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ABSTRACT 

 

Diffusion MRI uses magnetic field gradients to sensitise a MR sequence to in vivo 

water diffusion. Application of these gradients in specific directions (20 in this work) 

enables a 3D representation of diffusion on a voxel basis. Quantitative diffusion 

measures are derived; using the voxel maximal diffusion direction and linking 

neighbouring voxels iteratively based on this creates a visual construct of the white 

matter: tractography.  

It is not possible, currently, to non-invasively determine the histological nature of an 

intracranial tumour. We recruited paediatric patients with radiological evidence of such 

lesions from April 2006 to January 2008 and retrospectively to August 2003. We used 

diffusion MR metrics to discriminate paediatric central nervous system tumours based 

on existing histological diagnoses. Using apparent diffusion coefficient histograms, 

common posterior fossa childhood tumours were differentiated with 93% success; 

Primitive neuroectodermal tumours (PNET) and supratentorial atypical teratoid 

rhabdoid tumours (ATRT) were separated in 100% of cases. Development of these 

methods with a larger population may facilitate the obviation of surgical biopsy and its 

attendant risks. 

Diffusion data was used to reconstruct the cerebellar white matter anatomy using 

tractography. Initially a population of normal subjects were investigated using single 

region of interest (ROI) analysis. DTI metrics were implemented, demonstrating the 

existence of white matter asymmetry where lateralisation corresponded to handedness in 

17 right-handed subjects. 

To asses functional significance of changes in DTI metrics; clinical cerebellar 

dysfunction was correlated with changes in cerebellar white matter DTI metrics in a 

patient population with posterior fossa tumours and with the normal population. 

Fractional anisotropy of the tracts was reduced in patients with tumours d clinical 

cerebellar signs as compared to healthy individuals. 

This work demonstrates that diffusion MRI and tractography metrics may enable 

discrimination of paediatric CNS tumour type and are related to the functional integrity 

of cerebellar white matter tracts.  
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Magnetic resonance imaging (MRI) has become one of the key tools in medical imaging 

and this is attributable to several factors. Significantly it can be sensitised to the 

different properties of tissues resulting in the production of multiple different contrasts 

and it is completely non-invasive. These properties combined with the absence of any 

known biological hazard make it, in the research and clinical environments, a very 

valuable tool.  
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MRI is based on the resonance of nuclei within a material when placed in a strong 

magnetic field and subjected to radiofrequency (RF) pulses as stimulation. The RF 

pulses result in absorption and subsequent release of energy by the nuclei which 

produce a signal containing spatial and structural information from the material under 

investigation. It is from these signals that the images are reconstructed. 

1.1  CONVENTIONAL MRI 

The basis of MRI is that of nuclear magnetic resonance (NMR). This is a phenomenon 

describing the interaction of an externally applied magnetic field with the magnetic 

moment of the nucleus of an atom, whereby the nucleus absorbs radiofrequency energy 

and the dipole moment is tipped from equilibrium subsequently emitting energy which 

is quantifiable. Initially described in 1946, two groups working independently using 

different substrates, specifically Bloch et al looking at water in a liquid state and Purcell 

using solid paraffin, shared the 1952 Nobel Prize for physics. The developments of 

Lauterbur allowed movement from single dimension NMR spectroscopy to a second 

dimension of spatial organisation. Mansfield’s application of gradients in the magnetic 

field and use of Fourier transforms allowed mathematical reconstruction of images from 

the MR signals; such that a research tool became a means of medical imaging in 1976. 

1.1.1  BASIC PRINCIPLES 

The phenomenon of NMR is exhibited by the entire nucleus, both protons and neutrons. 

The principle originates from the fact that all the particles of an atom spin on their own 

axis. The rotation of the nuclear particles creates a magnetic field which is described as 

a magnetic moment. Hence it is possible to consider these particles behaviour akin to 

that of miniature bar magnets. In the case of the hydrogen atom there is only a single 

proton (
1
H), constituting a spinning positive charge and hence it possess the greatest 
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magnetic moment. The interaction of the magnetic moments with an applied magnetic 

field generates the recorded signals.  

In medical imaging signals are most frequently collected from the nuclei of hydrogen 

(
1
H) atoms as a consequence of their abundance in organic structures as it forms part of 

water molecules, for example the human brain is constituted of more than 75% (1) 

water. In addition it possesses the largest magnetic moment making it the most easily 

detected. It is also possible to obtain signals from other elements which include 
13

C, 

23
Na and 

31
P and MR Spectroscopy is a technique which exploits this in biological 

imaging. 
1
H constitute more than 99% of all Hydrogen nuclei by comparison to 

13
C 

comprising approximately only 1% of all Carbon nuclei, hence furthering its preference 

for medical imaging. 

1.1.2  CLASSICAL THEORY OF NMR 

The spinning hydrogen nucleus (proton) has a charge associated with it and hence 

produces a magnetic moment or dipole which is the magnetic field emanating from the 

proton possessing a north and south pole (Figure 1.1). 

       A) B)                                                                                     

 

Figure 1.1 Spinning Proton (A) and Bar magnet (B) image. Where µ 

is the magnetic moment.  

µ 



CHAPTER ONE: GENERAL INTRODUCTION 

18 

 

The magnetic moment is generated from the angular momentum of the nucleus, in this 

case the spinning proton. It can be calculated as the product of the angular momentum 

and the gyro magnetic ratio, which is a descriptive value associated with each individual 

nucleus, hence the magnetic moment is proportional to the angular momentum.  

If a proton (or any magnetic dipole) is placed in a static magnetic field B0, acting along 

an axis (E.g. the z-axis) the previously randomly arranged protons will align with the B0 

either parallel or anti-parallel. The combined alignment of the magnetic moments µ can 

be represented as a magnetic vector M (Figure 1.2).   

                     

Fig 1.2 Effect of B0 on the dipole moments (µ). The protons (µ) 

align parallel and antiparalled with B0 creating a net magnetic 

vector M. 

The alignment of the protons is such that a greater proportion will be aligned parallel 

than anti-parallel and this creates a magnetic vector M in the direction of B0, the 

externally applied field. The higher the B0 field strength the greater the magnetic vector. 

When force is applied to M in order to overcome this equilibrium the nuclei release 

energy in order to return to this state of equilibrium with B0. The signal is created from 
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this release of energy from the polarised nuclei and hence imaging quality increases 

with increasing field strength. In the case of MRI the external exerted force is in the 

form of a rotating radiofrequency pulse B1 typically applied perpendicular to B0. 

                       

Figure 1.3 Application of Radiofrequency Pulse B1. The RF pulse is 

applied rotating perpendicular to B0, exerting a force on the 

protons (M) against B0. It is the release of this energy which 

generates the NMR signal. 

The Bo field is represented in the z plane, by convention in the direction of the bore of 

the magnet and hence running cranio-caudal in the patient lying flat within the magnet. 

The x and y axes are the planes of the axial slice image. 

1.1.3  LARMOR FREQUENCY AND PRECESSION 

Spinning protons, due to their angular momentum, when placed in a magnetic field B0 

experience a torque perpendicular to the field and hence to the axis of their rotation. 

This torque induced motion is known as precession. 

The frequency of this precession changes proportionally with the strength of the 

magnetic field the proton experiences. The frequency of precession is known as the 

Larmor frequency, at a particular field strength the resonant frequency at which the 

nuclei absorb applied radiofrequency energy is derived from the Larmor equation: 
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Where the angular frequency of precession of the proton is ω and γ is the gyromagnetic 

ratio or intrinsic magnetic moment which is a property of a proton (or nucleus) in a 

given magnetic field and B is the magnetic field strength. The frequency of precession 

or Larmor frequency at field strength (B) of 1.5T is of the order 64 MHz, corresponding 

to the frequency of electromagnetic radio waves.  

1.1.4  QUANTUM MECHANICAL DESCRIPTION 

In order to understand NMR both a classical physics and a compatible quantum 

mechanical model are useful. At the quantum level, individual proton subsets behaving 

in a similar fashion are isochromats. A single particle possesses its own quantum spin 

number proportional to its angular momentum and this determines whether it will result 

in NMR.  

The proton (I = + ½) when placed in a magnetic field will move into one of its two 

preferred states and is then described as quantised. The number of states a nucleus can 

occupy is related to its I value and these are known as Zeeman energy levels, described 

by 2I + 1. In the case of the proton (hydrogen nucleus) they are – ½ and + ½. The two 

states are separated by an amount of energy equal to that of the Larmor frequency. So 

when energy is supplied to them at the Larmor frequency (the nuclear processional 

frequency) in the form of an RF pulse a transition between states can occur. 

1.1.5  BOLTZMANN DISTRIBUTION 

In figure 1.2 it is seen that the nuclei experiencing a magnetic field B0 will precess in 

either a parallel or anti-parallel state. As the anti-parallel state requires more energy to 
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achieve it a very slight preference exists for the parallel state of approximately 1 in 10
5
 

spins, the very small differences necessitate the significant amplification of the signal. 

The existence of this population results from random thermal motion, providing energy 

and equalising the two spin states. It is the predominance of parallel spins which 

generates the NMR signal. 

The relative numbers of each state can be described by the Boltzmann distribution: 

  

  
      

  

  
   

Where k is the Boltzmann constant and T is the temperature and N+ and N- represent 

the parallel and anti-parallel conditions. In order to maximise the signal from the NMR 

experiment it is necessary to increase the proportion of nuclei in N+. In a human body 

the temperature varies only by a small amount and hence with k as a constant the only 

means to achieve a higher signal is to input more energy through increasing B0 by using 

a magnet with greater field strength.  

1.1.6  RADIOFREQUENCY PULSES 

As discussed previously in order to produce the NMR signal a second magnetic field 

known as B1 is applied at 90° to B0, this field is the radiofrequency (RF) pulse. The B1 

field is applied at the Larmor frequency (the frequency at which energy transitions are 

possible) and imparts energy to the system causing the net magnetic vector (M) to turn 

into the x-y plane, perpendicular to the plane of B0 in the z axis. The B1 field is 

generated by magnetic coils and the angle through which it tips the magnetic moment is 

known as the flip angle, this occurs at the Larmor frequency and is determined by the 

shape and amplitude  of the RF pulse.  
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Figure 1.4 Effect of application of the RF pulse (B1) to the magnetic 

moment (M) 

The RF pulse causes a redistribution of the spins between the parallel and anti-parallel 

states and their combined magnetisation is averaged in the x-y plane, it also focuses all 

the spins to be in the same phase with a strong magnetic moment in the x-y plane. 

Whilst it is possible to tip the spins through any angle, the x-y plane is optimal as there 

is no Mz component. 

The RF pulse is applied then removed and the energy imparted to the system is released 

as the protons precessing perpendicular to the B0 field return to precess in the axis of it. 

This energy release produces a magnetic field which decays with time, the field induces 

an electric current in a receiver coil (which may or may not be the same as the 

transmitting coil). The signal received is relatively weak (~ 10 watts) by comparison to 

that transmitted in the initial RF pulse (up to 20,000 watts) and hence it must be 

amplified considerably. In order to protect the signal from other radiofrequencies the 

MR system must be shielded in a copper Faraday cage. 
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1.1.7  GRADIENTS AND SLICE SELECTION 

In order to reconstruct an image, the spatial distribution of the signals must be 

determined. This is possible through the application of further gradients in addition to 

B0 and B1. Gradients can be applied in all three axes, for example increasing the B0 

linearly along its axis through the application of a gradient will result in a change in the 

Larmor frequency as a function of the z axis position in the material studied. The 

position that the nucleus occupies along the z axis will determine the frequency at 

which it resonates. Therefore a slice of protons perpendicular to the z axis can be 

excited by adjusting the RF pulse to the Larmor frequency of that slice. This is known 

as slice selection and the gradient is determined as Gz. Slice thickness is determined by 

the gradient’s amplitude and the width of frequency of the RF pulse. 

Once a slice is selected it is then necessary to encode the spatial information within the 

slice. A voxel is encoded using the application of gradients in the x (Gx) and y (Gy) axis 

and they are known as frequency and phase encoding respectively. The frequency 

encoding gradient is applied during signal reception, the effect being to cause the 

nuclear spins to resonate at different frequencies along the x axis. The phase encoding 

gradient has a similar function but is applied over a shorter period and results in 

alteration of the phase of the spin with respect to the y axis. Its application is between 

excitation and reception and causes the spins to precess according to the strength of 

magnetic field they experience as it changes along the y axis. On removal of the 

gradient the spins return to precess at their original frequency but at different phases. 

Figure 1.5 highlights the effect of the frequency and phase gradients in encoding each 

individual voxel such that their NMR signal is unique to their position. 
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Figure 1.5 Application of Gradients resulting in frequency and 

phase encoding (Image reproduced with permission of CA Clark) 

The construction of an image is the result of repeated excitations and read outs, the time 

between each of these excitations is known as the repeat time or TR. 

The signals measured from the receiver coil are digitised for MR image processing and 

reconstruction. The frequency of the RF pulse is digitalised through a digital to 

analogue convertor. This digital information is stored in a data matrix called K- space 

using frequency and phase encoding data from the signals received. A single phase 

encoding step constitutes a single line of the matrix. Once the matrix has been filled a 

2D Fourier transform is applied to the data in order to reconstruct the MR image, where 

the frequency component is extracted in the x direction and the phase component in the 

y direction. 

1.1.8  T1 AND T2 RELAXATION 

After the application of the RF pulse the nuclei give up their absorbed energy, known as 

relaxation. Two types are described; spin lattice (T1) and spin-spin (T2), which result in 

the nuclei resuming their original state. 
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The re-establishment of the dipole moment M along the z axis is achieved through T1 

relaxation. The nuclei give up energy to their surroundings, known as the lattice, in 

order to return to its original state. The energy exchange is through the external 

stimulation of a protons magnetic moment and near neighbour magnetic moment, where 

the encountered magnetic field must be resonating at the Larmor frequency. T1 

relaxation is also known as the longitudinal relaxation rate, the exponential function of 

the time to repeat of the RF excitatory pulse (TR) and the T1 value describes the rate at 

which the magnetisation returns to the z axis (B0), seen in Figure 1.6. 

 

Figure 1.6 T1 Relaxation. Exponential recovery of the magnetic 

moment (M) in the z axis from the x-y axis. T1 for a material is the 

point of maximum growth, the 63% point of the final value 

achieved.  

T2 relaxation takes place in the transaxial plane occurring as the signal decays due to 

the individual magnetic moments dephasing in the x-y plane and T2 is known as the 

transverse relaxation rate. Individual nuclei experiencing varying magnetic fields cause 

the loss of phase. This may be where nuclei experience local magnetic fields and 

exchange energy with adjacent nuclei at the same frequency without net energy loss 

from the system.  

Illustrated in Figure 1.7; spins dephase in both directions in the x-y plane, in a fan like 

motion. Where they move to the left they are travelling at a lower rate of precession 

than previously and in moving to the right are at a higher rate of precession. The 
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transverse magnetisation falls as a ratio of the T2 and the time between the initial RF 

pulse and the signal or echo following a second RF pulse. This is known as the time to 

echo or echo time (TE). As the echo time increases the signal reduces. 

 

 

Figure 1.7 T2 Relaxation. Decay of signal in the x-y plane as the 

nuclei dephase. T2 is the point of achieving 37% of full time to 

dephasing.  

It can be seen that the signal intensity from a voxel will depend on the T1 and T2 but it 

also depends upon the proton density (PD), although this does not change for a given 

material. The T1 and T2 relaxations were initially described by Bloch (2) in 1946 and it 

is in part through manipulation of these parameters that different contrasts can be 

achieved. 

The material studied effects the signal intensity, for example the low proton density of 

bone results in low signal on a proton density-weighted image. The effect of the 

environment of the hydrogen nuclei is crucial, T1 relaxation is most efficient at the 

Larmor frequency but in the case of free water the random free movement of the nuclei 

exceeds the Larmor frequency and the T1 is prolonged. If water is more restricted in its 

movements as in white or grey matter the T1 is shortened. In the case of T2 relaxation it 

is most efficient in solids like bone where loss of phase is occurring due to both the 

effects detailed previously. When in liquids the hydrogen nuclei only dephase by 
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interaction with adjacent nuclei, the effect of the field fluctuations is cancelled by the 

random movement of the nuclei and consequently the T2 is prolonged.  

It is possible to plot the values of T1 and T2 for different tissues as seen in Table 1.1. 

The NMR signal is dependent upon a number of properties including the proton density, 

the environment the nuclei being studied are found (i.e. free water or within white 

matter), magnetic susceptibility as well as flow where the nuclei are in blood or 

cerebrospinal fluid (CSF). Through manipulation of TE and TR it is possible to modify 

the signal intensity to weight a sequence such that signals from certain tissue types 

predominate. The rate of T1 relaxation is also strongly dependent on the NMR 

frequency, hence varies with magnetic field strength B. As a consequence 

measurements made on different MR machines will vary. The temperature of the tissue 

being imaged also affects the signal, although in vivo this is a less significant problem. 

 

Proton Density 

(relative to H20) 
T1 T2 

White Matter 
0.73 557 72 

Grey Matter 
0.85 993 87 

Cerebrospinal Fluid 

(CSF) 

1 4000 2500 

Measurements on a 1.5T MR scanner 

 

 

Table 1.1 NMR characteristics of CNS tissues and CSF 

1.1.9  IMAGING SEQUENCES 

The application of an RF pulse to a hydrogen nucleus produces a signal; this signal is 

known as free induction decay (FID) as a result of the magnetisation being tipped into 

the x-y plane. This decay in signal is due to a dephasing effect and is known as T2*. 

The decay is less than the “true” T2 of the tissue as a consequence of B0 field 
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inhomogeneities from susceptibility effects and imperfections in the magnet causing the 

diminution in the observed decay. 

Spin echoes (SE) result from two consecutive RF pulses at 90° and 180°. They are 

preferred over FID’s as the T2* effects mean that the signal decays too rapidly. The 

180° pulse refocuses the spins but also has the effect of cancelling the dephasing effect 

of the T2* after the 90° pulse as they are mirrored following the 180° pulse through 

effectively reversing the spins. This is the method described as the spin echo (SE) 

sequence to remove inhomogeneities in the magnetic field (3). The result of which is 

that the signal is determined by the T2 (which is always greater than the T2*). The 

majority of clinical MRI sequences are SE’s; modification of the TE and TR allows 

acquisition of images weighted for T1 or T2. Contrast between tissues can also be 

obtained through the use of a contrast material injected intravenously. Gadolinium is in 

common usage; it is highly paramagnetic resulting in a reduction (shortening) of the T1 

time of the hydrogen nuclei nearby. Its effects are useful when the blood-brain barrier in 

the brain is breached and the gadolinium leaks out into the tissues as may occur in the 

presence of a tumour. Its properties also lend it to use in the case of imaging of blood 

vessels in MR angiography.  

One of the significant issues in MRI is the amount of time required to collect the data. 

The use of the fast spin echo (FSE) uses a series of refocusing pulses following the 

initial excitatory pulse. In contrast with the SE, multiple lines of k-space are obtained 

for each TR. The number of views corresponds to the number of graduations in the 

phase encoding direction, all of which must be obtained before image reconstruction. In 

the FSE sequence multiple views are recorded where the number of echoes is referred to 

as the echo train length (ETL) obtained before the TR; if the ETL is 2 then the imaging 

time would be halved and so on with increasing ETL. As the ETL increases the image 
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quality falls due to a fall in signal intensity at the increasing echo times. The length of 

the T2 also affects the FSE image quality. 

In some sequences the desired effect is to null the signal from a particular material, this 

is the case when wishing to assess the nature of lesions near to the ventricles of the 

brain. In such locations the high signal provided by the CSF diminishes the ability to 

define periventricular lesions. Inversion recovery imaging using a 180° RF pulse 

applied prior to the rest of the sequence causes the nuclei to reverse their direction from 

parallel to the z-axis to anti-parallel, the nuclei then relax back to parallel at the T1 rate. 

This initial inversion (180°) pulse is typically followed by the first excitatory pulse 

(90°) of a SE or FSE, the time between which is the time to inversion (TI). The 

suppression of the signal  from fluid is achieved using the fluid attenuated inversion 

recovery (FLAIR) (4) sequence  through the matching of TI to the point at which there 

is net no longitudinal magnetisation from the fluid and hence no transverse 

magnetisation of the CSF.   

Gradient echoes are also used as a consequence of their short acquisition times and 

sensitivity to materials causing distortions in the magnetic field such as haemosiderin 

and ferritin. The 90° initial RF pulse which tips the nuclear spins into the x-y plane is 

followed by a gradient that is the reverse of the slice-select gradient and causes a 

dephasing which is then followed by an opposite gradient refocusing the spins, 

generating an echo. The rapid acquisition of data is dependent on the use of a single RF 

pulse and then multiple rapidly alternating gradients However the sequences are 

susceptible to image artefacts as they are sensitive to  inhomogeneities caused by 

changes in magnetic susceptibility as occurs at the interface between tissue and air for 

example.  
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The goal of obtaining optimal images with restricted time stems from the need to 

maintain the imaged object in the same position for a lengthy period of time. In the case 

of a patient not only does the individuals tolerance of remaining still become an issue 

during the sequence acquisition but also so does the involuntary movement of the body 

such as cardiac pulsation and respiratory movements. In the context of diffusion 

imaging in which the sequence is intentionally sensitised to small motions, the need for 

fast sequences is more apparent. To this end echo planar imaging (EPI) is implemented 

in diffusion imaging and this is the sequence used in this work.  

As described for the gradient echo sequence the readout gradient can be repeated many 

times, changing polarity, it is this method that is used in EPI. After each readout 

gradient a further phase encoding gradients is applied to determine the next view and 

only a single excitation pulse is used to collect all the data in k-space. This makes the 

imaging time much shorter. The major limitation of this method is that EPI is very 

susceptible to susceptibility artefacts and low signal to noise ratio. 

 

 



CHAPTER ONE: GENERAL INTRODUCTION 

31 

 

1.2 MR IMAGING OF CNS TUMOURS 

MRI is considered to be the optimal method for the detection of childhood tumours. 

Typically lesions will exhibit prolonged T1 or T2 relaxation times enabling their 

visualisation. The extent and location of the lesion is usually well displayed with multi-

planar imaging. MRI has the advantage over CT in that images are not degraded by the 

presence of overlying bone, which is a particular concern in the posterior fossa. Axial 

and sagittal images tend to provide the most information in such cases and coronal 

imaging adds value particularly in supratentorial lesions. The role for CT is often as a 

first line investigation available out of hours at general hospitals where MRI services 

are not provided. CT is also useful in providing information as to the relationship to the 

bone which is not provided by MRI (5). 

There are numerous histological types and grades of tumour seen in the CNS; frequently 

they have characteristic appearances on MRI. The common types of tumour are further 

summarised in section 1.4, specifically Astrocytomas, Primitive neuroectodermal 

tumours and ependymomas occur most commonly. As individual tumour types their 

grade can vary, providing sub-classification, which is also a marker of their 

aggressiveness and hence information which may determine the course of future 

treatment. Their appearances will differ on MRI, according to the grade and the type of 

lesion. Radiologists review the imaging and can provide a differential diagnosis; in 

effect a list of the possibilities in order of their likelihood based on their experience, 

results may vary from individual reviewers, prior to a surgical or other treatment 

intervention (6). This is discussed further in chapter 4. 

In order to better characterise a lesion contrast agents are commonly used, such as 

Gadolinium diethylenetriaminepenta-acetic acid (DTPA). This is a paramagnetic 
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contrast agent which has a similar distribution following intravenous injection to the 

iodinated contrast media used in CT imaging. The effect of the Gadolinium is to shorten 

T1 times such that tissues which contain it will appear bright on T1-weighted images. 

Such contrast has the potential to assist in the discrimination of features such as tumour 

tissue from surrounding oedema or to provide inference as to the grade. Typically 

higher grade glioma lesions are seen to enhance heterogeneously with contrast although 

this is not always reliable and low grade lesions are sometimes seen to enhance (7). In 

addition, some small lesions may only be visualised after contrast enhancement.  

The different sequences used vary from department to department and the standard 

tumour imaging protocol at GOSH for intracranial lesions is seen in section 3.3. The use 

of FLAIR imaging aids in the discrimination of lesions and associated vasogenic 

oedema and also aids discrimination of periventricular lesions. MRI still remains 

limited as a tool in determining as to what degree the tumour has invaded at a 

microscopic level and hence delineating the boundary between normal brain and tumour 

(8). MRI is also the modality of choice for the assessment of the spine in terms of 

tumour spread (metastases) or of primary neoplasms. 

Other imaging modalities play a role in the assessment of neoplasms; positron emission 

tomography is helpful in providing information as to the viability or metabolic activity 

of tissues. This can be of particular help when following up post radiotherapy so as to 

discriminate viable tumour from necrotic or inactive tissue. MR spectroscopy has a role 

in characterising neoplasms, molecules such as choline, creatine, phosphocreatine; 

neurotransmitters such as glutamate; markers of metabolic activity, lactate and also N-

acetyl aspartate; all exhibit characteristic resonant frequencies. Metabolite levels can be 

detected and a spectrum of frequencies created in order to describe the lesion. This 
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information has been used in an attempt to discriminate areas of tumour in surrounding 

brain and in classification of lesions (6;9-11).  

The radiological appearance of the common paediatric posterior fossa lesions and their 

imaging characteristics are highlighted overleaf. 
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One of the common infratentorial tumours is primitive neuroectodermal tumour (PNET) 

PNET-Medulloblastoma. Typically they arise in the midline, from the cerebellar vermis 

in younger children and in adolescents more commonly in the cerebellar hemisphere. 

Radiologically they are characterised as well defined, lobulated solid masses. They may 

have a heterogeneous appearance with cysts and calcification within them. PNETs also 

occur supratentorially, although not classified as medulloblastomas, they share the same 

lineage. Generally they are solid in appearance with punctate areas of calcification, they 

are isointense to grey matter with reduced diffusion and typically they are sharply 

marginated (6).  

 

Figure 1.8 PNET-Medulloblastoma. Coronal T2, axial FLAIR, coronal T1 

and sagittal T1 with contrast. Images show an extensive disseminated 

malignancy. A midline posterior fossa mass is identified which is largely 

poorly enhancing. There is moderate secondary obstructive hydrocephalus. 
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Astrocytomas can have several grades but are usually low grade, in a hemispheric or 

vermian location. They are usually cystic with a solid enhancing nodule, the cystic 

component is hyperintense on T2-weighted imaging (6). 

 

Figure 1.9 Juvenile pilocytic astrocytoma. Axial T2, coronal flair and T1-

weighed MRI, axial T1-weighted MRI with contrast. Images show a large 

well demarcated mass arising from the cerebellar vermis showing 

heterogenous enhancement with surrounding oedema, effacement of the fourth 

ventricle and prominence of the lateral and third ventricles. 
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Ependymomas are often heterogeneous in appearance with mixed solid and cystic areas 

which display fluid levels. Approximately 50% have calcification and a low T2-

weighted signal from the presence of the calcium or haemorrhage. The tumours in the 

posterior fossa arise from the cells lining the roof of the fourth ventricle and often 

extend through the outflow of the fourth ventricle via the foraminae of Magendie and 

Lushka (6). 

 

Figure 1.10 Ependymoma. Coronal T2 and T1-weighted images, axial and 

sagittal T1-weighted images with contrast. A large peripherally enhancing 

mass arising from the dorsal aspect of the midbrain and growing into and 

obstructing the fourth ventricle is seen. Haemorrhage is evident within the 

tumour.  
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The atypical teratoid/rhabdoid tumours may be both supra or infratentorial in location 

with a heterogeneous appearance typically with haemorrhage, necrosis, and cysts, 

enhancement is similarly heterogeneous. When infratentorial they arise from the 

cerebellar vermis and are not usually midline. When supratentorial, they are solid with 

necrotic regions which enhance heterogeneously (6). 

 
 

Figure 1.11 Atypical teratoid rhabdoid tumour (ATRT). Axial T2-

weighted, coronal FLAIR, coronal T1-weighted and axial T1-weighted 

MRI with contrast. There is a right frontal lobe mixed cystic/necrotic and 

solid tumour with adjacent scalloping of the frontal bone. The peripheral solid 

component has signal characteristics of high cellularity. There is midline shift 

to the left with contralateral hydrocephalus.  
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Dysembryoplastic neuroepithelial tumours (DNTs) are low grade lesions and often 

present with seizures in young children. They tend to be located in the temporal lobe 

and also the frontal lobe. They lie, in part or entirely, in the cortex and may have poorly 

defined contours. They have multinodular bright signal qualities on T2-weighted MRI; 

they can also show remodelling of the adjacent calvarium. On T1-weighted images they 

are typically hypo-intense and are devoid of mass effect or associated oedema. A 

minority show discrete foci of nodular or ring enhancement (12). 

 

Figure 1.12 Dysembryoplastic neuroepithelial tumour (DNT). Axial T2-

weighted, coronal T1-weighted and axial and sagittal T1-weighted MRI 

with contrast images. A small cortical mass with a rim enhancing central 

component is seen in the left anterior temporal region exerting minimal mass 

effect. There is expansion of the left middle cranial fossa indicating a long 

standing lesion. Also characteristic is the absence or white matter changes 

indicative of oedema. 
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Choroid plexus papillomas tend to have a papillary appearance and are intra ventricular 

neoplasms derived from choroid plexus epithelium, typically occurring mainly in 

childhood. They occur most frequently in the lateral ventricles, although they can occur 

in the fourth ventricle or even be multifocal. Clinically they manifest themselves due to 

hydrocephalus either through obstruction to cerebrospinal fluid flow or its excessive 

production. On T2-weighted images they appear as lobulated masses with frond like 

papillary projections. They may be isointense relative to the cortex and have internal 

hypointense foci that may represent prominent vessels. Often there is associated 

hydrocephalus and transependymal cerebrospinal fluid flow (13). 

 
 

Figure 1.13 Choroid plexus papilloma. Axial T2-weighted, coronal T1-

weighted, coronal and axial T1-weighted MRI with contrast. Imaging 

shows a lobulated highly vascular lesion within the right trigone which 
remains confined to the lateral ventricle.There are vascular flow voids 

associated with it likely to represent choroidal vascular supply. It enhances 

avidly with contrast. 
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1.3 PAEDIATRIC CNS INTRACRANIAL TUMOURS 

Cancer in childhood is rare and in comparison to adult practice the majority can expect 

to be cured. However paediatric primary CNS tumours account for almost 20 percent of 

all neoplasms in children less than 15 years. They represent the second most common 

form of paediatric cancer exceeded only by leukaemia. In addition they represent the 

leading cause of death in infancy and childhood in developed countries. 

1.3.1  PAEDIATRIC CNS TUMOURS BACKGROUND 

The incidence of paediatric CNS tumours in the UK is 2-3 per 100,000 (5). Incidence in 

the US is reported as similar (14) and 28,000 children in the U.S. are living with the 

diagnosis of a primary brain tumour with 3,750 more children diagnosed each year, 

equating to 10 a day. 

They differ from adult tumours in some important respects. A greater proportion are 

infratentorial and low grade gliomas tend to predominate, hemispheric high grade 

gliomas, whilst common in the adult population, are rare in children. Typical low grade 

gliomas include pilocytic astrocytomas commonly located in the posterior fossa. PNETs 

constitute approximately a quarter of all paediatric CNS tumours and have bimodal age 

distribution with peak incidences at ages 3-4 years and subsequently at 8-9 years.  There 

are more than 130 types of paediatric CNS tumour (15) and many of them are rare and 

specific to children making diagnosis and treatment more of a challenge as the numbers 

encountered for study are often small.  The type and incidence of paediatric CNS 

tumours from five large series are presented in Table 1.2. Similar information is shown 

of those cases presenting to GOSH in 2007, in figure 1.14.  

 



CHAPTER ONE: GENERAL INTRODUCTION 

41 

 

 

Table 1.2 Incidence of paediatric CNS tumours. Summary of data from 5 

large series (Cohen & Duffner 1994) (16) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.14 Types of CNS Tumour presenting to GOSH in 2007 as a 

first diagnosis. *Includes PNET-Medulloblastoma & ATRT. ** Excludes brain stem 

lesions 

 

In terms of age-related risk children less than 5 years of age have the greatest incidence 

of brain tumours. The National Institute of Neurological Disorders and Stoke report (17) 

that one third of all tumours have presented by this age, three quarters have presented by 

Tumour  % incidence 

Astrocytic tumours 47 

Ependymomas 11 

Medulloblastomas 19 

Pineal region tumours 2 

Craniopharyngiomas 6 
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the age of ten years. In terms of age distribution by tumour type for ages 0-3 PNET and 

ependymoma were commonest (11 and 7 per million respectively). Gliomas had the 

lowest incidence throughout infancy and peaks at age 8 and 17 (9 and 7 per million) 

(18). Figure 1.15 shows the distribution of ages for new tumours presenting to GOSH in 

2008. 

 

 

 

 

 

 

 

 

 

 

Figure 1.15 CNS tumours presenting to GOSH in 2008 by age group 

In addition there has been an increase in the diagnosis of paediatric brain tumours over 

the last twenty years.  Between 1973 and 1994, the reported incidence of childhood 

brain tumours increased by 35% (18).  This is thought to be due to the increasing use of 

MRI and coincides with its introduction and development as an imaging tool. 

1.3.2  DIAGNOSTIC IMAGING 

The use of CT and MRI and typical imaging findings of the common paediatric CNS 

tumours investigated in this work are covered in section 1.2. 

0
5

10
15
20
25
30
35
40
45
50
55

< 1 Year 1 - 3 Years 3 - 13 Years > 13Years



CHAPTER ONE: GENERAL INTRODUCTION 

43 

 

1.3.3  TREATMENT MODALITIES 

The treatment pathways for new paediatric tumours are variable and decisions as to the 

correct course are taken in the context of multidisciplinary teams (5). There still remains 

some debate over the correct course of action in terms of surgical intervention and the 

decision may rest as to whether a surgical biopsy should be undertaken or whether 

treatment in terms of radiotherapy or chemotherapy can proceed on the basis of the 

presumptive diagnosis based on the clinical history, laboratory investigations and the 

radiological findings. The treatment pathways of the new CNS tumours presenting to 

our institution in 2008 is shown in Figure 1.16. 

The development of dedicated paediatric neurosurgeons and the provision of intensive 

care beds have lead to an increase in the number of surgical cases being undertaken. The 

operations have become more radical and the morbidity has decreased. Of the 83 new 

cases at GOSH in 2008, 69 (83%) cases had histological confirmation either by biopsy, 

debulking or radical surgery and 22 cases had more than one procedure (typically 

insertion of a VP shunt) of the surgical cases 20 were diagnostic open or stereotactic 

biopsies. Of the 69 children who had surgery 21 went on to have radiotherapy and 24 to 

have chemotherapy. 

The nature of the surgical intervention in an individual case depends on many factors, 

for example direct open diagnostic biopsy is preferred to stereotactic biopsy in very 

young children while remaining an option in older children (5). There exists an 

intention to avoid surgery and particularly biopsy with its attendant risks of morbidity 

and mortality where possible. Imaging can in some cases provide a satisfactory 

diagnosis without the need for biopsy, such as optic nerve and brainstem gliomas in 

children with neurofibromatosis. Germ cell tumours have quite distinct imaging 
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findings and in combination with raised CSF / serum markers (HCG/αFP) the need for 

diagnostic surgical intervention obviated.    

 

Figure 1.16 Summary of treatment pathways. Children presenting with 

new CNS tumours to GOSH 2008 

Radiotherapy and chemotherapy are the alternative and additional treatment options 

when surgery alone is inadequate or not indicated due to the risks and poor prognosis 

from the tumour, (as in the case of atypical teratoid rhabdoid tumours ATRTs). 

Radiotherapy has improved greatly in terms of focusing the beam and treatment area, 

hence diminishing the amount of normal brain exposed, however this still poses a 

significant risk. Radiotherapy is not usually undertaken in children under 4-5 years for 

fear of the risks of long term developmental damage. Tumours with a tendency to 

metastasise throughout the neuraxis can warrant whole craniospinal radiotherapy, 

typically cases such as PNETs fall into this category. 
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Chemotherapy has had some success but is thought in part to be limited by the presence 

of the blood brain barrier which prevents water soluble drugs crossing into the brain. 

This has at least been the experience with adult lesions, although there appear to be 

more positive results in paediatric tumours (19-21). 

Overall survival for children with paediatric brain tumours has improved in the past 10 

to 20 years and is just over 70% (18). This is most likely due to the multidisciplinary 

approach with improved surgical technique, better peri-operative care, the focused use 

of radiotherapy and multidrug chemotherapy regimes. 

Despite these improvments, survivors often suffer from lifelong side effects of 

treatments such as surgery, radiation and chemotherapy. They may have physical, 

learning and emotional difficulties that will limit the quality of their lives into 

adulthood.  This underlines the key nature of minimising mortality and morbidity 

associated with treatment modalities, in the case of surgery, either the avoidance of it or 

the improved pre-operative planning in terms of the location of eloquent white matter 

tracts (22).   
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1.4 CEREBELLAR WHITE MATTER ANATOMY 

The cerebellum is involved in the control of fine movement, muscle tone, balance and 

equilibrium. Put simply it compares that which you thought you were doing with that 

which you are doing, through proprioceptive feedback. The key difference from the 

cortex of the cerebrum in terms of circuitry is that the functions are represented 

ipsilaterally in the cerebellum (23). It is thought to perform a key role in motor learning 

of fine or complex tasks (24). 

The fourth ventricle is covered by the cerebellum, the narrowed midline is the vermis 

and the lateral expansions form the hemispheres. It is divided into a flocculonodular 

lobe which is located posteriorly and a more anterior corpus cerebelli which is sub 

divided into an anterior and posterior lobe. The cerebellar cortex forms the outer layer 

and overlies a white matter core together forming the arbour vitae, at the centre of 

which are the cerebellar deep nuclei. These nuclei are the output areas of the 

cerebellum, receiving inputs from the cortex and sending projections to the thalamus, 

red nucleus and brainstem. The nuclei are, named medial to lateral, the fastigal, 

interpositus ( in man it is divided into globose and emboliform) and the dentate nucleus, 

they are bilaterally represented (25). 

The efferent and afferent connections from the cerebellum transit via three peduncles 

which are bilateral and contribute to the walls of the fourth ventricle.  All output from 

the cerebellum, via the deep nuclei, passes through the superior cerebellar peduncle, 

although it also contains some input fibres.  The middle cerebellar peduncle receives 

input exclusively from the pontine nuclei.  The inferior cerebellar peduncle contains 

exclusively inputs (26). 
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The major afferent connections are from the vestibular system, spinal cord, inferior 

olive, and the cerebral cortex. The vestibular system input helps control coordination of 

posture and gait via the midline muscle groups and the limbs. The fibres distribute 

principally to the posterior vermis and hemisphere of the flocculonodular lobe transiting 

via the inferior cerebellar peduncle. Input from the spinal cord is via the spinocerebellar 

tract for the lower extremity and enters through the inferior cerebellar peduncle; the 

accessory cuneate nucleus providing upper limb input gives rise to cuneatocerebellar 

fibres. These cuneatocerebellar fibres distribute to the anterior vermis, the anterior lobe 

and the paravermian areas of the anterior and posterior lobes delivering proprioceptive 

information originating in the limbs in order to coordinate the limbs for gait and 

posture. In essence the vestibular, spino- and cuneatocerebellar input is ipsilateral.  

The olivocerebellar fibres form a substantial part of the inferior cerebellar peduncle, 

pass contralaterally from the olive, and distribute to all areas of the cerebellum. The 

fibres are thought to deliver spinal cord sensory and supra-segmental motor input to the 

cerebellum. The corticopontine fibres descend from the motor areas of the cerebral 

cortex to synapse on the nuclei of the ipsilateral basis pontis. Once the pontocerebellar 

fibres have synapsed they cross and enter the cerebellum via the middle cerebellar 

peduncle, distributing primarily to the hemispheres of the anterior and posterior lobes. 

This cortico-pontocerebellar input helps regulate fine movements particularly in the 

distal muscles of the hand. The patterns of distribution and connections of the 

cerebellum are demonstrated in figure 1.17. 
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Figure 1.17 Connections of the cerebellum. Superior, middle and inferior 

cerebellar peduncles 

Lesions of the cerebellum in primates, specifically removal of the cerebellum result in 

hypotonia or loss of muscle tone.  In reversible cooling of the dentate nucleus it is seen 

that reaction times are slowed and that there is impairment of rapidly alternating 

movements, thought to be due to a delay in antagonist onset. The response to muscle 

load changes is impaired. In situations where load changes are expected but not 

predicted the muscle stretch evokes an antagonist response to limit oscillations. As a 

consequence of cooling the antagonist response is delayed (27). Slow movements 

become jerky and tracking moving targets with the hand also becomes jerky as the 

velocity is no longer matched whilst the subject attempts to match the position. This has 
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led Thach et al in 1993 (24) to suppose that the cerebellum is important in the co-

ordination of multiple joint movements. 

In the clinical spectrum the classical descriptions were by Gordon Holmes in 1939 (28) 

where he described hypotonia (loss of muscle tone), ataxia (loss of co-ordination) and 

deficiencies in movement distance (dysmetria), velocity and rhythm of muscle 

movements. In addition he described a loss of co-ordination between different muscle 

groups (asynergy) and associated postural abnormalities, specifically truncal ataxia. 

This truncal and lower limb ataxia leads to gait ataxia and difficulty standing, ataxia of 

the upper limbs causing decomposition of smooth movements represented as an 

intention tremor.  When testing for the ability to perform a rapidly alternating co-

ordinated movement, the force and rhythm deficits are revealed as dysdiadochokinesia. 

These deficits can be bilateral or if the lesion is unilateral in the cerebellum it may only 

produce ipsilateral symptoms (23;28-30). 
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2.1 MR DIFFUSION IMAGING 

2.1.1  PRINCIPLES & BACKGROUND 

Diffusion-weighted imaging (DWI) as a means of providing image contrast has become 

established over the last 20 years. DWI is sensitive to the random microscopic 

movements of water molecules in tissues, these movements are intimately related to the 

structure of the surroundings of the molecules. 
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The phenomenon of MR signal attenuation in the presence of field gradients due to 

movement or diffusion of molecules was initially described by Carr and Purcell in 1954 

(31;32). Subsequently investigation by Stejskal and Tanner (33) resulted in the 

publication of their pulsed gradient technique which is frequently used in modern DWI. 

The later development of EPI and stronger field gradients throughout the early 1990’s 

has enabled its use as a clinical tool.  

The ability of DWI to reflect the movement of water molecules in tissue offered the 

possibility of a unique non-invasive means of probing the tissue architecture at a 

cellular level. In 1990 Moseley et al (34) showed, using a cat brain stoke model, that an 

area of ischaemia could be identified through a reduction in the apparent diffusion 

coefficient (of up to 50%) at thirty minutes whilst conventional imaging showed no 

appreciable change. The application was then used in the investigation of acute stroke 

patients (35) where regions of ischaemia could be visualised within minutes of the onset 

of a stroke or infarct (36-42).  

The basis to the MR signal loss is the underlying thermal process of diffusion; 

molecules undergoing random translational movements in a fluid. Diffusion can occur 

along a concentration gradient from a region of high to low concentration; this is known 

as bulk diffusion. In the presence of a uniform concentration, where no other external 

forces act on them, the diffusion of molecules is described statistically. A molecule 

moves a certain distance in a certain time; known as self-diffusion or Brownian motion. 

The movement is temperature dependent and affected by interactions with adjacent 

molecules and has been described as a random walk (36). As the movements are 

random there is no net change in position (i.e. no bulk diffusion) and hence the 

probability of moving in any direction is identical. The process is proportionally time 

dependent, with increasing time comes increasing distance following a Gaussian 
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(normal) distribution. The process is quantified by Einstein’s equation (43) to give the 

average distance moved in a given time: 

         

Where       is the average value for the square of the distance moved in time t and D is 

the diffusion coefficient. MRI is sensitive to water molecules; their diffusion due to 

thermal energy driven from reactions within the body provides the substrate for 

investigation (41;43;44).  

2.1.2  DIFFUSION-WEIGHTED IMAGING 

In an unrestricted environment the main determinants of the magnitude of diffusion 

include the molecule investigated and the temperature it experiences. A further variable 

is then the presence of impediments to movement as provided by tissue micro 

architecture. CSF water molecules within the ventricular system are under less 

constraint than the water molecules in the extracellular and intracellular environments. 

The differing amounts of diffusion can be used as an image contrast in MR sequences 

sensitive to this as demonstrated by Le Bihan et al 1986(45). 

MR imaging is sensitive to movement both at the macroscopic level (respiration, 

cardiac pulsation) and also at the molecular level. This can manifest as image artefact or 

signal loss. The phase shifts due to the diffusion and resultant signal loss due to 

microscopic movements can be quantified but are typically small in conventional MRI, 

with the addition of stronger magnetic gradients the signal loss is amplified. As 

described by Stejskal and Tanner (33) two strong pulsed gradients were added to a spin 

echo sequence, symmetrically either side of the 180° refocusing pulse. In this case the 

first additional gradient pulse following the initial 90° radiofrequency pulse (where the 
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spins align along the x-axis), briefly exposes the spins along the gradient to a differing 

magnetic field strength. The result is a change in phase of the spins along the gradient 

direction. The 180° pulse is applied reversing the phase and then a second identical 

gradient pulse. If the spins were to remain stationary it would mean no net phase shift as 

the gradients are identical. The effect of the diffusion of the water molecules means that 

the spins do not remain stationary between the first and second refocusing gradient 

pulses. Hence the signal measured when the spins are under relaxation is proportional to 

the loss of phase of all the spins within the region (voxel) being quantified. The loss of 

phase results in a signal loss and is proportional to the amount of diffusion, although 

there is also an effect from T2 relaxation in the spin dephasing and hence both T2 and 

diffusion contrast are seen. Hence the greater the degree of random molecular motion 

the greater the signal loss (36;39).  

The degree of signal loss is also affected by the duration and strength of the diffusion 

gradients. The degree of diffusion sensitivity of the sequence is determined by the b 

value (gradient b factor) a product of the gyromagnetic ratio, gradient strength and 

duration and the time between the leading edges of the pulses. The effect of different b-

values on the image contrast is illustrated below (Figure 2.1). When obtaining diffusion-

weighted images long echo times are necessary and the images produced are heavily 

T2-weighted. If a further acquisition of EPI at b = 0 s mm
-2

 is acquired the diffusion, D, 

can be calculated as per the expression below; 

   
    

    
      

Where S(0) and S(b) are the signals with and without diffusion gradient both 

acquisitions are equally T2 weighted, its effect is removed from the calculation. When 
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this calculation is applied on a voxel basis a map of the diffusion coefficients is created, 

known as an apparent diffusion coefficient (ADC) map. 

The relatively small signal loss measured can be amplified to make it more significant 

through the use of stronger gradients and also extended echo times. In so doing there is 

a significant increase in the acquisition time and also a reduction in the signal to noise 

ratio of the spin echo. Increased acquisition time in a spin echo sequence that is highly 

sensitive to molecular motion means the effects of other intrinsic biological movements 

(cardiac pulsations, respiration and patient movement) are more significant and degrade 

the image. In order to counter this, as discussed in section 1.1 a much faster sequence is 

implemented, typically an echo planar image, which rapidly acquires whole tissue 

coverage. These sequences are however prone to susceptibility artefact and poorer 

resolution (44;46). 

 

Figure 2.1 Diffusion weighted images; b  = 0 s mm
-2 

(left)  and b = 1000 s 

mm
-2

 (right) 

In the above images it is clear that different tissues have different degrees of diffusion, 

as mentioned previously. In the ventricles of the brain the water molecules are 
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unconstrained and diffusion distance increases linearly with the square root of time. In 

soft tissue the water molecules are more constrained and hence diffusion is reduced, this 

situation has been compared to the movement of water in aqueous protein solutions 

(42). When the water molecules are constrained the diffusion distance is diminished 

even with extended time.   

In a biological structure such as the brain, diffusion distances tend to be shorter than in 

free fluid as a consequence of the cell membrane and internal organelles and structure. 

However debate exists as to the determinants of diffusion in terms of the contributions 

of the fluid compartments on the diffusion coefficient and the effects of membranes 

within the tissue. The calculation of the reduced diffusion coefficient of water in a tissue 

as compared to that of free water was established by Nicholson and Phillips in 1981 

(46;47). They also hypothesised that the effect originated from the molecules being 

forced around obstructions due to fibres, intracellular organelles and macromolecules. 

In effect the environment greatly limits the degree of diffusion and hence the use of the 

expression, apparent diffusion coefficient. In order to reflect that the diffusion 

coefficient of water has not actually changed but that the root mean displacement per 

unit time is diminished. The measurement of the differing amounts of impedance in 

structures underlies the principle of diffusion-weighted imaging  (40).  

The clinical applications of this contrast have increased through technical development; 

specifically the use of shielded gradient coils which have reduced eddy currents 

produced by the rapidly changing gradient pulses fundamental to diffusion-weighted 

imaging (40;46;47). 
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2.2 CLINICAL APPLICATIONS OF DWI IN INTRACRANIAL LESIONS 

In 1981 Meerwall and Ferguson looked at the distances moved by water molecules (48) 

surrounded by structures with permeable membranes, their paths were seen to be 

tortuous through interactions with neighbouring structures. When examining such 

motion effects at the voxel level, in effect a more detailed investigation of the tissue 

structure is achieved than the apparent resolution of conventional imaging. It may 

follow from this that in disease processes where there may be alterations in the cellular 

structure as a consequence of the patho-physiology of the disease, the diffusion of water 

may also be changed, reflecting this. 

2.2.1  DIFFUSION-WEIGHTED IMAGING CNS APPLICATIONS 

In the brain and other living tissues the integrity of cell membranes and their function to 

maintain osmotic gradients is vital to the regulation of movement of water between the 

intra and extracellular compartments. When the blood supply and hence energy supply 

to cells is diminished or abolished a sequence of events takes place affecting the 

movement of water. Initially water diffusion is restricted secondary to cell swelling 

through the reduction of the extracellular volume, subsequently with loss of cell wall 

integrity diffusion increases (49;50). This pattern of interrupted blood supply is seen in 

ischaemic injury to the brain. Moseley et al in 1990 investigated imaging findings using 

occlusion of the carotid arteries or the middle cerebral artery in the cat to mimic the 

effects of an ischaemic stroke. In ischaemic regions the DWI showed hyper-intensity 

when the T2-weighted imaging did not from 45 minutes following the ischaemic insult, 

where as the T2-weighted imaging took more than 2 hours to reveal similar changes. 

These appearances were hypothesised as being secondary to failure of cell membranes 

to regulate the movement of water and its consequent accumulation in the cell 
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(cytotoxic oedema) causing a fall in diffusion and hence a bright signal (reduced 

diffusion coefficient) (34;51). 

Pierpaoli et al, in 1993 (52) investigated the correlation of MR appearances with the 

cytological and histological findings in ischemic tissue using a photochemical model of 

cerebral infarction in rats. They undertook diffusion and T2-weighted MR imaging and 

compared appearances with light and electron microscopic findings. The T2-weighted 

images demonstrated vasogenic oedema but did not demonstrate differences between 

regions of cell damage and surrounding oedematous regions. The DWI and calculated 

ADC maps revealed elevated ADC in the non-ischaemic oedematous regions but in 

regions identified histologically as damaged or necrotic it was diminished. As the lesion 

progressed with time, in the core of the infarct the ADC changed from being reduced to 

being raised; regions subsequently identified as having cellular lysis on electron 

microscopy. The early identification of areas as reversible and irreversible ischaemia 

has the potential to better identify individuals who may benefit from further treatment in 

order to prevent permanent damage to that tissue (41;53;54). 

The techniques application in the evaluation of acute cerebral ischaemia is well 

recognised (55). It has been used to distinguish between cystic or necrotic brain 

tumours and abscesses, where the ADC of abscesses is significantly reduced in 

comparison to those of tumours (56-59). This is thought to be due to the high 

viscosity and more cellular, purulent abscess fluid as compared to necrotic tumour 

and tumour cysts (60;61). The discrimination of arachnoid cysts from epidermoids 

has had positive results, the basis of which is thought to be that epidermoids have 

more complex internal structure and hence more restricted diffusion by 

comparison to arachnoid cysts that allow free diffusion of water (60;61). 
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DWI has been used in the study of multiple sclerosis plaques; diffusion was 

increased within plaques visualised on T2-weighted images (62;63). Subsequently 

apparently normal white matter regions between visible plaques have been seen to 

have reduced diffusivity (64). This has raised questions as to the hypothesised 

nature of the disease; whether it is a more diffuse rather than multifocal process.  

Head injury and diffuse axonal injury have been investigated with DWI and 

changes similar to those seen in ischaemic stroke revealed, persisting up to 18 

days post injury (65). Further studies have had conflicting results regarding 

changes in diffusion characteristics but when DWI is compared with conventional 

MRI, specifically T2-weighted fast SE, FLAIR, and T2*-weighted gradient echo 

sequences, the DWI reveals the greatest number of traumatic lesions. Huismann et 

al in 2003 demonstrated that the DWI signal abnormalities correlated more highly 

with outcome as assessed by the Rankin scale and Glasgow outcome score (39). 

2.2.2  DIFFUSION-WEIGHTED IMAGING OF INTRACRANIAL TUMOURS 

Following the preliminary investigations into DWI of intracranial lesions as seen in the 

work of Le Bihan et al and others (45;66-69) it was shown that the diffusion coefficients 

of cystic components of lesions tended toward those of free water, depending upon the 

contents and viscosity of the fluid. This proves useful when the pyromagnetic material 

in the cyst shortens the T1 and T2 to the point where cystic fluid appears similar to that 

of solid tissue (70).  This was also extended to the discrimination of cystic tumours 

from abscesses where the contents of the cysts differed in terms of their pyromagnetic 

properties (60;61;71). In the case of epidermoids the signal characteristics of the 

principal component, fat, made it difficult to discriminate the solid tumour from 

arachnoid cysts. The application of DWI highlighted the restricted diffusion in the solid 
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lesion as compared to the fluid comprising arachnoid cysts (68;69;72). In a further 

application to determine neoplastic lesions from other lesions DWI has been used by 

Camacho et al (73) to elucidate the difference between toxoplasmosis and cerebral 

lymphoma in patients with AIDS. 

In terms of discrimination and determination of types of intracranial tumours several 

diffusion measures have been used (61;74-81). Mean diffusivity (MD) which is the 

ADC and also commonly, metrics derived from the enhancing and non enhancing 

tumour and the surrounding oedema (76;79;80;82;83). Results from these metrics have 

not been consistent between all groups (61;75;81;84) and this may represent different 

methodologies and the problems encountered with bias when using region of interest 

analysis. 

A further development is the differentiation of tumour grade (75;77;85;86) and type 

(74;87), again results are variable. The most fundamental conclusions have been around 

the higher grade tumours which can be more densely cellular and hence have reduced 

diffusion (74;75;77;85;87). Similarly authors have reported that in more densely cellular 

tumours such as medulloblastomas (a common posterior fossa paediatric tumour) and 

lymphomas, the diffusion is more restricted (74;85;87). Application of diffusion tensor 

metrics derived from the diffusion data has also been used in discrimination of tumour 

type, further coverage in the adult and specifically in the paediatric intracranial tumour 

population is found in chapter 4. 



CHAPTER TWO: DIFFUSION MRI THEORY AND APPLICATIONS 

60 

 

2.3 DIFFUSION TENSOR IMAGING 

The Gaussian distribution of water molecules moving from any starting point is 

dependent upon the presence of an unrestricted environment. In this case the diffusion is 

described as isotropic (37). As mentioned previously, the environment seen in tissues 

provides multiple impedances to diffusion in some directions as opposed to others and 

this is described as anisotropic diffusion. The impedances are provided by the cellular 

structures which act as physical boundaries to the movement of water molecules; this is 

represented in diffusion-weighted imaging as a reduction in the ADC. The cellular 

structure can lead to diffusion in a particular direction being more favourable than 

another. This is thought to be the case in the white matter of the brain with multiple 

parallel axons constituting the white matter tracts. 

When using DWI measurements of diffusivity in different regions of the brain it is clear 

that the diffusion within the CSF is similar to that of free water and appears to be 

isotropic. In the more restricted environment of the white matter the ADC is much 

lower and the diffusion is anisotropic, although at a voxel level the diffusion in the gray 

matter is near isotropic (88). 

In 1990, Moseley et al (34;34)showed that, in brain and spinal cord white matter of the 

cat, the amount of diffusion or diffusion coefficient measured using diffusion weighted 

MRI was dependent upon the direction it was measured in. The coherent arrangement of 

the fibres in those tissues was thought to be the cause of the anisotropy through 

hindrance of free movement of water in directions perpendicular to the white matter. 

Preference for diffusion was given to the direction perpendicular to the long axis of the 

axons (89). 
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2.3.1  THE DIFFUSION TENSOR 

The ability of the diffusion anisotropy to characterise the tissue structure more clearly is 

dependent on quantification of the directionality of the diffusion. A simple scalar 

measurement such as the ADC does not provide a 3 dimensional representation of the 

anisotropy (36). The ADC only quantifies the diffusion in the form of signal loss in a 

single direction determined by the orientation of the diffusion sensitising gradient 

pulses. 

In order to characterise the diffusion anisotropy more clearly the ADC can be measured 

in multiple unique directions and the differences compared. Skeletal muscle was the 

first tissue to be characterised in such a fashion by Cleveland et al in 1976 (90). 

Subsequently the diffusion tensor model was introduced in 1994 by Basser et al (91;92) 

in order to more completely describe the anisotropy. 

The model proposed by Basser et al (91;92) was that of a tensor, using a symmetrical 

matrix of six unique elements. The basis being that the measurements of diffusion along 

different axes are correlated and the tensor describes this (93). The tensor takes the form 

of a symmetrical 3 x 3 matrix where the ADC is measured in 3 orthogonal directions 

and planes between them. In order to acquire the tensor the ADC must be measured in 

at least 6 directions through the application of at least 6 unique diffusion gradients. In 

addition an acquisition at b = 0 s mm
-2

 without diffusion weighting (a T2-weighted 

image) is also acquired.  

From this mathematical construct, a number of rotationally invariant properties can be 

derived. It is not necessary that the dominant direction of diffusion be aligned with any 

of the gradient directions but it can be derived from the calculations on a voxel basis. 

Specifically the trace, corresponding to the magnitude of the diffusion, is obtained. 
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Through a process known as diagonalisation the “dominant direction” of diffusion is 

calculated, known as the principal eigenvector (1) (corresponding to the direction of 

fastest diffusion). Further eigenvectors (2 and 3) are calculated in orthogonal planes to 

the principal eigenvector and the ADC’s in all these directions are known as the  

eigenvalues: λ1 (principal), λ2 and λ3. 

The inference from the principal eigenvector in tissues where fibres are orientated in a 

similar direction is that it will be co-aligned with the orientation of those fibres (Lin 

Tseng 2001, Basser 1994). Basser et al (91;94) proposed a representation of this tensor 

as an ellipsoid defined by the eigenvectors and eigenvalues as seen in Figure 2.2. 

 

Figure 2.2 Eigenvectors and eigenvalues as applied to an ellipsoid 

representation 

 

The ellipsoid representation changes appearance dependent on the equality of the 

eigenvalues, where the diffusion is more isotropic, as it is within the CSF the ellipsoid 

becomes more spherical as there is no or minimal structure. Within the more anisotropic 
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tissues the appearance of the ellipsoid is determined by the predominance of the 

principal eigenvectors. Where there is a strong principal eigenvector (λ1 >> λ2 and λ3) 

the ellipsoid is more prolate or cigar shaped. If the two major principal eigenvectors are 

approximately equal and greater than the third, the shape is more oblate or disc like (λ1 

~λ2 > λ3) (95). The different structural representations in isotropic and anisotropic 

tissues are illustrated below (Figure 2.3). 

 

Figure 2.3 Visual representations of the tensor in isotropic and 

anisotropic tissues. 

 

Various measures of diffusion anisotropy have been proposed, the rotationally invariant 

scalar measure, fractional anisotropy (FA) is the most common (96), its calculation is 

covered in chapter 3.  
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2.3.2  DIFFUSION TENSOR IMAGING 

The display of tensor derived metrics such as the MD and FA is seen in Figure 2.4 

below.  

 
 

Figure 2.4 MD (left) & FA (right) maps. MD removes anisotropy and 

is rotationally invariant. FA; rotationally invariant, values from 0 to 1 

and bright pixels represent high anisotropy. 

The representation of the tensor in terms of directionality is more challenging and a 

solution has been the use of directionally encoded colour maps. The degree of 

anisotropy is reflected in the intensity of the colour and the principal eigenvector 

represented by the colour using the red green and blue spectrum.  

Pajevic and Pierpaoli (97) developed this method and used it to show major white 

matter fibre tracts and their directions, in the brain, brain stem (in terms of separating 

the vertically oriented sensory and motor fibres and separate them from the transverse 

pontine fibres and cerebellar peduncles). 
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Figure 2.5 Directionally encoded colour maps. Red, left–right 

direction. Blue superior–inferior direction. Green, anterior–

posterior direction. 

2.3.3  COMPLEX DIFFUSION MODELS 

The diffusion tensor model works by providing a determination of the principal 

direction of diffusion and makes the assumption that the tissue microstructure is 

reflected by this. If the tensor shape is more prolate the fibres appear to run more 

coherently in a single direction. However often this will not be the case and the tensor 

shape is not prolate but tends to be more oblate or spherical. 

The reality is that the fibres within a single voxel (2.5 mm
3
), which is infinitely larger 

than the individual axons (low spatial resolution), may be travelling in several directions 

and intersect within the voxel such that a single orientation estimate does not truely 

represent the underlying structure. This situation is not uncommon as there are often 

multiple non-collinear fibre directions within a voxel. This could lead to tracking of 
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pathways that do not exist (false positive) or failing to track ones that do (false negative) 

(98). Barrick and Clark, 2004 (99) describe these as singularities in the tensor field, 

highlighting where for example the corticospinal tract running superior-inferiorly meets 

with fibres from the corpus callosum running from left to right and the principal 

direction is not truly representative.  

Attempts have been made to address this problem; an improved resolution would help 

and also models not reliant on a Gaussian distribution have been explored (100-103). 

There  have also been developments in the use of high angular resolution diffusion 

imaging (HARDI) (100) and attempts to provide processing of multi-peak diffusion 

profiles to accommodate crossing fibres (100;104-106).  

There are other limitations to following white matter pathways in terms of being unable 

to determine if they are antero- or retrograde or whether it is actually functional 

(106;107). A study by Lawes et al 2008 (108) provided a convincing comparison of the 

results of white matter mapping in comparison to blunt dissection in an attempt to 

validate the results of the imaging. The field is continually expanding. 
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2.4 WHITE MATTER AND TRACTOGRAPHY 

2.4.1  ANATOMY OF WHITE MATTER  

The understanding of the structure of the brain has, and continues to undergo 

development. Investigations to determine its underlying structure were undertaken using 

light microscopy and staining techniques at the turn of the last century. Meynert at the 

end of the 19
th

 Century theorised that there existed multiple interconnections in the 

brain in the form of the white matter (109). The use of Weigert myelin stain allowed 

Dejerine to publish an expansive anatomical atlas of images of the nervous system and 

specifically the white matter (110).  

The freeze thaw technique further elucidated the white matter structures as it enabled 

their easier dissection as per the work published in 1956 by Ludwig et al (111). Further 

post mortem techniques have been implemented, including the use of horse radish 

peroxidise and radioactive tracers to follow specific neuronal tracts (112-114). All the 

techniques necessitated post mortem study and hence were not suitable for use in vivo 

in humans. However the understanding of these connections is vital to the 

understanding of brain function. 

2.4.2  TRACTOGRAPHY 

Diffusion tensor imaging can produce images representing the principal direction of 

diffusion of water molecules in vivo. This principal eigenvector is thought to represent 

the underlying structure of the white matter tracts in a given voxel. Initial two 

dimensional representations of the structures were reported using colour coded maps to 

represent the fibre orientations. (97;115-117). The directionally encoded colour map, 

where hues reflect tensor orientation and intensity is weighted by FA, provide an 

informative and easily interpreted summary of DTI features throughout the brain. In 



CHAPTER TWO: DIFFUSION MRI THEORY AND APPLICATIONS 

68 

 

combination with the accepted neuro-anatomy individual white matter pathways can be 

recognised (118). The demand was then created for a three dimensional representation 

and this was achieved through the estimation of the orientation of white matter fibres by 

equating their direction in which the diffusion is greatest (fastest). Applying this 

assumption several techniques have been proposed to map the white matter pathways 

through following the maximal diffusion direction from voxel to voxel, allowing an in 

vivo reconstruction of the connectivity of the brain (119-123). 

The means by which the tracts are reconstructed, the tractography method, has been 

described in several ways. The earliest method; that of streamline tractography is based 

on the principal whereby a connection is made between adjacent points (voxels or sub-

voxels) initiated from a defined start point and following the principal direction 

provided by the tensor at the next subsequent point in order to continue the 

reconstruction (119-123). This is the method used in this work.  

Alternative methods in use are broadly described as probabilistic and are similar to the 

streamline tractography method but involve the sampling of the tensor using a 

probability density function over many iterations to define the probability of connection 

between two points in the brain image data (101;105;106). Numerous methods have 

been proposed for conducting probabilistic tractography. In “fast marching 

tractography” the propagation of a front through the directional tensor data results in a 

map of a distributed connectivity index (101;124). An alternate means is the Monte 

Carlo method, where a random walk is undertaken by a hypothetical particle. This walk 

is dependent upon the direction and strength of the underlying diffusion determined by 

the diffusion tensor, the path is halted where the particle reaches a voxel failing to 

satisfy, typically, an anisotropy threshold. The process is repeated and all voxels 

contained in the paths retained, the relative connectivity of the voxel is determined by 
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the frequency that a particle passes through. This is visually represented by the signal 

intensity the voxel displays (125-127). Such methods have been applied in order to 

determine the likelihood of connections between areas of the brain through a probability 

distribution function (44). 

The streamline method uses the directional similarity of adjacent voxels in order to 

connect them based on the principal eigenvector. If the principal eigenvector in the 

adjacent voxel is sufficiently similar in orientation, the threshold for which is arbitrarily 

determined, they will be connected and the streamline continues propagating (120;122) 

in both antero and retrograde directions (128). The streamline will cease at the point 

where the trajectory of the principal eigenvector in the adjacent voxel or point exceeds 

the threshold or where the FA falls below a chosen threshold value. This is intended to 

ensure adequate similarity and to prevent tracking into the grey matter or the ventricles. 

The FA threshold also represents the degree of uncertainty over the principal 

eigenvector and hence when it falls the direction is becomes more uncertain (129). The 

means by which the principal eigenvector is determined varies with the algorithm. The 

algorithms can work at a voxel or subvoxel level determining the principal eigenvector 

at a fixed distance (vector step length). In addition the algorithms can allow the 

principal diffusion direction to be calculated stepwise through interpolation of either the 

whole tensor or the principal eigenvectors at the new co-ordinates, occurring iteratively 

as the streamline is constructed (119-121). 

The features described: vector step length, FA threshold and angular thresholds are 

frequently a product of experimental investigation and the values chosen by the 

investigator based on previous experience. 
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When multiple co-orientated streamlines from this method are grouped together it is 

possible to conceive of reconstructions of fibre bundles (119;120), the premise being 

that of similarity of principal direction. However, recurrent problems exist in the 

demonstration of the entire distribution of a fibre pathway. Frequently other pathways 

or aberrant streamlines are included. The quality of the tractography reconstructions are 

highly dependent on the regions of interest (ROIs) defined by the investigator chosen as 

initiating seed regions or target regions. An ROI includes a group of voxels from which 

tracking can be initiated or through which the streamlines must pass in order to be 

included in the reconstruction (121). In the case of initiation within the ROI voxels, a 

single streamline is initiated form each voxel and the pathways propagated may not 

have similar orientations and hence multiple different fibre pathways may be created. In 

an effort to be more specific a second ROI can be defined, possibly to act as a start and / 

or end point.  

An alternative method involves the use of seeding of streamlines from every voxel 

within the brain, known as whole brain tractography and the ROI is used to determine 

which seed voxels should be retained. They are the ones whose streamline 

reconstructions pass through the ROI. This tends to mean that a greater number of 

streamlines are included as the number of seed voxels is not restricted to the number 

contained within the ROI. The limiting factor to the placement of the ROIs is the 

presence of “a priori” anatomical knowledge by the user, with this in mind anatomically 

plausible reconstructions of the white matter tracts have been reported (105;130-134). 
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2.5 DTI AND TRACTOGRAPHY APPLICATIONS  

The presence of a coherent arrangement of white matter fibres results in a pronounced 

diffusion anisotropy demonstrated on diffusion tensor imaging (DTI). The magnitude of 

the anisotropy is thought to depend on several factors including axonal density and 

degree of myelination (89;135). From this it is inferred that diffusion anisotropy maps 

(136) may be useful in the investigation of the integrity of white matter and the effect of 

disease on it. 

The effect of myelination on diffusion anisotropy has been used to investigate effects of 

brain maturation and development with age. DTI has provided quantitative parameters 

of diffusion to be derived in order to assess tissue microstructure. The corpus callosum 

(a large white matter tract) has shown increasing FA and decreasing MD during 

childhood and adolescence and slightly slower decreases of FA and increases of MD at 

older ages. A study by Lebel et al in 2010 (137) reported the age at peak FA values and 

minimum MD values varied from 21 to 44years. Similar results have been reported with 

increasing FA with age due mainly to falling perpendicular diffusivity (138). Studies 

directed at the development of foetal brains and effects of gestational age have drawn 

similar conclusions and may be related to the process of white matter myelination that 

occurs in development (139-142). The process of demyelination and axonal loss with 

age results in an increase in the extracellular space and a consequent fall in the FA and 

an increase in the MD (141;143). 

In disease processes, stroke has been a significant avenue for the application of ADC 

measurements and DTI (see section 2.2). As the ADC changes through the different 

phases as the effects of the ischaemic injury in stroke evolve, initial increase in ADC 

followed by normalisation and then falling ADC are seen in specific regions in and 
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around the infarct (51;144-146). These measurements have allowed determination of 

acute and potentially salvageable regions. 

Following an ischaemic insult to a region, the white matter pathways undergo a process 

of Wallerian degeneration resulting in loss of structure and this is detected in terms of a 

reduction in FA. Investigations specifically of one of the major white matter motor 

pathways, the corticospinal tract (CST) have shown that reduced FA in the CST 

following a stroke is correlated with a poorer recovery long term (147-151). 

Multiple sclerosis (MS) has been investigated with respect to identifying lesions not 

seen on conventional MRI and assessing whether there is a correlation between 

radiological findings and functional assessment. Tractography has been directed at 

determining if the connectivity it may reveal has a correlation with disability. 

Assessment of the FA in lesions has shown that it is lower than in normal surrounding 

white matter (152). In further assessment of the CST of patients with relapsing and 

remitting MS with isolated motor symptoms when compared with normal individuals 

and those without motor symptoms the diffusion indices were reduced (153;154). These 

findings may elucidate an on-going process of Wallerian degeneration to explain these 

symptoms.  

Investigations have been undertaken into the effects of chronic epilepsy on the white 

matter tracts. Wadjaja et al 2007, (155) showed that in patients with epilepsy and focal 

cortical dysplasia the white matter tracts that project to or from the malformed cortex 

could not be tracked, indicating a loss of directional organisation in the white matter 

thought to be due to the seizures or focal cortical dysplasia. The effects of temporal lobe 

epilepsy on memory-related structures in patients with medically intractable temporal 

lobe epilepsy and unilateral mesial temporal sclerosis was reviewed by Concha et al 



CHAPTER TWO: DIFFUSION MRI THEORY AND APPLICATIONS 

73 

 

(156) and they reported a bilateral symmetrical reduction in FA in the tractography 

derived fornix and the cingulum proximal to the hippocampus, possibly indicating 

evidence of Wallerian degeneration. 

The use of tractography for the planning of epilepsy surgery in terms of the risks of 

complications has been studied. Powell et al (157) showed that a probabilistic method 

of tractography could be used to assess the position and extent of Meyer’s loop (a part 

of the optic radiations, the resection of which results in a visual field defect) in order to 

predict the superior quadrantanopia that can result from resection of the anterior 

temporal lobe. When the preoperative right optic radiation was overlain onto the post-

operative field it was evident that the white matter that had been resected had included 

the radiation into the temporal lobe. 

The process of brain development and maturation involves increasing myelination and 

growth of white matter tracts. Tractography has been used to demonstrate an apparent 

diminution in volume of white matter projection fibres to the prefrontal cortex in cases 

where there is established reduction in grey matter persisting throughout adolescence 

(158). In the case of children presenting with developmental delay a group have looked 

at the corpus callosum and reported that the mid-sagittal area of the entire corpus 

callosum is reduced as compared to children with normal development. Similarly the 

white matter volumes of corresponding cortical lobes were reduced in the 

developmentally delayed group (159).  

In the cases of development affected by pathology such as that from a vascular injury 

resulting in a congenital hemiparesis, there is asymmetry in the reconstructed CST 

(160). In conditions such as cerebral palsy, the hemisphere contralateral to the insult is 

seen to have a higher fibre number in the CST and corticobulbar tracts (calculated 
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through tractography) than that in the affected hemisphere and when compared to 

normal controls (161). 

Neurodegenerative diseases frequently involve loss of axons in addition to the loss of 

cortical neurones. It has been seen that DTI can detect changes in connectivity in the 

brain at an early stage of the neurodegenerative process (162-164). Reduced FA has 

been detected in the cingulum, hippocampus, and the posterior corpus callosum of 

individuals who are cognitively well but have a genetic disposition to dementia (as in 

the case of APOEε4 carriers). In individuals with Alzheimer’s disease tractography has 

been used to identify and localise degeneration along specific white matter paths; in 

transgenic mice which express excess β-amyloid precursor protein the reduction in 

diffusivity parameters was seen to correlate with the severity of the Alzheimer’s disease 

(165). 

Parkinson’s disease and conditions such as multiple system atrophy or progressive 

supranuclear palsy have been the subject of tractography and the possibility raised of 

discriminating between these diseases as they result in degeneration along specific 

tracts. Further investigations are required to validate this (166). 
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2.6 INTENTIONS OF THIS STUDY 

The literature in the adult population and to some extent in the paediatric population 

indicates that diffusion MRI data can provide information as to the structure of the 

white matter in the brain and also to probe the character and structure of lesions within 

the brain. 

The intention of this research is to collect MRI diffusion data on paediatric subjects 

with CNS tumours presenting to Great Ormond Street Hospital for Children prior to and 

also following surgery to remove the tumour.  

The specific aims of the research are to apply diffusion MRI metrics to determine the 

ability to discriminate between paediatric CNS tumours, through the assessment of their 

internal structure.  

Secondly we intend to determine the practicability of our tractography algorithm for the 

reconstruction of the cerebellar peduncular white matter in paediatric subjects. Using 

these reconstructions we hope to determine their functional validity through comparison 

with cerebellar functional deficits and clinical signs. 

The premise being to determine if it is possible to use diffusion MRI and tractography 

as an adjunct to the preoperative characterisation of paediatric CNS lesions and also its 

use for neurosurgical planning. 
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3.1 PATIENT RECRUITMENT 

In the context of this study the patients investigated in this thesis fall into 3 groups. A 

group of 17 control paediatric patients recruited by Dr Kate Riney from the Department 

of Neurology at Great Ormond Street Hospital which formulated a pre-existing data set 

supplemented by five normal adult volunteers recruited by the author.  
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A further cohort of patients in two overlapping groups recruited from the Department of 

Neurosurgery at Great Ormond Street Hospital. In the case of patients where ADC data 

was analysed they were collected from a retrospective review from 2003 onwards, 

compiled using the local electronic oncology database picking out cases of 

histologically confirmed central nervous system tumours (CNS). To have a histological 

diagnosis the patients had to have undergone a surgical procedure to obtain a tissue 

diagnosis. The initial group consisted of a total of 289 cases (to March 2007) that had 

had imaging at Great Ormond Street Hospital (GOSH). The imaging was reviewed, all 

cases without pre-operative DWI were excluded as were cases where the imaging was 

corrupted by artefact or the imaging was incomplete (not all cases had all their pre-

operative imaging at GOSH).This identified 55 cases initially and subsequently the 

author recruited individuals prospectively from March 2007 until July 2007; providing 

10 further cases (total 65). The diffusion sequence formed part of the pre-operative 

imaging sequence for patients with newly diagnosed brain tumours who underwent 

further imaging at GOSH where it was required in addition to their local imaging. 

A second group of patients were recruited for DTI performed on the 1.5T Siemens 

Avanto MRI system. This group was recruited from April 2006 (when ethical approval 

was obtained) until January 2008 and cases overlapped with those recruited for the 

ADC study. Children presenting to GOSH with a suspected diagnosis of intra-cranial 

central nervous system tumour identified on either CT or MRI were considered for 

inclusion. Only patients and families who were willing and well enough to undergo an 

additional DTI investigation were included. To be well enough the patient had to be 

able to tolerate lying flat and still for the 20 minutes required to obtain the DTI 

sequence if they were having an un-sedated scan. The process for this involved 

informed consent of the parent or guardian and the child’s agreement, in the form of 
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assent or consent, depending on their capacity. (Copies of the patient and parent 

information sheets and consent forms can be seen in Appendix 8.2 and 8.3) The DTI 

sequence would, on occasion be done as an addition to a pre-operative MRI sequence 

(see chapter 3.3) necessitated for clinical management. This meant that it could be 

achieved in cases where sedation or general anaesthetic (GA) was required but only 

with considerable co-operation and tolerance from Radiographers, Anaesthetists and 

Radiologists. The concern being that the addition of a further 20 minutes to an already 

lengthy scan would diminish the ability to accommodate further patients on the MRI 

“list”. In patients where an un-sedated scan was possible then the DTI sequence (chapter 

3.3) would be done independently and in dedicated research time paid for by Cancer 

Research UK or Royal College of Surgeons Grant funding. In all cases a magnetic 

safety questionnaire was completed by the patient or family. Where patients were 

unable to tolerate the scan due to restlessness, claustrophobia or symptomatology, the 

scan was ceased and the patients returned to the ward. 

It was anticipated that it would be possible to collect between 20 and 30 patients per 

year from the cases referred to GOSH. The expectation being based on the referral 

patterns for the hospital over the preceding years reflected in the annual GOSH Neuro-

Oncology report showing data up to the end of 2007, seen in figure 3.1 (data compiled 

by Sister Kim Phipps GOSH Research Nurse). The mean number of referrals per year 

over the period illustrated was seventy one. 
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Figure 3.1 New Tumour referrals GOSH 2003-2007 
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3.2 ETHICS AND CONSENT  

The work in this project formed two separate applications to local research ethics 

committees (COREC). The first was under the title of “Development of Magnetic 

Resonance Tractography for Paediatric Neurosurgical operative planning” and was 

approved in June of 2006. This project used an established DTI sequence, detailed in 

section 3.3, used in current and previous research at ICH. A subsequent application was 

made to the GOSH local research ethics committee in respect of “Apparent Diffusion 

Coefficients characteristics may predict Neuro-oncological tumour type in a paediatric 

population”. This study was approved in December 2006 and it was deemed that further 

informed consent was not required nor was ethical review as the imaging was 

performed as part of a routine clinical protocol, detailed in section 4.2. Copies of the 

ethical approval are seen in appendix 8.1.  

 

In the case of the paediatric neurosurgical patients recruited to the Tractography study 

they were recruited to the study by the author, J G Bull, from in-patients awaiting 

treatment for suspected intracranial tumours. Consent was taken by the author following 

the local GOSH practice involving the patient themselves where they had capacity to do 

so in terms of assent or consent. Typically this involved consent by both the parents and 

the child but where this was not possible, in the very young, then consent would be 

obtained from the parents, as per the World Health Organisation, Declaration of 

Helsinki. Copies of the patient information sheets with consent and assent forms are 

seen in appendix 8.2 and 8.3. Where children required sedation (protocol detailed in 

appendix 8.4) or a general anaesthetic, the DTI imaging was obtained as an addition to a 

necessary clinical investigation through close liaison with the GOSH Radiology 

Department. No children underwent further sedation or GA procedures in order to 
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obtain research imaging. Where children were able to tolerate imaging awake then 

research DTI would be obtained on dedicated research time. Patients were scanned both 

pre-operatively and post-operatively where possible. 

Children recruited to the DTI study were reviewed by the author with reference to the 

patient’s clinical case notes and through the collection of the clinical history both from 

the patient and the parents, in conjunction with a neurological examination. Such 

examinations were performed immediately prior to the acquisition of the MRI / DTI 

sequence. All demographic data (specifically: name, date of birth, hospital number, sex, 

dates of imaging), history and examination findings (typically presence or absence of a 

neurological deficit such as degree of motor weakness, evidence of cerebellar signs and 

lateralisation), handedness, location of tumour and its histopathological diagnosis 

(determined by the GOSH Neuropathology Department) were recorded using Microsoft 

Excel 2003. 

Patients recruited to the ADC study were deemed not to require consent and in this 

study the sequence was part of an established clinical protocol (detailed in section 4.2). 

Histopathological data was obtained from the GOSH Neuropathology Department and 

images were retrieved from stored hard copies by the author. 

The normal cases obtained as part of the study performed by Dr Kate Riney, from 2004 

to 2007, were part of an existing database extant in the Imaging and Biophysics Unit of 

the UCL Institute of Child Health. Their imaging was obtained using the same 

established DTI sequence and hence could be processed in the same fashion as the 

authors’ neurosurgical data. Patient demographics were available for these individuals, 

where further information was required the author obtained this through meeting with 
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the individuals at the time of their recruitment as normal subjects to Dr Kate Riney’s 

study or at subsequent telephone interview.  

3.3 MRI AND DIFFUSION PROTOCOLS  

3.3.1  CLINICAL MRI SEQUENCES 

The standard imaging protocol for paediatric CNS tumours undertaken on the 1.5 T 

Siemens’ Avanto MRI system at GOSH is detailed below. Typically, where there was a 

possibility of spinal metastases, this would also involve imaging of the spine. 

The brain imaging protocol consisted of: 

 Axial T2-weighted Turbo Spin Echo (TSE) 

 Coronal T2-weighted unenhanced fluid attenuated inversion recovery (FLAIR) 

 Axial T1-weighted spin echo (SE) 

 Sagittal T1-weighted SE 

 Diffusion-weighted imaging (b = 0 and b = 1000) 

 Axial, coronal and sagittal gadolinium enhanced T1-weighted MRI  

Imaging time was 28.5 minutes 

 

The same protocol was also performed on the 1.5T Siemens Symphony system, patients 

requiring routine pre-operative and post-operative tumour imaging would be scanned on 

either system depending on availability. In the scope of this work; only DWI data was 

used from this scanner, all DTI data was from the Avanto system. The details of the 

protocols are shown in table 3.1. Specifically; the standard imaging protocol was used 

where data was required for clinical assessment and in so doing DWI imaging 

(sequence 3, Avanto or 4, Symphony; table 3.1) would be routinely collected as part of 

this protocol. Where clinical data was acquired on research patients then the DTI 
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sequence would be appended to the end of the clinical sequence above (patients were 

imaged on the Avanto scanner, ie sequence 2 in table 3.1), adding 16mins 24secs to the 

acquisition time. If  clinical data was not required then the 20 direction DTI sequence 

would be performed on a separate occasion and a T1 3D Flash with the DWI sequence 

would also be acquired as per table 3.1 (ie sequences 1, 2 and 3), total imaging time 24 

mins 12secs. 

In terms of the patients toleration of the sequences; imaging of children necessitates 

further considerations in addition to those as of adult investigations. The presence of 

impaired consciousness and co-operation secondary to the underlying brain abnormality 

are compounded by the degree of development and maturity of the child. There are 

established protocols for determining which individuals needed either sedation (so 

called “feed and wrap”), general anaesthetic or would tolerate imaging without 

pharmacological assistance. Details of the protocols for sedation are found in Appendix 

8.4. In general, where time allowed, DTI data could be acquired on sedated patients and 

patients undergoing general anaesthetic with the greatly valued co-operation of the 

anaesthetic and radiographic staff. In the case of patients who did not require sedation 

and did not need further clinical imaging, the DTI data was collected in dedicated 

research time. The selection of patients for this was the decision of the author in 

conjunction with advice from the ward staff caring for the patients and with the vital co-

operation of the patient and their parents.  

The DTI protocol (total time 25 minutes 10 seconds) was well tolerated by most 

patients but in the event that they wished to stop at any point the scan was immediately 

discontinued. 
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3.3.2  ADC DATA ACQUISITION 

Data was obtained from imaging performed on the 1.5T Siemens Avanto (maximum 

magnetic field gradient strength of 40 mT m
-1

)
 
or the 1.5T Magnetom Symphony 

(maximum magnetic field gradient strength of 30 mT m
-1

). A diffusion sensitised 

single-shot echo planar sequence was used at two b values (500 and 1000 s mm
-2

) 

subsequent to an initial b = 0 acquisition. The details of the DWI sequences are seen in 

Table 3.1 and discussed in section 4.2.2. 

The signal intensity on diffusion-weighted images is dependent on spin density, T1, T2, 

TR, and TE. These factors can be eliminated to obtain pure diffusion imaging by 

calculating diffusion coefficient maps. Such maps are calculated by combining two or 

more diffusion-weighted images which are differentially sensitized to diffusion but 

whose other parameters, spin density, T1, T2, TR, and TE are identical. In this case a 

sequence (S0) not sensitised to diffusion (b = 0) was combined with a diffusion 

sensitised sequence (S) at b = 1000. From this it is possible to calculate a value (D) for 

the diffusion in each voxel by the following equation: 

   
 

 
    

 

  
 

The parametric image representing these data is called a diffusion map or apparent 

diffusion map (ADC). The implication of the apparent term highlights the fact that the 

D values obtained depend on the experimental conditions, specifically factors such as 

the direction of the sensitizing gradient and diffusion time. As discussed in chapter one 

there is considerable contrast in the ADC values obtained when the diffusion gradients 

are applied in different directions, this is referred to as diffusion anisotropy. 



CHAPTER THREE: METHODOLOGY 

85 

 

 

 

Figure 3.2 Directional ADC maps. ADC measured in different 

directions results in ADC contrast. 

 

In order to obtain a rotationally invariant coefficient where anisotropy is removed the 

mean ADC is calculated. In this case we applied gradients in three orthogonal 

directions; ADC was calculated for each and then averaged as per the equation below. 

 

  

This value is the mean ADC but is also known as the trace or mean diffusivity (MD); it 

provides a quantitative, directionally averaged evaluation of the diffusion within the 

voxel. The values obtained from this were used to construct the tumour mean ADC 

histograms.  
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Table 3.1 Summary of Project MRI sequences. Sequences 1, 2 and 3 were performed on the Avanto system when acquiring diffusion 

tensor data. Sequences 3 and 4 were performed as part of the GOSH tumour imaging protocol and were performed on the Avanto and Symphony 

(*) systems respectively. 

 Sequence Imaging 

Time (sec) 

No. 

slices 

Echo 

time 

(ms) 

Repeat 

time 

(ms) 

Thickness 

(mm) 

Gap Matrix FOV Flip Number 

of b 

values 

Number of 

directions 

1) 3D FLASH 05:34 176 4.94 11 1 0 
224 x 

256 

256 x 

224 
15 n/a n/a 

2) DTI_20 

05:28      
(Repeat 3 

times 16.24 

) 

55 89 7600 2.5 0 96x 96 240 n/a n/a 20 

3) DWI 

01:04:00 

(Repeat 3 

times 

03:12:00) 

19 96 2700 5 
30% 

(1.5mm) 

128 x 

128 
230 n/a 

0, 500, 

1000 
6 

4)* 
DWI  

Symphony 

00:56      

(Repeat 2 

times 

01:52) 

20 107 3600 5 
50% 

(2.5mm) 

128 x 

128 
230 n/a 

0, 500, 

1000 
6 
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3.3.3  DTI DATA ACQUISITION 

All DTI data was obtained from the Siemens Avanto 1.5T system with a maximum field 

gradient strength of 40 mT m
-1

 using a Siemens CP receive only head coil. The 

acquisition when performed as a standalone sequence consisted of a 3D Flash, time 5 

minutes and 34 seconds, DTI sequence (16 mins 24 secs) and the DWI at b = 0 and b = 

1000 (3 mins 12 secs). If the sequence was performed as part of a clinical brain tumour 

sequence the DWI was not repeated.  

Mention has already been made of the fact that patient movement causes problems with 

the acquisition of in vivo MRI data. These issues are exacerbated in the study 

population due to potentially impaired consciousness secondary to underlying diagnosis 

but also due to their developmental age. These considerations are reflected in the use of 

sedation or general anaesthetic to obtain imaging in some cases. In spite of this there 

remains physiological movement from respiration and cardiac pulsation providing the 

force for blood flow. These movements can degrade the brain MR imaging quality and 

are particularly amplified in the acquisition of diffusion sensitised data where the 

sequence is attenuated particularly to microscopic movement. In order to diminish these 

effects, a single shot echo planar imaging (EPI) sequence (the industry standard) was 

used to obtain the imaging in this study. The advantage of EPI is the exceptionally rapid 

data acquisition, through which the effects of the physiological motion is minimalised 

(37). 

The EPI sequence is particularly sensitive to magnetic susceptibility artefact as 

compared to a spin echo or a fast spin echo sequence. Such artefacts arise from 

ferromagnetic materials or paramagnetic / diamagnetic materials and specifically from 

implanted medical devices. These materials distort the linear magnetic field gradients 

http://www.mr-tip.com/serv1.php?type=db1&dbs=Spin%20Echo
http://www.mr-tip.com/serv1.php?type=db1&dbs=Fast%20Spin%20Echo%20Sequence
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resulting in bright areas (misregistration) or dark areas (absence of signal) near to the 

magnetic material. There are regions of the head and brain where this is particularly 

prevalent. Specifically: adjacent to the air sinuses in the skull base, and of particular 

relevance in this study, in the boney posterior fossa. The artefacts result from the 

significant differences in the magnetic properties of the different tissues. Static field 

inhomogeneities can cause geometric distortions and as the EPI sequence uses diffusion 

sensitising gradients with high amplitude very short duration eddy currents are induced 

causing further distortion of the data acquired (167). 

As discussed in chapter one and also covered in section 3.3.2 water diffusion follows a 

Gaussian distribution that is affected by the tissue structure around it. Consequently the 

measured rate of diffusion or diffusion coefficient “D” will be dependent on the 

direction it is measured in. In DWI three gradient directions are used to estimate the 

trace or average diffusivity. To better describe this directionality, a diffusion tensor is 

used to characterise the diffusion in the tissue under examination. This could be defined 

by determining the values of the diffusion coefficient in the three unique orthogonal 

directions, the eigenvectors (Dxx, Dyy and Dzz). Although in reality the reference frame 

defined by the MR device may not match the reference frame of the diffusion in the 

tissue under examination. Hence the tensor will be described by cross terms (Dxy, Dxz 

and Dyz). There are only six independent values for D as a consequence of the 

symmetrical properties of the diffusion (Dxx, Dyy, Dzz, Dxy, Dxz, Dyz) (41). This model 

remains rather simplistic assuming a homogenous and linear diffusion pattern. 

Work by Basser et al 1994 (168;169) demonstrated that to obtain these six values of D 

on a voxel basis it was necessary to perform a minimum of seven DWI acquisitions. In 

the work contained in this thesis the DTI sequence (Table 3.1) consisted of an initial 

single shot EPI acquisition with no diffusion gradient applied (b = 0) and subsequent 
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acquisitions with diffusion sensitising gradients either side of the 180° refocusing pulse. 

The gradients were individually applied in twenty directions, seen in Table 2.2. 

 

Table 3.2 Summary of DTI directions. Twenty directions used for the acquisition 

of the DTI data in addition to the first b = 0 sequence. 

 

As is evident from Table 3.1 the twenty direction DTI sequence was repeated 3 times 

and an average was calculated prior to processing in order to improve the signal to noise 

ratio. Work by Burdette et al 1998 (170), has shown that the most efficient estimation of 

D with respect to this ratio is achieved when the b values differ by 1/D and in the brain 

this is approximately 1000 – 1500 s mm
-2

. In the acquisition of the DTI data the 

difference in the diffusion weighting (b value) was 1000 s mm
-2

, with the imaging 

acquired at b = 0 and b = 1000 s mm
-2

. 

X Y Z b value ( s mm
-2

) 

0 0 0 0 

-1 0 0 1000 

0 1 0 1000 

0.031984 0.799591 -0.599693 1000 

-0.856706 0.493831 0.148949 1000 

-0.834429 0.309159 -0.456234 1000 

-0.834429 -0.309159 -0.456234 1000 

-0.856706 -0.493831 0.148949 1000 

-0.822228 0 0.569158 1000 

-0.550834 0.425872 0.717784 1000 

-0.468173 0.834308 0.291108 1000 

-0.515933 0.808894 -0.281963 1000 

-0.39189 0.515855 -0.761785 1000 

-0.478151 0 -0.878278 1000 

-0.39189 -0.515855 -0.761785 1000 

-0.515933 -0.808894 -0.281963 1000 

-0.468173 -0.834308 0.291108 1000 

-0.550834 -0.425872 0.717784 1000 

-0.111012 -0.264029 0.958105 1000 

-0.111012 0.264029 0.958105 1000 

-0.031984 0.799591 0.599693 1000 
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Further details of the sequences are found in Table 3.1. The image matrix was 96 by 96 

using a 240 mm field of view and voxels were isotropic at 2.5 mm
3
, a total of 55 slices 

in total were used to ensure whole brain coverage. The images underwent realignment 

to remove eddy current effects as described by Haselgrove et al 1996 (171) using the 

AIR program (172) before the calculation of the diffusion tensor. The interleaved 

acquisitions were repeated three times consecutively and the magnitude data averaged 

off line prior to calculation of the diffusion tensor (173).  
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3.4 CALCULATION OF THE DIFFUSION TENSOR INDICES  

The processing of the data following the calculation of the diffusion tensor in each 

voxel as per Basser et al 1994 (174)  was the calculation of the mean diffusivity (MD) 

and the fractional anisotropy (FA) through diagonalisation of the tensor for each voxel. 

The exact sequence is detailed in appendix 8.6. Data taken from the MRI system was 

processed through a Python program and subsequently through mriCro (175) which 

allows Windows and Linux computers to view medical images. The DICOM images 

were converted to Analyze format and were exported to a Linux platform (Sun Blade 

100 Sun Microsystems, Mount View, California) for processing. 

Diagonalisation is a mathematical process that allows the determination of the true 

maximal direction and magnitude of diffusion. The necessity for this arises as the 

reference frame of the diffusion tensor is defined by the diffusion sensitising gradient’s 

axis which is independent of the tissue being investigated, hence the tissue’s true 

reference frame must be found. The result of the diagonalisation of the diffusion tensor 

is the calculation of the eigenvectors and eigenvalues which correspond to the vector 

components of the direction and the magnitude of maximal diffusion (168;169). The 

term for this largest eigenvalue is the principal eigenvector and is thought to be co-

aligned with the local direction of fibres.  

3.4.1  MEAN DIFFUSIVITY (MD) 

This provides a scalar measure of the amount of diffusion on a voxel basis. Its 

calculation has been covered in section 3.3.2, as the mean diffusivity is also known as 

the mean ADC or trace and is obtained by obtaining the mean of the three diffusion 

coefficients (Dxx, Dyy, and Dzz) which is rotationally invariant. 
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3.4.2  FRACTIONAL ANISOTROPY (FA)  

A scalar representation of the degree of anisotropy was also calculated. Several indices 

have been used previously (34;176) based on diffusion-weighted images and ADC’s 

measured in perpendicular directions. The limitation was that the scalar quantities were 

reliant on the alignment of the diffusion sensitising gradients with the structure of the 

tissue under investigation and may not reflect the true degree of anisotropy in the tissue. 

As with MD a rotationally invariant characterisation of the anisotropy is necessary and 

to this end the fractional anisotropy was calculated from the diagonalised tensor using 

the following equation. Where λ1-3 represent the principal eigenvectors of the tensor for 

each voxel as discussed in chapter one. 

     
                           

     
   

   
 

 

The value is dimensionless, scaling between 0 and 1, where with increasing anisotropy 

the scalar tends to 1. 

.  
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3.5 STUDY METHODS OF TRACTOGRAPHY 

The tractography algorithm was written in the “C programming language” by Dr Tom 

Barrick, St George’s Hospital, London. The algorithm had evolved from work on 

several previous projects and involved the use of other software to process the ROIs, 

specifically mriCro (175) (http://www.cabiatl.com/mricro/mricro/mricro.html). The 

algorithm was run on a Sun work station (Sun Blade 100 Sun Microsystems, Mount 

View, California) and the applied method of tractography were based on the techniques 

originally described by Basser et al (177). 

The original MR data underwent several processing steps in order to prepare it for 

investigation as detailed in 3.4 and as described by Clark et al 2003 (178). The 

“diff_DTI_GE” program was used to generate the MD, FA and also a “_deff” file which 

was used for further tractography processing (full details in appendix 8.6.1). The “_deff” 

file contained the DTI data and specifically the voxel-wise principal eigenvectors. 

In the period the research was undertaken a change in the software on the Siemens 

Avanto MRI system necessitated a change in this process and a Matlab (R2007a) script 

written by Dr David Atkinson was inserted to modify the data to the correct format for 

further processing, again producing a “_deff” file. This program also provided a masking 

feature to remove noise outside of the brain through the subtraction of all voxels with an 

ADC of less than 1/15
th
 of the maximum ADC, mimicking that undertaken in the 

diff_DTI_GE program. 
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3.5.1  DIRECTIONAL ENCODED COLOUR MAPS 

Once the FA, MD and _deff files were produced, it was possible to visually assess the 

output to confirm that it was suitable for further processing. Colour maps of the 

principal eigenvectors were produced (detailed instructions in appendix 8.6.2) using the 

output of the tractography program. Images were coloured using the absolute value 

directional encoding colour (DEC) scheme of Pajevic and Pierpaoli (97). This method 

allows the principal eigenvectors of the individual voxels to be represented, where red 

represents the orientation in the left-right direction, blue the inferior-superior direction 

and green the anterior-posterior direction. The DEC images were viewed using mri3dX, 

(http://imaging.aston.ac.uk/mri3dX/) a freeware program for visualisation of 3D 

structural/functional MRI data, written by Dr Krish Singh. If the images showed the 

expected principal orientation of fibres understood from previous anatomical work then 

further processing of the data was undertaken. 

3.5.2  REGIONS OF INTEREST 

The data in the form of the MD and FA maps were transferred to a Dell work station 

and using mriCro, regions of interest were drawn on the FA maps, the specifics of 

which are discussed in section 5.2. In summary: mriCro allows the drawing of three 

dimensional ROIs corresponding to the predicted anatomical location of the tracts to be 

studied.  

The ROIs schemes were used to localise structures of interest. The ROIs acted as 

locations where seed voxels whose streamline tracts passed through them were retained. 

The algorithm also provided an option to determine a second point (dual ROI) through 

which the tracts should pass to be retained (121). “Exclusion” ROIs could be drawn, for 
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example: a whole hemisphere, so as to ensure tracts were only constructed for the left or 

right side; or a whole brain slice so as to potentially exclude streamlines passing supra 

or infra-tentorially. The ROIs were overlain onto the MR image, rather than being 

drawn on it directly, meaning that the brain images could be viewed with or without 

corresponding ROIs. When ROIs were constructed they could cover areas on several 

slices, in effect creating a volume ROI. 

Once the ROIs were drawn for an individual case they were saved and transferred back 

to the SUN workstation for further processing, individual ROI’s were saved into the 

respective folder for each individual case. As part of the manual user processing it was 

possible to draw ROI’s on several individual cases in one sitting and subsequently 

process them as a group using a single command through the use of batch files, (Batch 

file code is found in appendix 8.6.4), the detailed instructions for this are found in 

appendix 8.6.3.  

3.5.3  TRACTOGRAPHY ALGORITHM 

The fibre tracking method was similar to that of Basser et al 2000 (177). The tractography 

algorithm (detailed instructions in appendix 8.6.2) could be run at either high or low 

resolution, the difference being the number of voxels in the whole brain that were seeded 

from to construct the tracts. When used in high resolution the algorithm would seed from 

the centre of every voxel within the whole brain and when used in low resolution it would 

seed from voxels in a checker board fashion, seeding from every other voxel in a linear 

fashion. The low resolution method was fast but less inclusive. It was also possible to 

define other parameters that would allow the tracking to continue or cease, dependent on 

the degree of similarity to the previous calculated eigenvector. 
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The vector step length: the distance from the current point at which it would then 

resample and calculate the principal eigenvector, in this work this was 1mm. This meant 

that subvoxel tracking was performed.  

The angle of termination: the angle at which the direction of the principal eigenvector, in 

consecutive vector lines, was considered to be sufficiently different to cause tracking to 

cease at that point.  

Fractional Anisotropy (FA) threshold: the FA value at which the algorithm would 

consider the principal eigenvector FA to be too ill defined and results in termination of the 

streamline.  

The specific details of the parameters used are discussed in chapter 4.  

The tracking algorithm initiated seeding from the centre of all voxels and proceeded to 

project a streamline in a direction equivalent to the principal eigenvector at 1mm intervals 

from the start voxel. The subvoxel tracking was performed through interpolation of the 

principal direction field at the given vector step length (1 mm) through the determination 

of a continuous approximation of the diffusion tensor field from the discrete (voxelwise) 

measurements. The linear interpolation of the tensor field method has been described 

previously (120-122;179;180). Essentially, the process calculates the effective diffusion 

tensor, eigenvalues, eigenvectors and the principal direction from the tensor field at any 

arbitrary point within the imaged region (subvoxel) through fitting a series of 

mathematical functions to the image data (93). 

At 1mm intervals a streamline is constructed and the tensor field sampled and the 

underlying diffusion tensor calculated through interpolation. It is then further extrapolated 

from this new point a further one millimetre along the trajectory of the newly derived 



CHAPTER THREE: METHODOLOGY 

97 

 

principal eigenvector and the tracking precedes iteratively through the image data. To 

complete the streamline, in both retrograde and orthograde directions, the algorithm must 

run in the two opposite directions defined by the original principal eigenvector from the 

centre of the seed voxel (see figure 3.3). To allow this, the algorithm continues to proceed 

along the direction of the underlying principal eigenvector which is in the direction most 

similar to the immediately previous trajectory i.e. the streamline tends to avoid returning 

in the direction which it has come from. Once the algorithm has been stopped and the 

streamline has terminated, the algorithm recommences at the seed voxel centre seed point 

and extrapolates along the principal eigenvector in the opposite direction. 

 

Figure 3.3 A two dimensional illustration of the tractography algorithm. 

The greyed out voxels represent seed voxels from which streamlines are 

initiated in both directions.  
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In this process the algorithm would stop and the streamline would be terminated if the FA 

of the interpolated tensor field was less than the FA threshold initially set. We also 

specified an angular threshold where the difference in streamline trajectory between two 

consecutive steps would terminate the streamline if it were exceeded (134;181;182). The 

angular threshold used in this work was 90 degrees which in effect meant that there was 

no angular threshold. 

3.5.4  VISUALISATION OF TRACTOGRAPHY OUTPUT 

In order to visualise the tractography output, which used the directionally encoded 

colour scheme of Pajevic and Pierpaoli (97), the data was further processed so as  to 

compress it. This was achieved with an in house program (tractUI_fromseed_char, 

Appendix 8.4.2), where the streamline co-ordinates used to construct the tracts were 

converted to a binary image. Each streamline consisted of multiple vectors with 

endpoints. The program determined which voxels were included in the streamline to 

produce a binary map which could be displayed using GeomView, an interactive 3D 

viewing program (http://www.geomview.org/).  The fibre track maps were converted to 

3D volume image files and viewed as overlays on T2-weighted, T1-weighted and 

contrast enhanced T1-weighted images in mriCro to reveal their anatomical relations to 

each brain and lesion being studied. The method of visual evaluation of the output and 

the quantitative data extracted from the tractography is discussed in chapters 5 and 6.  

 

 

http://www.geomview.org/
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4.1 INTRODUCTION 

Accurate preoperative diagnosis is important in paediatric patients with CNS lesions, 

particularly as they may require different surgical approaches and have differing natural 

histories and outcomes (183).  

Definitive histological diagnosis remains the gold standard for deciding the optimal 

oncological management and likely prognosis. The process of interpreting the tissue 

diagnosis requires light microscopy and immuno-histochemical staining of the sample. 
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This can take several days and requires considerable training of the interpreting 

pathologist. The sample can be obtained from a total resection or partial debulking or a 

simple biopsy. There is a mortality associated with craniotomy and tumour resection. In 

cases where a craniotomy is not appropriate due to the location of the lesion or the 

probable diagnosis is that of a lesion likely to be sensitive to radio or chemotherapy a 

surgical biopsy can be undertaken. This procedure still carries significant risk of 

morbidity (184-187) and mortality. Risks of neurological deficit are secondary to 

complications due to haemorrhage, cerebral oedema, seizures or infection (184). In 

addition there is a significant risk of a non diagnostic biopsy (8.1% in 300 cases 

(188)).  

A non-invasive diagnosis could reduce this surgical morbidity. Several techniques 

have been attempted including the use of CSF and serum markers (189), dynamic 

contrast MRI (190), positron emission tomography and MR spectroscopy (191;192). 

Histological examination remains definitive but magnetic resonance imaging plays a 

central role in the radiological diagnosis of brain tumours (193-196). In particular, the 

quantitative measurement of water diffusion by gradient sensitisation (DWI) allows 

derivation of the ADC, enabling the investigation of tissue structure. This has been 

used to characterise acute infarcts and both adult and paediatric brain lesions with 

regard to discrimination of their nature (55;60;61;84;197;198). The ADC appears to 

be influenced by tumour cellularity and nuclear characteristics (85;87;199;200).  

There has been some evidence of correlation of ADC with tumour grade although 

results have been conflicting. In general higher grade tumours are more densely cellular 

and it is hypothesised that it correlates inversely with ADC (61;75;84-87;198-206). 

Variable ADC values are seen in different components of the tumour, surrounding 

oedema and white matter. Cystic tumours and high grade lesions, which outgrow their 
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blood supply and become necrotic, may have  higher ADC values due to the increased 

water movement within these components (207). A study looking at extra cranial mass 

lesions in children to determine if a relationship existed  between the  ADC and the 

histopathologic cell count found a significant relationship between cellularity and ADC 

but determined that cell count was likely not to be its only determinant (202). 

Attempts to discriminate paediatric brain tumour types using DWI has shown useful 

results when using the mean ADC of tumour groups alone (197;208), or when taken in 

combination with age and sex (86). Production of a reliable discrimination method for 

new cases on these grounds alone has been elusive in part due to extensive overlap of 

ADC ranges between groups. In reality questions as to diagnosis are often more 

focused due to the different demographics of lesions. ADC values in combination with 

single voxel proton magnetic resonance spectroscopy (MRS) has been employed to 

discriminate four common posterior fossa (PF) tumours (juvenile pilocytic 

astrocytoma (JPA), primitive neuroectodermal tumour-medulloblastoma PNET-MB, 

ependymoma and glioma. 17 cases) using linear discriminant analysis which assumes 

multivariate normality (208). However, it was not possible to discriminate them using 

either the ADC or the metabolite variable alone. Recently histograms of the ADC 

derived from the tumour volume and surrounding peritumoural oedema have been 

used to discriminate adult brain tumours, specifically low-grade gliomas, astrocytomas 

and oligodendrogliomas (209). ADC histograms generated from regions of interest 

(ROIs) drawn within whole tumour volumes have been used to differentiate between 

oligodendroglial tumour genotypes with some preliminary success (194). A related 

application of the whole tumour ADC histograms has been in its use to stratify 

progression-free survival in bevacizumab treated patients with recurrent glioblastoma 

multiforme (210). 
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Histograms provide the frequency of occurrence of ADC values and can be 

determined within the entire tumour volume. Histograms of the ADC derived from 

both the tumour volume and surrounding peri-tumoural oedema have been used to 

discriminate adult brain tumours, specifically low-grade gliomas, astrocytomas and 

oligodendrogliomas (209). 

We therefore attempted to determine whether common paediatric tumour types could be 

discriminated using statistical analysis (multinomial logistic regression) of ADC 

histogram parameters. Subsequently a more focused analysis was performed on the PF 

groups and then specifically we determined the ability of the technique to differentiate a 

rare tumour, atypical teratoid rhabdoid tumour (ATRT), from its embryological relative 

PNET. We addressed this as there is no established method, currently, to discriminate 

them pre-operatively and ATRT has a much poorer prognosis and more complex 

management (211-216). 
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4.2 METHODS 

4.2.1  PATIENTS  

We undertook a retrospective review from 2003 (the point at which DWI was added to 

the local tumour preoperative imaging protocol) specifically looking at all cases of 

paediatric CNS tumours with a histologically confirmed diagnosis. This was compiled 

from a local electronic oncology database. The initial group consisted of a total of 289 

cases (to March 2007) that had had imaging at Great Ormond Street Hospital (GOSH). 

The imaging was reviewed, all cases without pre-operative DWI were excluded as were 

cases where the imaging was corrupted by artefact or the imaging was incomplete (not 

all cases had all their pre-operative imaging at GOSH). Initially 55 cases were 

identified, subsequently individuals were added prospectively from March 2007 until 

July 2007; providing 10 further cases (total 65). Analysis was performed on tumour 

groups with greater than three cases, resulting in the exclusion of 11 cases, including 

groups of brain stem gliomas (3), high grade gliomas (3), choroid plexus carcinomas 

(2) and other types of astrocytoma (3). 
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155 cases

No pre-op 
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21 cases 
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55 cases

10 cases
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65 cases

DWI and 

histological 

diagnosis

11 cases
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groups  < 4 

cases

54 cases

Histological 

groups of  ≥ 

4 cases

Flow chart of cases selected for DWI analysis 

In total 54 cases were used in the study comprising: JPA (11), choroid plexus 

papillomas (CPP) (7), Dysembryoplastic neuroectodermal tumour (DNET) (5), 

ependymoma (5), PNET (22), ATRT (4). The mean age was 6.1 years and range 0.1 - 

15.8 years. There were 22 females and 32 males.  

4.2.2  MR IMAGING AND IMAGE PROCESSING 

All imaging was performed on either a 1.5 T Siemens Avanto (maximum magnetic field 

gradient strength of 40 mT m
-1

)
 
or a 1.5T Magnetom Symphony (maximum magnetic 

field gradient strength of 30 mT m
-1

). The full tumour imaging protocol is detailed in 

chapter 3.2. Diffusion MRI data were obtained using a diffusion-sensitized single-shot 

echo planar imaging sequence. Two b values were applied of 500 s mm
-2

 and 1000 s 

mm
-2 

following an acquisition with b = 0. DW images were acquired with diffusion 

gradients applied in 3 orthogonal directions (image matrix 128 x 128 and FOV 230 x 

230 mm).  The Avanto protocol acquired 19 5mm thick slices (distance factor 30%, 
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1.5mm) and 3 averages with a total sequence time of 64 seconds (TR 2700ms, TE 

96ms). The Symphony protocol acquired 20 5mm thick slices (distance factor 50%, 

2.5mm) and 2 averages with a total sequence time of 56 seconds. (TR 3600ms, TE 

107ms). 

All DWI data, ADC maps and b = 0 images, were transferred to a Sun workstation (Sun 

Blade 100 Sun Microsystems, Mount View, California.) and off-line analysis was 

performed using DispImage (217) (UCLH Department of Medical Physics, Capper 

Street, London, UK). 

Image analysis was performed blind to histological diagnosis, by allocating individual 

cases a random number reference and processing cases in sequential numerical order. 

ROIs were drawn around the whole tumour margin on each slice of the b = 0 image on 

which it was evident, by the author (four years of neurosurgical experience). Areas of 

large cyst, identified as regions of hyper-intensity, or necrosis were excluded (208); 

where there was uncertainty as to the location of the margin of the tumour, that area 

was excluded. The whole tumour ROI volumes were transferred to the intrinsically co-

registered ADC maps from which ADC histograms were generated for the entire 

tumour volume. In addition ADC histograms and mean ADC values were calculated for 

regions of normal appearing white matter (NAWM) through the use of a region in the 

contralateral hemisphere of similar size over the same number of slices. 

The ADC histograms generated for the individual whole tumours were normalised for 

tumour volume (218), bin width of 0.02x10
-3 

mm
2 

 s
-1

 was preserved for all histograms. 

An in house Matlab (R2007a) script was used to extract the parameters: peak height, 

peak location (mode), mean ADC, 10
th

, 25
th

, 50
th

, 75
th

, 90
th

 centile points (The X
th

 

centile point is that which has X% of the voxel values forming the histogram to the left 
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in the histogram) and skewness (a measure of the histogram asymmetry calculated in 

DispImage).  

4.2.3  STATISTICAL ANALYSIS 

All 9 parameters were extracted from each tumour histogram and cases were grouped 

into specific histological tumour types. The data were analyzed using SPSS for 

Windows (Ver. 14. 2006. Chicago: SPSS Inc.). As part of our initial analysis in 

common with that of Rumboldt et al (197) we examined differences in mean ADC 

between tumour types using a one-way ANOVA and Tamhane’s T2 post hoc multiple 

comparisons correction, in order to avoid assumptions of common variance.  

Logistic regression (LR) analysis was performed using all 9 histogram parameters from 

each individual case. The first analysis of the tumour histogram data examined all the 

tumour groups and determined which of the histogram parameters best discriminated 

the tumours into their histological groups by means of a predicted classification. To 

achieve this all histogram variables were entered for analysis and added in a stepwise 

manner to allow determination of the optimal parameters for discrimination.  The 

process was repeated to determine the differentiation of three common PF tumour types 

(JPA, PNET-MB, ependymoma) and the discrimination of all PNETs from ATRTs. 
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4.3 RESULTS 

In order to determine possible differences in ADC values obtained on the two scanners 

the mean ADC of water at 18°C was measured on both systems using the same sample. 

There was no significant difference between the values obtained (ADC of water 

measured on the Avanto  = 2.276 x 10
-3

 mm
2 

s
-1

, SD 0.035 x 10
-3

 mm
2 

s
-1

, range 2.17 – 

2.39 x 10
-3

 mm
2 
s

-1
 and ADC of water measured on the Symphony = 2.245 x 10

-3
 mm

2 
s

-

1
, SD 0.033 x 10

-3
 mm

2 
s

-1
, range 2.13 – 2.45 x 10

-3
  mm

2 
s

-1
 ) therefore the calculated 

difference between the scanners was ignored. 

Representative ADC maps for each tumour type are shown in Figure 4.1 (a - f). Mean 

ADC of all tumour groups and NAWM together with each group’s patient 

demographics are shown in Table 4.1. A scatter plot, by group, of each individual 

tumour mean ADC value is shown in Figure 4.2. Normalised ADC histograms, 

averaged for each group, are shown in Figure 4.3 (a - g). 
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Figure 4.1 ADC maps showing the lesions investigated.  

a) Cerebellar juvenile pilocytic astrocytoma (JPA) with a high ADC value b) 

Choroid plexus papillomas within the left lateral ventricle., c) Dysembryoplastic 

neuroepithelial tumour in the left temporal pole d) Midline posterior fossa 

ependymoma e) Heterogeneous but predominantly dark midline primitive 

neuroectodermal tumour (medulloblastoma type, PNET- MB), f) Atypical teratoid 

rhabdoid tumour (ATRT) demonstrated as a supratentorial heterogeneous lesion 

with areas of very restricted diffusion. 
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Table 4.1 Summary of histological diagnosis, demographics and ADC 

Tumour type 
N                

(M/F) 

Age Range   
(Year 

Fraction) 

Average Age   
(Year 

Fraction) 

Av Age SD   
(Year 

Fraction) 

Mean ADC  
(x10

-3 
s-1 

mm
2)

 
SE 

Min Av ADC  
(x10

-3 
s-1 

mm
2
) 

Max Av ADC  
(x10

-3 
s-1 

mm
2
) 

JPA
1
 11 (7/4) 2.29 - 13.85 8.91 4.72 1.837 0.051 1.609 2.135 

CPP
2
 7 (5/2) 0.49 - 2.95 1.04 1.08 1.549 0.152 0.993 2.028 

DNET
3 

5 (2/3) 7.74 - 15.76 13.13 3.2 1.392 0.198 1.01 2.041 

Ependymoma 5 (3/2) 1.34 - 6.44 3.71 2.11 1.180 0.028 1.099 1.254 

PNET
4
 (All) 22 (16/6) 0.43 - 11.66 5.25 3.35 0.921 0.034 0.667 1.231 

PNET-MB
5 

16 (12/4) 0.43 - 11.66 5.69 3.47 0.880 0.035 0.667 1.222 

ATRT
6 

4 (1/3) 1.55 - 9.60 4.99 3.65 0.806 0.100 0.523 0.962 

Normal WM 54 (34/20) 0.43 - 15.76 6.10 3.89 0.789 0.020 0.671 1.028 

1)Juvenile Pilocytic Astrocytoma, 2) Choroid plexus papilloma, 3) Dysembryoplastic neuroepithelial tumour, 4) Primitive neuroectodermal tumour, 5) Medulloblastoma, 6) Atypical teratoid 
rhabdoid tumour 
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4.3.1  MEAN ADCS 

Comparisons between group means using a one-way ANOVA test and Tamhane’s T2 

post hoc multiple comparisons correction are shown in Table 4.2.  Significant 

differences (at the p < 0.05 level) were seen between JPAs and PNET-MBs, between 

JPAs and all PNETs, between JPAs and ependymomas and between JPAs and ATRTs. 

There were also significant differences between ependymomas and JPAs, PNETs and 

PNET-MBs. 

Figure 4.2   Scatter Plot of individual tumour ROI average ADCs classified by 

tumour group (ADC values x10
-3

 mm
2
 s

-1
) 
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Table 4.2 ANOVA testing of group mean ADC values for significant differences at the P < 0.05 level (N/S:not significant) 

 

 

 

Tumour Type 

Significant differences on ANOVA of mean ADC of tumour groups (p Values) 

Ependymoma DNET
1 

Choroid Plexus 

Papilloma  

Juvenile Pilocytic 

Astrocytoma 

PNET
4 

PNET-MB
5 

ATRT
6 

Ependymoma
 

 N/S N/S <0.0005 <0.0005 <0.0005 N/S 

DNET
1 

N/S  N/S N/S N/S N/S N/S 

CPP
2 

N/S N/S  N/S N/S N/S N/S 

JPA
3 

<0.0005 N/S N/S  <0.0005 <0.0005 0.008 

PNET
4 

<0.0005 N/S N/S <0.0005  N/S N/S 

PNET-MB
5 

<0.0005 N/S N/S <0.0005 N/S  N/S 

ATRT
6 

N/S N/S N/S 0.008 N/S N/S  

 
1) Dysembryoplastic neuroepithelial tumour, 2)  Choroid plexus papillomas,  3) Juvenile Pilocytic Astrocytoma, 4) Primitive neuroectodermal tumour, 5) Medulloblastoma  6) Atypical teratoid 

rhabdoid tumour 
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Figure 4.3 Normalised histograms averaged for all tumours within 

each group. (Note that the average histograms are for illustration; in the 

analysis the individual case parameters were used) 

 

 

Figure 4.3a Juvenile pilocytic astrocytoma (JPA) normalised average 

histogram 
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Figure 4.3b(i) Choroid plexus papilloma normalised average histogram  

 

 

Figure 4.3b(ii) Chorid plexus papilloma (CPP), individual normalised 

histograms illustrating the distortion of the average histogram due to the 

heterogeneity within the group. 
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Figure 4.3c Dysembroplastic neuroepithelial tumour (DNET) normalised 

average histogram. 

 

 

Figure 4.3d Ependymoma normalised average histogram. 
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Figure 4.3e Primitive neuroectodermal tumour (PNET) normalised 

average histogram. 

 

Figure 4.3f Primitive neuroectodermal tumour–medulloblastoma (PNET-

MB) normalised average ADC histogram. 
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Figure 4.3g(i) Atypical teratoid rhabdoid tumour (ATRT) normalised 

average Histogram. 

 

Figure 4.3g(ii) Atypical teratoid rhabdoid tumours, individual normalised 

histograms highlighting that the bimodal distribution is representative of 

the heterogeneity within the group. 
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4.3.2  ADC HISTOGRAMS: ALL TUMOUR GROUPS 

 

Histogram data analysed using LR, including all tumour groups, is shown in Table 4.3. 

The results of this analysis show that, 74.1% (40/54) of tumours were correctly 

classified. This included 91% (20/22) PNETs, 82% (9/11) JPAs 80% (4/5) DNETs and 

75% (3/4) ATRTs. However, no ependymomas were correctly classified (0/5) and only 

57% (4/7) of CPPs were correctly identified. Peak height and the 10
th

 centile provided 

the best discrimination of tumour type. 
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Table 4.3  Logistic regression analysis classification of all tumour cases 

 

Observed 

  

Predicted Group Membership 

Ependymoma DNET Choroid Plexus 

Papilloma  

Juvenile 

Pilocytic 

Astrocytoma 

PNET ATRT Percent Correct Total Correct 

Ependymoma
 

0 1 0 0 4 0 0.0%  0 / 5 

DNET
1 

0 4 1 0 0 0 80.0%  4 / 5 

CPP
2 

0 0 4 1 2 0 57.1%  4 / 7 

JPA
3 

0 1 1 9 0 0 81.8%  9 / 11 

PNET
4 

0 1 1 0 20 0 90.9%  20 / 22 

ATRT
5 

0 0 0 0 1 3 75.0% 3 / 4 

Overall Percentage  0.0% 13.0% 13.0% 18.5% 50.0% 5.6% 74.1% 40 / 54 

1) Dysembryoplastic neuroepithelial tumour, 2)  Choroid plexus papillomas,  3) Juvenile Pilocytic Astrocytoma, 4) Primitive neuroectodermal tumour, 5) Atypical teratoid rhabdoid tumour 
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4.3.3  ADC HISTOGRAMS POSTERIOR FOSSA TUMOURS 

The LR of the histogram parameters of the PF tumour groups is shown in Table 4.4. 

The analysis showed that 94% (30/32) of the PF tumours were correctly classified. 

Specifically: 80% (4/5) of ependymomas, 94% (15/16) of PNET-MBs and 100% 

(11/11) of JPAs. The variable used to construct the model was the 75
th

 centile value 

(Figure 4.4). 

 

 

Observed 

Predicted Group Membership  

Ependymoma JPA PNET-MB Percent Correct Total Correct 

Ependymoma 4 0 1 80 4 / 5 

JPA 0 11 0 100 11 / 11 

PNET-MB 1 0 15 93.75 15 / 16 

Overall Percentage 15.6% 34.4% 50.0% 93.75 30 / 32 

 

Table 4.4 Logistic regression analysis classification of Posterior Fossa 

Tumours 
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Figure 4.4 Scatter plot of posterior fossa tumour type versus ADC 75th 

centile value (ADC values x 10-3 mm2 s-1) (The variable used to 

discriminate the three tumour groups in the logistic regression analysis).  
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4.3.4  ADC HISTOGRAMS PNET VERSUS ATRT 

The LR of the histogram parameters of the PNET and ATRT groups is shown in Table 

4.5. The analysis correctly classified 100% (26/26) of the tumours, specifically all 22 of 

the PNETs (100%) and all 4 ATRTs (100%). The variables used were the peak height 

and the mean ADC (Figure 4.5).  

 

Observed 

 Predicted Group Membership  

PNET
1 

ATRT
2 

Percent Correct Total Correct 

PNET
1 

22 0 100.0% 22 / 22 

ATRT
2 

0 4 100.0% 4 / 4 

Overall Percentage 84.6% 15.4% 100.0% 26 / 26 

  

Table 4.5 Logistic Regression Analysis Classification of PNET and ATRT 

groups 
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Figure 4.5 Scatter plot of skewness (variable 10) versus peak height 

(variable 2) for PNET and ATRT groups. (The variables used to 

discriminate ATRT and PNET groups in the logistic regression analysis).
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4.4 DISCUSSION 

This study attempted to discriminate paediatric brain tumours based on ADC histogram 

parameters alone. The most important findings in our study were the discrimination of 

common PF tumours with 94% reliability and ATRT from PNET with 100% accuracy.  

Mean ADC values 

The mean ADC values for each tumour group (Table 4.1) were similar to previously 

published work (86;197). The values for the DNT group are lower than those reported 

by Yamasaki et al 2005 and are likely to reflect the heterogeneity within the tumour 

group (86). Values for ATRT are higher than previous studies have shown but fall 

within the range given in these series (197;208;214). In Rumboldt et al (197) and Koral 

et al’s (214) series’ the mean ADC for PNETs was lower than both our series and 

Yamasaki et al’s (86) series whilst our data  and the Yamasaki data were comparable. 

This may be because the ATRTs in previous series (197;214) were all in the PF, whilst 

they were supratentorial in our cohort. Gauvain et al (87) grouped all embryonal 

tumours (PNET and ATRT) using ADC and diffusion tensor imaging to assess tumour 

cellularity and obtained a mean consistent with our results.  

Distinguishing tumour types using mean ADC 

The significant increase in the mean ADC of the JPA group compared to the PNET / 

PNET-MB groups and the ATRT group (Figure 4.2) reflects the histological difference 

between the loose stroma of the JPA from the densely packed cells seen in the small 

blue round cell tumour group of PNET, medulloblastoma and ATRT. The overlap of the 

ependymoma mean ADCs with the PNET and ATRT groups is in line with previous 

work on PF tumours (86;197) and ATRTs (214) and demonstrates why discrimination of 

individual tumours based on mean ADCs alone is hampered. Rumboldt et al (197) 
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proposed a lower limit of a mean ADC of 1.40  x 10
-3

 mm
2 

s
-1

 for the JPA group and a 

upper limit of 0.90 x 10
-3

 mm
2 

s
-1

 for PNET/ ATRT. The former value for JPA applies 

to our data but the cut off value for PNET-MB required was considerably higher at less 

than 1.20 x 10
-3

 mm
2 
s

-1
 in our series. 

ADC histograms 

It is apparent from the normalised histograms that PNET, PNET-MB and ATRT have 

distributions to the lower end of the ADC range, in keeping with their more densely 

cellular nature, as has been reported previously (87;197). The JPA group are at the 

higher end of the ADC range due to their loose stroma. Significant heterogeneity of the 

mean ADC histogram is seen within the ATRT group, Figure 4.3g (i) shows a bimodal 

distribution and this reflects differences between histograms within the group (Figure 

4.3g (ii)). The DNT group have a broader and more flat distribution than the other 

groups, again reflecting a heterogeneous appearing tumour (Figure 4.3c). The bimodal 

distribution of the CPP group (Figure 4.3b (i)) also reflects a very heterogeneous 

tumour group (Figure 4.3b (ii)). 

LR analysis all tumours 

LR of all tumour groups correctly classified 74.1% (40/54) of tumours (Table 4.3); 90% 

(20/22) PNETs, 82% (9/11) JPAs, 80% (4/5) DNTs and 75% (3/4) ATRTs. The failure 

to correctly classify any ependymomas (0/5) can be explained by the significant overlap 

with the PNET group. Only 57% of CPPs were correctly classified, the 3 incorrectly 

classified tumours were placed in 3 other groups (JPA, DNT and PNET). It may be that 

the broad distribution of the four DNTs in this study means that when included in the 

analysis other tumours are more easily classified into this group. The ependymoma that 

was not misclassified as a PNET was grouped with the DNTs. The variables which 
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provided the best discrimination were the peak height and the 10
th

 centile. This may 

represent differences in cellularity, where low ADC values are associated with more 

densely packed tumour types and allow discrimination from tumours with more 

heterogenous cellularity or simply less densely cellular structure as has been seen with 

PNET versus juvenile pilocytic astrocytomas. 

LR of PF tumours 

The LR analysis demonstrated that 94% of PF tumours were correctly classified (Table 

4.4), 80% (4/5) of ependymomas, 94% (15/16) of PNET-MBs and 100% (11/11) of 

JPAs, using the 75
th

 centile value, highlighting the additional information obtained from 

the histogram over and above the mean ADC (Figure 4.4). In contrast to the analysis 

including all the tumour groups it was possible to correctly classify 80% of 

ependymomas, again the incorrectly classified case was placed in the PNET group, 

reflecting the overlap in ADC histograms. Similarly the incorrectly classified PNET 

was placed with the ependymoma group.   

LR of PNET v ATRT 

The significance of this question arises as the ATRT group are more aggressive and less 

susceptible to surgical and oncological treatment with a bleaker prognosis (211-

213;219;220). Previous studies of this group have shown that they are radiologically 

very similar (220) and it wasn’t until 1987 (221) that ATRTs were recognised as a 

separate entity histologically being defined clearly in 1996 (213). PNETs and ATRTs 

have been separated through immunohistochemical
 
markers and detection of deletions 

and/or mutations involving
 
the hSNF5/INI1 tumour-suppressor gene in chromosome 

band 22q11.2 (222-225). It would be expected that they would share a high degree of 

structural similarity and Rorke et al (213) notes that ATRTs have been frequently 
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histologically misclassified as PNET “primarily because 70% of ATRTs contain fields 

indistinguishable from classic PNETs” and this point has also been reinforced in other 

publications (215;226). Previous reports in the literature have used multiple parameters 

from the clinical history (ATRTs generally present at a younger age), tumour location 

(ATRTs may involve the cerebello-pontine angle) and imaging findings from T1 – 

weighted acquisitions with and without gadolinium enhancement (intra-tumoural 

haemorrhage is more common in ATRTs) (214;227;228). Koral et al (214) made 

comparisons of ADCs between PNET-MB (a PF tumour) and ATRTs occurring in the 

PF and although they were able to highlight differences in clinical history, PF location 

and MRI appearance it was not possible, on ADC grounds, or using all MR sequences 

and clinical history as a whole to reliably discriminate the tumours.  

Our correct classification in 100% (26/26) of cases of PNET and ATRT uses variables 

of peak height and skewness. ATRTs tend to have a flatter and hence more negatively 

kurtosed distribution with a much lower peak height as compared to the PNET group 

and a wider spread of skewness (Figure 4.5) reflected in the slightly lower mean ADC 

of ATRT compared to PNET.  
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4.4.1 LIMITATIONS 

In common with many single-centre studies of paediatric brain tumours, our cohort is 

small, reflecting the relative rarity of paediatric brain tumours (approx 3-4 per 100.000 

children per year, USA and UK) (229;230). ROIs were drawn on the b = 0 images as 

these were available for all cases and formed the basis for the initial inclusion in the 

study. As with many studies attempting to discriminate tumours, there is no 

standardised method of using ROI analysis and this may allow for contradictory results 

due to the micro-structural heterogeneity of the tumour through exclusion of such 

regions in ROI selection. Recently Wang et al (231) semi-automatically subdivided 

tumours into four regions: central, enhancing, immediate peritumoural and distant 

peritumoural, using ROIs defined on contrast-enhanced T1-weighted, fluid-attenuated 

inversion recovery (FLAIR), fractional anisotropy and ADC images. Our approach was 

simpler to perform and similar to that of Tozer et al (209) although other studies have 

used gadolinium enhanced T1-weighted images alone (197) or combined with 

conventional MRI (87) or used the ADC map for ROI placement if a T1–weighted  

gadolinium enhanced sequence was unavailable. In distinction to these studies and 

following Tozer et al 2007 (209), we used whole tumour volumes (excluding cysts) and 

not a region of solid tumour as an ROI. 

The statistical analysis used many variables to attempt to classify what is a relatively 

small data set with initially several different groups. It may be possible with a larger 

data set to employ data reduction methods such as clustering or principal component 

analysis in order to determine more readily which variables should be implemented in 

classification. Although with this data set boosting, through the use of a sequence of 

classifiers has proved effective. It would also be helpful with a larger data set to use 
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leave one out analyses in order to perform a quality control on the conclusions drawn in 

terms of the variables applied to achieve classification. 

Clearly a multicentre study is warranted, to fully evaluate ADC histogram diagnoses as 

a clinical tool, where larger sample sizes, information from other sequences, the clinical 

history and tumour location could also be evaluated (214). In addition unusual 

tumours are often radiologically challenging to diagnose making it important to 

sample significant numbers of rare tumour types in such a study. 
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4.4.2 CONCLUSION 

Whole tumour ADC histograms provide more descriptive information reflecting a 

more complete coverage of the frequency of occurrence of an ADC value within the 

lesion. Using LR analysis ADC histogram parameters correctly classified 94% of PF 

tumour types and differentiated 100% of PNETs from ATRTs, which cannot be 

reliably differentiated on radiological and clinical grounds (214;232). ADC 

histograms have the potential to better predict the histological diagnosis of 

paediatric brain tumours, allowing better pre-operative planning and potentially 

reducing the need for invasive surgical biopsy. Studies with larger sample sizes, 

conducted on a multi-centre basis, with the inclusion of other MR data along with 

ADC histograms are warranted. 
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5.1 INTRODUCTION 

5.1.1  DTI & TRACTOGRAPHY IN THE PAEDIATRIC POPULATION 

Diffusion tensor imaging (DTI) and fibre tractography have the ability to demonstrate 

connectivity between regions of the brain not readily appreciable using other imaging 

techniques (128). Fractional anisotropy (FA) provides a quantitative measure of the 

micro-architecture of the white matter in vivo (233). Directionally encoded colour maps 

(97) and three dimensional representations of the white matter structures,  tractography, 

(115;119) have been used to investigate both normal architecture and pathology of the 

white matter mainly in adults and more recently in children. Specifically conditions 

such as brain malformations, cerebral ischemia, multiple sclerosis, neurocutaneous 

syndromes, and brain tumours. 

Brain malformations have been investigated looking at potentially aberrant white matter 

connections and the resultant clinical sequelae such as motor weakness and cognitive 

dysfunction (128). Their role in the investigation of malformations of cortical 

development, where the principal abnormalities are thought to be cortical has revealed 

evidence of abnormal connections both to the affected region and amongst adjacent 

white matter tracts (234). The evaluation of cortical dysplasia is a significant cause of 

intractable epilepsy and dysplastic areas can be difficult to detect using conventional 

imaging modalities, DTI may aid this in demonstrating the abnormal tracts leading to 

the cortical abnormality (235). Issues still remain to be resolved as a consequence of the 

limited spatial resolution of the DTI (236;237). Abnormalities of brain development 

such as seen in Holoprosencephaly (failure of the forebrain to divide into two separate 

hemispheres), Lissencephaly (236) (Absence of the normal formation of brain 

convolutions) and Schizencephaly (presence of congenital clefts spanning the cerebral 
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hemisphere) have been investigated. Abnormal white matter architecture has been 

demonstrated in the regions showing such abnormalities (238;239). It has also been 

possible to demonstrate apparently abnormal architecture throughout the brain in 

regions such as the brain stem and cerebellar peduncles (240;241). The corpus callosum 

connects homologous regions of the cortex between hemispheres. Congenital 

abnormalities in its development from agenesis to dysgenesis have shown alterations in 

the FA of the remaining fibres and tractography revealed abnormal connections. Some 

reports have indicated that the tractography was more helpful than conventional MRI in 

determining what connections existed (235) between regions of abnormality.  

Idiopathic epilepsy, where cortical abnormalities are occult or undetectable using 

conventional imaging is being investigated in terms of white matter architectural 

abnormalities through DTI tractography. Changes in MD the apparent diffusion 

coefficient (ADC) may provide markers of changes in the white matter than can be used 

in the neurosurgical evaluation of cryptogenic epilepsy (242). Idiopathic epilepsy 

patients have also been shown to have aberrant connections between two foci of 

epileptiform activity in the temporal lobe and the Rolandic fissure (243). A recent 

publication by Duning et al, 2010 (244) has demonstrated abnormal micro-architecture 

in individuals with conventional MRI negative partial epilepsy. 

The technique’s application in the assessment of white matter damage following stroke 

has been evaluated in order to attempt to determine the possibilities for functional 

recovery and the utility of neuro-rehabilitation. It has been applied to both perinatal 

strokes and newborns with cerebral palsy (245;246), where the fall in FA of the 

corticospinal tracts has been linked to the neuro-motor outcome. 
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Tumours have been targeted, in order to non-invasively assess the tissue characteristics 

in terms of pre-operative planning for potentially malignant tumours (243;247). The FA 

of the tumour core and its cell density (as discussed in Chapter 4) has been associated 

with the malignancy of the lesion. It is thought that this may also show potential in 

providing a reliable target for the biopsy of such lesions. 

Demyelinating diseases such as paediatric multiple sclerosis (MS) have demonstrated 

altered FA and apparent diffusion coefficients in what appears to be both abnormal and 

normal appearing white matter on conventional MR imaging (248). These changes have 

been an avenue in the neuroradiological assessment of disease evolution and treatment 

response.  

Neurocutaneous syndromes such as Neurofibromatosis (249) and Tuberose sclerosis 

(250) demonstrate MD increases and diminution of the FA in the white matter of 

sufferers as compared to healthy volunteers.  

Looking specifically at the posterior fossa, Salamon et al, 2007 (251) applied DTI 

colour maps and selective tractography (FA threshold 0.25, angular threshold less than 

70°, ROIs chosen on the DTI images, no further information given) to investigate the 

structure (251) of the cerebellum and its connections in 24 normal subjects, in 

comparison to that evident on myelin stained brain sections. They were able to localise 

the positions of the dentate and emboliform nuclei by the location of the connecting 

fibres running through the peduncles, specifically the inferior, middle and superior 

cerebellar peduncles. They found that more anteriorly the components were mixed with 

afferent white matter projections following the middle cerebellar peduncle. It was also 

possible to visualise the white matter fibres passing through the vermis and connecting 

the two hemispheres. DTI tractography appeared to compliment the anatomical 
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information obtained from other conventional imaging modalities used to map the brain 

structure and they postulated it as being a future avenue in the assessment of cerebellar 

ataxias and congenital disorders of the cerebellum and brain stem.  

Studies of DTI in the case of posterior fossa pathology have been undertaken, Widjaja 

et al 2006 (252) used DTI tractography to examine posterior fossa midline 

malformations where colour vector maps of FA were initially used in order to locate the 

region of interest for the tractography. This study demonstrated that in certain 

developmental disorders (Joubert Syndrome, rhomboencephalosynapsis) the cerebellar 

vermis was abnormal and that the superior cerebellar peduncles failed to decussate in 

the mid brain and the deep nuclei were more laterally placed.  

 

5.1.2  AGE RELATED BRAIN DEVELOPMENT  

In conducting a study into the white matter architecture of the brain in a paediatric 

population consideration has to be given to the effects of growth and inherently, to the 

age of the subjects under investigation. In terms of the increase in size of the brain with 

age, pathological post-mortem  research has shown that there is generally a rapid 

increase in brain size until about two years after which the increase in volume is of the 

order of 10 to 15 percent until around age 18 (253). The changes in the white matter 

with development have also been investigated using diffusion metrics such as MD and 

FA. Saskena et al in 2008 (254) demonstrated in cerebral white matter of 21 

neurologically normal children a sharp increase in FA up to 24 months and then a 

gradual increase to 132 months. The cerebellar white matter FA increased sharply up to 

36 months and then the increase became more gradual. Measurements of MD decreased 

sharply in cerebral white matter up to 24 months and again were more gradual 
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following that. In the cerebellar white matter, an initial decrease up to 6 months was 

followed by a stable pattern to adulthood. Specifically in our study we were interested 

in the cerebellar white matter changes. 

5.1.3  BRAIN ASYMMETRY AND HANDEDNESS 

Laterality of brain function has been extensively investigated and many methods of 

determination of laterality or dominance tested. In general terms this relates to laterality 

of language function and may be determined by use of a Wada test, involving the 

selective anaesthesia of a specific brain hemisphere and subsequent assessment of 

which tasks are still possible with the functioning hemisphere. Alternatively the use of 

functional MRI has revealed evidence of laterality of function. Handedness is related to 

brain laterality in providing an indication of the dominant hemisphere where 95 to 98 % 

of right handed individuals are left hemisphere dominant and approximately 50% of left 

handed individuals are right hemisphere dominant. There exists debate as to whether 

handedness is  as simple as left or right or both (ambidextrous) or actually represents a 

continuum (255). In terms of handedness distribution in the population a recent study by 

McManus indicated approximately 13%  left handedness (256). The incidence of 

atypical right hemisphere language dominance in left handed individuals has led to 

suspicion of a systematic association between handedness and language dominance in 

healthy subjects. A study by Knecht et al in 2000 found the incidence of right-

hemisphere language dominance increased linearly with the degree of left-handedness 

(257). The evidence of a dominant hemisphere has led to questions about structural 

asymmetry. 

Gross studies of structural brain asymmetry have focused on sylvian fissure morphology 

due to its relation to motor function, hypothesising its development may be affected by 
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hand dominance (258). Its asymmetry in men and women has been studied by Wietlsen 

et al, 1992 (258) revealing bilateral differences in relation to handedness in men. The 

post-mortem study of 67 brain specimens from individuals who had previously had 

detailed hand preference assessments, revealed that the asymmetry existed between 

those that had a strong hand preference for the right and those that did not. There was in 

fact a bilateral morphology change in terms of the length and point at which the sylvian 

fissure changed direction which was diminished in those without a strong hand 

preference, there was no clear left right asymmetry detected.  

In the cerebellum, functional asymmetry is thought to be a special characteristic of 

cerebellar functional organization and the cerebro-cerebellar circuitry that underlies task 

performance. Imaging studies using multiple modalities have demonstrated cerebellar 

functional asymmetry to have a relatively complex pattern and correlations may exist 

with practice or some neurological disorders (259). Functional laterality using 

functional MRI and positron emission tomography has shown ipsilateral asymmetry / 

laterality in the case of simple and complex motor cognitive functions (260).  

In terms of structural asymmetry however, efforts have concentrated on stereoscopic 

assessments of the volume and have divided it into four quadrants. The evidence has 

pointed towards a torsional asymmetry. 

Snyder et al in 1994 (261) delineated sub-regions within the cerebellum, specifically left 

and right divided into anterior and posterior segments. They compared 15 right handed 

and 8 non right handed individuals. The results indicated that for the right handed 

individuals the right anterior segment had a larger volume than the left. When 

considering the posterior segment for the right handed individuals the left posterior 
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segment was larger in volume than the right. They demonstrated a significant 

handedness effect in asymmetry or cerebellar torque when right handed as to when not. 

A study by Szesko et al, 2003 (262) has shown evidence that the cerebellar asymmetry 

or torque reported in normal subjects is apparently reversed with patients presenting 

with first episode schizophrenia and postulated that this may represent some aberrant 

neuro-developmental process. 

The paediatric population presents further challenges in investigation of laterality of 

function and structure, in relation to the effects of development at the age at which 

handedness is determined. There exists variation in this as there exists with rates of 

childhood development. The issue of mixed and left-handed development is itself an 

increasingly important aspect of research into hand dominance (256;263). Children 

develop at different rates, consequently may show no strong preference, in terms of 

writing, for one hand over the other even by the age of 5. In left-handers, it is reportedly 

not uncommon for this preference to be delayed until as late as the age of 7. Conversely 

some reports indicate that in some individuals it may be determined from as early as 2 

(264). 

Schooling may also have an effect; the National Curriculum provides writing skills 

tuition from the age of five, or earlier and this may force a premature decision in some 

individuals. This leads to all children being urged to choose a hand for writing from this 

age. There does exist the possibility that they initially start writing with one hand only 

subsequently to switch to the other as fine motor skills and hand-eye co-ordination 

develop (256;263). Current research seems to point to a genetic determinant of 

handedness (256) and forcing an individual to one or other side may confound the 
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developmental changes potentially seen in the white matter, although this may again be 

dependent on the plasticity of any of the white matter changes. 

Many methods of testing for handedness exist; questionnaires either answered by the 

individual themselves or by the parents have been used (255). Validity of this method is 

open to debate; results may depend upon the number and depth of questioning. Other 

more detailed neuropsychological or behavioural assessments are undertaken with 

respect to the performance of specific skills in order to determine hand dominance but 

are beyond the scope of this work. Simple self reported handedness is considered to be 

unreliable in children as individuals may use different hands for different activities 

(255;256). In order to determine handedness Sattler (264) suggests the use of task 

related questions, such as which hand to brush teeth, throw a ball, hold a knife etc to 

draw conclusions; this was the simple method adopted in the assessments of the author. 

Debate over classification of results of testing remains with respect to the possibility of 

a spectrum and typically individuals that are left handed are not as strongly lateralised in 

terms of function as right handed individuals. 

5.1.4  OBJECTIVES 

Initially to establish the threshold values that allowed the best reconstructions of the 

cerebellar peduncular white matter in a healthy normal paediatric population. In so 

doing to determine a method for the drawing of the regions of interest (ROIs) necessary 

for the reconstructions. 

To visually assess the tractography reconstructions in terms of anatomical plausibility in 

comparison to established anatomy and in comparison to previously published work on 

tractography in the posterior fossa. 
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Subsequent to tract reconstructions the intention was to calculate quantitative 

measurements of diffusion (MD and FA) as well as tract volume in order to establish if 

a relationship existed with the age of the subjects studied. 

Through the use of MD, FA and tract volume, the presence or absence of asymmetry of 

the cerebellar peduncular white matter was to be assessed.  
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5.2 METHODS 

5.2.1  PATIENTS  

Data was collected throughout 2006 and was contemporaneous to the collection of the 

posterior fossa data analysed in chapter 6; it was collected by Dr Kate Riney as a control 

group for an epilepsy project. All cases were healthy children, typically siblings of 

patients being investigated with epilepsy, any individuals with other possible pathology 

were excluded. The collection of this data had been approved by the local research 

ethics committee.  

5.2.2  DETERMINATION OF HANDEDNESS 

All 18 individuals or parents, where appropriate, were questioned either in person or via 

a telephone interview at the end of the study. All the individuals studied were over 7 

years and in full time schooling at the time of scanning. A series of questions adapted 

from those suggested by Sattler (264) were used to determine handedness. As the 

information was collected after the imaging and over the phone a lengthy questionnaire 

was not appropriate. An aggregate score was recorded and the preference hand for the 

majority of activities determined whether the individual was left handed, right handed 

or ambidextrous.  

Specifically questions were; which hand do you usually or prefer to: switch on/off 

lights,  brush teeth, comb hair, hold a knife, use a tool (e.g. a hammer), throw a dice, 

pick up/count things, open window/door, throw a ball etc, draw ,paint, write. 
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5.2.3  MRI DATA ACQUISITION 

The MRI data acquisition is common to all the tractography data analysed in this thesis 

and is described in Chapter 3.1.3 and shown specifically as the 1
st
 and 2

nd
 sequences in 

Table 3.1.  

5.2.4  TRACTOGRAPHY METHOD 

The tractography method employed is as described in Chapter 3, sections 3.3 – 3.5. The 

tensor was diagonalised and the MD and FA of each voxel calculated. Analysis 

proceeded through calculation of whole brain streamline tractography for all 17 cases; 

using the programs developed by Dr Tom Barrick in the “C” programming language 

and utilised the methods initially described by Basser et al (120). 

The tractography algorithm required the determination of a continuous estimation of the 

diffusion tensor field based on the individual voxel measurements. This was achieved 

by linear interpolation of the tensor field as described in Chapter 3 (265).  

5.2.5  TRACTOGRAPHY THRESHOLDS 

The tractography program allowed the determination of several parameters in order to 

better reconstruct the pathways. The FA threshold was set at 0.3 for all the data 

analysed based on previous experiments; producing reconstructions which excluded 

tracts that were aberrant or not of interest whilst maintaining those that were of interest. 

In figure 5.1 the relaxation of the FA threshold from 0.4, allows the inclusion of the red 

fibres which are crossing pontine fibres and then further relaxation allows the inclusion 

of the blue fibres travelling superior-inferiorly which likely represent corticospinal 

fibres.  The effect being that where the calculated FA of the interpolated tensor field 

was less than 0.3, tracking would be terminated. The threshold we used sufficiently 
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relaxed the FA threshold for termination of tracking to allow, on visual inspection, 

inclusion of the cerebellar peduncular white matter (the green fibres passing antero-

posteriorly) as well as a small amount of the crossing pontine fibres whilst excluding 

extraneous pathways such blue vertically orientated fibres. Figure 5.1, shows  tract 

reconstructions using the directionally encoded colour convention (97) which are  

superimposed on FA maps of the posterior fossa. The same ROI is used at differing 

levels of FA threshold. 

 

Fig. 5.1 Effect of Changing FA threshold on tract reconstruction 

The vector step length was set at 1mm, such that whilst streamline tractography was 

initiated at the centre of all voxels throughout the whole brain, it would step forward or 

backwards at 1mm intervals such that it was able to sample at any point within a voxel. 

In this project the voxels were isotropic and 2.5mm
3
, hence the principal eigenvector 
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could be calculated at a subvoxel level. Subsequently the streamline would be advanced 

a further 1mm within the image and the principal eigenvector recalculated. The choice 

of step length was based on previous tractography experiments in our group. 

It was possible to specify an angle of termination at which point the tracking would 

cease. Tracing would proceed initially in one direction from the start point and when 

terminated would recommence at the original start point but proceed in the opposite 

direction. The angle of termination chosen was 90°, in effect removing the angle of the 

subsequent eigenvector as a termination threshold. This was based on previous 

tractography experiments. This work had been undertaken by previous researchers in 

our unit and repeated by the author in an exploratory fashion in order to determine the 

least restrictive parameters to allow reconstructions 

5.2.6  CONSTRUCTION OF ROIS 

The MD and FA maps were transferred to a Dell work station and using mriCro (175), 

regions of interest were drawn on the FA maps.  Three dimensional ROIs corresponding 

to the predicted anatomical location of the tracts to be studied were drawn by the author 

in order to localise structures of interest.  

Initial experiments to determine locations of ROIs utilised low resolution tracking for 

rapid assessment and then high resolution once the tracking from the selected ROI 

location appeared anatomically feasible. The low resolution method used a 

checkerboard approach, seeding was initiated from every other voxel where as the high 

resolution tracking initiated from every voxel in the image, the effect being to reduce 

the time taken for image analysis. Image analysis of the healthy control group was all 

performed using the high resolution technique. The ROIs were selected in the likely 

anatomical location of the cerebellar peduncular white matter and in common with the 
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FA threshold, the final areas chosen were those that gave the most complete 

reconstruction of the tracts of interest, as per the method of Clark et al 2003 (178). 

The ROI acted as a selection region; where the seed voxel produced tracts that passed 

through the region of interest they were retained. Several methods were attempted in the 

initial analysis in order to determine the best reconstructions, the provision of exclusion 

ROIs or a second ROI was deemed not helpful. 

In the analysis performed, the author was blinded to the cases in terms of handedness 

and drew ROI’s on the regions thought to represent the cerebellar peduncular white 

matter region, specifically over the bright (high FA) regions lateral to the fourth 

ventricle of the posterior fossa. ROIs were drawn on either side for each individual case. 

This process was performed sequentially for each case and alternating between the left 

and right sides. When drawing the ROIs the author attempted to ensure that the volumes 

of the ROI’s drawn on the image appeared visually similar.  This process was then 

subsequently repeated for the same data in order at a later date. The result was the 

generation of four ROIs for each subject; two on the left and two on the right. An 

example of left and right ROIs drawn on a dataset are shown in Figure 5.2, below. 
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Figure 5.2 ROIs superimposed onto the FA image (Geomview). a) High 

FA region adjacent to low signal IV
th

 ventricle used as ROI. b) ROIs 

represented as red regions superimposed onto the FA axial and coronal 

slices. 

a) b) 



CHAPTER FIVE:  POSTERIOR FOSSA TRACTOGRAPHY IN HEALTHY PAEDIATRIC CONTROLS 

146 

 

5.2.7  OUTPUT OF TRACT MD, FA & VOLUME 

Following the construction of the ROIs, the ROI files were transferred to a UNIX 

workstation in order to produce the tract images. Tract reconstructions were visualised 

using “GeomView” (266) superimposed onto the b = 0 s mm
-2

 image, in order to 

determine anatomical plausibility. As the FA threshold and the chosen approximate 

ROIs had been tested on alternative data prior to this group’s analysis, to optimise the 

reconstruction, it did not prove necessary to redraw the ROIs on the grounds of 

anatomical plausibility. 

Following visual assessment of tract output, the reconstruction data was processed to 

calculate the volume of the tracts. Calculations were on a subvoxel basis, only the actual 

volume of the tract rather than the total volume of all the voxels it passed through were 

counted. Average FA and MD of the tract were calculated an all data were entered into 

excel spreadsheets (Excel 2007). 

The time taken to draw the ROIs for each individual patient (left and right single cases) 

was approximately 5 minutes. The computational process required approximately 15 

minutes for each individual case, the speed was much enhanced through the use of batch 

files, written by the author, in order to process multiple cases from a single command.  

5.2.8  STATISTICAL ANALYSIS 

The numerical data from an individual case comprised data for the three metrics MD, 

FA and sub-voxel volume. For each metric there were two individual observations for 

the left and two for the right. Two ROIs were used on each side in order to create 

replicates using the same ROI selection criteria. The two replicates were averaged for 

each right sided metric and each left sided metric. There were a total of 6 measurements 



CHAPTER FIVE:  POSTERIOR FOSSA TRACTOGRAPHY IN HEALTHY PAEDIATRIC CONTROLS 

147 

 

for each case (MD_left, FA_left, SV volume_left and MD_right, FA_right, SV 

Volume_right). All analyses were performed using SPSS for Windows (Ver. 14. 2006. 

Chicago: SPSS Inc.). The single left hand case did not provide sufficient information to 

permit an analysis allowing for left – right difference. The single case was therefore 

removed.  

A number of linear regression analyses were performed with age as the explanatory 

variable and with one of the following as the dependent variable: MD, FA and sub 

voxel (SV) volume for both left and right sides. Regression analyses were also 

performed using the left-right averaged values of the three parameters (MD, FA and SV 

volume). 

In order to circumvent some of the problems associated with repeated measures 

analyses we proceeded as follows:  

Using individual values for each case; the structural asymmetry of the cerebellar 

peduncular white matter between right and left tracts was calculated for the independent 

measures MD, FA and SV volume. The calculation is illustrated in the equation below 

where “Diff_Stat” refers to the scalar measure of asymmetry. 

              
         

         
 

This scalar measure ranges from -1 to +1 where positive values indicate asymmetry 

towards the right side and negative values indicate asymmetry towards the left side, a 

value of 0 indicates an absence of asymmetry for that case.  

The data from the asymmetry scale were investigated, using a one sample t - test, to 

evaluate whether the difference in the means was equal to zero.  As the study was an 
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exploratory one and was hypothesis generating rather than testing formal multiple 

comparisons analysis was not undertaken.  
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5.3 RESULTS 

In total 18 cases were initially included in the group as detailed in Table 5.1. In the 

process of statistical evaluation the single left handed case was excluded from the 

analysis as constituting inadequate sample size.  

The mean age of the seventeen right handed cases was 11.1 years with a range of 7.1 to 

17.9, there were 10 males and 7 females. 

Case Sex Age (Yrs) Handedness 
101 M 10.2 R 

102 F 7.3 R 

103 F 11.8 R 

104 F 10.3 R 

105 F 7.1 R 

106 F 13.7 R 

107 M 10.9 R 

108 F 11.5 R 

109 M 9.05 R 

110 M 14.4 R 

111 M 17.4 R 

112 M 15.6 R 

113 M 10.5 R 

114 F 8.9 L 

115 F 10.6 R 

116 M 8.6 R 

117 M 16.4 R 

118 M 17.9 R 

 

Table 5.1 Demographics of healthy cases. 

 (M = male, F = female, R = right, L = left. Excluded case scored through) 
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5.3.1  CEREBELLAR PEDUNCULAR TRACTOGRAPHY 

In the initial investigations the FA threshold and the ROI construction method were 

determined. We demonstrated that using an FA of 0.3 and including the regions of high 

FA lateral to the IV
th 

ventricle of the posterior fossa, it was possible to construct 

anatomically plausible images of the cerebellar peduncular white matter. In addition, on 

relaxing the FA threshold it was possible to reconstruct fibres connecting into the brain 

stem. An image of such reconstructions is seen in Figure 5.3, where the directional 

scheme of Pajevic et al (97) is used. The blue fibres represent those travelling cranio-

caudally, possibly descending motor fibres or ascending sensory fibres; the red fibres 

likely matching the trajectory of the transverse pontine fibres seen at this level in the 

brainstem.  

 

Figure 5.3 Tractography reconstructions of posterior fossa structures  

In addition to the FA threshold effects, the selection of the ROIs was important in the 

determination of the reconstructions of the posterior fossa structures. Reconstruction of 
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the tracts without the inclusion of any of the midline structures was sought by 

determination of the best method for drawing the ROI prior to the analysis of this data 

set. 

5.3.2  LINEAR REGRESSION OF DTI METRICS AND VOLUME WITH AGE 

Scatter plots of age as the factor and the SV volume, average FA and average MD as the 

variable were produced. On visual inspection there does not appear to be a marked 

dependence on age (Below Figures 5.4 - 5.6). The single outlying value on the FA 

scatter plot was investigated in terms of visual inspection of the tractography 

reconstruction and ROIs chosen but no obvious cause could be discerned.   

 

Figure 5.4 Scatter plot of Age versus average MD (Av_MD). (s mm
-2

) 
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Figure 5.5 Scatter plot of Age versus average FA (Av_FA).  

 

Figure 5.6 Scatter plot of Age versus average sub-voxel volume 

(Av_SV_Vol), volume in mm
3
. 

Linear regression analyses of the left-right averaged values for MD, FA and SV volume 

were undertaken and similarly for the individual values of the left and right values for 
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the same parameters using age as the explanatory variable. The results of these analyses 

are shown in table 5.2.  

Explanatory 

Variable 
Dependant 

Variable p-value Significant at p < 0.05 

Age MD_Left 0.541 N/S 

Age MD_Right 0.183 N/S 

Age FA_Left 0.88 N/S 

Age FA_Right 0.918 N/S 

Age SV_Vol_Left 0.889 N/S 

Age SV_Vol_Right 0.942 N/S 

Age Av_MD 0.515 N/S 

Age Av_FA 0.897 N/S 

Age Av_SV_Vol 0.91 N/S 

Av = average, SV_Vol = sub voxel volume, N/S = not significant. 

 

Table 5.2 Linear Regression p-value results; age versus MD, FA and sub-

voxel volume 

At the p < 0.05 level the p-value result did not indicate a significant relationship 

between age of the subjects and the parameters of MD, FA and SV volume of the tracts 

for this group of healthy subjects. 
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5.3.3  CEREBELLAR PEDUNCULAR ASYMMETRY AND HANDEDNESS 

The descriptive statistics mean and standard deviation for the measure of right to left 

asymmetry (Diff_Stat) for the MD, FA and SV volume are shown in Table 5.3. 

 
N Minimum Maximum Mean Std. Deviation 

Diff_Stat_MD 17 -.0507 .0323 .0034 .0187 

Diff_Stat_FA 17 -.0140 .0346 .0084 .0145 

Diff_Stat_SV_Vol 17 -.1326 .3837 .0692 .123 

 

Table 5.3 Descriptives of asymmetry measures for MD, FA & SV volume 

Histograms of the range of values for the asymmetry measures are shown in Figure 5.7 

to 5.9 using only the seventeen right handed subjects. 

 

Figure 5.7 Histogram of right-left asymmetry of MD (right handed 

subjects) 
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Figure 5.8 Histogram of right-left asymmetry of FA (right handed 

subjects) 

 

Figure 5.9 Histogram of right-left asymmetry of sub voxel  (SV) volume 

(right handed subjects) 
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The asymmetry measures of the MD, FA and SV volume were investigated using a one 

sample t-test and the results with the p – values are tabulated below. 

 

 

Table 5.4 One sample t - test for asymmetry measures (Diff_Stat) 

(p values significant (Sig) at the < 0.05 level).  

The asymmetry measure (Diff_Stat_) is statistically significant for the FA and sub voxel 

volume measures, at the p < 0.05 level (Table 5.4). From review of the descriptive data 

in Table 5.3 the inference is drawn for a positive difference indicating the right SV 

volume and FA are significantly greater than the left.  

 

 

 

 

t  Sig. (2-tailed) Mean Difference 

95% Confidence Interval of 

the Difference 

 Lower Upper 

Diff_Stat_MD .747  N/S .00339 -.00623 .01302 

Diff_Stat_FA 2.390  .030 .00841 .00095 .01587 

Diff_Stat_SV_Vol 2.318  .034 .06915 .00591 .13240 
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5.4 DISCUSSION 

The ability to visualise the white matter tracts of the cerebellar peduncles in normal 

subjects was a prerequisite to investigating any changes seen in the pathological 

posterior fossa (PF) population discussed in Chapter 6. The algorithm’s threshold 

values, best enabling anatomically plausible reconstructions of the PF tracts, were 

established. Results were consistent with the work in the adult population of Salamon et 

al (251). The FA threshold of 0.3 was higher than that of Salamon et al (0.25) and was 

without an angle termination threshold (70° in the quoted work). In this process, 

appreciation of the anatomical location for placement of ROIs to reconstruct the white 

matter of the cerebellar peduncles was refined. The peduncular white matter was not sub 

divided into the three component groups as Salamon et al had done, although they do 

not clarify how they had chosen their ROIs. In this work the relatively bright regions 

(high FA) immediately lateral to the IV
th

 ventricle of the PF enabled a reliable 

reconstruction with limited user interaction; the region had been established through 

experiment. 

The work in this paediatric population highlighted the inability of the tractography 

reconstructions of the peduncles to reach to the cortex. A similar phenomenon was seen 

in the adult population as discussed by Salamon et al (251); it is thought that this may 

relate to the intervening deep cerebellar nuclei. Visual assessment of the anatomical 

plausibility of the tractography reconstructions with established neuro-anatomy and 

previously published tractography images showed the reconstructions to be similar 

(251). 
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Quantitative data was evaluated from the reconstructions of the peduncular white matter 

in the form of MD, FA and sub voxel volume of the tracts. It was possible to do this in 

all cases.  

To investigate the validity of these values as measures for anatomical asymmetry a 

potential confounder in terms of age related changes was explored. Previous work in the 

paediatric population (139) has suggested that the majority of changes in white matter 

DTI metrics (FA and MD) occur within the first 24-36 months for FA and first 6 

months for MD. In linear regression analysis of the values of mean MD, FA and sub 

voxel volume no significant relationship was established between the metrics and the 

age of the subject. This was consistent with current literature in the context of the 

population demographics we were investigating; the age range being from 7.1 to 17.9 

years for the 17 subjects. 

In assessing anatomical asymmetry of the peduncular white matter we utilised a 

measure of right to left asymmetry. The results of the 17 right handed individuals 

highlighted a statistically significant difference in the sub voxel volume and the FA 

values with the inference from the descriptives that the right sided tract reconstructions 

were larger volume and had higher FA than the left. To our knowledge this is a new 

finding. There was no statistically significant change in MD.  

Evidence from functional and PET MRI studies have indicated a complex pattern of 

lateralisation or asymmetry of tasks in the cerebellum (259) and have also suggested an 

ipsilateral lateralisation of simple and complex motor tasks (260). It may be expected 

that if such ipsilateral asymmetry exists, individuals who have a strong hand preference 

may also have a relatively larger ipsilateral white matter volume and coherency of 

directionality and density, reflected in an increase in FA. This may be as a consequence 
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of the effects of learning and neural plasticity and has been demonstrated in internal 

capsule white matter of musicians (267). 

Previous reports looking at volumetric analysis (stereoscopy) of the cerebellum and 

hand preference by Snyder et al 1996 (261), demonstrated a cerebellar torque effect 

where the right anterior and left posterior segments of the cerebellar hemispheres were 

enlarged in individuals who were right handed as compared to those who were not. This 

larger right anterior segment volume may be reflected in the right side cerebellar 

peduncular white matter having a greater volume asymmetry and higher FA on 

tractography and DTI metrics. Our tracking did not appear to extend past the deep 

nuclei into the posterior aspects of the cerebellum (See Figure 5.3); hence it was not 

possible to explore this phenomenon of cerebellar torque through examination of the 

posterior segments of the hemispheres.   

5.4.1  LIMITATIONS 

In the tracking algorithm we used a relatively high FA threshold in keeping with other 

work. (251;267-270). This runs the risk of removing related white matter fibres in the 

attempt to also exclude aberrant tracks. The failure to track to the cerebellar cortex is 

also seen in adult work and may require the use of further ROIs but this is beyond the 

scope of this work. 

The drawing of the ROIs by the author is potentially subject to bias and requires a 

degree of user interaction as has been found in previously published adult work 

(268;270-272). It is possible to question the operator’s expectation of the right side 

tracts being relatively larger and denser and that this could be achieved through using 

deliberately larger ROIs. In response to this, if the region of interest were to be drawn 

deliberately larger; the risk is that the density and coherence of the tracts would be 
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reduced and hence the FA may fall to a value below the chosen threshold FA value. 

This was not the case in this analysis. Further more in drawing the ROIs by using an 

opacification technique (overlaying the ROI on the FA image) and selecting out the 

brightest voxels in the likely location, the remaining voxels appear relatively brighter. 

Such problems have been highlighted previously and are an inherent problem in the use 

of subjective ROIs. Whilst formal reproducibility testing of ROI’s was not undertaken; 

the author averaged two temporally separate instances of the ROI’s construction using 

the same construction parameters. Formal reproducibility testing would be helpful in 

order to ascertain the utility of the method for clinical practice, perhaps through the use 

of other investigators drawing ROIs or an automated system based on FA parameters 

and anatomical location.  

The collection of the handedness data was not done contemporaneously, however all 

children were over the age of 7 years at the time of scanning, a point by which evidence 

suggests handedness has been determined (256;264). The handedness data was collected 

at most 10 months after the imaging had been undertaken.  

The method of determining the handedness was necessarily shorter than the more in 

depth neuropsychological assessments. It would be worth repeating the study 

implementing a more robust assessment of handedness using, for example, the Crovitz 

scale  (273) which rates which hand subjects use for many more everyday activities and 

answers are converted to a scale where the score determines the degree of lateralisation. 

There is also an account taken of the effect of education and environment favouring the 

use of the right hand more generally. 

The small numbers used here are comparable to other published work (261) but indicate 

that a future study utilising a similar technique with a larger population and specifically 
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more non-dextral individuals (the technique of comparison in Snyder et al 1995) would 

be of interest. It would be of particular interest to assess cerebellar asymmetry to 

determine if the differences are reversed in non-dextral individuals, although this may 

not be the case, as mentioned earlier non-dextral individuals are frequently not as 

lateralised in hand function as the dextral individuals. In this analysis, a single left 

handed individual was considered statistically unreliable to include as a single 

alternative case, it is of note that the left handed case fell within the distribution of the 

right handed cases. It is possible that the asymmetry demonstrated may be coincidental 

and unrelated to hand dominance, in the context of the literature available however, it 

remains an important area for exploration.  

5.4.2  CONCLUSION 

The work has defined a method to select a region of interest from which it is possible to 

reconstruct visually plausible cerebellar peduncular white matter tracts. Drawing of the 

ROI requires a relatively short period of time (approximately 2-3 minutes) now that its 

characteristics are defined. To our knowledge this is the first investigation of cerebellar 

structure in the healthy paediatric population. 

These tract reconstructions have enabled the extraction of quantitative, rather than 

simply visual, data. MD, FA and sub voxel volume when analysed on an average basis 

or as separate right and left measures did not show a significant relationship with age in 

this population. In addition, within the auspices of the discrimination of handedness 

used in this study it has been possible to demonstrate a statistically significant 

relationship of increased FA and sub voxel volume of the reconstructed cerebellar white 

matter on the right side of the subject with a right hand preference.  
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Using the ROI method defined and in light of this exploratory study, the data suggests 

that formal hypothesis testing with a new and larger group of subjects analysed through 

a more rigorous hand dominance tool (possibly using a scale of dominance) warrants 

further investigation. The possibility exists of the application of this technique in 

assessment of paediatric patients with posterior fossa pathology. Demonstration of 

quantitative changes in cerebellar peduncular white matter from healthy to pathological 

subjects could determine whether a relationship exists between changes in the metrics 

and the presence and absence of signs of cerebellar disease.  
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6.1 INTRODUCTION 

Neurosurgical intervention in the treatment of intracranial tumours is aimed at the ideal 

of complete or near complete resection. Maximal resection in children is associated with 
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an increased survival, particularly so in posterior fossa tumours of children (274-276) 

much more so than in the adult population (277). Extent of resection is balanced against 

risk of damage to normal brain tissue, both cortex and white matter, that may be 

infiltrated by tumour but remains functional. The extent of the neurological deficit, 

evaluated by means such as the Karnofsky score (278) relates to quality and duration of 

life following diagnosis. Poorer functional scores predict shorter life expectancy (277). 

Surgical decision making regarding a tumour, in terms of resection / debulking / biopsy, 

is determined by the risk to functional outcome. 

In order to quantify risks to eloquent regions of the brain in surgery, techniques to 

determine the location of areas of such cortex have been implemented. Specifically: 

intra-operative mapping of the cortex (279), or functional MRI and 

magnetocepahography (185) (280). Whilst they elucidate the location of cortical regions 

they do not define the underlying white matter tracts (281). Failure to preserve such 

connections obviates the care undertaken to preserve the cortex as functional deficits 

will still ensue (282;283). The risk and occurrence of deficits following surgery to treat 

intracranial neoplasms has determined a need to characterise the eloquent white matter 

connections in vivo (178;282-286). Awake craniotomy (287) with sub-cortical 

stimulation (288) have been useful to this end. The emergence of tractography has 

shown great potential to aid pre and intra-operative planning of the resection of tumours 

as an adjunct to the current  imaging modality of choice, MRI (251;288-292). 

Conventional MRI provides detailed structural images of the lesions but very little 

localisation or data about structural integrity of eloquent white matter (178).  
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6.1.1  TRACTOGRAPHY IN NEUROSURGERY 

The potential of this technique to map white matter was rapidly recognised 

(178;284;293) and investigations directed initially towards the motor pathways 

(corticospinal tracts, CST) in adults. The technique relied upon production of a ROI in 

the cerebral peduncles and a second one in an approximation of the motor cortex using a 

FA threshold as a criterion for the termination of tracking 

(120;121;133;134;178;182;293). The absence of a complete connection of the 

reconstructed pathways with the motor homunculus, appearing only to connect to the 

most superior cortex, raised questions over the reliability of the tracts. It was evident 

that they were dependent upon the subjective ROIs chosen and the FA threshold 

(93;281;294). In spite of this it was possible to visually reconstruct distortion or 

disruption of motor pathways as a result of tumour mass effect (178). 

Alternatives to manual ROIs based on neuroanatomical knowledge such as cortical 

mapping through the use of functional MRI (293;295) (296) to locate the cortical ROIs 

have not resolved the incomplete reconstructions. There have been further attempts 

using cortical mapping in patients with glioma, with tracts reaching 16 of 27 cortical 

stimulation sites (297). Completeness of reconstruction has been hypothesised to be 

hampered by the presence of oedema surrounding the tracts, where the anisotropy is 

diminished and hence affects tracking (178;298) as well as the effects of crossing and 

bending fibres which are calculated to have a lower probability than straight fibres. 

When tractography was combined with intra-operative cortical mapping, initial results 

were disappointing (299). This was attributed to failure to resolve crossing pathways 

and relatively high FA thresholds (0.3) causing underestimation of the motor tracts. 

More recently tractography combinations with intra-operative cortical stimulation have 
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been more successful (272;300;301;301-303). Similar techniques of tensor based 

tractography were used and improvements are likely to have stemmed from adjustments 

of FA threshold and experience with the tracking algorithm. Berman et al (303) 

determined the mean distance between sub-cortical stimulation sites and tractography-

derived motor pathways was 8.7 ± 3.1mm for 16 stimulation sites in 9 patients with 

gliomas (303). In 40 patients planned for surgery for brain tumours near to the motor 

pathways Mikuni and co-authors (304) compared electro-cortical stimulation and 

tractography. In the majority of patients where potentials could be recorded, motor 

evoked potentials were elicited from the sub-cortex up to a maximum of 1 cm from the 

motor tract reconstructions. The authors suggest that the two techniques could be used 

complimentarily in order to improve the outcome of surgery through the rapid 

identification of areas of eloquent cortex and sub-cortex (279;305-307). 

The integration of tractography with intra-operative neuro-navigation has been 

described (272;306-308). A study by Nimsky et al (309) showed white matter tracts, 

specifically the internal capsule moved between - 8 to + 15mm in a 37 patient series 

undergoing surgery for glioma. Results reveal the significance of brain shift in the 

course of surgery and indicate the need for intra-operative updating of the tractography.  

The optic radiations have been reconstructed using tractography; in a series of patients 

with arterio-venous malformations Kikuta et al (310) found incomplete post-op 

reconstruction of the optic pathway was associated with visual field loss. Intra-operative 

visual evoked potentials were compared with optic radiation tractography and were lost 

when the region was reached in a patient with glioblastoma (311). In an attempt to 

diminish the radiation exposure in patients undergoing gamma knife surgery, 

tractography has mapped the optic radiation and been integrated into the radio-surgical 

planning (269). 
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The arcuate fasciculus, part of the language pathway connecting the frontal and 

temporal lobes has been investigated (312) as well as the superior longitudinal 

fasciculus (313). In work by Kamada et al, the arcuate fasciculus was generated in 22 

patients using fMRI activation and magneto-encephalography, two cases were 

integrated into a neuronavigation system and the results compared with electro cortical 

stimulation of the area located by fMRI, stimulus locations were within 6mm of the 

arcuate fasciculus. 

In attempts at quantitative assessments of the outputs of tractography, the FA and MD 

of reconstructions of the CST’s have been used in the assessment of the long term 

outcome from stroke. Results indicated relationships between diminished average FA of 

the tract reconstructions (150;151;314) and poorer functional outcome scores. A study 

of FA of the middle cerebellar peduncle (MCP)  in patients following stroke looking for 

reorganisation of the cerebellar connections showed evidence of reduction in FA of the 

MCP of the contra-lesional side to the stroke (the cerebellum supplies fibres 

ipsilaterally to the body, left hemisphere stroke but right sided symptoms and cerebellar 

peduncle). This was not FA generated from a tract average but from a ROI (315). Lui et 

al (316) looked at the FA of posterior fossa CST reconstructions in 30 patients with 

primary posterior fossa lesions, through evaluation of DTI metrics obtained from 

tractography of the motor tracts. In patients with well-circumscribed primary posterior 

fossa masses, higher MD and lower FA in the brainstem CST were associated with 

contralateral motor deficits. 

There have been few studies in the paediatric population in part due to the lower 

numbers of tumours in the population (14) and the inherent difficulties presented by 

imaging children in terms of their ability or wish to co-operate with examination. The 

questions surrounding development and the degree of myelination with age have been 
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discussed in Chapter 5. Gaetz et al (317) used magneto-encephalography and diffusion 

tensor tractography in paediatric brain tumour patients to map the cortico-spinal tracts. 

They concluded that concurrent use of MEG and tractography could be an effective tool 

in the pre-operative evaluation of eloquent cortex and associated white matter tracts in 

paediatric brain tumour patients.  

The pattern of FA changes in the white matter of the cerebellar peduncles has been used 

to distinguish ataxia syndromes, including spinocerebellar ataxia-1 from multiple 

system atrophy. Prakash et al (318) looked at adult patients, assessing the types of 

ataxia and comparing them with qualitative and quantitative measures obtained from 

tractography of the cerebellar peduncles using, ROI, probabilistic and a deterministic 

methods. They concluded that the probabilistic method was the most reliable but all 

methods of tractography of the cerebellar peduncles (superior, middle and inferior) were 

more helpful at describing and discriminating the types of ataxia than conventional MRI 

techniques. Average tract FA in all patients with ataxia was decreased in all cerebellar 

peduncles and the reduction correlated with disease severity. 
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6.1.2  OBJECTIVES 

There remain several technical problems with DTI tractography in its integration into 

standard clinical practice. The use of FA thresholds to remove spurious tracts whilst 

retaining reliable volumes measurements has remained an issue (178;319;320) (321). 

This work implemented a FA threshold of 0.3 which is comparable to other studies 

(251;299) and is a constant threshold for all the groups we are comparing. 

ROI use has been described and remains problematic in terms of user interaction; the 

degree of a priori knowledge required and subjectivity of the choice of location 

(93;120;121;133;134;178;285;322). Ideally a semi-automatic method would be used to 

standardise this and reduce operator dependence whilst improving reproducibility, 

facilitating more reliable direct comparisons between groups (178) (296). 

Key in the acceptance of DTI tractography in clinical practice is the functional validity 

of the reconstructions. Attempts have been made to correlate white matter tract integrity 

and the function that the tracts sub serve, this correlation is vital in showing that the 

reconstructions amount to more than visually pleasing representations and are 

functional accurate (98) (319). The accuracy of the segmentation of the structure of 

interest is a key question prior to making operative planning decisions based upon it 

(178). To this end tractography needs to be related to the presence or absence of clinical 

signs. Studies comparing motor pathway tractography with motor function (323-325) 

have been undertaken. Laundre et al (323) showed qualitatively that motor pathway 

(CST) appearance from tractography correlated with clinical motor examination. Kim et 

al (324) used a ROI placed on the region of the CST using the slice at which point the 

lesion was largest as well as a second to include the whole CST. The mean FA 

ipsilateral to the lesion was lower in the CST of those with weakness. Quantitative 
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analysis is required as it has already been highlighted that determining if a tract is 

functional or not based on the degree of its visual disruption is potentially unreliable 

(283;310) 

Our intentions were to use the ROI method described in Chapter 5 in a pathological 

population in order to determine if a method successful in the healthy population could 

be transferred and provide anatomically plausible reconstructions. If so it could allow 

the method to be automated and applied clinically in the future. 

Further to this, the aim was to assess the functional validaty of the tractography 

reconstructions in a paediatric pathological population. Using quantitative measures of 

whole tract MD, FA and volume, in paediatric patients with posterior fossa tumours and 

cerebellar deficits, we hoped to determine if differences in these measures could be 

related to the presence of clinical signs of cerebellar dysfunction through comparison 

with normal control subjects.  
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6.2 METHODS 

Throughout the period of data collection, from April 2006 until February 2008, patients 

presenting with a variety of tumours were imaged. In total 39 cases were collected; it 

was decided to focus on the posterior fossa group for this analysis as they constituted 

the largest group (14) with the most uniform group of symptoms.  

6.2.1  PATIENTS 

Over the period from April 2006 until February 2008 patients presenting to the 

department of Neurosurgery at Great Ormond Street Hospital with a posterior fossa 

tumour were studied. Patients were included based on the presumptive diagnosis of a 

posterior fossa tumour from an MRI or more typically a CT performed at their referring 

hospital. Consent was sought from the patient themselves where age and competence 

permitted, otherwise assent was sought and formal consent obtained through the next of 

kin. If this was not possible the patient was excluded from the study. The study was 

approved by the local research ethics committee and all patients or next of kin gave 

formal written consent for participation. 

The DTI examination was undertaken either as part of the patients clinical MR imaging 

or as a separate acquisition. Separate acquisitions were performed in dedicated research 

time when further pre-operative clinical imaging was deemed unnecessary. Separate 

acquisitions were only possible where the child was able to tolerate an un-sedated scan. 

If they required sedation or a general anaesthetic for further imaging it was not possible 

to justify the risks of this and they were excluded from the study. In the case of post-op 

imaging the DTI sequence was, in all cases, acquired as an addition to the clinical 

sequence. The scanning protocols are detailed in Chapter 3.3 and were identical to those 

of the healthy control group discussed in Chapter 5. 
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When the imaging was performed as part of a pre-operative clinical sequence the 

additional DTI sequence resulted in a 20 minute extension to scanning time.  Paediatric 

patients who were unwell or confused due to the underlying pathology did not always 

tolerate the whole length of the sequence and these cases were also excluded. The time 

pressures existing in the clinical scanning periods meant that several patients who had 

consented to the DTI sequence could not be accommodated. 

Where possible post operative imaging was obtained; in such cases the DTI sequence 

was added to the post operative tumour, clinical protocol. The agreed schedule at GOSH 

was of imaging within 48 hours of surgery. Acquiring post operative imaging was on 

occasion complicated by the clinical condition of the patient such that they were not 

able to tolerate the additional imaging time. Next of kin, on occasion were unwilling to 

consent to further imaging as they felt that the patient was too unwell, although this did 

not apply to any of the posterior fossa cases studied here.  

All patients were examined neurologically pre-operatively by the author (Neurosurgical 

registrar) and, where appropriate, post operatively. Examination was conducted on the 

same day as the imaging was obtained. The signs of cerebellar dysfunction are detailed 

in Chapter 1.4. Cerebellar signs were recorded in terms of presence or absence of: ataxia 

of gait and or trunk, past pointing / intention tremor (dysmetria) and 

dysdiadochokinesia. All patients studied in this group were able to walk prior to their 

presentation. The side of the deficit was recorded; however they were often present 

bilaterally being possibly more evident on one side or the other. In terms of the analysis 

here, we considered only their presence or absence as a group in each individual case. If 

the individual displayed any of the signs of cerebellar dysfunction they were classified 

in the positive signs group, if none of the signs were present they were classified as 

absent. In researching a paediatric population, when consent to the inclusion in the 
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study may be given by the parents, the co-operation of the individual patient could not 

be relied upon due to their underlying pathology or lack of desire to be examined. In 

this study a total of 14 patients with appropriate imaging were initially included. Of the 

14 all were imaged pre-operatively. A case with imaging pre and post-op was excluded 

as they were unable to co-operate with clinical assessment pre and post operatively as 

they were too unwell. A single post operative case was excluded as the imaging was 

degraded due to motion artefact. In total there were 13 cases available in the final 

analysis, 5 with pre and post operative imaging, 8 with only pre operative imaging. 

6.2.2  MRI DATA ACQUISITION 

The MRI data acquisition is common to all the tractography data analysed in this thesis 

and is described in Chapter 3.1.3 and shown specifically as the 1
st
 and 2

nd
 sequences in 

Table 3.1.  

6.2.3  TRACTOGRAPHY METHOD 

The tractography method is identical to the method detailed in Chapter 5.2.3 

6.2.4  TRACTOGRAPHY THRESHOLDS 

The tractography thresholds are identical to those detailed in Chapter 5.2.4 

6.2.5  CONSTRUCTION OF ROIS 

The method of construction of the ROIs is identical to that detailed in Chapter 5.2.5. A 

single region of interest was drawn on the left and similarly on the right in each case. 

The high FA region lateral to the IV
th 

ventricle of the posterior fossa was the region 

chosen. The author was blinded as to the pathology of the case in question. The visual 
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output of the tractography was reviewed using GeomView (266) by overlaying it on a b 

= 0 image to ascertain whether the reconstructions were plausible. 

6.2.6  OUTPUT OF TRACT MD, FA AND VOLUME 

The method of output of the MD, FA and sub-voxel volume are identical to that detailed 

in Chapter 5.2.6. In each case analysed, values for the three metrics were output for the 

left and right side cerebellar peduncular white matter tract reconstructions. 

6.2.7  STATISTICAL ANALYSIS 

In order to remove any handedness effect, identified previously (Chapter 5), the values 

for the left-right averaged MD, FA and sub-voxel volumes were calculated from the 

individual cases’ left and right sided ROI values. The same process was used for the 

healthy normal control (NC) data from Chapter 5; again the left-right averaged values 

were used.  

The posterior fossa data were classified into two groups; those cases that were positive 

for cerebellar signs (Post Fossa Cerebellar Signs, PFCS) and those that were 

asymptomatic, (Post Fossa No signs, PFN).  

All data were tabulated in Excel (Version 2007) spread sheets. All statistical analysis 

was performed using SPSS for Windows (Ver. 14. 2006. Chicago: SPSS Inc.). 

Scatter plots of age as the explanatory variable and left-right averaged MD, FA and sub-

voxel (SV) volume as the variable were constructed for all the analysed cases. In order 

to statistically assess the presence or absence of an association between age and the left-

right averaged MD, FA and sub SV volume of the posterior fossa tumour cases, linear 

regression analyses were performed for each of the three variables.  
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The distribution of values of the left-right averaged MD, FA and SV volume was 

compared for the two groups of NC and PFCS using scatter plots. Group differences in 

the values of MD, FA and SV volume were investigated using two sample t - tests.  
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6.3 RESULTS 

The data used in this analysis comprised the healthy control group used in Chapter 5 

(normal controls NC) and the posterior fossa tumour group. The posterior fossa tumour 

group were sub divided into two groups based upon the presence (posterior fossa 

cerebellar signs, PFCS) or absence (posterior fossa no signs, PFN) of cerebellar clinical 

signs respectively. 

The demographics of the NC group are seen in table 5.1; specifically the mean age of 

the seventeen right handed cases was 11.1 years with a range of 7.1 to 17.9, there were 

10 males and 7 females. 

The demographics of the posterior fossa tumour group, both those with and without 

cerebellar signs, are seen in table 6.1. The 13 cases with data available for analysis had 

a mean age of 8.8 years with a range of 2.6 to 14.7 years; there were 5 males and 8 

females. Case 008 was excluded as the patient, despite being imaged was unable to co-

operate with examination once at GOSH.  
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Table 6.1 Demographics of posterior fossa tumour group

Case 

Imaging  

Age Histology Clinical evaluation Cerebellar Signs Pre Op Post Op Sex 

Pre_001 x   M 6.67 PNET-MB G IV Truncal ataxia, ataxic gait, Nystagmus Present 

Pre_002 x   M 3.08 PNET-MB multi-focal Ataxia, not walking, loss of sitting balance Present 

Post_002   x    PNET-MB Anaplastic Ataxia worsened, loss of sitting balance Present 

Pre_003 x   F 11.67 PNET-MB G IV Ataxia, PP, Dysdi, L>>R Present 

Pre_004 x   F 6.25 Pilocytic Astrocytoma G I Unsteady gait, dizzy, ataxia, Cblr Si ++  L UL Present 

Post_004   x    Pilocytic Astrocytoma G I Post op, unwell, unable to assess X 

Pre_005 x   F 2.58 Ependymoma G II Nausea & vomiting, No Cblr signs Absent 

Pre_006 x   M 6.75 PNET-MB Anaplastic Headaches, ataxia UL bilaterally Present 

Post_006   x    PNET-MB Anaplastic Post op ataxia UL bilaterally worsened Present 

Pre_007   x F 5.83 PNET_MB Anaplastic Gait ataxia, Dysdi  Present 

Pre_008 x   M 11.5 PNET-MB, Mets Grade IV Unwell, unable to assess X 

Post_008   x    PNET-MB, Mets Grade IV Unwell, unable to assess X 

Pre_009 x   M 12.5 Pilocytic Astrocytoma G I 4+/5 weakness No Cblr signs Absent 

Pre_010 x   F 9.33 Pilocytic Astrocytoma G I Dizzy, H/A, blurred vision. No FND or Cblr signs Absent 

Post_010   x    Pilocytic Astrocytoma G I No FND / Cblr signs Absent 

Pre_011 x   F 14.67 Pilocytic Astrocytoma G I  Dysdi, PP, Gait ataxia Cblr Signs, L>R, Asp Present 

Pre_012 x   F 14.17 Ependymoma G II Incidental finding on CT. No FND Absent 

Post_012   x    Ependymoma G II Movement Artefact X 

Pre_013 x     F 13.17 Pilocytic Astrocytoma Cblr signs, ataxia Present 

Pre_014 x     M 6.08 PNET-MB G IV L UL PP, Dysdi, L LL ataxia, mild L weakness Present 

               
 

Cblr = Cerebellar, Dysdi = dysdiadochokinesia, FND = focal neurological deficit, G = grade, PP = past pointing, UL / LL = upper / lower limb. X = Excluded from the analysis (see text) 
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The reconstructed tracts were reviewed visually as discussed previously, below are 

examples of reconstructions of cases with posterior fossa tumours which did not (Figure 

6.1) and did (Figure 6.2) display cerebellar signs on clinical examination. Visual 

inspection shows the cerebellar peduncular white matter superimposed onto FA images. 

Visual differences in the tract reconstructions of these cases are not apparent despite the 

differences in symptoms, indicating the necessity for objective quantitative measures 

extracted from the tractography 

 
 

 

Figure 6.1 Cerebellar tracts, posterior fossa tumour and no cerebellar 

signs. (PFN). 

Red area is the tumour (Ependymoma). Tracts are overlain onto axial and 

coronal FA slices. Green areas represent the cerebellar peduncular white 

matter tract reconstructions travelling antero-posteriorly. The patient had no 

cerebellar signs. 



CHAPTER SIX:  TRACTOGRAPHY IN PAEDIATRIC POSTERIOR FOSSA TUMOURS 

 

179 

 

 

 

Figure 6.2 Cerebellar tracts of posterior fossa tumour case with cerebellar 

signs. (PFCS) 

The red area is the tumour (Medulloblastoma). Tracts are overlain onto axial 

and coronal FA slices. The green areas are the tractography reconstrucitons of 

the  cerebellar peduncular white matter tracts.  Patient had evidence of upper 

limb inco-ordination, ataxia, past pointing and dysdiadochokinesia.  

In total there were 9 cases with cerebellar signs and 4 cases without cerebellar signs at 

initial presentation (Pre-op). Case 005, without cerebellar signs, was 2.5 years old; 3 

years is thought to be the age by which the majority of myelination has taken place. It 

was excluded from the analysis on the basis that any changes could potentially be 

ascribed to incomplete white matter development. 

The group with posterior fossa tumours without cerebellar signs (PFN) consisted of 

only four cases and one case was excluded as detailed above hence they were deemed 
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too small a group for further meaningful comparative analysis. It was decided to confine 

comparisons to the group with posterior fossa tumours and cerebellar signs (PFCS) and 

the normal controls group (NC). The post operative data was analysed in terms of 

production of tractography reconstructions and parameters as an exploratory study. 

Whilst it was possible to produce tract reconstructions and extract DTI parameters from 

it, the data was not included in the analysis. Inclusion of this data was considered 

potentially unsafe with the potential for oedema and physical distortion resulting from 

the surgery itself causing artefactual (i.e. non structural changes) in MD and FA. It may 

prove useful in the future to wait a period of time (perhaps up to a month) in order to 

allow resolution of the oedema and haemorrhage and to reassess the cerebellar white 

matter. Our initial results were at least encouraging that such analyses would be 

possible with an appropriate data set. 
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6.3.1  DESCRIPTIVE STATISTICS OF METRICS 

The left-right averaged MD, FA and sub voxel volume for the groups NC and PFCS are 

tabulated below along with the respective mean values and standard deviations.   

Group Variable N Minimum Maximum Mean Std. Deviation 

NC Av_MD 17 .738 .816 .776 .0227 

NC Av_FA 17 .387 .495 .463 .025 

NC Av_SV_Vol 17 1100.50 3246.50 2201.50 687.50 

PFCS Av_MD 9 .702 .839 .778 .044 

PFCS Av_FA 9 .400 .456 .437 .0194 

PFCS Av_SV_Vol 9 775.00 4669.00 2635.28 1378.30 

NC = Normal controls, PFCS = Posterior fossa tumour cerebellar symptoms. MD: 10-3 mm2 s-1, SV volume:  mm3 

 

Table 6.2 Mean DTI metrics for healthy control cases. (NC), posterior 

fossa cases with cerebellar signs (PFCS). 
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Scatter plots of the PFCS using age as the factor and average MD, FA and SV volume 

as the variables are shown below (see Figures 6.3 – 6.5) 

 

 

Figure 6.3 Scatter plot of average MD (mm
2 

s
-1

) & Age for the posterior 

fossa tumour cerebellar signs group (PFCS)  
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Figure 6.4 Scatter plot of average FA and age for the PFCS group  

 

Figure 6.5 Scatter plot of average sub voxel volume (mm
3
) and age for the 

PFCS group 
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6.3.2  LINEAR REGRESSION ANALYSES 

The individual cases’ values of left-right averaged MD, FA and sub voxel volume for 

the posterior fossa group were investigated using linear regression and the results of the 

regression p-values are shown in table 6.3. The analysis used the 9 pre-operative cases 

where there were cerebellar signs at presentation. There was no evidence of a significant 

association between any of the metrics in this group and the age of the subject being 

investigated at the p < 0.05 level  

Independent 

Variable Dependent Variable  p value 
Significant at p < 

0.05 

Age Av_MD 0.850 N/S 

Age Av_FA 0.869 N/S 

Age Av_SV_Vol 0.270 N/S 

Av = average, SV_Vol = sub voxel volume, N/S = not significant. 

 

Table 6.3 Linear regression p-value results, MD, FA & SV volume versus 

age.  
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6.3.3  COMPARISONS OF GROUP METRICS 

Scatter plots of the three variables of left-right averaged MD, FA and sub voxel volume 

are shown below using the groups of healthy cases (NC) and posterior fossa tumour 

cases with cerebellar signs (PFCS). 

 

Figure 6.6 Scatterplot of average MD (mm
2 

s
-1

) for NC and PFCS  



CHAPTER SIX:  TRACTOGRAPHY IN PAEDIATRIC POSTERIOR FOSSA TUMOURS 

 

186 

 

 

Figure 6.7 Scatterplot of average FA for NC and PFCS 

 

Figure 6.8 Scatterplot of average SV volume (mm
3
) for NC and PFCS 
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The scatter plots highlighted the wide spread of sub voxel volumes seen in the PFCS 

group as compared to the NC group. A similar wide distribution in the MD of the PFCS 

was observed. 

The two groups NC and PFCS were compared using two sample t – tests of the group 

means. Comparisons of equality of means showed no statistically significant differences 

between the NC and PFCS groups in terms of MD and sub voxel volume. There was 

however statistically significant differences in the FA values for the two groups.  

 

Table 6.4 Two sample t - tests results for group-wise comparisons of 

Controls with Posterior Fossa Tumour cases 

Average FA of PFCS was significantly different from NC; the descriptive statistics 

inference was that FA was lower in the PFCS group than the NC group.  

 
 PFCS 

 DTI Metric / Volume (Significance at p < 0.05) 

NC 

Av MD N/S 

Av FA .012 

Av SV Volume N/S 

NC = Normal Controls; PFCS = Posterior fossa cerebellar signs present; 

Av = average; SV = sub voxel, N/S = not significant at p < 0.05. Av_MD mm2 s-1 
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6.4 DISCUSSION 

The need to functionally validate tractography has been highlighted and attempted in 

several studies (283;306;307;326) (98) (323). Typically through correlation of 

neurological deficits with visual and quantitative changes in the white matter tract 

reconstructions. Intracranial tumours can result in neurological dysfunction through 

damage to the cerebral cortex, deep grey matter nuclei or interference with white matter 

tract structure and function. The effect of a tumour on white matter may occur locally 

via infiltration of the tract or its destruction. Effects at distance occur when the tumour’s 

mass effect causes the tract to be distorted or compressed from its usual pathway (327). 

The tract may be damaged secondarily; tumour involving the cortex may result in 

atrophy of the associated white matter connections, a similar situation is seen following 

a cortical stroke; these changes are manifest as a reduction in FA and increase in MD of 

the associated white matter (328). Vasogenic oedema in the peritumoural white matter 

may lead to dysfunction of those connections, resulting in partial or complete 

neurological deficits. In vivo visualisation of affected tracts, using DTI tractography, 

raises the possibility of correlation with clinical dysfunction and hence a means of 

functional validation. 

Validation of tractography could enable its integration into clinical practice. Increased 

confidence in location of eloquent white matter would enable more aggressive resection 

of tumours with diminished risk of morbidity; both of which are associated with a better 

prognosis. It could also allow more accurate planning of radiotherapy reducing the risk 

of radiation necrosis of eloquent pathways adjacent to the target lesion. (178) (269). 

The relative paucity of studies of functional validity of tractography in the paediatric 

population (329) in part stems from the tumour distribution, with a greater proportion in 
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the posterior fossa, their lower incidence (14) as compared to adults and  the additional 

difficulties posed by potentially lengthy data collection in a patient group who, by the 

nature of their disease and stage of development, may not be cooperative with 

investigation. Notwithstanding this, intracranial tumours in children are the second 

largest cause of oncological mortality in that age group and tend to more responsive to 

surgical resection (230;274) than their adult counterparts. 

This study looked at the association of cerebellar signs with changes in metrics of whole 

tract average MD, FA and sub voxel volume by comparisons of children with and 

without posterior fossa tumours. As compared to studies of the motor tracts, where the 

symptoms and signs are typically lateralised; in the posterior fossa symptoms and signs 

are frequently bilateral. This is due to its relatively small volume and often midline 

location of tumours in this region. Hence symptoms were classed as present or absent, 

in addition attempts at lateralisation of symptoms were open to confounding based upon 

the possibility of asymmetry of the peduncular white matter highlighted in Chapter 5. 

Using a single ROI method defined as the high FA region immediately lateral to the IV
th

  

ventricle of the posterior fossa it was possible to consistently reconstruct the cerebellar 

peduncular white matter pathways in individuals with and without posterior fossa 

tumours.  

In addressing concerns over the effect of age on DTI metrics we undertook linear 

regression analyses which did not demonstrate a significant relationship with age at the 

p < 0.05 level. In the use of cases for the analysis, individuals whose age at the time of 

scanning were less than three years were excluded as this has been demonstrated as the 

age by which large changes in FA of the posterior fossa are thought to stop (330), 

although the MD was shown to cease undergoing significant changes after the age of six 
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months. The relative differences in the time periods of FA and MD changes may relate 

to the MD reflecting the amount of structure present and the FA the degree of cohesion 

of the structures present. 

In comparisons of the NC with the group with the posterior fossa tumours and 

cerebellar signs (PFCS) group, the MD and the SV_Volume were not shown to be 

significantly different. The lack of significant changes in the MD may reflect the 

amount of structure or tissue present in the cerebellar peduncles has not changed as a 

consequence of the tumour. The SV_Volumes seen in the PFCS group were scattered 

over a wider range than that of the NC group although there was no statistically 

significant difference. This wide range may be explained by the presence of vasogenic 

oedema, increased extracellular fluid facilitating causing the tracts to appear larger. The 

wide scatter of the MD and the SV_Volume may reflect the coincidence of swollen 

tracts appearing larger and the diffusivity being increased, from a visual inspection of 

the data, a wide spread in the MD data is similarly reflected in the SV_Volume data 

spread. However on review of the data not all of the MD changes are reflected in the 

SV_Volume changes. This may alternatively suggest that there are other factors 

influencing the distribution, not tested in this analysis (i.e. other than age). 

Significant differences existed in the average FA values of tracts when the PF cerebellar 

signs (PFCS) group were compared to the NC group. Inference, drawn from the 

descriptive statistics, indicates that the FA in the PFCS was lower than in the other 

groups. It is possible to conclude that diminished FA of cerebellar peduncular white 

matter in cases of posterior fossa tumours is associated with either oedema, infiltration 

and/or the presence of cerebellar signs. Quantitative measures are seen to support the 
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functional validity of the cerebellar pathway tractography; tracts apparently damaged by 

intracranial tumour represented by reduced FA are found to be clinically dysfunctional. 
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6.4.1  LIMITATIONS 

While demonstrating it was possible to use a simple single ROI method to reconstruct 

the cerebellar white matter,(331) the algorithm required a high FA threshold in order to 

exclude spurious tracts, although this is similar to previously published work 

(178;299;302;304;332). Completeness of reconstruction remains a problem in the 

clinical application of these techniques, particularly where full reconstruction is 

important in the planning of resections (333). Completeness of reconstruction may be 

diminished due to falling FA secondary to white matter oedema and hence cessation of 

tracking as the voxel FA falls below the tracking threshold (293). FA threshold 

relaxation however increases the risk of inclusion of spurious tracts (320). The FA 

threshold limitation may be overcome with current developments in alternative 

tractography methods such as those utilising streamlines which select tracts on the basis 

of morphological similarity to an initial streamline passing through a selected voxel of 

interest (331). 

Patient numbers in this study are relatively small, in practice this was partly 

complicated by patient recruitment issues as the DTI sequence was only available on 

one of the two MRI scanners in the GOSH radiology department and the time pressures 

extant dictated that not all cases recruited could be accommodated on the research 

scanner. Several cases were also unable to co-operate with the clinical examination as a 

consequence of the underlying pathology and had to be excluded.  

The failure to include adequate numbers of cases where there were posterior fossa 

tumours and no cerebellar signs meant that it was not possible to explore the presence or 

absence of changes in tract metrics when no clinical signs were present. This represents 

a group worthy of further data collection and analysis.  
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6.4.2  CONCLUSIONS 

Using a streamline method of tractography it has been possible to reconstruct cerebellar 

white matter using a single ROI. This is as compared to the established published 

methods requiring multiple ROIs (134). Significant differences have been defined, 

(reduction) in the average tract FA in individuals with clinical cerebellar dysfunction as 

compared to normal control subjects. This illustrates that tractography can provide 

apparent functionally meaningful information in children with infratentorial lesions. 

This functional validation supports integration of tractography into the planning of 

neurosurgical procedures. Pre-operative and intra-operative localisation of white matter 

tracts may guide surgeons towards more complete resections whilst reducing risks of 

neurological deficit. Significant consideration however must be given to the effect of 

intra-operative brain shift in the execution of such techniques (309). 
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7.1 DIFFUSION IMAGING OF PAEDIATRIC CNS TUMOURS 

7.1.1  CONCLUSIONS 

Diffusion-weighted imaging and the derived apparent diffusion coefficient (ADC) 

have been used to investigate tissue structure (55;60;61;84;197;198). Differences exist 

in terms of the intracellular and extracellular structure of different tissues and tumours, 

the degree of cellularity and the characteristics of tumour nuclei vary and this appears 

to be reflected in their ADC values (85;87;199;200). 

Previous work has correlated tumour grade with ADC, higher grade tumours tending to 

be more densely cellular (61;75;84-87;198-206); certain features of the tumours have 

characteristically different ADC values, such as cystic or necrotic regions. Studies have 

addressed separating tumour types based on mean ADC values but overlap between 

groups has hampered this, although when combined with other MR methods such as 
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spectroscopy it has been possible to discriminate common posterior fossa tumour types 

using linear discriminant analysis, which assumes multivariate normality (208). 

As discussed in Chapter 4, it is often possible to determine a differential diagnosis 

from the MR examination, clinical history and presentation of a patient. This still 

leaves significant uncertainty in terms of the exact identity of a lesion and hence the 

correct course of treatment. In the case of intracranial tumours, treatments can range 

from conservative management to total surgical resection. It is however unlikely that 

treatment will be undertaken without a diagnosis being established. Radiological 

reports of imaging will usually include a list of differential diagnoses and are unlikely 

to be definite over a diagnosis. A purely observational analysis of the reports of the 

cases in this study when compared to the histological diagnosis reflected this. 

Generally a list of differentials from most likely to least was provided and it appeared 

that the likelihood of the diagnosis being correct was related to the experience, in 

terms of years, of the reporting radiologist.  frequently this will necessitate an invasive 

surgical biopsy with its attendant risks (184-187) and chance of non-diagnostic biopsy 

(188). To this end a non-invasive means of determining the nature of the lesion could 

be very useful. 

We used a simplified ROI analysis, applied to the whole tumour volume and extracted 

histograms from the data to explore differences in the tumour types in our paediatric 

population of 56 cases, (6 common tumour types). Our hypothesis being that 

histograms would provide a more complete description of the ADC characteristics, as 

had been indicated in previous work (209). Using ADC histogram data we intended to 

use logistic regression, on the basis that one could not assume multivariate normality, 

to create a model which would allow discrimination of: initially all the tumour types 

and then specifically the common posterior fossa tumour types and a rarer group, 
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atypical teratoid rhabdoid tumours (ATRT) from primitive neuroectodermal tumours 

(PNET) in particular due to the differing prognosis and management (211-216). 

The mean ADC values we recorded for our tumour groups were in keeping with 

previously published work (197;214) (214). In discriminating tumours based on mean 

ADC alone there existed significant overlap of the ATRT and PNET groups and the 

ependymoma group, the juvenile pilocytic astrocytomas (JPA) had higher mean ADC in 

keeping with their looser stromal architecture; these results were consistent with 

published literature (86;197). 

Logistic regression of the ADC histogram data allowed discrimination of 74.1% of all the 

tumours studied: 90% (20/22) PNETs, 82% (9/11) JPAs, 80% (4/5) DNTs and 75% 

(3/4) ATRTs and 0% of Ependymomas (0/5). The ependymoma group had significant 

overlap of ADC values with other groups and was quite heterogeneous. In asking 

specific diagnostic questions it was possible to discriminate 80% (4/5) of 

ependymomas, 94% (15/16) of PNET-MBs and 100% (11/11) of JPAs, using the 75
th

 

centile ADC value from the histogram. In this case ependymomas were much more 

successfully classified; this may indicate that inclusion of other parameters in the model 

may be helpful. 

A novel finding was the discrimination of ATRT from PNET in 100% of cases (4/4 and 

22/22 respectively); significant as ATRT have a much bleaker prognosis and may 

warrant avoidance of the risks of invasive biopsy / debulking as opposed to PNET who 

benefit from aggressive resection. Previous studies have found such attempts at 

discrimination unrewarding (214). 

As a methodology whole tumour ADC histograms appear to provide more descriptive 

information reflecting a more complete coverage of the frequency of occurrence of an 
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ADC value within the lesion. Using LR analysis: 94% classification of PF tumour 

types and 100% of PNETs from ATRTs; not currently distinguishable on MRI 

(214;232). Diagnostic models such as this may be able to play a role in the future 

neuro-radiological practice and this work indicates that it may be possible to 

design and implement a model capable of predicting tumour type. 

7.1.2  LIMITATIONS 

The method using whole tumour ROIs to produce ADC histograms to reflect the 

heterogeneity of the tumours and subsequently analysed by logistic regression has 

enabled discrimination of several specific tumour types in this population of 56 

paediatric tumours. However there remain limitations. 

The number of cases in our cohort is small but typical for data collected from a single 

unit in the context of the population frequency of paediatric tumours (14). In addition 

the number of tumour types in our group, whilst encompassing the majority of the 

common paediatric intracranial tumours is still limited. We asked more directed 

questions and our discrimination method relies on the provision of only a limited 

number of possibilities to the algorithm. This approach does, however reflect the 

clinical situation, at least partially; frequently a radiologist can determine a list of 

differential diagnoses and then uncertainty is restricted to a smaller group of tumour 

types. Clearly it would be optimal to determine a method that will allow discrimination 

of a more complete group of tumours. 

The region of interest analysis is not a standardised method in the literature and is open 

to operator bias. Whilst the author who drew the ROIs was blinded to the histology of 

the tumour it is not always possible to be certain that the entire tumour was included in 

the ROI or that non-tumour areas were excluded. Fundamentally this method, by 
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including the whole tumour volume, was simple and less open to bias than other 

techniques reliant on selecting a region within the putative tumour.  

A further limitation of this study is the binary logistic regression model applied to the 

analysis of this data. It may be that when applied to a different cohort of tumours the 

results may differ, we would however anticipate that they would be similar. 

7.1.3  FUTURE DEVELOPMENTS 

The use of whole tumour histograms is encouraging with this limited group of 

tumours. In order to appreciate the techniques application to the clinical situation a 

multicentre study should be undertaken over a longer period enabling a greater sample 

size and a broader group of pathologies. In the current MRI climate, diffusion data is 

being routinely collected on tumour patients and hence a simple co-ordination of this 

data may be possible in the near future. It is of note that the Childrens Cancer and 

Leukaemia Group guidelines for imaging of CNS tumours do not recommend inclusion 

of diffusion sequences as part of their standard assessment protocol. This study, along 

with others quoted, indicates that there exists diagnostic potential from the inclusion of 

such information and we would suggest that its inclusion in routine imaging would 

facilitate investigation of this potential. 

The evaluation of the inclusion of other MRI data, information from the clinical history 

and also characteristics such as the tumour location should be integrated into the 

algorithm for determination of the tumour type (214). It may be possible to use other 

diffusion and tractography metrics such as MD, FA and volume as well MR 

spectroscopy and perfusion to further characterise the tumour. The diverse nature 

and the occurrence of rare tumours in the paediatric population demand that 
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significant numbers of rarer tumours are included in the sample population to 

make this method more applicable to the clinical environment.  

ADC histograms have shown potential to better predict the histological diagnosis 

of paediatric brain tumours. This method could enable improved pre-operative 

planning in terms of deciding a location for biopsy or even diminishing the need 

for invasive surgical biopsy (334).  
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7.2 TRACTOGRAPHY IN PAEDIATRIC NEUROSURGERY 

7.2.1  CONCLUSIONS 

The ability to, in-vivo, reconstruct the white matter pathways in a living brain has been 

one of the main attractions of tractography. The possibility to apply the technique in the 

planning and execution of neurosurgical procedures has been a principal objective of 

research in this field (178;284). 

Investigations in the adult population have significantly outweighed those of the 

paediatric population (98;335). Typically investigations have focused on the motor 

pathways and other eloquent pathways; there have been few anatomical studies of 

tractography in the posterior fossa white matter (251;318). 

Currently there are limitations to the clinical application of tractography; the reliance on 

user defined ROIs and its inherent risk, particularly when segmentation is achieved by 

retaining streamlines passing through one or more ROIs. (93;120;134;182;322;336). 

Questions still remain over the amount of user interaction and time required to achieve 

the reconstructions. The uncertainty over reproducibility of the reconstructions raises 

doubts as to its reliability and hence integration into clinical practice. 

Functional validity of the technique fundamentally determines its application to the 

clinical setting; tracts must not only appear to be anatomically plausible but also 

functionally correct (178;319). The risks of implementation without this validation were 

highlighted by Nimsky et al (337) and other authors have felt that the correlation with 

clinical findings and outcomes, ideally through quantitative measures is vital (338). To 

this end there have been several studies looking particularly at motor function 

correlation with motor pathway tractography typically in the presence of tumours and in 

response to white matter damage attributed to stroke (339-341). Specifically studies 
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have looked at the function of the CST in cases of posterior fossa tumours (342). In 

terms of the paediatric posterior fossa cerebellar white matter there have been 

anatomical studies to describe the white matter (251) and applications in the assessment 

of clinical conditions such as cerebellar ataxia where DTI metrics have been used to 

discriminate different conditions (318). 

This study’s intentions were to contribute to clinical validation of tractography by 

assessing the ability to reliably reconstruct cerebellar white matter pathways in children 

in health and in disease.  

In the healthy paediatric population it was possibly to reconstruct the cerebellar 

peduncular white matter, in all cases using a single ROI with an FA threshold of 0.3, 

which was in keeping with published literature in the reconstruction of other white 

matter tracts (251;271;343). Investigations of the quantitative measures of MD, FA and 

tract volume showed statistically significant evidence of right left asymmetry. Such 

asymmetry had been demonstrated with volumetric studies of the cerebellum (261). The 

average FA and tract volume of each side were statistically different, the inference from 

the descriptive statistics was that values were greater on the right than the left in this 

group of right handed subjects. There was no statistically significant difference in the 

right to left asymmetry of MD however in the 17 right handed cases in the study. The 

right-left lateralisation of cerebellar function has been demonstrated in other studies 

(260;344). The association of structural asymmetry and handedness has been postulated 

previously (261) and our study, which uses only right handed subjects also indicates a 

possible association. 

It was possible to consistently reconstruct cerebellar peduncular white matter in all 

individuals with posterior fossa tumours using the method applied in the healthy 
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paediatric population. The posterior fossa tumour cases showed evidence of an 

association between the presence of cerebellar signs in cases with tumours and a 

reduced average tract FA, as compared to healthy normal cases. 

It is evident that it is possible to reconstruct the cerebellar peduncular white matter 

using a simple single ROI in both healthy subjects and those with intracranial tumours. 

It required limited user interaction and the ROIs could be drawn quickly, requiring 

minimal anatomical knowledge; simply using the high FA regions lateral to the IV
th

 

ventricle of the posterior fossa.  

The association of changes in tract FA and the presence of cerebellar signs in cases with 

posterior fossa tumours add further evidence pointing towards functional correlation 

with integrity of tractography reconstructions. However, further studies are warranted to 

include pathological cases without the presence of cerebellar signs in order to determine 

the relationship between tractography derived structural metrics of the cerebellar 

peduncular white matter and the presence of clinical cerebellar signs. These findings are 

in line with the call for rigorous assessment and investigation of tractography as a 

clinical tool, ahead of potential integration into neurosurgical clinical practice.  
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7.2.2  LIMITATIONS 

Our results are encouraging in terms of a simple method of tractography in the 

paediatric population and also as a further validation of the technique as functionally 

meaningful. They do however only address some of the questions surrounding the 

advancement of tractography as a means of planning in the neurosurgical population. 

Whilst accepting that cerebellar white matter damage is not usually associated with as 

devastating and permanent functional loss as the CST or language pathways. As a proof 

of principal of tractography’s functional validity it is significant, studies have already 

been published addressing recovery from cerebellar stroke and the integrity of the 

peduncular white matter (345).  Paediatric posterior fossa tumours also represent a far 

greater proportion of oncological practice in the paediatric population as compared to 

the adult population and are hence a sensible target for investigation. 

A significant factor in the quality of the tractography is the completeness of the 

reconstructions and this is affected by the FA thresholds. If the FA threshold is too low 

spurious tracts are included; if the threshold is too high, important associated tracts may 

be excluded (293;333). The complete and accurate description of the tract is vital if the 

technique is to be used for neurosurgical planning in the avoidance of damage to the 

white matter (321;338). In this method we used a relatively high FA threshold which 

may lead to the exclusion of functionally relevant tracts.  

Image resolution also affects the completeness of tractography reconstructions. The 

exclusion of relevant white matter has been highlighted in the choice of FA threshold. 

The resolution of the tracts is affected by the voxel size in the image acquisition which 

in this study was 2.5mm
3
 and range usually from 1-3mm

2
. This is considerably larger 
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than the diameter of individual axons and in combination with the signal to noise effects 

mean that reconstructions are considerably limited in their spatial resolution. 

The ROI method employed, whilst simple, remains user dependent in the selection of 

the actual ROI. The realisation of a fully automated means of ROI selection is an 

important goal if tractography is to be made possible in all Neurosurgical units without 

dedicated physics support staff (346). 

The data used in this study and many others relies on the use of a single estimation of 

the tensor at a given point. The assumption being that the fibres are described by a 

single direction. This has been highlighted as simplistic, at any point fibres from more 

than one direction may be crossing or merging (99). Methods are being investigated to 

take account of this but necessitate greater data acquisition and extended imaging times 

(103;106). The more complex nature of the neural architecture may in part explain the 

incompleteness of the tractography reconstructions seen in the CST and also in the 

failure to track to the cerebellar cortex in this study, although failure to track through 

intervening deep grey matter, such as the cerebellar deep nuclei may also play a role 

(346;347). In addition it is not possible to distinguish between afferent or efferent tracts 

or whether the tract is actually functional. 

The implicit assumption that the presence or absence of symptoms is attributable to the 

damage to white matter pathways is open to question and the possibility that disruption 

of the deep cerebellar nuclei may play a role in them cannot be discounted.  

Clinical cerebellar signs are diverse and cannot be described as simply as the presence 

or absence of hemiparesis as seen in the CST investigations. They represent a group of 

signs that may be attributable to different parts of the cerebellar peduncular white 

matter. Investigations of a group of patients with cerebellar ataxias used detailed clinical 
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assessments of the type of ataxia, beyond the scope of this work. They used 

reconstructions that they attributed to the three anatomical sub divisions of the 

cerebellar peduncular white matter in order to discriminate them, however they did not 

provide information as to how they defined the three overlapping regions of the 

peduncles (318). We have adopted a simplified approach using the presence or absence 

of symptoms to discriminate the groups in order to evaluate the functional validity of 

the tract reconstructions.  

Specific limitations of each of the studies are further described in the relevant chapters. 
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7.2.3 FUTURE APPLICATIONS 

A key issue in the relationship of the asymmetry of the cerebellum and handedness in 

this study is the means of definition of handedness. The initial work detailed here 

indicates that further investigation is warranted but should involve a more in depth 

neuropsychological assessment of handedness and also involve the inclusion of larger 

numbers of both right and left handed individuals. 

The assessment of functional validity remains vital and a larger population of patients 

with pathology would enable more detailed investigation of the effects on the cerebellar 

white matter. This would be aided by more detailed neurological assessments of the 

individuals similar to that seen in the cases of cerebellar ataxia investigated by Prakash 

et al (318). This is compounded in complexity by the specialist nature of investigations 

in children.  

As a consequence of the differing type and distribution of intracranial pathologies in 

children our study addressed only the cerebellar white matter. In order to continue to 

advance tractography as a clinical tool studies will be needed looking at all the major 

white matter pathways, including the visual and sensory pathways. The investigation of 

multiple pathways using an ROI method would be potentially time consuming and user 

dependant; this adds further weight to the need for automated mechanisms of whole 

brain tractography and selection of ROIs. 

If and when functional validation is achieved, the integration of tractography into 

clinical practice could be potentially very helpful to neurosurgeons undertaking 

operations involving the resection of white matter. There still exist challenges for 

tractography in neurosurgical planning; when using intraoperative MRI it is clear that 

the need to account for brain shift in relation to the resection of tissue is an important 
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consideration when integrating tractography into neuronavigation systems 

(281;332;348;349) (326;350). It has also been proposed that virtual reality technology 

could be used in training with the technique in order to aid awareness of three 

dimensional nature of the tracts (351). 

Tractography has been seen to have many potential applications and it has been used in 

the understanding of neurological disorders such as the white matter structural changes 

following stroke (98).  Reviews of the current research (98) envisage the possibilities 

for indirect assessment of neuro-degeneration and demyelination in order to determine 

effectiveness of treatments and targeted therapies for these processes 

(245;325;340;352). The investigation of the relationship between function and structure 

in healthy and diseased brains shows potential; adaptive changes following stroke have 

hinted at possible rewiring and the degree of integrity of the pathway has been 

predictive of recovery of motor function (245;314;339;345;353). 

In the field of functional neurosurgery tractography has been used to localise the foci for 

Parkinsonian symptoms and target therapies (354). It has been used to identify areas of 

abnormal connections or regions associated with propagation from epileptogenic foci 

(355). The possibility exists to define the targets for disconnection in epilepsy surgery 

through the combination of fMRI, EEG and tractography (355). 

This study, in accordance with other studies, has shown evidence that changes in white 

matter tractography derived measures can be associated with clinical manifestations of 

the pathological condition. Tractography has allowed advances in the description and 

identification of the architecture of complex white matter. Future advances in image 

acquisition and applications at high and ultra-high fields may allow enhanced resolution 

imaging in the clinical setting. The results of which, should enable investigation of more 
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detailed anatomy and improve precision of tracing white matter pathways, possibly to 

elucidate in vivo intra operative tractography (326). Fundamentally an integrated 

approach with other developing imaging modalities such as fMRI and PET and in 

combination with more automated techniques may allow the integration of tractography 

into routine clinical practice. 
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8.2 PATIENT INFORMATION SHEETS 

8.2.1  PARENTS  

 



APPENDICES 

214 

 

  



APPENDICES 

215 

 

8.2.2  CHILDREN 5 YEARS OR LESS 
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8.2.3  CHILDREN 6 TO 12 YEARS 
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8.2.4  CHILDREN 13 YEARS PLUS 
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8.3 CONSENT FORMS 

8.3.1  PARENTS CONSENT 
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8.3.2  PATIENTS ASSENT FORM 
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8.3.3  PATIENTS CONSENT FORM 
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8.4 PAEDIATRIC MRI SEDATION PROTOCOLS 

Reproduced with the permission of the Great Ormond Street Radiology Department 
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8.5 ADC HISTOGRAM PROTOCOL INSTRUCTIONS 

8.5.1  DISPIMAGE ANALYSIS COMPUTER PROTOCOLS 

Original Data from scanner 

 Data retrieved as ADC and b0, b500, b1000 images from scanner, un-separated 

 Scanner data processed through Python to separate files 

 Use processed files to transfer to Unix  

 Create folder for each Patient using # and two initials  

 Create directory in GOS_ADC_DATA directory on Unix 

 Transfer data to such 

xdispdcm 

 On Unix terminal open directory of group of patients 

 Open xdispdcm (analyse as DICOM image)  

 Open in prompt directory of patient E.g. >01LA 

 Select one slice and right click, opens menu, (or triple left click) 

 Select Full screen option 

 NB it is possible to change the window setting of the image using the bar 

 Initially there are 4 volumes of 20 images, b0, b500, b1000, b0-1000 (ADC) 

 Use of ROIs on the b0 images 

Draw ROIs on b0 image 

 Click on regions option on the control panel 

 If questioned, choose unconstrained zoom (constrained zoom picks a small area, if 

necessary) 

 Automatic function possible, doesn’t work 

 Contour picks out margin 

 Use irregular option and draw around the region (NB specifics) 

 If region not accurate, erase using middle mouse button 

 Care not to include extraneous areas particularly CSF 

 Click on close 

 Ensure that the 1
st
 ROI drawn is the most inferior slice 

 (Program later requests which slice to start from hence significance) 

 Don’t change the region file leave it as #initials.roi 

 At the description prompt; 

 Save the ROI as roi_# where # is the number of the slice (usually from 1 to 20) 

 ROI is saved, click on accept 

 Now possible to draw further ROIs 

 xdispdcm image volumes must be continuous 

 Do not use 2 ROIs on 1 slide 

 Possible to join ROIs on same slice with a thin bridge roi 

 Once ROIs drawn click on store 

 Ensure that the directory it is saved in is the same as the current Pt 
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 Saved as .roi file 

 

Working on ADC map 

 Open ADC map,  

 NB triple click on mouse toggles between single and multiple images 

 Open ROIs onto ADC map individually 

 Ensure slice of ADC map coincides with the ROI slice number 

 Accept each ROI individually 

 Once all accepted 

 Click on volume 

 Decide on ADC image slices and in image slices prompt add the #’s of the start and 
end slice 

 Start region prompt, add # 1, hence ROIs must be in order 

 Click on Histo 

 Histogram width, change bin to 5 

 Save data as Histo_#.txt in same directory 

  >/home/mri/GOS_ADC_DATA/ASTRO/01LA/ 

 NB check Histogram is using all the ROIs and not just a single ROI 

 (Possible to test this in the volume section by changing slice #’s and examining 
histogram. 

 Transfer the histogram detail to PC and open in excel file. 

 Data can then by interpreted in the excel file 

Errors 

 On repeated opening of a file in xdispimage multiple copies of the data may appear. 

 A file called dispdcm.idx should be deleted from the directory where the DICOM 
images are stored to resolve this between sessions 
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8.5.2  PROTOCOL FOR DRAWING ADC ROIS 

 Outline drawn on b0 image 

 Scroll through the image to visually assess the lesion 

 Adjust the window level on the image to better visualise the contrast between areas 
of the lesion 

 Using the regions tool, irregular margin option, delineate the margin 

 Starting with the most inferior slice draw around the lesion on the b0 image 

 Attempt to exclude areas of CSF but include cystic parts of the lesion 

 Where uncertainty exists exclude the region (Exclude cysts as per Dan Tozer 

paper) 

 Draw one continuous line around the lesions contour 

 If greater than one ROI, link the ROIs by a narrow bridge ROI across the  image 

 If multiple lesions, pick the most significant lesions 

 Attempt to exclude areas that appear simply oedematous 

 Don’t look at ADC map prior to drawing the ROI 

 Once a satisfactory contour is achieved save the ROI as roi_# of slice 

 Repeat this process for each slice with the lesion apparent 

 Saving each ROI with reference to its slice 

 Once all ROIs drawn, save whole file as e.g. 05DM/05DM.roi 

 Close the b0 image and open the ADC map 

 Using the regions option,  open the saved ROIs on the corresponding slice of the 
ADC map 

 Review the ROI on the ADC image of the tumour, if acceptable click on accept 

 Once all ROIs are accepted, choose volume option 

 Select the slices in question and select start with roi 1 

 Outputs data for mean and Standard Deviation(SD), save this as e.g. 

05DM/05DM.vol 

 Clicking on histo, outputs a histogram with a median 

 The bin width can be adjusted, 2 is the standard width 

 Save the histo under the path with the name histo_05DM_bin2.csv 

 (csv, comma separated values, ideal for import into excel) 

 This process can be repeated using the control white matter 

 Data for WM is saved with the suffix _WM 

 Use the rectangular option, default. Outputs fixed size rectangle 

 Place rectangle over contralateral normal WM 

 Attempt to select the same slices and number to match the WM sample 

 Repeat the process as above for the WM slices 
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8.6 TRACTOGRAPHY PROTOCOL INSTRUCTIONS 

8.6.1  DTI ANALYSIS COMPUTER PROTOCOLS 

Original CD Data (Post co-ord change, i.e. All KR data & post Nov 06) 

 Using Matlab & “DA” program 

 Open Matlab 

 At the prompt edu>> cd \dti 

 Edu>> edit fscript 

 Modify fscript as below for each file to be processed 

 Reproduce line goshdat as many times as required for number of files 

 Files will be output as _Deff _MD _FA 

FSCRIPT 

% script to process Siemens DICOM files 

% Copy the goshdat line below as many times as you like, changing the 

% inputs to suit. 

% For each scan, place all diffusion DICOM files in one folder (there 

can 

% be other DICOM files in the folder and these will be ignored).  

% The code will generate Analyze files and put them in a folder 

% you specify with names you specify. 

% 

% In the example below,  c:\data\MR2\AP\postop\08181833 

% is the name of the folder with the DICOM diffusion files, 

% postop is the stem of the files created i.e. you will get 

% Analyze files called postop_FA, postop_MD and postop_Deff. 

% c:\Temp is the folder where the Analyze files are written. 

  

% You also get one other large .mat file which you can delete 

% if you wish. The _FA and _MD can be read with MriCro. 

 

goshdat('D:\ICHData\028_FApatient_130307\03131444','FA028_D

TI','D:\ICHData\028_FApatient_130307', 15) 

 Modify entries as required, where first part is the path to the source file with 
the raw data; 
'D:\ICHData\028_FApatient_130307\03131444 

 The second part is the name of the stem of the output, 
'FA028_DTI' 

 The final part is the destination file path where the output files will be written 
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'D:\ICHData\028_FApatient_130307' 

 Now proceed to Tractography stage 
Masking (new goshdat.m) 

 Add a number to the call to goshdat, setting a mask to remove the 
background 

 The mask is all pixels in the B0 with intensity < the maximum divided by 15. 

 The value is variable and could fail if there is a very bright pixel in the B0 (in 
which case the mask might be too aggressive and remove real tissue 

 Check the MD after processing for missing tissue. 

Original CD Data (Pre Change of Co-ordinates i.e. pre Nov 06) 

 Make copy into folder ICH data. Create new folder in format 
o CD#_initialsurnameDDMMYY(of scan) 
o E.g.  001_ZZappa_010507 (for Zappa scan on 1st May 2007) 

 Open “My computer” 

 E. drive, right click, “explore” 

 Cut and paste original images only to folder 001_ZZappa_010507 

 Leave numeric name unchanged 

Reformatting ICH Data 

 Re-label with <Python> programme using “Rearrange” 

 Must have created a destination folder previously (in ICH Data) 
(CD#_ID_DDMMYY) 

 Name Source and Destination folder 

 Destination folder format: Initials 1st & last(CD#)_Python  

 E.g.: ZZ001_Python  

 NOTE NUMBER OF IMAGES per volume 45 or 50 

 Divide folder into the 3 Groups of Averages 

 Highlight all files from 1st b0 image (0008 ep_b0 0001.dcm) 

 To last b1000 dirn 19 image 45 or 50 (0008 ep_b1000#19 0050.dcm) 

 Save as new file “ZZ001_Python_Av1” or 2 or 3 

 NB only change name up to name_Python_Av1 

 Where name reads PC008_PreOp_Python_Av1 

 Only prefix up to black is changeable and this must be consistent 
including the name in the ICHDATA directory 



APPENDICES 

231 

 

Using MriCro to convert DICOM to Analyze 

 Convert to Analyze format using mriCro 

 In mriCro.  Import > Convert foreign to Analyze 
 

Number of files:  # of Volumes (20 directions & b0)    x # of slices 

 945  = 21   x 45 or 50 (early or later scans) 

 Number of volumes = # of directions + b0 image (i.e. usually 20 + 1) 

 Accept all other parameters 

 When prompted open “ICH data”, select file format “ZZ001_Python_av1 or 2 
or 3” 

 Highlight first image 

 When prompted new file name is format “ZZ001_mricro_Av1” 

 Create new folder in “001_Zappa_010507” name “ZZ001_mricro_Averages” 

 Repeat for 3 Averages 

 Save all 6 analyze files (3 x Header & Images) in file 
“ZZ001_mricro_Averages” 

FA & MD maps (Unix)     diff_DTI_GE 

 Open FTP program, ensure logged onto Sun as “mri” 

 Programs and files must be put into directory   /home/mri 

 Copy the files from “ZZ001_mricro_Averages” into the directory 

 Use programme:    diff_DTI_GE 

 Instructions found by  $diff_DTI_GE & press return 

 Generic output name is format ZZ001_DTI 

 # Images:  3 (i.e.  3 averages) 

 # b0 images: 1 

 # directions:  20 

 Direction file encoding_Avanto_20.b 

 Image files ZZ001_mricro_Av1 / 2 / 3 without file extensions 

 Output file found in /home/mri once you have refreshed the FTP 

 Transfer files back to folder on PC  001_ZZappa_010507 

 Make copy of this file on portable hard drive 

 Delete all transferred and produced files from Sun 

 MD & FA maps can be viewed through mriCro on PC 
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8.6.2  TRACTOGRAPHY COMPUTER PROTOCOLS 

Colour Maps  

 Working in  home/mri/DATA 

 inv_measure_direction 

 Omit  _deff from file name and ignore .img extension instruction 

 Representation type 4 (absolute value) 

 Anisotropy type 2 (fractional anisotropy) 

 Gamma value (amt of colour saturation) 0.8-1.25 use 1.0 

 Transfer the FA maps to home/mri/DATA 

 View in mri3dX, Parameters to display Colour direction map onto FA 

 >readHDR <file name.hdr) to obtain Header info inc Image dimensions 
(if unknown or different from normal) 

 >zero (programme to achieve above) 

 $zero 96 96 50 2.5 2.5 2.5 0 8 (i.e. image size, voxel size, orientation 
code, #of bits) Configured as zero1.img 

 If 45 slices must reconfigure file as 45 slices e.g. zero2.img 

 >mri3dX zero1.img -3 –axial (resize doesn’t work) 

 mri3dX, shade-> go to files -> load new shade (should see new shade file 
created) 

 set shade opacity to 1.0 

Creating ROI’s 

 Create ROI using mriCro working on FA image of subject  from which you 
want to work 

 Save ROI as .roi file in mriCro 

 Save ROI in SUN format (Analyze) (NB once saved as sun format (prefix “l”) 
in front of file name) 

 (NB big endian versus little endian, as Unix and PC read the program in 
opposite directions) 

 Export ROI as analyze image to home/mri directory for subject 

 Each time an ROI is created, close the FA image and then reopen it 
afresh. If not the previous ROI will be saved in the subsequent ROI with 
the new ROI. 

 Save copies of ROIs in each folder  

 Volume ROIs can be created using sequential ROIs from several slices. I.e. 
to segment out the peduncles of the cerebellum. 

 On each change of a parameter and rerun of tractUI etc it overwrites the 
previous file unless the output name is changed, e.g. roi1_1FA02 to 
roi1_1FA03 
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Naming format for ROI’s 

 roi1_1 or sequential number depending on the previous roi 

 exclusion ROI,  roiExc_1   

 Each set of ROIs to be saved in the  ???_mricro_Averages file 

 ON UNIX MACHINE 

 >touch areas1.roi ,  areas2. noareas.roi etc (touch = create file) 

 (Only need to perform this roi ,  once for each subject analysis, NB save 
them in same directory as initial subject data) 

 nedit (open text file) areas1.roi & (amphisant allows program to run in 
background) 

 in text file type;  Image l(name of file).img 

 Save subsequent ROI’s in file: areas2.roi 

 Exclusion ROI’s in file: noareas.roi 

 Same procedure to save other ROIs, 

 It is pos to save more than one ROI in each file 

 EACH TIME ROI CHANGED, rerun tractUI_shapeFA5 and process below 

 To run some tractography programs it requires whole brain tractography 
data, to do this leave the areas.roi files empty and it will calculate the 
values for the whole brain 

 When choosing names of roi’s save as roi1_$1 where $1 are sequential 
numbers. End up with lroi1_$n.img in batch file)) 

Unix nedit function 

 If editing text files on dos they must be converted to Unix format to remove 
any edit marks 

 Transfer text file to Unix machine 

 Use program dos2unix 

 $ dos2unix  file_1   file_2   (i.e. name must change) 

 Make executable ($ chmod u+x file_2) 

Tractography 

 For Data after 30/11/06. i.e. Processed via David Atkinson program 

 Use the tract_program1_mult program 

 In the batch file new lines of code; 

 Image_multiplier 0.000001 0.0001 $1_DTI_Deff.img 

 mv mult_$1_Deff.img $1_DTI_Deff.img 

 mv mult_$1_Deff.hdr $1_DTI_Deff.hdr 

 (Allows the data to be run in the usual form) 

 Invariant_calc $1_DTI.img 1.0 
 

Tractography 

 NB > tcsh 
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 > tractUI_shapeFA5 

 >tractUI_shapeFA5 <file name> <file output name E.g. .WB for whole brain 
or roi_a for 1st set of ROIs) 

 Parameters  <vect step size    (1)>  
 <angle termination in degrees  (90)> 
 <high or low res, high   (0)>  
 <FA or tensor shape   (0)>  
 <FA or tensor threshold   (0.05)>  

 File used is .deff file from previous processing. But omit extension  
E.g. <JA014_Pre_deff> becomes <JA014_Pre> 

 > tractUI_shapeFA5 JA014_Pre roi_a  1 90 0 0 0.05 

 Takes approx 10mins 

 NB when naming the output file, keep it simple as the program reduplicates 
the name, e.g. name it roi1_a or if specific low or high res   roi1HR_a or for 
FA 0.2 and high res  roi1FA02HR_a  

 However this information is saved in the output seed image.  

 E.g. for JA014_Pre using ROIs “a” low resolution, FA 0.22 

 JA014_Pre_roi_a_v1.0_a90.0_fa0.22_seed_roi_255.vect 

 

 Use of higher FA values to discriminate for specific tracts. Also Higher 
FA’s speeds up the process 

 When doing initial experimental processing use the low resolution version, 
once happy with the FA run as high resolution to get fuller results. (slower)  

 To view output use +-  

 > tractUI_fromseed_char  (compresses tractography output to allow it to run 
on unix without crashing)  

 tractUI_fromseed_char <file name, no ext> <seed file =output of above> 
  <(1)   vect step size>  
 <(90)   angle term(90 = no angle)>  
 <(0)   Dec or Sec, colour directions>  
 <(0)   high or low resolution 0 or 1>  
 <(0)   FA or tensor shape 0 or 1>  
 <(0.05)  FA or tensor shape threshold>  
 <(1)   ROI size threshold (1mm) 

 > tractUI_fromseed_char JA014_Pre 
JA014_Pre_roi_a_v1.0_a90.0_fa0.22_seed_roi_255.vect 1 90 0 1 0 0.22 1 

 for a file with angle term 90, low resolution (1), FA 0.22 

 Output is as .vect file (takes approx 30sec) 

 > GeomView & 

 Click on files and open .vect file 

 Ideally displays tract 
Production of Images with Overlay of tracts on MR slices 

noflood_colour_seg3 / noflood_segnew4 

 NB on mriCro set size to 1mm and origin voxel to 0 (to avoid –ve values) 
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 Allows info at foot of mriCro panel to correspond to voxel x,y,z 

 NB all Tom’s programmes require whole brain tractography 1st  to be 
performed 
(High resolution option provides this in tractUI_shapeFA5) 

 >geomview_isosurface <name of .img file> <isosurface intensity (0.5)> 
<colour (as red green blue 1/0 1/0 1/0) >   

 Outputs .surf file 

 Surf file, slice file, tract file, load all 4 into GeomView 

 Overlay tract image onto mriCro slice 

 Find .vect file 

 >tract_anatomy <input.vect file> <image dimensions x,y,z> <voxel 
dimensions x,y,z>    

 Use either 96, 96,50 (or 45 if 45 slices)  voxel 2.5 x 2.5 x 2.5 for whole voxel 

 For sub voxel (recommended) 96x2.5 = 240, 240, 125 (or 112.5) AND 1,1,1 
for 1mm3 voxels 

 Outputs .tract file 

 Transfer to PC and save 

 MriCro, “overlay”  

 Find file and open it onto loaded image 

Use of ROIs 

 Exclusion ROIs 

 Can use whole slice as exclusion ROI, E.g. to avoid structures leading 
supratentorially. Similarly for descending structures 

tractUI_shapeFAseedonly 

 Brodman image necessary to run this  

 Choose option 2 _output.vect  & _output_seed.img 

Zero 

 Zero <96 96 96> <2.5 2.5 2.5> <orientation code (1)> <bit depth (8)> 

Output Slice on GeomView 

 Program output_slice 

 output_slice     <generic.img>  <x y z (co-ords of slice)>  <Image colour 
stream>  (use FA) 

 Use eg JA014_DTI.img 0 0 14 2 

 14 is the slice, number, to determine the slice number it is necessary to 
subtract  

the Z value from mriCro from the total number of slice and the remainder is 
the 

correct slice number  

 program outputs file; meandiff_ax_40.list  (for an axial slice) 
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Calculating Tract Volume, MD and FA 

 Requires output of tractUI_fromseed_char i.e. .vect file 

 tract_anatomy  <.vect> <size of image in mm x, y, z> <size of voxels 
x,y,z> 

 Image size is standard for x and y at 96 by 96 voxels  

 Voxels should be isotropic, usually 2.5 x 2.5 x 2.5mm hence x and y are 240 
mm x 

240mm (field of view) 

 z axis depends on number of slices i.e., length is 2.5 x # of slices  

 E.g.:- 45 slices, z is 2.5 x 45 = 112.5 NB this varies from scan to scan  

 Size of voxels is done at the sub-voxel level 1 x 1 x 1 (i.e. corresponds to the 
dimensions picked in the tracking algorithm 

 # tract_anatomy .vect 240 240 112.5 1 1 1  (45 slices , 1mm voxels 
tracking) 

 Tract_anatomy outputs a _tract.img file 
 

 To output the volume of the tract in mm3   

 tract_volume <_tract.img> 

 outputs .txt file (search ls *.txt) 

 open file #cat .txt 

 Final figure to 10 places is the volume in mm3 

 To output MD and FA, run output through tract_stats_TB program. 

Snapshot (for transfer of images) 

 sdtimage 

  snapshot screen save programme 

 File menu -> snapshot 

 Choose window , region, screen 

 If region, use L mouse button to draw around image in question 

 NB care to avoid overlapping of other windows as they will be saved as well 

 Save as .tiff file in entry box 

 NB there is a palette to modify the image at this stage 

 Must choose file format .tiff from options 

 Also lzw compression (assoc with the tiff file type) 

 Colors; millions 

 Saves files into current folder 

 FTP to PC  
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8.6.3  BATCH FILE INSTRUCTIONS 

 tract_program1, tract_batch 

 (NB to open files from unix use wordpad) 

 tract_batch, tract_program1, exist in main directory’ 

 command to change to directory of individual file 

 ROIs must be named numerically 

 For each individual (directory e.g. AD001) create the 3 ROI files in it 

 areas1.roi, areas2.roi, noareas.roi 

tract_batch 

 ./tract_program1 (file-name) (number of roi’s to run) 

 ./tract_program1 AD001 4 

 ./tract_program1 JD002 6 etc 

tract_program1 

 Arguments written to run through whole series to output; 

  .vect, .txt for tract volume 

 To run with different FA values, reduplicate the file names and strings  

 Substitute in required FA values (5 points to change) 

 Check for errors 

 Repeat process for subsequent  FA values 

 Remain 10-15 mins to ensure running correctly 

 Likely error is not to create the roi files in each patient directory 
 

 To include / remove terms, E.g. ROIs 

  Substitute “#” term in front of line of code concerned 

To run Batch file 

 Ensure all data saved for each file 

 Return to /home/mri/ICHDATA or parent file 

 ./tract_batch 
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8.6.4  BATCH FILES  

#!/bin/csh 
cd /home/mri/ICHDATA/$1 

pwd 

set n = 1 

while ( $n <= $2 )  

set str = "Image lroi1_$n.img" 

echo $str>areas1.roi   # pipes output ('str') from 'echo' into areas1.roi 

#set str = "Image lroi2_$n.img" 

#echo $str>areas2.roi 

#set str = "Image lroiExc_$n.img" 

#echo $str>noareas.roi     

tractUI_shapeFA5 $1_DTI roi_$n 1 90 0 0 0.2 

tractUI_fromseed_char $1_DTI $1_DTI_roi_${n}_v1.0_a90.0_fa0.20_seed 1 90 0 0 0 

0.2 1 

tract_anatomy $1_DTI_$1_DTI_roi_${n}_v1.0_a90.0_fa0.20_seed_roi_255.vect 240 

240 112.5 1 1 1 

tract_volume $1_DTI_$1_DTI_roi_${n}_v1.0_a90.0_fa0.20_seed_roi_255_tract.img 

tractUI_shapeFA5 $1_DTI roi_$n 1 90 0 0 0.25 

tractUI_fromseed_char $1_DTI $1_DTI_roi_${n}_v1.0_a90.0_fa0.25_seed 1 90 0 0 0 

0.25 1 

tract_anatomy $1_DTI_$1_DTI_roi_${n}_v1.0_a90.0_fa0.25_seed_roi_255.vect 240 

240 112.5 1 1 1 

tract_volume $1_DTI_$1_DTI_roi_${n}_v1.0_a90.0_fa0.25_seed_roi_255_tract.img 

tractUI_shapeFA5 $1_DTI roi_$n 1 90 0 0 0.3 

tractUI_fromseed_char $1_DTI $1_DTI_roi_${n}_v1.0_a90.0_fa0.30_seed 1 90 0 0 0 

0.3 1 

tract_anatomy $1_DTI_$1_DTI_roi_${n}_v1.0_a90.0_fa0.30_seed_roi_255.vect 240 

240 112.5 1 1 1 

tract_volume $1_DTI_$1_DTI_roi_${n}_v1.0_a90.0_fa0.30_seed_roi_255_tract.img 

tractUI_shapeFA5 $1_DTI roi_$n 1 90 0 0 0.4 

tractUI_fromseed_char $1_DTI $1_DTI_roi_${n}_v1.0_a90.0_fa0.40_seed 1 90 0 0 0 

0.4 1 

tract_anatomy $1_DTI_$1_DTI_roi_${n}_v1.0_a90.0_fa0.40_seed_roi_255.vect 240 

240 112.5 1 1 1 

tract_volume $1_DTI_$1_DTI_roi_${n}_v1.0_a90.0_fa0.40_seed_roi_255_tract.img 

echo $n 

@ n = $n + 1 

echo $1 completed 

end 

unset $n 
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8.7 GLOSSARY 

ADC Apparent diffusion coefficient 

ATRT  Atypical teratoid rhabdoid tumours  

B Magnetic field strength 

Cblr Cerebellar 

CNS Central nervous system 

CPP choroid plexus papillomas 

CSF Cerebro-spinal fluid 

CST Corticospinal tract 

DEC Directionally encoded colour 

DNT Dysembryoplastic neuroepithelial tumours  

DNT Dysembryoplastic neuroepithelial tumours  

DPTA diethylenetriaminepenta-acetic acid 

DTI  Diffusion tensor imaging 

DWI Diffusion weighted imaging 

Dysdi Dysdiadochokinesia 

EPI Echo planar imaging 

ETL Echo train length 

FA Fractional anisotropy 

FID Free induction decay 

FLAIR Fluid attenuation inversion recovery 

FND Focal neurological deficit 

FSE Fast spin echo 

G Grade 

GA General anaesthetic 

GOSH Great Ormond Street Hospital 

Gx,y,z Gradient 

HCG Human chorionic gonadotrophin 

I Zeeman energy level 

JPA Juvenile Pilocytic astrocytoma 

LL Lower limb 

LR Logistic regression 

M Magnetic field vector 

MD Mean diffusivity 

MRI  Magnetic resonance imaging 

MRS Magnetic resonance spectroscopy 

MS Multiple sclerosis 

N/S Not significant 

NAWM Normal appearing white matter 

NC Normal controls 

NMR Nuclear magnetic resonance 

PD Proton Density 

PF Posterior fossa 

PFCS Post Fossa Cerebellar Signs 

PFN Post Fossa No signs 
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PNET Primitive neuroectodermal tumours  

PNET-MB primitive neuroectodermal tumour-medulloblastoma  

PP Past pointing 

Pre-op Pre-operative 

RF Radio frequency 

ROI Region of interest 

ROI Region of interest 

S0 Signal with no diffusion gradient 

S1 Signal with diffusion gradient 

SE Spin Echo 

TE Time to echo 

TI Time to inversion 

TR Time to relaxation 

UL Upper limb 

αFP Alpha feto-protein 
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