentation is a problem that is very far from being solved, especially for complex
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Figure 9.3: Performance of the two systems compared with the baseline. Error
bars give the 95% confidence intervals.

natural images, we prefer to avoid any uncertainty introduced by the segmentation

algorithm by skipping the implementation of this step and work on the available

1, 700 manually segmented images in the MIT-Indoor Data-set. These pictures are

taken in indoor surroundings, including kitchens, bedrooms, libraries, gyms and so

on. Whenever an actual system based on the proposed approach is implemented,

the best available solution for the segmentation will be included. We randomly

divided the data in three parts: two of them, containing each the 30% of the data,

are used to train the PO and the combination model respectively, while the re-

maining 40% of the data are used to assess the system performance. Note that in

our view it is important that the data used to train the PO and the combination

models are different, as in actual domains they usually have different origins.
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9.2.3 Results and Discussion

The system accuracy of the approaches proposed in this Chapter are depicted

in Figure 9.3 and compared with the accuracy of the statistical classifier applied

alone.

For the sake of completeness, we considered a very wide range of accuracies

for the simulated classifier: from 20% up to 80%, even if in actual conditions, the

values of classifiers accuracy is more likely under 50− 60%. However, in any case,

we see that the M2 outperforms the M1, whose performance even deteriorates

when the classifier accuracy improves. A possible explication for this behavior

could be that too much confidence is given to the a priori PO score with respect

to the actual input data evidence.

On the other hand, the M2 improves on the simple classifier when the latter

performance are inferior than about 55%, that is in realistic experimental condi-

tions. We can observe how performance of this model are much better than the

classifier alone when the latter performance are worse than 30%, and this can be

the case when the task is not too easy. Even for classifiers obtaining an accuracy

between 30% and 55%, the adoption of an approach integrating PO knowledge is

advantageous.

Last, but not least, we observe that even when M2 performs worse than the

classifier alone, its accuracy improves with the classifier accuracy, so that the two

curves are approximately parallel. This could suggest that a better ontology de-

sign, resulting in a better PO, could help the system to overcome the performance

obtained by the classifier alone.

9.3 Conclusions

In this Chapter, we proposed and experimentally evaluated two different proba-

bilistic models to integrate the probabilities derived from a probabilistic ontology

with the ones produced by a statistical classifier. One of the two proved to perform

in an acceptable way and could be used in an actual system.

For the sake of obtaining a clear view of the integration module performance,

we tried to minimize the effect of the other modules. Therefore, we started from
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images which had been manually segmented and simulated a classifier in such a

way that its accuracy could be controlled. As a future work, we plan to assess the

performance of the proposed approach when coupled with state-of-the-art classifi-

cation and segmentation modules.

A fragment of a probabilistic ontology has been built by using three relations

which could be automatically recognized in the input images, while the corre-

sponding probabilities have been estimated from their frequencies. When more

sophisticated ontologies will be available, containing information from large data

sets, we expect the integration to give even better results.
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Appendix A

Graph Coloring Problem

The Graph Coloring is a special case of graph labeling; it is an assignment of labels

traditionally called ”colors” to elements of a graph subject to certain constraints.

In its simplest form, it is a way of coloring the vertices of a graph such that no

two adjacent vertices share the same color. The goal is coloring all vertices of the

graph with the minimum numbers of colors. A possible model for Graph Coloring

reads:

min
n∑

h=1

yh (Objective function)

s.t.
n∑

h=1

xih = 1,∀i ∈ V (A.1)

xih + xjh ≤ yh, ∀(i, j) ∈ E, h = 1, ..., n (A.2)

xih ∈ {0, 1},∀i ∈ V, h = 1, ..., n (A.3)

yh ∈ {0, 1}, h = 1, ..., n (A.4)

where xih = 1 if and only if at node i has been associated the color h, yh = 1 if

and only if the color h has been associated with the node j ∈ V . Constraint A.1

require that each vertex is colored, and constraint A.2 impose that at most one of

a pair of adjacent vertices receive a color h, when the color is used.
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Appendix B

Proof of Theorem 1

In this section, our goal is to prove the the right-hand side of (4.1) which is an

upper bound of the average chromatic number of the random conflict graph HM,W

achieved by GCC. To this end, in the following, we will compute the average

achievable rate achieved by GCC1 and GCC2 respectively. Recall that the expec-

tation is taken over the demands distribution. Note that E[χ (HM,W)] is a random

variable of M. Note that GCC1 considers all the vertices in a realization HM,W

as distinct objects although they may represent the same packets. On the other

hand, GCC2 tries to use the fact that different vertices may represent the same

packet (naive multicasting). We will show that GCC1 and GCC2 achieve rate of

ψ(P,Q) and m̄ with high probability respectively.

B.0.1 Performance of GCC1

To compute the performance of GCC1, we first see that for all v ∈ I obtained in

this algorithm, Kv are identical. Given the requests vector f , we denote the set I
(see Fig. 2) whose elements have a particular Kv,∀v ∈ I consisting of a subset of

users U ℓ ⊂ U with cardinality ℓ as I(U ℓ, f , i), where i ranges from 1 to the number

of independent sets corresponding to U ℓ. Given U ℓ, let J (U ℓ, f) = {I(U ℓ, f , i) : ∀i}.
We compute the average number of distinct colors obtained by GCC1 in the

following. By fixing a demands realization f , for each U ℓ, we compute the number

of used colors |J (U ℓ, f)| by using GCC1. Given f , we can see that |J (U ℓ, f)| is a
random variable which is a function of M. Let the indicator 1{Kvfu

= U ℓ} denote
the event that vertex vfu from file fu requested by user u ∈ U ℓ is available in
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all the users in U ℓ but u and the rest of the vertices U \ U ℓ, then 1{Kvfu
= U ℓ}

follows a Bernoulli distribution with parameter (pfMu)
ℓ−1(1 − pfMu)

n−ℓ+1 such

that its expectation is (pfMu)
ℓ−1(1 − pfMu)

n−ℓ+1B. Then, we can see that given

f ,
∑
∀vfu

1{Kvfu
= U ℓ} = (pfMu)

ℓ−1(1−pfMu)
n−ℓ+1B+o(B) with high probability

[16]. Thus, as B →∞, we have that with high probability,

|J (U ℓ, f)|

= max
fu∈f(Uℓ)

∑

∀vfu

1{Kvfu
= U ℓ}

= max
fu∈f(Uℓ)

(pf,uMu)
ℓ−1(1− pf,uMu)

n−ℓ+1B

+o(B), (B.1)

where f(U ℓ) represent the set of files requested by U ℓ.

Then, by averaging over the demands distribution, we obtain that with high

probability ,

E[χ(HM,W)]

≤ E

[
n∑

ℓ=1

∑

Uℓ∈U

⏐⏐J (U ℓ, f)
⏐⏐
]

=
n∑

l=1

∑

Uℓ∈U

E
[⏐⏐J (U ℓ, f)

⏐⏐]

(a)
=

n∑

l=1

∑

Uℓ∈U

E
[

max
fu∈f(Uℓ)

(pf,uMu)
ℓ−1

(1− pf,uMu)
n−ℓ+1B + o(B)

]

(b)
=

n∑

ℓ=1

∑

Uℓ∈U

m∑

f=1

∑

u∈Uℓ

ρf,u,Uℓ

(1− pf,uMu)
n−ℓ+1(pf,uMu)

ℓ−1 + δ1(B), (B.2)

where (a) is by using (B.1) and (b) is obtained by computing the probability that

the requested file fu in f(U ℓ) that maximizes
(
(pf,uMu)

l−1(1− pf,uMu)
n−ℓ+1B

)
.

δ1(B) denotes a smaller order term of
∑n

ℓ=1

∑
Uℓ∈U

∑m
f=1

∑
u∈Uℓ ρf,u,Uℓ(1−pf,uMu)

n−ℓ+1(pf,uMu)
ℓ−1.

For any U ℓ, we obtain that
∑

f

∑
u∈Uℓ ρf,u,Uℓ = 1, and ρf,u,Uℓ denotes the proba-

bility that file f is the file with memory assignment pf,u such that ρf,u,Uℓ
∆
= P(f =
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arg max
fu∈f(Uℓ)

(pf,uMu)
ℓ−1(1 − pf,uMu)

n−ℓ+1), where f(U ℓ) denotes the set of files re-

quested by a subset users U ℓ. Thus, we normalize (B.2) by B and obtain that with

high probability,

R̄(P,Q) =
E[χ(HM,W)]

B

≤
n∑

ℓ=1

∑

Uℓ∈U

m∑

f=1

∑

u∈Uℓ

ρf,u,Uℓ

(1− pf,uMu)
n−ℓ+1(pf,uMu)

ℓ−1,

= ψ(P,Q), (B.3)

which is the first term inside the minimum in (4.1) and we denote (
∑n

ℓ=1

∑
Uℓ∈U

∑m
f=1

∑
u∈Uℓ ρf,u,Uℓ(1−

pf,uMu)
n−ℓ+1(pf,uMu)

ℓ−1) as ψ(P,Q).

B.0.2 Performance of GCC2

We can see that by using GCC2 and letting all the users cache the most ⌊Mu⌋
popular files, the probability that file f will be transmitted by uncoded multi-

casting is (1−
∏n

u=1 (1− qf,u)). Hence, E[χ(HM,W)], which can be upper bounded

by the average number of distinct requested packets, is given by that with high

probability [16],

E[χ(HM,W) ≤
m∑

f=⌊minu{Mu}⌋+1

(
1−

n∏

u=1

(1− qf,u)

)
B

+δ2(B)

= m̄B + δ2(B). (B.4)

where δ2(B) is a smaller order term of m̄B, where m̄
∆
=
∑m

f=⌊minu{Mu}⌋+1 (1−
∏n

u=1 (1− qf,u)).
We normalize (B.4) by B and obtain that with high probability,

R̄(P,Q) ≤ m̄, (B.5)

which is the second term inside the minimum in (4.1).

Thus, by taking the minimum of (B.3) and (B.5), we obtain Theorem 1.
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