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Abstract

Multiferroic materials (in which electric and magnetic order coexist) that also display magneto-

electric coupling have recently raised considerable interest as candidate compounds for advanced

applications in electronics and data storage. In particular, the magneto-electric coupling is relevant

in those materials such as TbMnO3 and Ni3V2O8 in which the onset of a cycloidal magnetic order

drives the formation of a ferroelectric state. A key feature in these compounds is the possibility to

control the population of magnetic domains (defined by the handedness of the cycloids) by an in situ

electric field.

The combination of magnetic non-resonant diffraction by circularly polarised X-rays with the full

linear polarimetry of the scattered beam opens the way to a new class of experiments, in which the

magnetic order of complex magnetic materials under applied electric and magnetic fields is probed.

This technique brings a strong experimental sensitivity to the imbalance in the domain populations,

since the handedness of the circular polarisation naturally couples to the sense of rotation of the

magnetic moments, leading to an accurate description of the domain state and to the refinement of

the magnetic structure.

The results shed more light on the complex magnetic structure of TbMnO3, a challenging test

case due to its two magnetic sublattices on the Mn and Tb sites, by identifying components of the

ordering on the Tb sublattice and phase shifts that earlier neutron diffraction experiments could

not resolve. In the case of Ni3V2O8, the method not only facilitated the refinement of the magnetic

structure, but also allowed real space images of the magnetic cycloidal domains to be obtained. Their

evolution is followed as they are controlled via magneto-electric coupling by the applied electric field

and cycled through a hysteresis loop, thus collecting valuable information on domain formation,

inhomogeneities and domain wall movement.
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is circular left. In the first two sketches (first row), the Stokes scans that would emerge

from a purely Domain 1 and a purely Domain 2 magnetic structure are shown. In the

third and fourth sketches (second row), it is shown the dependence of the parameters

P1 (red) and P2 (blue), and the parameters η0 (green) and P ′ (purple), on the volume

fraction of Domain 1 with respect to the total volume of the sample. In the fifth

sketch, the variation of the constant representing the average intensity is shown. It

should be noted that P2 is very sensitive to the percentage of domains, while P1 and

the average intensity are almost insensitive to it. . . . . . . . . . . . . . . . . . . . . 95

4.29 Calculation analogous to the one in Fig. 4.28, but for circular right polarisation of

the incident light, shown as a comparison. Note the radically different dependence of

the parameter P2 on the volume fraction of the magnetic Domain 1. . . . . . . . . . 96

4.30 In the upper part of the figure: maps of the volume percentage of Domain 1 extracted

from the mesh, and interpolated on the surface of the sample. The results are obtained

with incident light polarisation tuned to be circular left (map on the left) and circular

right (map on the right). The two are very similar, as it should be expected. The

final values for the percentage have been taken as an average between the two (in the

lower part of the figure). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.31 Maps of the average intensities measured by the mesh, and interpolated on the surface

of the sample. The results are obtained with incident light polarisation tuned to be

circular left and circular right. The two are very similar, as it should be expected,

since the average intensity should not depend on the percentage of domains. . . . . . 98

4.32 Images of the domain populations as a function of applied electric field for the magnetic

reflection (5 + δ, 1, 0), where the colour represents the percentage of the clockwise

and anti-clockwise magnetic cycloidal domains. . . . . . . . . . . . . . . . . . . . . . 99

4.33 Position dependent magnetic domain population hysteresis loops obtained from the

domain images shown in Fig. 4.32 averaged over different areas of interest: (a) entire

sample area; (b) edge; (c) central region. In (c) the data are compared with bulk

measurements of the electric polarisation published in [13], where an appropriate

scaling has been applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

12



5.1 Study of the phase diagram of TbMnO3, adapted from [1, 69]. In the left panel,

measurements at zero field: (a) temperature profiles of magnetisation and specific

heat divided by temperature; (b) wavenumber of lattice modulation τL (see text); (c)

dielectric constant ε at 10 kHz; (d) and electric polarisation P along the principal axes
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closed symbols denote the data obtained with decreasing temperature (or increasing

magnetic field) and increasing temperature (or decreasing magnetic field), respectively.

Gray regions indicate ferroelectric phases. . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2 Schematic of the experimental setup, including the orientation of the TbMnO3 sample

with respect to the scattering plane and the direction of the applied electric field. . . 105

5.3 Profile of the charge reflection (4 0 0) measured in the polarisation channel π - π′. . 106

5.4 Alignment scans of the phase plate, showing the quality of the circular polarisation

of the incident beam attained during the experiment. First, the positions of the two

circular polarisations are identified from the rocking curve θ of the plate (upper figure).

The rotated polarisation is then checked and finely adjusted by means of a full Stokes

scan on the direct beam. As a comparison, and to refine the alignment of the plate in

the angle χ (cf. subsection 3.1.6), the Stokes scans are performed also in the positions

corresponding to vertical rotated polarisation (σ) and unrotated polarisation (π), i.e.

away from any Bragg reflection of the plate. . . . . . . . . . . . . . . . . . . . . . . . 107
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Chapter 1

Spin-driven Multiferroic Materials

Interest in magneto-electric multiferroics has flourished in recent years due to the discovery of new

classes of materials in which the coupling between the ferroic order − magnetism and ferroelectricity

− has been shown to be established by novel mechanisms. An important driver for this research

on the applied side is the hope that it will provide new materials to be used in data storage and

processing devices. Amongst the various classes of materials that are being investigated, arguably

the most promising and intriguing is the one where the onset of non-collinear magnetic order leads

to the formation of a ferroelectric state. Typically, cycloidal magnetic structures (in which the spins

rotate in a plane containing the propagation vector of the structure) break the inversion symmetry

of the system, thus allowing the appearance of an electric polarisation along a specific direction. In

this scenario, a fundamentally important issue is to obtain an accurate and complete microscopic

description of the magnetic order, and to understand how that magnetic order and the associated

domains evolve as a function of applied electric and magnetic fields.

The renaissance of interest in multiferroics was sparked in 2004 when Kimura and co-workers [1]

discovered that TbMnO3, which up until that point had been thought of as a fairly conventional

transition metal oxide, exhibits a large magneto-electric coupling of the magnetic and ferroelectric

order parameters. In TbMnO3 it was shown that the phase transition to a cycloidal Mn3+ spin

arrangement at T = 27 K is concomitant with the onset of electric polarisation [1, 2]. Moreover, it was

demonstrated that the electric (magnetic) polarisation can be controlled by application of a magnetic

(electric) field. Many other materials were subsequently shown to exhibit similar phenomenology,

including other RMnO3, and RMn2O5 compounds (as reviewed in Nature Materials [3], Nature [4],

and many others [5] - [9]). One particular material that has been the focus of recent studies is

Ni3V2O8. Its structure is characterized by a buckled kagomé staircase, resulting in two inequivalent

Ni sites; below 6.3 K, the Ni2+ S=1 spins are reported to be arranged in a cycloid [10].

One of the key outstanding experimental challenges in this field is to develop methods that

allow the imaging of the magneto-electric domains, and in particular to control and understand the

population of magnetic domains (defined by the handedness of the cycloids) by means of an in situ

electric field. In this thesis a new experimental method is introduced based on the use of the non-

resonant magnetic diffraction of circularly polarised X-rays combined with full linear polarimetry of

the scattered beam. It is shown how this technique is capable of providing unique information on
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the magnetic state of complex magnetic materials. In particular, when applied to magneto-electric

multiferroics such as TbMnO3 and Ni3V2O8 the technique provides high experimental sensitivity

to the imbalance in the magnetic domain populations of cycloidal structures, since the handedness

of the circular polarisation naturally couples to the sense of rotation of the magnetic moments.

This sensitivity in turn allows an accurate description of the domain state and to the refinement

of the magnetic ordering. The experiments were performed at the ID20 beamline in the European

Synchrotron Radiation Facility. A quarter-wave phase plate operating at X-ray frequencies has been

used to tune the polarisation of the synchrotron light into a left or right-handed circular state, while a

set of polarisation analyser crystals has been employed in the detection of the magnetically diffracted

X-rays. A new sample stick was developed that allowed the simultaneous application of electric fields

and magnetic fields up to 10 T using a cryomagnet.

The results obtained with this technique provide important new information on the complex

magnetic structure of multiferroic TbMnO3, a challenging test case due to its two magnetic sublat-

tices on the Mn and Tb sites. The method led to the identication of components of the ordering

on the Tb sublattice and phase shifts that earlier neutron diffraction experiments could not resolve

[2]. The effect of an applied magnetic field on TbMnO3 has also been investigated, allowing the

identification of the induced magnetostrictive atomic displacements, which, in turn, provide insight

into the multiferroic mechanism leading to the spontaneous electric polarisation in zero field. In the

case of Ni3V2O8, polarisation analysis not only facilitated the refinement of the magnetic structure,

but also has allowed real space images of the magnetic cycloidal domains to be obtained. Their

evolution is followed as they are controlled via magneto-electric coupling by the applied electric field

and cycled through a hysteresis loop, thus collecting valuable information on domain formation, in-

homogeneities and domain wall movement.This work led to two papers published in Physical Review

Letters [11] and Physical Review B [12]; a third paper authored by Walker and co-workers is to be

published (cf. Chapter 6).

1.1 Magneto-electric multiferroics

1.1.1 Definitions

A generic ferroic material is a compound that develops a certain form of spontaneous order below a

characteristic temperature, described by an appropriate crystal tensor such as, for example, an elec-

tric polarisation (P), a magnetic polarisation (M), or an elastic strain. Depending on the physical

nature of this order parameter, the material is correspondingly classified as a ferroelectric, ferro-

magnetic or ferroelastic compound. The order parameter can assume equivalent but distiguishable

values (domains), which can be favoured by applying an appropriate external field; for instance, in

a ferroelectric material, it is possible to reverse the sign of the polarisation P upon application of

an external electric field. Following these definitions, a compound is defined as a multiferroic when

two or more of the primary ferroic properties are united in the same phase.

Among multiferroic compounds, the most interesting candidates for applications are those in

which a coupling exists between the ferroic properties. From a practical viewpoint, this would be

appealing to switch the magnetisation (or electric polarisation) of magnetic (ferroelectric) memories

18



Magneto-electrics

Magnetically
polarisable

Electrically
polarisable

Spontaneous 
magnetic order

Spontaneous 
electric order

Magneto-electric
Multiferroics

Figure 1.1: Classification of electric and magnetic properties of materials (see text). The intersection be-

tween ferroelectric materials (green set), ferro/antiferromagnetic materials (purple set) and magneto-electric

materials (black set) is the class of compounds known as magneto-electric multiferroics.

under the application of an electrical (magnetic) field. In its most general definition, the magneto-

electric effect denominates the coupling between electric and magnetic fields in solids. Given a certain

material upon which external fields are applied, its free energy can be expanded in terms of the fields

as

F (E,H) = F0 − PSi Ei − MS
i Hi −

1

2
ε0εijEiEj

− 1

2
µ0µijHiHj − αijEiHj −

1

2
βijkEiHjHk −

1

2
γijkHiEjEk − ...

and its differentiation leads to the expressions for the electric polarisation

Pi(E,H) = − ∂F
∂Ei

=

= PSi + ε0εijEj + αijHj +
1

2
βijkHjHk + γijkHiEj − ...

and the magnetisation

Mi(E,H) = − ∂F

∂Hi
=

= MS
i + µ0µijHj + αijEi + βijkEiHj +

1

2
γijkEjEk − ...

where the coefficients PS and MS denote the spontaneous polarisation and magnetisation, while

tensors ε and µ are the electric and magnetic susceptibilities. The tensor α corresponds to the

induction of electric polarisation by magnetic field or the induction of magnetisation by electric

field, via linear magneto-electric effect. This is supplemented by higher-order magneto-eletric effects

like those parametrised by the tensors β and γ.

The relation between multiferroic materials and the magneto-electric effect is summarised in the

diagram depicted in Fig. 1.1. In the bigger set on the left are grouped together all materials that

can be electrically polarised with the application of an external electric field; in the inset there
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are the ones where the electric polarisation is spontaneous, namely, the electric ferroic materials.

On the right, the same is done for magnetic materials (the magnetically polarisable ones and the

ferro/antiferromagnetic ones); the intersection between the magnetic and the ferroelectric materials

defines the class of multiferroics (highlighted in pale blue). The materials that show a magneto-

electric effect are the ones in the black circle set. The intersection between magneto-electric and

multiferroic materials is the kind of compound which this work is devoted to. It should be noted that

a slightly broader definition has been employed in this case to include antiferromagnetic systems in

the group; in such materials, the interaction between electric and magnetic properties is not defined

by the simple linear magneto-electric effect, but shows more complex and exhotic behaviours, as will

be detailed in the following of this chapter.

1.1.2 The search for magneto-electric multiferroics

The search for magneto-electric multiferroics has been reviewed recently in a series of papers: [3]

- [9]. The attempts to combine in one system both magnetic and ferroelectric (FE) properties

started in the 1960s, predominantly by two groups in the then Soviet Union: the group of Smolenskii

[14], and Venevtsev [15]. Even though multiferroics presented an extremely interesting class of

systems and problems, for some time this field of research progressed slowly, and was not well

known. The issues encountered were essentially of two kinds. One is what are called the microscopic

conditions, which determine the possibility to combine in one system both magnetic and ferroelectric

properties. This turned out to be a quite nontrivial question, and usually in conventional systems

these two phenomena tend to exclude one another. The second group of problems concerns, given

the multiferroic system, what is the coupling between different degrees of freedom (How strong is it?

What are its symmetry properties? etc.). These questions usually require detailed group symmetry

analysis of a given particular system.

The conceptually simplest situation is met within materials that contain separate structural units

which can give rise to strong dielectric response and eventually ferroelectricity, and which simulta-

neously contain, somewhere else, magnetic ions. Such are for example many borates, containing

BO3 groups, e.g. GdFe3(BO3)4. These materials display interesting properties, especially optical

ones [16], but one should not in general expect very strong coupling between magnetic and electric

degrees of freedom here.

Transition metal perovskites (ABO3) were considered among the most promising multiferroic

materials. There are many magnetic materials with diverse properties among them; also most of the

classical ferroelectrics, such as BaTiO3 or (PbZr)TiO3 (PZT), belong to this class. It is therefore not

surprising that the first attempts to create multiferroic materials were mostly concentrated on this

class of compounds. However, it soon became clear that the situation was far from simple. There exist

hundreds of magnetic perovskites; a collection is presented in the tables compiled by Goodenough and

Longo [17]. Another extensive volume in the same series lists hundreds of ferroelectric perovskites

[18]. But the inspection of these tables showed that there was practically no overlap between these

two lists of materials; magnetism and FE in perovskites seem to exclude one another. Apparently,

the only exceptions in the stoichiometric (not mixed) perovskites were BiFeO3 [19] and BiMnO3 [20].

The reason for this mutual exclusion was investigated by empirical observation. In conventional
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FE perovskites containing transition metal (TM) ions, such ions have the formal configuration d0,

i.e. they have an empty d-shell, and this seemed to be a necessary condition for FE in this class

of materials: all known FE perovskites contained TM ions with empty d-shells (Ti4+, Ta5+, W6+,

etc.). Conversely, as soon as there is at least one or more d-electrons on the d-shell, such systems

may be magnetic, but it was thought that they could never be FE. This question was extensively

elaborated by Hill [21]. In conventional FE perovskites, the positively charged TM ions like to form

molecules with the neighbouring negative oxygen ions; this collective shift of cations and anions

inside a periodic crystal induces bulk electric polarisation. The mechanism of the covalent bonding

in such molecules is the virtual hopping of electrons from the filled oxygen shell to the empty d-shell

of the TM ion. Magnetism, on the contrary, requires TM ions with partially filled d-shells, as the

spins of electrons occupying completely filled shells add to zero and do not participate in magnetic

ordering. The exchange interaction between uncompensated spins of different ions gives rise to long-

range magnetic ordering. The difference in filling of the d-shells required for ferroelectricity and

magnetism appeared to make these two ordered states mutually exclusive.

Still, there were a few apparent exceptions in the perovskite family mentioned above: some

compounds, such as BiMnO3 or BiFeO3, with magnetic Mn3+ and Fe3+ ions, are ferroelectric. It

turned out that the main instability leading to FE in these systems is not due to TM ions, as e.g. in

BaTiO3, but is rather driven by the A-ions, in this case Bi [22]. Since the ferroelectric and magnetic

orders in these materials are associated with different ions, the coupling between them is rather

weak.

There exists yet another class of compounds, which are often cited as violating the d-emptiness

rule: hexagonal manganites RMnO3 (R = Y or small rare earths). Sometimes they are called

hexagonal perovskites, although in fact it is a misnomer, as despite apparently similar formula

ABO3, these systems can have very different crystal and electronic structures. It was found that the

FE in these materials has a completely different nature; however, as the mechanisms of magnetic and

FE ordering are independent even in these systems, one should not expect a very strong coupling

of magnetic and FE degrees of freedom, although certain coupling is definitely present and leads to

quite interesting effects [23, 7].

1.1.3 Spin-driven multiferroics

An upsurge of interest in multiferroics started around 2001. This was connected with two main

factors. First, the techniques, especially those of preparing and studying thin films of oxides, to

which most of multiferroics belong, were developed enormously, also opening a possibility to use these

systems, e.g., for ferroelectric memory [24]. Second, several new multiferroic systems were discovered

with rather spectacular properties, in particular, very strong coupling between ferroelectric and

magnetic degrees of freedom. They are characterised by the generation of ferroelectricity by magnetic

ordering. In the proper ferroelectrics, structural instability towards the polar state, associated with

the electronic pairing, is the main driving force of the transition. If, on the other hand, polarisation

is only a part of a more complex lattice distortion or if it appears as an accidental by-product of some

other ordering, as it is in this case, the ferroelectricity is called improper. This is what happens in

the recently discovered multiferroic materials RMnO3 (with perovskite structure; R = Tb, Gd) [1],
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in RMn2O5 (R = different rare earths, such as Tb, Y etc.) [25], in Ni3V2O8 [26], and in hexaferrite

[27]. In all these systems, FE appears simultaneously to the magnetically ordered state of a specific

phase: the phase with the cycloidal ordering in TbMnO3 [2], and in similar phases in other such

systems. As the FE in these systems appears only in certain magnetically ordered states, it turns

out that the coupling between magnetic and electric subsystems in them is especially strong, and one

can expect giant effects. Indeed spectacular effects were observed in these systems by application

of magnetic field: change of the direction of polarisation in TbMnO3 [1], switching from positive to

negative polarisation in TbMn2O5 [25], etc.

As for the detailed mechanism of generation of FE by magnetic ordering in these systems, it

seems that in most of them FE appears in magnetic phases with non-collinear magnetic structures.

Let’s consider TbMnO3 as a canonical example. The crystal structure at room temperature is the

orthorhombically distorted perovskite sketched in Fig. 5.5 in Chapter 5 (space group Pbnm): the

crystal symmetry does have an inversion center, and the system is non-polar. At lower temperatures,

the system shows successive magnetic phase transitions. Figure 1.2 shows temperature profiles of

magnetisation M at a magnetic field of 0.5 T, specific heat divided by temperature, and electric

polarisation along the c axis for a single crystal of TbMnO3. According to neutron diffraction

studies [28, 29], the Mn moments undergo an antiferromagnetic transition at TN ≈ 41 K; this

ordering corresponds to the anomaly in magnetisation and specific heat. Below TN the Mn moments

are collinear and aligned along the b axis, and show sinusoidal order with a propagation wave vector

(0, τ , 1) [28]. The second anomaly is observed in magnetisation and specific heat at TC ≈ 28 K;

FE order with spontaneous polarisation along the c axis also develops at ≈ 28 K, as shown in Fig.

1.2. The proposed magnetic model below TC is an elliptically modulated cycloidal structure [2], i.e.

a non-collinear magnetic structure with components along the b and c axes (see Fig. 1.2 - (c); a

more systematic classification for spin density wave structures will be given below). At the lowest

temperature, the magnitude of electric polarisation is approximately 6-8 × 10−4 C m−2 (which is

rather small as compared with that of conventional perovskite ferroelectrics, e.g., ≈ 2.6 × 10−2 C

m−2 at 296 K in BaTiO3). In conclusion, when the magnetic structure is collinear the system is

paraelectric, whereas in the FE phase the magnetic structure is an elliptically modulated cycloid.

This simultaneous appearance of the cycloidal structure and the FE phase transition is important

in understanding the origin of ferroelectricity in TbMnO3 and in similar materials. Qualitatively it

can be understood that the very notion of cycloidal order implies that the inversion symmetry is

actually already broken: there may either be a left-moving or a right-moving cycloid. This in itself

shows that the system is already close to becoming FE.

Mostovoy [30] obtained from a phenomenological approach a simple expression for electric po-

larisation induced by incommensurate spin density wave (SDW) states. These states are largely

insensitive to the details of crystal structure and can be described by a continuum field theory of the

Ginzburg-Landau type. The form of the coupling of the electric polarisation P to the magnetisation

M can be found using general symmetry arguments [31, 32]. The invariance upon the time reversal

(t→ −t) which transforms P→ P and M→ −M, requires the lowest-order coupling to be quadratic

in M. The symmetry with respect to the spatial inversion (x → −x), upon which P → −P and

M → M, is respected when the coupling of a uniform polarisation to an inhomogeneous magneti-
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Figure 1.2: Temperature profiles of magnetic susceptibility (a), specific heat divided by temperature, and

electric polarisation (b) along the c axis in TbMnO3, from Kimura [6]. Below TC , the system enters the FE

phase; the schematic drawing (c) of the proposed magnetic structure shows a cycloidal ordering in the (b, c)

plane, propagating along the b axis.

sation is linear in P and contains one gradient of M. This is where frustration comes into play: its

role is to induce spatial variations of magnetisation. Complex and periodically modulated magnetic

structures in insulators result from competing exchange interactions [33] and are often found in

so-called geometrically frustrated materials, such as the ferroelectric kagomé magnet Ni3V2O8 [26].
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This mechanism outlined by Mostovoy does not require a special kind of crystal lattice. In the

simplest case of cubic symmetry the coupling term has the form

Φem(P,M) = γP · [M(∇ ·M)− (M · ∇)M + ...] (1.1)

and the omitted terms do not contribute to the uniform polarisation. Assuming that in the absence

of magnetism the system shows no instability towards ferroelectricity, the electric part of the ther-

modinamic potential is completed by the term Φe = P 2/2χe, where χe is the dielectric susceptibility

in absence of magnetism, and the equilibrium found from the variation of Φe + Φem with respect to

P gives:

P = γχe[(M · ∇)M−M(∇ ·M)]. (1.2)

Consider now a SDW state characterised by the wave vector q and the magnetsation function

M(x) = M1ê1 cos(q · x) +M2ê2 sin(q · x) +M3ê3 (1.3)

where x is a generic position in space, and the unit vectors êi, i=1,2,3 form an orthogonal basis. If

only M1 or M2 is different from zero, the expression describes a sinusoidal wave (Fig. 1.3), while for

M1,M2 6= 0 it describes a spiral (q ‖ ê3) or cycloid (q ⊥ ê3), and the spin rotation axis is ê3 (if also

M3 6= 0, the spiral is conical). Using Eq. 1.2, it is found that the average polarisation is transverse

both to ê3 and q, and is independent of M3:

P̄ =
1

V

∫
d3xP = γχeM1M2[ê3 × q]. (1.4)

This equation also holds for orthorombic crystals, provided that ê3 and q are parallel to crystal

axes. No average polarisation is induced by a sinusoidal SDW, as the inversion symmetry at the sites

where the magnetisation reaches maximum or minimum remains unbroken. Following this model, a

spiral magnetic structure alone is also not sufficient: FE can appear only if the spin rotation axis

ê3 does not coincide with the wave vector q, and the polarisation P is proportional to their vector

product. The sign of the polarisation depends on the handedness of the cycloid, as shown in Fig. 1.4.

The propagation vector defined by Eq. 1.3 changes its direction depending on the sense of rotation

of the magnetic moments in the (ê1,ê2) plane; therefore, the resulting vector product ê3 × q and P

change their sign as well. This effect can be better emphasized by using the alternative formulation

for the electric polarisation derived from Eq. 1.4

P ∝ êij × (Mi ×Mj) (1.5)

where êij is the unit vector connecting the atomic site i to the site j, and Mi and Mj are the

magnetic moments localised on the two sites (see Fig. 1.4). The two magnetic domains allowed by

a cycloidal stucture are thus related to the two opposite directions of the electric polarisation P.

Turning back to the specific case of TbMnO3, this explains why the transition at T ≈ 40 K to

the sinusoidal SDW state [1, 2] does not give rise to ferroelectricity, and polarisation is only induced

below the transition at T ≈ 30 K, at which the sinusoidal SDW is replaced by a cycloid with the

propagation vector q ‖ b and the spin rotation axis ê3 ‖ a, thus corresponding to the situation

q ⊥ ê3. Since the Mn spins rotate in the (b, c) plane, Eq. 1.4 gives P ‖ c, in agreement with

experiment. Similarly, the polarisation is absent in the high-temperature incommensurate phase of
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Figure 1.3: Overview of the possible magnetic orderings defined by Eq. 1.3. No transverse component M3

has been supposed for the sake of simplicity; the corresponding magnetisation function is reported on the

top of the figure. A collinear, sinusoidal spin density wave and a spiral wave do not meet the condition for

ferroelectricity expressed by Eq. 1.4 and 1.5. In the spiral wave, the propagation vector of the magnetic

modulation q and the axis of the rotation ê3 are parallel. Conversely, in a cycloidal density wave, the two

are perpendicular and an electric polarisation is expected to emerge.

Ni3V2O8, which is the sinusoidal SDW state [26]. The cycloid with q ‖ a and the rotation axis ê3 ‖ c,

observed in the low-temperature incommensurate phase, induces P along the b axis. By inspecting

the phase diagram of ferroelectric SDW magnets, using the values of the induced polarisation and

magnetic transition temperatures (5-40 K) for these materials, it is found that the energy gain due to

the induced polarisation is small compared to the magnetic energy gain. Therefore, the temperature

and magnetic field dependence of the polarisation merely reflect the changes in magnetic ordering.

This phenomenological approach, based on symmetry considerations, is complementary to the

recent discussions of microscopic mechanisms of FE in magnets. A plausible microscopic mechanism

inducing FE in magnetic non-collinear systems was discussed in references [34] and [35], involving

the antisymmetric Dzyaloshinskii-Moriya (DM) interaction. The so-called ”direct” DM interaction

is an anisotropic superexchange coupling between two spins Si and Sj located on a lattice bond ij

with no inversion centre (see Fig. 1.5, top part). The exchange between spins of transition metal

ions is usually mediated by ligands, for example oxygen ions: the lack of an inversion centre between

Si and Sj may be due to a small shift of the oxygen atom from the centrosymmetric position. The

DM interaction is described by the term HDM = Dij · Si × Sj , where Dij is the Dzyaloshinskii

vector discussed below [32, 36], and typically favours non-collinear spin ordering by inducing a small

canting of the magnetic moments that would otherwise be parallel or antiparallel. This interaction

arises from a relativistic correction to the usual superexchange and its strength is proportional to the

spin-orbit coupling constant λ. The Dzyaloshinskii vector Dij is proportional to x× êij , where êij is

the unit vector along the line connecting the magnetic ions i and j, and x is the shift of the oxygen

ion from this line (see Fig. 1.5). Thus, the energy of the DM interaction increases with x, describing
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Figure 1.4: In a cycloidal magnetic density wave, the handedness of the rotation of the magnetic moments

(clockwise or anticlockwise) determines the sign of the electric polarisation P. Following Eq. 1.4 and the

definition of the magnetisation function in Eq. 1.3, it can be seen that the vector product ê3 × q reverses

its sign as the handedness is reversed. Alternatively, from Eq. 1.5, the expression êij × (Mi ×Mj) can be

evaluated to deduce the effect of the change of handedness on the sign of P.

the degree of inversion symmetry breaking at the oxygen site. Conversely, the ferroelectricity induced

by cycloidal magnetic ordering is the ”inverse” effect, that is, lattice relaxation and breaking of the

inversion symmetry in a magnetically ordered non-collinear state, such as a cycloidal one. Because

in the cycloidal state the vector product Si × Sj has the same sign for all pairs of neighbouring

spins, the DM interaction pushes negative oxygen ions in one direction perpendicular to the spin

chain formed by positive magnetic ions, thus inducing electric polarisation perpendicular to the chain

[35] (see Fig. 1.5). The microscopic mechanism can also be explained in terms of the spin current,

jij ∝ Si × Sj , describing the precession of the spin Si in the exchange field created by the spin Sj .

The induced electric dipole is then given by Pij ∝ êijjij [34].

Although the model described by Eq. 1.4 works for many multiferroics (and in particular TbMnO3

and Ni3V2O8 discussed in this work, as detailed in Fig. 1.6), the general expression for magnetically

induced polarisation is more complicated. In particular, when the spin rotation axis ê3 is not oriented

along a crystal axis, the orientation of P depends on the strengths of the magneto-electric couplings

along different crystallographic directions (such a situation occurs in MnWO4 [37, 38]). Furthermore,

when the crystal unit cell contains more than one magnetic ion, the SDW state cannot be described

by a single magnetisation vector, as was assumed in Eq. 1.1. With additional magnetic vectors, one

can construct other third-order terms that can induce electric polarisation. Correspondingly, from

the microscopic point of view, it should be noted that the inverse DM interaction is not the unique

mechanism to induce FE polarisation [39]. For a general symmetry analysis of the conditions for the

development of a macroscopic electrical polarisation as a secondary order parameter to a magnetic

ordering transition, see ref. [40].
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Figure 1.5: Effect of DM interaction HDM = Dij · (Si × Sj), adapted from [3]. The Dzyaloshinskii vector

D12 is proportional to spin-orbit coupling constant λ, and depends on the position of the oxygen ion (open

circle) between two magnetic transition metal ions (filled circles): D12 ∝ λx × ê12. A weak ferromagnetic

component in antiferromagnets (for example, LaCu2O4 layers) results from the alternating Dzyaloshinskii

vector between adjacent pairs of transition metal atoms. The inverse effect consists in inducing a (weak)

ferroelectricity in a magnetic spiral state, as negative oxygen ions are pushed in one direction transverse to

the spin chain formed by positive transition metal ions.

In summary, magnetic frustration naturally gives rise to multiferroic behaviour. Competing mag-

netic interactions in frustrated magnets often result in magnetic structures that lack the inversion

symmetry of a high-temperature crystal lattice. The ionic relaxation in such magnetic states, driven

by lowering of the magnetic energy of the Heisenberg and Dzyaloshinskii-Moriya exchange interac-

tions, induces polar lattice distortions. These magnetic ferroelectrics can produce unprecedented

cross-coupling effects, such as the high tuneability of the magnetically induced electric polarisation

and dielectric constant by applied magnetic fields, which has given a new impulse to the search for

other multiferroic materials and raised hopes for their practical applications.

This thesis is organised as follows. In Chapter 2, the theoretical description of X-ray magnetic

scattering is given. In particular, the general non-resonant magnetic scattering cross-section is de-

tailed for the case of incommensurate non-collinear magnetic structures, thus highlighting the role of

circularly polarised incident light in discriminating the handedness of the magnetic cycloidal domains.

In Chapter 3, the experimental technique is reviewed in its technical details. Beside the classical

features characteristic of non-resonant magnetic X-ray scattering measurements from synchrotron

light, the approach used in the present work involves the control of the incident polarisation, the

linear polarimetry on the diffracted beam, and the application of in situ electric and magnetic fields.
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Figure 1.6: Schematic drawings from [6] of the change of local electric polarisation in TbMnO3 induced by

spin canting in (a) anticlockwise and (b) clockwise cycloid. The difference between dark green and light

green dots represents the shift of oxygen ions due to the spin canting between the neighboring two magnetic

moments. The blue arrows denote the resultant change of the local electric polarisation P.

In Chapter 4, the results obtained on Ni3V2O8 are presented. New information on the magnetic

structure was obtained, integrating and correcting the picture emerging from previously published

neutron data [10]. It is furthermore demonstrated that the technique enables the imaging of multi-

ferroic domains through polarisation enhanced topography, an approach used to image the domains

as the sample is cycled by an electric field through a hysteresis loop, revealing the gradual switch-

ing of domains in accord with direct polarisation measurements previously reported [13]. The data

and analysis reported in this Chapter have been published in Physical Review B [12]. In Chapter

5, the results obtained on TbMnO3 in zero magnetic field are presented. The data allowed the

discovery of components of the ordering on the Tb sublattice and phase shifts that earlier neutron

diffraction experiments could not resolve. This work has been published in Physical Review Letters

[11] and represents the first study of circularly polarised X-ray magnetic scattering combined with

the application of in situ electric field to determine the absolute sense of rotation of non-collinear

moments. In Chapter 6, the results obtained on TbMnO3 in applied magnetic field are presented.

The investigation has revealed the possibility of finding magnetic and Thomson displacive ampli-

tudes interfering at the same reflections. The data analysis is still ongoing, however the preliminary

results suggest that magnetostrictive displacements can be held responsible for the insurgence of the

Thomson contribution, thus offering valuable insight into the different atomic modes involved and

their order of magnitude. This work is being prepared for publication.
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Chapter 2

X-ray Magnetic Scattering

Although traditional diffraction techniques exploit neutrons to study magnetism in condensed matter,

X-ray scattering has been proved to constitute a notable and complementary experimental method.

In the interaction with matter the X-rays are mostly scattered by the charge distribution, however,

a weaker contribution to the scattering process is given by the magnetic properties of the sample,

leading to the inclusion of additional terms in the cross-section. The possibility of exploiting this

interaction between field and matter to study magnetic densities was first suggested by the theoretical

work of Platzman and Tzoar [41] in 1970, and experimentally performed by de Bergevin and Brunel

[42, 43]. A full treatment of X-ray magnetic scattering is reported by Blume in [44]. The intensity

arising from purely magnetic diffraction (the so called non-resonant contribution) is estimated to

be 106-109 smaller than the intensity of classical Thomson charge scattering, since it arises from

small relativistic effects. Nonetheless, the exploitation of third generation synchrotron radiation

sources, provided with beamlines specifically designed to perform magnetic scattering experiments,

now allows us to undertake this kind of measurement by means of a high flux beam, tunable energy

and an excellent degree of polarisation.

The first part of this chapter (2.1) is devoted to review the basic concepts of the experimental

technique: 1) the derivation of the non-resonant X-ray magnetic scattering amplitude (NRXMS) from

the physics of the interaction between electromagnetic radiation and matter, and the discussion of

its properties (2.1.1 to 2.1.3); 2) the construction of the global diffraction intensity in the case of

an ordered magnetic density, be its period commensurate or incommensurate with respect to the

crystallographic lattice (2.1.4); 3) the basic setup of a standard magnetic diffraction experiment

(2.1.5).

The second part of this chapter (2.2) focuses on the peculiar aspects of the magnetic diffraction

experiments undertaken in the present work, i.e. the exploitation of the dependence of the scattering

length found in (2.1.3) on the polarisation of the incident and the diffracted beam. A full account of

this polarisation dependence was given by Blume and Gibbs in [45], and by Hill and McMorrow in

[46]. This section presents a comparison between classical experimental methods based on azimuthal

scans (2.2.1) and the polarisation-based method known as Stokes scan (2.2.2); it then provides some

formal beackground to deal with the characterisation of polarised light in terms of the Jones and the

Stokes representations (2.2.3).
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The third and final part of this chapter (2.3) contains some observations on the application of this

technique to the specific case of cycloidally ordered magnetic densities, thus providing a general frame

for the subsequent chapters dealing with measurements on Ni3V2O8 and TbMnO3. The derivation

of the magnetic diffraction intensity for such a class of magnetic materials is shown, as well as the

use of circularly polarised incident radiation in order to discriminate between magnetic cycloidal

domains.

2.1 X-ray Magnetic Scattering

The aim of this section is to introduce the general theoretical framework describing the interaction

between elecromagnetic radiation and a system of charges (electrons), following Blume’s development

reported in [44]. The scattering cross-section will be derived with particular attention to its magnetic

contribution. The calculations are derived by a perturbative model, and take into account the effects

of electron binding. In subsection 2.1.4, this discussion will be focused to the case of diffraction from

an ordered distribution of magnetic density.

2.1.1 The interaction Hamiltonian

A radiation field can be characterised by its vector potential A(r), expanded as a linear combination

of the photon creation (c) and annihilation (c+) operators:

A(r) =
∑
q, ρ

(
2πh̄c2

V ωq

)1/2 [
ερ(q)cρ(q)eiq·r + ε?ρ(q)c+ρ (q)e−iq·r

]
(2.1)

where V is a quantization volume, the index ρ = 1, 2 labels two independent polarisation states for

each wavevector q, and ερ(q) are the corresponding unit polarisation vectors. Let’s assume that

the unperturbed radiation is monochromatic, so to consider only one wave vector q = k, in its two

possible states of polarisation. The system of charges, in quite a general view, is constituted of

several particles interacting with each other via a scalar potential V (rij) = V (|ri − rj |). Let’s now

consider the possibility of interaction between field and charges. The total system can be described

by the Hamiltonian:

H =
∑
j

1

2m
(pj −

e

c
A(rj))

2
+
∑
ij

V (rij) −
eh̄

2mc

∑
j

sj · (∇×A(rj))

− eh̄

2(mc)
2

∑
j

sj · [E(rj)× (pj −
e

c
A(rj))] +

∑
ρ=1,2

h̄ωk(c+ρ (k)cρ(k) +
1

2
) (2.2)

where E(r) and B(r) are the electric and magnetic fields, sj and pj are the spin and momentum

operators of the jth electron located at rj . The five terms describe respectively: the kinetic energy

of electrons in an electromagnetic field; the Coulomb potential energy of the electrons; the Zeeman

energy (interaction between the electron spin and a magnetic field); the spin-orbit interaction; the

energy of the electromagnetic field.

In order to separate the contributions related to the unperturbed radiation and the unperturbed

system of charges from the interaction terms, it is convenient to rewrite the spin-orbit term, by

distinguishing between the electric radiation field and the electric field created by the charges. The
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latter can be expressed via a scalar Coulomb potential φj . The Hamiltonian can now be written:

H = Hrad +Hmat +H ′ (2.3)

with

Hrad =
∑
ρ=1,2

h̄ωk(c+ρ (k)cρ(k) +
1

2
);

Hmat =
∑
j

1

2m
pj

2 +
∑
ij

V(rij) +
eh̄

2(mc)
2

∑
j

sj · (∇φj × pj);

H ′ =
e2

2mc2

∑
j

A2(rj) −
e

mc

∑
j

A(rj) · pj −
eh̄

mc

∑
j

sj · (∇×A(rj))

− eh̄

2(mc)
2

e2

c2

∑
j

sj · (Ȧ(rj)×A(rj)) = H ′1 +H ′2 +H ′3 +H ′4.

2.1.2 The differential scattering cross-section

For all cases in which the interaction potential is small, if compared with the unperturbed energies

of the isolated systems (radiation and charges), the time-dependent perturbation theory can be

applied to the Schroedinger’s equation. The transition probability/unit time induced by H ′ in the

unperturbed system is given by Fermi’s golden rule (to the second order):

W =
2π

h̄

∣∣∣∣∣< f |H ′|i > +
∑
n

< f |H ′|n >< n|H ′|i >
Ei − En

∣∣∣∣∣
2

δ(Ei − Ef )

where initial state |i > and final state |f > are eigenstates including the two non-interacting systems.

Let’s assume that the solid initially lies in a given quantum state |a >, which is an eigenstate of

Hmat with energy Ea, while the incoming photon is characterized by wave vector k and polarisation

ρ. After the interaction, the expression above considers the probability of a transition to a final state

|b > of the solid, with outcoming photon k′, ρ′:

|i >= |a ; k ρ >, |f >= |b ; k′ ρ′ >;

Ei = Ea + h̄ωk, Ef = Eb + h̄ωk′ .

If only scattering phenomena are considered, only those terms of the Hamiltonian which include

both annihilation and creation of a photon will be retained. The vector potential A is linear in

operators c and c+, so that this kind of event occurs for even powers of A. By considering only

quadratic terms, elastic scattering occurs in first perturbation order for terms quadratic in A (H ′1

and H ′4), and in second perturbation order for linear terms (H ′2 and H ′3):

W =
2π

h̄

∣∣∣∣ < b ; k′ ρ′| H ′1 +H ′4 |a ; k ρ >

+
∑
n

< b ; k′ ρ′| H ′2 +H ′3 |n >< n| H ′2 +H ′3 |a ; k ρ >

Ea + h̄ωk − En

∣∣∣∣∣
2

. (2.4)

The cross-section is obtained from the transition probability by multiplying W by the density of

final states and dividing by the incident flux:

d2σ

dΩ dE
= Wρ(Ef )/I0,
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ρ(Ef ) =
V

(2π)3

ω2

h̄c3
, I0 = c/V

where V is a quantisation volume that drops out of any physical expression.

Finally, let’s substitute the explicit form in the H ′ terms, and let the operators act on the

radiation states, to obtain the differential scattering cross-section. Assuming ωk ≈ ωk′ , this gives:

d2σ

dΩ dE
=

(
e2

mc2

)2
∣∣∣∣∣∣
〈
b

∣∣∣∣∣∣
∑
j

eiK·rj

∣∣∣∣∣∣ a
〉

ε · ε′

− i
h̄ω

mc2

〈
b

∣∣∣∣∣∣
∑
j

eiK·rj sj

∣∣∣∣∣∣ a
〉

ε× ε′

+
1

m

∑
c

(
〈b | O+(k′) | c〉 〈c | O(k) | a〉
Ea − Ec + h̄ωk − iΓc/2

+

+
〈b | O(k) | c〉 〈c | O+(k′) | a〉

Ea − Ec − h̄ωk

)∣∣∣∣ 2

δ(Ea − Eb + h̄ωk − h̄ωk′) (2.5)

where, for simplicity, a shorthand notation for the polarisation unit vectors has been introduced:

ε = ε̂ρ (k), ε′ = ε̂∗ρ′ (k′).

To get a more compact expression, the scattering vector K has been defined as

K = k− k′ (2.6)

and the operator O(k) as

O(k) =
∑
j

eik·rj [ ε · pj − ih̄(k× ε) · sj ] , (2.7)

so that, in Eq. 2.5, the operator O+ has the following explicit form:

O+(k′) =
∑
j

e−ik
′·rj [ ε′ · pj + ih̄(k′ × ε′) · sj ] .

By considering the second-order perturbation term, one can appreciate the dependence of the

scattering event not only on the initial and final state of the system, but also on other excited states

(|c > states). Also, including the second-order perturbation term leads to the appearance of the

energy h̄ωk in the denominators of the last two terms, in Eq. 2.5. In particular, for any addend in

the summation over c, the first denominator can become very small, when h̄ωk ∼ Ec−Ea. The iΓc/2

correction has been introduced to take into account the level width when the energy approaches to

this critical value. By algebric manipulation of Eq. 2.5, and by applying the closure relation on the

|c > states, the final expression is found:

d2σ

dΩ dE
=

(
e2

mc2

)2
∣∣∣∣∣∣
〈
b

∣∣∣∣∣∣
∑
j

eiK·rj

∣∣∣∣∣∣ a
〉

ε · ε′

− i
h̄ω

mc2

〈
b

∣∣∣∣∣∣
∑
j

eiK·rj
[
iK× pj
h̄k2

·A + sj ·B
] ∣∣∣∣∣∣ a

〉

+
1

m

∑
c

Ea − Ec
h̄ωk

(
− 〈b | O

+(k′) | c〉 〈c | O(k) | a〉
Ea − Ec + h̄ωk − iΓc/2
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+
〈b | O(k) | c〉 〈c | O+(k′) | a〉

Ea − Ec − h̄ωk

) ∣∣∣∣ 2

(2.8)

where

A = ε′ × ε (2.9)

B = ε′ × ε+ (k̂′ × ε′)(k̂′ · ε)− (k̂× ε)(k̂ · ε′)− (k̂′ × ε′)× (k̂× ε). (2.10)

In the case of elastic scattering (|a >= |b >) the contributions become:

1) The usual Thomson contribution depending on the Fourier transform of the electron density

f0 =

〈
a

∣∣∣∣∣∣
∑
j

eiK·rj

∣∣∣∣∣∣ a
〉

ε · ε′ (2.11)

2) The non-resonant contribution, which will be described in detail in the next subsection

fnr = − i
h̄ω

mc2

〈
a

∣∣∣∣∣∣
∑
j

eiK·rj
[
iK× pj
h̄k2

·A + sj ·B
] ∣∣∣∣∣∣ a

〉

3) The anomalous or resonant contribution

fan = f ′an + if ′′an =

1

m

∑
c

Ea − Ec
h̄ωk

(
− 〈a | O

+(k′) | c〉 〈c | O(k) | a〉
Ea − Ec + h̄ωk − iΓc/2

+
〈a | O(k) | c〉 〈c | O+(k′) | a〉

Ea − Ec − h̄ωk

)
.

Namely, it can be written:

d2σ

dΩ dE
=

(
e2

mc2

)2

| f0 + fnr + fan | 2
.

2.1.3 Non-resonant magnetic scattering

When dealing with ordered structures (crystals), the scattered signal is diffracted in discrete di-

rections of space (Bragg’s law). If the symmetry of the magnetic structure is different from the

crystallographic one, the magnetic and Thomson contributions are separated in different reflections.

A further discrimination between non resonant and resonant contribution can be obtained by tuning

the radiation energy away from any atomic edge of the system, thus making it possible to neglect

the resonant term. Although the non-resonant contribution is much weaker than the Thomson one,

it provides a direct coupling with the magnetic structure, and is not mixed with additional terms as

it may be the case for the resonant contribution. Moreover, the spin and orbital part are separated

(in contrast, for example, with neutron diffraction). Since the magnetic diffraction experiments per-

formed on TbMnO3 and Ni3V2O8 have been carried out in the non resonant regime, the cross-section

evaluated above for this term will now be examined in more detail. To simplify its expression, it can

be demonstrated that 〈
a

∣∣∣∣∣∣
∑
j

eiK·rj
iK× pj
h̄k2

·A

∣∣∣∣∣∣ a
〉

=

= −
(
K2

k2

) 〈
a

∣∣∣∣∣∣
∑
j

eiK·rj
−iK× pj

h̄k2

∣∣∣∣∣∣ a
〉
·A = −

(
K2

2k2

)
K̂× [L(K)× K̂] ·A =

=
1

2
L(K) ·A′′
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where

A′′ = −
(
K2

2k2

)
A − [ −

(
K2

2k2

)
A · K̂ ] K̂ =

= 2(1− k̂ · k̂′)(ε̂′ × ε̂)− (k̂× ε̂)(k̂ · ε̂′) + (k̂′ × ε′)(k̂′ · ε), (2.12)

and the quantity L(K) results from the application of an operator related to the orbital angular

momentum lj

L(K) =
1

2

〈
a

∣∣∣∣∣∣
∑
j

[f(K · rj)lj + ljf(K · rj)]

∣∣∣∣∣∣ a
〉

by the function

f(x) = 2

∞∑
n=0

(ix)n

(n+ 2)n!
=

2

(ix)2

∫ ix

0

yeydy.

Let’s define as S(K) the spin density Fourier transform of the charge distribution:

S(K) =

〈
a

∣∣∣∣∣∣
∑
j

eiK·rjsj

∣∣∣∣∣∣ a
〉
.

At this point, the following expression has been obtained:

fnr = i
h̄ω

mc2

[
1

2
L(K) ·A′′ + S(K) ·B

]
. (2.13)

In section 2.2 the state of the polarisation of the incident and of the diffracted beam and their

role in the scattering process is examined in detail. For the moment, it is convenient to stress that

the expression for the non resonant amplitude can be simplified by assuming an explicit polarisation

basis ε̂1 (ρ = 1) and ε̂2 (ρ = 2). Once the basis has been selected, the amplitude can be expressed

by a 2×2 matrix, constructed from the values assumed in the four possible channels of polarisation:

(ε′, ε) =

 (ε̂′1, ε̂1) (ε̂′1, ε̂2)

(ε̂′2, ε̂1) (ε̂′2, ε̂2)

 . (2.14)

The most suitable choice is a linear polarisation basis, constituted by:

ε̂1 = ε̂σ orthogonal to the scattering plane;

ε̂2 = ε̂π lying into the scattering plane.

The scattering amplitude can therefore be expressed in the form of a so-called Jones matrix:

fnr = i
h̄ω

mc2
·

S(K) · (k̂× k̂′) −K2

2k2 [( 1
2L(K) + S(K)) · k̂′ + 1

2L(K) · k̂]

K2

2k2 [( 1
2L(K) + S(K)) · k̂ + 1

2L(K) · k̂′] (K
2

2k2 L(K) + S(K)) · (k̂× k̂′)

 .
The significance of the different polarisation channels can be highlighted by the introduction of a

reference frame Σ centered on the sample. The orientation of the axes is determined by the incident

and the diffracted beams (see Fig. 2.1):

Σ =


û1 = (k̂ + k̂′)/2 cos θ

û2 = (k̂× k̂′)/ sin 2θ

û3 = (k̂− k̂′)/2 sin θ

(2.15)
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Figure 2.1: Definition of the reference frame.

The direction û3 coincides with the direction of K, while û1 lies into the scattering plane, and

û2 is orthogonal to that plane. The angle 2θ is the Bragg angle between the two wave vectors k̂ and

k̂′. Within this frame,

fnr = i
h̄ω

mc2
·

(sin 2θ)S2 −2(sin2θ)[(cos θ)(L1 + S1)− (sin θ)S3]

2(sin2θ)[(cos θ)(L1 + S1)− (sin θ)S3] (sin 2θ)[2(sin2θ)L2 + S2]

 .
(2.16)

It is now apparent that the diagonal matrix elements (the polarisation is conserved) involve the

magnetisation density oriented perpendicularly to the scattering plane, while the off-diagonal matrix

elements (the polarisation is turned) involve the magnetisation density oriented within the scattering

plane. The possibility to select and measure specific polarisation channels is a powerful tool for the

refinement of complex magnetic structures. A more detailed review of this aspect will be done in

the next sections (2.2 and 2.3), with particular attention to the observation of cycloidal magnetic

structures by means of circularly polarised light.

2.1.4 Magnetic diffraction from ordered structures

The results found so far can be now applied to the specific case of ordered magnetic structures, to de-

rive the corresponding magnetic diffraction intensity. While in the case of a commensurate magnetic

structure this derivation is straightforward and closely mirroring the canonical Laue condition for

charge diffraction, it will be worth to present in more detail the case of an incommensurate magnetic

structure. In the latter, the ratio between the period of the magnetic modulation and the period of

the crystallographic cell is an irrational number, thus preventing the existence of a super-cell which

is also a magnetic unit cell.

Commensurate magnetic order

Starting with the case of a commensurate magnetic structure, a magnetic unit cell can be identified,

be it coincident with the crystallographic cell or composed by a finite number of crystallographic
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units. The expression found up to now for the magnetic scattering cross-section from an isolated

system of charges can be directly extended to a periodic arrangement of magnetic atoms, each

characterised by a spin moment Sj and an orbital moment Lj . A general summation over the

contributions from all the magnetic atoms in the sample gives:

fnr = i
h̄ω

mc2
Σj e

iK·rj
[

1

2
Lj(K) ·A′′ + Sj(K) ·B

]
= Σj e

iK·rjfnrj . (2.17)

Since a magnetic unit cell is defined, it is possible to derive from this expression the Laue condition

for magnetic diffraction, as usually done in the case of charge scattering (Bragg’s law). Based on

the magnetic cell periodicity, it can be assumed

rj = Rn + ds (2.18)

where Rn identifies the position of the nth unit cell to which the jth atom belongs, and ds identifies

the position of the atom within the cell. By spanning the scattering vector K on the basis defined

by the reciprocal lattice

a∗ = 2π
b× c

a · (b× c)
, b∗ = 2π

c× a

a · (b× c)
, c∗ = 2π

a× b

a · (b× c)
(2.19)

it is found that diffraction occurs for discrete values of the scattering vector K = ha∗ + kb∗ + lc∗,

where h, k, l are integer numbers, and the scattering amplitude is proportional to the summation

within the cell

fnr = Σs e
iK·dsfnrs . (2.20)

It should be noted at this point that following the conventions employed in crystallography, the

reflection labeled by indexes (h k l) is associated to a scattering vector K = k′ − k, while the

literature of magnetic scattering employs the definition K = k− k′ which has been used up to now;

since this might ingenerate some ambiguity about absolute signs in the next chapters, in particular

with respect to the handedness of the magnetic cycloidal domains, the convention employed for K

will be always specified.

Incommensurate magnetic order

In the case of an incommensurate magnetic order, the crystallographic periodicity and the magnetic

one are irrational lengths, so that it is no longer possible to identify a magnetic unit cell which

captures both periodicities, and to reduce the atomic scattering amplitudes fnrj to a finite set

of values fnrs . However, since the magnetic order is still periodic, it is possible to expand this

modulation into a Fourier series characterised by one or more frequency parameters. In this example,

it will be assumed that only the first harmonic of the modulation carries significant weight, thus

considering the simplest case of an arrangement of sinusoidally modulated magnetic moments.

For the sake of demonstration, let’s consider an ideal simple structure. Let’s suppose that only

two magnetic atoms per crystallographic cell are present, carrying a pure spin moment Sj (j running

as usual over all the magnetic atoms in the crystal), and ferromagnetically coupled within the cell,

as per Fig. 2.2. The magnetic structure is collinear (say oriented along the crystallographic axis a),

and the incommensurate modulation for all the atoms is associated to a sinusoidal function varying

along a:

Sj = S cos(q · rj) â. (2.21)
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Figure 2.2: Example of collinear incommensurate magnetic structure. The spin moments are oriented along

a and sinusoidally modulated, T being the period. Two atoms ferromagnetically coupled are depicted for

each crystallographic cell.

In this expression â is the unitary vector identifying the crystallographic direction a; S = S(K)

is the amplitude of the magnetic modulation; rj is a vector identifying the position of the jth atom

in the crystal; q = 2π/T â contains the frequency and the direction of the modulation (T being the

period). By developing the Fourier series of the modulation, in this simple case it can be written:

Sj =
1

2
S [eiq·rj + e−iq·rj ]â. (2.22)

Starting again from Eq. 2.13, the scattering amplitude from the sum over the whole crystal is:

fnr = i
h̄ω

mc2
Σj e

iK·rj Sj(K) ·B =

= (
1

2
i
h̄ω

mc2
) Σj e

iK·rj [eiq·rj + e−iq·rj ] (S â ·B) (2.23)

and rj can be decomposed as before in Rn and ds, leading to

fnr = (
1

2
i
h̄ω

mc2
)
{(

Σne
i(K+q)·Rn

)(
Σse

i(K+q)·ds

)
+

+
(

Σne
i(K−q)·Rn

)(
Σse

i(K−q)·ds

)}
(S â ·B) . (2.24)

Once again the sums over the various crystallographic cells (n) provide the condition to get a

nonzero total contribution. Note that now K is replaced by K± q, thus giving rise to the two twin

reflections

Σne
i(K+q)·Rn → K = (h− τ)a∗ + kb∗ + lc∗

Σne
i(K−q)·Rn → K = (h+ τ)a∗ + kb∗ + lc∗

(2.25)

characterised by the diffraction amplitudes

fnr = (
1

2
i
h̄ω

mc2
) ·


Σse

i(K+q)·ds (S â ·B)
∣∣
K=(h−τ)a∗+kb∗+lc∗

Σse
i(K−q)·ds (S â ·B)

∣∣
K=(h+τ)a∗+kb∗+lc∗

(2.26)
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The parameter τ is defined as τ = ∆Φ/2π = a/T , ∆Φ being the phase shift of the magnetic mod-

ulation upon passing from one crystallographic cell to the next one, and a being the cell parameter.

The conditions found on K can be inserted within the sum over s in the expressions above. The

vector products (K ± q) · ds are simplified by taking into account the relationships between direct

and reciprocal lattice: a · a∗ = 2π, a · b∗ = a · c∗ = 0, etc.; if ds describes the positions of the two

atoms (s = 1,2) within the crystallographic cell, and their coordinates are written as

ds = xsa + ysb + zsc (s = 1, 2)

then the expressions 2.26 become

fnr = (
1

2
i
h̄ω

mc2
) ·


Σse

i2π(hxs+kys+lzs) (S â ·B)
∣∣
K=(h−τ)a∗+kb∗+lc∗

Σse
i2π(hxs+kys+lzs) (S â ·B)

∣∣
K=(h+τ)a∗+kb∗+lc∗

(2.27)

Some general considerations can be done at this point. The magnetic reflections, in the general

case of an incommensurate modulation of period T = a/τ , arise as the scattering vector K is

shifted from the position of a charge reflection by an amount of ±τ along the direction of the

magnetic modulation. It is important to note that in the example considered above the magnetic

amplitudes calculated for the two twin reflections at ±τ turn out to be the same (Eq. 2.27). This is a

consequence of the magnetic moments being collinear. In section 2.3, it will be treated the particular

case of interest for the present work, namely, the investigation of a non-collinear magnetic order by

means of X-ray diffraction. It will be seen that the magnetic structure factors in twin reflections

are not coincident anymore, and that this difference is conserved in the magnetic intensity when the

polarisation of the incident beam is circular.

2.1.5 Experimental setup

The typical setup of a magnetic diffraction experiment implementing the physical principles described

so far is schematically depicted in Fig. 2.3. The technical details about the generation of X-rays

by synchrotron source, the experimental devices and their operation will be presented in the next

chapter. The incident beam emerging from the synchrotron is processed by the optics stage and

aimed towards the sample. The sample itself is mounted on a six-circle diffractometer, to satisfy

the diffraction conditions stated in Eq. 2.25 in 2.1.4. It is equipped with temperature control and

the possibility to apply in situ electric and magnetic fields. The detection stage is provided with

a polarisation analysis setup, able to filter the component of the diffracted beam linearly oriented

along an arbitrary direction. The polarisation of the incoming beam is manipulated by means of a

phase plate setup, employed to tune the beam into a circularly polarised state. Given the importance

that the polarimetry techniques carry within the present work, the description of the polarisation

analysis setup and of the phase plate will be extensively covered in the next chapter (3.1.5 and 3.1.6).
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Figure 2.3: Sketch of the experimental setup for magnetic diffraction. The polarisation of the incident beam,

upon being transmitted through the phase plate, may lie in a linear, circular left or circular right state.

An in situ electric field can be applied on the sample. The diffracted beam is filtered by an analyser; the

direction of the polarisation to be transmitted is selected by rotating the angle η (see 3.1 for details).

2.2 Polarimetry and control of the incident polarisation

2.2.1 The azimuthal scan

Since the NRXM Scattering is sensitive to the direction of the magnetic moments, a common exper-

imental method consists in scanning over one geometric parameter from Eq. 2.13 and measuring the

variation induced on the diffracted intensity. Once a suitable energy and the indexes of a diffraction

peak have been chosen, the direction of the diffracted beam is fixed, as well as two out of the three

angles that identify the orientation of the crystal with respect to the beams. A traditional technique

consists in varying the one remaining geometric degree of freedom, the azimuthal angle (ψ) defining

the rotation of the sample about the scattering vector, and collecting the dependence of the intensity

I(ψ). This method has been for long the most used in NRXM Scattering experiments, and provided

valuable results. However, this technique is not exempted from several drawbacks. Firstly, it requires

us to constantly change the incident angle between the beam and the surface of the sample, so that

the absorption effects exert an influence on the diffracted intensity that varies correspondingly. It is

possible to correct the measured values to take these effects into account, both via the theoretical

estimation of the absorption coefficient as a function of the incident and diffracted angles between

beam and surface, and via experimental measurement of the azimuthal dependence of a charge peak

whose Miller indexes are close to the magnetic peak of interest. Nevertheless, the introduction of

this further stage in the data acquisition and analysis can lower the accuracy of the measurement.

Morevover, an azimuthal scan poses some constraints on the in situ sample environment. As the
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sample must be free to rotate about the scattering vector, the application of external magnetic and

electric fields become technically challenging.

2.2.2 The Stokes scan

An alternative solution is found in recognising that, beside the geometric degrees of freedom men-

tioned so far, Eq. 2.13 provides an additional degree of choice if it is possible to freely change the

polarisation vectors ε and ε′ that concur to build up the vectors A′′ and B. The importance of the

polarisation dependence in X-ray magnetic scattering has been recognised from the beginning, lead-

ing to calculate the general expressions for the differential cross-section and the final polarisation,

assuming an arbitrary incident polarisation [45].

Regarding the selection of the diffracted polarisation ε′, the linear polarisation analyser setup

introduced in 2.3 is an established part of a classical magnetic diffraction experiment. Its purpose is

to measure the projection of ε′ along any arbitrary direction. By repeated measurements along a set

of possible directions in the polarisation plane, one obtains a full description of the linear component

of the polarisation of the diffracted beam. With the experimental setup shown in Fig. 2.3, this is

done by performing a complete rotation of the analyser with respect to the beam (wavevector k′).

The technical details will be covered in the next chapter (3.1.5). For the purposes of the present

chapter, it is sufficient to note that, when η is the angle used to define the rotation of the analyser,

by collecting the dependence of the intensity as a function of η one performs a so-called Stokes scan.

This dependence takes the form

I(η) = I0 (1 + P1 cos 2η + P2 sin 2η)

where the two polarisation factors P1 and P2 are sufficient to describe the total degree of linear

polarisation. In order to understand the significance of P1 and P2, a full review of the characterisation

of polarised light is given in the next subsection (2.2.3). This technique has the advantage, if

compared to the azimuthal method, of requiring no movement of the sample with respect to the

beam. The measurements are more accurate, no correction for absorption is needed, and the setup

of specific sample environments is allowed, such as the application of electric/magnetic fields.

As for the incident polarisation ε, the radiation emerging from a synchrotron source is highly

polarised in the horizontal plane (> 99%). This state can be manipulated by means of a phase

plate device designed for X-ray frequencies, as described in 3.1.6. While the control of the incident

polarisation is in any case a useful tool for collecting information (e.g. by linear incident polarisation

scans [47]), in the specific case of cycloidal magnetic structures it assumes a particular relevance.

When the incoming polarisation is tuned to be circular, it finds its handedness naturally coupled with

the handedness of the magnetic moments. It has been seen that two magnetic domains are possible,

characterised by opposite handedness of the rotating moments with respect to the same propagation

direction. Circularly polarised light is expected to scatter with different intensity on the two domains;

a difference that can be reversed by reversing the handedness of the circular polarisation. Conversely,

when the two domains are present in equal distribution, these differences are averaged out and the

diffracted beam has similar intensity for the two circular polarisation states. It is clear that this is a

powerful tool to reveal whether an imbalance of magnetic domains has been achieved in the crystal
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by means of an electric field annealing (cf. section 2.3).

2.2.3 Polarised light

The aim of this subsection is to provide some mathematical tools to describe the different states

of polarisation for an electromagnetic field traveling in space: completely polarised light; partially

polarised light; natural light. As the most general basis function for electromagnetic radiation,

consider a plane wave. From a classical point of view, the general solution of the Maxwell’s equations,

if the plane wave propagates along the direction ẑ, is:

E(z, t) = Ex(z, t) + Ey(z, t)

= E0x cos(kz − ωt+ φx) x̂ + E0y cos(kz − ωt+ φy) ŷ (2.28)

where φ = φy − φx is the relative phase difference between the projections of E along x̂ and ŷ. The

resultant vector can thus belong to one of the following polarisation states:

a) if φ = 2nπ, the two projections are in-phase or out-of-phase, and E is linearly polarised, in the

direction spanned by the vector E0x x̂ ± E0y ŷ: E = [ E0x x̂ ± E0y ŷ ] cos(kz − ωt).

b) if both the projections have equal amplitudes (E0x = E0y = E0) and φ = ±π/2, then E is right

or left circularly polarised: E = E0 [ cos(kz − ωt) x̂ ± sin(kz − ωt) ŷ ].

c) otherwise, the plane wave belongs to the most general case of elliptical polarisation.

While a single plane wave is completely polarised (it lies in a well defined polarisation state), this

is not always the case for a generic radiation, i.e., a superposition of several plane waves. An ordinary

light source consists of a very large number of atomic emitters, randomly orientated. They can be

envisioned as oscillating with different phases at some dominant frequency ν. Each excited atom

radiates a polarised wavetrain; the frequency bandwidth is inversely proportional to the coherence

time of the pulse. During an interval shorter than the average coherence time, the waves give rise

to a coherent superposition, namely, to a wave having one defined polarisation state. However, as

new wavetrains are constantly emitted, the overall polarisation changes in time. If the coherence

time is long (in comparison with the detection time), the succession of the different states can form

a resultant wave having some dominant polarisation character. It is said to be partially polarised.

Conversely, if any polarisation state is short-lived, these changes take place at so rapid a rate as

to render any single polarisation state indiscernible. This wave is referred to as natural light or

unpolarised light. A useful way to describe this partially polarised radiation is to envision it as the

result of the superposition of specific amounts of natural and polarised light. In the particular case

of a synchrotron source, the radiation is expected to be almost completely linearly polarised, with a

small amount (less than 1%) of unpolarised contribution.

The Jones description

The Jones formulation for the polarisation leads to a direct procedure for predicting the effects of

a complex system of polarising elements on the ultimate state of a wave. Its principal drawback

is that it is applicable only to polarised waves. If this condition is satisfied, the most natural way

to represent the beam is by means of the electric vector itself. The general expression for E (Eq.
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2.28) is the linear combination of two orthonormal basis functions. They can be chosen as two linear

states of unitary amplitude, with coincident phases, directed along x̂ (’horizontal’ direction) and

ŷ (’vertical’): Eh = cos(kz − ωt) x̂; Ev = cos(kz − ωt) ŷ. As the radiation is monochromatic,

the information about the frequency can be dropped, and the description can be given in the more

compact form of phasors: Eh = x̂; Ev = ŷ. With this basis, a generic E field can be written as a

vector in a two-dimensional space of functions:

E =

 E0x

E0y e
iφ


where the wave along x̂ has been selected as the reference for the relative phase (φx = 0). For

instance, the circular right-handed state and the left-handed one become, respectively:

Ecr =
1√
2

 1

−i

 , Ecl =
1√
2

 1

i

 .
Consider an incident beam (Ei) passing through a generic polarising element (phase plate, anal-

yser, sample...), and emerging as a final vector (Ef ).Once two arbitrary polarisation bases have been

fixed for the incident and the outcoming beam, the device is described by a 2 × 2 matrix (Jones

matrix) A: Ef = AEi.

The Poincaré-Stokes description

Beside defining the polarisation by means of the components of the electric field, it is advantageous to

dispose of an alternative description in terms of more convenient observables, such as the intensities.

Moreover, the Poincaré-Stokes formulation is able to describe not only a completely polarised beam,

but a generic (polarised, partially polarised, natural) beam. A general discussion of these techniques

has been given by Fano [48]; their application to neutron scattering and to the transmission of X-

rays through matter has been elaborated by Blume and Kistner [49, 50]. The first application of

the Poincaré-Stokes representation to X-ray magnetic scattering is found in the work of de Bergevin

and Brunel [43], and a systematic elaboration on the subject is contained in the work elaborated by

Blume [45].

From an operational point of view, consider disposing of a set of the following polarisation filters:

a linear horizontal polariser; a linear 45◦ polariser; a circular right polariser. By positioning each

of these filters, alone, in the path of the beam, the transmitted intensities (say I1, I2, I3) can be

measured to quantify the amount of the various polarisation states. The Stokes parameters P1, P2,

P3 are intended to express the intensity fractions of the total beam belonging to these states. They

are defined as

P1 = (2I1 − I0)/I0

P2 = (2I2 − I0)/I0

P3 = (2I3 − I0)/I0

where the denominators represent a normalization by the intensity of the incident beam I0.
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To relate these parameters to the definitions formulated by Jones, it is necessary to consider the

case of completely polarised light. It can be demonstrated that:

P1 =
E2

0x − E2
0y

E2
0x + E2

0y

, (2.29)

P2 =
2 E0xE0y cosφ

E2
0x + E2

0y

, (2.30)

P3 =
2 E0xE0y sinφ

E2
0x + E2

0y

. (2.31)

The state of a polarised beam is entirely described by the three real quantities P1, P2, P3, just

as in the Jones formulation it is characterised by E0x, E0y, φ.

To extend these definitions to the case of a partially polarised beam and a natural beam, consider

that they are composed by different polarisation states which follow each other in time. In the form

of a Jones vector

E =

 E0x(t) eiφx(t)

E0y(t) eiφy(t)


where, even for natural light, the quantities E0x, E0y, φx and φy are functions of time which change

quite slowly in comparison to the wave oscillation in (kz − ωt). For example, if the mean frequency

is 1015 Hz and the coherence time is 10−9s, the wave will pass through 106 cycles during this time.

The intensity in an interval of time shorter than the coherence time would be

I = |Ex|2 + |Ey|2 = E2
0x + E2

0y

and would be constant within the interval, as E0x and E0y are. In contrast, the intensity which would

actually be measured by a detector is the average of the previous equation, over a comparatively

long time interval (longer than the coherence time), i.e.,

I = < |Ex|2 > + < |Ey|2 > = < E2
0x(t) > + < E2

0y(t) > .

Therefore, the measured Stokes parameters are related to the electric field by the same expression

introduced for I1, I2 and I3 in the case of polarised beam, but averaged in time. By definition, a

beam of natural light is composed of a succession of monochromatic waves varying rapidly (with short

coherence time) and randomly. So, all the Stokes parameters tend to average to zero. Conversely,

for a partially polarised beam some prevailing polarisation state can be recognized by the detecting

instruments. In these cases:

- The P1 parameter reflects a tendency for the polarisation to resemble either a horizontally linear

polarised state (whereupon P1 > 0) or a vertically linear one (P1 < 0). If P1 = 0, the beam displays

no preferential orientation with respect to these axes (elliptical with axes oriented at ±45◦, circular,

or unpolarised).

- Similarly, P2 implies a tendency for the beam to resemble a linear state oriented in the direction

of +45◦,−45◦, or neither.

- Similarly, P3 implies a tendency for the beam toward right-handedness, left-handedness, or neither.

A fourth parameter P4 may be defined to quantify the unpolarised fraction of the beam:

P 2
4 = 1− (P 2

1 + P 2
2 + P 2

3 ) (2.32)
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so that the overall polarisation state is characterized by a unitary vector of components [P1, P2,

P3, P4] (see Fig. 3.4). A reduced vector [P1, P2, P3] is employed to describe the polarised fraction

of the beam (the vector being unitary when the beam is completely polarised); and similarly, the

two-dimensional vector [P1, P2] of modulus P ′ =
√
P 2

1 + P 2
2 describes the linearly polarised fraction

of the beam.

The Stokes parameters are most often combined into a 4-dimensional vector, known as the Mueller

or Stokes vector, spanning the space of polarisation states of a generic beam and keeping track of its

intensity I:

S =


S0

S1

S2

S3

 =


I

I P1

I P2

I P3


A linear device is then characterised by a 4 × 4 square matrix (Mueller matrix), converting the

incident beam Si to Sf = M Si.

2.3 Investigation of cycloidal magnetic structures

The kind of polarisation analysis described thus far proves particularly useful in the case of cycloidal

magnetic densities. The essential features of NRXM Scattering from a cycloidal magnetic order

can be highlighted in the simplest case in which the atoms within the crystallographic cell are

ferromagnetically coupled, as was supposed in the case of collinear incommensurate magnetic order

in 2.1.4. The most general case will be treated immediately afterwards.

2.3.1 Non-resonant magnetic scattering from a cycloidal structure

Say that the atoms carry a pure spin moment, that the cycloid lies in the crystallographic plane

(a,b), and that the direction of the magnetic propagation is a. The magnitude of the spin moment

may be different for the components oriented along a and b, thus giving rise to an elliptically shaped

cycloid characterized by two main axes Sa and Sb, as in Fig. 2.4. The incommensurate modulation

in all the atoms (indexed by j) is associated to a sinusoidal function

Sj = Sa cos(q · rj) â + Sb cos(q · rj + π/2) b̂ (2.33)

where the components along a and b are out-of-phase by ±π/2, thus indicating a cycloid whose

main axes coincide with the crystallographic ones. The sign of the phase shift ±π/2 determines

the handedness of the cycloid. In Eq. 2.33, the component along b is advanced by +π/2 over the

component along a, and thus the sense of rotation is clockwise, when looking at the (a,b) plane from

+c and moving along +a. This cycloidal domain will be referred to as Domain 1 in this section. The

opposite handedness of the cycloid is described by a phase shift of −π/2 and will be called Domain

2 (Fig. 2.5).

The derivation of the diffraction amplitude can proceed as in the case previously considered

of a generic incommensurate modulation (2.1.4 can be consulted as a reference; the details of the
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Figure 2.4: Example of cycloidal incommensurate magnetic structure. The spin moments are oriented along

a and b and sinusoidally modulated. The two components are out-of-phase by π/2, and the overall moment

rotates by ∆Φ = 2πτ from one crystallographic cell to the next. Two atoms ferromagnetically coupled are

depicted for each crystallographic cell.

Figure 2.5: Definition of the two cycloidal magnetic domains.

calculation already covered there are not repeated in the present discussion). The Fourier series of

the modulation becomes:

Sj =
1

2
Sa [ eiq·rj + e−iq·rj ] â

+
1

2
Sb [ eiq·rj eiπ/2 + e−iq·rj e−iπ/2 ] b̂ =

=
1

2
eiq·rj [ Sa â + Sb e

iπ/2 b̂ ]

+
1

2
e−iq·rj [ Sa â + Sb e

−iπ/2 b̂ ], (2.34)

and in shorthand notation

Sj =
1

2
eiq·rj M +

1

2
e−iq·rj M∗ (2.35)
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where the vector M and its complex conjugate M∗ are defined as:

M = Sa â + Sb e
iπ/2 b̂ = Saâ + i Sb b̂

M∗ = Sa â + Sb e
−iπ/2 b̂ = Saâ − i Sb b̂.

(2.36)

The expression for Sj is then substituted into the general expression of the diffraction amplitude

2.13:

fnr = i
h̄ω

mc2
Σj e

iK·rj Sj(K) ·B =

= (
1

2
i
h̄ω

mc2
) Σj [ eiq·rj M + e−iq·rj M∗ ] ·B. (2.37)

The position vector rj is decomposed in the sum of the cell position vector Rn and the intra-cell

position vector ds, leading to

fnr = (
1

2
i
h̄ω

mc2
)
{(

Σne
i(K+q)·Rn

)(
Σse

i(K+q)·ds

)
M +

+
(

Σne
i(K−q)·Rn

)(
Σse

i(K−q)·ds

)
M∗
}
·B (2.38)

and the sum over the different cells (index n) defines the diffraction condition as in 2.1.4. The two

twin reflections at ±τ turn out to be associated to the amplitudes:

fnr = (
1

2
i
h̄ω

mc2
) ·


Σse

i2π(hxs+kys+lzs) (M ·B)
∣∣
K=(h−τ)a∗+kb∗+lc∗

Σse
i2π(hxs+kys+lzs) (M∗ ·B)

∣∣
K=(h+τ)a∗+kb∗+lc∗

(2.39)

2.3.2 Determination of domains via circular incident polarisation

The substantial difference that emerges here in comparison with the collinear case is that the ampli-

tudes of the reflections (h−τ, k, l) and (h+τ, k, l) are no longer the same, but are proportional to the

scalar products M ·B and M∗ ·B respectively. Whether this imbalance between the two reflections

is conserved in the diffraction intensity depends on the vector B. Its expression was found in Eq.

2.10 to be linear in ε and ε′. If the incident (diffracted) beam is linearly polarised, then the vectorial

components of ε (ε′) are in phase with each other and can be expressed by real quantities (short of

a common phase factor that does not bring physical relevance). Therefore the resulting vector B is

also real. The consequence is that the two scattering amplitudes for (h− τ, k, l) and (h+ τ, k, l) turn

out to be the complex conjugate of each other: M∗ ·B = (M ·B)∗. The corresponding intensities

(|fnr|2) are not discernible:

|M∗ ·B|2 = |M ·B|2 → I|K=(h−τ)a∗+kb∗+lc∗ = I|K=(h+τ)a∗+kb∗+lc∗ .

The situation is different when the components of the polarisation vectors are out of phase with

each other. In the case of, say, circular left polarisation, the two components of ε along σ and π

are out-of-phase by +π/2, giving rise to a vector B which is complex. Since this is geometrically

coupled to M via the scalar product, it turns out that not only the amplitudes of the reflections at

(h − τ, k, l) and (h + τ, k, l) are different, but also that they are no longer the complex conjugate

of each other: M∗ · B 6= (M · B)∗ and consequently I|K=(h−τ)a∗+kb∗+lc∗ 6= I|K=(h+τ)a∗+kb∗+lc∗ .

An analogous result holds in the case of circular right polarisation, where the two components of

ε along σ and π are out-of-phase by −π/2, and give rise to a vector B∗ which is the complex
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conjugate to the one found for circular left polarisation. The combination via scalar product of the

three independent components of the complex vectors M(K) and B makes it impossible to extract

a common phase factor such that M(K) ·B = [M(−K) ·B]∗. This result shows an imbalance in the

diffraction intensities for the twin reflections at (h ± τ, k, l), that can be reversed by switching the

circular polarisation from circular left to circular right, and that would not be visible by performing

the measurement with a linearly polarised beam:

DOMAIN 1 circ. left circ. right

refl. + τ |M ·B|2 = I1 |M ·B∗|2 = I2

refl. −τ |M∗ ·B|2 = I2 |M∗ ·B∗|2 = I1

This imbalance between I1 and I2 is of particular importance as we switch to the case of Domain

2, previously defined as

Sj = Sa cos(q · rj) â + Sb cos(q · rj − π/2) b̂ (2.40)

since M and M∗ are swapped, resulting in the symmetric situation:

DOMAIN 2 circ. left circ. right

refl. + τ |M∗ ·B|2 = I2 |M∗ ·B∗|2 = I1

refl. −τ |M ·B|2 = I1 |M ·B∗|2 = I2

Therefore the discrimination between the two domains is possible when the incident light is

circularly polarised: the diffracted intensity becomes sensitive to the absolute sense of rotation of

the cycloid [51]. The three parameters that can be extracted from a Stokes scan (I0, P1, P2) are all

sensitive to the domain state; however, in practical cases, the specific magnetc structure factor and

the scattering geometry can bring more sensitivity to one or the other of the parameters, which then

offers a reliable indication of the domain state (see for example Fig. 3.4).

If the volume of the sample contributing to the diffraction is composed of a fraction V ordered

as Domain 1, and a fraction 1− V ordered as Domain 2, the resulting intensity is constructed from

the incoherent sum of the two contributions:
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Itot = V II0 [ 1 + P I1 cos(2η) + P I2 sin(2η) ] +

+ (1− V ) III0 [ 1 + P II1 cos(2η) + P II2 sin(2η) ] =

= Itot0 [ 1 + P tot1 cos(2η) + P tot2 cos(2η) ]

where

Itot0 = V II0 + (1− V ) III0 ,

P tot1 = F P I1 + (1− F ) P II1 ,

P tot2 = F P I2 + (1− F ) P II2 ,

F =
V II0

V II0 + (1− V ) III0

∈ [0, 1].

The variation of Itot0 , P tot1 , P tot2 can be calculated as function of V , and compared with the

measured values to extract the domain population within the crystal.

2.3.3 Determination of phase shifts in complex cycloidal structures

Finally, in the general case in which the different atoms within the cell are not interacting ferromag-

netically, their magnetic coupling can be expressed by one relative phase shift relating the modulation

of one component at one fixed position in space. For instance in Fig. 2.6, the component Sa between

the atoms within the cell labeled by s = 1, 2 is out-of-phase by ∆φ = π/2 at the same coordinate in

space along the direction a. The difference in the magnetic modulation of the two crystallographic

sites

Sj = Sa cos(q · rj) â + Sb cos(q · rj + π/2) b̂ s = 1 (2.41)

Sj = Sa cos(q · rj + ∆φ) â + Sb cos(q · rj + π/2 + ∆φ) b̂ s = 2 (2.42)

is obviously retained in the final scattering intensity, thus making it possible to etract an unknown

phase ∆φ from the fit of the experimental data. When dealing with opposite cycloidal domains

in magneto-electric compounds, the appropriate phase shifts corresponding to the two domains are

found by inversion of the whole magnetic structure. An application of these techniques is found

in the chapters dealing with the refinement of the magnetic structure of Ni3V2O8 (Chapter 4) and

TbMnO3 (Chapter 5).
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Figure 2.6: An example of cycloidal incommensurate magnetic structure, different from the one depicted in

Fig. 2.4. The spin moments are oriented along a and b and sinusoidally modulated. The two components

in each atom are out-of-phase by π/2. Two atoms are depicted for each crystallographic cell: the phase

shift between the two atoms in the same component is ∆ψ = π/2, as opposed to the simple ferromagnetic

coupling of Fig. 2.4, in order to highlight the dependence of the scattering amplitude on the relative phases

of the magnetic modulations (see text).
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Chapter 3

Experimental Methods

This chapter covers the technical aspects of the experimental setup, with the aim of describing

the elements previously introduced (see 2.1.5 and in particular Fig. 2.3) from a more detailed and

operational point of view. Particular attention will be given to: 1) a description of the analyser

crystal employed to perform complete linear polarisation analysis (Stokes scan) on the diffracted

beam (3.1.5); 2) a description of the phase plate device employed to control the polarisation of the

incident beam (3.1.6); 3) an exposition of the geometrical transformations needed to represent the

polarisation of the incident and diffracted beam in a frame coherent with the experimental setup

(3.1.7). Finally, the last part of the chapter (3.2) presents a simulation program elaborated in the

course of this work, which calculates the expected Stokes dependence of the diffracted intensity for

a given magnetic structure, depending on the reflection, the experimental geometry, the energy and

the polarisation of the incident beam.

3.1 Technical details

3.1.1 Synchrotron source

In the course of the 20th century, X-rays have become established as an important probe for the

investigation of the microscopic properties of matter. For this purpose, the quality of the beam pro-

duced by a synchrotron source is notable for the number of photons emitted per second, the focusing,

the brilliance (photon density in the image spot per solid angle), the purity of the polarisation, and

the spectral dependence of all previous features. The ESRF is the first synchrotron of the third

generation (especially designed for the use of undulators as the source of X-rays). The electrons used

to produce radiation are accelerated to an energy of 6 GeV, before being injected into the storage

ring. The ID20 beamline at the ESRF [52] has been designed to meet the requirements of X-ray

magnetic scattering experiments: a high photon flux (∼ 1013 ph/sec at the sample position for pho-

ton energies in the range 6 - 10 keV); a wide energy range (3 - 40 keV) with a good energy resolution

(1 eV at 8 keV); a well defined linear polarisation state of the photons (> 99% in the energy range

of interest 6 - 10 keV). It is an ultra high vacuum (UHV) beamline, receiving radiation from three

linear undulators, with period 35 mm (upstream), 35 mm (midstream) and 32 mm (downstream).

The lower energy limit can be estimated around 3.5 keV; the upper limit around 20-25 keV. The
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flux available at the sample position ranges from 1013 photons/sec at 4 keV up to 1014 photons/sec

at 10 keV.

3.1.2 Optics and monitoring system

The general layout of the ID20 optics hutch represented in Fig. 3.1 consists of a double crystal Si(111)

monochromator embedded between two vertically focusing mirrors, in a vertical scattering geometry.

The ultra high vacuum section runs from the front end to the Be window in the experimental hutch,

managing pressures in the 10−9-10−10 mbar range.

The two mirrors are designed for high-order harmonic rejection and to provide longitudinal

focusing over the energy range 3.5-25 keV. Both are made from 1m-long silicon slabs and contain

two different reflecting surfaces: pure silicon and a 600 Å thick rhodium coating to be used above

12 keV. The two mirrors are positioned, respectively, before and after the monochromator; they

are oriented in such a way to keep the trajectory of the beam horizontally undeflected and, when

combined together, to keep it also vertically conserved.

The monochromator is made by a double-crystal Si(111) cooled by liquid nitrogen. The second

crystal is mounted on a bender for tunable sagittal focusing. The energy is chosen by selecting the

incidence angle between the radiation and the Si single crystal, thus assuring that only the portion

of the polycromatic beam characterized by the appropriate frequency is diffracted. Two surfaces are

necessary to keep the propagation direction of the beam conserved.

The attenuators are designed to control the intensity of the incident beam. They are foils of pure

Al, Cu and Pb, several of which can be appropriately combined to achieve the required attenuation

factor, depending on the energy of the radiation.

The monitoring system consists of several thin Kapton foils, located after each set of alignment

slits, which scatter a small fraction of the beam towards a lateral detector. The values collected by

the monitors can be used for normalisation of the intensities measured by the detector, by taking

into account that the monitoring system is only sensitive to the horizontally polarised portion of the

beam.

3.1.3 Diffractometer and sample space

The Huber six-circle diffractometer (3.2-c) is configured for horizontal or quasi-horizontal scattering

geometries, and is designed to carry heavy load such as the cryostat or the cryomagnet. It is built

from materials that are not affected by magnetic fields.

When the application of magnetic field is not needed, the cryogenic equipment employed for low

temperatures is the Orange cryostat shown in Fig. 3.2-a, which can reach the lowest temperature of

1.55 K with a cooling power of about 20 mW by forcing the He evaporation with a pumping stage

on the tail. It can be mounted only in horizontal geometry, as it cannot be inclined more than ±5◦.

The Be windows limit the inclination of an oblique scattering plane to an angle of ∼ ±7◦ for the

detector arm.

The Oxford superconducting magnet shown in Fig. 3.2-b realises a vertical field of up to 10 T

with a very wide accessible angle in the horizontal plane. The homogeneity of the field in the sample
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Figure 3.1: Sketch of the Optics section at ID20 [52].

zone extends over ∼ 1 cm3. The opening angle in the vertical direction is ∼ ±5◦. The magnet

cold bore has an internal diameter of 50 mm at the sample space, allowing very large sample sticks

to be accommodated. The magnet is equipped with Variable Temperature Insert (VTI) standard

Oxford cryostat, capable of a 2-300 K temperature range at the sample position. The cooling power

is obtained by spilling part of the liquid He from the main magnet reservoir and evaporating it in

the exchanger zone (solid Cu block) under forced low pressure atmosphere.

The sample space is realised as a separated chamber filled with exchange gas and in thermal

contact via conduction with the exchanger. A pressure gauge permanently controls the sample space

to avoid air contamination.

The electric field stick (Fig. 3.2-d) has been entirely designed at ID20. It is composed by a-

magnetic materials and can be vertically inserted within the sample space of the Orange cryostat

and the cryomagnet. The sample is glued between two copper electrodes by conducting silver paint.

The electrodes are connected to an external power supply which can apply an electric voltage up to 3

kV. This configuration allows to obtain a rather homogeneous in-situ electric field. The application

of voltage > 1 kV may require the removal of the exchange gas in the sample space in order to

prevent discharges.

3.1.4 Detector

The detection device (located after the polarisation analysis setup) is a Silicon Avalanche Photo-

Diode (APD), ESRF design. The detection chain is constituted by a single module (ACE) both

providing the detecting head (APD) with power supply and treating the preamplified detected signal

(discrimination and counting stages). In case of high magnetic field measurement, the APD is

currently the unique available detector on ID20.
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Figure 3.2: Experimental setup: the sample is inserted in the Orange cryostat (a) or the 10 T magnet (b);

both can be placed on top of the six-circle diffractometer (c). The sample is mounted between two copper

electrodes (d) by means of a stick that can be inserted within the sample space of the cryostat.

3.1.5 Polarisation analyser

The polarisation analyser (PA) setup consists of a single crystal inserted a small two-circle diffrac-

tometer mounted on the detector arm, as sketched in Fig. 3.3. This section is fully under vacuum to

avoid air absorption along the diffracted light path. The crystal intercepts the diffracted beam and is

set to satisfy the Bragg condition for elastic diffraction. This prevents sample fluorescence and other

spurious signals coming from the sample environment to enter the detection chain, located at the PA

exit, and increases the 2θ angular resolution. However, the main purpose of the analyser setup is to

act as a polarisation filter. Only the portion of the beam linearly polarised along a given direction

is allowed to pass. The filtering is realised by choosing a suitable crystal that fulfills the diffraction

condition for θ ≈ 45◦ at the current energy. This fact limits the use of any crystal to a narrow energy

band, so that a complete collection of crystals is necessary to suitably cover a wide energy range.

High quality single crystals with a high reflectivity and narrow rocking curve are needed, to enhance

as much as possible the resolution by limiting the angular acceptance. The Jones matrix in such

a case, in the reference system associated to the scattering plane of the analyser, is the canonical

matrix from Thomson diffraction with θ = 45◦:

Adet = A0

 1 0

0 0

 ,
and the corresponding Mueller matrix is:

Mdet = A2
0/2


1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0

 . (3.1)

These matrices have to be reformulated in relation to the scattering plane of the sample. The

analyser setup is mechanically enabled to rotate about an axis coincident with the diffracted beam
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Figure 3.3: Polarisation Analyser. The scattering plane of the analyser is determined by the position of the

motor η. The motor θ controls the scattering angle, which at the energy of interest must be close to 45◦.

(k′); η is the angle associated to this rotation. The zero of the angle η corresponds to the configuration

in which the scattering plane of the sample and the one of the analyser coincide. Note that this

definition is not always matched in the experimental procedure when the sample scattering plane is

oblique: for the sake of simplicity, in those cases the zero of the η motor is associated to a horizontal

plane, and some corrections must be taken into account in the data analysis. This aspect will be

covered in 3.1.7; in this subsection it is supposed that the ideal definition is being correctly employed.

The Mueller matrix assiciated to the scattering plane of the sample is:

M′det = A2
0/2


1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0




1 0 0 0

0 cos 2η sin 2η 0

0 − sin 2η cos 2η 0

0 0 0 1

 =

= A2
0/2


1 cos 2η sin 2η 0

1 cos 2η sin 2η 0

0 0 0 0

0 0 0 0

 .

A generic beam

S =


S0

S1

S2

S3

 =


I

I P1

I P2

I P3


upon being filtered by the analyser set at a certain angle η, gives rise to the measured intensity

Imeas = A2
0

I

2
[ 1 + P1 cos 2η + P2 sin 2η ] . (3.2)

In principle, it would be possible to determine P1 and P2 from two pairs of measurements at

η = 0◦, η = 90◦ and η = 45◦, η = −45◦, where only one of the two parameters contributes to the

measured intensity:
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P1 =
Imeas(0

◦)− Imeas(90◦)

Imeas(0◦) + Imeas(90◦)
, (3.3)

P2 =
Imeas(45◦)− Imeas(−45◦)

Imeas(45◦) + Imeas(−45◦)
. (3.4)

However, a more accurate method consists in extracting the integrated intensities from a series of

rocking curves of the analyser crystal at 6 - 10 different positions of the angle η, ranging from 0

to 2π, and in fitting them with the equation above (Stokes scan). The Stokes dependence obtained

from different degrees of polarisation of the beam is shown and explained in Fig. 3.4 - (c).

An equivalent expression for the Stokes scan highlighting the degree of total linear polarisation

P ′ is

Imeas = A2
0

I

2
[ 1 + P ′ cos 2(η − η0) ] (3.5)

where η0 identifies the direction of the strongest linear contribution (the main axis in the case of

an elliptical beam). Note that the degree of circular polarisation, P3, and the degree of unpolarised

beam, P4, are not distinguishable in this analysis, and only their sum can be extracted.

3.1.6 Phase plate

The phase plate device

The optical elements employed to change the polarisation of an electromagnetic wave are known as

retarders. They are also referred to as phase plates, since this is the most common implementation

of such a device. A retarder identifies, in the plane perpendicular to the propagation of the beam,

two orthogonal axes (say â and b̂). They can be distinguished by an anisotropic configuration with

respect to the beam, or by an intrinsic anisotropy in the material of the device itself. In any case,

the incoming beam can be projected onto the basis defined by two linear polarised states along â

and b̂. One of the two states is somehow caused to have its phase lag behind that of the other

by a predetermined amount; thus, upon emerging from the retarder, the relative phase of the two

components is different than it was initially. This changes the total polarisation of the beam.

Since the polarisation of the beam emerging from the synchrotron source is > 99% pure and its

conversion to a circular state does not introduce a significant degree of depolarisation (see below),

the Jones description will be employed. Consider (â,b̂) to be the characteristic axes of the phase

plate. In the general case, a transmission-type phase plate is described by the Jones matrix

App =

 ta 0

0 tbe
i∆α

 . (3.6)

The real parameters ta, tb represent the absolute transmissions, and the polarisation of the

transmitted beam is changed by the relative phase shift ∆α between the two components. In many

practical cases dichroism does not occur, so that it can be assumed ta ∼ tb = t.

Let (x̂,ŷ) be a convenient frame in which the polarisation of the incident beam is described. In

the case of a synchrotron source, x̂ is the horizontal direction, and ŷ the vertical one. In the general

case the axes (x̂,ŷ) are rotated, with respect to (â,b̂), by a certain angle χ. The beam emerging
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Figure 3.4: (a) Example of a Stokes scan for an elliptically polarised beam. In the parameters’ space, the

vector P = [P1, P2, P3] represents the polarised fraction, while P′ = [P1, P2] represents the linearly polarised

fraction. The Stokes scan allows the extrapolation of both P1 and P2. The angle η0 defines the direction of

main axis of the ellipse. (b) Examples of Stokes scans for a linearly, elliptically, circularly polarised beam.

In the last case, no preferential direction (η0) is found.

from the source in the (x̂,ŷ) frame is

Ei = E0

 1

0


and, in the phase plate frame (â,b̂),

Ei =

 cosχ − sinχ

sinχ cosχ

 E0

 1

0

 = E0

 cosχ

sinχ

 .
In the case of a quarter wave plate, designed in such a way that the relative phase shift is

∆α = ±π/2, the transfer matrix in the frame (â,b̂) is (cf. Eq. 3.6):

App (∆α = ±π/2) = t

 1 0

0 ±i

 . (3.7)
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When the plate is oriented at χ = 45◦, the incident beam is expressed in the frame (â,b̂) as

Ei =
1√
2
E0

 1

1


and is split by the plate in two equal projections, delayed each other by ±π/2, so that the transmitted

beam is circularly left/right polarised:

Ef = App (∆α = ±π/2) Ei =
1√
2
E0

 1

±i

 .
Implementation of a phase plate device for X-rays

This subsection deals with a practical realization of the retarder device described so far, operating at

X-ray frequencies. The dynamical theory of X-ray diffraction covers the complete analysis of multiple-

scattering in perfect crystals, predicting its polarisation effects near the Bragg condition. These

phenomena are well understood theoretically and have been observed experimentally; nevertheless,

until recently, there were few or no practical applications, as they are observed only in near-perfect

crystals and under stringent conditions of beam divergence and monochromaticy. The X-ray phase

plate is in fact one application of this theory ([53] - [59]). At third generation synchrotron sources,

this transmission-type phase plate offers many advantages over other methods for changing the

polarisation of the light. Since it does not alter the beam direction, an X-ray phase plate can be

designed as a compact optics module, easily inserted into and removed from the beam path of the

beamline. The requirements of linear incident polarisation and very high collimation are perfectly

matched by the undulator sources commonly employed at these institutions.

An X-ray phase plate consists of a perfect crystal cut to form a thin foil, introduced in the path

of the beam and oriented in such a way that one reflection condition is almost satisfied, unless for a

small shift from the exact direction required for the Bragg angle θB . In such a situation, the device

scatters a small fraction of the beam away from its trajectory (as the peak’s condition is not perfectly

fulfilled), and also modifies the polarisation of the transmitting beam. Two specific crystallographic

directions can be identified within the crystal giving rise to a relative phase shift ∆α for the beam

passing through the device:

∆α = −π
2

[
r2
e Fh Fh̄ λ

3 sin 2θB
π2 V 2 ∆θB

]
d (3.8)

where Fh is the structure factor, re the classical electron radius, V the unit cell volume, λ the

X-ray wave length, θB the Bragg angle, and d the thickness of the crystal. ∆θB represents the

misalignment relative to the Bragg condition. Any desired ∆α can be obtained by modulating the

orientation of the crystal (∆θB). It is desirable to employ thin crystals, and to select a crystal with

a large structure factor per unit volume (Fh/V ), small mosaicity, and low X-ray absorption. High

quality diamond crystals perfectly fulfill all these requirements.

Alignment of the phase plate and characterisation of the beam

At ID20, the experimental setup for the polarisation control of the incident beam is mounted in a

vacuum chamber, equipped with a double phase plate diffractometer. The use of two phase plates
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Figure 3.5: Phase plate setup. The in-vacuum chamber contains a two-circle diffractometer, equipped with

motors χ (set to be ≈ 45◦) and θ (scattering angle around the (1 1 1)-type reflections).

enables us to correct some of the aberration effects due to the divergence of the beam and its energy

spread. When a linear rotated polarisation is needed, the polarisation rate is remarkably higher

in comparison to a system with only a single retarder [60, 61]. However, when the plate is being

employed as a lambda-quarter retarder in order to obtain a circularly polarised light, the introduction

of an unpolarised contribution is minimised and one retarder is sufficient to obtain a degree of circular

polarisation typically > 98%. The depolarisation effects caused by the imperfect collimation and

the achromaticity are further reduced by increasing the thickness of the phase plate. Various plates

of different thicknesses are available at ID20, the appropriate choice for each energy being made to

ensure good performances without excessive absorption of the beam. The measurements on TbMnO3

and Ni3V2O8 have been carried out at non resonant energy E ≈ 7.45 keV, where one single plate

1.2 mm thick was able to reach the degree of circular polarisation stated above.

The diamond plates have polished (1 1 0) faces. They are aligned in the sample holder so that

the (1 1 1)-type reflections are easily attainable, these being the ones that give the best results

in terms of producing a relevant phase shift ∆α as per Eq. 3.8, since they possess the biggest

value for the structure factor Fh (cf. Eq. 3.8). The chamber is equipped with a small two-circle

diffractometer that controls the alignment of the plate axes (a,b) with respect to the beam (motor

χ), and the diffraction angle (motor θ) of the (1 1 1)-type reflections. The alignment procedure

must be undertaken quite carefully, as misalignments from the ideal position, coupled with the small

changes of the beam direction that may occur in the time span of a few hours, can cause significant

degradation of the performances.

The motors χ and θ are optimised in the two positions necessary to obtain circular right and

circular left polaristions. The effectiveness of the plate is monitored by placing the detection flypath

straight in line with the incident beam and setting the analyser to allow the horizontally polarised

component to be detected. This operation can be done at any moment during the experiment,

since the six-circle diffractometer is equipped with translation motors that allow the sample to be

moved out of the way. When the χ motor is set at 45◦, and the θ motor is scanned around the

Bragg value of the reflection (1 1 1), the measured intensity exhibits the dependence shown in Fig.

3.6. The horizontal polarisation of the beam is untouched for values of θ sufficiently far from the
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Figure 3.6: Phase plate alignment. The blue curve is collected as the angle θ of the phase plate varies around

the diffraction position of the (1 1 1) reflection. The detection setup is configured to select the horizontally

polarised fraction of the transmitted beam. The red curves represent the Stokes scans obtained by rotating

the detection setup by 180◦ at various fixed values of θ. The positions of θ which generate vertically polarised

light and circular light are highlighted (note the effects of a small misalignment with respect to the correct

position).

reflection (≈ 0.2◦), as the retarder-induced phase shift ∆α tends to zero; upon approaching θB , a

vertically polarised component appears and the beam becomes more and more elliptical, passing

through a state of circular polarisation when ∆α = π/2 and reaching a purely linear vertical state

when ∆α = π. Furhter progressing towards θB produces a mixed polarisation state thet cannot be

reliably detected. This behaviour is mirrored symmetrically as θB is approached from bigger values

of θ or from smaller ones, but the sign of ∆α is opposite (cf. Eq. 3.8), and thus the handedness of

the induced ellpitical polarisation is reversed.

The optimisation of the motor χ around the 45◦ position is done only once at the beginning of the

experiment. This is best achieved by positioning the plate in the σ position (minimum of the curve)

and performing there a Stokes scan to make sure that no emerging P2 is obtained. If this is not the

case, the motor χ must be corrected by the amount ∆χ = − arctan(P2/P1)/4. Once this condition

is met, χ is left unchanged for the whole experiment and no P2 should arise in the emerging beam

for any value of θ.

The alignment of θ must be checked several times during the experimental session. After placing

the plate in the theoretical position, any misalignments result in a value of P1 different from zero

(see Fig. 3.6), which can be corrected by small deplacements of θ. Typically, this kind of check is

done before and after any Stokes scan performed on a magnetic reflection of the sample.

3.1.7 Geometrical corrections

So far the polarisation of the incident and diffracted beam has been described alternatively in an

external reference frame (horizontal and vertical directions) or in a frame adapted to the scattering
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Figure 3.7: Oblique scattering plane. The directions identified as σ,π and σ′,π′ by the zeroes of the motors

in the experimental setup (depicted in red) are only accurate in the case of a perfectly horizontal plane.

plane of the sample (σ/σ′ and π/π′). The former is clearly useful to describe the polarisation in terms

of the position of the analyser setup and of the phase plate setup, while the latter is used to determine

the polarisation dependence of the magnetic diffraction from the sample. When the scattering plane

is perfectly horizontal, the matching between the frames is trivial, σ/σ′ being coincident with the

vertical direction and π/π′ with the horizontal one. This is in fact the convention adopted in setting

the zero positions for the motors of the analyser and the phase plate. However, when the scattering

plane is oblique, the directions defined by the motors and depicted in Fig. 3.7 may be off by several

degrees, and the following corrections must be made in analysing the data.

In the figure, the external laboratory frame (x̂,ŷ,ẑ) provides a definition of the horizontal and

vertical direction. The scattering plane is spanned by the vectors (k,k′); k being fixed with respect

to the external frame, the inclination of the plane is ultimately determined by the motors ∆ and Γ

of the detection arm, set to satisfy the Bragg condition:

cos 2θ = cos ∆ cos Γ.

As for the polarisation of the incident beam (Fig. 3.8), the angle ξ between the frame defined by

the motors and the corrected frame is given by

tan ξ =
sin Γ

cos Γ sin ∆
ξ ∈ [−π/2, π/2].

For the polarisation of the diffracted beam (Fig. 3.9), the correction angle is found to be

tan ζ =
sin Γ cos ∆

sin ∆
ζ ∈ [−π, π].
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Figure 3.8: Geometrical correction in the polarisation of the incident beam. The angle ξ represents the shift

between the directions defined by the motors (in red) and the ones defined by the scattering plane.

Figure 3.9: Geometrical correction in the polarisation of the scattered beam. The position of the detection

system is defined by two successive rotations of the motor ∆ (a)-(b) and Γ (c). The directions defined by

the motors of the polarisation analyser (in red) turn out to be shifted by ζ from the directions defined by

the scattering plane (c).

3.2 Numerical calculations

In the course of this work it became apparent that there was a need for a simulation program able to

calculate the expected intensity of the Stokes scans for an arbitrary magnetic structure, polarisation

of the incident beam and geometrical configuration, in order to fit the data and obtain real time

indications during the experimental sessions. This application was elaborated by making use of the

Matlab software package.

The program accepts as input: the details of the magnetic structure (the spin and orbital moment

per atom, given as the magnitude and phase of the magnetic modulation, for each component along

the crystallographic axes); the energy of the light; the indexes of the magnetic reflection; the incident

polarisation state; the supposed domain population in the volume of the crystal illuminated by the

beam. It returns the expected I(η), taking into account the exact scattering geometry of the six-circle

setup, including the azimuthal configuration (rotation of the sample about the scattering vector) and

the deviation from a perfectly horizontal scattering plane.

This calculation is carried out in three stages. First, the magnetic structure factor is constructed

on the basis of the magnetic moment associated with each atom in the cell. Secondly, the scattering
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amplitude is found by projecting both the magnetic vectors and the polarisation vectors in the same

reference frame {û1, û2, û3}. A separate calculation is done at this point, taking into account the

configuration of the motors of the diffractometer, to extract the azimuthal angle and the corrections

due to the orientation of the scattering plane with respect to the incident and scattered beams.

Finally, the intensity I(η) and the Stokes parameters are given as output, either in resonant or non

resonant regime, depending on the energy of the radiation. The evolution of the Stokes parameters

as a function of the domain population is also calculated. The matching of the reference frames done

by the program is sketched in Fig. 3.10.
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Figure 3.10: Matching of the reference frames performed by the Matlab program described in the text. (a)

The frames associated to the incident and diffracted beam {ε̂σ, ε̂π, k̂} and {ε̂′σ, ε̂′π, k̂′}, to the scattering

geometry {û1, û2, û3}, and to the crystallographic axes {a,b,c}. (b) The azimuthal angle ψ is used to define

the rotation of the frame with respect to the reference of choice. (c) An orthonormalised version of the

crystallographic frame {â,b̂,ĉ} is employed for the description of the magnetic modulation. (d) The input

values as accepted by the program in the various frames and their transformation (the magnetic moments

indicated as m are given in their spin S and orbital L contribution). All the vectors are converted into the

{û1, û2, û3} frame, where the magnetic scattering intensity I(η) is calculated.
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Chapter 4

Imaging of Multiferroic Domains in

Ni3V2O8

The magnetic structure of Ni3V2O8 has been investigated using non-resonant X-ray magnetic scat-

tering. Incident circularly polarised X-rays combined with full polarisation analysis of the diffracted

beam have been shown to yield high sensitivity to the components of the cycloidal magnetic order,

including their relative phases. New information on the magnetic structure was obtained, where it

is found that the magnetic moments on the ”cross-tie” sites are negligible relative to those on the

”spine” sites. This implies that the onset of ferroelectricity is associated mainly with spine site mag-

netic order. It is furthermore demonstrated that the technique enables the imaging of multiferroic

domains through polarisation enhanced topography. This approach was used to image the domains

as the sample is cycled by an electric field through its hysteresis loop, revealing the gradual switching

of domains without nucleation.

4.1 Refinement of the Magnetic Structure

4.1.1 Phase diagram of multiferroic Ni3V2O8

Ni3V2O8 is a magnetic insulator with a structure of Cmca orthorhombic symmetry (space group

No. 64 in the International Tables for Crystallography [62]), characterised by planes of Ni2+ S =

1 spins arranged on a buckled kagomé staircase, resulting in two inequivalent Ni sites: cross-tie

and spine type, as shown in Fig. 4.1 [63, 10]. While the ideal kagomé lattice is the canonical

example of a frustrated system, the deviation from this geometry in Ni3V2O8 leads to additional

interactions relieving the frustration and producing the rich magnetic phase diagram reported in Fig.

4.2 [64, 26, 10]. At THL = 6.3 K a mainly longitudinal incommensurate phase arises, denoted as the

high temperature incommensurate (HTI) phase; the spins on the spine sites are nearly oriented along

the a axis and sinusoidally modulated along the same direction with a wavevector (δ 0 0), δ ≈ 0.27,

while no significant ordering is observed on the cross-tie sites. Between TLC = 4 K and THL, in

the low temperature incommensurate (LTI) phase, the spins on both site types have been reported

to be arranged in a cycloid in the (a,b) plane with similar propagation vector δ, breaking spatial
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Figure 4.1: Positions in the unit cell for the two inequivalent crystallographic sites (spine and cross-tie) of

the nickel ions. Black lines indicate the Cmca unit cell, while purple lines connect atoms belonging to the

same layer of the buckled staircase structure. The atomic sites are labeled according to the coordinates given

in 4.1.3.

inversion symmetry. It is in this phase that a spontaneous electric polarisation develops parallel to

the b axis [26]. The magnetic structure in the LTI phase as derived from the neutron diffraction

studies [10, 13] will be shown in detail in 4.1.3. It should be noted that in these studies it was

not possible to uniquely determine the phase relationship between the two sites. Recent polarised

neutron diffraction measurements performed in an applied electric field have demonstrated that the

handedness of the cycloidal order can be switched by reversing the direction of the field, although

no information on the spatial distribution of domains was obtained [13].

The complex phase diagram is explained in the work by Kenzelmann et al. [10] by a simplified

model Hamiltonian. The average Ni-Ni distance (at 15 K) within the layers is d1 = 2.94Å, while
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Figure 4.2: H-T phase diagram of Ni3V2O8 with H applied along each of the three crystallographic axes

[10]. The phases are labeled as follows: P is the paramagnetic magnetically disordered phase; HTI the

high-temperature incommensurate phase; LTI the low-temperature incommensurate phase. Two additional

phases are present at lower temperature: C (high-temperature canted antiferromagnetic phase), and C’

(low-temperature canted antiferromagnetic phase). In the HTI phase the long-range order is mostly on the

spine sites with their spins parallel to a, while in the LTI phase the spine and cross-tie spins are reported

to rotate within the (a,b) plane. This magnetic ordering generates ferroelectricity, as spontaneous electric

polarisation along the b axis emerges in the LTI phase [26].

the interlayer distance is d2 = 5.69Å. Based on the relatively large interlayer to intralayer ratio,

d2/d1=1.9, a strong two-dimensional magnetic character may be expected, with the magnetism

dominated by intralayer Ni-Ni exchange interactions. Since the Kagome planes in Ni3V2O8 are

buckled, the symmetry of the superexchange interactions mediated by O ions shows that there are

inequivalent paths between neighbouring Ni ions within one Kagome plane. In particular, there is a

superexchange path between Ni spine sites along the crystallographic direction a (indicated in Fig.

4.3 as J1 for nearest neighbours and J2 for next-nearest-neighbours), and a different one between

neighbouring spine and cross-tie sites. The Hamiltonian proposed in [10] involves competing nearest-

neighbour (NN) and next-nearest-neighbour (NNN) superexchange interactions between spine sites,

combined with single ion anisotropy. By means of this model, and considering only the spine sites
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for the moment, one can qualitatively understand the onset of a collinear incommensurate magnetic

order (HTI phase) as a result of competing NN and NNN nearly-isotropic and antiferromagnetic

interactions along the spine chains (a), combined with antiferromagnetic coupling along different

chains both in the b and c directions, and with single ion anisotropy (the a axis being the easy

direction, so that the energy is minimised when the magnetisation lies along it). The argument

outlined in the cited work shows that, as the temperature is lowered, the Landau expansion of the

free energy at first will have the spins aligned only along the easy axis. As the temperature further

decreases, terms of higher order in the expansion of the free energy in the Fourier components of

the spins come into play, and they progressively enforce the constraint of fixed spin length, rather

than the modulation of spin magnitude present in a collinear sinusoidal structure when moving

along the incommensurate propagation direction. This constraint is perfectly satisfied only at zero

temperature. To comply with this requirement, and yet still satisfy the incommensurability enforced

by the competition between J1 and J2, the system develops long-range transverse sinusoidal order,

which triggers the transition into a new phase (LTI phase). In this case, the spins rotate along the

propagation direction while mantaining an almost fixed magnitude from one ion to the next. In

[10], additional terms of anisotropic interaction are then introduced to account for the details of the

magnetic structure and, most notably, the apparently large values of the cross-tie spins in the LTI

phase. The cross-tie sites have very different local symmetry from the spine sites. Although Ni3V2O8

has several magnetic phases, a common feature of all of them is that the couple of spins on the spine

sites SP1 and SP2 (cf. Fig. 4.1) have equal but opposite moments, as do the ones in the couple

SP3 and SP4; the situation is shown in Fig. 4.3. Thus, within a model of isotropic interactions, the

cross-tie spins are subject to zero mean field, i.e., they are frustrated. The apparent large values

extracted from neutron diffraction in the LTI phase have been proposed to be due to anisotropic

spin interactions between spine and cross-tie sites, both of the Dzyaloshinskii-Moriya type as well

as pseudodipolar (i.e. having the same form as dipolar interactions but much larger strength, since

arising from a type of superexchange [10]).

4.1.2 Experimental setup and preliminary measurements

The experimental setup consisted of the standard configuration with the Orange cryostat described

in 3.1.3. The energy of the beam has been tuned to 7.45 keV, considerably below the nickel K-edge

to avoid interference with the resonant signal. The 1.2 mm thick single crystal phase plate has been

selected, and a high quality single crystal Au (2 2 2) with mosaic spread of ≈ 0.22◦ has been used

as a linear polarisation analyser. The configuration is sketched in Fig. 4.4.

The single crystal of Ni3V2O8 belongs to the same batch used by Kenzelmann et al. in [10]; it

was grown from a BaO-V2O5 flux [64], and cut at the ID20 laboratories in the shape of a plaquette,

whose dimensions are 600 µm (along the b axis) x 900 µm (c). The a-face has been polished to be

used as the specular face for XRNM Scattering, while the thin thickness along b is intended to ease

the application of the electric field. Particular attention has been devoted to obtain two parallel

b-faces. These have then been glued to the electrodes of the electric field stick (described in 3.1.3)

by means of conductive silver paint.

A preliminary investigation of the crystal quality has been performed by collecting charge reflec-
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Figure 4.3: Model of isotropic exchange interactions developed by Kenzelmann and co-workers in [10],

indicating the frustration of the cross-tie sites. The sketch represents a projection onto the (a,c) plane of

the crystallographic sites indicated in Fig. 4.1; the atomic coordinates are reported in 4.1.3. Here J1 and J2

represent nearest-neighbour (NN) and next-nearest-neighbour (NNN) superexchange interactions between

spine sites. Since a common feature of all magnetic phases is that sites SP1 and SP2 have opposite spins,

the mean field at the cross-tie site (CT2) is zero. Sites SP3 and SP4 also have opposite spins which are not

shown because their values relative to SP1 and SP2 are different for different magnetic phases.

tions at T = 4.4 K. The charge diffraction peaks typically present an angular width in the Bragg angle

θ of ≈ 0.01◦ (Fig. 4.5). The insertion of the analyser crystal in the detection chain was followed

by two alignment scans performed over the rocking angle of the analyser in the two polarisation

channels σ′ and π′, over the direct beam. The ratio between the π′ contribution correctly identified

by the analyser and the leaked σ′ contribution (cross-talk of the analyser) is less than 0.3% (Fig.

4.6). After cooling down to 2.2 K, the magnetic reflection (5 − δ, 1, 0) is aligned (Fig. 4.7). The

angular width in the rocking curve of the sample is ≈ 0.01◦, suggesting long-range magnetic order.

However, by comparison of the temperature dependence with the data published in [10], it became

apparent that strong beam heating effects were altering the temperature on the sample surface

with respect to the values collected by the sensors, and preventing the sample from entering the

LTI and the lower temperature commensurate (C) phase (cf. the phase diagram in Fig. 4.2). In

particular, the LTI phase is characterised by a narrow temperature range between 4 and 6.3 K, thus

requiring a precise and stable control of the cryogenic system. A first approach to this issue had

been taken by employing samples whose specular face had been covered with a thin layer of Al, but

test measurements demonstrated that the effectiveness of this method was dubious. Instead, it was

chosen to reduce the intensity of the incident beam and carefully collect a temperature dependence

on magnetic reflection (5−δ, 1, 0), to make sure the sample was being brought into the correct phase

(see Fig. 4.8). At the energy of 7.45 keV, given an incident photon flux of ≈ 1013 ph/sec and in
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Figure 4.4: Schematic of the experimental setup, including the orientation of the sample with respect to the

scattering plane and the applied electric field.
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Figure 4.5: Profile of the charge reflection (4 0 0) measured at 4.4 K with no discrimination of the polarisation

of the diffracted beam.

spite of the use of 4He exchange gas in the sample space, it was found that the minimum attenuation

required for the incident beam was a factor of 5. Figure 4.8 shows the temperature dependence

of the reflection (5 − δ, 1, 0) obtained from scans measured in the rotated π − σ′ channel along the

reciprocal space a∗ direction. The sharp change seen in the intensity of the scattering at T = 3.2 K,

obtained by numerical integration, indicates the transition between the LTC and LTI phases, whilst

the discontinuity seen in the evolution of the propagation wave-vector at T = 6.3 K occurs at the

transition between the high (HTI) and low temperature incommensurate phases [10]. Hence the LTI
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Figure 4.6: Rocking curves of the polarisation analyser in the two polarisation channels π − π′ and π − σ′

(leaked contribution). In the π − σ′ scan the intensity of the incident neam has been enhanced by a factor

of ≈ 50 with respect to the π − π′ scan, in order to obtain a reasonable count rate.
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Figure 4.7: Profile of magnetic reflection (5−δ, 1, 0) along the crystallographic direction a∗, in the polarisation

channel π − σ′ (counting time: 30 seconds/point).

phase of interest was clearly defined, and measurements were performed at an optimised temperature.

Specific care has been taken during the course of the experiments to avoid thermal instabilities and

abrupt changes in the cryogenic system, especially during technical operations such as liquid N2 and

He refill in the Orange cryostat, and the temperature has been constantly monitored.

4.1.3 Proposed magnetic structure in the LTI Phase

The first experimental report on the magnetic structure of Ni3V2O8 has been performed by Ken-

zelmann and co-workers [10] by means of neutron diffraction, and it constituted the starting point

for the refinement achieved in the present work. According to it in the LTI phase the magnetic

structure consists of elliptical cycloids in the (a,b) plane, combination of irreducible representations

Γ1 and Γ4, propagating along the a direction with propagation vector δ ≈ 0.27. The magnitude of

70



LTC LTI HTI

2 4 6 8

0.265

0.275

0.27

d
 (

rl
u)

0

1.5

2

2.5

3

  
 I

n
te

g
ra

te
d
 I

n
te

n
si

ty
 (

a.
 u

.)

Temperature (K)

Figure 4.8: Temperature dependence of the scattering intensity (upper) and wave-vector position (lower

panel) of the magnetic satellite (5−δ,1,0), measured in the π−σ′ channel through scans along the reciprocal

space a∗ direction, as in Fig. 4.7. The intensity data have been obtained by numerical integration of

the detected signal normalised by the intensity of the incident beam; the wave-vector positions have been

extracted from fits to a Gaussian function. The dotted lines define the boundaries of the low temperature

incommensurate (LTI) phase.

the components of the magnetic moments measured at T = 5 K was reported to be for spine sites

mSP
Γ4 = [1.6(1), 0.03(10), 0.01(7)]µB

mSP
Γ1 = [0.0(5), 1.3(1), 0.1(1)]µB

(4.1)

and for cross-tie sites

mCT
Γ4 = [0, 1.4(1), 0.04(9)]µB

mCT
Γ1 = [2.2(1), 0, 0]µB

(4.2)

where components forbidden by symmetry are indicated by the absence of error bars. The quality

of the fit is given by Rp = Σni |Iio − Iic|/Σni Ii0 = 0.19, where Iio and Iic are the n observed and

calculated intensities, respectively, and by χ2 = Σni wi(|F io| − |F ic |)2/(n −m) = 7, where F io and F ic

are the observed and calculated scattering amplitudes, wi = 1/σ2
i , σi is the error bar of the observed

intensity Iio, and finally m is the number of fitted variables. While the only representation required

to describe the HTI phase is Γ4, for the LTI phase neutron diffraction data alone, on its own, did not

unambiguously identify whether the additional representation is Γ1 or Γ2. However, the symmetry

analysis of the spontaneous polarisation (cf. section 1.1.3) indicates that the correct choice is Γ1.

The experiment was not sensitive to the phase between eigenvectors of Γ1 and Γ4, however, the fixed

spin length constraint favored by the quartic terms in the Landau expansion requires a relative phase

of π/2 (cycloid).
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Figure 4.9: Sketch of the magnetic structure proposed in [10] (unit cell delimited by gray lines). The left

figure shows the magnetic symmetry relations for all the atoms within the cell; the right figure depicts the

projection onto the (a,b) plane. Since the phase relation between the modulations in the spine and cross-tie

sites is not defined within this model, it has been arbitrarily established to be 0 in the present figure.

The magnetic components of different ions belonging to the same type are all related by symmetry.

The only unknown parameter is the phase relationship between the spine and cross-tie magnetic

modulation (defined as in 2.3.3). In the present work, it is defined as Domain 1 the domain in which

the cycloids rotate clockwise along +a from one cell to the next, while looking at the (a,b) plane

from the +c direction. In Domain 2, the cycloids rotate anticlockwise. The magnetic structure

within the cell is depicted in Fig. 4.9. The calculations use these total magnetic moments as spin

moments only on the Ni ions, having assumed that the orbital moment is negligible as compared

to the strong polarisation effects induced by the spin component (note that in NiO the Ni orbital

moment was estimated to be 0.32 ± 0.05 µB [65]).

The character table for the irreducible representations is

1 2x mxz mxy

Γ1 1 1 1 1

Γ2 1 1 −1 −1

Γ3 1 −1 1 −1

Γ4 1 −1 −1 1

To describe the magnetic moments on the spine and cross-tie sites belonging to the two representa-
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tions Γ1 and Γ4, the atomic positions within the unit cell are labeled as

Ni SPINE (1/4,−∆SP
b , 1/4) SP1

(1/4,∆SP
b , 3/4) SP2

(3/4,∆SP
b , 3/4) SP3

(3/4,−∆SP
b , 1/4) SP4

(3/4, 1/2−∆SP
b , 1/4) SP5

(3/4, 1/2 + ∆SP
b , 3/4) SP6

(1/4, 1/2 + ∆SP
b , 3/4) SP7

(1/4, 1/2−∆SP
b , 1/4) SP8

where ∆SP
b = 0.13 is the coordinate along the b axis of the Wyckoff position occupied by spine ions

(cf. Fig. 4.1), and

Ni CROSS − TIE (0, 0, 0) CT1

(1/2, 0, 1/2) CT2

(1/2, 1/2, 0) CT3

(0, 1/2, 1/2) CT4

so that by applying the symmetry operations of the cell to the magnetic moments within each

representation, it is found:

magnetic moment Γ1 Γ4

mSP SP1, SP5 ma ma

mb mb

mc mc

SP2, SP6 ma −ma

−mb mb

−mc mc

SP3, SP7 −ma ma

mb −mb

−mc mc

SP4, SP8 −ma −ma

−mb −mb

mc mc

mCT CT1, CT3 ma 0

0 mb

0 mc

CT2, CT4 −ma 0

0 −mb

0 mc
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The general expression for the X-ray non resonant magnetic amplitude has been given in Eq.

2.39, as a function of the Fourier components of the magnetic modulation Ms in the s atoms of the

crystallographic unit cell, and their fractional coordinates within the cell (xs, ys, zs). In the present

case, the magnetic structure factor is calculated for a reflection k− k′ = (h+ αδ, k, l), where α =

±1 selects the sign of the incommensurate satellite next to the Bragg peak (h, k, l). The parameter

γ = ±1 is employed to distinguish between Domain 1 (γ = +1) and Domain 2 (γ = −1). The

scattering amplitude then becomes

fnr = (
1

2
i
h̄ω

mc2
) ·

∑
s

ei2π(hxs+kys+lzs) (Ms ·B) (4.3)

where the vector B contains the dependence on the polarisations of the incident and scattered light,

as per Eq. 2.10, and∑
s

ei2π(hxs+kys+lzs) Ms =

ei2π[h(1/4)+k(−∆SP
b )+l(1/4)] · 1

2 [mSP
a â +mSP

b e−iαγπ/2b̂]+ SP1

ei2π[h(1/4)+k(∆SP
b )+l(3/4)] · 1

2 [−mSP
a â−mSP

b e−iαγπ/2b̂]+ SP2

ei2π[h(3/4)+k(∆SP
b )+l(3/4)] · 1

2 [mSP
a â +mSP

b e−iαγπ/2b̂]+ SP3

ei2π[h(3/4)+k(−∆SP
b )+l(1/4)] · 1

2 [−mSP
a â−mSP

b e−iαγπ/2b̂]+ SP4

ei2π[h(3/4)+k(1/2−∆SP
b )+l(1/4)] · 1

2 [mSP
a â +mSP

b e−iαγπ/2b̂]+ SP5

ei2π[h(3/4)+k(1/2+∆SP
b )+l(3/4)] · 1

2 [−mSP
a â−mSP

b e−iαγπ/2b̂]+ SP6

ei2π[h(1/4)+k(1/2+∆SP
b )+l(3/4)] · 1

2 [mSP
a â +mSP

b e−iαγπ/2b̂]+ SP7

ei2π[h(1/4)+k(1/2−∆SP
b )+l(1/4)] · 1

2 [−mSP
a â−mSP

b e−iαγπ/2b̂]+ SP8

ei2π[h(0)+k(0)+l(0)] · 1
2 [mCT

a eiαγφSC â +mCT
b e−iαγ(π/2+φSC)b̂]+ CT1

ei2π[h(1/2)+k(0)+l(1/2)] · 1
2 [−mCT

a eiαγφSC â−mCT
b e−iαγ(π/2+φSC)b̂]+ CT2

ei2π[h(1/2)+k(1/2)+l(0)] · 1
2 [mCT

a eiαγφSC â +mCT
b e−iαγ(π/2+φSC)b̂]+ CT3

ei2π[h(0)+k(1/2)+l(1/2)] · 1
2 [−mCT

a eiαγφSC â−mCT
b e−iαγ(π/2+φSC)b̂] = CT4

= [mSP
a â− iαγmSP

b b̂] · [1− (−1)k] · [2Re(ih+le−i2πk∆SP
b ) + 2Re(−i−h+le−i2πk∆SP

b )]+

+[mCT
a â− iαγmCT

b b̂] · eiαγφSC · [1− (−1)h+l + (−1)h+k − (−1)k+l]

where φSC is the phase shift in the magnetic modulation (a component) between the cross-tie site

C1 and the spine site SP1. It is defined as the phase shift at the same coordinates in space, following

subsection 2.3.3, and the transformation by inversion symmetry between domains is made explicit

by considering one phase parameter φSC , whose sign is determined by γ.

A particular feature of Ni3V2O8 is that by taking advantage of the structure factor one may

selectively probe the spine and cross-tie moments independently or in combination. By calculating

the NRXMS amplitudes (cf. section 2.3), it is found that the scattering reflections can be classified

into three different types. In the first type (h = odd, k = odd, l = odd), only the spine magnetic

atoms are expected to contribute to the amplitude, while the contributions of the cross-tie atoms

cancel each other. In the second type (h = even, k = even, l = odd), it is the contribution from

cross-tie atoms that is singled out. In the third type (h = odd, k = odd, l = even), both contributions

are present, but are summed with a sign that depends on the actual values of h, k, l. The scattering
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Figure 4.10: Position of the magnetic satellite reflections in the (a∗,b∗) projection of the reciprocal lattice,

with l = 0 (black circles indicate Bragg reflections).

amplitudes in the different types of peaks are

f1 ∝ 8 cos(2πk∆SP
b ) (mSP

a â− γ α i mSP
b b̂) ·B

f2 ∝ 4 (mCT
a â− γ α i mCT

b b̂) ·B

f3 ∝ [ β 8 sin(2πk∆SP
b ) (mSP

a â− γ α i mSP
b b̂) + 4(mCT

a â− γ α i mCT
b b̂) eiαγφSC ] ·B

where β = (−1)p+n, with h = 2n+ 1 and l = 2p, determines the sign of the sum between spine and

cross-tie contributions, together with the factor sin(2πk∆SP
b ). The phase relationship between the

spine and cross-tie magnetic modulation (φSC), that was not determined from neutron diffraction, is

kept as a free variable to be determined from the data, together with the refinement of the amplitudes

mSP
i and mCT

i , i = a, b (see the following sections). The diagrams in Fig. 4.10 and 4.11 depict the

distribution of the different types of reflection in the reciprocal space.

4.1.4 Overview of the data

The investigation of the magnetic structure consisted in electric field cooling to create a magnetic

monodomain via the magneto-electric coupling, and performing a full Stokes analysis of the scattered
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Figure 4.11: Position of the magnetic satellite reflections in the (a∗,b∗) projection of the reciprocal lattice,

with l = odd.

intensity, as established in Chapter 2. The field cooling procedure for performing the measurements

was to apply -1.4 kV/mm across the sample as it was cooled from 20 K, in the paramagnetic phase,

to 4.2 K, in the LTI phase. The electric field was then removed before illuminating the sample with

X-rays.

It was decided to measure a spine-type reflection, k′ − k = (5 + δ, 1, 1), and two reflections of

the third type, (5 + δ, 1, 0) and (5 + δ,−1, 0), specularly chosen so that the sign of β sin(2πk∆SP
b ) is

opposite between them. No signal could be detected in the expected position of a cross-tie reflection.

This led to consider the possibility of cross-tie moments being weaker than the values initially

proposed.

In preparation to the measurement of the Stokes scans on the reflections, the phase plate was

aligned as to optimise the positions for left and right circular polarisation (hereafter LCP and RCP).

The results show a degree of residual linear polarisation less than 1 % (see Fig. 4.12). These

alignment scans were regularly repeated before and after each Stokes scan collected on magnetic

diffraction, in order to have complete control of the purity of the incident polarisation during the

whole experiment. The Stokes scans were collected with both circular polarisations for each magnetic

peak. The rocking curve of the analyser for every value of η was then treated by subtraction of the

background. Said background was collected by shifting the motor θ of the sample (which is coupled
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Figure 4.12: Alignment scans of the phase plate: the positions of the two circular polarisations are identified

from the rocking curve θ of the plate (upper figure). The quality of the rotated polarisations is then checked

by means of a full Stokes scan on the direct beam. As a comparison, and to refine the alignment of the plate

in the angle χ (cf. Chapter 3), the Stokes scans are performed also in the positions corresponding to vertical

rotated polarisation (σ) and unrotated polarisation (π), i.e. away from any Bragg reflection of the plate.

to the Bragg angle) away from the diffraction position by 0.2◦, and measuring a different set of

rocking curves of the analyser at various values of η; the resulting integrated intensities are then

fitted to a Stokes dependence that can be subtracted from the signal. The procedure is illustrated

for the (5 + δ, 1, 0) reflection with circular right incident polarisation in Fig. 4.13.

An overview of the data is presented in Fig. 4.14. At a qualitative level, it is seen that the

circular polarisation of the incident light is profoundly altered by the diffraction, being converted

after interaction with the sample into a linear oblique state, in which the Stokes parameter P2 is

dominant while P1 is close to zero (the maxima and minima in the integrated intensities lie close to

45◦ and 135◦, cf. Eq. 3.2 - 3.5 and Fig. 3.4). The sign of P2 is dependent on the handedness of

the circular polarisation of the incident beam (the positions of maxima and minima are reversed for

LCP vs RCP incidence), and the average intensity arising from the two incident polarisation states

77



0 20 40 60 80 100 120 140 160 180
0

0.5

1

1.5

2

2.5

3

3.5

h (deg)

in
te

g
ra

te
d
 i
n
te

n
s
it
y
 (

a
. 
u
.)

 P1 =  0.233  ( 0.080 )           
 P2 =  -0.479  ( 0.081 )          

 const =  2.07e-005  ( 1.25e-006 )
 P’ =  0.533  ( 0.080 )           

 Eta0 (deg) =  147.948  ( 4.285 ) 

0 20 40 60 80 100 120 140 160 180
0

0.5

1

1.5

h (deg)

in
te

g
ra

te
d
 in

te
n
si

ty
 (

a
. 
u
.)

 N1 =  5.24e-006  ( 5.33e-007 )
 N2 =  2.59e-007  ( 8.37e-007 )
 N0 =  6.52e-006  ( 4.76e-007 )

 P1 =  0.804  ( 0.101 )        
 P2 =  0.040  ( 0.128 )        
 P’ =  0.805  ( 0.101 )        

 Eta0 =  1.414  ( 4.572 )      

0 20 40 60 80 100 120 140 160 180
0

0.5

1

1.5

2

2.5

3

3.5

h (deg)

in
te

g
ra

te
d
 i
n
te

n
s
it
y 

(a
. 
u
.)

0 20 40 60 80 100 120 140 160 180
0

0.5

1

1.5

2

2.5

3

h (deg)

in
te

g
ra

te
d
 i
n
te

n
s
it
y 

(a
. 
u
.)

 P1 =  -0.030  ( 0.136 )          
 P2 =  -0.722  ( 0.146 )          

 const =  1.42e-005  ( 1.44e-006 )
 P’ =  0.723  ( 0.146 )           

 Eta0 (deg) =  133.811  ( 5.396 ) 

signal background

corrected signalsubtraction

Figure 4.13: Procedure for the measurement of a Stokes scan on the magnetic reflection (5 + δ, 1, 0). The

first scan is collected on the magnetic peak (red) while the second one is the background found at 0.2◦ away

from the peak in θ (blue). Each point is obtained from a rocking scan of the analyser, normalised by the

incident intensity and numerically integrated. The fitted background is then subtracted from the signal to

give the final result (black).
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Figure 4.14: Overview of the data collected on the three magnetic peaks (5 + δ,−1, 0), (5 + δ, 1, 0) and

(5 + δ, 1, 1) with polarisation of the incident light tuned into circular right (blue) or circular left (red) state.

is approximately the same. These results hold true for every reflection.

By comparing the results of different reflections, it is seen that the twin reflections (5 + δ,−1, 0)

and (5 + δ, 1, 0) have the same average intensity. The degree of oblique polarisation (absolute value

of P2) is the same for each peak and for each handedness of the polarisation of the incident beam:

|P2| ≈ 0.7. Conversely, the spine-only reflection (5 + δ, 1, 1) presents slightly weaker intensity with

respect to the other two, and an asymmetric value of |P2| between the two sets of results, being 0.72

when the incident beam is in a circular left polarisation state, and -0.58 in the opposite case.
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Figure 4.15: Stokes scans in spine satellite (5 + δ, 1, 1), in LTI phase. The data are taken with circular left

(red) and right (blue) incident polarisation. The curves represent the calculation (see text).

4.1.5 Fit of the data and interpretation

The data have been fitted to the model presented in 4.1.3, both by analytical calculation in an

approximated scattering geometry (in the case of spine + cross-tie reflections) and by numerical

calculation, using the Matlab program described in section 3.2 that takes the exact geometry into

account.

Spine type satellite (5 + δ, 1, 1)

The first test of the proposed model was done on the reflection of easiest interpretation, the spine

reflection (5 + δ, 1, 1). The results of the numerical fit are shown in Fig. 4.15 and take into account

the exact geometry of the experiment. The a and b components of the magnetic moments have been

extracted from the neutron results (Eq. 4.1), and the only free variable in this case is the population

of domains. The curve represented in the figure is the best fit, obtained for a percentage of 88(3)%

of Domain 1. It can be seen that the same population of domains is able to fit the data for both

circular polarisations, thus confirming that the state of the sample has not been significanlty altered

in temperature between the two measurements. The calculation returns an arbitrary intensity factor

that has been fixed to match the average intensity of the data.

It has been concluded that, for this reflection, the model proposed by neutron diffraction works

very well, predicting a specular symmetry in the position of the max η between the two curves, a

similar value of the average intensity, and the polarisation of the outcoming beam being more linear

when the incidence is circular left.

Spine and Cross-tie type satellites (5 + δ, 1, 0) and (5 + δ,−1, 0)

The next step involved fitting the two twin reflections (5 + δ, 1, 0) and (5 + δ,−1, 0), belonging to the

third type. Here the significant parameters to be refined were the phase shift between the spine and
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cross-tie modulations (φSC) and, possibly, the magnitudes of the cross-tie components, since it was

not possible to test them on a purely cross-tie reflection. To clarify the refinement of the cross-tie

contributions, two parameters can be explicitly introduced into their expressions:

mCT
a = a (1.4 r) µB

mCT
b = a 1.4 µB

The parameter a is an overall magnitude factor for both components, while r represents the ratio

between the components. In the initial model proposed by Kenzelmann, a = 1 and r = 2.2/1.4 =

1.5714.

The absolute intensities of the reflections (5 + δ, 1, 0) and (5 + δ,−1, 0) have been calculated by

comparison with the reflection (5 + δ, 1, 1) already measured, with the opportune corrections for

absorption. The absorption correction to be multiplied to the intensity of every reflection is

1

1 + sin(ψa)/ sin(ψb)

where ψa and ψb represent the angle of the incident and the scattered beam with the surface of the

sample, respectively, and are dependent on the specific scattering geometry of the peak. On the

other hand, the energy-dependent absorption coefficient (µ) is the same for all peaks.

Analytical calculation

In this subsection an analytical simplified model is presented, as a tool to qualitatively understand

the experimental results prior to the numerical fit. For both satellites, the following simplifying

assumptions have been made:

• Let the Bragg angle be θ = 45◦ (exact value = 48.12◦);

• The scattering plane is perfectly horizontal. This is equivalent to assuming: 1) the azimuthal

angle with respect to the b axis = 180◦ (exact value for the two satellites is = 178.4◦); 2) the

shift from the exact polarisation σ’ in the zero of the motor η being negligible (the exact value

is less than 0.1◦);

• Within the scattering plane, let the angle between the b axis and the scattering vector be

= 45◦ (exact values for the two satellites are 40.9◦ and 52.2◦).

A purely monodomain magnetic density is being considered. The scattering amplitudes are then,

following Eq. 2.16:

fσ̂′ ∝ [ kSa + Cb sinφSC − Ca cosφSC ] + [ kSb − Cb cosφSC − Ca sinφSC ] i

fπ̂′ ∝ ε [ kSb − Cb cosφSC + Ca sinφSC ] + ε [ kSa − Cb sinφSC − Ca cosφSC ] i

where the following shorthand notations have been introduced

Sa = 8 sin(2π∆SP
b ) mSP

a = 8 sin(2π∆SP
b ) 1.6 µB

Sb = 8 sin(2π∆SP
b ) mSP

b = 8 sin(2π∆SP
b ) 1.3 µB

Ca = 4 mCT
a = 4 a (1.4 r) µB

Cb = 4 mCT
b = 4 a 1.4 µB
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and where k = ±1 identifies the reflection (5 + δ, k, 0), and ε = ±1 refers to the handedness of the

incoming circular light.

Relative intensities between the two satellites (condition on phase parameter φSC)

The first thing that has been considered is the relative intensities of peaks (5+δ, 1, 0) and (5+δ,−1, 0).

As it is seen from the data in Fig. 4.14, the four intensities are very close to each other, both when

the incident beam is in a circular left and in a circular right state of polarisation. This analysis will

show that the ratios between the intensities are directly related to the phase difference φSC . The

average intensity for the two peaks can be expressed as

|fσ̂′ |2 + |fπ̂′ |2 =

|kSa + Cb sinφSC − Ca cosφSC |2 + |kSb − Cb cosφSC − Ca sinφSC |2+

|kSb − Cb cosφSC + Ca sinφSC |2 + |kSa − Cb sinφSC − Ca cosφSC |2.

The sign of the incident polarisation does not appear, thus assuring that the intensities for left

and right illumination are bound to be the same, for every choice of parameters. This is simply a

consequence of no magnetic moments being directed out of the scattering plane. For the intensities

between the two peaks to be the same, it is necessary to eliminate the contributions in Cb cosφSC

and Ca cosφSC . This implies

φSC = ±π/2 .

The numerical calculations agree very well with this result, as shown in Fig. 4.16.

Stokes parameters P1 and P2 (condition on parameter r)

The next step is fitting the values of the Stokes parameters P1 and P2. From the data, it is clear

that P1 is basically absent, while P2 is strong and has opposite values for the two incident states on

the same reflection, while mantaining the same values between the two reflections. By inserting the

result found for φSC , the amplitudes become

fσ̂′ ∝ [kSa + Cb] + [kSb − Ca]i

fπ̂′ ∝ ε[kSb + Ca] + ε[kSa − Cb]i.

• Value of P1.

The value of P1 is different from zero when |fσ̂′ | and |fπ̂′ | are different. Since it had been

reasonably assumed that the values for the spine components are correct and very similar to

each other, one can simplify the expression by considering

Sa ≈ Sb ,

which shows that P1 is close to zero if and only if the two cross-tie components are also similar

to each other:

Ca ≈ Cb .
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The numerical simulations confirm that a P1 component arises when either the ratio Sa/Sb

or the ratio Ca/Cb (i.e. the parameter r) becomes very different from 1: see some cases in

Fig. 4.17. The values proposed by Kenzelmann and co-workers are close enough to satisfy this

condition, thus leading to P1 being reasonably close to zero.

• Value of P2.

Turning now to P2, this parameter is different from zero when |fσ̂′ + fπ̂′ | and |fσ̂′ − fπ̂′ | are

different. In the present case:

|fσ̂′ + fπ̂′ |2 = |kSa + Cb + εkSb + εCa|2 + |kSb − Ca + εkSa − εCb|2

|fσ̂′ − fπ̂′ |2 = |kSa + Cb − εkSb − εCa|2 + |kSb − Ca − εkSa + εCb|2

or, equivalently,

|fσ̂′ + fπ̂′ | and |fσ̂′ − fπ̂′ |

ε = +1 |fσ̂′ + fπ̂′ | = |(Sa + Sb) + (Ca + Cb)|2 + |(Sa + Sb)− (Ca + Cb)|2

(k = ±1) |fσ̂′ − fπ̂′ | = |(Sa − Sb) + (Ca − Cb)|2 + |(Sa − Sb)− (Ca − Cb)|2

ε = −1 |fσ̂′ + fπ̂′ | = |(Sa − Sb) + (Ca − Cb)|2 + |(Sa − Sb)− (Ca − Cb)|2

(k = ±1) |fσ̂′ − fπ̂′ | = |(Sa + Sb) + (Ca + Cb)|2 + |(Sa + Sb)− (Ca + Cb)|2

It can already be noted that reversing the sign of the circular polarisation (ε) means switching

between P2 and −P2; this is again a consequence of the moments lying within the scattering

plane. Moreover, P2 remains the same for the two satellites (it does not depend on k). As

for its values, it is already etablished that Sa ≈ Sb and Ca ≈ Cb. Therefore, (Sa − Sb) and

(Ca − Cb) are close to zero, while |(Sa + Sb) + (Ca + Cb)| is strong. The conclusion is that a

high contrast between |fσ̂′ + fπ̂′ | and |fσ̂′ − fπ̂′ | is present, which leads to a high value of P2,

and is reversed when the circular polarisation is switched.

Note that the overall ratio between the magnitude of the spine moments versus cross-tie moments

(the parameter a) does not affect the results found for P1, nor the symmetry of the results found for

P2, but only the actual value of P2.

Relative intensities between the peaks (5 + δ,±1, 0) and the spine peak (5 + δ, 1, 1) (con-

dition on parameter a)

The final fit to the data consisted in matching the intensity of these peaks with the intensity of the

spine peak (5 + δ, 1, 1). By introducing all the results obtained so far, the average intensity of the
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Figure 4.16: Effect of parameter φSC (phase between spine and cross-tie modulation) on the relative in-

tensities of (5 + δ, 1, 0) and (5 + δ,−1, 0). The other parameters are fixed at a = 1/2; r = as given in

[10]

peaks (5 + δ, 1, 0) and (5 + δ,−1, 0) is given by

|Sa + Cb|2 + |Sa − Cb|2 + |Sb + Ca|2 + |Sb − Ca|2

and is an increasing function of a, for every r. From the numerical calculation, it will be seen that

the cross-tie contributions appear to be weaker than expected (Fig. 4.18).

Numerical optimisation of the parameters φSC , a, r

The values extracted with this approximated analysis have constituted the starting point for a

numerical optimisation, where the parameters r, a and φSC have been varied in proximity of those

initial guesses in order to best fit the data. The calculation has considered the effective population

of domains, the absorption correction and the exact scattering geometry. The fits obtained from

this first optimisation procedure are shown in Fig. 4.19, with parameters φSC = π/2, r = 1.3,

a = 0.55. The most notable finding is the unexpectedly weak contribution arising from the cross-tie

magnetic moments: the data seem to indicate an upper limit for the two components of about 1

µB . Unfortunately, this result is not only based on the polarisation measurements but also on the

intensity measurements, which are less sensitive to any variations in the model and are measured

with a lesser degree of precision due to the requested comparison between different peaks. On the
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Figure 4.17: Effect of parameter r (ratio between a and b magnetic components in the cross-tie sites) on the

Stokes parameters. P1 becomes noticeable (the positions of the max in η move away from 45◦ and 135◦)

when r is different from 1. The other parameters are fixed at φSC = π/2, a = 1/2.

other hand, the phase relationship φSC between the magnetic modulations on the spine and cross-tie

sites, whose value influences the polarisation state of the diffracted beam, is determined with much

more accuracy, being estimated in the range 0.50 π ± 0.02 π even if the cross-tie moments may be

very small.

To clarify this issue it was decided to repeat the measurement on the intensities, by aligning the

various reflections in the σ′ and π′ polarisation channels and rocking the sample along orthogonal

directions, so to determine the overall intensity with the highest degree of precision allowed by the

setup.

4.1.6 Further refinement by intensity measurements and Conclusions

The absolute intensities of the peaks (5 + δ,−1, 0), (5 + δ, 1, 0) and (5 + δ, 1, 1), have been checked in

a separate experiment, in an attempt to refine the model proposed in the previous subsection. The

beamline was tuned to E = 7.45 keV, the analyser crystal Au (2 2 2) was used, and the sample was

cooled down to the LTI phase in an applied electric field along -b, as in the previous measurements.

Since the focus of this experiment was measuring the relative intensities of different magnetic peaks,

particular care has been taken in aligning the sample translations, and in fixing the detector slits

to the most suitable width, to make sure that all the signal was being detected without introducing
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Figure 4.18: Effect of parameter a (ratio between spine and cross-tie moments) on both the intensities of

(5 + δ, 1, 0) and (5 + δ,−1, 0). The spine reflection (5 + δ, 1, 1) has been used to normalise the calculated

intensities. The other parameters are fixed at φSC = π/2; r = as given in [10]
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Figure 4.19: Numerical optimisation of the parameters around the initial guesses. The figure is generated

from the values: φSC = π/2, r = 1.3, a = 0.55. The population of Domain 1 is 86% in the simulations for

all the peaks. The quality of the fit is given by χ2 = Σni wi(I
i
o − Iic)2/(n−m) = 2, where Iio and Iic are the

observed and calculated intensities, wi = 1/σ2
i , σi is the error bar of the observed intensity Iio, and finally

m is the number of parameters of the fit. Compare this result with the final fit in Fig. 4.21, in which the

refinement of the intensities has been taken into account.

background unnecessarily.

For each reflection, a set of scans was collected by tuning the incident light into linear, circular

left and circular right state, and the detected light into channels σ′ and π′. For each condition the

sample was scanned along various directions, including the rocking curve of the analyser (’θ’), the
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Figure 4.20: Scaling of the data collected in peak (5 + δ,−1, 0): the circular right-π′ intensity (blue arrow)

is corrected on the basis of the newfound results. All the other intensities for this peak are corrected by the

same multiplying factor.

direction of the scattering vector (’θ − 2θ’), and the orthogonal direction identified by the motor γ

of the diffractometer (cf. Fig. 3.2 - (c)). The ’θ’ and ’θ− 2θ’ scans have been numerically integrated

(with subtraction of the background) and averaged together, while the ’γ’ scan has been used as a

confirmation that all the signal was being integrated by the surface of the analyser.

These intensities have been used to correct the Stokes scans. The procedure is illustrated in Fig.

4.20 in the case of the reflection (5 + δ,−1, 0). The value of the intensity measured in the channel

circular right-π′ has been used to set the data point indicated by the arrow in the figure; all the

other data points for both circular incidences have been scaled by the same factor. The intensities

measured in the other channels have been used as a check of this scaling procedure.

The same numerical procedure to optimise the magnetic structure already used in the previous

section 4.1.5 has been repeated on the corrected data. Calculations provided estimates of mCT
a =

0.55(50) and mCT
b = 0.35(35) (units of µB), with a 87(4) % domain type 1 population, and a phase

difference of 0.50(2) π. It can be noted that the percentage of domains has remained reasonably

constant through the whole experiment. It is confirmed that the cross-tie moments are indeed smaller

than expected and may even not be ordered at all. However, the error bars on the magnitudes remain

quite large, as opposed to the value of the phase relationship φSC which is accurately determined to

be close to π/2, even in the case of very small magnitude of the cross-tie moments. The analysis of

more recent neutron diffraction measurements seems consistent with the possibility of there being

no moment on the cross-tie nickel ions (I. Cabrera et al., unpublished). Thus it may be concluded

that the cross-tie moments are most likely negligible, from which it follows that spatial inversion

symmetry is broken by the non-collinear magnetic structure of the spine-sites alone. This frustration

of the cross-tie sites can be simply explained within a model with isotropic interactions between

the spine and cross-tie sites since then there would be zero mean field on the crosstie sites. This

possibility was raised by Kenzelmann et al. [10], although they concluded that this frustration had

been lifted by anisotropic pseudodipolar interactions, to explain their proposed LTI structure as
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Figure 4.21: Best fit obtained with the refined model detailed in the text: mCT
a = 0.55 µB , mCT

b = 0.35 µB ,

a 87 % domain type 1 population, and a phase difference of 0.50 π. This fit gives χ2 = 1.5 (compare with

the previous result in Fig. 4.19, in which the refined intensity measurements had not been incorporated).
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magnetic moments  

Ni cross-tie
magnetic moments x 3
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DF=2pd

Figure 4.22: Magnetic structure of Ni3V2O8 according to the refinement described in the present work. The

unit cell is delimited by the gray lines; a projection into the (a,b) plane is shown in the right. The magnitude

of the magnetic moments in the cross-tie sites is multiplied by a factor of 3 to make them more visible; the

phase relationship between spine and cross-tie modulations is fixed at π/2, according to the fit.

shown in Fig. 4.9. The refined magnetic structure is depicted in Fig. 4.22.

4.2 Imaging of the magnetic domains

The data in Fig. 4.21 also suggest a novel route to imaging multiferroic domains. The reversal evident

in the sign of the Stokes parameter P2 when switching the incident X-ray polarisation, would also

occur for fixed incident polarisation if the cycloidal magnetic domain switched its handedness (cf.

Chapter 2). It follows that the domain population can therefore be determined at different points

in the sample by determining the value of P2.
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Figure 4.23: Schematic of the electric setup. A Keithley multimeter was mounted in parallel with the sample,

to act as a voltmeter and offer a direct measurement of the applied voltage.

4.2.1 Experimental method

The application of electric field has been completed by the insertion of a multimeter device, as per

Fig. 4.23, to carefully control the voltage at the surfaces of the sample, and to check for any abrupt

changes or discharges. The sample has been cooled down in no applied electric field into the LTI

phase, and the magnetic peak k′−k = (5+δ, 1, 0) has been aligned. The size of the incident beam has

been narrowed down to 0.25 x 0.25 mm, to maximise the resolution whilst still giving a reasonable

count rate in the detector; given the tilt of the sample with respect to the beam (motor θ = 40.91◦),

the spot size on the surface of the sample turns out to be 0.25 mm (vertical) x 0.257 sin(θ) mm

(horizontal) = 0.25 x 0.382 mm. The polarisation of the incident light was turned into circular left,

then circular right. For each incidence, the intensity of the diffracted beam has been collected in the

linear polarisation states oriented along η = 45◦ and 135◦.

The sample was then translated in order to test different zones of its surface. From a preliminary

scan in the motors associated to the vertical and the horizontal translation, it was seen that the

overall zone that could be tested has dimensions of at least 1.3 (v) x 0.66 (h) mm. It was decided

to measure a grid of 10 points (v) x 5 points (h), spaced by each other (centre to centre) by 0.1 (v)

and 0.125 (h) mm. The overlap between different spots is enough to allow a good accuracy of the

data. The situation is shown in Fig. 4.24 (all dimensions are in scale).

All the measured intensities have been corrected by background subtraction. The background

has been measured by driving the sample off diffraction (motor θ shifted as usually by 0.2◦), and by

performing a mesh with a more limited number of spots: 3 points (v) x 3 points (h), spaced by each

other (centre to centre) by 0.35 (v) and 0.2 (h) mm. These intensities have been averaged together,

and subtracted to each of the spots measured in diffraction condition (see Fig. 4.25). This procedure

has been repeated for every channel of the diffracted light (η = 45◦ and 135◦) and every polarisation

state of the incident light (circular left and right). The data have then been processed by the Matlab
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Figure 4.24: Image of the sample sandwiched between the Cu electrodes used to form a capacitor. The

dotted mesh superimposed on the image indicates points at which the domain population was determined.

The ellipse indicates the size of the X-ray beam.

function countourf , that interpolates them to give the graphical result displayed in Fig. 4.26.

This allows to extract for each spot the P2 parameter of the diffracted beam, as per Eq. 3.4

P2 =
I(η = 45◦)− I(η = 135◦)

I(η = 45◦) + I(η = 135◦)
.

From the analysis done in the previous experiment, it was known that the parameter P2 is extremely

sensitive to the percentage of cycloidal domains, while the sensitivity of P1 is negligible. Therefore

the measurements focused on the former, allowing a strong contrast to be detected between the

two magnetic domains. For every spot, the corresponding value of P2 has been extracted, and the

interpolation gives the picture of Fig. 4.27.

To connect the value of P2 to the actual percentage of domains, the model of the magnetic

structure proposed in 4.1.6 has been adopted. Given an incident polarisation (say circular left), the

expected Stokes parameters in the satellite (5 + δ, 1, 0) are calculated as a function of the percentage

of domains. This is shown in Fig. 4.28 and 4.29. Then, the actual value of P2 found in each spot is

related to the corresponding percentage value. The interpolation of all these values gives the pattern

shown in Fig. 4.30.

Two important checks have been done at this point. First, the two circular incidences are expected

to give similar results in terms of the percentage of domains. This is in fact confirmed by the data.

Secondly, they should also give similar results in terms of the average intensity between η = 45◦ and

η = 135◦. This has been calculated and confirmed (Fig. 4.31).

4.2.2 Results

The same procedure now outlined has been repeated after applying electric field on the sample,

and mantaining the temperature fixed so to not exceed the boundaries of the the LTI phase. The
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application of the electric voltage was only limited by the problem of discharges in the exchange gas

surrounding the sample space; despite this constraint, it was possible to complete a hysteresis loop

that shows very clearly how the electric field controls the percentage of domains. The results are

summarized in Fig. 4.32. They demonstrate that the technique was able to resolve inhomogeneities

in the domain populations with good resolution. Inspection of the individual images reveals that

for zero applied electric field the distribution of the two domains is not equal, but instead shows a

preference towards Domain 2, i.e. moments rotating anticlockwise. This may either be a surface

strain effect or some memory effect of an earlier domain state induced by field cooling in previous

experiments, as has been observed in MnWO4 [66]. Applying an increasing electric field along −b

leads to a reversal of the domain populations, with the production of almost a mono-Domain 1

state for E = +270 V/mm. The evolution of the domain populations is gradual, with the boundary

between the two shifting as a function of applied electric field, as opposed to the nucleation of

Domain 1 within Domain 2 leading to a more randomised distribution. When the electric field

direction is then reversed the domain distributions are little changed until between -250 V/mm and -

370 V/mm the distribution is again reversed with a preference towards Domain 2. Whilst the domain

populations are preserved on returning to E = 0 V/mm, due to time constraints no additional data

were collected for applied positive electric fields.

One way to quantitatively render the domain homogeneities is to average the images over different

areas of interest to produce position dependent magnetic domain population hysteresis loops. Figure

4.33 - (a) shows the domain population averaged over the entire sample. On average the excess

population of Domain 2 in zero field is quickly reversed in a positive applied field, with Domain

1 prevailing such that even large negative fields are incapable of restoring an excess of Domain 2.

In Fig. 4.33 - (b), the response from the bottom left-hand corner is plotted, where it is clear that

close to the edge of the sample there is strong pinning of Domain 1 with it dominating at all fields.

Imaging allows these edge effects to be excluded from the data (Fig. 4.33 - (c)), and restores more

of a symmetrical character to the electric field dependence of the magnetic domain population. This

allows to compare our data with the electric polarisation measurements of Cabrera et al [13], as

shown in Fig. 4.33 - (c), where an excellent agreement is found. The result establishes the link

between the magnetic domains and the electric polarisation in multiferroic Ni3V2O8, proving that

by imaging the magnetic domains we are in effect also imaging the ferroelectric domains.

4.3 Conclusions and future outlook

In conclusion, the present work has refined the magnetic structure of Ni3V2O8, confirming the

cycloidal ordering of the Ni spins on the spine sites whilst finding that there is no ordered moment

on the cross-tie sites, thus indicating that it is the magnetic order on the spine sites alone that

breaks inversion symmetry. Further, it has successfully demonstrated how polarisation enhanced X-

ray imaging (PEXI), through the contrast provided by the magnetic structure, enables the imaging

of the magnetic domains in Ni3V2O8 which endow this material with its multiferroic properties.

Comparison of the magnetic domain population hysteresis loops with bulk electric polarisation

measurements reveals the coupling between the magnetic and ferroelectric domains. This opens the
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prospect of using this technique to image multiferroic domains in related materials, and even in

operational devices. With the improved focussing offered by beamlines currently under development

the spatial resolution for this technique will be reduced to 100 nm and below, at which point it will

be possible not only to image the domains themselves, but also the structure of the domain walls,

the engineering of which ultimately determines the usefulness of a given material.
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Figure 4.25: Procedure for the measurement of a mesh on the magnetic reflection (5+δ, 1, 0). In this case

the incident beam is CLP and the detector is positioned at η = 135◦, as depicted in the setup scheme. The

measured intensity represents the photon counts normalised by the incident beam (counting time was 120

seconds per point). The first translation mesh is collected on the magnetic peak (red) while the second one

is the background found at 0.2◦ away from the peak in θ (blue). The averaged background is subtracted

from the signal to give the final result. The scale of the translations here and in all subsequent meshes is to

be compared to the dimensions of the sample surface reported in Fig. 4.24.
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Figure 4.26: Maps of the intensities measured by the mesh, corrected by background and interpolated on

the surface of the sample. The results are obtained with incident light polarisation tuned to be circular

left (upper panel) and circular right (lower panel), while the polarisation channels of the diffracted light are

oriented along η = 45◦ (maps on the left) and 135◦ (maps on the right).
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Figure 4.27: Maps of the values for the parameter P2 extracted from the mesh, and interpolated on the

surface of the sample. The results are obtained with incident light polarisation tuned to be circular left (map

on the left) and circular right (map on the right).
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Figure 4.28: Calculation of the expected polarisation for the diffracted beam when the incident light is

circular left. In the first two sketches (first row), the Stokes scans that would emerge from a purely Domain

1 and a purely Domain 2 magnetic structure are shown. In the third and fourth sketches (second row), it

is shown the dependence of the parameters P1 (red) and P2 (blue), and the parameters η0 (green) and P ′

(purple), on the volume fraction of Domain 1 with respect to the total volume of the sample. In the fifth

sketch, the variation of the constant representing the average intensity is shown. It should be noted that P2

is very sensitive to the percentage of domains, while P1 and the average intensity are almost insensitive to

it.
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Figure 4.29: Calculation analogous to the one in Fig. 4.28, but for circular right polarisation of the incident

light, shown as a comparison. Note the radically different dependence of the parameter P2 on the volume

fraction of the magnetic Domain 1.
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Figure 4.30: In the upper part of the figure: maps of the volume percentage of Domain 1 extracted from the

mesh, and interpolated on the surface of the sample. The results are obtained with incident light polarisation

tuned to be circular left (map on the left) and circular right (map on the right). The two are very similar,

as it should be expected. The final values for the percentage have been taken as an average between the two

(in the lower part of the figure).
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Figure 4.31: Maps of the average intensities measured by the mesh, and interpolated on the surface of the

sample. The results are obtained with incident light polarisation tuned to be circular left and circular right.

The two are very similar, as it should be expected, since the average intensity should not depend on the

percentage of domains.
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Figure 4.32: Images of the domain populations as a function of applied electric field for the magnetic

reflection (5 + δ, 1, 0), where the colour represents the percentage of the clockwise and anti-clockwise

magnetic cycloidal domains.
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Figure 4.33: Position dependent magnetic domain population hysteresis loops obtained from the domain

images shown in Fig. 4.32 averaged over different areas of interest: (a) entire sample area; (b) edge; (c)

central region. In (c) the data are compared with bulk measurements of the electric polarisation published

in [13], where an appropriate scaling has been applied.
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Chapter 5

Magnetic Structure Refinement in

TbMnO3

Non-resonant X-ray magnetic scattering has been used to study the magnetic structure of multiferroic

TbMnO3 in its ferroelectric phase. Circularly polarised X-rays were combined with full polarisation

analysis of the scattered beam to reveal important new information on the magnetic structure of

this canonical multiferroic. An applied electric field is shown to create essentially a single magnetic

domain state in which the cycloidal order on the Mn sublattice rotates either clockwise or anticlock-

wise depending on the sign of the field. It is demonstrated how this technique provides sensitivity

to the absolute sense of rotation of the Mn moments and to components of the ordering on the Tb

sublattice and phase shifts that earlier neutron diffraction experiments could not resolve, including

discrimination between spin and orbital component of the Tb magnetic moments.

5.1 Phase diagram and previous diffraction studies

The phase diagram of TbMnO3 (Fig. 5.1) is characterised by a cycloidal magnetic phase in which

the magnetic moments rotate within the plane (b, c) while propagating along b, and a spontaneous

electric polarisation occurs in the direction ±b× (b× c) = ±c, thus meeting the features described

in Chapter 1 for spin-driven magneto-electric multiferroics. The ferroelectricity and the cycloidal

magnetic structure are coupled to a relevant extent, as demonstrated by two separate effects: the

flop of the direction of the spontaneous electric polarisation, by application of a magnetic field, and

the selection of one cycloidal magnetic domain, by means of an applied electric field. In this chapter

the structural, magnetic and ferroelectric properties of TbMnO3 in absence of external fields will

be reviewed. The compound is an orthorhombically distorted perovskite whose cell parameters, at

room temperature, are a0 = 5.3019 Å, b0 = 5.8557 Å, and c0 = 7.4009 Å. The crystallographic

symmetry belongs to the space group Pbnm (No. 62 in International Tables for Crystallography

[62]). TbMnO3 is both paramagnetic and paraelectric for temperatures above TN = 41 K. Early

measurements of the magnetic susceptibility on powder samples, conducted by Quezel et al. [67],

have shown that the Mn3+ moments order at TN ; an anomaly is detected at TC = 28 K, thus

identifying a second magnetic transition; finally, a third transition is found at TTbN = 9 K. These
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Figure 5.1: Study of the phase diagram of TbMnO3, adapted from [1, 69]. In the left panel, measurements at

zero field: (a) temperature profiles of magnetisation and specific heat divided by temperature; (b) wavenum-

ber of lattice modulation τL (see text); (c) dielectric constant ε at 10 kHz; (d) and electric polarisation P

along the principal axes in single crystals of TbMnO3. In the right panel (e), the temperature versus mag-

netic field phase diagram for TbMnO3 for magnetic field applied along the three axes. The measurements

under applied field are shown in detail in Chapter 6. Circles, triangles, and diamonds represent the data ob-

tained by measurements of dielectric constant, pyroelectric (or magneto-electric) current, and magnetisation,

respectively. Open and closed symbols denote the data obtained with decreasing temperature (or increasing

magnetic field) and increasing temperature (or decreasing magnetic field), respectively. Gray regions indicate

ferroelectric phases.

three magnetic phases will be referred to as phase I (41-28 K), phase II (28-9 K), phase III (below 9

K). Experiments at zero field ([1], [68], [69]), summarised in Fig. 5.1, have measured a spontaneous

ferroelectric polarisation along the c axis, emerging below TC = 28 K; its magnitude, measured at

T = 4 K, is 8× 10−4 C m−2.

Several neutron and X-ray diffraction studies have been performed to reveal the magnetic struc-

ture in phases I, II and III. Fundamental experiments were carried out by Quezel et al. in 1977

[67], Blasco et al. in 2000 [70], Kimura et al. in 2003 [1], Kajimoto et al. in 2004 [29], and Kenzel-

mann et al. in 2005 [2], which led to a classification of the superlattice diffraction peaks and to the
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characterisation of their temperature dependence.

• Magnetic reflections at propagation vector τ , and higher harmonics. Upon cooling the sample

below the first transition, it is found that incommensurate magnetic reflections appear at

(h, k ± τ, l). All studies confirm that A-type reflections (h + k = even, l = odd, as named

within Bertaut’s representational theory [71]) are dominant. The propagation wave vector τ

slowly decreases from 0.286 at TN to 0.276 at TC .

After the second transition, the reflections increase in intensity while the propagation vector

is more or less constant at 0.276. These reflections were initially attributed to a pure Mn

contribution [67]; only in more recent studies [72] - [74] it has been understood that the

moments on the Tb atoms are an important contribution to those magnetic peaks.

There is no complete agreement about the presence of weaker G-type (h + k = odd, l = odd),

C-type (h + k = odd, l = even), F-type (h + k = even, l = even) peaks. In the first study by

Quezel et al., only weak G-type peaks are reported below 20 K, but no F and C-type peaks

were found. This was confirmed by Blasco and co-workers [70]. Kajimoto et al. [29] measure

all the four types of reflections, finding G, C, F to be extremely weak in phase I, and slightly

more intense in phase II and II. The study conducted by Kenzelmann et al. [2] only detects

the strong A-type reflections. More recent measurements concentrate on other types of peaks

[75, 76]. It is agreed that the A-type peaks strongly dominate the others in intensity, and must

be the starting point to determine the magnetic structure.

Kajimoto el al. [29] also report about third-harmonic peaks for A, G and C-type reflections

below TC . While this result shows that the incommensurate modulation of the magnetic

moments is not purely sinusoidal, the relative weakness of these higher-harmonic peaks leads

to the conclusion that the deviation from an ideal sinusoidal modulation is small.

• Lattice reflections at propagation vector 2τ . Kimura et al. [1] find lattice reflections at a

propagation vector τL corresponding to the double of the magnetic vector τ . The temperature

dependence of τL is strictly related to that of τ , slowly decreasing from TN to TC , and then

becoming more or less constant in phase II and III . Hence the relation τL ∼ 2τ holds for the

different magnetic phases. It is known that the crystallographic deformations upon magnetic

ordering are caused by the magnetic atoms increasing their exchange interaction energy by

shifting their positions (exchange striction). The super-lattice reflections due to atomic dis-

placement can be regarded as a second-harmonic that is magnetoelastically induced by the

sinusoidal magnetic order [1].

• Magnetic reflections at propagation vector τT . Finally, in phase III additional peaks appear

at (h, k ± τT , l), τT = 0.424. They were first found by Quezel and co-workers [67] and are

attributed to the Tb+3 moments. The study by Blasco et al. [70] confirms this result, but the

broad shape of the reflections leads the authors to conclude that the Tb order is short-ranged.

In the study by Kajimoto et al. [29], these reflections are instead quite sharp and intense, and

coupled with corresponding super-lattice reflections at 2τT , that show the same temperature

dependence by also disappearing above 9 K.
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The magnetic structure has been extracted from a fit of the observed peaks. In phase I, the A-

type magnetic reflections are found to arise from a collinear sinusoidally modulated spin arrangment

of the Mn moments, lying along the b axis. This was already reported by Quezel [67], and confirmed

by all subsequent studies. In phase II, it was initially thought [67] that the structure would remain

collinear with spins directed along b. A major improvement in the understanding of the magnetic

structure was achieved by Kenzelmann et al. in 2005 [2]. A large number of (h, k±τ, l) A-type, first-

harmonic magnetic peaks were measured in phases I and II. The range of possible magnetic structures

was narrowed down by representational analysis, in order to identify the irreducible representations

allowed by the symmetry. The relative intensities of the measured peaks were used to establish the

irreducible representations and the magnitude of the magnetic moments which would best fit the

data. While confirming the results previously given for phase I, this approach led to a radically

different conclusion about the magnetic structure in phase II. It was found that the Mn moments

are modulated in a cycloid lying in the (b, c) plane, and the Tb moments, essentially oriented along

the a axis and with possible undetermined components along the b and c directions, also contribute

to a significant extent to the overall magnetization. The presence of a cycloidal structure in the

(b, c) plane is compatible with the appearance of a ferroelectric polarisation along the direction c,

following the phenomenological description of magneto-electric multiferroics given in Chapter 1.

While the magnetic and magneto-electric response of the system under the application of a

magnetic field has been accurately investigated, the phase diagram of TbMnO3 upon the application

of electric field is only the subject of more recent research. The most notable study is the one

conducted by Yamasaki et al. [77], showing a reverse magneto-electric effect (manipulation of the

magnetic structure by an applied electric field). As the direction of the spontaneous polarisation is

related to the handedness of the rotation of the spins in the cycloid, when the system is brought into

its cycloidal phase (phase II), it can be expected that a melange of magnetic domains is present, thus

averaging the overall polarisation to zero. A small poling electric field (160 kV/m), applied along

the direction of the spontaneous polarisation while cooling down the system, is able to select the

sign of the cycloidal handedness, thus driving the magnetic structure towards a monodomain state.

This result has been tested by polarised neutron diffraction and indeed confirmed by comparing the

relative intensities of satellite reflections (h k+τ l) and (h k-τ l). This magneto-electric coupling was

used in the present work to drive the sample into a monodomain state, and allow the refinement of

the magnetic structure.

5.2 Experimental setup

The experimental setup followed the standard configuration described in section 2.1.5 with the

Orange cryostat. The beam has been aligned at E=7.45 keV, below the Tb-edge, so as to excite

non resonant processes. The choice of the same photon energy employed in the experiment with

Ni3V2O8 allowed the use of the good quality crystal analyser Au (2 2 2) (cf. section 4.1.2). After

mounting the analyser on the detector arm and moving the arm in the path of the incident beam,

the two alignment scans over the rocking angle θ of the analyser were performed. The cross-talk is

confirmed to be less than 0.3 %.
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Figure 5.2: Schematic of the experimental setup, including the orientation of the TbMnO3 sample with

respect to the scattering plane and the direction of the applied electric field.

The single crystal of TbMnO3 used for the experiments has been grown by the floating zone

method at the University of Oxford, by D. Prabhakaran. It has been cut along the main crystallo-

graphic axes with dimensions 2× 2× 0.8 mm3, with the shorter axis (0.8 mm) corresponding to the

c direction. The two c faces have been glued by conductive silver paint to the electrodes of the stick,

while the b axis has been placed vertically, in view of successive advancements in the experimental

project involving the application of magnetic field (see Chapter 6). This geometry allows accessi-

bility to a star of four A-type magnetic peaks around the Bragg reflection (4 0 0), characterized by

positions k′ − k = (4 ±τ ±1). The situation is shown in Fig. 5.2.

The charge reflections close to (4 0 0) and attainable with our setup are typically characterised

by an angular width in the Bragg angle θ of ≈ 0.012◦. The reflection (4 0 0) aligned at room

temperature is presented in Fig. 5.3. Upon cooling down the sample to T = 15 K, the magnetic

reflections are aligned, revealing a typical angular width of ≈ 0.016◦ in θ (see Fig. 5.7). The phase

plate alignment optimised the positions for circular left and right polarisation of the incident light,

as per Fig. 5.4. These were consistently checked before and after each of the measurements of the

Stokes scans on the magnetic peaks.

5.3 Results and interpretation

The overall aim of the experiments can be deconstructed in three separate goals: to demonstrate

that the electric field annealing could succeed in creating a magnetic monodomain; to support the

previous result by switching the population of magnetic domains when reversing the direction of

the poling field; once a monodomain state had been obtained, to extract the fine details of the
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Figure 5.3: Profile of the charge reflection (4 0 0) measured in the polarisation channel π - π′.

magnetic structure. In order to understand the magnetic state of the sample from the features of the

diffraction peaks, a preliminary analysis has been carried out on the basis of the magnetic structure

proposed in [2] (subsection 5.3.1). The comparison with the data (5.3.2) has subsequently revealed

that, while the creation of a quasi-monodomain state and the switching of domain by electric field

had been achieved, the details of the magnetic structure were not compatible with the polarisation

characterisation of the diffracted beam. A refined model (5.3.4) could then be elaborated on the

basis of the newly found results.

5.3.1 Previously proposed magnetic structure

The model proposed by Kenzelmann et al. in [2] suggests that in the incommensurate phase with

k = (0, τ, 0) at T = 15 K two irreducible representations of the little group Gk are required to describe

the magnetic structure. The best agreement with the intensity of first-order magnetic Bragg peaks

is found with χ2 = 2.19 for magnetic ordering involving Γ2 and Γ3. The character table for the two

irreducible representations is

1 2y mxy myz

Γ1 1 1 1 1

Γ2 1 1 −1 −1

Γ3 1 −1 1 −1

Γ4 1 −1 −1 1

.

An explicit description of the magnetic moments on the Mn and Tb sites belonging to the two

representations can be given by labeling the atomic positions within the unit cell as

Mn (1/2, 0, 0) M1 Tb (1−∆Tb
a ,∆Tb

a , 1/4) T1

(0, 1/2, 0) M2 (1/2 + ∆Tb
a , 1/2 + ∆Tb

b , 1/4) T2

(1/2, 0, 1/2) M3 (∆Tb
a , 1−∆Tb

b , 3/4) T3

(0, 1/2, 1/2) M4 (1/2−∆Tb
a , 1/2−∆Tb

b , 3/4) T4
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Figure 5.4: Alignment scans of the phase plate, showing the quality of the circular polarisation of the incident

beam attained during the experiment. First, the positions of the two circular polarisations are identified from

the rocking curve θ of the plate (upper figure). The rotated polarisation is then checked and finely adjusted

by means of a full Stokes scan on the direct beam. As a comparison, and to refine the alignment of the plate

in the angle χ (cf. subsection 3.1.6), the Stokes scans are performed also in the positions corresponding to

vertical rotated polarisation (σ) and unrotated polarisation (π), i.e. away from any Bragg reflection of the

plate.
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and by applying the symmetry operations of the cell on the magnetic moments within each repre-

sentation:

magnetic moment Γ2 Γ3

mMn M1 ma ma

mb mb

mc mc

M2 −ma −ma

mb mb

mc mc

M3 ma −ma

mb −mb

−mc mc

M4 −ma ma

mb −mb

−mc mc

mTb orbit 1 T1 ma ma

[orbit 2] [T3] mb mb

0 mc

T2 −ma 0

[T4] mb 0

0 mc

Note that the symmetry splits the Tb moments into two orbits (T1, T2) and (T3, T4), which

representation theory normally treats as independent. However, as suggested by Landau theory [2],

the two Tb amplitudes were taken to be identical. The magnetic structure was found to be:

mMn
Γ3 = [0.0(5), 3.9(1), 0.0(7)]µB

mTb
Γ3 = [0, 0, 0(1)]µB

mMn
Γ2 = [0.0(1), 0.0(8), 2.8(1)]µB

mTb
Γ2 = [1.2(1), 0(1), 0]µB

where the absence of the error bar indicates that the component is forbidden by the internal symmetry

of the cell. The experiment was not sensitive to the phase between the b and c component of the

Mn moments, but the similar size of the components along the two directions suggested that the Mn

moments form an elliptical cycloid in order to conserve an almost fixed spin length while propagating,

for reasons analogous to those outlined in 4.1.1. The Tb moments clearly possess an a component,

and are linearly arranged in a transverse sinusoidal modulation. The phase difference between the

Tb and Mn moments remained undetermined, while the phase between the two orbits of the Tb

sites was found to be 1.3(3) π. The work from Kenzelmann and co-workers provided evidence that
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Figure 5.5: Positions in the unit cell of the Mn and Tb ions; the atomic sites are labeled according to the

coordinates given in section 5.3.1. The adjacent Pbnm unit cells (indicated by black lines) show the direction

of the magnetic modulation (red and green lines connecting atoms characterised by the same magnetisation

function). The phase shifts between the magnetisation functions associated to different sites that are not

univocally determined by symmetry are indicated following the definitions provided in the same section.

the Tb sublattice carries significant magnetisation in the incommensurate phase, presumably as a

consequence of the exchange field from the ordered Mn sublattice.

The construction of the non resonant magnetic X-ray scattering amplitude from this model allows

us to evaluate the effect of the cycloidal domain population on the intensity and polarisation of the

diffraction peaks (4, ±τ , ±1). The magnitudes of the magnetic moments are assumed as indicated

above. The phase shift between different atomic sites and between different components in the

same site is defined following Chapter 2 as the shift between the sinusoidal modulations at the same

coordinate in space. The phase of the Mn component mb on site M1 has been taken to be zero as a

reference. The phase of the mc component on the same atom is then = +π/2 (−π/2) if the magnetic

moments rotate clockwise (anticlockwise) when moving along +b and looking at the (b, c) plane

from +a. The phases of the Tb moments lying in the first orbit (positions T1, T2) are defined via

the phase difference φTM between the mA component in T1 and mb in M1. The phases of the Tb

moments in the second orbit (T3, T4) are defined via the phase difference φTO between ma in T3

and the same component in T1; this phase difference was found to be φTO = 1.3(3) π in [2], and it

is left here as a free parameter for refinement.

Scattering amplitude

The general expression for the X-ray non-resonant magnetic amplitude is analogous to the one

introduced in Chapter 2. In the present case, the magnetic structure factor is calculated for a

reflection k′ − k = (4, ατ, β), where α = ±1 selects the sign of the index k, β = ±1 the sign of l,

and γ = ±1 the domain state (anticlockwise rotation, defined as Domain 1, being represented by

γ = +1). Considering for the moment a purely spin contribution, as in the examples in section 2.3
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Figure 5.6: Sketch of the magnetic structure proposed in [2] (unit cell delimited by black lines), shown from

two different points of view to emphasize the ordering on the Mn and the Tb sublattice respectively. While

the Mn magnetic moments rotate in a cycloid within the (b, c) plane, the Tb moments are sinusoidally

modulated with the same wavevector along the direction a, transverse to the plane. Since the phase relation

φTM between the modulations in the Mn and Tb sites (cf. Fig. 5.5) is not defined within this model, it

has been arbitrarily established to be 0 in the present figure. The phase relation φTO between the two

crystallographic orbits of the Tb sites is 1.3π according to this model.

and in Chapter 4, the scattering amplitude is

fnr = (
1

2
i
h̄ω

mc2
) ·

∑
s

ei2π(hxs+kys+lzs) (Ms ·B) (5.1)

where (xs, ys, zs) are the fractional coordinates of the magnetic atoms within the unit cell. The

structure factor is found to be
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∑
s

ei2π(hxs+kys+lzs) Ms = ei2π[−4(1/2)] · 1
2 [mM

b b̂ +mM
c e
−iαγπ/2ĉ]+ M1

ei2π[0] · 1
2 [mM

b b̂ +mM
c e
−iαγπ/2ĉ]+ M2

ei2π[−4(1/2)−β(1/2)] · 1
2 [−mM

b b̂−mM
c e
−iαγπ/2ĉ]+ M3

ei2π[−β(1/2)] · 1
2 [−mM

b b̂−mM
c e
−iαγπ/2ĉ]+ M4

ei2π[−4(1−∆T
a )−β(1/4)] · 1

2 [mT
a e

iαφTM â]+ T1

ei2π[−4(1/2+∆T
a )−β(1/4)] · 1

2 [−mT
a e

iαφTM â]+ T2

ei2π[−4(∆T
a )−β(3/4)] · 1

2 [mT
a e

iα(φTM+φTO)â]+ T3

ei2π[−4(1/2−∆T
a )−β(3/4)] · 1

2 [−mT
a e

iα(φTM+φTO)â] = T4

= 2[mM
b b̂− iαγmM

c ĉ] + βeiαφTM sin(8π∆T
a )[mT

a (1 + eiαφTO )â] (5.2)

where B contains the polarisation dependence and the values assumed by the phase shifts φTM and

φTO in the two domains are related by inversion symmetry.

Analytical calculation

To perform the scalar product with the polarisation vector B, we introduce a simplified scattering

geometry. This approximation is done for illustrative purposes, while the actual simulation used to

fit the data will be done taking into account the exact geometry of the experiment (see 5.3.4). It is

supposed that:

• The scattering angle is 2θ = 90◦ (exact value ≈ 79◦) .

• The b axis is perpendicular to the scattering plane (the exact orientation is off by ≈ ±5◦, for

the four reflections).

• The û1 and û3 axes of the reference system defined in 2.15 correspond to the crystallographic

axes c and −a (in the exact orientation they are off by ≈ ±9◦, for the four reflections).

Within these assumptions, the Jones matrix defined in 2.16 becomes fσ′

fπ′

 =

 Sb − 1√
2
(Sc + Lc)− 1√

2
Sa

1√
2
(Sc + Lc)− 1√

2
Sa Sb + Lb

 1

iε

 .
In this first calculation all magnetic moments are assumed to be of purely spin origin, therefore

the terms in the Jones matrix then can be identified with

Sa = +βeiαφTM sin(8π∆T
a )[sTa (1 + eiαφTO )]

Sb = +2sMb

Sc = −2isMc

(5.3)

or, in short notation,

Sa = +βeiαφTM [STa (1 + eiαφTO )]

Sb = +SMb

Sc = −iαSMc
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where the following definitions have been employed

STa = sin(8π∆T
a )sTa

SMb = 2sMb

SMc = 2sMc .

The two components of the diffracted beam in the Jones basis are then

fσ′ = SMb − 1√
2
εαγSMc − i 1√

2
εβeiαφTM (1 + eiαφTO )STa

fπ′ = −i 1√
2
αγSMc − 1√

2
αeiαφTM (1 + eiαφTO )STa + iεSMb .

(5.4)

To qualitatively assess the features of the diffracted light, it can be recognised that the Mn

contribution is dominant over the Tb one, since φTO is close to π, and the factor sin(8π∆T
a ) ≈ 0.36

further reduces the Tb contribution. By only considering the magnetic diffraction from Mn moments,

it can be noted that

|fσ′ | = |fπ′ |

thus implying P1 = 0 (cf. Eq. 3.3) and, since fσ′ is real and fπ′ imaginary,

|fσ′ + fπ′ | = |fσ′ − fπ′ |

thus implying P2 = 0 as well (cf. Eq. 3.4). The Mn contribution produces a scattered beam that is

mainly circularly polarised, in contrast with the results obtained in the case of Ni3V2O8, where the

incident polarisation was converted into linear, due to the different scattering geometry (cf. Chapter

4). The intensity of the beam is large (small) if εαγ = −1 (+1). An imbalanced distribution of

domains can be immediately recognised by a difference in the scattering intensity between (4,+τ, β)

and (4,−τ, β), when the two peaks are illuminated with the same incident polarisation, or by a

difference in the intensity of one peak when illuminated with the two circular polarisations. Any

departure from a circularly polarised diffracted beam is to be interpreted as arising from the Tb

contribution, which will be analysed in in detail in 5.3.2 and 5.3.4.

5.3.2 Overview of the data

The initial objective of the study was to establish whether or not the experimental setup provided

sufficient sensitivity to any imbalance in the population of magnetic domains produced by the applied

E field. A poling field of about 1kV/mm was applied during the cooling procedure. The field was

removed during the X-ray measurements. Figure 5.7 shows the polarisation dependence of the

magnetic scattering for the four satellite reflections (4 ±τ ±1), measured at 15 K in the ferroelectric

phase, after cooling the sample with an electric field E < 0 (i.e., negative voltage V as per the

scheme in Fig. 5.2). The polarisation of the scattered light is analyzed in the π̂′ channel (η = 90◦).

The incident light polarisation has been left unrotated (black diamonds), changed to circular right

ε̂+c (green dots), and changed to circular left ε̂−c (red dots). When the incident linear polarisation

π̂ is selected, the magnetic satellite reflections have similar intensities, whereas for the incident

circular polariaations they have different and complementary behaviour with respect to the sign of

the magnetic satellite wavevector arms. This stands as a proof of a heavily unbalanced population of

magnetic chiral domains. Subsequently, a detailed analysis of the polarisation of the scattered beam
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Figure 5.7: Alignment scans along the reciprocal lattice direction b∗ of the magnetic reflections (4,±τ,±1),

and their dependence on the incident polarisation of the beam: linear and oriented within the scattering

plane (π, black); circular left (red); circular right (blue). Data are taken in the FE cycloidal phase at 15 K,

and obtained after annealing the sample in a poling electric field E < 0. The polarisation of the scattered

photons is analysed in the π′ channel (η = 90◦). Note that while the four peaks display similar intensities

when illuminated with linear polarisation π, in the case of circular polarisation their intensity is strongly

dependent on the sign of τ and the handedness of the polarisation.

has been undertaken, by carefully measuring the Stokes dependence I(η) for each of the satellites

shown in Fig. 5.7. Figure 5.10 summarizes the data for field coolings performed with either E > 0

or E < 0.

Turning first to consider the case of incident linear (π̂) polarisation shown in the figure, it is

clear that, for a particular choice of the direction of E, only small differences in I(η) are observed

for the various satellites and that reversing the direction of E does not appear to have any effect.

Clear differences in I(η) of the various satellites are observed for incident circular polarisation. In

this case, reversing the direction of E has a profound effect on the observed intensities. For a given

field direction, changing the sign of τ at fixed l leads to a switching of the handedness of incident

X-rays that produces the maximum intensity, whereas the handedness associated with the maximum

satellite intensity is invariant with respect to changes in the sign of l. Of considerable significance is

the fact that reversing the sign of E leads to a switching of the dominant handedness. Also apparent
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Figure 5.8: Procedure for the measurement of a Stokes scan on the magnetic reflection (4,+τ,−1) with

circular left incident polarisation. As in the case of Ni3V2O8 (cf. Fig. 4.13), the first scan is collected on

the magnetic peak (red) and the second one on the background (blue); the fitted background is subtracted

from the signal to give the final result (black). Note that this reflection and circular polarisation, combined

together, give rise to a ’strong’ diffraction intensity (cf. Fig. 5.7), thus making the background subtraction

less crucial than in the opposite case, shown in Fig. 5.9.

are clear mirror symmetries between LCP and RCP X-rays for the same reflection and between

satellites for the same incident polarisation state. Thus at a qualitative level the data displayed in

Fig. 5.10 reveal an imbalance in the population of the two possible magnetic domains created by the

applied electric field, an imbalance that can be reversed by switching the direction of the field. The

polarisations of the diffracted beam differ from a circular state by a considerable amount, revealed

by the appearance of the Stokes parameter P2 ≈ 0.2 (linear oblique polarisation). To explore the

potential richness of information encoded in the data, it is necessary to perform extensive modeling

of the magnetic scattering and specifically of the contribution arising from the Tb moments.
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Figure 5.9: Procedure for the measurement of a Stokes scan on the same magnetic reflection (4,+τ,−1) as

in Fig. 5.8, but with circular right incident polarisation. This is an example of a ’weak’ diffraction intensity,

due to the combination of the sign of τ and the handedness of the polarisation, as visible in Fig. 5.7. In all

of these cases the background subtraction has been carried out with particular accuracy by repeating the

measurement multiple times, since the symmetry properties displayed by the data rely on the small value of

the parameter P2 (i.e., the polarisation of the diffracted beam is very close to being circular).

5.3.3 Interpretation

For the initial model, the contribution of the Tb moments as detailed in 5.3.1 has been introduced.

In the simplified geometry, let’s consider for the sake of simplicity a monodomain state. Equation

5.4 can be rewritten in shorthand notation by defining the dominant Mn contribution as

A = SMb −
1√
2
εαγSMc (5.5)

and the phase factors multiplying the Tb contribution as

1√
2
eiαφTM (1 + eiαφTO ) = w′ + iαw′′ (5.6)

thus becoming

fσ′ = A− iεβ(w′ + iαw′′)STa

fπ′ = iεA− β(w′ + iαw′′)STa .
(5.7)
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Figure 5.10: Variation with analyser rotation angle η of the X-ray magnetic intensity from A-type satellites

(4,±τ,±1) in TbMnO3 at 15 K, for linear π̂ (black), circular left ε̂−c (red) and circular right ε̂+c (blue) incident

photon polarisations, and field cooling with either E< 0 (upper panel) or E> 0 (lower panel)

.

The creation of a net P1 can be verified by comparing the absolute intensities in the two diffracted

polarisation channels σ′ and π′:

|fσ′ |2 = |A− iβεw′STa + αβεw′′STa |2

|fπ′ |2 = |A+ iβεw′STa − αβεw′′STa |2.

An emerging P1 is indeed possible as both the real and imaginary contributions arising from the

Tb moments are added with opposite signs in fσ′ and fπ′ . The sign of P1 is reversed when changing

the handedness of the incident polarisation (ε), the sign of the index l (β) and of the index k (α,

provided that the factor w′ + iw′′ has a dominant imaginary component). These results are indeed

confirmed by numerical simulations.
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The creation of a net P2 is evaluated by comparing the difference in the moduli of fσ′ + fπ′ and

fσ′ − fπ′ :

|fσ′ + fπ′ |2 = |A− βw′STa + αβεw′′STa |2 + |A− βw′STa − αβεw′′STa |2

|fσ′ − fπ′ |2 = |A+ βw′STa + αβεw′′STa |2 + |A+ βw′STa − αβεw′′STa |2.

In this case it is seen that P2 can be different from zero only due to the term in w′, while the

term in w′′ is contributimg with the same sign to both expressions. Moreover, the sign of P2 is left

unchanged by reversing the incident polarisation and the sign of τ , while it is reversed by a change

in l. By comparison of these results with the data, it is apparent that a transverse spin contribution

along a of the Tb moments can not account for the amount of P2 found in the data, in which the

reversing of the first two parameters produces a change in the sign of P2, while the reversing of the

third parameter does not. In Fig. 5.12 and 5.12, the results of the numerical fit based on this model

are represented. For the calculations, the exact scattering geometry of the six-circle setup was taken

into account.

5.3.4 Refined model

The comprehensive set of Stokes scans that has been collected has provided very specific symmetry

constraints. Although corrections to the model presented in the previous section have been tried in

several ways (modification of the phases between the different components of the magnetic moments,

displacement of magnetic ions, introduction of a Thomson contribution), the only solution that meets

the characteristics of the diffraction peaks involves the mgnetic moments of the Tb atoms possessing a

component along b, that comprises both spin and orbital contribution. Note that in the work carried

out by Kenzelmann and co-workers, undetermined magnetic moments of the Tb ions are allowed up

to 1 µB along b and c. The atomic spin si(K) and the orbital li(K) magnetic components employed

for numerical calculation in this section contain the form factors for Mn3+ and Tb3+ at a given

scattering vector K. It is supposed also that the orbital contribution of Mn is quenched, and that

of Tb equal to its spin moment (lTb/sTb = 1) as follows from the first and second Hund’s rule for a

7F6 electronic configuration.

Scattering amplitude

This situation can be described as follows (cf. Eq. 2.13)

fnr = (
1

2
i
h̄ω

mc2
) ·

∑
s

ei2π(hxs+kys+lzs)

[
1

2
ls ·A′′ + ss ·B

]
(5.8)

where A′′ represents the coupling of the orbital moment with the polarisation of the beam, while B

represents the coupling of the spin (see Eq. 2.12). The structure factors are found to be∑
s

ei2π(hxs+kys+lzs) ss = 2[sMb b̂− iαγsMc ĉ]+ M1− 4

βeiαφTM sin(8π∆T
a )[sTa (1 + eiαφTO )â]+ T1− 4

ei2π[−4(1−∆T
a )−β(1/4)] · 1

2 [sTb e
iαφTM b̂]+ T1

ei2π[−4(1/2+∆T
a )−β(1/4)] · 1

2 [sTb e
iαφTM b̂]+ T2

ei2π[−4(∆T
a )−β(3/4)] · 1

2 [sTb e
iα(φTM+φTO)b̂]+ T3

ei2π[−4(1/2−∆T
a )−β(3/4)] · 1

2 [sTb e
iα(φTM+φTO)b̂] T4
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Figure 5.11: Fit of the data presented in Fig. 5.10 with the model reported in [2], for circular left ε̂−c (red)

and circular right ε̂+c (blue) incident photon polarisations, and field cooling with either E< 0 (upper panel)

or E> 0 (lower panel)

.

and ∑
s

ei2π(hxs+kys+lzs) ls = βeiαφTM sin(8π∆T
a )[lTa (1 + eiαφTO )â]+ T1− 4

ei2π[−4(1−∆T
a )−β(1/4)] · 1

2 [lTb e
iαφTM b̂]+ T1

ei2π[−4(1/2+∆T
a )−β(1/4)] · 1

2 [lTb e
iαφTM b̂]+ T2

ei2π[−4(∆T
a )−β(3/4)] · 1

2 [lTb e
iα(φTM+φTO)b̂]+ T3

ei2π[−4(1/2−∆T
a )−β(3/4)] · 1

2 [lTb e
iα(φTM+φTO)b̂] T4
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Figure 5.12: Fit of the data presented in Fig. 5.10 with the model reported in [2], for linear π̂ incident

photon polarisation, and field cooling with either E< 0 (upper panel) or E> 0 (lower panel)

.

thus leading to

fnr = ( 1
2 i

h̄ω
mc2 ) ·

{ [
2[sMb b̂− iαγsMc ĉ]+

βeiαφTM sin(8π∆T
a )[sTa (1 + eiαφTO )â] + iβeiαφTM cos(8π∆T

a )[sTb (eiαφTO − 1)b̂]
]
·B +

βeiαφTM sin(8π∆T
a )[ 1

2 l
T
a (1 + eiαφTO )â] + iβeiαφTM cos(8π∆T

a )[ 1
2 l
T
b (eiαφTO − 1)b̂] ·A′′

} (5.9)

where the contribution of the Mn spins and the contribution of the Tb spins along a have been

retained from the previous model.
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Figure 5.13: Sketch of the newly refined magnetic structure, to be compared with Fig. 5.6, including the

previously undetermined longitudinal component along a of the Tb moment, the phase relation between the

modulations in the Mn and Tb sites φTM = 0, and the phase relation between the two crystallographic orbits

of the Tb sites φTO = π.

Analytical calculation

In the approximated analytical calculation, initially only the newfound b component will be taken

into account for the Tb moments, in order to highlight its effects. The a component is going to be

neglected at first, since it has already been proved that it can not provide a suitable correction to

the dominant Mn contribution in order to account for the oblique degree of polarisation displayed

by the data. Its role will be discussed at the end of the analysis.

According to the refined model, the components to be introduced in the Jones matrix 2.16 become
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(cf. with previous model in Eq. 5.3):

Sb = +2sMb + iβeiαφTM cos(8π∆T
a )[sTb (eiαφTO − 1)]

Lb = iβeiαφTM cos(8π∆T
a )[lTb (eiαφTO − 1)]

Sc = −2isMc

(5.10)

or, in short notation,

Sb = +SMb + iβeiαφTM (eiαφTO − 1)STb

Lb = iβeiαφTM (eiαφTO − 1)LTb

Sc = −iαSMc
where the following definitions have been employed:

SMb = 2sMb

STb = cos(8π∆T
a )sTb

LTb = cos(8π∆T
a )lTb

SMc = 2sMc .

(5.11)

The scattering amplitudes in the two polarisation channels become

fσ′ = SMb − 1√
2
εαγSMc + iβeiαφTM (eiαφTO − 1)STb

fπ′ = −i 1√
2
αγSMc + iεSMb − εβeiαφTM (eiαφTO − 1)(STb + LTb )

(5.12)

and can be rewritten by regrouping the Mn contribution within the term A (as done in Eq. 5.5),

and the new phase factors that multiply the Tb contribution within the term

eiαφTM (eiαφTO − 1) = u′ + iαu′′, (5.13)

thus leading to

fσ′ = A+ iβ(u′ + iαu′′)STb

fπ′ = iεA− εβ(u′ + iαu′′)(STb + LTb ).
(5.14)

Turning now to consider how this new model can account for the presence of a net value of P2

in the data, one must compare |fσ′ + fπ′ | and |fσ′ − fπ′ |:

|fσ′ + fπ′ |2 = |A− εβu′(STb + LTb )− αβu′′STb |2 + |A+ εβu′STb − αβu′′(STb + LTb )|2

|fσ′ − fπ′ |2 = |A+ εβu′(STb + LTb )− αβu′′STb |2 + |A− εβu′STb − αβu′′(STb + LTb )|2

or, separating the orbital and spin contrinution,

|fσ′ + fπ′ |2 = |[A− εβu′STb − αβu′′STb ]− εβu′LTb |2+

|[A+ εβu′STb − αβu′′STb ]− αβu′′LTb |2

|fσ′ − fπ′ |2 = |[A+ εβu′STb − αβu′′STb ] + εβu′LTb |2+

|[A− εβu′STb − αβu′′STb ]− αβu′′LTb |2

where it is highlighted that the spin contribution alone does not produce a net P2 (it gives |fσ′+fπ′ |

= |fσ′ − fπ′ |), while it is the small orbital contribution that creates an imbalance between the two

moduli, resulting in a non-zero value of P2, provided that u′ (real part of the phase factors of the

Tb contribution) is significant. Note that |u′| is maximized when φTO = π and φTM = π or 0 (Eq.

5.13). In such a case, the sign of the emerging P2 is reversed in accordance with the sign of β and ε,

but does not depend on the sign of α. From inspection of the data (Fig. 5.10), it is seen that indeed

P2 is reversed when the handedness of the polarisation or the sign of l are reversed, but not when

the sign of τ is. These phase values are then good candidates as initial guesses for the numerical

optimisation.
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Numerical optimisation of mT
b , φTM and φTO

Numerical simulations taking into account the exact geometry of the diffraction have been carried

out as in the case of Ni3V2O8 in Chapter 4. The best fit gives a b component of 1.0 ± 0.3 µB for the

total magnetic moment mT
b , which is compatible with the large error bar set by Kenzelmann and

co-workers in [2]. The phase shift between the two orbits of Tb atoms is determined to be 1.0 ± 0.2

π. Moreover, the model fixes the phase angle between the magnetic modulations of the Tb and the

Mn atoms. Consider one Mn atom, and the subsequent Tb atom moving along ±c (sign determined

accordingly to the direction of the electric polarisation), then the phase angle between their magnetic

modulations, evaluated at the same coordinate in space, is found to be 0.0 ± 0.1 π (with reference

to the b components). These values are in agreement with the analytical calculation carried out in

the previous section. Given those phases, it is found that the resultant magnetic amplitude is not

sensitive to the a components of the Tb atoms, which cancel each other out in the sum over the

unit cell: the factor 1 + eiαφTO implies that the contributions from the two crystallographic orbits

add up to zero. The complete expression for the scattering amplitude, in the star of magnetic peaks

observed, is found to be:

f(K) ∝ (sMb (K)b̂ − γ α i sMc (K)ĉ) ·B

− γ β i (sTb (K)b̂ ·B +
1

2
lTb (K)b̂ ·A′′) cos(8π∆T

a ).

The final fit is shown in Fig. 5.14 and 5.15 by continuous lines, and the improvement upon the

previous model is stressed by the comparison with the dotted lines. Besides the parameters already

reported, an accurate description of the domain state as a function of applied electric field has been

extracted. It can be concluded that cooling in a positive electric field led to a population of 96(3)%

of the cycloidal domain in which the transverse spiral of the Mn atoms is anticlockwise, when moving

along +b and looking from +a (Domain 1), while field cooling in a negative electric field produced

a population of 83(2)% for the domain of opposite sense of rotation (Domain 2). Differences in the

domain populations found with E may result from a number of effects such as domain pinning, slight

variations in the volume probed by the x-ray beam, etc.

5.4 Conclusions and future outlook

The results presented in this chapter establish the benefits of performing NRXMS experiments with

circularly polarised X-rays combined with full polarimetry of the scattered beam, to the refinement of

complex magnetic structures. For the specific case of multiferroic TbMnO3, with two different types

of magnetic ion, making it by any standards a challenging test case, it has been shown surprisingly

that this approach allows us to make important refinements to the magnetic structure obtained

from neutron diffraction. Unlike traditional structure refinements by intensity measurements, which

involve the characterisation of a large number of superlattice reflections, in this case the analysis

of polarised diffraction from a star of four reflections has been sufficient to resolve fundamental

details of the magnetic ordering, including phase shifts between magnetic modulations on different

crystallographic sites, separation of spin and orbital contributions to the atomic magnetic moment,

and determination of the absolute sense of rotation of the magnetic cycloids.
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Figure 5.14: Fit of the data presented in Fig. 5.10 with the refined model found in 5.3.4 (continuous

lines), for circular left ε̂−c (red) and circular right ε̂+c (blue) incident photon polarisations. Dotted lines

report the fit with the initial model as a comparison (cf. Fig. 5.11). The overall fit, comprising both the

measurements with circular light shown in this figure and those with linear light shown in Fig. 5.15, gives

χ2 = Σni wi(I
i
o − Iic)2/(n−m) = 3.6, where Iio and Iic are the observed and calculated intensities, wi = 1/σ2

i ,

σi is the error bar of the observed intensity Iio, and m is the number of parameters of the fit.

This technique could readily be applied to other multiferroics, particularly those such as BiFeO3

[78, 79] for which open questions remain concerning the magnetic structure of bulk samples and its

modification in thin films [80] - [83].
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Figure 5.15: This figure completes Fig. 5.14, by presenting the fit with the refined model found in 5.3.4

for the data collected with linear π̂ incident photon polarisation. Dotted lines report the fit with the initial

model as a comparison (cf. Fig. 5.12).
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Chapter 6

Magnetoelastic Distortions induced

by a Magnetic Field in TbMnO3

In this Chapter the investigation of the magnetic structure of TbMnO3 under applied magnetic field

is reported. The technical equipment described in Chapter 3 has been used to apply a magnetic

field along the b crystallographic axis as well as a poling electric field along c in order to achieve a

monodomain in the magnetic state. The results were collected up to the metamagnetic transition

at HC ≈ 8 T. Non-resonant scattering has been performed on two magnetic reflections; the Stokes

scans, compared with the results found in Chapter 5, reveal a profound difference in the polarisation

of the diffracted beam. The results are interpreted in terms of magnetostrictive displacements of

the Mn, Tb and O ions, giving rise to a Thomson contribution which interferes with the magnetic

diffraction at the same incommensurate position τ of the reciprocal space. This analysis leads to

a quantitative estimation of the atomic displacements both under applied field and in zero field;

this task is currently ongoing and being developed by H. Walker and co-workers at the European

Synchrotron Radiation Facility.

6.1 H-T phase diagram of TbMnO3

The effect of an applied magnetic field on the phase diagram of TbMnO3 has been systematically

studied first by Kimura and co-workers. The results are published in a series of papers [1, 68, 69].

The measurements undertaken consisted in the temperature dependence of the electric polarisation

and dielectric constant in applied magnetic fields of various magnitudes, and in the field dependence

(from 0 T up to 15 T) of the magnetisation and electric polarisation at various temperatures. The

overall conclusions obtained by this work lead to the temperature-magnetic field phase diagram

shown in Fig. 6.1.

When a magnetic field is applied along the a or b crystallographic axis, it eventually leads to

a metamagnetic phase transition, at which point a flop of the ferroelectric polarisation takes place,

switching its direction from the c to the a axis. The critical value of the magnetic field (HC) is a

function of the temperature, and the boundaries in the phase diagram have been determined with

some precision in the case of a field applied along b (see Fig. 6.1 - (c)). The fact that the magnetic

125



C

a)

b) c)

Figure 6.1: Magneto-electric phase diagram of TbMnO3, as determined from bulk and diffraction measure-

ments. (a) Magnetisation and magnetic-field-induced change in electric polarisation along c as a function of

external magnetic fields parallel to the three axes, at fixed temperatures. These measurements by Kimura

et al. [69] complete the results at zero field previously discussed (cf. Fig. 5.1). (b) Intensity colour map

from [87] of X-ray resonant scattering at the Tb LIII edge. The scans were performed along (5 k 0) as a

function of magnetic field applied parallel to b at T = 2 K (phase III, see section 5.1). Below 4.5 T the

propagation wavevectors of the incommensurate Tb and Mn ordering are visible: magnetic C-type reflection

(5 τ 0) ≈ (5 0.28 0); lattice reflection (5 1 − τL 0) ≈ (5 0.44 0), τL ≈ 2τ ; magnetic reflection at (5 1/3 0),

attributed to a phase transition on the Tb sublattice at around 1 T, from an incommensurate (τT ≈ 0.425)

to a commensurate structure. Above 4.5 T only the propagation wavevectors of the commensurate magnetic

ordering are visible, at (5 1/4 0) and (5 1/2 0). This transition is coincident with the flop in the electric

polarisation from c to a. (c) Resulting phase diagram of TbMnO3, for a magnetic field applied along the

b axis (the complete phase diagram for fields along the three axes has been shown in Fig. 5.1 - (c)). The

metamagnetic transitions correspond to the flop in P.

transition and the polarisation flop occur at the same value of the field for every temperature is a

clear confirmation of the link between ferroelectricity and the magnetic order. When the field is

applied along the c axis, a magnetic transition occurs and brings the sample into a parelectric state.

From X-ray diffraction studies of superlattice peaks in strong magnetic fields H ‖ b [84], it has

been deduced that the phase transition is accompanied by the onset of a commensurate AF spin
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alignment, with a modulation vector of 1/4 b∗. Neutron and X-ray diffraction studies on magnetic

peaks confirmed this result for both H ‖ a and H ‖ b [85]. Some recent and detailed measurements

by Strempfer et al. [86] and Walker et al. [87] report on the simultaneous flop of the polarisation and

the jump of the magnetic wavevector to the commensurate value, for both field configurations H ‖ a

and H ‖ b. It is suggested that these results reflect the flop of the magnetic cycloidal plane from

the (b, c) to the (a,b) plane. This would be consistent with the flop of the polarisation; however, it

is shown that the magnetic interactions between Mn and Tb moments remain significant in applied

field, and may be considered as a perturbation upon the simple model of the flop of the cycloidal

plane. Neutron studies with H aligned along c completed the investigation by measuring F and

C-type reflections [75]. X-ray diffraction showed that a discontinuous jump in the wavevector occurs

during the transition, with both IC and C peaks co-existing for a narrow range of values of the

magnetic field near HC .

As for the effects of a magnetic field below HC , the evolution of both resonant and non-resonant

X-ray scattering at the superlattice reflections as a function of applied magnetic field has been studied

by several groups. Both Aliouane et al. [85] and Strempfer et al. [86] report the observation of charge

reflections not only at the double harmonic positions τL = 2τ (also present at zero field, cf. Chapter

5), which can be attributed to quadratic magnetoelastic coupling between the spin density wave and

the lattice, but also at the single harmonics. They present this as evidence of a linear magnetoelastic

coupling, but there has been no quantitative analysis until now of the magnetic structure under

applied field before the metamagnetic transition.

6.2 Experimental method

In this study, X-ray non-resonant scattering has been used in an attempt to identify the atomic

displacements induced by a magnetic field H ‖ b, which so far have eluded experimental detec-

tion. Using the interference between the magnetic and Thomson displacive amplitudes at the same

reflection for different incident energies, it is possible to obtain detailed information regarding the

nature of the displacements as a function of the applied field, which in turn has consequences for

the magnitude of the off-centre atonic displacements responsible for the spontaneous ferroelectric

polarisation in zero magnetic field. At the present time, this work is still ongoing. I was involved

in the planning and the execution of the first experiments described in this section, while the data

analysis and interpretation is currently being developed by Walker and co-workers at the European

Synchrotron Radiation Facility (to be published). I will present here a qualitative interpretation of

the data.

Experiments were performed using the same single crystal of TbMnO3 and the same setup con-

figuration described in Chapter 5; however, this time the sample stick was inserted into the Oxford

Instruments 10 T cryomagnet (Fig. 3.2), allowing the application of a verical field (along the b axis

of the sample). A specific feature of this series of experiments is that they were performed at different

non-resonant energies, so as to take advantage of the changing ratio of the dispersion corrections for

the atomic scattering factors for Mn and Tb as a function of energy, a technique somewhat similar to

that used in macromolecular crystallographic structure determination. Unless the radiation energy
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Figure 6.2: Scheme of the experimental setup. The sample, glued to the E-field stick as in previous mea-

surements (Chapter 5), was placed inside the Oxford Instruments 10 T magnet described in 3.1.3, allowing

the application of a field along the vertical direction as per the scheme. The reflections investigated were (4

τ 1) and (4 τ -1).

is much smaller than any of the absorption edge wavelengths in the atom, the Thomson scattering

is expressed by the atomic form factor f0 (Fourier transform of the charge density, cf. Eq. 2.11)

corrected by a complex dispersion factor

fTH(K,ω) = f0(K) + f ′(ω) + if ′′(ω)

where K = |K| = |k − k′|, and f ′, f ′′ represent respectively the real and imaginary part of the

correction (involving a small shift in phase of the scattered radiation). The measurements were

collected at three energies with the corresponding dispersion corrections for the atomic scattering

factors (Fig. 6.3):

E(keV ) f0 + f ′(Mn) f”(Mn) f0 + f ′(Tb) f”(Tb) f0 + f ′(O) f”(O)

6.160 22.5 0.5 59.0 4.9 8.08 0.06

6.850 22.6 3.6 57.4 4.2 8.06 0.04

7.770 24.2 3.0 55.2 9.8 8.05 0.03

i.e. below the Mn K-edge, between the Mn K-edge and the Tb LIII -edge, and above the Tb LIII -

edge. As in previous measurements, incident horizontally linearly polarised beam was converted into

a circular polarisation state using an in-vacuum quarter-wave diamond phase plate. Despite the

different energies, the 720 mm thickness of the diamond allowed us to produce a beam which was 99

% circularly polarised. The polarisation state of the scattered beam was obtained using single crystal

analysers as appropriate for the different incident energies (LiF(220) at E = 6.16 keV, Cu(220) at E

= 6.85 keV and Pt(222) at E = 7.77 keV). A voltage of ≈ 500 V was applied across the sample as

it was cooled from T = 60 K to 15 K, in order to drive the magnetic structure into a monodomain

cycloidal state, as documented in Chapter 5. Stokes scans were performed for various magnetic
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by dashed lines; it can be noted that the imaginary contribution f ′′ is strongly affected by the energy change.

fields at the two magnetic satellites k− k′ = (4 τ 1) and (4 τ -1). The background signal was also

measured after deplacing the sample by ∆Θ = 0.2◦, enabling it to be subtracted from the total

signal, as shown for previous measurements (Chapters 4 and 5). In addition to the Stokes scans, the

intensity of the peaks as a function of the applied magnetic field has been recorded through scans

along the reciprocal space direction b∗, in various polarisation channels.

6.3 Overview of the experimental results

Several scans along the reciprocal space direction b∗ were measured through the magnetic reflection

(4 τ -1) as a function of magnetic field applied along the b axis, for both left (LCP) and right (RCP)

circularly polarised X-rays incident on the sample, and with the polarisation analyser oriented at

η = 45◦; 90◦; 135◦. The incommensurate reflection was observed up to H = 9 T, whilst there

was a coexistence of the commensurate and incommensurate phases between H = 8 and 9 T. The

wavevector remained constant below 7 T before starting to reduce in magnitude, implying the onset

of the transition. The results plotted in Fig. 6.4 reveal that the intensity for η = 90◦, i.e. the

scattering in the π̂′ channel obtained by numerically integrating the area under the measured peak,

is approximately independent of the applied magnetic field for both incident polarisation states. In

contrast, the intensities for η = 45◦ and 135◦ show a marked parabolic dependence on the applied

magnetic field. Comparing the results for LCP and RCP incident beam reveals that the general

trend is exchanged between η = 45◦ and 135◦, whilst the minima lie closer to the zero of magnetic

field for LCP than RCP incident.

To learn more about the origin of the scattering intensity, the Stokes dependence of the two

reflections (4 τ -1) and (4 τ 1) was measured with LCP and RCP incident X-rays in an applied
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Figure 6.4: (a) Magnetic field dependence of the intensity of the reflection (4 τ -1) at 15 K, for LCP (upper)

and RCP (lower panel) incident light (energy E = 6.16 keV), measured at η = 45◦; 90◦; 135◦. Each point

represents the integrated intensity obtained from a scan along the direction b∗ in the reciprocal space. (b)

Example of the raw data in the case of H = 8 T and LCP incident light. The integrated intensity of each of

the three curves constitutes one point in the upper panel of (a).

magnetic field of H = 3 T (Fig. 6.5). In contrast to the measurements obtained in zero magnetic

field (Chapter 5), in which there is a strong imbalance in the intensities measured for LCP and RCP

as a result of the coupling between the quasi-monodomain and the handedness of the X-rays, in
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Figure 6.5: Variation with the analyser rotation angle η (Stokes scans) of the X-ray magnetic scattering from

the reflections (4 τ ±1) in TbMnO3 at T = 15 K and H ‖ b = 3 T, for different energy (E = 6.16; 6.85; 7.77

keV) and incident polarisation (LCP in red and RCP in blue) of the incident X-rays. Dashed lines represent

a fit to Eq. 3.2 describing polarised light, to extract the Stokes parameters (printed below each panel).

this case the intensities for the two different polarisation states are more similar, as can be seen in

the top two panels of Fig. 6.5. A further difference from the Stokes dependence of the scattering

in zero magnetic field is that, with the exception of the absolute intensity, the form of the sine

waves is similar for a given incident polarisation state for both reflections, as opposed to being in

anti-phase. In addition the Stokes dependence shows that the minimum intensities are approaching

to zero, and lie close to η = 45◦ and 135◦, indicating that the incident circular polarisation state

on scattering has been converted into an almost linear polarisation state inclined at ≈ 45◦ from

the scattering plane. The same Stokes measurements at the two reflections were repeated for two

additional incident energies of E = 6.85 and 7.77 keV. As Fig. 6.5 shows, the general form of the

Stokes dependence is similar for the different energies.
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Figure 6.6: Stokes scans on the reflection (4 τ 1) in TbMnO3 at T = 15 K and E = 6.85 keV, for different

magnetic fields applied along the b axis, with LCP (red) and RCP (blue) incident X-rays. The Stokes

parameters are extracted as per Fig. 6.5.

At E = 6.85 keV the Stokes dependence of the scattering reflection (4 τ -1) was investigated for

different magnetic fields H ‖ b = 2, 3, 4, and 5 T. Inspection of Fig. 6.6 shows that with increasing

applied magnetic field the scattering intensity grows, with the amplitudes of the scattering for LCP

and RCP incident becoming more equal.
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6.4 Interpretation

There are no reports in the literature of a change in the magnetic structure of TbMnO3 below

the critical field, and the measured Stokes dependence could not be reproduced using calculations

based on a modification of the magnetic structure. Instead, if one considers the magnetic field to

have induced an additional small moment on the Tb and Mn ions polarised along the b axis with

ordering wavevector = 0, then charge Thomson scattering associated with the induced magnetoelastic

distortion will arise at (4 τ -1) and (4 τ +1). Suppose that the application of the magnetic field

along the b axis induces a constant magnetisation M
Mn(Tb)
H of the Mn (Tb) lattice, ignoring any

modulated magnetization possibly also induced. Due to exchange striction or magnetocrystalline

anisotropy, M
Mn(Tb)
H in combination with the zero field magnetic moments, M(x1) at x1, produce

atomic displacements, where to lowest order the displacement of an atom at x2 is

δ(x2) =
∑
x1

M(x1) (αMn(x2,x1)MMn
H + αTb(x2,x1)MTb

H ) (6.1)

The tensor α(x2,x1) combines the coefficients of two free energy terms, a term of magnetostric-

tion δ(x2)M(x1)MH , and a term of stiffness δ2(x2). Because the atomic displacement δ(x2) is

quadratically dependent on the magnetisation, a monoharmonic sinusoidal spin modulation (as the

one present in zero field) and an additional ferromagnetic component allow δ(x2) to mirror the

sinusoidal dependence of the spin modulation, thus contributing to a Thomson scattering at propa-

gation vector τ along the b∗ direction in the reciprocal space, interfering with the purely magnetic

scattering reflections (see Fig. 6.7).

On this basis the qualitative features of the data shown in Fig. 6.5 and 6.6 can be reproduced

using the scattering amplitude for the magnetic structure taken at zero magnetic field (developed in

Chapter 5) combined with a complex Thomson scattering term (ATH+iBTH):

fnr+TH = (ATH + iBTH) − i
h̄ω

mc2
fnr.

Note that ATH+iBTH is proportional to the sum of the Thomson contributions over the atomic

sites
∑
j fTH,j(K,ω)eiK·rj and fTH,j(K,ω) = fO,j(K)+f ′j(ω)+ if ′′j (ω), and thus may contain a non

trivial dependence on the Miller indexes and the sign of τ , as it has been the case for the magnetic

structure factor (cf. Chapter 5).

These contributions manage to reproduce the general features of the data. In the Jones ma-

trix basis and under the same approximation used in the analytical calculations of Chapter 5, the

scattering amplitude becomes: fσ′

fπ′

 =

 SMb − 2iβSTb + (A′TH + iB′TH) i 1√
2
αγSMc

−i 1√
2
αγSMc SMb − 2iβ(STb + LTb )

 1

iε


where, since 2Θ ≈ 90◦, the Thomson scattering reduces to the σ − σ′ channel. The magnetic

components SMb , SMc , STb , LTb are the same as defined in Eq. 5.11. The optimal values found for

the two phase shifts φTM and φTO have been used. The sign factors α, β, γ, ε define respectively

the sign of the index k of the reflection (±τ), the sign of the index l (±1), the magnetic cycloidal

domain and the handedness of the circular polarisation of the incident beam. Finally, the coefficients

describing the Thomson scattering A′TH and B′TH are directly related to the coefficients ATH and
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Figure 6.7: Schematic demonstrating how a magneto-electric distortion can have the same periodicity as the

magnetic order, resulting in Thomson scattering at the same wavevector. The sketch depicts the projection

on the B axis of the Mn cycloidal magnetic structure (blue arrows), the additional ferromagnetic component

resulting from the application of a magnetic field along b (red), and the displacement of the Mn atoms

arising from the coupling of the two magnetic orderings (black), following the model presented in Eq. 6.1.

BTH just intrduced, taking into account the imaginary scale factor −ih̄ω/ mc2 between Thomson

and non-resonant scattering.

The scattering amplitudes in the two polarisation channels σ′ and π′ become:

fσ′ = SMb − 2iβSTb + (A′TH + iB′TH)− 1√
2
εαγSMc = A− 2iβSTb + (A′TH + iB′TH)

fπ′ = −i 1√
2
αγSMc + iεSMb + 2εβ(STb + LTb ) = iεA+ 2εβ(STb + LTb )

where the parameter A includes the dominant magnetic contribution from the Mn atoms and is

defined as in Eq. 5.5 as

A = SMb −
1√
2
εαγSMc .

The dominant features of the data which distinguish them from the results at zero field are a high

value of P2 for both incident polarisations, and also an increased value of P1. Turning first to P2,

the degree of linear polarisation oriented along η = ±45◦ can be estimated by comparing |fσ′ + fπ′ |2

and |fσ′ − fπ′ |2:

|fσ′ + fπ′ |2 = |A+ 2εβ(STb + LTb ) +A′TH |2 + |A− 2εβSTb + εB′TH |2

|fσ′ − fπ′ |2 = |A− 2εβ(STb + LTb ) +A′TH |2 + |A+ 2εβSTb − εB′TH |2.

Obviously the orbital contribution found on the Tb atoms, responsible for the nonzero value of

P2 in zero field, cannot account for such a strong P2 as seen in the data. The Tb contribution is

therefore omitted in the present analysis as negligible with respect to the Mn magnetic scattering

and the Thomson scattering:

|fσ′ + fπ′ |2 = |A+A′TH |2 + |A+ εB′TH |2

|fσ′ − fπ′ |2 = |A+A′TH |2 + |A− εB′TH |2.

From this expression, it can be seen that the Thomson contribution is able to create an imbalance

between the two terms thanks to its imaginary part B′TH , thus allowing a relevant value of P2 to

emerge. Moreover, the sign of P2 is reversed when the handedness of the circular polarisation is

switched (parameter ε). As for P1, the degree of linear polarisation along η = 0 − 90◦ is extracted

from the difference between |fσ′ |2 ≈ |A + A′TH + iB′TH |2 and |fπ′ |2 ≈ |A|2, and in this case, both

real and imaginary part of the Thomson scattering can contribute to an imbalance between the

two. In conclusion, the Thomson contribution possesses the symmetry requirements to reproduce
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the qualitative features of the data. As a final note, it can be seen from Fig. 6.6 that the distorsion

from the zero field polarisation induced by the Thomson terms increases with the magnitude of the

field, such that the A′TH and B′TH coefficients appear to be linearly dependent on H.

6.5 Conclusions and future outlook

Since the physical origin of the Thomson scattering is magnetostrictive atomic displacements due to

interactions between the zero field moments and those induced by the applied magnetic field, an exact

model of the displacements can be found by a symmetry analysis imposing constraints on the atomic

positions, followed by a standard crystallographic study looking at the measured structure factors as

a function of the displacements. This study is currently being developed by Walker and co-workers.

The preliminary results reveal that it is possible to identify the displacement modes and, through

the energy dependence of the atomic scattering factors, the displacements of the diferent atomic

species. The quantitative information thus obtained allows for an estimation of the displacments in

zero magnetic field.
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Chapter 7

Conclusion and future perspectives

It has been shown how interest in multiferroics (materials in which ferroelectricity coexists with mag-

netic order) and magneto-electric coupling has been revived in recent years, since the discovery of

magnetically induced ferroelectricity in TbMnO3. Besides the challenge that these materials repre-

sent to our fundamental understanding of ordering phenomena in solids, a fundamental driver for this

research on the applied side is the hope that it will provide new materials to be used in data storage

and processing devices. In this respect, of paramount importance is the quest for a material that can

be written electrically and read magnetically at room temperature, since localised electric fields are

much easier to generate and much less energy demanding as compared to magnetic fields. The re-

quirement of strong magneto-electric effect has oriented the research within the range of compounds

in which ferroelectricity appears as a consequence of magnetic ordering and, indeed, it has been

found that spin-driven cycloid multiferroics exhibit an exceptionally strong cross-coupling between

the different types of order, as demonstrated in a number of studies where non-conjugate fields have

been used to control the order, i.e. the control of magnetization M by E or ferroelectric polarization

P by H. However, the symmetry breaking necessary for the onset of spontaneous polarisation is

only to be found in rather complex magnetic structures. The appropriate magnetic materials are

usually characterised by an interplay of competing exchange interaction and/or geometrically-driven

magnetic frustration, which leads the symmetry-breaking phase to appear at very low temperatures.

Recently, an intense experimental effort combined with a refined understanding of the symmetry re-

quirements that can allow ferroelectricity to exist have expanded the range of candidate materials to

exhibit spin-driven multiferroic behaviour. An interesting line of research has developed specifically

on magnetochiral or proper-screw systems even at room temperature [89, 90].

In this scenario, an experimental technique capable to capture the fine details of the magnetic

ordering is as an essential tool to progress in the discovery and characterisation of such increas-

ingly complex materials. In this work, it has been demonstrated that non-resonant X-ray magnetic

diffraction, enhanced by polarisation control via phase plate and polarimetry of the diffracted beam,

is an effective method for magnetic structure refinement of spin-driven multiferroics Ni3V2O8 and

TbMnO3. Its advantages over other traditional techniques such as neutron scattering or X-ray mag-

netic scattering with azimuthal scans have been explored. Firstly, one star of magnetic superlattice

peaks has been sufficient to perform a refinement, as opposed to collecting a large number of mag-
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netic reflections. This greatly eases the ability to apply external fields and, in future research, other

experimental conditions such as, for example, mechanical pressure. Moreover, the data on a single

star of peaks are collected under homogeneous geometric conditions and are less affected by varia-

tions in the experimental conditions and in the absorption by the sample. This aspect is enhanced

by the use of polarisation-varying techniques, in lieu of azimuthal scans. In view of the quest for new

multiferroic materials outlined above, the trend towards increasingly complex magnetic structures

makes this approach particularly suitable, primarily because of its sensitivity to the finer details of

the magnetic modulations, such as the phase difference between different atomic spin density waves

and the distinction between spin and orbital contribution to the magnetic moments. The kind of

detail provided by the phase shifts is key to the search and characterisation of new multiferroics, as

it affects the symmetry properties of the magnetic structure and, in turn, of the ferroelectricity that

consequently emerges. In particular, the proper-screw magnetic arrangement found in many of the

novel materials lends itself to experimental probing by means of circularly polarised incident X-rays,

in a way analogous to the cycloidal arrangement studied in the course of this work.

While the magnetic order in many canonical multiferroics is by now mostly understood, the nature

of the ferroelectricity has remained much more elusive. In the case of TbMnO3, competing models

have been proposed to explain the ferroelectricity, associated respectively with charge transfer and

ionic displacements. Exploiting the magneto-electric coupling, it has been shown how an electric

field can be used to produce a single magnetic domain state, and a magnetic field to induce ionic

displacements. Under these conditions, interference between charge and magnetic X-ray scattering

arises, encoding information both in phase and amplitude. These data, when combined with a

theoretical analysis, can provide information on the displacements of the constituent ions, and show

how such displacements make a significant contribution to the zero-field ferroelectric moment. The

technique introduced here can be extended to other multiferroics, and to the wider class of systems

with complex order in the presence of magnetoelastic coupling.

Finally, one of the outstanding challenges in this field of research is the development of methods

capable of imaging multiferroic domains, and most especially their evolution under applied external

fields. However, the imaging of ferroelectric and magnetic domains has largely remained two separate

fields, with a few exceptions [91]. Imaging of ferroelectric domains is well established, and can be

achieved through a variety of probes including X-ray charge scattering [92, 93], and atomic force

microscopy [94]. In contrast, the imaging of antiferromagnetic domains has emerged in more recent

times, driven by the availability of highly brilliant X-ray beams from synchrotron sources. The high

spatial resolution attainable with such sources has enabled new imaging methods based on either

the absorption [95] or scattering [96, 97, 98] of an X-ray beam through various processes which yield

sensitivity to the antiferromagnetic order. In the case of Ni3V2O8, the technique presented in this

work enabled the imaging of multiferroic domains through polarisation enhanced topography, and

this approach has been used to image the spatial distribution of magnetic domains as the sample is

cycled by an electric field through its hysteresis loop. This method has potential for imaging domains

in multiferroic devices and other classes of correlated electron systems which are characterised by

unconventional or coupled order parameters, and by revealing in this case the gradual switching of

domains without nucleation, and exposing the existence of strong pinning effects close to the edge
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of the sample, proves to be able to help the design of better functional materials.
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