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ABSTRACT 

Dengue is one of the most important human diseases transmitted by an arthropod 

vector and the incidence of dengue virus infection has been increasing steadily 

throughout the world. Most infections are asymptomatic but a subset of patients 

experience a potentially fatal shock syndrome characterised by plasma leakage. 

Generally attributed to the phenomenon of antibody-dependent enhancement, recent 

observations indicate that T cells may influence the development of this disease and it 

is this arm of the immune response to dengue this thesis examines. 

It starts by describing the production of novel HLA "tetramers" required for the work 

and then examines the role played by CD8+ cytotoxic T lymphocytes (CTL). This 

work demonstrates that CTL showing high level cross reactivity between dengue 

serotypes tend to exhibit high avidity and can be expanded from blood samples taken 

during the acute phase of secondary dengue infection. These cells produce much 

higher levels of both type 1 and certain type 2 cytokines than more serotype specific 

populations. Highly cross-reactive cells cannot be detected in convalescence when 

populations demonstrating significant serotype specificity dominate. 

The next section of the thesis describes the generation and characterisation of dengue 

specific CD4+ T cell clones, many of which behave in a highly cross-reactive manner 

producing large amounts of type 1 cytokines and demonstrating perforin-mediated 

cytolytic activity associated with an increase in the expression of surface CD107. It 

debates whether a new epitope has been discovered and discusses the nature of CD4 
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degeneracy, and its contribution to early cross-reactive immune responses which may 

facilitate priming of other immune system components. 

In conclusion this thesis hypothesises that sequential infection with different dengue 

virus serotypes elicits highly activated, cross-reactive CTL from memory which 

produce high levels of pro-inflammatory cytokines. Dengue-specific cross-reactive 

CD4+ T cell populations are also generated from memory and are capable of 

producing even greater levels of pro-inflammatory cytokines, and perhaps priming 

other cell populations. These mediators lead to the development of fluid leak and 

shock. High-avidity CD8+ T cells are subsequently deleted, perhaps as a consequence 

of activation-induced cell death, and a more beneficial serotype-specific memory CTL 

pool generated. These observations have significant implications for our 

understanding of the role of virus-specific CTL in pathogenesis of dengue disease and 

consequently for the design of a safe, effective vaccine. 
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ABBREVIATIONS 

Ng Microgramme 

PM Micromolar 
ADE Antibody dependent enhancement 
APTT Activated partial thromboplastin time 
AST Aspartate transferase 
BCR B cell receptor 
CD Cluster of differentiation 
CSF Cerebrospinal fluid 
CTL Cytotoxic CD8+ T lymphocyte (unless CD4 clearly indicated) 
DC Dendritic cell 
DC-SIGN DC-specific intercellular adhesion molecule-3-grabbing nonintegrin 
DEN-1 to -4 Dengue virus serotype 1 to 4 
DF Dengue fever 
DHF Dengue haemorrhagic fever 
DIC Disseminated intravascular coagulation 
DNA Deoxyribonucleic acid 
DSS Dengue shock syndrome 
DV Dengue virus 
EDTA Ethylene diamine tetra acetic acid 
ELISA Enzyme linked immunosorbent assay 
FACS Fluorescent activated cell sorter 
FCS Foetal calf serum 
FITC Fluorescein isothiocyanate 
FPLC Fast protein liquid chromatography 
GM-CSF Granulocytes-macrophage colony stimulating factor 
Hb Haemoglobin 
HIV Human immunodeficiency virus 
HLA Human leucocyte antigen 
ICAM Intercellular adhesion molecule 
IFN Interferon 
Ig Immunoglobulin 
IL Interleukin 
JE Japanese encephalitis 
mg Millgramme 
MHC Major histocompatibility complex 
MIP Macrophage inflammatory protein 
ml Millilitres 

mm Millimolar 
mRNA messenger Ribonucleic acid 
NS Non-structural protein 
PBMC Peripheral blood mononuclear cells 
PBS Phosphate buffered saline 
PCR Polymerase chain reaction 
pD 1 to pD4 Peptides representing variant epitopes from each dengue serotype 
PE Phycoerythrin 
pMHC Peptide complexed with MHC 
TNF Tumour necrosis factor 
TCR T cell receptor 
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CHAPTER 1 INTRODUCTION 

Dengue fever (DF) and dengue haemorrhagic fever (DHF) are febrile illnesses caused 

by members of the genus Flavivirus, the dengue viruses. There are four distinct 

serotypes (DEN 1 to 4) of which humans are the primary vertebrate host and Aedes 

mosquitoes (e. g. A. aegypti) the primary vector. Most infections are asymptomatic but 

for those with symptoms clinical manifestations range from a mild fever (dengue 

fever, DF) to a potentially fatal syndrome of shock characterised by plasma leakage 

(dengue shock syndrome, DSS) with or without visible haemorrhage (dengue 

haemorrhagic fever, DHF)(1,2). 

Dengue is not a new disease. The first recorded outbreak of a dengue-like illness was 

in China in around 992AD(3) and epidemics of an illness compatible with dengue 

occurred on three continents (Asia, Africa and North America) at the end of the 18`n 

century. However the 20`h century has seen dramatic changes in the epidemiology of 

the disease with a steady increase in the incidence of dengue virus infection 

throughout the world and the rise of a newly recognised severe form - dengue 

haemorrhagic fever. Dengue is now a global disease of the tropics with the potential 

to affect nearly half of the population of the globe(4,5) (Figure 1) and is considered 

by many to be among the most significant emerging diseases in the world(6). There is 

no specific therapy and no commercial vaccine available at present. 
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Figure 1. World distribution of dengue in 2005 (source: Centres for Disease Control and Prevention, 
Atlanta, USA) 

Epidemiological studies in the 1970s demonstrated that the severe form of disease, 

DHF, was seen most frequently in those experiencing secondary infection(7). A 

process of "antibody dependent enhancement" (ADE) was proposed as the 

explanation of this link between disease severity and immunological memory(8,9). 

This theory suggests that in certain situations pre-existing antibody fails to neutralise 

circulating virus and instead facilitates its uptake into cells such as macrophages 

where it is free to replicate. This leads to higher viral loads and more severe disease 

than that seen in naive individuals. 

ADE can be used to explain many of the clinical and epidemiological observations 

relating to dengue infection. However its dominant position has led to many 

overlooking the part that may be played by other components of the immune system - 

particularly the contribution of cellular immunity. 
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This thesis describes work seeking to elucidate something of the role played by CD8+ 

and CD4+ lymphocytes in the immunopathogenesis of severe dengue disease. This 

chapter summarises the clinical and epidemiological characteristics of dengue, the 

evidence behind current theories of the aetiology of severe disease, the pathological 

and immunological characteristics of infection, and the limitations of current 

explanations of immunopathology. 

Clinical features of dengue disease 

Dengue virus infection may cause a wide spectrum of illness (Figure 2). Many cases 

are asymptomatic or result in a mild fever. Young children in particular may 

experience an undifferentiated fever, often with a maculopapular rash. 
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Figure 2. The spectrum of dengue infection. From "Dengue haemorrhagic fever: diagnosis, 
treatment, prevention and control. " 2nd edition. Geneva : World Health Organization. 
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Clinical features of "dengue fever" 

"Classic" DF is seen in older children and adults. It is a non-fatal febrile illness of 

abrupt onset and lasts 5-7 days. A 5-10 day incubation period follows an infected 

mosquito bite. Prodromal symptoms of headache, backache, fatigue and malaise may 

develop a few hours before fever, which is of abrupt onset. Other symptoms include 

body pain, muscle ache, retro-orbital headache, macular rash, photophobia, eye pain, 

sore throat, testicular pain, delirium, lympadenopathy (particularly posterior 

auricular), constipation, diarrhoea and prostration, nausea and vomiting. It is therefore 

easily clinically confused with other viral or even bacterial infections (e. g. 

leptospirosis, typhoid). Severe muscle pain and osteoarthralgia are frequently found in 

adults ("breakbone fever" -a name coined by those caught up in the Philadelphia 

outbreak of 1780(3)) but less commonly in children. Fever lasts 5-7 days and may 

return to normal in the middle of the febrile period producing the classic "saddleback" 

temperature chart. Hepatomegaly has been reported. Some epidemics of DF have been 

accompanied by features of bleeding (e. g. gingival, petechiae, purpura, epistaxis, 

menorrhagia, gastrointestinal). Patients with existing peptic ulcer disease may develop 

severe potentially life threatening bleeding. It is important to note that these cases of 

DF with unusual bleeding(10) are distinct from DHF/DSS, a syndrome characterised 

by plasma leakage and haemoconcentration due to increased vascular permeability. 

Even in fairly mild cases convalescence may be prolonged with some adult patients 

experiencing fatigue and depression. 
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Clinical features of "dengue haemorrhagic fever" 

DHF is typically characterised by high fever, haemorrhagic manifestations, 

hepatomegaly and circulatory failure(11). DHF/DSS resembles DF in the early stages. 

However at the time of, or shortly after, defervescence circulatory disturbance 

develops. In mild cases this may manifest as sweating, restlessness and cold 

peripheries. Patients may recover spontaneously but in severe cases shock rapidly 

develops with tachycardia and peripheral cyanosis as a consequence of plasma 

leakage. Peripheral oedema is unusual but pleural effusions and ascites are the 

norm(12). Laboratory tests may reveal moderate to marked thrombocytopenia, 

haemoconcentration (elevated haematocrit) and hypoproteinaemia. These changes are 

usually apparent before the onset of crisis at the end of the febrile phase and facilitate 

early identification of those patients developing incipient shock(3). The commonest 

haemorrhagic manifestations are a positive tourniquet test (Figure 3), easy bruising 

and bleeding at sites of venepuncture. Recent studies have however demonstrated that 

the tourniquet test is poorly sensitive for dengue and does not reliably distinguish 

between DHF and DF(l 3). The liver is usually palpable early in the febrile phase and 

hepatomegaly is observed more frequently in shock than non-shock cases. Jaundice is 

not usually seen. Patients who go on to develop shock may develop acute abdominal 

pain shortly beforehand. Without intervention the course of shock is short but life 

threatening with death occurring as little as 12 hours after onset. Prolonged shock may 

be associated with metabolic acidosis and disseminated intravascular coagulation 

(DIC) with gastrointestinal haemorrhage and rarely intracranial bleeds. The period of 

plasma leakage rarely lasts longer than 48 hours and if managed quickly and 

appropriately with fluid replacement recovery is rapid with the course of 

uncomplicated disease being around 7-10 days. 
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Figure 3.1 he tourniquet test. A blood pressure curt is intiated on the upper arm to a point between 
the diastolic and systolic pressures for 5 minutes. The test is considered positive when there are 20 or 
more petechiae per 1 inch square of skin observed. It can be negative if the patient is in profound shock 
and only become positive after recovery from shock. 

Complications of dengue 

Central nervous system - febrile convulsions, spasticity, paresis, changes in 

consciousness, encephalopathy, encephalitis, intracranial bleeds, cerebral 

oedema. 

Iatrogenic - fluid overload and respiratory or heart failure, sepsis, pneumonia. 

Liver failure - either primary viral cause or secondary to circulatory failure(3). 

Laboratory findings (14) 

Thrombocytopenia - often seen in DF and invariably seen in DHF. Platelets 

usually drop below 100 000 per mm3 between day 3-8 of illness. 
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Haematocrit - rises in all cases but more pronounced in those with shock. An 

increase of 20% or more is considered confirmation of plasma leakage. It may be 

affected by early fluid replacement or bleeding. Both the fall in platelets and rise 

in haematocrit occur before defervescence and the onset of shock. 

White cell count - may be low or mildly raised. A relative lymphocytosis may be 

observed shortly before defervescence. Neutrophils usually fall towards the end 

of illness. 

Clotting screen - prothrombin time (PT) and activated partial thromboplastin 

time (APTT) are increased in up to 50% of patients and certain clotting and 

fibrinolytic factors may be decreased, particularly in those severe cases 

developing a degree of liver dysfunction. 

X-ray - pleural effusion (usually right sided) - the extent correlates with disease 

severity (Figure 4). Bilateral effusions are common finding in shock. 

Figure 4. Right lateral chest X-raN of a child with dengue shos%ing a pleural effusion. The extent 
of the effusion (in this case quantified by the pleural effusion index, PEI) correlates with disease 

severity. 
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Other: albuminuria, hypoproteinaemia, liver function test changes, metabolic 

acidosis. 

The World Health Organisation clinical classification of dengue 

The World Health Organisation has produced case definitions for clinical dengue 

disease (14). 

Probable dengue fever -2 or more of headache, retro-orbital pain, myalgia, 

arthralgia, rash, haemorrhagic manifestations, leucopenia AND either occurrence 

at the same time and place as other confirmed cases OR supportive serology. 

Confirmed dengue fever -a case confirmed by laboratory criteria including: 

isolation of dengue virus from serum or autopsy samples; demonstration of viral 

antigen from serum, CSF or tissue samples; demonstration of fourfold or greater 

change in reciprocal IgG or IgM antibody titres in paired samples; or detection 

of dengue virus genome in CSF or autopsy samples by PCR. 

Dengue haemorrhagic fever - all of. fever or history of fever lasting 2-7 days, 

haemorrhagic tendencies (at least one of bruising, petechiae, purpura, positive 

tourniquet test, bleeding from mucosa, gastrointestinal tract, injection sites or 

other locations), thrombocytopenia (<100 000 platelets per mm) and evidence 

of plasma leakage (as indicated by: a rise in haematocrit of 20% or greater above 

average for age, sex and population; a drop in haematocrit following fluid- 

replacement greater or equal to 20% of baseline; or clinical signs of plasma 

leakage such as pleural effusion, ascites or hypoproteinaemia). 

Dengue shock syndrome - all of the criteria for DHF plus evidence of circulatory 

failure: rapid and weak pulse with a narrow pulse pressure (<20 mmHg), or 

hypotension for age with cold, clammy skin and restlessness. 

8 



There are four grades of severity of DHF (Figure 5). Grades III and IV are considered 

to be DSS. 
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Figure 5. The clinical spectrum of dengue haemorrhagic fever. From "Dengue haemorrhagic fever: 
diagnosis, treatment, prevention and control. " 2nd edition. Geneva: World Health Organization. 

Grade I- fever with non-specific symptoms and the only haemorrhagic 

manifestation a positive tourniquet test or easy bruising. 

Grade II - the above plus spontaneous bleeding (usually skin haemorrhages). 

Grade III - circulatory failure with rapid, weak pulse and narrow pulse pressure 

with hypotension, cold clammy skin and restlessness. 

Grade IV - profound shock with an undetectable blood pressure or pulse. 

The WHO system of classifying dengue disease together with the implementation of 

fluid management guidelines (see below) saw a dramatic fall in the case fatality rate 

of severe dengue(15,16). However not all cases fit neatly to the criteria described and 
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new terms such as "dengue fever with unusual haemorrhage" and "dengue with signs 

associated with shock" have been introduced. In some outbreaks bleeding and 

thrombocytopenia have been as common in the dengue fever classified patients as 

those considered to have DHF(17). It may be that dengue disease severity exists as a 

continuum rather than distinct clinical entities. This has led some to propose the 

development of new systems of classification(16). 

Diagnosis 

By the time an individual infected with dengue develops symptoms the virus is widely 

disseminated and may be identified in serum, circulating blood cells and the tissues of 

the immune system. Peripheral blood mononuclear cells are infected within a few 

days of the mosquito bite and anti-dengue antibodies arise within a few days of 

symptoms. Virus remains detectable for roughly the period of the fever. Diagnosis by 

viral recovery or detection is preferable but serological techniques are used to confirm 

most dengue infections. Single specimens can in most cases allow a presumptive 

diagnosis of recent infection, but a conclusive diagnosis of acute infection can only be 

made when rising levels of anti-dengue immunoglobulin are detected in paired sera. 

Serological diagnosis 

The antibody response 

Flavivirus naive individuals (including those not immunised against yellow fever) 

mount a primary type response, producing IgM. This is detectable in 50% of patients 

whilst still febrile and within 3 days of defervescence in the remainder(18). IgM titres 

peak at 2 weeks after symptom onset, becoming undetectable by 3 months. IgG is 
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present in only low levels in the febrile or early convalescent phase, arising shortly 

after IgM. Patients experiencing primary infection may mount an antibody response 

cross-reactive between dengue serotypes early in disease. By months 3-6 a monotypic 

antibody response specific for the infecting serotype develops (Figure 6). 
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Figure 6. Primary and secondary immunological responses to dengue infection. From Dengue 
haemorrhagic fever: diagnosis, treatment, prevention and control. 1997 World Health Organization, 
Geneva, Switzerland. 

Despite the antigenically related nature of the dengue viruses two or more viral types 

can sequentially infect a host - this is of great significance clinically and 

epidemiologically and is discussed in detail below. The antibody response to a 

sequential infection is very different from that elicited by the primary infection. This 

sequential response may occur when the host has experienced infection with a non- 

dengue flavivirus - at least half of which infect humans. Those patients mounting a 

non-naive, secondary antibody response to dengue infection produce predominantly 
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IgG. IgM is produced in a similar manner to that seen in primary infection but at 

much lower levels and in parallel with the high levels of IgG. Both titres peak at about 

2 weeks after symptom onset, IgG declining over the next 3-6 months and IgM 

remaining detectable in only 30% at 2 months. The IgG is broadly cross-reactive - 

this makes it harder to identify the infecting viral serotype and it is difficult to recover 

virus from serum samples taken after defervescence (see below). In some cases IgM is 

not detected. Its presence or absence and titre may be related to the antigenic 

relatedness of the sequentially infecting virus -a closely related dengue serotype may 

not present many new epitopes, unlike a distantly related flavivirus. 

The duration of humoral immunity protecting against clinically overt homotypic 

dengue infection appears long. Many people living through a big epidemic of DEN-1 

and DEN-2 in Athens in the 1920s were found still to have neutralising antibodies to 

the infecting serotype 40 years later(19). Similar observations have been made in 

Japan and from those undergoing experimental inoculations(20). 

Serological tests 

Serological diagnosis using paired samples (at least 10 days apart) is the most widely 

used means of confirming dengue infection due the simple techniques involved and 

widespread availability of reagents. False positive results can occur and may be due to 

cross-reactive antibodies (either between dengue serotypes or other flaviviruses) and 

the phenomenon of "original antigenic sin" (B-cell clones producing antibody to the 

original flavivirus infection are restimulated and produce early antibody that has a 

greater affinity for that first infection than the current virus(21)). Detection of anti- 
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dengue IgM alone may allow the diagnosis of dengue to be confirmed but not allow 

identification of the specific serotype. 

The different techniques of antibody identification vary in what they detect and their 

cross-reactivity between dengue serotypes and other flaviviruses. They are briefly 

summarised below. The most widely used are IgM antibody capture-ELISA and 

Haemagglutination Inhibition. 

" Antibody detection by ELISA - MAC-ELISA (IgM antibody capture-ELISA) can 

measure a rise in dengue specific IgM even 1-2 days into the acute phase of 

illness in both primary and secondary infection. In cases where only a single 

specimen is available detection of anti-dengue IgM permits a diagnosis of recent 

dengue. Negative tests taken before the 6th day of illness should be repeated. A 

fraction of secondary dengue cases will have a low or negative IgM reaction and 

IgG testing may be indicated. Anti-flavivirus IgM is complex-specific and 

allows differentiation of dengue from other flaviviral infections. Some cross- 

reactivity does occur however. The test can also be used to detect IgM in the 

CSF - IgM does not normally cross the blood-brain barrier and its presence 

implies viral replication within the CNS. The assay is particular useful for 

laboratories performing a high volume of testing. Anti-human IgM antibody is 

bound to a plate and used to non-specifically capture IgM from serum samples. 

The captured antibody is then reacted with dengue antigens (either separately, or 

all 4 in a pool since the test is not reliably serotype specific). A signal generating 

system (e. g. anti-dengue antibody conjugated to horseradish peroxidise) then 

detects the presence of bound antigen. IgG-ELISA tests exist but are not very 
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specific cross-reacting with other flaviviruses and unable to differentiate 

between dengue serotypes. They are however well suited to the analysis of a 

large number of samples (useful in seroepidemiological studies(22)), are as 

sensitive as haemagglutination inhibition based assays and can be used to 

differentiate primary from secondary infections. They may not correlate well 

with HI in primary infection because the HI test measures both IgM and IgG. 

Haemagglutination-inhibition (HI) test - simple and reproducible, the strength 

of this test is that it uses agents that can be prepared locally. It does however 

require paired sera separated by more than 7 days and does not distinguish 

between closely related flaviviruses (e. g. dengue, JE and West Nile). Dengue 

viruses agglutinate gander erythrocytes as well as trypsinised type 0 human red 

blood cells. The HI test relies on the ability of dengue antibodies to inhibit this 

agglutination. Sera are extracted with kaolin or acetone (to remove non-specific 

inhibitors of agglutination) and absorbed with gander or trypsinised type 0 

human red cells. All sera from a single patient are titrated and tested in the same 

assay. The endpoint of the titration is the highest dilution of serum that inhibits 

agglutination of a standard amount of antigen (usually 4-8 haemagglutinating 

units of the four dengue antigens). A fourfold or greater change in HI titre 

between paired sera is considered diagnostic for recent infection. The test 

measures all classes of antibody. In primary infections detectable HI antibody 

appears after day 5 and rises over weeks, rarely exceeding 1: 640. Secondary or 

tertiary infections see a rapid elevation of antibody within a few days - acute 

samples are often HI positive. Titres of 1: 20480 are not uncommon in 

convalescence and may persist for several weeks(3,14). HI antibodies are cross- 

reactive even in primary dengue infections - the test can be positive using an 
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antigen from almost any flavivirus. The HI titre falls over years and absence of 

HI antibodies does not equate with immunological naivety. 

Plaque reduction neutralisation test - this is the most type specific of the 

traditional serological techniques and is considered the best measure of true 

immunity after vaccination. It requires carefully titrated virus stocks and tissue 

culture facilities. Dilutions of heat-inactivated serum are incubated with defined 

amounts of virus. The non-neutralised viral remnant is adsorbed onto a 

monolayer of susceptible cells and the resulting plaques counted. The endpoint 

of the titration is the highest dilution of serum that reduces the number of 

plaques by 50-90%. A fourfold or greater rise in titre between acute and 

convalescent samples is diagnostic of a current infection. Relatively type- 

specific neutralising antibodies are present in early convalescence following 

primary infection. Specificity improves a few months after infection. After 

secondary infection high titre neutralising antibody is produced against at least 2, 

and usually all 4 dengue virus serotypes and often other flaviviruses(23,24). 

Testing of appropriately timed samples from subjects who have undergone 

various combinations of sequential infections reveals that the highest 

neutralising antibody titre in convalescent serum is directed against the virus 

with which the patients was previously (not most recently) infected. This 

observation led to the theory of original antigenic sin in dengue(21). 

Complement fixation - technically difficult and the least sensitive, complement 

fixation is not widely performed. Complement-fixing antibody generally appears 

later than IgM or HI and is usually more specific (although not so specific as 

neutralising assays) so may be useful in confirming dengue infection in patients 

with serum samples taken late in the course of infection. 
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Viral detection 

Definitive diagnosis is made by the detection of virus in culture. The period during 

which this can be achieved is short and viral culture is rarely successfully achieved 

from samples taken at the time of, or shortly after defervescence - the presence of 

newly generated dengue antibody interferes with viral culture. Identification of 

dengue RNA by reverse-transcription polymerase chain reaction (PCR) is fast but 

technically complicated and in the absence of good technique and proper precautions 

contamination can lead to false positive results. Dengue RNA or antigen can be 

identified in individual cells by in-situ hybridisation or immunocytochemistry 

Viral isolation - samples should be taken during the first 5 days of illness. The 

most sensitive culture technique is the inoculation of material into adult or larval 

mosquitoes. Infection is then detected by immunofluorescence of a tissue smear 

produced from the crushed mosquito head. Maintaining mosquito colonies is a 

considerable investment of time and resources. Mosquito cell lines, although less 

sensitive, are much more convenient. The presence of cytopathic effect cannot 

be relied upon as this is not produced by every viral strain - 

immunofluorescence should be performed. The least sensitive means of culture 

is in vertebrate cell lines, or intracerebrally inoculated mice. 

Antigen detection in fixed tissue - flavivirus antigen can be detected in PBMC 

from patients with dengue, most reliably during the febrile phase of illness, as 

well as in the liver, lung, thymus, lymph nodes, spleen and bone marrow of post 

mortem specimens. Fluorescent antibody and avidin-biotin enzyme assay are 

available for the visualisation of viral antigen in fixed tissues. 
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Reverse transcription-PCR detection of dengue RNA - dengue-specific 

oligonucleotide primers allow PCR-based detection of dengue virus even during 

convalescence when circulating antibodies would otherwise preclude its 

detection. They are prone to false positive results due to contamination. 

Management 

The prognosis of DHF depends on early diagnosis and recognition of plasma leakage. 

Frequent monitoring of platelet count and haematocrit can allow leakage to be 

detected in its earliest stages, usually at around the 3`d day of illness. Treatment is 

aimed at fluid replacement to maintain the circulatory volume for the 24-48 hours that 

increased vascular permeability persists. Intravenous fluids should be isotonic. Recent 

clinical trials have shown no significant difference in outcome between patients 

managed with colloids, Ringer's lactate and normal saline although those with severe 

shock managed with Ringer's lactate took longer to recover(15,16). Mild cases of 

DHF do not necessarily need hospitalisation. Cases with low platelet counts, high 

haematocrit, haemorrhage other than mild petechiae or any clinical signs of shock 

should be managed as inpatients. DF, DHF I and II are managed with antipyretics 

(e. g. paracetamol. Aspirin is contraindicated - it may exacerbate haemorrhage and is 

associated with Reye's syndrome in children) and simple oral hydration. A 

haematocrit rise of 20% or more indicates the need for IV fluid therapy. Fluids should 

be given judiciously, reassessing the requirements for the next few hours at regular 

intervals as guided by cardiovascular clinical signs and changes in haematocrit(3,14). 

Excessive volume replacement risks pleural effusion, respiratory distress and ascites 

during the convalescent phase when fluid is reabsorbed. Other treatments should be 
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given as indicated, e. g. blood transfusion, correction of electrolyte and metabolic 

disturbance, management of clotting abnormalities, liver impairment etc.. 

The aetiology of DHF 

DHF is a relatively new disease. Cases were described at the start of the 20`h century 

and the first modem outbreaks reported in Thailand in the 1950s. The post-war years 

saw a rapid expansion in the frequency and geographical spread of DHF outbreaks(3). 

The reasons behind this rapid expansion are discussed further later - here we consider 

the aetiology of severe dengue disease. 

Previous infection 

DHF has been most studied where it first appeared - in Southeast Asia - where it is 

predominantly a disease of childhood. In the tropical Americas it is seen in all age 

groups(25). Epidemiological studies of Asian epidemics have repeatedly 

demonstrated two key observations(7,26): 

1. Such epidemics take place in regions where multiple types of dengue virus 

serotypes are simultaneously, or sequentially endemic. 

2. Patients meeting the clinical criteria for DHF have secondary dengue antibody 

responses, unless less than 1 year of age in which case they exhibit primary 

responses. 

Prospective sero-epidemiological studies have confirmed these observations - 

virtually all DHF cases occur in those experiencing a secondary infection(27,28). 
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Thus a key, perhaps the key characteristic of those patients developing severe dengue 

disease is evidence of previous infection. It would appear that infection with one 

serotype does not provide absolute protection against later infection with another, and 

may in fact lead to more severe clinical disease. Perhaps the strongest evidence to 

support the sequential infection hypothesis is to be found in Cuba which experienced 

a DEN-1 outbreak in 1977, followed by a DEN-2 outbreak in 1981. This second 

outbreak saw a large number of DHF cases in all but those aged between 1 and 3 

years old - those who were too young to have previously been infected with dengue 

and too old to have residual maternal antibody(29). This is another fascinating 

epidemiological observation. Severe disease in infants is seen in children less than 1 

year of age born to dengue immune mothers(30). The vast majority of women in 

endemic areas of child-bearing age have antibody to dengue virus(3 1). These maternal 

antibodies effectively neutralise all serotypes of dengue. As might be predicted 

transplacental transfer of maternal antibody protects infants from dengue infection in 

the early months of life - infants less than 3 months of age are rarely hospitalised for 

dengue virus infection(32). Studies in Thailand demonstrated that the rates of 

hospitalisation peaked at an age of 7 to 8 months when they were up to 8 times that of 

a1 to 3 month old and twice that of a3 year old. Maternal antibody to dengue 

declines at a constant rate with a half life of around 35 days. Thus babies born to 

dengue immune mothers are initially protected from severe infection but once 

maternally acquired antibody falls below the protective level it appears that there is a 

time window during which infection is enhanced. The age at which an infant develops 

DHF is related to the level of antibody acquired from the mother(30). Eventually 

maternal antibody disappears and if the infant remains dengue naive their risk of 

severe infection returns to that of an individual experiencing primary infection. 
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Several mechanisms have been proposed as the means by which previous infection 

and severe disease are linked. The pre-eminent of these is that of antibody-dependent 

enhancement (ADE). ADE is a neat explanation of both why severe disease is seen in 

infants born to dengue-immune mothers from around 6 until 9 months of age, and 

why most other cases occur in those experiencing secondary infection. It appears that 

antibody generated after a primary infection is protective against reinfection by all 

dengue serotypes for a relatively short period of time. As antibody levels wane so 

does protection against heterotypic virus and infection is instead enhanced. Enhancing 

antibody might act by increasing the replication of the virus through facilitating 

uptake into its target cell, or by altering the tissue tropism of the virus. Interestingly 

enhancement of dengue infection of cell lines is seen in vitro with antibodies to 

flaviviruses other than just dengue - no epidemiological association has yet been 

made with severe disease and previous exposure to such viruses. The experimental 

evidence for ADE is discussed further below. 

Viral strains 

Co-circulation of viral serotypes appears to be necessary but not sufficient for DHF. 

DHF and DSS with fatalities have been documented in adults and children with 

primary dengue infection(33). During the 1970s and 80s three or four serotypes were 

present in tropical regions of the Americas and the Indian subcontinent either 

simultaneously or sequentially with no epidemic DHF. It is likely that viral factors 

influence pathogenicity and certainly viruses differ genotypically and phenotypically 

in ways that affect their virulence in experimental systems. Laboratory strains of 

dengue virus can be modified by propagation, changing their tissue tropism, 
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temperature sensitivity and cytopathic potential. However it is less easy to prove that 

natural dengue virus strains differ in virulence. Secondary infections caused by 

dengue viruses of Asian origin do seem to have an association with more severe 

disease(34). There were a large number of cases of DHF in the Americas during an 

outbreak of DEN-2 which was more closely related to Asian strains than previously 

circulating American viruses(35). Similar observations were later made with the 

introduction of DEN-3 virus into the Americas(36). Outbreaks of DEN-3 have been 

recorded in endemic areas among immune populations which were associated with 

low viraemia and caused only mild disease(37). Yet separating the effects of the 

introduction of a specific strain from more general changes in epidemiology (e. g. the 

more widespread circulation of multiple viral serotypes and increased rate of 

secondary infection) is not straightforward. DEN-2 virus strains associated with DHF 

have been shown to have different growth and enhancement characteristics(38,39). 

Similar observations have not been made with other dengue serotypes. 

Age 

DHF/DSS tends to affect the young and the elderly. In the Cuban outbreak of 1981 

everyone from age 2-40 had the same exposure history yet hospitalised patients 

peaked at 8-11 years of age and fell to baseline among the mid-teens and above(40). 

Few severely ill adults have severe vascular leakage - it is possible that the capillaries 

of young children are more prone to cytokine-mediated permeability changes than 

those of adults(41) (Figure 7). 
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Figure 7. The Kf data obtained from 89 healthy Vietnamese volunteers aged 5 to 77 years. Kf is a 
measure of vascular permeability derived in this case from changes in tissue volume as a result of 
increasing the pressure in a proximally placed cuff. Filled circles represent women, empty circles men. 
The solid line represents a third-order polynomial fit for these data and the dotted lines the 95% 
confidence limits for that fit. From Gamble, J., D. Bethell, N. P. Day, P. P. Loc, N. H. Phu, I. B. Gartside, 
J. F. Farrar, and N. J. White. 2000. Age-related changes in microvascular permeability: a significant 
factor in the susceptibility of children to shock? Clin Sci (Lond) 98: 211-216. 

General health 

Undernourished infants are at lower risk of DHF than those with a good nutritional 

status(42) - perhaps as a consequence of the suppressed cellular immune response 

seen among those with malnutrition(43,44). Individuals with peptic ulcer disease are 

more likely to experience severe bleeds in the course of dengue infection. 

Host genetics 

Host factors play a part in the development of severe disease. There is significant 

observational evidence that black people have a lower risk of developing DHF/DSS 

than white people despite similar levels of infection - for example despite 

hyperendemic transmission in Haiti cases of DHF are extremely rare(45,46). It has 
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been suggested that the millennia over which yellow fever has been enzootic in Africa 

has resulted in selection for resistance genes that may protect against severe flavivirus 

disease(3). Increased expression of HLA molecules on the surface of infected cells 

has been described during flavivirus infection(47) and it has been suggested that this 

could contribute to immunopathogenesis. A number of HLA alleles have been found 

to have statistical association with protection from (A*0203, A*29, A*33, B*52 

DRB1*04) or a predisposition to (A*l, A*0207, A*24, B*51, DQI) the development 

of DHF(48). Other genes noted to have an association with DHF include the vitamin 

D receptor, FcyR 11(49) and certain TNF-a polymorphisms(50). 

The rise of dengue 

The epidemiology of dengue has changed dramatically over the last 100 years. To 

understand why this is it is useful to briefly consider the evolution and the 

geographical of spread of both the virus and its vectors. 

The origin of the viruses 

It is thought that the viruses originated in a forest cycle involving primates and canopy 

dwelling mosquitoes (51). Such cycles have been identified in both Southeast Asia 

and Africa and it is likely that dengue was originally a monkey virus with cross- 

species transmission to humans occurring independently with each of the four 

serotypes(52). Studies of nucleotide substitution rates have estimated that the 

emergence of dengue as a distinct virus took place around 1000 years ago(53), 

corresponding approximately with the earliest reports of dengue-like illness. These 

outbreaks probably occurred sporadically as a result of intermittent cross-species 
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transmission from sylvatic cycles - in much the same way a yellow fever behaves 

today. Astonishingly it appears that cross-species transmission from monkeys to 

humans with the establishment of a sustained human/mosquito cycle occurred 

between 320 (DEN-2) and 125 (DEN-1) years ago, facilitated perhaps by the social 

and environmental changes associated with urbanisation and trade that provided the 

virus access to a large pool of susceptible people. The four serotypes are 

phylogenetically distinct, often to the same degree as other "unrelated" 

flaviviruses(54). Most genetic diversity currently seen within each dengue serotype is 

estimated to have appeared almost simultaneously and only during the past century. 

This makes dengue only a little older than HIV, which is thought to have arisen in 

human populations around 70 years ago(55). It is not known how the virus developed 

into four serotypes. It may be they evolved separately in distinct geographical regions. 

Others suggest they developed within one region, the phenomenon of antibody 

dependent enhancement promoting the generation of serotype diversity by facilitating 

infection by related serotypes. However the balance of opinion currently rests with 

independent evolution. It is likely that the small changes that would have been seen in 

early divergence would not have been sufficient to avoid complete cross-protection. 

The phenomenon of antibody-dependent enhancement is more likely to be the result 

of recent contact between four viruses that have evolved in isolation and by chance 

have a level of antigenic dissimilarity that allows immune enhancement(52). Whilst 

only DEN-2 has been documented in Africa all four serotypes have been identified in 

Asian forest cycles and it is likely that the viruses are of Asian origin. 
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The vectors 

All known vectors of the dengue viruses are mosquitoes belonging to the genus Aedes. 

In contrast to the virus itself the principal modem vector, Aedes aegypti (Figure 8) is 

thought to have arisen in Africa and travelled to the New World and Asia with the 

slave trade and commerce of the 17`h and 18th centuries. Other species capable of 

transmission include A. albopictus and A. polynesiensis and additional species are 

likely to play a role in certain restricted geographical areas(3). The success of A. 

aegypti as a vector rests on its adapting to the environments created by man. The 

adults are anthropophilic (feed on humans) and lay their eggs in artificial water 

containers (abundant in villages and cities). They are dispersed easily by human 

transport networks. From an African origin in the 17`h century they have spread to the 

Americas, the Mediterranean basin, Asia and the Pacific Islands. Different 

populations vary in their vector competence. Unlike the anopheline mosquitoes 

responsible for transmitting malaria they are day biters with feeding times peaking in 

the mid-morning and late afternoon. They are easily interrupted in their feeding and a 

single mosquito can infect several members of a household in a short space of time. 

Infection rates are higher among adult women and pre-school children than adult men, 

reflecting the increased risk among those staying at home during daylight hours(56). 

Outbreaks have occurred at schools and hospitals as a consequence of similar day 

time transmission. Mosquito survival is longer during the rainy season due to high 

humidity although in some parts of the world and certain urban environments 

alternative water sources provide ample breeding areas during the dry season. Higher 

temperatures reduce the extrinsic incubation period, ingested virus reaching the 
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mosquito's salivary glands more quickly and can facilitate epidemic transmission. 

Vertical transmission of virus to mosquitoes does occur but at relatively low 

rates(57). 

Figure 8. Aedes aegypti 

Contemporary epidemiology 

Armed with these insights it is easier to understand something of the process behind 

the dramatic geographical spread of dengue across tropical regions of the world. With 

the development of cities and clearing of forests dengue viruses moved from their 

sylvatic cycles into rural environments and later towns and cities spread by A. 

albopictus and other peridomestic species. Aedes aegypti had become widespread in 

tropical cities across the world and the introduction of dengue viruses into these 

mosquito populations resulted in the major dengue pandemics of the 18th, 19`h and 20th 

centuries. A. aegypti became highly adapted to humans and urban life, laying its eggs 

in the plentiful open water sources and preferring to feed on humans. Its tendency to 

feed in the day, and on multiple members of a household, made it a highly efficient 

vehicle for the virus. 
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Severe and fatal disease associated with dengue was reported sporadically from 1780 

but epidemic occurrences were rare and the emergence of severe dengue as a 

significant public health problem is a phenomenon of the 20`h century. In Southeast 

Asia the ecological disruption and demographic changes brought about by World War 

2 increased dengue transmission dramatically. Mosquitoes and eggs were transported 

to new regions, equipment and junk left behind provided plentiful water collections 

that made ideal larval habitats and numerous non-immune soldiers moved the virus 

into new regions and cities. The urbanisation that took place following the war was 

not accompanied by the development of suitable housing and sanitation and both 

mosquito and virus thrived. Hyperendemic transmission of multiple virus serotypes - 

a relatively new phenomenon - was established in most cities of Southeast Asia 

leading to the first recorded epidemics of DHF in Manila (1953/54), and Bangkok 

(1968) although sporadic cases had probably been occurring throughout the 1950s. 

DHF is now a leading cause of hospitalisation and death among children in many 

countries of Asia. 

Despite epidemic dengue in the Caribbean basin during WW2 there were no recorded 

epidemics from the end of the war until 1963 despite the presence of DEN-2. This was 

probably due to the A. aegypti eradication programmes of the 1940s and 50s aimed 

primarily at the prevention of urban yellow fever. These were highly successful and 

many countries completely eradicated the mosquito. However its cessation in the 

1970s led to the mosquito's return from those areas in which it survived (Figure 9). 

Reinfestation left Bermuda and Chile the only previously infested countries free of the 

mosquito. This period coincided with movement of dengue viruses both within the 
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continent and the introduction of new serotypes to the continent. Prior to 1977 only 

DEN-2 and DEN-3 had been identified and each was confined to its own geographical 

area. The introduction of DEN-1 saw epidemics in Jamaica and Cuba and it then 

spread throughout the region causing outbreaks of DF. DEN-4 arrived in 1981 and 

similarly spread, this time with sporadic cases of DSS/DHF. At the same time a new 

strain of DEN-2 was imported to Cuba from Asia (probably Viet Nam). Unlike the 

recent DEN-1 and DEN-4 outbreaks this was associated with thousands of cases of 

DSS/DHF with a mercifully low fatality rate due to the hospitalisation and aggressive 

fluid management patients underwent. Thus by the end of the 1980s most countries 

that had previously been dengue-free or had only one serotype circulating became 

hyperendemic with multiple serotypes present, reporting regular outbreaks of 

DHF(58). In contrast epidemic dengue tends to occur in populations with little or no 

immunity - outbreaks can be explosive with attack rates as high as 80%. 

1970 1997 

Figure 9. Distribution of Aedes aegypti in the Americas (source: Centres for Disease Control and 
Prevention, Atlanta, USA) 
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Epidemic DF has been reported throughout East and West Africa. Reporting is 

unreliable but to date whilst there have been sporadic cases of DHF there have been 

no epidemics. It is not certain whether this relates to the focal nature of the viral 

serotypes present in geographical areas or to genetic factors (46,51). 

In conclusion several important factors can be identified in the rise of DF/DHF as a 

public health problem. The reinfestation of the American tropics by Aedes brought the 

viruses into contact with a large, non-immune, urban population. The resulting 

epidemics facilitated the movement of viruses between regions and countries. Major 

global demographic changes following World War 2 (urbanisations, movement of 

people to the cities, towns encroaching on forests) have brought mosquitoes and man 

into closer and more intense contact. The city provides numerous larval friendly 

environments. And at a time when they are perhaps most needed the public health 

infrastructure of many countries finds itself poorly resourced and unable to manage 

and implement the expensive interventions required in the control of vector borne 

diseases(3). 

Prevention and control 

Vector control 

The only way proven to be effective at controlling Aedes populations is larval source 

reduction(56), for example the identification and elimination of potential breeding 

habitats and use of larvicides. The ambitious South American schemes of the 20`h 

century were almost paramilitary in scale and ultimately proved unsustainable. Once 
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mosquito numbers were controlled resources were diverted to other needs and the A. 

aegypti population quickly returned to levels high enough to permit epidemic 

transmission(56). The emphasis of many government departments of pubic health is 

now on the emergency response to epidemics rather than prevention of such 

epidemics. Despite this few new mosquito control methods have been developed in 

the past 30 years and most countries have had ineffective mosquito control 

programmes for the last 30 years or more(58). The population density and geographic 

spread of Aedes continues to increase, particularly in urban areas of the tropics (due to 

the prevalence of good mosquito larval habitats in the domestic environment - e. g. 

water containers and disused tyres) and the recent re-emergence of dengue in 

Singapore suggests that vector control is not an effective long-term strategy. After 15 

years of low-incidence dengue has been re-emerging in Singapore despite its highly 

effective control programmes. This has been attributed to lowered herd immunity, 

virus transmission outside the home, an increase in the age of infection, and virus 

importation from neighbouring regions(59). 

Surveillance 

Active disease surveillance by both national public health departments and 

international bodies is an important component of a dengue prevention programme. It 

provides an early warning of outbreaks and provides information that may allow the 

prediction of future outbreaks and the initiation of early effective mosquito control. 
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Vaccines 

Given the difficulties in both implementing and sustaining long-term vector control 

the development of a successful dengue vaccine remains the best hope of effective 

control(60). Although several are in development, none is yet available. Before 

discussing vaccines in detail it is useful to turn first to what is known about the 

pathology of dengue haemorrhagic fever. 

The pathology of dengue haemorrhagic fever 

The pathophysiology of DHF is poorly understood. Although mice and primates may 

be infected with dengue there is no model for DHF - the phenomenon of shock is not 

seen. In this section we will consider what is known about the virus, the pathological 

changes seen in infection and the nature of the immune response in order to gain an 

overview of what is understood about the mechanisms that lie behind the wide range 

of clinical severity seen in dengue infection. 

The virus(3) 

There are four serologically related but distinct dengue viruses designated DEN-1 to 

DEN-4. They are single stranded positive RNA viruses belonging to the family 

Flaviviridae. All the flaviviruses are spherical particles, around 40-50nm in diameter 

with a lipid envelope enclosing a nucleocapsid core. The envelope is fringed with 

surface projections - the envelope and membrane structural proteins. The genome is 

within the nucelocapsid, around 11 kb in length and encodes an uninterrupted open 

reading frame flanked by 3' and 5' non-coding regions. The open reading frames vary 

slightly in length and encode a polyprotein precursor of 3396,3391,3390 and 3386 
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amino acids in length in DEN-1, -2, -3 and -4 respectively. The order of the proteins 

within this precursor is the same for all flaviviruses (Figure 10). The 5' quarter of the 

genome encodes the capsid (C), premembrane (prM, precursor of the mature 

membrane protein) and envelope (E) structural proteins. The non-structural protein 

genes take up the remainder of the genome (NS 1 to 5). The polyprotein is co- or post- 

translationally processed into the mature viral proteins, probably by both host and 

viral proteases. 

Structural proteins Non-structural proteins 

5' 3' 

Role in viral maturation Serine protease 
RNA polymerase 

RNA helicase 

RNA methylation 
Figure 10. The polyprotein encoded by the dengue genome 

Capsid - the capsid is a small positively charged protein (112-127 amino acids). 

Its high proportion of basic amino acids is believed to help neutralise the 

negatively charged viral RNA with which it is associated(61). Although the 

amino acid homology between flaviviruses is low all conserve the hydrophobic 

nature of the peptide. 

Membrane - the immature form, pre-membrane (prM), is a glycoprotein 

contained in immature intracellular virions. It is 18.1-19.1 kDa and is cleaved 

into a 7-9 kDa mature form (membrane, M). This cleavage results in the 

rearrangement of the oligomeric structures on the surface of the virion and it 

promotes the infectivity of the mature viral particle. The immature prM is 
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thought to be important in protecting the E protein from irreversible 

conformational change in the acidic compartments of the secretory pathway 

before viral release. 

Envelope - this protein of 494-501 amino acids is the major component of the 

virion surface and is usually glycosylated. It is believed to have a role in the 

dissociation of the nucelocapsid after acidic-mediated fusion of the viral and 

endosomal membranes following virus uptake by receptor mediated endocytosis. 

As well as receptor binding its biological activities include haemagglutination of 

erythrocytes, induction of the major neutralising antibody in the protective 

immune response and virus assembly. 

NSI -a glycoprotein 353-354 amino acids in length. It exists in different forms 

in different locations. The functional form is believed to be a dimer (found in the 

intra and extracellular fluids of virus infected cell cultures) but its role in 

replication is unknown. It is thought to play a role in viral maturation. It is 

expressed on the surface of infected cells and has been identified as the soluble 

complement fixing antigen. The secreted form can elicit antibodies with 

complement fixing activity. 

NS3 - highly conserved among flaviviruses this protein is 618-623 amino acids 

long. It is thought to act as a serine protease and helicase. A region near the N- 

terminus is required, in combination with NS2B for proteolytic processing at the 

dibasic site of many viral proteins. The rest of the protein shares homology with 

the RNA helicase superfamily. 

NS5 - another protein highly conserved between flaviviruses and 900-905 amino 

acids in length. It is has an RNA-dependent RNA polymerase activity and may 
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also be involved in RNA viral capping. Both NS5 and NS3 are required for viral 

RNA replication. 

The small non-structural proteins - NS2A, 2B, 4A and 4B are poorly conserved 

in sequence between flaviviruses but retain their hydrophobicity profiles - they 

are likely to be membrane associated proteins. The functions have not been 

elucidated in detail but they appear to have roles in membrane localisation of the 

other proteins, and are involved in their processing and function. 

Viral infection 

Most animal viruses enter their host cells by receptor-mediated endocytosis(62) in 

clathrin-coated vesicles(63). Certain receptors utilised by the virus may be dengue- 

specific - certainly some are thought to interact fairly specifically with the E protein, 

the viral component mediating binding(64) - but the first-line dengue virus receptors 

are thought to be more generic: GAG (glycosaminoglycan) receptors and DC-SIGN 

(dendritic cell-specific ICAM-grabbing non-integrin). These are capable of binding a 

wide range of different viruses. Thought also to be particularly important in 

secondary infection is the binding of virus-IgG complexes to Fc receptors. What is 

not clear is why this interaction, which should normally place viruses in a lytic 

pathway, permits enhanced infection. In the course of natural infection dengue virus 

is probably inoculated by the mosquito into the subcutaneous or dermal space. Initial 

replication probably occurs at the site of infection in cells of the reticuloendothelial 

system and/or fibroblasts. Human monocytes and macrophages appear to be the 

primary cell infected(65). Immature DCs in the skin (Langerhan's cells) are also 

infected via DC- or L-SIGN(66). Virus-neutralising antibodies bind to the E protein. 
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Non-neutralising antibodies, or antibodies diluted beyond the neutralising end-point 

may enhance infection. 

Once inside a cell uncoating of the nucleocapsid occurs by acid-dependent fusion of 

viral and endosomal membranes. Uncoating complete, replication is thought to 

proceed with immediate translation of the viral genome. The translated polyprotein is 

processed and the viral proteins produced. E and prM are inserted into the rough ER 

membranes during protein synthesis and transported to the Golgi apparatus for further 

processing and the addition of the oligosaccharide side chains. The nucleocapsid 

probably acquires its envelope through a process of budding in which viral particles 

assemble in the rough ER, are transported to the Golgi, and then carried within 

secretory vesicles to the cell surface. 

Virus can be detected in regional lymph nodes 24 hours after inoculation. In humans 

viraemia occurs at about the time of symptom onset. By the time of DHF/DSS 

viraemia may no longer be detectable by culture due to the presence of antibody. It 

may be possible to isolate dengue virus from PBMC even after it is undetectable in 

the serum(67). Dengue antigen has been detected by immunofluorescence and 

immunoperoxidase methods in: reticuloendothelial cells of the spleen, thymic cortex, 

Kupffer cells and flat sinusoidal lining cells of the liver; alveolar macrophages; 

mononuclear phagocytes of the skin; up to 1% of circulating monocytes; B 

lymphocytes; the bone marrow element; platelets (perhaps contributing to 

complement mediated destruction and thrombocytopenia). Viral genome has been 

detected most consistently in liver cells. 
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Histopathology 

With a few exceptions patients present with thrombocytopenia, coagulation disorders 

and a vasculopathy - obtaining tissue samples from living patients with invasive 

techniques is rarely feasible. Most information regarding gross pathology has come 

from post-mortem studies. The most prominent feature is plasma leakage and levels of 

total protein and globulin in plasma decrease in patients with DHF. Serous effusions 

with high protein content (greater than 4g/dl) are often found in the pleural, peritoneal 

and (occasionally) pericardial spaces. Chest X-rays demonstrate pleural effusions in 

around 70% of non-shock cases and almost all patients with DSS(12). Effusions are 

not generally haemorrhagic and although there is swelling of capillary endothelial 

cells the relatively low key tissue damage observed in pathologic studies is not in 

keeping with the severity of the illness(68). Haemorrhage appears as petechial rash 

(often particularly obvious on the legs) or purpura, especially around needle puncture 

sites. Bleeds may occur in the mucosa of the nose, gums and gastrointestinal tract as 

well as within the liver capsule. Frank bleeding into serous cavities is however 

unusual. Those patients experiencing prolonged severe shock (especially young 

adults) may develop the general pathological features associated with shock itself 

such as disseminated intravascular coagulation and more extensive haemorrhage. 

Thrombocytopenia 

Thrombocytopenia is a common feature of DF and always found in DHF/DSS. Its 

pathogenesis is poorly understood. Dengue-virus induced bone marrow suppression 

with reduced platelet synthesis has been suggested as one cause(69). Others have 

noted that DEN-2 is able to bind human platelets in the presence of virus specific 
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antibodies and suggest that this may lead to immune mediated platelet clearance(70). 

IgM anti-platelet antibodies have been identified in the context of dengue 

infection(71) and titres are higher in patients with DHF/DSS than those with DF. 

Certain antibodies directed towards dengue virus proteins (e. g. NS 1) have been found 

to show platelet cross-reactivity - it has been suggested that such autoantibodies may 

have a pathogenic role(72) but this would fail to explain the rapid rise in platelet 

counts following viral elimination. Platelet counts do not correlate well with clinical 

bleeding and thrombocytopenia is not the cornerstone of haemorrhage 

pathogenesis(73). 

Coagulopathy 

Coagulation parameters such as platelet counts, activated partial thromboplastin time, 

as well as fibrinolytic parameters are altered in dengue infection. Coagulation and 

fibrinolysis pathways are activated, and more severely in DHF/DSS than DF(74). A 

recent review has however highlighted the inadequacy of studies attempting to link 

the extent of coagulation and fibrinolytic activation to disease severity and 

outcome(75). Certainly in dengue cases without circulatory collapse haemorrhage 

does not correlate with platelet counts or the severity of pleural effusions and although 

measures such as APTT are prolonged and fibrinogen levels depressed neither do 

these correlate with the presence or absence of significant haemorrhage. These 

observations lead the authors of one study to propose the principal mechanism of 

haemorrhage to be platelet activation(10). Adolescents and young adults with severe 

haemorrhage have evidence of intravascular clotting in the small vessels. Some degree 

of DIC has been observed in just over half of non-shock dengue patients. It is 

generally of only mild to moderate severity and severe DIC is seen in those patients 
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experiencing severe intractable shock with acidosis and fulminant hepatic failure(76). 

DIC may be averted by the early management of shock. 

Vasculopathy 

The characteristic feature of DHF/DSS and a better indicator of disease severity than 

haemorrhage is that of plasma leakage. This is caused by a diffuse increase in 

capillary permeability manifesting as haemoconcentration and fluid collections e. g. 

pleural effusions, ascites. It usually becomes evident around day 3-7 of illness - the 

time at which cases of DF resolve(12,68). Plasma leakage occurs systemically, 

progresses quickly but resolves within 1-2 days in those managed appropriately. 

Perivascular oedema is obvious but there is no destruction of vascular endothelial 

cells - leakage appears to be due to altered vascular permeability. This functional 

alteration could be due to structural damage of the vessels or the release of cytokines 

or other inflammatory mediators during dengue infection. 

Structural changes - dengue virus is capable of infecting endothelial cells in 

vitro (77) and certain viral strains may have a cytopathic effect(78). Although 

apparent experimentally such cell damage has not been demonstrated in vivo to a 

very great extent - it may be that only very subtle damage is required to cause 

significant leak. Infected endothelial cells can activate complement and 

upregulate the expression of adhesion molecules (e. g. ICAM-1) and it is possible 

that a combination of direct viral cytopathic activity and immune-mediated 

damage by leucocyte recruitment and anti-dengue virus antibodies contribute to 

structural injury of infected endothelial cells(79). NSI, as noted above, is an 

inducer of cross-reactive antiplatelet antibodies, also stimulates the production of 

antibodies that lead to endothelial cell activation, damage and apoptosis(80,81). 
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Some researchers take the extreme view that the immunopathology of dengue is 

essentially autoimmunity(73). 

Cytokines - capillaries and venules of affected organs may show perivascular 

haemorrhage with a lymphocytic/mononuclear infiltration yet destruction of 

vascular endothelial cells is not often apparent and dengue virus antigens are not 

consistently detected in endothelial cells. The rapidity of shock onset and its 

systemic nature belie the speed of recovery and the low mortality of well 

managed cases. A process that mechanically damaged endothelial cells, such as 

that seen in other more classical viral haemorrhagic fevers, would not be 

expected to behave in this manner. Plasma leakage is likely to be due to altered 

permeability rather than endothelial cell destruction. Human microvascular cells 

cultured in vitro with sera from patients with acute dengue infection increase 

their expression of ICAM-1 and undergo apoptosis - an effect more pronounced 

with serum samples taken during the acute febrile phase than those from the 

convalescent phase of the disease. This effect appears to be due largely to TNF-a 

as the endothelial activating effect of acute dengue sera was inhibited up to 80% 

by pre-treatment with monoclonal antibodies against TNF-a(82). Mononuclear 

cells are highly activated during infection and as such it is not surprising that 

many cytokines are present in serum at elevated levels during dengue infection. 

Studies have identified IL-2, IFN-y, TNF-a, and GM-CSF as being raised in 

children with dengue infection, and these markers were higher in DHF/DSS 

patients than DF patients(83-87). Other studies have also noted raised levels of 

type 2 cytokines such as IL-10, IL-13 and IL-18(88,89), with IL-10 levels in 

particular found to correlate with disease severity(90). In vitro infection of 

human PBMC with dengue virus results in a type 1 cytokine response during the 
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first 3 days that is replaced by a type 2 response from around day 4(91). This 

change from type 1 to type 2 cytokine production has been observed clinically, 

taking place at around the time of defervescence(92). It may be that the 

inflammatory host response to dengue infection is followed by the generation of 

inhibitory cytokines to counteract the inflammation with the balance between the 

two influencing the outcome(79). TNF-a is the factor largely responsible for 

endotoxic shock. It is produced by monocytes/macrophages and T cells, 

increases vascular permeability and is directly toxic to vascular endothelial cells. 

Administration of TNF-a induces microvascular protein leakage and shock(93). 

IL-2 is produced mainly by T cells and its administration can cause capillary 

leak, thrombocytopenia and complement activation (94). IFN-y is produced by T 

cells and increases endothelial cell permeability in vitro. These various cytokines 

often have synergistic effects giving an increase in permeability in combination 

greater than each cytokine alone. Some cytokines which exert no permeability 

effect on their own increase that of others when combined(95). 

Histopathology of specific organs 

Lymph - lymphoid tissue has evidence of plasma cell proliferation with active 

germinal centres and an increase in the number of B lymphoblasts. 

Central nervous system - there may be perivascular oedema of the brain and 

spinal cord but signs of encephalitis are extremely rare, despite the frequency of 

"encephalopathic" symptoms(3). 

Gastrointestinal tract - may be oedematous with haemorrhage into the mucosa, 

submucosa and serosa. Those patients who experience prolonged shock may have 

marked congestion and haemorrhage. 
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Bone marrow - during the febrile period there is bone marrow depression 

affecting most blood elements but samples taken at the time of shock appear 

normo- or hyper-cellular. Megakaryocytes proliferate and may be found in the 

capillaries of viscera. 

Skin - biopsy of skin rashes show that the microvasculature located in the dermal 

papillae is the main site of injury with swelling of the endothelial cells and 

perivascular tissues. Some red cells may be seen outside the vessel wall. 

Immunoglobulin (mostly IgM), complement and fibrinogen are found on the 

vessel walls. Dengue antigen can be demonstrated in the cells surrounding the 

microvasculature(96). There is no evidence of necrosis of the vessel wall or 

vasculitis. Electron microscopy of the skin microvasculature shows non-specific 

changes indicative of increased transport activities by endothelial cells. Dengue 

virus has not been detected in any skin cells by electron microscopy(97). 

Liver - dengue is hepatotropic and viral antigen has been detected in hepatocytes. 

The virus can infect liver cells directly and cause hepatitis. Serum transaminase 

levels are raised in dengue patients and the AST (aspartate aminotransferase) 

level correlates with haemorrhage(98,99). The reduced levels of coagulation 

factors seen in dengue may reflect impaired synthesis due to liver injury. The 

liver can be enlarged with histological changes indicative of shock - 

parenchymal bleeds are uncommon(68). The liver undergoes changes similar to 

those seen in experimental yellow fever infections and also recognised in other 

viral haemorrhagic fevers such as Lassa, Ebola and Marburg. There is focal 

necrosis in the paracentrolobular or midzonal regions with swelling and hyaline 

necrosis of Kupffer cells. Mononuclear leucocytes may be seen in the sinusoids 
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and portal areas. Liver changes may be extensive and associated with clinical 

jaundice. 

The immune response to dengue infection 

The innate immune system provides the first line of defence against viral infection, 

mounting early responses and initiating and directing the action of other immune 

system components. The adaptive immune response may take a few days to become 

truly effective and the innate system is vital for controlling infectious processes during 

this time(100). The adaptive immune arm is more versatile and capable of generating 

immunologic memory such that subsequent encounters with the same infectious agent 

are mounted more rapidly and effectively. Although adaptive responses fall into 

humoral (antibody-mediated, B-lymphocyte effectors) and cellular components (cell 

mediated, T-lymphocyte effectors) they interact with and influence each other. 

The innate immune response to dengue infection 

It is the components of the innate immune system that are involved in the earliest 

stages of dengue virus infection. Interstitial dendritic cells (DCs) are thought to 

constitute the first line of innate defence at the anatomical sites where dengue virus 

replicates after an infected mosquito bite(101). Dendritic cells in the peripheral 

tissues capture antigens, process them into immunogenic peptides and emigrate to the 

draining lymph nodes in order to present them to T cells in the context of HLA class I 

or II. Immature monocyte-derived dendritic cells generated in vitro have been shown 

to be ten times more permissive to dengue virus infection than even macrophages or 

monocytes themselves(102). Histological analysis of skin biopsies from human 

volunteers inoculated with live-attenuated dengue vaccines has shown that viral 
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replication is supported in DCs. Productive infection occurs in immature myeloid 

DCs and activated DCs secrete TNF-a and IFN-a in response to DV infection(101, 

103,104). Infection is inhibited by blockade of DC-SIGN (dendritic cell ICAM- 

grabbing non-integrin, a receptor on the DC surface)(105). Early activation of NK 

cells may be important in the clearance of primary dengue infection(106) - they 

exhibit cytotoxic activity against dengue infected cells(107). Type 1 interferon is also 

important in inducing an antiviral state in as yet uninfected cells, and limiting viral 

replication in the early stages of infection. Along with the IFN system, cytokines and 

chemokines, myeloid DCs and NK cells might play a key role in orchestrating the 

initiation of the adaptive immune response, with the subsequent activation of effector 

B and T cells. 

The humoral immune response to dengue infection 

Antibodies and B cells 

Antibodies consist of two identical heavy chain molecules bound to two identical light 

chain molecules by a disulfide bond. The N terminals of each chain possess a variable 

domain that is able to bind antigen through three hypervariable complementarity 

determining regions. The C terminal domains form the constant regions - these define 

the class of the antibody: IgG, IgA, IgM, IgD or IgE. The classes have different 

functions and each antibody may be found freely circulating or anchored to the cell 

membrane (i. e. the B cell receptor, BCR) by the addition of hydrophobic 

transmembrane sequences. The antigen binding region (the Fab portion) is bivalent 

with two antigen-binding arms of identical specificity. The Fc portion contains most 

of the constant region of the heavy chains. After deletion of B cell producing self- 

reactive antibodies it is estimated that the B lymphocyte population is capable of 

43 



producing 1015 different antibody specificities(108). They produce these from a 

limited number of genes by combining different genes (combinatorial diversity) in 

different ways (junctional diversity) and mutating this combined DNA in mature B 

cells (somatic hypermutation). There are no more than a few thousand lymphocytes 

specific for each antigen. Each B cell can produce only one of the enormous number 

of potential antibodies, thus all the BCRs on a given lymphocyte have the same 

specificity. If the BCR meets its antigen the cell is selected and begins a process of 

division, rapidly expanding in number. Most responses will involve many different B 

cell clones as a virus or protein will bear several different epitopes each with the 

capacity to bind a different clone (Figure 11). In addition each epitope is likely to be 

recognised by different B cell clones in slightly different ways. The genes encoding 

BCRs undergo somatic hypermutation during B cell proliferation within secondary 

lymphoid organs. This process fine-tunes BCR recognition and alters the binding 

affinity of the antibody for the antigen. This results in populations of B cells with high 

affinity and specificity for the immunising antigen which also constitute the memory 

of the exposure. These memory cells enable a faster and stronger secondary immune 

response on further encounters with the same (or as we shall see a related) antigen. 
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Figure 11. B cell responses to antigenic stimulation. Using the antibody molecule as its receptor, the 
B cell recognizes epitopes on the surface of the antigen. If it is stimulated by this contact, the B cell 
proliferates, and the resulting clones can secrete antibody whose specificity is the same as that of the 
cell-surface receptor that bound the epitope. Responses usually involve several different clones of 
lymphocytes and each epitope may be recognised by several different lymphocyte clones with different 
B-cell receptors, each recognising the epitope in a slightly different way. 

Naive B cells coexpress IgM and IgD on their cell surface. On encountering their 

antigen B cells proliferate within germinal centres of secondary lymphoid tissue and 

undergo class-switching, producing IgG, IgA or IgE. Somatic hypermutation also 

takes place within the receptor genes. The B cells differentiate into memory cells and 

antibody-secreting plasma cells. By the time they have become memory cells they 

have usually switched to the use of IgG, IgA or IgE as their receptor. 

In general antibodies bind to specific epitopes through the Fab portion but do not have 

a direct effector function. Instead they target pathogens for destruction by other 

immune system players. For example, antigen-antibody complexes activate the 

complement cascade through the classical pathway, and binding of the macrophage 

FcyR receptors by the Fc portion of IgG opsonising antibodies promotes pathogen 

phagocytosis(109). Thus although cellular immune responses are often thought of as 
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being the cornerstone of antiviral immunity, antibody activates direct lysis by 

complement, facilitates virion phagocytosis, and prevents extracellular viral spread by 

blocking receptors upon the viral surface necessary for target cell entry. Vaccines 

such as the yellow fever 17D result in both humoral and cellular immunity(110) and it 

is likely that it is the neutralising antibody response that is most important in 

protection against reinfection by a previously cleared virus, as opposed to control of a 

persistent virus such as HIV. 

The humoral response to dengue 

Dengue virus's E glycoprotein, the major virion surface protein, is the most important 

antigen with regards to virus biology and humoral immunity. It is largely responsible 

for virus attachment to susceptible cells and mediates virus-specific membrane fusion 

- allowing newly infecting virus to escape the endocytic vesicle and initiate 

intracellular replication. It elicits virus neutralising antibody, haemagglutination- 

inhibiting antibody, anti-fusion antibody and virus-enhancing antibody. It also plays a 

role in the cell-mediated immune response. Different monoclonal antibodies have 

been generated that recognise the E protein in flavivirus/DEN serotype specific and 

cross-reactive manners. CD4+ and CD8+ T cells have also been shown to recognise 

parts of the E protein in either serotype-specific or cross-reactive manners. Most T 

cells however tend to recognise the non-structural proteins. Little is known about the 

B or T cell response to the M or C protein. NS1 is a major surface non-structural 

protein. It elicits an antibody response and contains T cell epitopes. 

Passive transfer experiments have demonstrated that dengue virus antiserum protects 

mice from lethal dengue infection. Experiments with monoclonal antibodies in mice 
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have shown that they act through a combination of virus neutralisation, complement 

lysis, and antibody-dependent cellular cytotoxicity(14,111). Antibodies to non- 

structural proteins lack neutralising activity, yet comprise a major part of the antibody 

response to dengue virus. Monoclonal antibodies to non-structural proteins have been 

shown to exert a protective effect(111,112). Antibody mediated activation of the 

classic complement pathway occurs during severe dengue and can occur less 

commonly in primary infection (113). 

Antibody dependent enhancement 

The phenomenon of antibody-dependent enhancement (ADE)(114,115) is widely 

accepted as a good explanation of the link between severe dengue disease and 

evidence of previous exposure. Some viruses are able to use pre-existing antibodies 

which should act to neutralise their ability to infect through natural receptors but 

instead facilitate infection through binding to the Fc or complement receptors on viral 

target cells. Such viruses usually replicate in macrophages or monocytes and then go 

on to infect other tissues. The increased viral productivity may lead to exacerbation of 

disease(116). The phenomenon was first noted in the 1960s when it was observed that 

high dilutions of homologous antibody - neutralising at low dilutions - increased the 

yield of a variety of flaviviruses generated in chick embryo cell culture(l 17). It was 

not until the late 1970s that the concept was linked with severe dengue disease(8). 

ADE has since been observed in HIV-1, RSV, Hantavirus, West Nile virus and Ebola 

among others. ADE is thought to be a disease-enhancing factor for several human 

diseases including dengue and RSV. Strong and legitimate concerns surround the 

development of vaccines for such viruses. The introduction of an experimental RSV 

vaccine in the 1960s was associated with a dramatic increase in cases of severe 
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pneumonia among those subsequently infected with RSV (from 4% of unvaccinated 

patients to 69% of vaccinated). The exact mechanism of the effect is not clear but it 

appears the vaccine induced only low levels of neutralising antibody(118). 

Features predisposing a virus to ADE include: 

The capacity to replicate within macrophages. 

The induction of a large amount of antibody that is poorly neutralising for even 

homologous virus. 

The tendency to a prolonged viraemic phase of disease. 

Membership of a group of viruses with some antigenic diversity rendering them 

partially resistant to neutralisation by antibody raised against heterologous 

viruses(116). 

What is puzzling is that the interaction of virus-antibody complexes with FcR on 

monocytes/macrophages or granulocytes usually results in the antiviral responses of 

phagocytosis, cytokine release and antibody-dependent cell-mediated cytotoxicity. It 

is not clear how infection could be enhanced by this interaction. It is presumed that 

viruses are able to modulate antiviral responses and/or tend to infect immunologically 

immature subpopulations of these cells(119). Binding to the target cell in and of itself 

is not necessarily sufficient for infection. Other viral and cell proteins are likely to be 

involved in the internalisation process for some viruses. For such viruses the presence 

of antibodies that prevent binding would not neutralise infection as internalisation 

may occur through pathways other than the endocytic route. Animal work has shown 

that only IgG has enhancing activity in experimental systems - IgM does not enhance 

infection(120). Of the receptors known to play a role in ADE, the FcR is the most 
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important. Enhancement of West Nile virus infection of a macrophage cell line can 

be blocked by pre-treating cells with an anti-FcR monoclonal antibody(121). The 

proteins associated with ADE tend to be those on the surface - the envelope proteins. 

Viruses in the same family may share common antigenic determinants, thus ADE of 

virus infections can be mediated by antibodies raised not only against heterologous 

strains but also against different serotypes or closely related viruses in the same genus 

or family. Enhancing antibodies may not be highly specific for a specific virus. For 

example, dengue infection can be enhanced by antisera raised against not only 

heterologous serotypes of dengue itself but antisera specific for other flaviviruses, 

suggesting that not only serotype-specific but also serotype- and flavivirus-cross- 

reactive epitopes are associated with ADE(116,120,122). 

For some viruses homologous antibody appears to induce greater enhancement of 

infection than heterologous antibody (122). This might reflect the number of 

"enhancing" epitopes shared among viral species. Cross-reactive enhancing antibodies 

could be important epidemiologically in those areas where such viruses are endemic - 

they could promote the persistence of multiple serotypes in the population. The 

difference in "enhancing" epitopic profile between antigenically distinct strains of 

virus may influence the magnitude of ADE that results from the presence of 

antibodies directed against heterologous viruses. Strains may vary in their 

susceptibility to ADE and/or ability to induce ADE of infection(123). 
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ADE and dengue 

It was Halstead's key epidemiological studies in the 1970s that demonstrated that the 

vast majority of cases of DHF were occurring in those experiencing secondary 

infection(7). The epidemiological observations that ADE seeks to explain are 

described above. Here we will examine some of the experimental data that supports 

the role of ADE in dengue pathogenesis. 

Enhancement was originally demonstrated using dengue virus antisera mixed with 

virus at sub-neutralising concentrations(120). In vivo studies showed that the 

intravenous administration of dengue-immune human sera to rhesus monkeys shortly 

before infection with dengue virus significantly increases the viral load compared to 

monkeys given non-immune human sera(9). Monoclonal antibody studies have shown 

that enhancing antibodies are directed at the E or pre-M protein. These are generally 

not serotype specific but reactive across the serotypes and even across the 

flaviviruses(124). Studies with monoclonal antibodies have demonstrated that only 

certain non-neutralising antibodies are able to consistently enhance infection. 

Neutralising antibodies do not always mediate enhancement in vitro when diluted 

beyond their neutralising endpoint(125). Whether they do or do not appears to be 

dependent upon the viral strain(122). High levels of neutralising antibody protect 

patients from DHF/DSS whereas enhancement of infection can occur in the presence 

of low-level neutralising antibody(126). This becomes a concern in the development 

of a vaccine for dengue - as antibody titres wane post-vaccination it might be that the 

fraction of the total anti-dengue antibody pool which is neutralising drops below a 

protective level. This might permit enhancement of infection by the remaining 

antibody pool that recognises non-neutralising epitopes. Sera from dengue patients 
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can certainly enhance infection. A study examining the enhancement activity of pre- 

illness sera from Thai children with secondary dengue found that samples taken from 

those who later developed severe disease more effectively enhanced dengue 2 virus 

growth in human monocytes in vitro than that from those with mild disease(126). 

Another study found no correlation between the presence or absence of enhancing 

activity and viral load or disease severity(127). It may be that the enhancing effect is 

influenced by the viral serotype. Dengue virus isolates - both serotypes and specific 

strains within those types - certainly vary in their susceptibility to ADE mediated by 

antibody raised against heterologous serotypes or strains. In vitro assays have shown 

that DEN-2 infection is enhanced more effectively by DEN-1 antisera than by 

homotypic serum(120,122). It is likely that different strains also vary in their ability 

to induce enhancing antibodies. 

Antibodies elicited by other flaviviruses can enhance dengue virus infection in 

vitro(128). A study examining the efficacy of an experimental live attenuated DEN-2 

vaccine noted that serum samples taken prior to vaccination from yellow fever- 

immune participants showed significantly greater in vitro enhancing activity than sera 

from non-immune subjects(129). Volunteers with yellow fever immunity developed 

viraemia a mean of 2.5 days earlier than the non-immune group(130). 

Limitations of the ADE hypothesis 

The evidence for ADE in dengue, both epidemiological and experimental, is good. 

The observation that perhaps more than any other it is difficult to explain by any 

mechanism other than ADE is that of DHF in infants between 6-9 months of age. For 

example, cellular mediated immunity is highly unlikely to be responsible for severe 
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disease in this age group. Those adopting a cautious approach to ADE would suggest 

that slightly different pathological processes are at work in different age groups. 

Certainly the microvascular permeability would appear to be higher in young children 

than in adults(41) and it might be that this group are more vulnerable to shock after 

the loss of maternal antibody (Figure 7). However it could be argued that changing 

vascular permeability does not adequately explain the abrupt decline in incidence of 

severe disease at around 9 months. 

The ADE hypothesis relates disease severity to viral load: enhancing antibody 

facilitates infection of the target cells and the amount of virus produced is increased. 

The resulting pathology (be it a direct viral effect or an immunopathological 

mechanism) is correspondingly more severe than that seen in primary infection. Early 

studies failed to find an association between viral load and disease severity(131). 

However more recent work taking advantage of molecular techniques of viral 

detection has found that viral load is higher in patients with DHF than those with DF 

and - in contrast to those with DF - although falling rapidly in titre, virus remains 

detectable at defervescence (132,133). 

ADE may not be the whole story. The clinical syndrome tends to be at its most severe 

some time after the peak in viral load - virus is often undetectable at this time 

point(134) - suggesting that although ADE may indeed facilitate the high viral load it 

does not immediately provide a link to pathology. It is still rare for a patient 

experiencing a secondary infection to develop DHF (between 1.8 and 12% of such 

patients(28,135)) and other factors must therefore play a role in pathogenesis. In 

addition not all cases of severe disease are seen solely in secondary infection. ADE is 
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neither sufficient, nor perhaps absolutely necessary for severe disease. It has been 

suggested that waning antibody levels may simply fail to effectively neutralise 

permitting the development of high viral titres - there is no need for antibody to have 

positively enhancing activity. This would not explain the relative absence of severe 

disease in primary infections however. 

Whatever the mechanism by which a high viral load is achieved it does not in and of 

itself lead to DHF. The process by which enhanced infection might lead to the 

pathological features described above is not entirely explained by ADE. Other 

components are likely to be involved. 

Cellular mediated immunity 

Cellular immunity is mediated by antigen-specific T cells. Unlike humoral immunity 

this type of immunity cannot be transferred to naive recipients with immune serum 

but requires the presence of specific immune cells(100). 

The T cell receptor 

It is the T cell receptor (TCR) that determines the antigen specificity of the cellular 

immune response. The TCR is a transmembrane heterodimer composed of either an a 

and aß chain or ay and aS chain, each containing a constant and a variable region. 

The TCR specificity is determined primarily by the sequence of three hypervariable 

complementarity determining regions (CDR) found within each chain (CDR 1-3)(108) 

and are discussed further below. a/(3 lymphocytes recognise antigen-derived epitopes 

presented by HLA molecules. The nature of y/S T cell antigen recognition is not so 

straightforward. Some appear to be able to recognise antigen in isolation, others 
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require presentation by "nonclassical" HLA molecules (e. g. CD1). They are capable 

of recognising a much broader range of antigen than alß T cells including lipids and 

glycolipids, such as those found in mycobacterial cell walls. Despite their similarities 

to a/(3 T cells many researchers would consider them to be more properly part of the 

innate immune system(136) - they are not discussed further here. 

The HLA System 

There are two classes of HLA molecules, class I and II. They differ in structure and in 

function. Class I molecules are expressed on the surface of most somatic cells in the 

body. They consist of an a chain and a ß2-microglobulin molecule. Class II molecules 

are expressed by more specialised groups of immune cells (e. g. dendritic cells, 

macrophages, B cells and activated T cells). They consist of an a and a0 chain(137). 

These molecules are illustrated in Figure 12. In both cases the chains form a peptide- 

binding groove comprising a ß-pleated sheet floor and two a-chain coiled walls. 

These walls pinch inwards in class I molecules (Figure 13) limiting the length of the 

peptide that can be accommodated within the groove to around 8-12 amino acids. The 

class II molecules has an open groove and is able to present much longer peptide 

fragments(137). 
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Figure 12. The structure of HLA Class I and 11 molecules. The a chain of the class I molecule has a 
peptide-binding domain (bound by al and a2 helices), an immunoglobulin-like domain (a3), the 
transmembrane region (TM), and the cytoplasmic tail. Each of the class II a and ß chains has four 
domains: the peptide-binding domain (al or ßl), the immunoglobulin-like domain (a2 or ß2), the 
transmembrane region, and the cytoplasmic tail. From Klein, J., and A. Sato. 2000. "The HLA system. 
First of two parts. " N Engl J Med 343: 702-709. 

Figure 13. A schematic view of the HLA class I binding groove. The model is shown from the top. 
From Klein, J., and A. Sato. 2000. "The HLA system. First of two parts. " N Engl J Med 343: 702-709. 
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Of the 20 class I genes in the HLA complex on chromosome 6, only 3 (HLA-A, B and 

C) play a major role in the cellular immune response. Each individual has 2 copies of 

these with the potential for 6 different HLA molecules from a pool of many alleles. 

HLA class II is more complex as each molecule has two separately coded antigen 

binding regions (a and 0 chain). For naming purposes they are assigned a three letter 

code, the first (D) representing class II HLA, the second (M, 0 P, Q or R) the class II 

family, and the third (A or B) the a or 0 chain respectively. 

Antigen processing and presentation 

Unlike antibodies which are able to recognise "raw" unprocessed native antigen a43 

T cells recognise antigen only if presented to them by the appropriate HLA molecule. 

Therefore the host must process antigens derived from a pathogen in such a way that 

they can interact with the TCR of pathogen-specific T cells. This processing generally 

follows one of two pathways (Figure 14). 
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Figure 14. The pathways of generating peptides for loading onto class I (A) and class 11 (B) HLA 
molecules. From Klein, J., and A. Sato. 2000. The HLA system. First of two parts. " N Engl J Med 
343: 702-709. 
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Class I processing and presentation (Panel A) 

Defunct cellular proteins and over 30% of newly synthesised proteins are unfolded by 

chaperone molecules. The proteasome then cuts the polypeptide into short fragments 

which are either recycled into their constituent amino acids, or transferred to the 

endoplasmic reticulum (ER) through membrane transporters associated with antigen 

processing (TAPs)(138). Within the ER the HLA class I subunits are brought together 

by chaperone molecules and compatible processed peptides added to the formed class 

I binding groove. The entire complex migrates to the cell surface where the peptide- 

HLA is displayed, anchored by the transmembrane component(137). This pathway 

therefore presents peptides derived from endogenous cellular proteins be they native 

or foreign to the cell. Every somatic cell displays hundreds of thousands of such 

peptides on its surface. Infection by an intracellular pathogen will add foreign 

peptides to the numerous self-peptides displayed upon the cell(139). The closed nature 

of the peptide binding groove restricts the size of the peptide that can be 

accommodated within it to around 7-15 amino-acids. The nature of the peptide that 

the groove can accommodate is determined by the binding pockets within its floor, 

labelled A-F. Pockets B and F, accommodating side chains from amino acids P2 and 

P9 are particularly selective and considered the anchoring pockets. The HLA-peptide 

affinity is dependent upon the ability of certain critical amino acids residues to bind 

these anchoring pockets. This is illustrated in Figure 15. 
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Figure 15. Examples of interactions between HLA molecules and peptides. A) The illustrated 
nonamer peptides have been found in complexes with the given HLA class I molecules. Anchor 
residues are highlighted. B) longitudinal section through the peptide's-binding groove demonstrates 
how the side chains of amino acids composing the bound nonamer are oriented either up or down into 
the pockets. From Klein, J., and A. Sato. 2000. "The HLA system. First of two parts. " N Engl J Med 
343: 702-709. 

Class II processing and presentation (Panel B) 

Foreign proteins are taken up by the cell by endocytosis or phagocytosis. The class II 

HLA chains are brought together with the ER and become associated with the 

invariant chain, part of which serves to block the peptide binding groove and prevent 

premature peptide loading. These class 11-invariant chain complexes are transported to 

the endosomes within which exogenous proteins are degraded by protease enzymes. 

The invariant chain is released from the binding groove and a suitable exogenous- 

protein derived peptide takes its place. The entire complex is then transported to the 

cell surface(138). This path allows certain specialised cells to present peptides derived 
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from proteins they have acquired from the environment in which they are located. 

These antigen presenting cells (APCs) include B cells, dendritic cells and 

macrophages. 

Cross presentation 

Certain APCs are capable of presenting peptides derived from exogenous proteins 

upon class I molecules. Such cross-presentation is an important means of priming 

CD8+ responses in certain viral infections(140,141). 

Antigen specific activation of T cells 

The TCR recognises peptides bound to HLA molecules, but the process of T cell 

activation that follows its binding to antigen is dependent upon other surface proteins, 

primarily the CD3 complex. CD3 is composed of five transmembrane proteins which 

contain within their cytoplasmic tails an immunoreceptor tyrosine-based activation 

motif (ITAM). TCR activation results in phosphorylation of tyrosine residues within 

the ITAM initiating a cascade of signalling events. Several protein kinases are 

responsible for the phosphorylation of the ITAM tyrosine(108). CD3 activation also 

involves ligand interaction with other T cell costimulatory molecules as well as p561°k 

binding to the cytoplasmic tail of either CD4 or CD8. A simplified overview of T cell 

activation is given in Figure 16. The CD3 complex alone is capable of bringing about 

full T cell activation, but this requires ligand triggering of a large number of 

TCRs(137,142). T cells become more sensitive to antigenic stimulation if 

costimulatory receptors are triggered simultaneously and detailed studies of the 

peptide-class II MHC interaction with a CD4+ T cell demonstrate that even one bound 

TCR/CD4 is sufficient to trigger calcium influx (a marker of TCR signalling)(143). 
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Suboptimal CD3 activation in the absence of costimulation results in T cell anergy or 

apoptosis. TCRs have a relatively low affinity for their peptide-MHC ligands and T 

cells also bear a range of accessory molecules upon their surfaces which interact with 

ligands on the cell surface of APCs or target cells to increase the duration of cell-cell 

adhesion and may enhance signal transduction. Professional APC such as dendritic 

cells express high levels of costimulatory molecules B7 and CD40, the ligands for 

CD28 and CD 154 respectively. This makes them well placed to stimulate naive T 

cells. The need for costimulation provides a safeguard against self-reactivity, the 

adaptive immune response being dependent in part upon pathogen recognition by 

innate receptors. 

Figure 16. Steps in the activation of T cells. T cell activation involves a complex series of events that 
follow the cross-linking of TCR on the cell surface. Signalling takes place through proteins associated 
with the TCR including CD3 and other signal-transduction molecules bearing cytoplasmic 
immunoreceptor tyrosine-based activation motifs (ITAMs), which are subject to phosphorylation (P) by 
protein kinases (e. g. p56kk p59ry", ZAP-70). The initial stages of activation also involve the binding of 
p56I`k to the cytoplasmic tail of CD4 (in helper T cells) or CD8 (in cytotoxic T cells). These events lead 
to downstream signalling involving a number of different biochemical pathways and ultimately to the 
transcriptional activation of genes involved in cellular proliferation and differentiation. Signals from 
costimulatory receptors (e. g. CD28 and CD 154) must also be present for activation - signals sent from 
the TCR signal-transducing molecules alone result in anergy or apoptosis. From Delves PJ, Roitt IM. 
The immune system. First of two parts. N Engl J Med 2000; 343(1): 37-49. 
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CD4 and CD8 coreceptors 

CD4 and CD8 are important accessory molecules expressed upon the surface of T 

cells. They act as HLA coreceptors binding an invariant part of either the class I 

(CD8) or the class II (CD4) molecule and thus play a part in restricting T helper cells 

(bearing CD4) to the recognition of peptide-class II HLA molecules and cytotoxic T 

cells (bearing CD8) to the recognition of peptide-class I HLA molecules. CD4 and 

CD8 are closely associated with the TCR complex and bind to HLA at the same time 

as the TCR. 

T cell development and selection 

T cells develop from bone marrow cells that migrate to the thymus. Despite the partial 

degeneration of the thymus that occurs at puberty it is thought that T cells continue to 

develop in the thymus throughout adult life(144,145). They do not initially express 

CD4 or CD8 (double negative thymocytes) but a series of rearrangements within the 

TCR a- and ß-receptor genes results a population of CD4/CD8 double positive cells 

with very diverse TCRs. These rearrangements are random and most thymocytes are 

unable to recognise self MHC and are therefore incapable of recognising antigen - 

they are deleted. Many of the remaining double positive cells are potentially harmful 

because their TCRs have a high affinity for a complex of self peptide and a self MHC 

molecule (or even an MHC molecule alone). These autoimmune T cells are eliminated 

by the induction of apoptosis when they interact with dendritic cells and macrophages 

in the thymic medulla. This leaves T cells with only a weak affinity for self MHC 

molecules - these cells form the pool of T cells that are exported from the thymus as 

single-positive CD4 or CD8 cells(108). Less than 1% of all T cell precursors enter the 
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periphery as naive T cells. Here they have the potential to recognize a complex of 

foreign peptide plus self MHC molecules and to become activated if the affinity of the 

interaction exceeds a certain threshold. 

Function of CD4+ T cells 

The CD4+ T cell plays a crucial role in protection against viral infection (producing 

antiviral cytokines as well as providing help to CTL and B cells) and in the 

development of memory B cells and CTLs. A high affinity interaction between the 

TCR of a naive CD4+ T cell and a peptide-class II HLA complex on the surface of an 

APC leads to IL-2 production and clonal expansion of the T cell(146) -a process that 

generally takes place within secondary lymphoid organs (e. g. spleen, lymph nodes, 

Peyer's patches). 

Cytokine production - the cytokine milieu in which a naive CD4+ T helper cell 

encounters antigen will result in it selecting one of two functional groups. 

Antigenic stimulation in the presence of IL-12 and IFN-y will encourage it to 

adopt the so-called T helper 1 (Thl) phenotype - cells characterised by the 

production of IFN-y, TNF-a and IL-2. IL-12 is produced by monocyte-derived 

DCs - the cell that seems to be the most important in determining the 

differentiation pathway of the naive T cell(147). Type I responses are seen in 

viral infections, autoimmune disease and antitumour responses(148). One of the 

primary functions of Th1 CD4+ T cells during a viral infection is the production 

of cytokines such as IFN-y and TNF-a which (among others) induce an antiviral 

state in the host, activate professional APCs for presentation of viral epitopes to 

CD8+ T cells, and help modulate the humoral and cellular immune response 

during the course of a viral infection(149,150). Antigenic stimulation in the 
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presence of IL-4 induces naive T cells to adopt a Th2 phenotype, producing 

cytokines such as IL-4, IL-5 and IL-13 in response to further stimulation(151). 

Type 2 responses are generally associated with extracellular parasite infections 

and atopic or allergic disease. The cytokines produced by the Thl and Th2 

subsets both promote differentiation of their own subset and actively inhibit that 

of the other. It is clear that not all cells fit this paradigm and other subsets 

described include ThO cells (those producing mixtures of Thl and Th2 cytokines 

and thought to represent "uncommitted" cells with the potential to remain ThO, 

or differentiate down the Th 1 or Th2 route(152)) and even Th3 cells (considered 

a type of T regulatory cell(153)). 

Help -T helper cells activate B cells, driving antibody production down the 

appropriate route (e. g. Th1 - IgG antibodies, ideal for opsonising bacteria; Th2 - 

IgM and other isotypes) and Thl cells in particular activate the microbicidal 

properties of macrophages. 

Cytolysis - although perhaps not their main means of effector function CD4+ T 

cells are - like CD8+ T cells - capable of directly killing a cell. They do this 

using mechanisms similar to those employed by CD8+ cells (see below): Fas 

mediated lysis, direct target lysis and by cytokine release (e. g. TNF-a). 

Function of CD8+ cytotoxic T cells 

Engagement of the TCR of an antigen-specific CD8+ T cell by the appropriate class I 

HLA-antigen complex triggers activation of the CD3 complex and the signalling 

cascade that ultimately results in CTL effector function: direct lysis, Fas-mediated 

cytotoxicity and noncytotoxic functions. 
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Direct target lysis - engagement of the TCR leads to lytic granules within the 

CTL fusing with its surface membrane at the area of target cell apposition. The 

granule contents are released into the gap and diffuse to the surface of the target 

cell. One of the constituents, perforin, is functionally very similar to the 

complement membrane attack complex and integrates into the target cell 

membrane forming pores. This allows both the entry of another released 

substance, granzyme B which causes DNA fragmentation, and mechanical cell 

destruction through osmotic lysis. 

Fas mediated lysis - Fas ligand, present on the surface of CD8 CTL, interacts 

with Fas on the surface of the target cell. This induces a caspase (cysteine 

aspartic acid protease) cascade which results in genomic DNA fragmentation 

and the exposure of phagocytosis-stimulating molecules on the cell surface(154). 

Other effector functions - CTL also release antiviral cytokines (such as IFN-y 

and TNF-a), chemokines (e. g. RANTES, MIP-la) and other soluble factors. It is 

the antiviral effect of cytokines over and above direct cell killing that is chiefly 

responsible for viral clearance in transfer experiments with hepatitis B virus in 

mice(155). Division of CTL into subsets based upon their cytokine release is less 

defined than for Th responses but comparable TcO, TO and Tc2 type responses 

have been described(156,157). TcO are characterised by the production of IL-4 

and IFN-y (normally associated with either Tc2 or Tc 1 phenotypes respectively), 

Tcl with IFN-y, TNF-a and IL-2, and Tc2 with IL-4 and IL-10 among others. 

TcO and Tc2 type cells may have a reduced cytolytic potential and appear to 

promote Th2 rather than Thl type CD4+ responses(157). 
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Immunodominance 

For any one virus there are numerous amino-acid sequences capable of binding HLA 

and the proteasomal processing of all the proteins they express should result in the 

presentation of an enormous number of foreign peptide-HLA complexes, and the 

generation of large array of specific CTL. In practice the T cell response is directed 

against a relatively small number of "immunodominant" epitopes and there is often a 

clear hierarchy among those responses with certain dominant peptides eliciting 

stronger responses than other "subdominant" epitopes(158). It is estimated that only 1 

in 2000 of all the possible peptides that may be derived from a foreign antigen will 

become immunodominant for a given class I molecule(159). There are a number of 

possible explanations for this: 

The manner in which viral peptides are processed intracellularly - if a peptide 

is to be immunogenic it must be processed efficiently and presented on the cell 

surface. Processing efficiency is affected by the epitope itself(160) and the 

regions that flank it(161) presumably reflecting the nature of the proteasome's 

cleaving activity. It might also be expected that epitopes within viral proteins 

present at high levels in early stages of infection will become 

immunodominant(162 ). 

The affinity of the peptide for the HLA molecule - compatible peptides from the 

proteasome become associated with class I HLA within the endoplasmic 

reticulum. The affinity the peptide demonstrates for the HLA binding site 

influences immunodominance, probably reflecting the rate of association of a 

peptide for a given HLA molecule(163). 

Levels of cell surface expression - high surface expression of a particular 

peptide-HLA complex is likely to result from a combination of efficient epitope 
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processing and a high affinity complex that exhibits a high degree of stability on 

the surface of the cell(159). Having said that, epitopes expressed at relatively 

low levels on a cell surface may become immunodominant(164). 

The TCRs capable of binding the peptide-MHC complex - the broader the 

repertoire of naive T cells that are capable of recognizing a given peptide-HLA 

complex the more likely it is to become immunodominant(159). Studies have 

shown that dominant T cell populations express a more diverse TCR repertoire 

than subdominant T cell populations(165). 

Suppression of subdominant response by the immunodominant - the expression 

of immunodominant epitopes on a cell surface may competitively inhibit the 

levels of surface expression of subdominant epitopes(166) which may alter the 

protective efficacy of subdominant responses(167). Blocking processing of 

dominant epitopes does not necessarily result in the enhancement of previously 

subdominant responses. It may be that T cells recognizing a dominant epitope 

expand rapidly, suppressing viral load and suppressing the development of more 

slowly-generated subdominant responses(158). 

The nature of T cell memory 

A key feature differentiating the adaptive from the innate immune system is that of 

pathogen specific memory. It permits a more rapid and effective immune response 

upon re-challenge by the same (or perhaps in some cases a heterologous) pathogen 

(168). Memory T cells (CD4+ or CD8+) are derived from cells that have been 

stimulated by antigen but rather than developing effector functions revert to a 

quiescent state. Upon antigen re-exposure they are rapidly activated and proliferate 

producing cytokines in as little as 4 hours(169). Memory populations are generally 
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considered to fall into two broad classes that reflect the different requirements for 

rapid and effective recognition of previously encountered pathogens: "central" and 

"effector" memory. "Central memory" cells express lymph node homing receptors 

and lack immediate inflammatory or cytotoxic effector function. However from their 

location within lymphoid tissue they are ideally placed to efficiently stimulate 

dendritic cells, help B cells and generate a new wave of effector cells upon secondary 

stimulation. The "effector memory" population comprises tissue-homing cells capable 

of displaying various immediate effector functions. They represent a readily available 

pool of antigen-primed cells capable of entering peripheral tissues to mediate 

inflammatory reactions or cytotoxicity, thus containing invasive pathogens -a 

immunological rapid reaction force(170). These two memory populations can be 

distinguished by the presence or absence of CCR7, a chemokine receptor controlling 

homing to secondary lymphoid organs. Central memory cells are CCR7 positive and 

express lymph node homing receptors, effector memory cells are CCR7 negative and 

express receptors mediating migration to inflamed tissues. It has been suggested that 

this simple two class division is likely to be inadequate(171) particularly in chronic 

viral infections such as HIV and CMV which lead to the generation of a spectrum of 

more complex CD8 memory populations. 

An acute infection such as influenza infection will result in the activation of a large 

number of virus-specific effector CTL, a proportion of which will lose activation 

markers and become quiescent memory lymphocytes. The means by which specific 

cells are selected for memory is not clear but the TCR repertoires of the primary and 

memory pools are similar - it is likely that a proportion of the pool of activated 

lymphocytes is randomly selected for memory(172,173). The maintenance of effector 
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CTL is dependent upon antigen. Once the infecting pathogen has successfully 

eliminated, effector CTL numbers will decline over time by a process of activation- 

induced cell death (AICD). The precise means by which the memory pool is 

maintained is controversial. Whether these populations are sustained by continuous 

low level stimulation by persistent antigen(174) retained within immune complexes 

on dendritic cells, or memory cells are long-lived and capable of persisting in the 

absence of antigen(175,176) has been a matter of some debate. At present at least the 

balance of opinion would appear to favour the latter hypothesis(100). The size of the 

memory population that remains following clearance of a viral infection is stable over 

considerable periods in experimental systems(175). In the real world however the 

process of homeostasis acting on the memory pool causes "attrition" as a consequence 

of subsequent, unrelated infections modulating the global memory pool(177,178). It 

would appear that memory is a function of both quality and quantity - memory cells 

have been shown to divide after a shorter lag time and with an increased division rate 

following antigen stimulation compared to naive cells. In addition they develop their 

effector functions faster and are more likely to be multi-functional than primed naYve 

T cells(179). 

No one is naive - CD8+ T cells and heterologous immunity 

The role of antibody in the pathogenesis of severe dengue is widely accepted. Yet 

there is a growing body of evidence that suggests memory T cell populations may also 

contribute to the immunopathogenesis of certain severe secondary infections. More 

than that the T cell memory pool may alter a host's response to infections encountered 

for the first time. 
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The TCR recognizes peptide-HLA class 1(180) largely through the three protruding 

CDRs which directly contact sites on the peptide and HLA molecule (Figure 17). If 

each TCR recognized only a single peptide fragment the number of different T cells 

required would exceed the number present within an individual. T cells are in fact 

cross-reactive against many different epitopes and in theory a single TCR may be able 

to interact with over 1 million different peptides(181). The CDR3 loop is able to adopt 

different positions to accommodate the varying peptide-HLA structures. This 

flexibility allows a TCR to show a degree of promiscuity in the spectrum of peptides 

it can recognize and renders it inherently cross-reactive(182). Thus the cross- 

reactivity of virus-specific T cells may be a consequence of the similarity between 

evolutionary conserved sequences between closely related viruses (e. g. influenza 

subtypes) but need not necessarily be restricted to homologous or highly conserved 

sequences. In fact memory T cells generated by prior infections may play a role in 

subsequent infections by both related and unrelated viruses(183). Virus-specific CD8+ 

T cells have been shown to recognize epitopes from heterologous viruses despite 

significant sequence variation(184). Individuals exposed to a virus for the first time 

vary in their symptoms and immune response to infection. These differences are often 

attributed to the viral dose, or genetic and physiological characteristics of the host. 

The potentially promiscuous nature of T cell memory suggests another contributor - 

the varying cross-reactivities of the pool of memory cells specific to previously 

encountered pathogens. 

70 



A 
Poptide 

a2 Helix NH, ' uIH, lI " 
r 

ý. 

n Chain of 
Hip T- ell rcceptor 

B 

Plasma mernl 

Poptide - *. -ý 

Pgido-bind n9 
grown 

Plasma mombrono 

Antigen-presenting cell 

ýr 

Figure 17. Interactions between the TCR and the peptide-MHC Complex. A) the orientation of the 
T cell receptor on the surface of the HLA-peptide complex. B) the interaction between the T cell 
receptor and the peptide-MHC complex. Complementarity-determining region I of the a and 0 chains 
of the TCR is not visible in this depiction because one is positioned behind and the other in front of the 
part shown. 02-microglobulin (ß2m) is the light chain of the class I molecule. The three 
complementarity-determining regions (CDR1, CDR?, and CDR3) are shown. From Klein, J., and A. 
Sato. 2000. "The HLA system. First of two parts. " N Engl J Med 343: 702-709. 

The T cell repertoire of a host is significantly altered by each virus it encounters 

relative to a nave individual. Populations of memory T cells will have been generated 

and preserved. Subsequent infections will be impacted by these memory cells, and in 

turn impact the repertoire of memory that remains once infection is cleared. The initial 
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stages of a viral infection often induce a global lymphopenia. This cell loss is 

dependent on type 1 interferon and is associated with high levels of apoptosis in the 

memory CD8+ T cell subset and lower levels in naYve CD8+ T cells (Figure 18). 

Mouse studies have demonstrated that cells specific for antigen present at the time of 

the interferon-induced T cell attrition are not protected from it - all memory T cells 

are affected(185). Cross-reactive T cells recognizing the currently infecting virus 

however selectively and rapidly expand following the early attrition phase. It may be 

that the early depletion of memory T cells allows for the generation of a more diverse 

T cell response to infection by reducing the immunodomination caused by cross- 

reactive T cells. The infecting virus is thus controlled by the rapid expansion of the 

cross-reactive memory population and the newly generated effector T cells specific 

for that virus. By convalescence these two pools are well represented in memory, 

whereas memory cells showing no cross reactivity are present in reduced numbers as 

a result of the IFN induced attrition (Figure 18). Whereas memory CD8+ T cell 

populations generated after a single viral infection are maintained fairly stably over 

time, subsequent infections dramatically alter these populations with some non-cross- 

reactive populations permanently vanishing, and others being enriched by cross- 

reactive challenge(177,186). The depletion of components of CD8+ T cell memory 

may reflect competition for lymphoid space between newly generated memory T cells 

and existing memory populations, or simply be a consequence of the global 

lymphopenia induced by viral infection. Either way, pre-existing memory populations 

are vital to the host response to new viruses encountered and these encounters 

permanently alter the composition of the memory pool(183). 
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Figure 18. Schematic representation of the response of non-cross-reactive and cross-reactive 
virus-specific memory CD8 T cells to heterologous virus infection. The X-axis represents time, the 
Y-axis represents cell number. From Brehm, M. A., L. K. Selin, and R. M. Welsh. 2004. "CD8 T cell 
responses to viral infections in sequence. " Cell Microbiol 6: 411-421. 

Of course, normally the presence of neutralising antibody will result in a low key 

secondary T cell response due to the suppression of viral replication and antigen 

presentation to T cells. An anamnestic T cell response will be mounted in those 

situations where there is insufficient or absent neutralising antibody, as in the case of 

infection with a heterologous virus. For example - influenza A virus undergoes 

antigenic shift which renders antibody to previous forms ineffective. Yet substantial 

protection remains - this has been attributed to the cross-reactive CD8 T cell 

response(180). In some cases the outcome may be deleterious to the host. The high 

level of replication that a heterologous virus is free to do in the absence of neutralising 

antibody and perhaps even helped by enhancing antibody, might result in a large 

antigen load. If this is able to activate memory T cells specific for a previously 

encountered virus profound T cell activation will result(114,187). 
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This can be taken a step further - the promiscuous nature of antigen recognition by 

TCR allows memory CD8+ T cells to cross-react with heterologous viruses for which 

there is no neutralizing antibody. Adoptive transfer experiments in mice have shown 

that subsets of splenocytes from lymphocytic choriomeningitis virus (LCMV) 

immune mice undergo proliferation in naive mice infected with the heterologous 

viruses Pichinde virus or vaccinia virus. It has been suggested that these responses 

may not necessarily be helpful. An "original antigenic sin"-like phenomenon has been 

described for CD8+ T cell responses. Mice previously infected with wild-type LCMV 

were challenged with variant strains of LCMV containing altered T cell epitopes. 

They preferentially generated CD8+ T cells specific for the wild-type epitope which 

did not efficiently recognize the variants presented by the current infection. This 

resulted in impaired clearance of the variant virus(188). A similar phenomenon has 

been described in dengue patients and is discussed further below(189). 

The host's history of viral infection may also influence the effectiveness of control of 

a heterologous virus and even contribute to pathogenesis affecting protective 

immunity, immunopathology and changing the Tel /Tc2 balance. Mouse work has 

shown that initial infection with a given virus can confer partial protection against 

another unrelated virus. This protection is not necessarily reciprocal. For example a 

mouse previously infected with either LCMV, Pichinde virus or murine 

cytomegalovirus (MCMV) demonstrated a significant level of protection against 

infection with vaccinia (reduced viral titres and increased survival). However mice 

infected with vaccinia did not develop protection against the other 3(190). The lack of 

reciprocity may relate to the immunodominance of potentially cross-reactive epitopes: 
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if dominant enough to create a sizeable memory pool protective immunity is 

conferred. Some authors have hypothesised that large viruses (vaccinia, MCMV) have 

a better chance of encoding epitopes with the potential to stimulate a cross-reactive 

response from the memory pool. Small viruses, on the other hand (e. g. Ebola, yellow 

fever) might escape heterologous memory with the potential for causing rapid and 

severe disease(191). 

Heterologous immunity although potentially protective may be the root of 

immunopathology as a heterologous virus has the potential to be a strong stimulator of 

memory T cells specific for another virus because its replication would be unimpeded 

by neutralising (and perhaps assisted by enhancing) antibodies. LCMV immune mice 

infected intranasally with vaccinia virus develop severe lung pathology characterised 

by a strong lymphocytic response with LCMV-specific CD8+ T-cell infiltration and 

bronchiole obstruction by fibrin and inflammatory cells(192) - bronchiolitis 

obliterans. This correlated with the activation of pre-existing LCMV-specific memory 

CD8+ cells. Non-immune mice infected with vaccinia in contrast developed 

pulmonary oedema. The pathological effect may have been related to altered cytokine 

profiles - lung lesions in the vaccinia infected LCMV-immune mice were dependent 

upon the production of IFN-y. 

Whether aT cell adopts a Th1 or Th2 type phenotype is influenced by, among other 

factors, the concentration of antigen at stimulation and the exposure to cytokines 

produced by existing Thl or Th2 cells(193,194). Thus the ThI or Th2 bias of a pre- 

exisiting pool of memory cells activated by heterologous infection might affect the 

bias of the primary response to that agent. This could explain the high levels of IFN-y 
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produced by LCMV-immune mice infected with vaccinia - the original LCMV 

infection leaves a large Th 1 biased memory pool which orients the subsequent 

response down similar lines(195). Likewise an immunisation that generates a Th2- 

biased memory response might orient the primary response to a heterologous virus 

along Th2 lines, impairing viral control and clearance. The inactivated RSV vaccine 

trialed in the 1960s was associated with severe symptoms following natural infection 

in a number of recipients. This was associated with pulmonary eosinophilia -a 

phenomenon known to be associated with a Th2 response. Similar pathology has been 

replicated experimentally in mouse systems. Mice vaccinated with a recombinant 

vaccinia/RSV construct develop an aberrant (admittedly CD4+ T cell) Th2 response 

on RSV challenge that results in eosinophilic lung infiltration(l 96). Intriguingly mice 

infected with influenza prior to vaccination and subsequent challenge do not mount 

such a damaging Th2-type response(l 97). 

The histopathological changes taking place in the lung during acute infection with 

certain viruses is significantly altered by prior infection with MCMV, influenza and 

Sendai(198,199). Certain viral infections cause more significant disease in teenagers 

than young children (e. g. varicella zoster, measles, mumps). It is possible that 

pathogens encountered earlier in life alter the immune response to some infections 

later. Such an argument would lead one to suggest that vaccination could influence the 

response to pathogens unrelated to the vaccine. 
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Different epitopes are recognized by the CD8+ T cell population to differing extents - 

not every recognized epitope will produce equal responses with some mounting only 

weakly antiviral responses(200). These "immunodominance hierarchies" are reflected 

in the memory population after acute infection(201). Heterologous infection will alter 

the spectrum of responses and the hierarchy of immunodominance. Cross-reactive T 

cells will be selectively amplified by sequential infection by heterologous virus - as 

has been demonstrated with influenza virus variants(202) - with populations that 

comprised only a minor part of the memory pool after the original infection becoming 

more dominant after a second infection. Thus the immunodominance hierarchy of the 

response to a viral infection is moulded by what has gone before. Figure 19 illustrates 

this for LCMV and PV - it could equally well be two dengue serotypes. 
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Figure 19. Modulation of the T cell repertoire during viral infection. Dots represent T cell 
populations of different specificities. A naive immune system is challenged with either LCMV or 
Pichinde virus (PV). Some T cell populations expand to combat the infection and then undergo 
apoptosis leaving the host with a skewed memory T cell pool. If an immune system that has been 

conditioned by one virus infection (LCMV) is exposed to another virus (PV), T cell populations cross- 
reactive with the two viruses (red outline) expand preferentially and dominate the response. After the 

response, memory T cells that are specific for the first virus only are reduced in number, whereas the 
cross-reactive T cells are preserved and enriched in the resting memory pool. From Welsh, R. M., and 
L. K. Selin. 2002. "No one is naive: the significance of heterologous T cell immunity. " Nat Rev 
Immunol 2: 417-426. 
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The evidence described above relates entirely to studies of CD8+ T cell populations. 

There is as yet little evidence to suggest that the CD4+ T cell memory populations are 

modulated by heterologous infections in a similar manner to CD8+ T cells. For 

example heterologous infections do not accelerate the decline in CD4+ memory T 

cells in the manner seen with CD8+ T cells(191,203). 

The cellular immune response and dengue pathogenesis 

Although much has been hypothesised, little is known about the part cellular 

immunity might play in either immunity to, or the immunopathogenesis of dengue. 

Certainly activated T cells can be experimentally infected with dengue virus(204) and 

dengue virus specific CD4+ and CD8+ memory lymphocytes can be detected in the 

peripheral blood mononuclear cells of humans experiencing either natural dengue 

infection or experimental immunisation with live, attenuated dengue vaccines. The 

NS3 protein is an important target for both CD4+ and CD8+ T cells - many of these 

cells are directed at epitopes within it and may display serotype-specific or cross- 

reactive patterns of behaviour. NS3 is also immunodominant in the CD8+ T cell 

response to other flaviviruses(205). T cells seem to be highly activated in patients 

with DHF and levels of soluble CD4 and CD8 are most elevated in patients with DHF 

compared to DF or healthy controls(84). In common with acute HIV and Epstein-Barr 

virus infection an inversion of the CD4/CD8 ratio has been observed in many patients 

with acute dengue. CD4+ cells outnumber CD8+ cells in healthy individuals. During 

acute dengue infection CD8+ cells outnumber CD4+ in some patients, a phenomenon 

observed more frequently in those with DHF/DSS than DF. Proportions return to 

normal around 2 weeks after symptom onset(92,206). It has been suggested that this 

inversion is an indication of aberrant immune activation. 
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Interestingly, in terms of protection rather than immunopathology mouse experiments 

suggest that it is cytokines that are the key. Mice deficient in their B cell, CD4+ or 

CD8+ T cells alone had no increased susceptibility to experimental dengue infection. 

IFN-a1(3 and IFN-y receptors on the other hand had critical functions in resolving 

primary dengue infection and mice deficient in both B and T cells were particularly 

susceptible to infection(106). The dominant role of IFN pathways in controlling viral 

infection has been observed with other mouse viruses(207). 

The role of CD4+ T cells in dengue infection 

Infection with one dengue serotype induces both serotype specific and cross-reactive 

CD4+ T memory cells in most individuals. CD4+ T cell memory is long-lasting, 

certainly after natural infection. A study in Cuba (where epidemics of DEN-1 then 

DEN-2 took place 4 years apart with no new outbreaks) demonstrated that individuals 

who had been infected 20 years previously still had CD4+ responses of both a 

serotype specific and cross-reactive nature(208). 

There is significant complexity in the interactions between T cell receptors and viral 

epitopes. A given epitope may induce T cells with different cross-reactivities and 

virus specificities (209,210) even whilst presented by the same HLA allele(211). 

Dengue specific CD4+ clones recognise variations of their epitope representing other 

flaviviruses and may exhibit cytotoxic activity (211), killing antigen-presenting cells 

primarily by perforin mediated mechanisms (acitivity was blocked by concanamycin) 

but causing bystander cell lysis by Fas mechanisms(212). 
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CD4+ cells are an important source of cytokines and dengue specific CD4+ clones 

may behave in a Thl, Th2 or ThO manner. They are required for the in vitro 

production of cytokines by PBMCs taken from vaccine recipients. Depleting the 

CD4+ cells abrogates the dengue-specific cytokine response indicating that either 

they, or cells stimulated by them, are in turn producing cytokines(213). 

The character of the CD4+ T cell cytokine response varies with the nature of the 

stimulation. Intracellular cytokine staining of PBMC from monovalent vaccine 

recipients demonstrates that homologous secondary stimulation results in higher 

frequencies of CD4+ IFN-y positive cells than stimulation with peptides representing 

heterologous versions of dengue epitopes(214). One study demonstrated that 

stimulation with inactivated antigen resulted in IFN-y production by an average of 

0.54%, and TNF-a by 1.7% of CD4+ cells(215). Both were produced at higher levels 

with homologous stimulation than with antigen from a virus other than the vaccine 

type. However the ratio of TNF-a to IFN-y producing cells was higher with 

heterologous stimulation. This observation was repeated using a pool of class II 

epitopes from structural and non-structural proteins: TNF-a CD4+ cell responses had 

broad cross-reactivity for Ag; IFN-y responses were highest with (and some cases 

present only in) homologous stimulation. Given IFN-y's antiviral activity against 

dengue it could be argued that protection from severe disease in secondary 

homologous infection requires a healthy IFN-y response. In contrast TNF-a is 

produced by memory cells in response to any viral serotype and the immunopathology 

associated with heterologous secondary infection may be a result of the difference in 

cytokine balance. It is not clear why different epitopes produce qualitatively different 

cytokine responses. A quantitative change might be expected if it were simply a 
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matter of the affinity an epitope-HLA complex displayed for the TCR. The authors of 

this study speculate that different epitopes may pass through different antigen 

processing pathways (endogenous or exogenous). 

There are other means by which CD4+ cells may affect disease severity. Although 

most studies have focussed on Th1 type cytokines - those most likely to contribute to 

a vascular leak syndrome - it has been noted that an early Thl cytokine profile is 

replaced by a Th2 pattern at the time of defervescence(92). A recent study noted that 

the ratio of IFN-y: IL-4 CD4+ cells on intracellular cytokine staining of ex-vivo 

PBMC was lower in patients than controls(92). In addition CD4+ cells play a key role 

in priming naYve CTLs. Their presence or absence can determine whether secondary 

exposure results in the activation-induced cell death, or the expansion of a CTL 

population(150). 

The role of CD8+ T cells in dengue infection 

Mouse models for severe dengue disease have demonstrated that CD8+ cells play both 

a protective and pathogenic role. 100% of severe combined immunodeficient mice 

infected with dengue virus die if given naive thymocytes, compared to 80% given a 

dengue specific clone. However SCID mice given no CD8+ cells manifest mild 

symptoms and die later than those with dengue specific CD8+ cells(216). CD8+ cells, 

more than CD4+ cells, have been shown to infiltrate the liver of mice infected with 

dengue virus(217). 

Cellular immune activation is present early in acute dengue. A study in Thai children 

showed that absolute CD4+ T cell, CD8+ T cell, NK cell, and gammadelta T cell 
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counts were decreased in children with DHF compared with those with dengue fever 

early in the course of illness. The fraction of cells expressing CD69 was increased on 

CD8+ T cells and NK cells in children who developed DHF more than in those with 

DF suggesting that CD8+ cell activation may be related to disease severity(218). 

Severity has been shown to correlate with the frequency of CTL recognising certain 

dengue epitopes presented by HLA-A* 11 and B*07. Patients with DHF have a greater 

proportion of CD8+ cells recognising those epitopes than those with DF (189,219). 

There is evidence that, as with CD4+ lymphocytes, the nature of the CD8+ memory 

response to heterologous infection may be different to that seen with secondary 

homologous infection. One study found that in secondary infection with DEN-1 or 

DEN-2, a significant portion of dengue specific memory T cells had higher affinity for 

the DEN-3 form of an A* I1 dengue epitope than that of the currently infecting 

virus(189). The authors called this phenomenon "original antigenic sin", a term first 

used to describe the persistence of antibody against previously encountered serotypes 

of influenza(220) and later described as part of the humoral response to dengue(21). 

They theorise that those CTL exhibiting low affinity for the infecting virus represent a 

clonal expansion of memory T cells, from a primary infection, which respond more 

rapidly, to a greater degree and at a lower threshold of activation than do naive T 

cells(179). CTL of a higher affinity arise later from the naive population. This may 

allow the infection to become established permitting higher viremia and significant 

immune-mediated tissue damage as T cells die and release cytokines. The number of 

CTL in DHF patients was significantly lower than that of healthy controls and the 

majority of dengue specific CD8+ T cells were apoptosing(189). It could be that the 

higher proportion of low affinity T cells detected were a consequence of the high viral 
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load driven apoptosis of high affinity T cells via the process of activation-induced cell 

death (189,221). 

Other reports have also linked cross-reactive cellular immune responses to dengue 

virus with pathogenesis (222). Serotype cross-reactive memory CTL derived from 

dengue vaccine recipients have been shown to display a high degree of complexity in 

their response to heterologous variant peptides. Stimulation with these different 

peptides produced varying frequencies of CTL producing cytokines in response and 

the number of different cytokines cells produced. These differences appear to have 

been affected both by the epitope used, and the vaccination history of the donor(223). 

These observations give credence to the proposal that cross-reactive T cells might 

have altered cytokine profiles that could contribute to induction of plasma leakage 

(222-224). 

Vaccine development 

The development of a successful dengue vaccine remains the best hope of effective 

control(60). Vaccines have played a major role in the control of flaviviral diseases 

such as yellow fever, Japanese encephalitis and tick-borne encephalitis(225). Dengue 

however remains a significant challenge. The association of DHF with secondary 

infection has led to legitimate fears of immunisation-mediated disease 

enhancement(226) - all four serotypes are found in most endemic areas and any 

vaccine must protect against them all. Several multivalent dengue vaccines are in 

various stages of development. A live attenuated vaccine is thought by many to be the 

most likely to succeed. Active intracellular replication results in a variety of antigens 

that resemble wild-type virus and may provoke a response similar to natural immunity 
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with strong cytotoxic T cell responses, long-term memory T cells and durable 

immunity. The replication of each of the four components of a live vaccine 

(representing the four dengue serotypes) and the immune response to each individual 

component must not suppress that of the others. As significant cross-reaction between 

serotypes can be demonstrated for both B-cell and T cell epitopes, this could be 

difficult to achieve. Any vaccine dependent on stimulating responses to the major 

virion envelope protein risks the possibility of generating enhancing antibodies unless 

a complete and balanced immune response to all serotypes can be guaranteed. Even 

then the kinetics of antibody decline must also be matched to prevent the occurrence 

of an excess of enhancing antibodies over neutralising antibodies(60). It is rare for an 

individual to experience more than one or two episodes of severe dengue and it 

appears that sequential, natural infection results in balanced immunity to more than 

one virus. However, there is no assurance that artificial simultaneous infection will 

achieve the same end. 

Initial studies of live attenuated tetravalent vaccine produced by serial passage 

through cell culture have demonstrated that they are capable of producing 80-90% 

seroconversion rates in both adults and children(227). The use of such vaccines on a 

large scale in endemic countries would require evidence that they generated solid 

immunity against all four dengue serotypes with one or two doses. Finding such 

assurance has been hampered by the absence of an appropriate animal model - mice 

do not manifest disease and monkeys do not develop the severe illness seen in 

humans(226). Reversion to virulence through mutation or viral recombination with 

wild-type virus in an endemic area is also a cause for concern - some authors have 

called for caution in planning flaviviral vaccine trials because of the risk of 
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recombination with endemically circulating viruses(228). Other strategies include the 

use of genetic manipulation techniques to produce infectious clones using a backbone 

attenuated virus (either the 17D yellow fever vaccine virus or an attenuated dengue 

virus) into which the preM and E genes of one or more dengue serotypes are 

inserted(60). In addition dengue genes have been inserted in to plasmids, vaccinia and 

adenoviral vectors with varying degrees of success(229). 

The enhancing antibody response to dengue tends to be directed primarily at the 

surface proteins. Therefore attempts have been made to overcome ADE by inserting 

non-structural proteins such as NS1 and NS3 into recombinant virus vectors. They 

have demonstrated protective immunity in animal systems for other flaviviruses(230, 

231). Yet non-structural proteins cannot necessarily be considered entirely innocent in 

pathogenesis - as we have seen, NS1 and antibodies to it have been associated with 

pathogenesis. 

That these significant problems are only likely to be overcome by international 

cooperation has been recognized by the establishment of the Paediatric Dengue 

Vaccine Initiative(232) aimed at funding and conducting research, vaccine 

development and trials through a network of international partners. 

Summary and conclusion 

The key features of DHF/DSS are capillary leakage, thrombocytopenia and 

coagulopathy. The majority of DHF cases occur in patients who have experienced ,a 

previous infection with a heterologous DEN serotype. It is associated with immune 

activation, a high level of cytokine production and appears to induce cross-reactive 
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anti-dengue antibodies (perhaps directed against NS 1) that result in platelet lysis and 

endothelial cell damage. Dengue virus itself may cause endothelial cell and 

hepatocyte dysfunction and apoptosis. The rapid resolution of fluid leak seen in those 

receiving appropriate fluid management would imply that the key feature is not 

structural damage, but a reversible, probably cytokine mediated, increase in vascular 

permeability. 

The key pathological feature is increased vascular permeability with plasma leakage 

into the interstitial spaces associated with increased levels of vasoactive cytokines 

such as TNF-a, IFN-7, IL-6 and IL-2. A later switch to type 2 cytokine production 

(e. g. IL-10, IL-13) may occur at the time of defervescence. The levels of certain of 

these cytokines correlate well with disease severity. 

Antibody dependent enhancement of dengue infection by antibodies that neutralise 

homologous virus but enhance heterologous serotypes has been proposed to be the 

mechanism behind the phenomenon of severe secondary infection. The increased viral 

load is thought to result in both direct viral mediated pathology and a deleterious 

immunopathological response to the increased levels of viral antigen. 

ADE certainly appears to take place. In particular it provides a convincing explanation 

of the phenomenon of infant DHF. However ADE is neither a sufficient (estimates of 

rates of DHF in those experiencing secondary infection range from 1.8-12%), nor an 

absolutely necessary (not every severe case occurs in those experiencing secondary 

infection - although the overwhelming majority do) condition for the development of 

severe disease. The complications and concerns around vaccine development do not 
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allow the luxury of resting on one theory of pathogenesis. ADE is unlikely to be the 

whole story and it is important that a more holistic understanding of DHF pathology is 

developed, particularly as the need for a safe and effective vaccine becomes ever 

greater. To assume that the role of cellular immunity is simply to respond to the ADE- 

augmented viral load overlooks the subtle and complex modulation of the cellular 

immune response played by T cell memory populations. It has been recognised for 

some time that CTL populations are capable of mediating significant 

immunopathology in viral infections such as LCMV. There is good evidence that the 

CTL response to a viral infection - whether heterologous or unrelated to previous 

viral encounters - can be modulated by the infection history of an individual in a 

manner likely to contribute to disease severity. With four stable heterologous 

serotypes dengue virus is highly likely to participate in just such a process. It is to 

these questions of cross-reactive T cell responses that this thesis now turns, in 

particular the manner in which CD4+ and CD8+ T-memory cells showing dengue 

virus, or perhaps even broader flaviviral, cross-reactivity might contribute to both 

protection from, and the development of, severe dengue disease. 
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CHAPTER 2 MATERIALS AND METHODS 

Study population and ethical approval 

Blood samples were collected from a cohort of adults and children enrolled in a 

prospective study of dengue virus infection at The Hospital for Tropical Diseases 

(HTD) and Ho Chi Minh City Children's Hospital #1, Ho Chi Minh City, Viet Nam. 

Both serve the local community and act as tertiary referral hospitals for patients in 

southern Viet Nam. Patients were recruited if there was a clinical suspicion of dengue 

virus infection and the diagnosis confirmed by serological and virological assays. 

Each patient's illness severity was classified according to World Health Organisation 

criteria(14) after a review of the study notes. Samples were collected on the day of 

admission (acute), on the third and fifth day if the patient remained in hospital, and 

during convalescence (two weeks to one month after the first sample). Patients were 

characterised demographically, clinically, virologically (using RT-PCR) and 

serologically (IgM and IgG on paired samples). Serological data suggested that the 

majority (>99%) of the patients we studied were experiencing secondary infections. 

Informed consent was obtained from all participants at enrolment and the study 

protocol was approved by the Scientific and Ethics committee at The Hospital for 

Tropical Diseases and the Oxford Tropical Research Ethics committee. 

Solutions and reagents 

Supplemented RPM-1640 complete tissue culture media "R10 "and "H10". 

RIO - RPMI (Gibco, Paisley UK) was supplemented with L-glutamine 100U/ml, 

penicillin 100U/ml, streptomycin 100pg/ml (all Gibco, Paisley, UK) and heat 

inactivated foetal calf serum 10% (Labtech Intl, UK). Stored at 4°C. 
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H10 - as above but rather than foetal calf serum (FCS) the solution was supplemented 

with 10% heat inactivated human serum pooled from at least 2 blood group AB 

positive donors. 

Freezing media 

FCS (filtered through a sterile 0.22pm filter - Millipore) with 10% dimethlyl 

sulphoxide (DMSO, Sigma). Stored at 4°C. Cell lines and PBMC for storage were 

pelleted, resuspended in 1 ml of cold freezing media and placed in a controlled cooling 

box (isopropanol based). This was stored at -80°C and cells transferred to liquid 

nitrogen storage after a few days. 

Phosphate buffered saline (PBS) 

Salts were supplied by Gibco, Paisley, UK and dissolved in filtered, deionised water. 

The solution was autoclaved to ensure sterility and stored at room temperature (RT). 

Alkaline phosphatise-conjugate substrate kit (chromogen for ELlspot) 

From Bio-Rad Laboratories, USA. Development solution made by mixing 0.4m1 

development buffer, 9.6m1 deionised water, O. lml colour reagent A, O. lml colour 

reagent B. Applied 100pl/well. 

Phytohaemagglutinin (Murex Biotech Ltd, UK) 

Made to a stock solution of 10mg/ml in sterile water. Used as a positive control in 

ELIspots and cytokine stimulations at 0.1 p1 per 100pi culture media. 
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Heparin sodium 

Obtained from CP pharmaceuticals, Wrexham, UK at 5000 units/ml. Stored at room 

temperature. 

Trypan blue 

From Sigma, UK. Diluted and used to assess cell viability and facilitate cell counting 

when required. Stored at room temperature. 

FACS wash 

100m1 PBS, lml FCS, 0.001% sodium azide. Stored at 4 °C. 

Ampicillin 

1000x ampicillin stock made by dissolving 100mg/ml ampicillin in sterile water and 

passing through a 0.22um sterile syringe filter (Millipore). Kept at -20°C. 

LB media 

lOg typtone, 5g yeast extract, lOg NaCl (or 5g NaCl in low salt LB media) made to I 

litre in distilled water and autoclaved. lml of ampicillin stock solution was added to 

each litre before use. 

Agar plates 

15g of agar powder was dissolved in 1 litre of LB which was then autoclaved. lml of 

the 1000x stock ampicillin solution was added once the solution had cooled below 

around 50°C. The warm agar was then poured into Petri dishes and allowed to set in a 

sterile tissue culture hood. 
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IPTG (isopropyl thiogalactoside) 

1 Molar stock was made by dissolving 2.38g of IPTG powder in 10mis of ddH2O. 

This was filtered through a 0.22pm syringe filter and frozen until use. 

X-Gal (5-bromo-4-chloro-3-indoyl-beta-D-galactopyranoside) 

X-Gal powder was dissolved in dimethyl formamide at 20mg/ml and frozen until use. 

TBE (Tris-borate-EDTA) buffer 

5x stock: 5.4g Tris, 2.75g borate, 0.372g EDTA in 100m1 of ddHZO. 

Electrophoresis gel (0.8% agarose) 

0.48g of electrophoresis grade agarose powdered added to 60m1 of 0.5 TBE buffer 

and heated until fully dissolved. Ethidium bromide (Sigma) was added just before 

pouring the cooling solution into the gel tank. 

Triton wash buffer 

Iml Triton X-100,1Oml 1M Tris pH8,20m1 IM NaCl, 2ml 10% sodium azide, 400 u1 

of 0.5M EDTA, 100N1 of 2M DTT, made up to 200m1 in ddH2O. 

Triton free wash buffer 

As above but without the 1ml Triton X-100. 
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Tetramer refold buffer 

100ml of 1M Tris pH8,84.28g L-arginine, 4m1 0.5M EDTA, 1.54g reduced 

glutathione, 0.31g oxidised glutathione, 1 ml of 0.1M phenylmethyl-sulphonylfluoride 

(PMSF -a serine protease inhibitor), made to 1 litre with ddH2O. 

Urea-based protein solubilisation solution 

40m1 1OM urea, 5m1 1M NaH2PO4,250pl 2M Tris pH8,10N1 0.5 M EDTA, 2.2p1 

2.2M DTT. 

Specimen acquisition 

Peripheral blood samples were collected by ward staff using heparin sodium as an 

anticoagulant. 1-2m1 of blood was taken from children, up to 10m1 from adults. 

Samples were generally transported to the laboratory within 2 hours - occasional 

samples were delayed by up to 10 hours. Samples were centrifuged and the serum 

fraction removed for freezing. Peripheral blood mononuclear cells (PBMC) were then 

isolated by Ficoll-Hypaque density gradient centrifugation (Lymphoprep; Axis- 

Shield, Oslo, Norway). After washing they were either cryopreserved in freezing 

medium or resuspended in R10 used immediately. Certain of the cryopreserved 

specimens were shipped on dry-ice to Oxford. 

HLA Typing 

Molecular HLA typing was performed on most study subjects by a laboratory 

technician in Oxford using amplification refractory mutation system PCR (ARMS- 

PCR) with sequence specific primers, as previously described (233). A commercial 
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typing application, the Dynal RELI SSO HLA typing kit (Dynal Biotech, United 

Kingdom) was used in Viet Nam to type samples from some patients. 

Viral identification by reverse-transcription PCR 

Dengue virus RNA in acute plasma samples was isolated with RNAgents (Promega, 

Madison, Wisconsin). RNA was reverse transcribed and two rounds of PCR 

performed using primers and methods previously described(234). In samples 

containing virus, the PCR yielded DNA products of size uniquely characteristic of 

each dengue virus serotype. 

Serological testing 

Dengue virus infection was confirmed by serological testing of acute and early 

convalescent-phase plasma samples taken at least 3 days apart using a commercial 

capture-immunoglobulin M (IgM) and IgG enzyme-linked immunosorbent assay 

(ELISA) system (Panbio, Brisbane, Australia). Results were interpreted according to 

the manufacturer's instructions. The ELISA assay has been validated as sensitive and 

specific for primary and secondary dengue virus infection(235). The term "secondary 

infection" describes the nature of the serological response - one cannot necessarily 

conclude that the patient was experiencing only their second dengue infection. 

Synthesis of dengue NS3 peptides 

The dengue non-structural protein NS3 contains many T cell epitopes(219). Using the 

consensus sequence for each dengue serotype (1-4) overlapping peptides spanning the 
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NS3 protein were synthesised using standard, solid-phase 9-fluorenylmethoxy 

carbonyl chemistry. Each was 15 amino acids long and overlapped the next by 10 

amino acids producing 124 peptides for each serotype. The peptides for dengue 2 

(strain 16681) were produced in Oxford using a Zinnser Analytical synthesiser 

(Advanced Chemtech, Louisville, KY) - this apparatus was also used to produce other 

peptides as required, e. g. for elucidating a minimal epitope. Those for serotype 1,3 

and 4 were produced commercially (Hybio, China). Purity was established by high- 

pressure liquid chromatography (HPLC) and ranged from 30 to 90%. Each peptide 

was dissolved in DMSO (Sigma) and then made up to a concentration of 2mg/ml in 

RPMI. The final DMSO concentration was never over 4%. The amino acid sequences 

for the 4 NS3 variants can be found in appendix 1. 

Interferon gamma (IFN-y) ELISpot assays with PBMC 

An ELISpot assay was used to detect peptide-specific IFN-y release by PBMC. 96- 

well polyvinylidene difluoride-backed plates (MAIP45; Millipore, Massachusetts, 

USA) were precoated with 15Ng of anti-IFN-, y monoclonal antibody 1-DIK (Mabtech 

AB, Nacka, Sweden) per ml for 2 hours at 37°C. The wells were washed 3 times with 

phosphate-buffered saline (PBS) with 0.05% Tween-20 (Sigma) and excess protein 

binding sites on the membrane blocked by coating with R10 or H10 and leaving at 

room temperature for 1 hour. 100,000 PBMC were incubated overnight in 1OOpL of 

either H10 or R10 at 37°C in 5% CO2 in duplicate wells with either: peptide at a 

concentration of 0.1 to 10pM; R10 or H10 alone (negative control); 1: 100 

phytohaemagglutinin (PHA) (Murex Biotech Ltd, Dartford, UK) as a positive control. 

Cells were discarded and the plate washed with PBS/Tween before incubating at RT 
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for 3 hours with a biotinylated anti-IFN-y monoclonal (7-B6-1 biotin; Mabtech) at a 

concentration of 1 pg/ml. The plate was washed with PBS/Tween and incubated at 

room temperature with streptavidin-conjugated alkaline phosphatase (Mabtech) at a 

dilution of 1: 1000 PBS for 1-2 hours. IFN-y producing cells could be detected as dark 

spots using the alkaline phosphatase-conjugate substrate kit prepared as described 

above. Spots were counted using an automated ELISpot reader (AID, Sweden). The 

background (negative control) was subtracted from each well. PBMC stimulated with 

PHA served as a positive control. The response from a well was considered positive if 

its corrected count was twice that of the background. 

Interferon gamma (IFN-y) ELISpot assays with T cell lines and 

clones. 

Clones and lines were tested for specificity in a cultured ELlspot assay. The plate was 

prepared as described above. HLA-matched B cell lines were pulsed with peptide at 

the desired concentration for 1 hour at 37°C and washed. Cells were distributed 

between wells such that each contained 5000 B cells and 500 of the T cell clone or 

line. Unpulsed B cells were used as a negative control. They were incubated overnight 

at 37°C and then developed as described above. 

Establishment of CTL lines and clones 

CTL lines were generated as previously described (236). PBMCs were stimulated 

with the specific epitope peptide of interest at 2µM concentration. IL-2 was added on 

day 3, and the specificity of the CTL lines were tested using CTL lysis assays or 
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tetramer staining on day 10 and/or day 20. Cloning mix was prepared by taking the 

irradiated freshly separated PBMCs of at least 3 donors and resuspending them in H 10 

at a concentration of 1 million cells per ml. PHA was added to this to a final 

concentration of 0.033mg/ml and the suspension mixed well. CTL clones were 

established from PBMCs or CTL lines by one of two methods. 

1. Where the appropriate antigen-specific tetramer was available cells could be 

stained with tetramer and CD8 fluorescent antibody and double positive cells 

sorted by flow cytometric sorting directly into 100. L of cloning mix in a 96 

well round-bottomed plate. 

2. Alternatively antigen-specific cells were enriched using MACS magnetic 

microbeads (Miltenyi Biotec, Germany). These were used in one of three 

ways: 

a. Cells were stimulated for 4 hours in 96 well plates with the peptide of 

interest and then labelled with a proprietary IFN-y catch reagent to 

mark those cells that were producing IFN-y in response to the 

stimulation. They were then labelled with an IFN-y detection antibody 

and magnetic beads. 

b. Anti-CD8 microbeads were used to simply enrich the CD8+ T cell 

fraction. 

c. Cells were stainined with PE-conjugated tetramer and MACS anti-PE- 

microbeads used to select tetramer positive cells. Briefly tetramers 

were added to 3-5 million PBMCs, then incubated at 37°C for 20 

minutes. The cells were washed with cold buffer and resuspended in 

40µl of anti-PE beads mixed well and incubated for 15 minutes at 4- 

8°C shaking every 5 minutes. 

96 



Once cells were labelled with the magnetic beads they were washed, resuspended in 

500µl of cold FACS buffer and magnetic separation performed according to the 

manufacturer's protocol (Miltenyi Biotec, Germany). Cells were resuspended in H10 

and counted. A proportion of these were added to cloning mix which was in turn 

distributed at 100NL per well throughout a 96 well round bottomed plate at an average 

of 0.3 cells per well. 

The number of plates required varied with the anticipated frequency of antigen- 

specific cells. Where cells were sorted by flow-cytometry 1-5 plates were sufficient. 

Where enrichment was solely by CD8 beads 10 or more plates were prepared. IL-2 

was added to wells at day 3 (200 units/ml). At around 2-3 weeks those wells with 

growing cells were tested for specificity using tetramer staining or cultured ELlspot. 

Epitope specific cells were expanded and maintained by periodic restimulations using 

the cloning mix described above, moving into larger plates or small flasks as 

appropriate. 

CTL lysis assays 

CTL lysis assays were performed using standard 51Chromium release assays (236). 

HLA class I matched B-cell lines (BCL) were pelleted and incubated with 7.4 MBq of 

"Chromium (around 200pl of stock solution - Amersham Ltd, UK) for 1 hour. After 

washing three times target cells were then divided and pulsed with either no peptide 

(negative control) or peptides at different concentrations. After another hour of 

incubation at 37°C, the peptide solution was then washed off and cells were counted 
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and co-cultured with CTL clones at appropriate effector to target (E: T) ratios in 96 

well plates. The plates were incubated at 37°C for 4 hours after which 30pl of the 

supernatant from each well was transferred into 150pl of Optiphase Supermix in a 96 

well reading plate (Wallac, Finland). Radioactivity was counted using a Beta-plate 

counter (Wallac). Specific lysis was calculated from the formula: 

% lysis =(experimental counts - media control) detergent control- media control) x 

100%. 

Cytokine beads assay 

Cytokine production by clones was measured using a protocol similar to that above 

but with unlabelled B cells. HLA class I matched BCL were washed and pulsed with 

either no peptide (negative control) or peptides at different concentrations for 1 hour 

at 37°C. After washing and counting, cells were co-cultured with CTL clones at 

appropriate effector to target ratios in round-bottomed 96 well plates overnight in a 

total volume of 150pl of H10.70pl of supernatant was then harvested and either used 

in assays immediately or frozen at -80°C. Cytokines were measured by Luminex 

cytokine bead array analysis according to the manufacturer's instructions (Bio-Rad 

Laboratories, USA). 
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Antibodies 

Antibody 

Anti-CD4 

Label 

PE, Pacific Blue 

Company 

BD biosciences, USA 

Anti-CD8 

Anti-CD38 

Anti-CD 107a/b 

Anti-IFN-y 

DK25 CD8 blocking 

Cell surface staining 

PerCP, APC, PE-Cy7 

FITC 

FITC 

APC 

None 

BD biosciences, USA 

BD biosciences, USA 

BD biosciences, USA 

Serotec, USA 

DAKO, USA. 

Cell surface staining was carried out on freshly separated or carefully thawed cryo- 

preserved PBMCs. Titrated tetramers conjugated to either PE (Sigma, UK), APC 

(Molecular Probes) or quantum-red (Sigma) were added for 15 min at 37°C. Cells 

were incubated with CD8-APC and CD38 FITC antibodies for 15 min at RT in some 

cases. Cells were then washed and stored in Cell FixTM buffer (Becton Dickinson) at 

4°C until flow cytometry analysis was performed. Samples were analyzed on a Becton 

Dickinson FACSCalibur. 

Cell surface and intracellular cytokine staining 

Intracellular cytokine staining was performed on cell lines, clones or PBMC that had 

undergone stimulation with either peptide or peptide-pulsed B cells for a period of 

time. Where B-cells were used to present antigen they were pulsed with peptide or 

negative control (RPMI) for 1 hour at 37°C and then incubated with the effector cell 
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at a ratio of 1: 1 (usually around 50000 to 100000 cells each) in 96 well round 

bottomed plates at 37°C in 200pl H10. In all cases 1 ii of monensin (eBioscience, 

USA) was added to each well after 1 hour to halt the export of cytokines to the cell 

surface. Incubation continued for a further 4 hours and cells then washed in FACS 

wash. Titrated tetramers (PE, APC or quantum-red conjugated) were added for 15 min 

at 37°C if required. Cells were then incubated with CD8-APC, CD38 FITC or other 

surface antibodies as required for 15 min at room temperature (RT). Cells were 

washed in FACS wash twice, resuspended in 100pl of permeabilisation solution (BD 

CytoFix/CytoPerm) and kept at 4°C for 30 minutes. They were then washed in Perm 

Buffer twice and resuspended in 100pl of Perm Buffer. Intracellular staining 

antibodies were added and the mixture kept in the dark at RT for 20 minutes. Cells 

were washed twice with Perm Buffer and then resuspended in 200pl of Perm Buffer 

and kept in the dark at 4°C until analysis. Samples were analyzed on either a Becton 

Dickinson FACSCalibur, or Dako CyanADP. 

CD107a/b staining of clones 

This was performed as previously described(237). Peptide pulsed/unpulsed B cells 

were incubated with T cell clones as described above with the addition of 2pl of both 

CD107a FITC and CD107b FITC to each well. This is necessary due to the transient 

expression of CD107a/b after stimulation. Monensin was added at 1 hour - the 

remainder of the protocol is identical to that described above. 
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TCR Vß antibody staining 

Approximately 50000 cells of aT cell clone were placed in a V-bottomed 96 well 

plate and pelleted by centrifugation. The supernatant was pipetted off and 2pl of the 

appropriate human V(3 antibody (raised in mice - Immunotech, France) added to the 

cells. After 20 minutes at room temperature the cells were washed twice with FACS 

buffer and the supernatant pipetted off. 5Nl of a1 in 20 PBS dilution of rabbit-anti- 

mouse-IgG FITC antibody (BD biosciences, USA) was added and the cells left in the 

dark for 20 minutes at room temperature before washing twice in FACS buffer. Cells 

were then fixed and analysed as above. 

Tetramer decay assay 

Tetramer decay assays give an indication of the relative avidity of two or more clones 

for a given tetramer. Clones are stained with tetramer but rather than fixing are then 

incubated with an excess of a competing ligand - either the same tetramer bound to a 

different marker (e. g. APC)(238) or an antibody capable of blocking tetramer 

rebinding. As the original tetramer vacates the TCR its place is taken by the 

alternative ligand and it cannot rebind. Comparing the fall in fluorescence intensity 

between clones allows a crude assessment of relative avidity - the faster the fall, the 

lower the avidity. Such assays have been found to correlate with functional avidity 

measured by such surrogates as cytolytic function(238). Cells from a CTL clone were 

incubated with PE-labelled tetramer for 40 minutes at 4°C. The cells were washed 

twice and resuspended in 50µL of buffer. 2µL of this suspension was added to 100µL 

of PBS and analysed by flow cytometry. Either a 5-10 times excess of identical 

tetramer conjugated to a different label, or an excess of antibody known to block 
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tetramer binding (DK25, Dako) was then added to the remaining cell suspension. 2µL 

of this reaction was removed periodically, added to 200µL of PBS and analysed on a 

Cyan ADP flow cytometer. The fraction of positive cells was defined as the 

percentage of cells falling above a gate at which 90% of cells were positive at time 0. 
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CHAPTER 3 PRODUCTION OF NOVEL HLA CLASS I 
TETRAMERS 

Introduction 

The development of tetrameric synthetic HLA-peptide complexes revolutionised the 

study of certain aspects of immunology(239). Tetramers consist of 4 synthetic HLA 

molecules - monomers. Each monomer consists of a synthetic heavy chain and 132- 

microglobulin complexed with the peptide antigen of interest. Heavy chains are 

derived from cloned wild-type cDNA modified by substitution of the transmembrane 

and cytosolic regions with a sequence encoding the BirA biotinylation enzyme 

recognition site, as previously described (240). Biotin is added at this point using the 

BirA enzyme. The fluorochrome used to label the monomer has 4 biotin binding sites 

thus allowing it to bind 4 monomers when conjugated: the tetramer. Their 

development has allowed the detection, enumeration, collection and phenotypic study 

of cells recognising specific antigens. 

Just as in vivo the HLA molecule is bound by both the TCR and the CD4 or CD8 

molecule, so too are tetramers when staining a cell that recognises them. It has been 

demonstrated that modification of the HLA molecule's CD8 binding region in a 

manner that abrogates CD8 binding allows the generation of tetramers that bind only 

cells demonstrating a high affinity interaction at the TCR(241,242). This chapter 

describes the generation of novel tetramers - both those based upon the wild-type 

HLA sequence and those modified in their CD8 binding regions for the purpose of 

detecting high affinity antigen specific cells recognising previously described 
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epitopes. These epitopes are located within NS3, restricted by A* 11(189) and 

B*07(187). The A*11 epitope differed between DEN-1 (GTSGSPIINR) and DEN-2 

(GTSGSPIIDK), with DEN-3 and -4 possessing identical sequences (GTSGSPIVNR). 

The B*07 epitope differed between DEN-1 (APTRVVASEM) and DEN-2,3 and 4 

(APTRWAAEM). 

Method 

Modification of existing constructs by site-directed mutagenesis 

Existing plasmids containing the sequence for the heavy chain monomers of 

B*070201, B*070501 and A* 110101 were used as templates, modified to produce 

monomers of B*070501, B*070501 CD8 non-binding and A* 110101 CD8 non- 

binding respectively. The original sequences and sites of the changes required are 

illustrated in Figure 20, Figure 21 and Figure 22. The existing B*0702 tetramer did 

not work well with samples from Viet Nam. This was thought to be due to the 

commonest Vietnamese subtype being B*0705. The alignment of these 2 subtypes 

(Figure 20) illustrates a single difference - the aspartic acid of 0702 is an asparagine 

in 0705. This occurs in a key binding region. Making this single amino 

acid/nucleotide change would increase the chances of detecting antigen specific cells. 

Producing CD8-non-binding tetramers for both A* 1101 and B*0705 required the 

introduction of a mutation in the region of amino acids 227 and 228 (the alpha-3 

domain of the MHC molecule) as illustrated in Figure 21 and Figure 22. Changing the 

DT (aspartic acid, threonine) found here to KA (lysine, alanine) has been shown to 

eliminate CD8 binding to the HLA molecule(241) and such tetramers reliably detect 

high avidity cells(242). 
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-21 -11 -1 10 20 30 40 50 60 70 

3.070201 MLVM APRTv: '"S AALALTEIWA GSHSMRY: YT SVSRPGRGEP RFISVGYVDC TQFVRFDSDA ASFREEPRAP WIEQEGPEYW 0600010KAQ 

3.070501 ____ __________ __________ __________ __________ __________ __________ _ _________ __________ ---------- 

go 90 100 110 120 130 140 150 160 170 

B"070201 AQTDRESLRN :. RGYY5'QSEA GSKTLOSMYG CCVGPOGRLL RGHDQYAYDG KCY: ALNED:. RSWTAADTAA QITQRKWEAA REAEQRRAYL EGECVEWLRR 

B"070501 __________ __________ __________ __________ ___Y______ ___ 

160 190 200 210 220 230 240 250 260 270 

B"070201 YLENGKDKLE RADPPKTHVT HHPIS0KEAT LRCWALCFYP AEIT01WQRD GEDQTQDTEL VETRPAGDRT FQKWAAWVP SGEEQRYTCH VQHEGLPKPL 

B"070501 __________ __________ __________ __________ __________ _______ 

280 290 300 310 320 330 340 

0.070201 TLRWEPSSQS TVPIVGIVAG LAVLAVVVIG AWAAVMCRR KSSGGKGGSY SQAACSDSAQ GSDVSLTA 

B"070501 __________ _I________ __________ __________ __________ _________ 

-20 -15 -10 -5 1 

B"070201 ATC CTG GTC ATC GCG CCC CGA ACC GTC CTC CTG CTG CTC TCG GCG CCC CTG GCC CTG ACC GAG ACC TGG GCC GIGC 

8.070501 ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ _ 

5 10 15 20 25 

8.070201 TCC CAC TCC ATG AGC TAT TIC TAI ACC fCC' GIG TCC CGG CCC GGC CGC COG GAG CCC CGC TTC ATC TCA GTG GGC 

B"070501 ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ __ 

30 35 40 45 50 

8.070201 TAG GTG GAG CAC AC( CAG TTC GTG AGG TTC GAG AGC GAG GCC GCG ACT CCG ACA GAG GAG CCG CGG GCG CCG SGG 

9.070503 ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ __ 

55 60 65 70 75 

5.070201 ATA GAG CAG GAG GGC CCG GAG TAT TGG GAC CGG MC ACA CAC ATC TAG MG GCC CAG GCA CAG ACT GAG CGA GAG 

8.070501 ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ _ __ ___ _ ___ ___ ___ ___ ___ --- 

80 85 90 95 100 

B"070201 AGC CTG GGG AAC CTG CGC GGC TAG TAG AAC CAG AGC GAG GCC GIGG TCT CAG ACC CTG CAC , AGC ATG TAC CCC TGC 

8.070501 ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ _I__ ___ ___ ___ ___ ___ __ _ ___ ___ ___ --- 

105 110 115 120 125 

3.070201 GAG GTG GGG CCG GAC GGG CGC CIG CTC CGC GGG CAT GAG GAG TAC GCC TAC GAG GGC AAC GAT TAG ATC GCC CTG 

B"070501 ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ A__ ___ ___ ___ ___ ___ ___ ___ ___ 

130 135 140 145 150 

8.070201 AAC GAG GAC CT(: CGC TCC TGC ACC GCC GCG GAC ACC GCG GCI CAG ATC ACC GAG CGC AAG SGG GAG GCG ((CC CGT 

8.070501 ___ _ ___ ___ ___ ___ ___ ___ ___ _ __ ___ _ 

155 160 165 170 175 

3.070201 GAG GCG GAG CAC COG AGA GCC TAC CTG GAG GGC GAG TC, C GTI GAG TGG CTC CGC AGA TAG CTG GAG MC GGG MG 

8.070 S01 _ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ __ ___ _ __ ___ _ ___ ___ --- 

180 185 190 195 200 

8.070201 GAC AAG CTG GAG CGC GCT GIAC CCC CCA AA G ACA CAC GIG ACC CAC CAC CCC ATC TCT GAC CAT GAG GCC ACC CTG 

8.070503 ___ ___ ___ ___ ___ ___ _. _ _ _ __ _ ___ ___ ___ _ ___ __ _ ___ ___ ___ --- 

205 210 215 220 225 

3.070201 AGG TCC TGG GCC CTG OCT TTC TAC CCT GCG GAG ATC ACA CTG ACC SGG CAC CGG GAT GGC GAG GAC CM ACT CAG 

8.070501 ___ ___ ___ ___ ___ ___ _ ___ ___ ___ ___ __ ___ ___ _ ___ ___ ___ ___ ___ ___ --- 

230 235 240 245 250 

8.070201 GAC ACT GAG CTT GIG GAG ACC ACA CCA GCA GGA GAT AGA ACC TIC CAG MG TGG GCA GCI GTG GTG GIG CCS TCT 

8.070503 _ ___ __ ___ ___ ___ ___ ___ ___ ___ ___ ___ _ 

255 260 265 210 275 

9.070201 GGA GM GAG CAG ACA TAC ACA TCC CAT CIA CAC CAT GAG GCG CTG CCG MG CCC CTC ACC CTG AGA TW GIAG CCG 

8.070501 ___ ___ ___ ___ ___ ___ __ ___ ___ _ ___ ___ ___ ___ ___ ___ _I__ -- 

280 285 290 295 300 

3.070201 TCT TCC CAG TCC ACC GTC CCC ATC GIG GGG ATT GTT OCT GCC CTG GCT GTC CIA GCA GTT GTG GTC ATC GGA GC? 

8.070501 ___ ___ ___ ___ ___ A__ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ 

305 310 315 320 325 

3.070201 GTG GIC GCT OCT GTC; ATG TGT ACC AGG MG AGT SCA GIGI GGA AM GGA GGG AGO TAG ICS CAG GCT GCG TIGC ACC 

8.070501 __ ___ ___ ___ _I_ _ ___ _ __ _ ___ ___ __ _ __ _ ___ ___ _I__ 

330 335 340 

3.070201 GAC AGT GCC CAG GGC TCT GAT CTG OCT CTC ACA CCI TGA 

8.070501 ___ ___ ___ ___ ___ ___ ___ ___ _ -- 

Figure 20. Alignment of B*070201 and B*070501 amino acid (upper panel) and nucleotide (lower 

panel) sequences. The change required to produce the latter from the former is indicated in red. 
Sequences from the IMGT/HLA database. 
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-21 -11 -1 10 20 30 40 50 60 20 
A-110101 MAVM APRTLLLLLS GALALTQTWA GSHSMRYFYT SVSRPGRGEP RFIAVGYVDD TQFVRFDSCA ASQRMEPRAP WIEQEGPEYW CQET31VKAQ 

80 9J 100 110 120 130 140 150 160 170 
A-110101 SQTDRVDLGT LRGYYIQSEC GSH0IQIMYG CCVGPDGRFL RGYRQDAYDG KDYIALNEDL RSWTAADMAA 010KRKWEAA HAAEQQRAYL EGRCVEWLRR 

180 190 200 210 220 230 240 250 260 270 
A-110101 YLENGKE%Q RTCPPKTHMT NHPISDHEAT LRCWALGFYP AEITLTWQRD GEDQTSCTEL VETRPAGDGT FQKWAAVVVP SGEEQRTTCH VQHEGLPKPL 

280 290 300 310 320 330 340 350 
A-110101 TLRWELSSQP TIPIVGIIAG LVLLGAVITG AVVAAVS%RR KSSDRKGGSY TQAASSCSAQ GSDVSLTACK V 

-20 -15 -10 -5 1 
A"110101 ATG GCC GTC ATG GCG CCC CGA ACC CTC CTC CTG CTA CTC TCG GGG GCC CTG GCC CTG ACC CAG ACC TGG GCG GIGC 

0 5 20 25 
A"110101 TCC CAC TCC ATG AGG TAT TTC TAC ACC TCC GTG TCC CGG CCC GGC CGC GGG GAG CCC CGC TTC ATC GCC GTG GGC 

30 35 40 45 50 
A"110101 TAC GTG GAC GAG ACG CAG TTC GTG CGG TTC GAG AGC GAG GCC GCG AGC GAG AGG ATG GAG CCG CGG GCG CCG TGG 

55 60 65 70 75 
A"110101 ATA GAG CAG GAG GGG CCG GAG TAT TGG GAC CAG GAG ACA CGG AAT GTG AAG GCC CAG TCA CAG ACT GAC CGA GTG 

80 85 90 95 100 
A"110101 GAC CTG GGG ACC CTG CGC GGC TAC TAC AAC CAG AGC GAG GAC GILT TCT GAG ACC ATC CAG ATA ATG TAT GGC TLC 

105 110 115 120 125 
A"110101 GAG GIG GGG CCC GAC GGG CGC TTC CTC CGC GGG TAG CGG CAG GAG GCC TAC GAC GGC AAG GAT TAG ATC GCC CTG 

130 135 140 145 150 
A-110101 AAC GAG GAC CTG CGC TCT SGG ACC GCG CCG GAC ATG GCA GCS CAG ATC ACC AAG CGC AAC ICC GAG GCG GCC CAT 

155 160 165 170 175 
A-110101 GGG GCG GAG CAG CAG AGA GCC TAG GTG GAG GGC CGG TGC GTG GAG TGG CTC CGC AGA TAC CTG GAG AAC GGG GAG 

180 185 190 195 200 
A-110101 GAG ACG CTG CAG CGC ACG GIAC CCC CCC AAG ACA CAT ATG ACC CAC CAC CCC ATC TCT GAG CA T GAG GCC ACC CTG 

205 210 215 220 225 
A"110101 AGG TGC TGG GCC CTG GGC TIC TAG CCT CCG GAG ATC ACA CTG ACC TGG CAG CGG GAT GGG GAG GAG CAG ACC CAG 

230 235 240 245 250 
A"210101 GA( ACC; GAG CTC GIG GAG ACC AGG CCT GCA GGG GAT GGA ACC TTC CAG AAG TGG GCG GCT GTG GTG GTG CCT TCT 

255 260 265 270 275 
A"110101 GGA GAG GAG CAG AGA TAC ACC TGC CAT GTG CAG CAT GAG GGT CTG CCC AAG CCC CSC ACC CTG AGA TGG CI AG CTG 

280 285 290 295 300 
A-110101 TCT TCC GAG CCC ACC ATC CCC ATC GTG GGC ATC ATT GCT GGC CTG GTT CTC CTT GGA GCT GIG ATC ACT GGA GCT 

305 310 315 320 325 
A-110101 GTG GTC GCS GCC GTG ATG TGG AGG AGG AAG ACC TCA GIAT AGA AAA GGA GGG AGT TAG ACT CAG GCI GCA AIGC AGT 

330 335 340 

A"110101 GAG AGT GCC GAG GGC TCT GAT GTG TCT CSC ACA GCT TGT AAA GITG IGA 

Figure 21. The amino acid (upper panel) and nucleotide (lower panel) sequence of HLA 
A*110101. The wild-type sequence is illustrated with the region into which the mutation was 
introduced to produce the CD8-non-binding version highlighted in red. Sequence from the IMGT/HLA 
database. 

106 



-21 -11 -1 10 20 30 40 50 60 20 

B"070501 51205 APRIV222: s 6A-ETWA c, S4SMRYFYT SVSRPGRGEP RFISVGYVDC TQFVRFOSDA ASPREEPRAP WIEQ-. GPEYW DRNTQIYKAQ 

80 90 100 110 120 130 140 150 160 170 

5.070501 AQTDRESLRN LRGYYNQSEA GSH: LQSYYG CCVGPCGRL2 RGHNQYAYDG KDYIAL000L RSWTAACTAA QITQRKWEAA REAEQRRAY2 EGECVEWLRR 

180 190 200 210 220 230 240 250 260 270 

8.070501 YSENGKD8IE RADPPKTHVT HHPISDHEAT 2RCWALGFYP 811120WQRD GEDQTQDTEL VETRPAGORT FQKWMVVVP SGEEQRYTCH VQHEGLPKPL 

280 290 300 310 320 330 340 

B"070501 i1. RWEPSSQS 2IPIVGIVAG IV_AVVVIG AVVMVYCRR KSSCGKGGSY SQAACSDSAQ GSDVSLTA 

-20 -15 -10 -5 1 

B"070501 ATG CTG GTc ATG GCC III CGA ACC GTC CTC CTG CTG CTC TCG GCG GCC CTG III CTG ACC GAG ACC TGG GCC GIGC 

5 10 15 20 25 

8*070501 TIC CAC TIC ATG AGG TAT TTC TAC ACC TIC C, TG TIC CGG III GGC CGC GGG GAG CCC CGC TTC ATC TCA GTG GGC 

30 35 50 45 50 

3.070501 TAC GTG GAC GAG ACC IAG TTC GTG AGG TTC CAC AGC GAC GCC GCG AGT CCG AGA GAG GAG CCG CGG GCG CCG TIC 

55 60 65 70 75 

3.070501 ATA GAG GAG CAC GGG CCG GAG TAT TGG CAC GGG MC ACA CAG ATC TAC AAG GCC CAL GCA CAG ACT GAC CGA GAG 

60 85 90 95 100 

B-070501 AGC CTG CGG AAC CTG III GGC SAC TAC MC CAG AGC GAG GCC GIG G TIT CAC AC C ITC CA G AGC ATC TAC GGG TGC 

105 110 115 120 125 

9-070501 CAC GTG GGG CCG GAC GGC'. CCC CTC CTC CGC GGG CAT MC CAG TAG GCC TAC GAC GGG AAG GAT TAG ATC GCC CTG 

130 135 140 145 150 

9-070501 AAC GAG GAC CTG CGC TCC TIC ACC CCC ccc GAC ACG GCG GC: CAG ATC ACC GAG CGC MG SGG GAG GCG GCC COT 

155 160 165 170 175 

3-070501 GAG. I'll GAG CAI CCG AGA GCC TAC CTG GAG GCC GAG TGC GTG GAG TGG CTC CGC AGA The CTG GAG MC GGG MG 

180 185 190 195 200 

B"070501 GAC AAG CTG GAG CGC GCT GIAC CCC CCA MAG ACA CAC GTG ACC CAC CAC III ATC TCT GAC CAT GAG III ACC CTG 

205 210 215 220 225 

5.070501 AGG TIC TIC III CT(; GGT TTC TAC CCT CCG CAC ATC ACA CTG ACC TOG CAG CGG GAT CGC GAG GAC CM ACT CAG 

230 235 240 245 250 

3-070501 GAC ACT GAG ITT GTG GAG ACC ACA CCA GCA GGA GAT AGA ACC TIC CAG MG TGG GCA GCT GIG GIG GIG CCT TIT 

255 260 265 270 275 

8.070501 GGA GM GAG CAC AGA TAC ACA TIC CAT CIA CAG CAT GAG GGG CTG CCG MG CCC CSC ACC CTG AGA TIC GIAG CCG 

260 285 290 295 300 

B-070501 TIT TIC CAG TCC ACC ATC III ATC GTG GGC ASS GIS GCT GC, C CTG GCT GTC CIA CIA GTT GIG GTC ATC GGA GCI 

305 310 315 320 325 

3-070501 GTG GTC GCS OCT GIG ATG TAT AGG AGG MG ACT TCA GILT GGA AM GGA GGG AGC TAC TIT CAG GCT GCG TIGC AGC 

330 335 340 

B-070501 GAG ACT III CAG GG( TCT ((AT GTG TIT (: TC ACA CCT IGA 

Figure 22. The amino acid (upper panel) and nucleotide (lower panel) sequence of HLA 
B*070501. The wild-type sequence is illustrated with the region into which the mutation was 
introduced to produce the CD8-non-binding version highlighted in red. Sequence from the IMGT/HLA 
database. 

pGMT7 plasmids containing the original templates were used to transform DH5a 

E. coli. The plasmid DNA was isolated using the QlAprep Spin Miniprep kit (Qiagen, 

Germany) and sequenced. Primers containing the desired mutation were designed 

(Figure 23), produced commercially by Invitrogen, UK and used in the QuikChange II 

kit (Stratagene, California, USA) according to the manufacturer's instructions. 

Briefly, the following were prepared on ice: 125ng of primer sense (S), 125ng of 
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primer antisense (AS), 5p1 of proprietary buffer, ipl of deoxyribonucleotide 

triphosphate 

A) B*0702 to B*0705 

Original sequence GGG CGC CTC CTC CGC GGG CAT GAC CAG TAC GCC TAC GAC GGC 

Primer S 5' -C CTC CGC GGG CAT AC CAG TAC GCC TAC- 3' 

Primer AS 5' -GTA GGC GTA CTG GT ATG CCC GCG GAG G- 3' 

B) B*0705 to B*0705 CD8 non-binding 
Original sequence GGC GAG GAC CAA ACT CAG GAC ACT GAG CTT GTG GAG ACC AGA 

Primer S 5' -GAG GAC CAA ACT CAG GAG CTT GTG GAG ACC- 3' 

Primer AS 5' -GGT CTC CAC AAG CTC CTG AGT TTG GTC CTC- 3' 

C) A* 1101 to A* 1101 CD8 non-binding 
Original sequence GGG GAG GAC CAG ACC CAG GAC ACG GAG CTC GTG GAG ACC AGG 

Primer S 5' -GAG GAC CAG ACC CAG GAG CTC GTG GAG ACC AGG- 3' 

Primer AS 5' -CCT GGT CTC CAC GAG CTC CTG GGT CTG GTC CTC- 3' 

Figure 23. l'he portion of the original sequence and the primers required to introduce the 
necessary changes using site directed mutagenesis. A) Producing B*0705 from 0702 requires a 
changes from aspartic acid (D) to asparagine (N). D is encoded by GAC, N by AAC. B) Producing 
B*0705 CD8 non-binding molecules requires changing DT (GACACT) to KA (AAAGCC). C) 
Producing A* 1101 CD8 non-binding molecules requires changing DT (GACACG in this case) to KA 
(AAAGCC). 

(dNTP) mix, dsDNA template in different concentrations from 10 to 100ng, 1 Nl Pfu 

Ultra polymerase and ddH20 to a volume of 40pl. Tubes were then run in the 

following polymerase chain reaction programme: 

1.95°C 30 seconds 

2.95°C 30 seconds 

3.55°C 1 minute 

4.68°C 4 minutes Back to step 2- 12 times. 
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Control tubes were also run using a proprietary pWhitescript plasmid. 1 pl of Dpnl 

enzyme was added to each tube, mixed well, and then left at 37°C for 1 hour to digest 

parental DNA. The mutated plasmids were then used to transform XL-Blue cells 

(Stratagene) using a heat-shock technique as per the manufacturers instructions. 

Transformed cells were inoculated onto LB agar plates containing ampicillin, 

isopropyl thiogalactoside (IPTG) and 5-bromo-4-chloro-3-indolyl-beta-D- 

galactopyranoside (X-Gal) and incubated at 37°C overnight. 10-20 colonies were then 

selected from successful plates and used to inoculate both a 15m1 tube containing 4ml 

LB/ampicillin culture media and a PCR tube containing 20pl of water. To the PCR 

tube was added 3pl of proprietary buffer, 3pl of 2.5mM dNTP, 0.6pl 0.1M DTT, 3pl 

of 5pM pGMT7 sense primer (T7: TAATACGACTCACTATAGGG), 3pL of 5pM 

pGMT7 antisense primer (0X281: AGCAAAAAACCCCTCAAGACCCG), 7.3pl of 

ddH2O and 0.1 pl of SuperTaq polymerase (HT Biotechnology, Cambridge, UK). They 

were run using the following PCR programme: 

1.94°C 10 minutes 

2.94°C 30 seconds 

3.54°C 30 seconds 

4.72°C 75 seconds Back to step 2- 35 times. 

5.72 °C 10 minutes 

6 4°C Hold 

A fraction of each reaction was then mixed with gel loading buffer (Eurogentec, 

Belgium) and run on a 0.8% agarose electrophoresis gel looking for the 800 base pair 

product. Those samples with an 800 base pair product were grown in the 
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LB/ampicillin broth overnight and the plasmids extracted by Miniprep for sequencing. 

The sequences were reviewed and the colony with the highest quality sequence and 

containing the desired mutation selected as the expression template. This plasmid was 

used to transform BL21 cells (Stratagene, California, USA) using a heat shock 

technique. These cells were in turn inoculated onto LB/Ampicillin agar plates and a 

colony selected the following day to grow for protein expression and refolding as 

described below. 

Expression of monomers and ß2-microglobulin 

BL21 cells containing the plasmid with either the heavy chain or 02-microglobulin 

sequence were grown overnight in 250mis of LB-ampicillin at 37°C. 50m1 of this was 

inoculated into 11 of low salt LB/ampicillin culture media the following morning and 

incubated with shaking at 37°C. The optical density as compared to sterile LB media 

was checked regularly. Once an OD of over 0.6 was reached (indicative of the phase 

of exponential growth - took around 3 hours) 0.5m1 of iM IPTG was added to induce 

protein expression. 6 hours later the cells were spun down at 4°C and washed in sterile 

phosphate buffered saline (PBS). This suspension was sonicated (MISONIX XL2020 

Sonicator with titanium 0.5 inch horn) in a glass beaker on ice to prevent sample 

heating until the solids were lysed and the mix ran like water. This was centrifuged at 

15000 rpm for 20 minutes in a precooled 4°C centrifuge. Supernatant was discarded 

and solids washed in a Triton-based wash, resuspended in a glass homogeniser and 

then spun once again at 15000 rpm for 20 minutes. This was done 3 times. After the 

final wash the solid material was resuspended in Triton-free wash solution. This was 

then spun at 15000 rpm for 10 minutes and the solid material resuspended in a urea 
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based protein-solubilisation mix. This was left rolling overnight at 4°C to allow the 

protein to dissolve. Insoluble remnants were removed by centrifugation and the 

monomer protein-containing supernatant frozen at -80°C. Protein concentration was 

assessed using the Bio-Rad colormetric protein assay according to the manufacturer's 

instructions. 

Refolding the heavy chain, ß2-microglobulin and peptide and isolating 

the monomer 

10mg of ß2-microglobulin was thawed, placed in a universal container and 6 ml of 

refold buffer (see chapter 2) added slowly at 4°C whilst stirring constantly to avoid 

precipitation. This was added directly to 500ml of refold buffer at 4°C. I Omi of refold 

buffer was added slowly with shaking to a universal tube containing 30mg of heavy 

chain and 10mg of the appropriate peptide epitope (resuspended in around 200pl 

DMSO). This mixture was then added to the 02-microglobulin/refold buffer mix. This 

was left stirring at 4°C for 48 hours. Refolded monomeric complexes were then 

concentrated using a nitrogen pressured Amicon stir cell concentrator with a 10000 

MW filter (Millipore, Massachusetts, USA) to achieve a final volume of around 5m1. 

Buffer exchange was then performed using PD 10 columns (Amersham Biosciences) 

and BirA buffer (lml 2M Tris, 0.5m1 5M NaCal, 187.5. i1 4M magnesium chloride, 

made up to 100m1 with H20). Buffer exchange produced a final volume of 7mls and 

this was biotinylated overnight through the addition of Bir A enzyme (Avidity - 875p1 

Biomix A, 875p1 Biomix B, 5pl Bir A enzyme, 100pl dBiotin) and the resulting 

biotinylated monomer purified by FPLC (Amersham biosciences) using a G75 

superdex column. The refolded complex eluted at around 150m1 (see example trace in 
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Figure 24). The fraction containing the refolded monomer was concentrated to a 

volume of 1ml using a 10000 MW centrifugal concentrator (Millipore) and the final 

protein concentration measured using a colormetric based assay (Bio-Rad 

laboratories). 0.5p1 of 0.5M EDTA and lpl of each of two protease inhibitors, 

leupeptin and pepstatin (Sigma), were added to each lml of monomer before dividing 

into 50pg aliquots and freezing at -80°C. 
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Figure 24. Example FPLC output, in this case a B*0705 monomer. The Y-axis indicates the 
presence of protein as detected by UV laser. The X-axis indicates the volume of FPLC buffer that has 

passed through the column in mis. 

Labelling tetramers 

A new tetramer required titration with potential fluorochromes. The concentration of 

flurochrome required to bind all monomer but not have unbound conjugate was 

determined through a modified enhanced chemiluminescence (ECL) assay. Briefly, 
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50pg of tetramer was thawed and mixed with titrations of fluorochrome and rolled in 

the dark at 4°C for 1 hour. 1 p1 of each would then be placed on Hybond protein 

binding paper (Amersham biosciences, USA) together with 1 p1 of monomer, 1 p1 of 

biotin (Mabtech, Sweden) as a positive control, and 1 pl of water as a negative control. 

Once dry the paper was covered with 4% powdered milk solution for 15 minutes with 

shaking to occupy remaining protein binding sites. The paper was washed 3 times 

with PBS/0.05% Tween and then covered with 1: 15000 horseradish peroxidise (BD 

biosciences, USA) in PBS for 15 minutes with shaking. The paper was washed 3 

times with PBS/0.05% Tween and then covered with a 50: 50 mix of ECL reagents A 

and B (Amersham biosciences). The paper was drained after 1 minute and then 

exposed to X-ray film in a dark room. Spots giving a signal still had unoccupied biotin 

and were not sufficiently saturated. The minimum concentration of fluorochrome 

causing loss of signal was used for further conjugations. 

Thereafter when required an aliquot was thawed and combined with the relevant 

fluorochrome - either phycoerythrin (PE)-labelled, Quantum red-labelled (Sigma) or 

allophycocyanin (APC)-labelled streptavidin (Molecular Probes) at a 4: 1 molar ratio 

to form tetramers. To achieve maximal saturation the fluorochrome would be added 

to the monomer in 4 portions every 30 minutes and then left rolling in the dark 

overnight at 4°C. Conjugated tetramers were kept at 4°C. The tetramers were 

conjugated with different fluorochromes to allow co-staining of T cell populations. 
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Testing the tetramers 

The use of the CD8-non-binding tetramers is described below. The B*0705 tetramer 

was refolded with peptides representing a previously described epitope(187) that is 

the same for DEN-2,3, and 4 (APTRVVAAEM) but differs for DEN-1 

(APTRVVASEM). The monomer was conjugated with APC and the tetramer used to 

stain 5 B0705 positive patients together with CD38 FITC and CD8 PE-Cy7 as 

described above. 2 samples were taken within the first week of illness and 3 from 

between 14 and 21 days (Figure 25). 

BC411 unknown DHF II 4 

DF163 unknown DHF III 3 

BC385 D2 DHF II 14 

BC389 D2 DHF II 14 

BC403 D4 DHF II 21 

Figure 25. B*0705 positive patient's clinical data. 

No patient demonstrated any DEN-1 positive populations (data not shown). However 

all patients had small DEN-2/3/4 tetramer-positive populations. Tetramer-positive 

populations from samples taken within the first week of illness had higher levels of 

CD38 expression (Figure 26). This increased level of activation has been observed in 

patients recognising other dengue tetramers and is discussed further below. 
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Figure 26. PBMC from B*0705 positive patients stained with B*0705 tetramers and CD38 FITC 
and CD8 PE-Cy7. These plots are gated on lymphocytes. BC411 and DF163 samples were taken 
within the first 5 days of admission the remainder are from samples taken 2-3 weeks after admission. 

Discussion 

Several factors influence the avidity of the TCR/peptide-MHC class I interaction. 

These include the respective density of TCR on the target cell and peptide-MHC on 

the lymphocytes, the stability of the complex that is formed between them(243), and 

the presence of CD8 together with the TCR in the immune synapse(244). Generally 

the intensity of cell staining by tetramers has been considered a "surrogate marker" of 

TCR affinity(245). This however may be influenced by other factors such as the 

density of TCR expression on the cell surface and tetramer internalisation(246). 

As described above the process of antigen recognition involves engagement of both 

TCR and either the CD8 or CD4 co-receptor to the peptide-MHC complex. CD4 

molecules do not appear to enhance the stability of this interaction(247) and appear to 

be more involved with the intracellular activation pathway than they do stabilisation 

of the extracellular trigger. In contrast despite the relatively low affinity of the class 
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I/CD8 interaction(248) compared to that of the class I/TCR interaction (which is to be 

expected if the CD8 interaction alone is not sufficient to activate the T cell) it would 

appear that CD8 plays an important role in stabilising this complex. Class I tetramer 

staining may be blocked by certain anti-CD8 antibodies(249,250) and it has been 

demonstrated that the introduction of mutations in the CD8 binding portion of the 

MHC molecule aimed at preventing the CD8 interaction enables the production of 

tetramers that reliably stain high avidity antigen-specific CTL(24 1). 

The mutation(241) introduced into the tetramers described in this chapter allows the 

detection and quantification of antigen-specific CTL of sufficiently high 

TCR/peptide-MHC avidity that they do not require the additional component of the 

CD8 interaction. Such high avidity cells have been shown to be important in the 

clearance of viral infection but their affinity for antigen appears to render them more 

vulnerable to activation induced cell death(251,252). It is possible that just as such 

high affinity CTLs are important in viral clearance they may play a similarly 

significant part in the generation of immunopathology (discussed in detail above). The 

C138-non-binding tetramers described here will allow the high avidity fraction of 

antigen-specific CTL populations to be tracked throughout disease to convalescence 

and perhaps even allow such observations to be related to disease severity. 
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CHAPTER 4 HIGH AVIDITY CROSS-REACTIVE CD8+ 
CYTOTOXIC T-CELLS IN THE 
PATHOGENESIS OF ACUTE SECONDARY 
DENGUE VIRUS INFECTION 

Introduction 

Scott Halstead first demonstrated that the vast majority of cases of severe dengue 

disease were occurring in those patients experiencing secondary infection - 

individuals remained immune to the viral serotype causing their first infection but 

were at risk of severe disease on infection with heterologous DEN serotypes (1,7). As 

discussed above antibody dependent enhancement has been widely accepted as a good 

explanation of the link between immunological cross-reactivity and disease 

pathogenesis and there is evidence to support this hypothesis. However additional 

mechanisms are likely to be involved to account for the complex clinical phenotype of 

dengue disease. Cross-reactive cellular immune responses to dengue virus have been 

linked with pathogenesis (189,222,253) and there is great complexity in the response 

of serotype cross-reactive memory CTL to heterologous variant peptides. It is likely 

that cross-reactive memory T cells might demonstrate distinctive phenotypic features 

(e. g. altered cytokine profiles) that could contribute to induction of plasma leakage 

(222-224). Tetramers provide a powerful means of assessing the cross-reactivity and 

avidity of CTL populations from dengue patients and relate this to their phenotype. 

This chapter concerns work that sought to test the hypothesis that cross-reactive CTLs 

derived from memory populations generated by primary infection had a distinctive 

phenotype and might contribute to the pathology of severe secondary infection. 
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Previous work 

Dr Tao Dong, working in the Oxford MRC Human Immunology Unit and the Oxford 

University Clinical Research Unit, Ho Chi Minh City, Viet Nam, studied the CD8+ T 

cell responses to a previously identified immunodominant NS3 epitope (Figure 27, 

and referred to below as the "GTS epitope") presented by HLA-A* 11 (189) - the 

most common HLA allele in Viet Nam. This epitope was chosen as it varied between 

three of the four serotypes. Tetramers assembled using peptides representing it could 

be used to assess the presence and extent of serotype-cross-reactivity demonstrated by 

CTLs from dengue patients (termed the "GTS tetramers" below). Her work provided 

the foundations for the material that follows in this chapter and is summarised briefly 

here (p. 118-126). 

Figure 27. An immunodominant HLA-Al I epitope from the dengue virus NS3 protein. 

Patients recruited 

20 HLA-A* 1101 positive dengue patients were screened for responses to the A* 11 

epitope given above. 6 individuals with confirmed infecting dengue serotypes, 

epitope-specific responses detected either acutely or in convalescence and known to 

be experiencing secondary infection (Figure 28) were recruited for these studies. 3 of 

these (BC307, MD856 and MD893) had specific responses in both acute and 

convalescent samples. 
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BC307 17 unknown DHF 6 

MD856 11 D4 DF 5 

MD893 14 D4 DF 3 

MD907 19 D3 DF 3 

MD899 9 D4 DF 4 

MD881 14 DI DF 2 
Figure 28. Cl inical data of those patients involve d in this study. 

Limitations of ex vivo tetramer staining 

Ex vivo PBMC samples were double-stained with tetramers assembled with different 

epitopes and labelled with different fluorochromes to allow assessment of CTL cross- 

reactivity. The dengue 2 epitope varies between viral strains. The GTSGSPIIDK 

variant was used in these studies. Great variation was found in the fraction of tetramer 

positive cells within acute samples analysed ex vivo. Patients presenting to hospital 

early (mostly children) had lower frequencies than those presenting later (usually 

adults). One adult patient (BC307) demonstrated large ex vivo tetramer positive 

populations acutely (Figure 29 - panel A) when approximately 20% of tetramer 

positive cells were cross-reactive, recognising both the pD2 and pD3/4 tetramers. This 

population was not detectable in the convalescent (day 21) sample. The majority of 

patients however showed much less significant staining, a phenomenon that may be 

related to acute down-regulation of cell-surface TCR expression [4]. 
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Figure 29. A) Ex vivo pD2 and pD3/4 tetramer staining of PBMC from patient BC307. PBMCs from 
BC307 were stained with A* 11 pD3/4 and pD2 tetramers and CD8 antibody. Plots are gated on CD8 

positive lymphocytes. Most cells in the acute sample (left) are specific for pD3/4 but there is a 
significant population cross-reactive with this and pD2. Only pD3/4 specific cells are detected in 

convalescence (right). B, C, D) Highly cross-reactive T cells can be expanded from acute but not 
convalescent PBMC from dengue patients. Short term CTL lines were generated by pulsing PBMC 

with 2µM of pD2 and stained with pD2 and pD3/4 tetramers on either the 14th (BC307) or 20th 
(MD856, MD893) day after stimulation. The highly cross-reactive populations apparent in the acute 
sample are not detectable in the convalescent sample taken one month later when more serotype 
specific populations have appeared. Data courtesy of Dr Tao Dong. 
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Generation of short-term CTL lines results in expansion of epitope- 

specific cell populations 

To assess the fine specificities of dengue-specific CTL with limited cell numbers, and 

in the face of this likely TCR down-regulation short-term CTL lines were grown by 

stimulating PBMCs with each of the A* 11 NS3 epitope variants. Such stimulations 

produced large expansions in tetramer positive populations. On day 20 after 

stimulation CTL were double-stained as above. At all time-points stimulation with the 

pD3/4 peptide resulted in the expansion of cells mostly specific for pD3/4 (data not 

shown). However stimulation with pD2 resulted in expansions of CTL binding both 

D2 and D3/4 tetramers equally well from PBMCs of four of the patients with acute 

DEN3 or DEN4 infection (MD893, MD856, BC307, MD881). 

Highly cross-reactive CTL can be expanded from acute, but not 

convalescent samples. 

The pattern of staining differed slightly in each patient but all 4 demonstrated 

expansions of highly cross-reactive cells from acute samples. CTL recognising both 

pD2 and pD3/4 were considered to be highly cross-reactive given their equal 

recognition of both tetramers despite significant sequence variation. CTL recognising 

pDl usually recognised pD3/4 -a reflection of their greater homology. Cells showing 

high cross reactivity between pD2 and pD3/4 always cross reacted with pD 1. 

Consistent with the ex vivo BC307 observation above, these highly cross-reactive 

CTL were undetectable in, and could not be expanded from the convalescent samples 

of patient MD893, MD856 and BC307 (Figure 29 - panels B, C and D) - no 

convalescent sample was available for MD881. Only CTL showing specificity for a 
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single serotype or limited cross-reactivity (i. e. strong binding of the tetramer folded 

with the peptide of one serotype, weak binding of the other) remained. There were 2 

patients in whom this phenomenon was not observed (data not shown): antigen 

specific cells could not be detected acutely in patient MD899 but partially cross- 

reactive populations recognising pD2 and pD3/4 were apparent by convalescence; 

patient MD907 had only serotype specific cells present acutely (pD2). 

Highly cross-reactive CTL express higher levels of CD38. 

Ex vivo staining of PBMC from patient BC307 demonstrated equally high levels of 

CD38 staining among all tetramer positive cells in the acute phase (Figure 30, panel 

A). By three weeks after the acute sample CD38 expression had fallen markedly. At 

this time point CD8+ cells recognising the two similar peptide variants, pD1 and 

pD3/4, were present (partially cross-reactive - figure 30, panel B) but cells cross- 

reactive between the more diverse peptides, pD2 and pD3/4 could not be detected 

(highly cross-reactive cells - Figure 29 panel A). CD38 expression was greater on 

those T cells recognising both pD 1 and pD3/4 (57% CD38 high - figure 30 panel D) 

than upon partially or non cross-reactive T cells (19% CD38 high - figure 30 panel 

Q. This suggests that highly cross-reactive T cell populations are more activated than 

cells exhibiting low levels of cross-reactivity. It is not clear why pD1-pD3/4 cross- 

reactive cells are present at 3 weeks and pD2-pD3/4 cross-reactive cells are not. It 

could be speculated that this highly cross-reactive latter group experiences even 

higher levels of activation resulting in activation induced cell death and clonal 

deletion. 
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Figure 30. Highly cross-reactive CTL are more activated than partially cross-reactive CTL 
Frozen PBMC from patient BC307 on day 21 of illness were stained with pD l and pD3/4 tetramers 
together with CD38 and CD8. (A) CD38 staining of the whole CD8+ population acutely and at day 21. 
(B) Lymphocytes gated on CD8+ tetramer+ cells and co-stained with pD1 and pD3/4 tetramers. Highly 
cross-reactive cells (R7) show higher levels of expression of CD38 (D) than partially cross-reactive 
cells (C). Data courtesy of Tao Dong. 
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Cross-reactive clones produce greater levels of inflammatory cytokines 

and kill more effectively at low level stimulations than serotype-specific 

clones. 

A number of CTL clones were generated from patient BC307 of which 4 were chosen 

for more detailed study. Cross-reactive clones were derived from the acute sample - 

only serotype-specific clones or clones showing low-level cross-reactivity could be 

derived from the convalescent sample. Highly cross-reactive clone E5 maintained 

high levels of cytolytic activity at low peptide concentrations with all three peptide 

variants in a standard chromium release assay (Figure 31). Partially cross-reactive 

clone C48 showed good lytic activity against cells pulsed with pD3/4 and pD 1 but low 

activity against pD2. Clone C42 showed good activity against pD3/4, low activity 

against pD 1 and no recognition of pD2. Dengue serotype 3 specific clone D9 showed 

intermediate activity against pD3/4 and failed to recognise target cells pulsed with the 

peptide variants. All cross-reactive or partially cross-reactive clones maintained lytic 

activity against B-cells pulsed with peptide concentrations as low as 0.01µM. 

Serotype specific clone D9 showed no or negligible activity at these levels. Clones 

were stimulated with B cells pulsed with the relevant peptide and the concentration of 

cytokines in the tissue culture supernatant measured at 24 hours. Highly cross-reactive 

clone E5 consistently produced higher levels of TNF-a, IFN-y and GM-CSF than 

most serotype specific clones (Figure 32) and only E5 produced IL- 10. 
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Figure 31. Clones differ in specificity and cytolytic efficacy in chromium-release assays. 
Cross-reactive clone E5 and partially cross-reactive clones C42 and C48 maintain their cytolytic 
activity at peptide concentrations as low as 0.01µM. Serotype specific clones D9 (recognising pD3/4) 
showed no activity at this level of stimulation. Data couresy of Dr Nguyen Vinh Chau. 
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Figure 32. Cross-reactive clones produce higher levels of both type 1 and type 2 cytokines than 
serotype-specific clones. Cytokines produced by cross-reactive (E5), partially cross-reactive (C48) and 
DEN3-specific (D9) clones derived from patient BC307 stimulated with B cells pulsed with INM 
pD3/4 at an E: T ratio of 10: 1. Black bar: cytokine pulsed B cells, white bar: RPMI control pulsed B 
cells. Data is representative of three independent experiments. 
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Materials and methods 

Patient samples 

Samples were collected in Viet Nam. Initial tetramer staining and growth of short- 

term lines was performed on fresh samples. The remainder of each sample was frozen 

and shipped to Oxford. 

Generation of clones 

Short-term lines were grown in Viet Nam, shipped to Oxford at 20°C where they were 

returned to a 37°C incubator. A portion of the culture was tetramer stained and if a 

specific population was present on FACS analysis enriched using MACS CD8 

magnetic beads, cloned by limiting dilution and maintained by periodic restimulation 

as described above. 

Results 

Characterisation and specificity of clones generated from patient 

MD1413 

Of several patients assessed, MD 1413 demonstrated the best acute ex vivo tetramer 

staining (Figure 33). This was a 10 year old child experiencing a mild to moderate 

case of secondary dengue infection - serotype 2. Clones were generated as described 

above from a short-term line cultured for 20 days and screened at 3 weeks with the 

A* 11 wild-type GTS tetramers. Antigen specific clones were expanded and the fine 

specificity of these dengue-specific clones assessed in a standard CTL lysis assay 
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(Figure 34). The majority of clones showed some degree of cross-reactivity with clone 

9F5 the most broadly cross-reactive. Two clones showed high specificity for dengue 

2: 3H9 and 10A4. These clones, together with 10H5 and 10B3, were selected for more 

detailed study. A table summarising the specificites of all the clones referred to in this 

chapter is given in Figure 35. 
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Figure 33. Ex-vivo staining of PBMC from patient MD1413 taken on day 4 of illness. PBMC gated 
on lymphocytes and a) stained anti-CD8 antibody and dengue 2 tetramers and b) gated on CD8 positive 
cells and stained with tetramer pairs. Note high proportion of cross-reactive cells together with a 
dengue 2 specific population. 
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Figure 34. Chromium51 release assay demonstrating cross-reactivitty of clones derived from 
patient MD1413. A HLA A*11 B cell line (B0001) was pulsed with Crs for 1 hour, washed in RIO 
three times and then stimulated with 20µM of the appropriate peptide at 37°C for 1 hour. After washing 
they were incubated with CTL clones at an E: T ratio of 20: 1 for 4 hours before reading. 

Group Clone 
name 

Derived 
from 
patient 

Cytolytic 
titrations, 

Cytokine 
production, 

Re 

D1 

cognitio 
D2 

n 
E 

Highly cross E5 BC307 31 32 +++ +++ +++ 

reactive 9F5 MD1413 36 39 +++ ++ ++ 

10B3 MD1413 +++ ++ +++ 

8E9 MD 1413 not given not given +++ ++ +++ 

l0H5 MD 1413 not given not given +++ ++ +++ 

9E5 MD1413 not given not given +++ ++ +++ 

Partially cross C42 BC307 31 not given ++ - +++ 
reactive C48 BC307 32 +++ + +++ 

Serotype D9 BC307 31 32 - - +++ 
specific 10A4 MD1413 36 39 - + - 

3H9 MD1413 - ++ - 

Figure 35. Summary of clones giving the patient from whom they were generated and the 
variants of the dengue GTS epitope recognised by each. See indicated figures for cytokine 
production and cytolytic titration data. Peptide recognition is classified by the percentage of specific 
lysis of B cells loaded with 0.1µM of peptide in a standard chromium release assay. +++ 50% or 
greater lysis, ++ between 20 and 50% lysis, + less than 20% lysis, - no lysis. 
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Cross-reactive clones maintain their cytolytic efficacy at lower peptide 

concentrations than serotype-specific clones. 

CTL lysis assays were performed using B cells pulsed with serial dilutions (from 

10NM to 0.001 NM) of peptides representing the different dengue serotype variants of 

the A* 11 GTS epitope. Consistent with the observations of clones derived from 

patient BC307, cross-reactive clones were able to lyse their targets at concentrations 

as low as 0.01 NM. The DEN2 specific clones were not (Figure 36). All cross-reactive 

clones derived from MD1413 lysed B cells pulsed with the DEN2 variants of the 

epitope less effectively at moderate to low peptide concentration than those pulsed 

with the other variants. 

Clone 9F5 

I 

b 
6 

is 1 of 00,0WI 
Peutlde coo«ntr tiae lmiaMO 

Clone 10B3 

60 
-pDl 

y pD2 
D3 

'.. 

7L 

d 

\1 

ýo 

0 

to 
50 

ýp 

e e dm 

ýo 

0 

ao 

60 

8k 
iý 

30 

0 

Clone 3H9 

om owl 10 1 of am awl 
Peilöde caaceýtretloo (mkM) Perfide conm"'At oo (. km) 

Figure 36. Clones differ in specificity and cytolytic efficacy in chromium-release assays. Cross 
reactive clones 9F5 and 10B3 maintain their cytolytic activity at concentrations as low as 0.01 and 
below. Dengue-2 specific clones 10A4 and 3H9 do not. Cells were used at an E: T ratio of 5: 1. 
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DEN2 specific clones differed in their recognition ofpD2 wild-type 

variants despite the same TCR Vß usage. 

Clones 3H9 and 10A4 - both specific for DEN2 - differed in their recognition of the 

wild-type variants of this epitope. 10A4 recognised pD2.2 (GTSGSPIVDK) only at 

very high peptide concentrations. 3H9 recognised pD2.2 to a greater extent but still 

lysed pD2.1 (GTSGSPIIDK) pulsed B cells much more effectively (Figure 37). The 

clones were stained with a panel of TCR Vß antibodies. Both DEN2 specific clones 

were Vol positive (Figure 38) suggesting that these more subtle differences in 

recognition were likely to be mediated by variations in the sequence of the CDR3 

loop. 
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Figure 37. DEN2 specific clones 10A4 and 3H9 differ in their recognition of pD2 variants. Clones 

were incubated for 4 hours with chromium-51 A* 1101 B cells pulsed with peptide for 1 hour at an E: T 

ratio of 5: 1. pD2.1 sequence GTSGSPIIDK, pD2.2 sequence GTSGSPIVDK. 
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Figure 38. V beta antibody staining of clones. Sample A- negative staining of V021.3 antibody with 
clone 10A4, Sample B, C and D- positive staining of clones 3H9 (Vß1), 10H5 (V021.3) and 10A4 
(VP I) respectively. 

Clones differ in the spectrum of cytokines they release and the amount 

in which each is produced. 

Unlabelled B cells were pulsed with the GTS epitope peptide variants for 1 hour at 

37°C and incubated with T cell clones overnight in a 96 well plate. The supernatant 

was then removed and the concentration of various cytokines within it measured using 

the Luminex system (see chapter 2). The clones differed in the spectrum and quantity 

of cytokines produced. Most fell into the type 0 category of cytokine producing T 

cells releasing both type 1 (e. g. TNF-a, IFN-7) and type 2 cytokines (e. g. IL-4, IL-13). 

Unlike the earlier work described above IL-10 was not produced in significant 

amounts. However, consistent with these observations cross-reactive clones generally 

produced much higher levels of most cytokines than the serotype-specific clones for a 

given stimulation (Figure 39). For example 1OH5 produced 6 times as much TNF-a 
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when stimulated with pD2 than did clones 3H9 or 10A4. Clone 9F5 produced 20 

times as much IL-13 as clones IOA4. The specific spectrum varied: for example clone 

10B3 produced high levels of IFN-y but lower levels of TNF-a and IL-13 than its 

other cross-reactive counterparts. 
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Figure 39. Clones from patient MD1413 differ in the spectrum and levels of cytokines produced. 
A* 1101 B cells were pulsed with peptide for 1 hour at 37°C and incubated with clones at an E: T ratio 
of 5: 1 overnight in l50µ1 H 10.70gl of the supernatant was removed and used for cytokine analysis on 
the Luminex system. 
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Cytokine release with titrations of the stimulating peptide was performed with clones 

E5 (cross-reactive) and D9 (dengue 3 specific) derived from patient BC307 (supplied 

by Dr Dong). The pattern of cytokine production closely resembled that seen in the 

CTL lysis assays but lytic ability was maintained at lower peptide concentrations than 

was cytokine production (Figure 40). 
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Figure 40. IFN-y and TNF-a production by clones E5 and D9 at an E: T ratio of 5: 1 
Both produce similar quantities when stimulated by cognate peptide at high concentrations. At lower 
concentrations cross-reactive clone E5 produces up to 4 times more IFN-y than serotype specific D9. 
Cytokine production drops off faster than a clone's lytic efficacy at low peptide concentration. This 
figure is representative of three independent experiments. 
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Cross-reactive clones tend to show a greater avidity for tetramer than 

serotype-specific clones in tetramer decay assays. 

Tetramer decay assays give an indication of the relative avidity of two or more clones 

for a given tetramer. Clones are stained with tetramer but rather than fixing are then 

incubated with an excess of a competing ligand - either the same tetramer bound to a 

different marker (e. g. APC) or an antibody capable of blocking tetramer rebinding. As 

the original tetramer vacates the TCR its place is taken by the alternative ligand and it 

cannot rebind. Comparing the fall in fluorescence intensity between clones allows a 

crude assessment of relative avidity (see chapter 2 for a full description of the 

method). An example plot can be seen in Figure 41. 
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Figure 41. Decay assay for clone 9F5 stained with pD2 tetramer. Panel A: Serial FACS plots. The 
reference intensity in this example is that at above which 97% of cells are found at time 0. The number 
remaining above this line as time passes is recorded. In the absence of a competing ligand the cell 
number remains stable above 90% for the duration of the assay. Plots are gated on lymphocytes. The 
FACS plots show the data for pD2 PE-tetramer labelled 9F5 competing with an excess of pD2 APC- 
tetramer. Panel B: Time course of fluorescent intensity. The same data shown in a chart allowing 
comparison with a negative control (pD2 PE-tetramer stained 9F5 cells with no competing ligand 

present). 

Conditions for this assay: 1 million cells of clone 9F5 were stained with 2µl of pD2.1 tetramer (equivalent to 1.131Lg) for 45 
minutes at 4°C. After washing twice in FACS buffer and resuspending in a total volume of 4Oµ1 PBS, 2µI of the reaction 
was taken and mixed with 200µ1 of PBS and analysed on a FACS machine. The reaction was then mixed with either APC 
conjuagted tetramer at a concentration 10 times that originally used to stain the cells or the same volume of FACS buffer 

as a negative control. 2-4µl of the reaction was taken at the indicated times, mixed with 200µl of PBS and analysed. 
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To determine whether the difference in cytolytic behaviour and cytokine production 

seen between clones was related to the avidity of their TCR decay assays were 

performed using the pD3 tetramer with clones 9F5, E5 and D9. The DEN3 serotype 

specific clone D9 showed the most rapid fall of in fluorescence intensity with 9F5 

showing the slowest (Figure 42). These findings suggest that those clones with the 

greatest avidity for peptide-MHC are also those that produce higher levels of 

cytokines and lyse cells loaded with their cognate peptide most effectively. 
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Figure 42. pD3/4 tetramer dissociates more rapidly from serotype specific clone D9 than cross- 
reactive clones E5 or 9F5 in a tetramer dissociation assay. Performed as described above. 

Cross-reactive clones show greater binding to CD8-null tetramers than 

serotype-specific clones. 

Tetramers were produced that were incapable of binding CD8 due to a mutation in the 

a3 region of the heavy chain (see above). Such tetramers have been shown to reliably 

identify high avidity CTLs (241). Clones derived from both patient MD1413 and 

BC307 were stained with these "CD8-null" tetramers folded with pD3/4. Cross- 

reactive clones 9F5 and E5 bound this tetramer almost as well as the wild-type 

tetramer (Figure 43 - panel A) whereas more serotype specific clones C48 and D9 
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showed little or no binding (Figure 43 - panel B). Other cross-reactive clones not 

described here in detail showed similarly effective binding to the CD8-null tetramer 

(8E9,9E5). This implies that cross-reactive clones are less reliant upon the CD8 

interaction for binding than serotype specific clones or those with only low level 

cross-reactivity, perhaps reflecting a stronger peptide/MHC-TCR interaction. The 

relative weakness of the peptide/MHC-TCR interaction of a serotype specific clone 

renders the MHC-CD8 interaction a requirement for tetramer staining. This is 

consistent with those observations made by tetramer dissociation assays. D9's TCR 

avidity for tetramer is lower than its cross-reactive counterparts. 
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Figure 43. pD3/4 CD8-null tetramer binds cross-reactive clones more effectively (A) than 
serotype specific or partially cross-reactive clones (B). Figure C: Negative control - none of the 
clones showed any significant binding to an irrelevant tetramer. 

All clones show lower avidity for the pD2 epitope variant. 

None of the clones generated from these patients, whether cross-reactive or dengue 2 

specific, showed any significant binding to the pD2 CD8-null tetramer (Figure 44 - 
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panel A). Dissociation assays demonstrated that pD2 wild-type tetramer dissociates 

from cross-reactive clones much more quickly than pD3/4 (Figure 44 - panel B). 

These observations fit the phenotypic differences noted earlier: cross-reactive clones 

tended to produce slightly less of each cytokine, and lyse less effectively when 

stimulated by pD2 at lower concentrations. pD2 conforms to published A* 1101 

binding motifs. It would appear that effective TCR binding is dependent upon the 

MHC-CD8 interaction to an extent not demonstrated by the other variants, suggesting 

that the pD2-MHC interaction with TCR is of inherently lower avidity than the other 

variants. The differences between pD2 and the other 2 variants involve residues 

highly likely to be involved in anchoring. 
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Figure 44. pD2 CD8-null tetramer failed to bind any clone and pD2 wild-type tetramer binds 
cross-reactive clones more weakly than either pD3/4 or pDl. A) Clone 9F5 stained with wild-type 
(green) and CD8-null versions of the pD2 tetramer. B) Decay assay comparing the relative fall in 
maximum stain between clone 9F5 stained with wild-type pD2 and pD3/4 tetramers. 
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It was not possible to determine whether the high-affinity tetramer 

positive fraction falls between acute disease and convalescence. 

Frozen acute and convalescent PBMC from 8 A*11+ dengue patients and 9 B*07+ 

dengue patients were thawed and stained with CD38 antibody, CD8 antibody, CD4 

antibody and the appropriate dengue tetramer in either its wild-type or CD8-non- 

binding form. The fraction of wild-type tetramer positive cells that stained with the 

CD8-non-binding tetramer in acute disease was compared with that in convalescence. 

The majority of acute samples showed negligible tetramer staining. Most cells in these 

samples were dead. This may reflect the highly activated nature of lymphocytes in 

acute disease or perhaps the time taken to cryopreserve the samples in the field. Just 

one A* 11 patient had good acute and convalescent staining (DF135, with DHF III). 

33% of the total A* 11 tetramer positive fraction stained with the CD8-non-binding 

tetramer in acute disease compared to 30% in convalescence (Figure 45). This fall is 

too small to be of significance and these observations need to be repeated in a large 

number of samples if any conclusion is to be drawn. All patients showed high levels 

of CD38 expression acutely in both the CD8+ and CD4+ subsets, which had reduced 

by convalescence (see Figure 46 from representative patient DF133). 
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Figure 45. The fraction of A*11 dengue 3/4 tetramer positive cells that stain with CD8-non- 
binding tetramer falls from 33% in acute infection to 30% in convalescence (patient DF135). The 
top panels show tetramer staining of a PBMC sample taken on day 2 of infection. The lower panels 
show identical staining of a sample taken 32 days later. Left hand side: wild-type D3/4 tetramer; Right 
hand side: CD8-non-binding D3/4 tetramer. 

143 

1 10 100 1000 

Convalescent 



CD8+ cells 
100 

60 

100 

so 

60 

0 

40 

_'0 

00 
1 10 ioo 1000 1 10 100 1000 

CD38 

Figure 46. CD38 expression by CD8+ and CD4+ lymphocytes from patient DF133 in acute 
infection (green) and convalescence (red). 

Concanamycin A reduces the lytic ability of clone 9F5 but has no effect 

on CD107 expression. 

Concanamycin A (ConA - Sigma) inhibits perforin mediated killing by enhancing its 

degradation within granules. 50000 cells of clone 9F5 were incubated with ConA at 

concentrations of either 1 NM, 0.1 pM or 0.01 pM for 1 hour at 37°C before using in a 

standard CTL lysis assay with A*l 1B cells pulsed with pD3/4 (10NM) at an E: T ratio 

of 10: 1. The addition of ConA brought about a reduction in specific lysis (Figure 47). 

Cells of clone 9F5 were incubated with either 1 pM of ConA or 10NM colchicine for 1 

hour before stimulating with pD3/4 pulsed B cells in the presence of CD107 antibody 

(a marker of degranulation - see chapter 5) as described in chapter 2. CD107 

expression was not affected by the presence of ConA. It was however reduced by the 

presence of colchicine (figure 47 - panel B) - an inhibitor of microtubule function. 
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Figure 47. The addition of concanamycin A to clone 9F5 eliminates cytolysis but does not reduce 
degranulation marker CD107ab upregulation. A) Effect of preincubation of T cells with differing 
concentrations of ConA on a standard CTL lysis assay. B) Effect of preincubation of T cells with ConA 
(1µM) or colchicine (20µM) on CD107 surface expression. 100000 A*l 1B cells (unpulsed or 
previously pulsed with 20µM pD3/4) were incubated with 100000 cells of clone 9F5 in the presence of 
anti-CD 107a and CD107b FITC. After 1 hour monensin was added and after 5 hours the cells were 
washed, permeabilised and stained with IFN-y APC and CD8 PerCP. Analysis was conducted after 
gating on lymphocytes. 

Discussion 

This study demonstrates that a population of activated high avidity CTLs showing 

substantial cross-reactivity between all four dengue serotypes can be detected in 

certain hospitalised Vietnamese patients with acute dengue virus infection. These high 
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avidity cross-reactive cells cannot be detected in convalescent samples, presumably as 

a consequence of activation-induced cell death(254). The populations that remain 

show a much greater degree of serotype specificity. The ex vivo CD8-non-binding 

tetramer staining of acute and convalescent samples is inconclusive, the limited cell 

recovery from frozen samples resulting in adequate staining in just one patient. It 

would be interesting to see whether the fraction of wild-type tetramer positive cells 

that also stain with the CD8-non-binding tetramer consistently falls in convalescence, 

an observation that would be consistent with the above hypothesis. Such a study 

would require the examination of a larger number of fresh ex vivo samples. 

The phenomenon of apparent deletion of high avidity CTLs has been observed in 

other clinical scenarios. High avidity CTL specific for the leukaemia-associated self 

peptide PRI are twice as effective at killing CML cells than low-avidity PRI- 

CTLs(255). These high avidity CTLs are selectively deleted by apoptosis if exposed 

to high PR1 peptide concentrations or chronic myelogenous leukaemia cells 

overexpressing proteinase 3 (the protein from which the PR1 epitope is derived). The 

investigators were able to expand or detect both low and high avidity PR1-CTLs from 

healthy donors, but only low avidity CTLs could be expanded or detected from newly 

diagnosed leukaemia patients(255). The authors suggest that this process of selective 

clonal deletion may be a result of clonal exhaustion in a manner similar to that 

observed in LCMV infection(256). Outside the clinical setting it has also been 

observed that CTL are susceptible to proliferative inhibition by high dose peptide 

antigen, leading to apoptotic death(252). It has been noted previously that tetramer 

positive lymphocytes from patients with acute dengue are proliferating and dying in 
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large numbers (189). This may reflect the high avidity shown by many cross-reactive 

cells for their targets and the large antigen load found just before defervescence. 

Why cross-reactive cells would be more likely to be of high avidity is not clear. TCR 

cross-reactivity is mediated primarily by the structure and flexibility of the CDR3 

region whereas TCR avidity reflects the molecular "fit" between peptide-MHC and 

TCR pocket. Functional T cell avidity reflects the sum of several factors (discussed 

below p. 148) and can be defined as the concentration of peptide that leads to half the 

maximal activation of T cells in a given population for a constant number of antigen 

presenting cells - thus highly avid cells achieve the same level of activation with 

much lower peptide concentrations than required for low avidity cells(257). Wilson et 

al(258) suggest that clones of high avidity should demonstrate low levels of cross- 

reactivity. They argue that "a large but finite 
... peptide universe should, in general, 

contain fewer sequences capable of stimulating a high avidity T cell clone i. e., one 

with a higher threshold of activation, than a lower avidity, comparatively more 

degenerate clone. "' These authors use the term "dengeneracy" interchangeably with 

"cross-reactive". Some sources include those cells capable of recognising different 

MHC molecules within the term "degenerate T cells" (259) but for the purposes of 

this discussion "cross-reactivity" is defined as the capacity of certain TCRs to 

recognise different epitopes presented by the same MHC molecule. To paraphrase 

Wilson's thinking: of all available peptides in the world very few will exist capable of 

1 An argument with more than a passing resemblance to Douglas Adams' conclusion that the 
population of the universe is zero: "It is known that there are an infinite number of worlds, simply 
because there is an infinite amount of space for them to be in it. However, not every one of them is 
inhabited. Therefore, there must be a finite number of inhabited worlds. Any finite number divided by 
infinity is as near to nothing as makes no odds, so the average population of all the planets in the 
Universe can be said to be zero. From this it follows that the population of the whole Universe is also 
zero, and that any people you may meet from time to time are merely the products of a deranged 
imagination. " Adams, D. The Hitchhikers Guide to the Galaxy. 
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binding a "high aviditn" T cell clone as effectively ("avidly") as its "primary" ligand 

and so attain the cell's acts ation threshold. This conclusion fits well with their 

observation that highly acid T cell clones recognise fewer peptides from a large 

random peptide library than lower avidity clones. It is however difficult to use the 

same reasoning in the setting of clinical dengue. The peptides we are comparing are 

closely related, differing by only one or two amino acids (DK to NR) which possess 

similar physical properties (e. g. all are hydrophilic and tend to form H bonds, both K 

and R at position 10 of the epitope are basic). Perhaps a different argument applies in 

such settings and it is precisely because of the strength of its interaction with p-MHC 

that a TCR showing high avidity is able to tolerate small changes in the peptide ligand 

sequence, hence demonstrating cross-reactivity. Something is lost however in these 

changes: it is clear from figure 43 that the avidity cross-reactive clones exhibit for 

pD2 tetramers is lower than that exhibited for the others. The free amino and carboxyl 

termini of an epitope play a key Me in class I MHC binding(lOO) and it seems likely 

that the relatively undramatic differences (in terms of the physical properties of the 

amino acids concerned) between pD3'4 and pD2 would have a minimal impact on 

epitope binding to LILA A" 11. It is possible that these amino acids are important in 

TCR recognition. It has been theorised that the CD8 molecule enhances the affinity of 

TCR for its ligand by reducing the "off" rate, guiding an energetically favourable 

docking of TCR onto MIIC and possibly by inducing conformational changes in the 

MHC complex that serve to augment the TCR/MHC-peptide interaction(244). Such 

mechanisms might explain why pD2. a peptide apparently utterly incapable of binding 

TCR when complexed with C'D8-non-binding tetramers, can nonetheless act as 

effective antigen in complex with "wild-type" HLA A* 11. 
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That the cross-reactivity/avidity relationship observed here may simply be artefactual 

cannot be excluded. Most clones generated were cross-reactive to a greater or lesser 

extent and only 3 were truly serotype-specific. It would appear that most TCRs within 

an infected individual are able to bind to all variants of the AI I GTS epitope to some 

extent and relatively few are discriminating enough to recognise only one serotype. 

Further work attempting to generate more unique serotype-specific clones would be 

necessary before one could conclude that such CTLs were consistently of lower 

avidity than their cross-reactive counterparts. 

All the clones in this study produced both type 1 and type 2 cytokines: IFN-y, TNF-a, 

IL-4, IL-13 and in some cases IL-10. TNF-a can mediate activation-induced cell 

death in some T cells (260) and has been implicated in peripheral T cell deletion (261, 

262). Type 2 cytokines such as IL-13 and IL-10 have been implicated in the 

pathogenesis of severe dengue(88,90). IL-10 can be produced by distinct CD4+ and 

CD8+ T cell populations and has the ability to suppress T cell function (263,264). It 

could be postulated that certain type 2 cytokines produced in acute disease by a subset 

of highly cross-reactive CTL might exert an inhibitory effect on dengue specific 

effector T cells. Highly cross-reactive clones grown from acute samples produced 

high levels of TNF-a, occasionally IL-10 and demonstrated the greatest avidity for 

peptide-MHC as demonstrated by staining with CD8-null tetramers and tetramer 

decay assays. Serotype specific and partially cross-reactive clones produced much less 

TNF-a, IFN-y and GM-CSF and were not shown to secrete any IL-10. It has been 

suggested that the pattern of CD8+ cell cytokine production is epitope dependent 

(265,266) with high avidity T cell/target interactions leading to greater production of 

TNF-a or IFN-y (267-269). 
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In general killing ability correlated well with the TCR/pMHC avidity demonstrated by 

CD8-null tetramers. There were variations in TCR avidity amongst clones that 

nonetheless displayed very similar levels of cytolytic activity for a given peptide 

concentration. For example the lytic activity of highly cross-reactive clone E5 was 

very similar to partially cross-reactive clone C48 for a given stimulation with pD3/4 

despite E5 possessing a higher avidity for peptide-MHC than C48 as demonstrated by 

staining with CD8-null tetramers. Cytokine production correlates better with TCR 

avidity than killing ability. Differences in avidity may affect the level of cytokine 

production to a greater extent than they do the killing - this is seen both between 

different clones (e. g. E5 vs C48) and between the different epitope interactions of a 

single clone (e. g. E5 stimulated with pD3/4 vs pD2). This could be of significance in 

dengue - it implies that despite similar lytic function high avidity cross-reactive T 

cells could produce higher levels of proinflamatory cytokines than serotype specific or 

partially cross-reactive T cells. It is important to remember that neither tetramer 

decay, nor the C138-non-binding tetramers directly measure TCR affinity and the 

TCR/pMHC interaction is only one component, albeit perhaps the most significant, of 

aT cell's avidity for its target. Others include the TCR expression level, co- 

stimulatory molecule expression level and the extracellular microenvironment. A 

recent review has pointed out that T cells displaying all the characteristics of high 

avidity interactions may nonetheless bear a TCR that is of relatively low affinity 

(270). Evidence of this complexity is apparent in this study: whereas the vast majority 

of cross-reactive clones producing high levels of cytokines showed high avidity 

TCR/pMHC interactions independent of CD8, one (10H5) did not. All other cross- 
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reactive clones showed good or moderate binding to the CD8-null tetramer even 

though they did not produce cytokines as vigorously as E5 or M. 

A healthy debate continues regarding the relative importance of antibody and cellular 

immunity in the pathogenesis of severe dengue. This data suggests a middle road. 

Antibody enhancement of secondary infection facilitates viral infection of cells 

leading to high viraemia and antigen loading of antigen-presenting cells (114,115). 

Memory CTL from a previous infection and happening to show cross-reactivity to 

this, the secondary viral serotype, are expanded. Many show high avidity for certain 

epitopes and these cells produce immunopathogenic levels of cytokines of both a type 

1 and type 2 nature. Vasoactive cytokines contribute to plasma leakage. The large 

antigen load combined with the high avidity of the T cells results in over-activation, T 

cell exhaustion and cell death which may lead to clonal deletion. In the meantime a 

new pool of more serotype specific CTLs showing lower avidity has been generated. 

These survive into convalescence and have the potential to produce TNF-a, IFN-y and 

GM-CSF in a therapeutic rather than immunopathogenic manner. Perhaps it is a lack 

of immunopathogenesis, as much as a degree of protection that is derived from these 

serotype-specific populations in patients with repeated exposure to dengue virus. 

In conclusion, these findings have significant implications for understanding the role 

of virus-specific CD8+ T cells in immunity to dengue virus infection and in the 

pathogenesis of severe dengue disease. It will be important to assess the fine 

specificity, functional avidity and cytokine production of T cells elicited by putative 

dengue vaccine candidates in order to ensure protective immunity against all virus 

serotypes is elicited without leading to excessive pro-inflammatory cytokine release. 
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CHAPTER 5 CHARACTERISATION OF CD4+ T-CELL 
DENGUE-SPECIFIC CLONES SHOWING 
BROAD CROSS-REACTIVITY BETWEEN 
FLAVIVIRUSES. 

Introduction 

A number of CD4+ T cell dengue epitopes have been identified(187,209-211,271- 

276). CD4+ cells recognising such epitopes may do so in a serotype specific or cross- 

reactive manner (209-211) and this cross-reactivity may extend to the recognition of 

other flaviviruses. Much of the work that has characterised these responses has been 

from samples obtained from donors participating in experimental dengue vaccine 

trials. The NS3 protein is a rich source of both CD8+ and CD4+ T cell epitopes (205, 

209,210,253,273,277) and this chapter describes the identification of an NS3 CD4+ 

epitope recognised by PBMC from a patient with natural infection, and the generation 

and characterisation of clones specific for it. 

Materials and Methods 

Preparation of NS3 peptide pools. 

Overlapping 15 amino-acid peptides spanning the length of the NS3 protein (sequence 

given in appendix 1) of each dengue serotype were mixed into 47 pools each 

containing 23 peptides such that each peptide appeared in two different pools at a 

concentration of 83µM. Peptides were dissolved as described in chapter 2 and the 

construction of matrix is illustrated in Figure 48. 
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Figure 48. The two-dimensional overlapping peptide matrix covering the whole of NS3 for each 
of the four dengue serotypes. Each peptide was represented in each pool at 83µM. 

All pools were filtered through 0.22pm membranes - failing to filter resulted in false 

positives in control ELlspots using PBMC from flavivirus nafve individuals (Figure 

49). This is likely to be due to contamination by particulate matter from poorly 

soluble peptides which has been shown to cause false positive ELIspot 

responses(278). Pools were used in an IFN-y ELlspot assay at 8.3µM per peptide. 

Pools 9 16 21 22 
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Figure 49. The effect of filtering pools that gave false positives when used to stimulate flavivirus 
nave control patients. Pools were filtered through 0.22µM spin filters. 
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Results 

Generation of CD4 positive clones showing cross-reactivity between all 

dengue serotypes. 

IFN-y ELlspots were performed using freshly thawed PBMC from 5 patients and all 

47 NS3 peptide pools. Samples had been taken 2 weeks after acute illness. 2 of these 

demonstrated clear reproducible responses. One of these - BC429 - recognised a 

previously identified CD8 B*07 restricted epitope and is not discussed further here. 

The other patient - BC408 (DHF III, infected with DEN4) - showed a dominant 

response in all pools containing peptide 99. This differed between all 4 dengue 

serotypes (Figure 50) and its position within NS3 is illustrated in appendix 1. PBMC 

were stimulated with a pool of all 4 peptide 99 variants (each present at 10NM). On 

day 21 the resultant short term lines were screened in a cultured ELlspot to try and 

determine the restriction of the response. A number of different B-cell lines 

previously pulsed with peptide for 1 hour at 37°C at a concentration of 10 gM were 

used to present antigen. By serendipity the only two B cell lines that were recognised 

were the two positive for DRB 1* 15, an HLA molecule also expressed by patient 

BC408. Intracellular cytokine staining with surface staining for CD4 and CD8 after 

stimulation confirmed the cells responding to the peptide to be CD4 positive (Figure 

51). 

Figure 50. The sequence of peptide 99 for each of the four dengue serotypes. 
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Figure 51. Cells within the short term line derived from BC408 recognising peptide 99 are CD4+. 
Intracellular IFN-y staining of the short term line generated from BC408 after stimulation with peptide 
99 pulsed DRB I* 15+ B cells. Cells were incubated together for 4 hours before permeabilisation and 
staining with anti-IFN-y and anti-CD4. The CD4+ cells are those producing IFN-y. 

Antigen specific cells were selected using the MACS IFN-y capture kit as described in 

chapter 2. These cells were used for cloning by limiting dilution. Clones were tested 

for specificity at three weeks by cultured ELlspot in the presence of peptide-loaded 

HLA matched B cells. 5 clones showed dengue specific responses and were equally 

reactive against each of the 4 dengue variants. Clones recognising elements within the 

DEN3 variant of this 15mer have been described(211). The authors reported the 

generation of a CD4+ DEN3 specific clone that recognised the minimal epitope 

IRYQTTATK (NS3241_249) as determined by killing assays. It failed to lyse cells 

pulsed with DEN 1,2,4 or Yellow fever or West Nile Virus variants and lysis fell to 

around 5% with the loss of the initial isoleucine. Clones cross-reactive between all 

peptide serotype variants have however not previously been described. 
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BC408 dengue CD4+ clones show cytolytic activity 

The 5 clones were tested for cytolytic activity against peptide pulsed DRB 1* 15 B 

cells in a standard chromium release assay (Figure 52). All showed some degree of 

cytolysis at high E: T ratios, however clone 4E3 showed particularly high activity. 

This clone showed broad cross-reactivity with killing apparent at E: T ratios as low as 

1.25: 1 (Figure 53). 
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Figure 52. Chromium release assay using dengue specific clones derived from patient BC408. 
DRBI * 15 positive B cells were pulsed with dengue I peptide 99 at 20µM for 1 hour 37°C and 
incubated with clones for 4h ours at an E: T ratio of 20: 1. 
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Figure 53. Clone 4E3 shows broad cross-reactivity across all 4 variants of peptide 99. Chromium 
release assays for clone 4E3 using DRB l* 15 B cells pulsed with each of the four variants of peptide 99 
for 1 hour at 37°C. Left) At different E: T ratios with target B cells being pulsed with peptide at 25µM. 
Right) At different peptide concentrations with an E: T ratio of 20: 1. 

Killing ability and cytokine production are correlated. 

Clones were stimulated with matched B cells pulsed with 20µM of each dengue 

serotype variant of peptide 99. After 24 hours supernatant was removed and the 

cytokines produced measured (Figure 54). The cytokine profile of all clones tended to 

Thl and those most effective at killing (e. g. 4E3 and 3F5) also produced the largest 

amounts of TNF-a, GM-CSF and IFN-y for a given stimulation. Clones did produce 

IL-4 and IL-6 but at very low levels. 
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patient BC408 after stimulation with B cells pulsed with 20pM of each variant of peptide 99, or 
unpulsed B cells as a control. Cells were incubated at an E: T ratio of 20: 1 at 37°C overnight. Tissue 
culture supernatants were removed and analysed on the Luminex system. This data is representative of 
3 independent experiments. 

BC408 cytolytic CD4+ clones recognising dengue kill almost entirely 

through perforin-mediated mechanisms. 

Chromium release assays were carried out in the presence and absence of inhibitors of 

different killing mechanisms: an antibody against Fas and concanamycin A- an 

inhibitor of perforin mediated killing. Blocking Fas mediated mechanisms had little 

effect on killing whereas blocking perforin nearly completely abrogated killing by 

clone 4E3 and 3F5 (Figure 55). 
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Figure 55. Cytolytic activity is abolished by the addition of concanamycin A. Chromium release 
assays were performed at an E: T ratio of 10: 1 with targets being pulsed with 25µM of the dengue I 
variant of peptide 99. Perforin activity was inhibited by incubating the clones with concanamycin A 
(concentration 1µM) for 1 hour before the addition of B-cells. Fas-dependent killing was blocked by 
incubating B-cell with antibody ZB4 (5µL in 200µL) for 1 hour before the addition of T cells. Results 
shown are representative of 3 independent experiments. 

Identification of the minimal epitope 

The ability of clones 4E3 and 3F5 to recognise truncated peptides (Figure 56) was 

tested in a chromium release assay. Deletions from the distal end of the peptide 

representing DEN-1 produced modest falls in lysis, whereas deletions from the 

proximal end produced significant falls. Interestingly recognition of peptide 5L was 

better than the preceding 4L, presumably because the methionine in 4L is a less 

favourable terminal amino acid than the proline in 5L. Once this proline is removed 

recognition halves. 5L and 5R precipitate similar levels of lytic activity from clone 

4E3.3F5 however recognises 5R less efficiently than 5L. These peptides were titrated 

in a cultured ELlspot assay (Figure 57). From similar levels of activity at high peptide 
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concentrations the difference between the two is quickly revealed with responses 

dropping off much faster with lower levels of 5R. These two peptides overlap by only 

5 amino acids - it may be that these 5 represent a critical region necessary for 

recognition (discussed further below). It is of particular interest that the truncated 

variant representing the DEN-1 version of the previously described epitope 

(IRYQTTATK) is poorly recognised - lysis drops to around a third of maximal. This 

epitope was originally identified by generating clones from PBMC taken from the 

recipient of an experimental DEN-3 vaccine - clones recognising only the DEN-3 

variant. The clones generated here recognised all four variants with 5L being the most 

efficiently recognised 10mer. No truncated peptide was as efficiently recognised as 

the 15mer. 
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Figure 56. The variation in lysis efficacy with truncated versions of dengue I peptide 99. Clones 
were incubated for 4 hours with B cells pulsed with the indicated peptide at an E: T raito of 10: 1. 
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Figure 57.5L shows a more sustained response in peptide titrations than 5L. Clone 4E3 was 
stimulated with B-cells pulsed with a titration of peptide in a cultured ELlspot. The response to dengue 
wild-type peptide 99 was sustained throughout. The response to 5L dropped off at low concentrations 
but not as strikingly as 5R. 

Clones show broad cross-reactivity between flavivirus epitopes despite 

considerable sequence variation. 

Clones 4E3 and 3F5 were tested in chromium release assays against targets pulsed 

with peptides representing sequences equivalent to the dengue epitope from the NS3 

of different flaviviruses. Despite considerable differences (Figure 58) the clones were 

able to effectively kill most variants (Figure 59 - top panel) with equal efficacy 

against B cells presenting the West Nile Virus variant peptide and decreased efficacy 

against those with the greatest variation from the dengue sequence. Peptide titration in 

a cultured ELlspot assay demonstrated that despite similar lytic activity at higher 

peptide concentrations the response to stimulation with the Japanese encephalitis 

variant dropped off very quickly at lower concentrations (Figure 59 - bottom panel). 
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Figure 58. Variations in the sequence of dengue I peptide 99 between other flaviviruses. "-" 
indicates homology with the dengue reference sequence. 
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Figure 59. Clones 4E3 and 3F5 show broad cross-reactivity across flavivirus variants of the 
dengue 1 peptide 99. JE: Japanese encephalitis, TBE: Tick borne encephalitis, WNV: West Nile virus, 
YF: yellow fever, 15mer: dengue I peptide 99, Unstim: B cells with no peptide pulse. Top) Clones 
were incubated for 4 hours with peptide pulsed chromium labelled B cells at an E: T ratio of 10: 1 in a 
standard CTL lysis assay. Bottom) Peptide titration in a cultured ELlspot assay demonstrates the rapid 
fall in response with JE variant stimulation despite similar levels of activity at high concentrations. 
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CD107a/b expression is a marker of CD4+ cell degranulation 

CD107 is a marker of degranulation and has been demonstrated to be a surrogate of 

CTL lytic activity. Originally known as lysosome-associated protein it exists in two 

forms: LAMP-1 (CD 107a) and LAMP-2 (CD 107b) - both are membrane glycolipids 

that provide selectins with carbohydrate ligands. They are found in the membranes of 

lysosomes, degranulated platelets, activated neutrophils, and T cells. Activation of 

CD8+ cells has been shown to cause a transient increase in surface expression of 

CD107 consistent with granules (containing granzymes and perforin among other 

substances) releasing their contents onto the cell surface(237). Intracellular cytokine 

staining of clones 4E3 and 3F5 for IFN-y in combination with CD107a/b staining 

demonstrated increases in the expression of both markers after stimulation with 

peptide pulsed B cells (Figure 60). This response showed some relationship to the 

degree of stimulation (Figure 61). 5.99% of cells were CD107a/b positive without 

stimulation. After stimulation with peptide 99 at 1µM 72.5% of cells became 

CD107a/b positive. With 20µM stimulation 88% of cells became CD107a/b. There 

was proportionately greater CD 107 staining compared to IFN-y staining, particularly 

at low stimulation concentrations: at 1NM 72.5% cells were CD107a/b positive, 

compared to 45% IFN-y positive. This is consistent with previous observations that 

lymphocyte killing activity is maintained at lower concentrations of peptide 

stimulation than that required for cytokine production(279). Stimuli that induced 

lower levels of cytolytic activity or cytokine production (e. g. the Japanese encephalitis 

variant of NS3 p99) resulted in similarly low levels of CD107alb and IFN-y 

expression. Despite its effect on killing activity (Figure 55), the addition of 

concanamycin A during incubation did not reduce the CD107a/b or IFN-y response 

(Figure 62). In fact for reasons that are not clear the CD107a/b expression increased 
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slightly (this phenomenon, albeit less pronounced, was also noted with ConA treated 

CD8+ clones - see figure 46 in chapter 4). Colchicine (an inhibitor of microtubule 

activity as a whole) did reduce CD107a/b expression. This is consistent with 

concanamycin A's mode of action: it is thought to block perforin mediated killing 

mainly through acidification of endosomes causing increased perforin degradation. 

Thus granules can still be transported to the surface (increasing levels of surface 

CD 107) but their contents are ineffective. 
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Figure 60. All BC408 derived CD4+ clones increased CD107a/b surface expression following 
antigen stimulation regardless of the effectiveness of their cytolytic acitivity. 100000 matched B 
cells (unpulsed or previously pulsed with 20µM dengue I peptide 99) were incubated with 100000 cells 
of clone 4E3 and 3F5 in the presence of CD107a and CD107b FITC. After I hour monensin was added 
and after 5 hours the cells were washed, permeabilised and stained with IFN-y APC and CD4 PerCP. 
Analysis was conducted after gating on lymphocytes. 4E3: 90% of cells fall below threshold for IFN-y 
and CD 107 staining before stimulation. After stimulation 93% of cells fall above. Similar changes were 
apparent with 3F5 and the other clones derived from patient BC408. 
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Figure 61. CD107a/b expression increases more than IFN-y at lower levels of stimulation. 100000 
matched B cells (unpulsed or pulsed with a peptide 99 variant) were incubated with 100000 cells of 
clone 4E3 in the presence of CD I 07a and CD 107b FITC. After I hour monensin was added and after 5 
hours the cells were washed, permeabilised and stained with IFN-y APC and CD4 PerCP. Analysis was 
conducted after gating on lymphocytes. 
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Figure 62. The addition of concanamycin A to clone 4E3 eliminates cytolysis but does not reduce 
degranulation marker CD107a/b upregulation. 100000 matched B cells (unpulsed or previously 
pulsed with 20µM dengue 1 peptide 99) were incubated with 100000 cells of clone 4E3 in the presence 
of CD107a and CD107b FITC. After 1 hour monensin was added and after 5 hours the cells were 
washed, permeabilised and stained with IFN-y APC and CD4 PerCP. Analysis was conducted after 
gating on lymphocytes. Concanamycin A (1µM) or colchicine (20µM) were added to the T cell clone 
for 1 hour prior to exposure to B cells in certain cases. 

Discussion 

It is generally accepted that fluid leak in dengue is largely due to the release of 

vasoactive cytokines. CD4+ cells are important sources of these cytokines - their 

depletion in experimental systems abrogates the dengue-specific cytokine 

response(213) - and also play a key role in priming naive CTLs. Regardless of 
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whether the epitope described here is novel (which can be debated - and is. See 

below), the level of cross-reactivity demonstrated by clones recognizing it is new. The 

original authors (211) generated clones specific for the DEN-3 version of the epitope. 

The clones generated here showed broad cross-reactivity, recognition extending 

across peptide variants representing the 4 dengue serotypes to include even Yellow 

fever and West Nile virus. These heterologous viruses were not recognized by clones 

generated in the original description(211). At low concentrations one of the clones 

generated here shows slightly higher activity against DEN-2 and DEN-4 (Figure 53). 

Titrations of peptides representing the heterologous viruses confirmed that WNV 

continued to precipitate an effective cytolytic response at low concentration whereas 

JE did not. This is consistent with their respective divergence from the dengue 

sequence, WNV differing by 3 amino acids, JE by 5. 

The cytolytic assays using truncated peptides raise interesting questions. The best 

killing response is seen with the 15mer, yet significant activity is preserved using 

certain peptides truncated from either end. It is fascinating that peptides 5R and 5L, 

both of which demonstrate a relatively well preserved ability to precipitate lysis have 

only 5 amino acids in common, PIRYQ. How could this be sufficient for TCR 

recognition when class II epitopes are "supposed" to be at least 13 amino acids 

long(100)? It implies that although the 15mer is optimal, significantly shorter peptides 

can contain a critical, necessary portion of the epitope. Studies of the structure of the 

TCR interaction with peptide-MHCII demonstrate that although class II epitopes are 

classically longer than class I epitopes (the "sausage" that sticks out each end of the 

"hotdog") the TCR interaction is restricted to a9 amino acid portion of the 

whole(280). Most MHC class II molecules have four binding pockets occupied by 
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amino acids 1,4,6, and 9 of the minimal peptide epitope, while the residues at 

positions 2,3,5,7, and 8 are available to interact with the TCR(281). Thus the 

remainder of MHC class II bound peptides (the "flanking regions") are situated 

outside of this core. So while MHC class II molecules capture peptides of 

substantially larger length, only a subset of residues is "read out" by the bound TCR. 

The P5 residue of the MHC-bound peptide appears to play a critical role in TCR 

binding suggesting that mutations affecting non-P5 positions may be less detrimental 

to the recognition process. This might explain why these 2 truncated peptides with 

only 5 amino acids in common are still able to produce a significant response - the 

PIRYQ portion may represent a critical motif necessary for binding. For optimal 

activity however more is required, and it appears that the regions flanking the 

"peptide core" contribute to this more optimal recognition. This is thought to be 

mediated primarily by the creation of a more stable interaction with the class II 

molecule rather than directly playing a part in binding to the TCR(281). Others have 

made similar observations(282): In the process of characterizing an epitope 

recognized by CD4+ cells from an HIV positive patient who had received an 

experimental HIV vaccine, Ondondo et al found that 2 overlapping I6mers sharing a 

common core of just 9 amino acids were both recognized by CD4+ cells 

(RDYVDRFFKTLRAEQA and FKTLRAEQATQEVKNW). Recognition was lost if 

even a single amino acid from this common core was removed from the appropriate 

end. A comparable phenomenon is seen with the loss of proline between truncated 

peptide 5L and 6L (figure 56). Returning to the original epitope description by Kurane 

et al(210) armed with these insights it worth noting that their minimal epitope stops 

short of containing the entire PIRYQ sequence. They defined their minimal epitope as 

IRYQTTATK on the basis that lysis dropped to 5% with truncated peptide 
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RYATTATK. Our clones produced around 23% lysis of B cells loaded with 

PIRYQTTAVK, dropping to 5% with the loss of the proline (IRYQTTAVK). It is 

therefore possible that these two minimal peptides represent two distinct epitopes 

which although presented by the same HLA molecule are recognized by the T cell in 

distinct manners. 

These observations go some way to explaining the high degree of cross-reactivity 

demonstrated by these clones. The West Nile virus variant of the dengue epitope is 

recognized by the two clones tested as least as well as dengue itself (figure 59) despite 

3 amino acid differences. The PIRYQ motif remains intact. The Japanese encephalitis 

variant is much less well recognized, perhaps as a consequence of a substitution 

within this motif. The other variants tested have still more differences and are poorly 

recognized. It has been observed that CD4+ T cells show greater tolerance of changes 

in an epitope than do CD8+ T cells, and in fact demonstrate greater degeneracy 

overall(258): a single TCR is capable interacting with several class II molecules as 

well as recognizing class II epitopes with no sequence or physical homology at 

all(283). This promiscuity is thought to be a consequence of the positional flexibility 

the "open-groove" of a class II molecule allows its long epitopes. One could be 

mistaken for thinking that cross-reactivity was a deleterious phenomenon, lying 

behind immunopathology of all kinds. But of course such degeneracy is extremely 

beneficial. It means that an individual's limited array of TCRs is capable of 

recognizing a much greater repertoire of epitopes than would otherwise be 

possible(181). CD4+ T cell cross-reactivity may play an important part in both 

protection from and the pathology of secondary dengue. Cytokine production is the 

main means of CD4+ T cell effector action(284) and it could be hypothesized that the 
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promiscuous nature of CD4+ helper cells would allow the rapid expansion of cross- 

reactive populations from memory early in secondary infection. These could serve 

both as factories for vasoactive cytokines in their own right, as well as providing help 

to CD8+ T cells and other immune system components. The fact that dengue T cell 

clones are cross-reactive with other flaviviruses raises once again the question as to 

whether prior infection with another flavivirus might produce an anamnesiatic 

immune response to a primary dengue infection. Such a question will probably never 

be answered in the laboratory - large epidemiological investigations would be 

required. 

These clones showed a Thl phenotype, producing high levels of TNF-a and IFN-y. 

The amount of IFN-y produced is similar to that produced by the CD8+ clones 

described in chapter 4, whereas the amount of TNF-a produced by the CD4+ clones is 

an order of magnitude higher. This confirms CD4+ cells as important producers of 

cytokines and they are likely to be significant contributors to the high concentration of 

certain (particular vasoactive) cytokines associated with severe disease. The amount 

of TNF-a produced by each clone tested did not differ greatly when stimulated by 

peptides representing each of the four dengue serotypes. It has been theorized that a 

bias to TNF-a production over IFN-y production might be associated with severe 

disease: Mangada et al(215) noted that the ratio of TNF-a to IFN-y producing CD4+ T 

cells was higher after stimulation with inactivated dengue antigens from viral 

serotypes heterologous to that used in the vaccine preparation than with homologous 

antigen. 
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The cytolytic ability of certain of the CD4+ clones is of uncertain significance. The 

original observations relating to cytolytic CD4+ T cells were made in cell lines and in 

vitro clonal work such as that contained in this thesis - skeptics argued that such cells 

were an in vitro phenomenon with no physiological significance(285). In recent years 

however cytotoxic CD4+ T cells have been detected in vivo in association with viral 

infections such as CMV, HIV(286) and EBV, as well as autoimmune conditions (e. g. 

rheumatoid arthritis). Ex vivo phenotypic analysis suggests they represent antigen- 

experienced cells (memory) at an advanced stage of cellular differentiation(285) 

(CD27-, CD28-, CD57+) which generally kill by perforin mediated mechanisms - 

perforin is expressed constitutively in memory CD8+ T cells but is dependent upon 

cell activation in memory CD4+ T cells(287). As such it is likely that cytotoxic CD4+ 

T cells are of most importance in chronic disease (e. g. autoimmune) and persistent 

viral infection (up to 50% of CD4+ T cells in some HIV infected donors exhibit 

cytotoxic potential) with immune activation a key driving force behind their 

differentiation. This would help explain why they were first observed in experimental 

in vitro conditions. It is unlikely that such cytotoxic activity is of great significance in 

an acute viral infection although in theory memory populations might become 

differentiated enough during secondary infection to develop cytotoxic potential. 

Clone 4E3 demonstrated considerable perforin mediated cytolytic activity. This lytic 

activity was paralleled by an increase in surface CD 107a/b expression. CD 107 has 

been used as a surrogate marker for the cytolytic activity of CD8+ CTL(237,288) and 

NK cells(289) but has not been widely used in the assessment of CD4+ cytolytic 

activity. Peptide stimulation of these cytolytic CD4+ T cell clones also increased 

intracellular cytokine staining for IFN-y. Consistent with the data from chromium 
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release assays cytokine staining fell more markedly than did CD 107 staining as the 

peptide concentration used to stimulate the clones was reduced. Strictly speaking 

CD 107 is a marker of degranulation rather than cytolysis per se. Rendering the 

contents of those granules ineffective with an agent such as concanamycin A 

eliminates true cytolytic activity (as assessed by chromium release assays) but does 

not decrease CD 107 expression. In fact a slight increase was observed. The reason for 

this is not apparent. 

It would be interesting to assess CD107 staining in CD4+ populations in fresh blood 

samples during acute dengue. Betts et al(237) found that directly staining CD8+ T 

cells from HIV patients with CD 107 antibody ex vivo gave poor results. Staining after 

a short period of antigen specific stimulation produced clear populations of CD 107+ 

CD8+ T cells which were also IFN-y positive by intracellular cytokine staining. Direct 

ex vivo staining of PBMC from acute dengue patients with CD 107 antibody gave poor 

results with no significant staining of either CD4+ or CD8+ T cells (data not shown). 

Prior stimulation of PBMC with either individual peptide epitopes or pooled 

overlapping peptides covering NS3 was also disappointing. Perhaps using fresh rather 

than frozen samples, or stimulating cells with a more "physiological" and effective 

antigen (e. g. inactivated viral lysate) would produce better results although of course 

it is possible (even likely) that CD4+ cells in acute dengue demonstrate no cytolytic 

activity either in vivo or ex vivo. 

In conclusion this work confirms CD4+ cells as an important source of inflammatory 

cytokines. An inherent tendency to degeneracy (cross-reactivity) render these cell 

populations particularly likely to recognize heterologous viral epitopes (from either 
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dengue or other flaviviruses) and they could well play an important part in secondary 

infection, for good or for ill. Others have shown subtle differences in the balance of 

cytokines produced by dengue specific CD4+ cells undergoing heterologous 

stimulation which may affect disease severity. CD4+ clones derived from different 

individuals display different levels of cross-reactivity to a given epitope - presumably 

as a result of host and environmental factors (e. g. an individual's infection history, 

their other HLA types). The presence of cross-reactive memory CD4+ cells may 

render an individual more likely to develop severe clinical disease when infected with 

a heterologous dengue virus, particularly if the viral load is very high following 

antibody dependent enhancement. 
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CHAPTER 6 SUMMARY AND CONCLUSION 

Dengue is a growing public health problem and - with the imminently possible 

exception of avian flu - perhaps one of the most significant emerging diseases in the 

world today(5,6). Epidemiological observations made in the 1970s demonstrated that 

severe forms of dengue were seen most frequently in those experiencing secondary 

infection(7). It was proposed that this phenomenon could be accounted for by a 

process of antibody dependent enhancement(8,120,128). This association of severe 

disease with previous infection has been a stumbling block to vaccine development 

due to legitimate fears of immunisation-mediated disease enhancement(226). 

Given these complications it is all the more important to have a good understanding of 

the immunopathogenesis of dengue disease. ADE accounts for many clinical and 

epidemiological observations. However there are features it cannot explain: not all 

patients experiencing secondary infection develop DHF(28,135) and not all cases of 

severe disease are seen solely in secondary infection. ADE provides a convincing 

hypothesis of the mechanism lying behind the increased viral load noted in some 

severe disease but does not in and of itself provide sufficient explanation for all the 

pathological features of DHF. As the need for a safe and effective vaccine becomes 

ever greater it is important to develop a more holistic understanding of dengue 

pathology. 

This thesis builds on a body of evidence that has accumulated in recent years that 

supports a role for cellular mediated immunity in the pathogenesis of severe dengue 

fever. CTL have been shown to mediate immunopathology in secondary heterologous 
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LCMV infection(188) through `original antigenic sin"-like mechanisms. A similar 

phenomenon has been described in dengue patients(189) and mouse work with other 

viruses has shown that heterologous immunity to a virus unrelated to the infecting 

virus is capable of mediating immunopathology(192). In addition CD4+ T cells are 

important producers of cytokines in dengue infection(213) and are capable of 

demonstrating broad cross-reactivity across dengue serotypes and even other 

flaviviruses. The T cell memory pool is not a static cell repository but is rather 

modulated by each infection it encounters, sometimes in a manner capable of 

contributing to disease severity. Such a phenomenon is highly likely to be of 

significance in the immune response to dengue virus infection, with its four relatively 

stable heterologous serotypes. In the following section the key findings of this thesis 

are discussed along with directions for future work. 

A subset of high avidity dengue serotype cross-reactive CTL with 

greater cytolytic and cytokine producing activity than serotype-specific 

cells were present in acute disease but absent in convalescence. 

Cross-reactive CD8+ T cells could be expanded in short term culture from patients 

with acute dengue but could not be detected or expanded from convalescent samples 

taken from the same patients. Dengue specific CD8+ clones recognising the A 11 GTS 

epitope were generated from dengue patients. Cross-reactive clones recognising at 

least two dengue serotype epitope variants were, with few exceptions, of higher 

avidity than serotype-specific clones. These 2 populations differed in their cytolytic 

activity and cytokine production. Highly avid cross-reactive clones produced higher 

levels of both type 1 and type 2 cytokines (many of which are associated with dengue 
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disease severity) than serotype-specific clones. The majority of clones adopted a TcO 

phenotype, producing cytokines belonging to both the Tc 1 and Tc2 paradigms. It has 

been hypothesised that the interplay between these cytokine groups has a part to play 

in determining the nature of the clinical presentation(92). Cytolytic ability at low 

concentrations of stimulating peptide correlated well with cytokine production. Cross- 

reactive cells producing high levels of cytokines maintained the ability to lyse target 

cells bearing peptide at concentrations one log lower than that at which serotype- 

specific clones lost their activity. Consistent with previous observations, cytolytic 

activity - whether assessed directly in chromium release assays or indirectly by 

CD 107a/b expression - was sustained at lower peptide concentrations than was 

cytokine production(279). 

These findings point to an obvious hypothesis. Primary infection leaves behind a pool 

of memory cells of varying affinities with the potential to act in a cross-reactive 

manner. In secondary infection these cells are rapidly expanded. Among them are a 

population of high avidity CTLs with correspondingly great effector function. These 

cells have the potential to become highly activated (as noted in observations of CD38 

expression) producing large amounts of inflammatory cytokines in a manner 

deleterious to the host and contributing to pathogenesis. Others have noted the 

tendency of cross-reactive dengue specific CTL to produce increased amounts of such 

cytokines(290). They are however vulnerable to activation induced cell death and by 

convalescence many cross-reactive cells are lost even as a new memory population is 

generated as a result of the newly encountered virus. Such selective deletion of high 

avidity cells has been noted in leukaemia patients(255) and has been attributed to 

clonal exhaustion and activation induced cell death. This would be in keeping with 
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previous observations regarding the high level of dying All GTS tetramer positive 

cells in acute dengue patients(189). 

These observations are clearly limited by the numbers involved. Work on frozen 

PBMC is limited by poor recovery of antigen specific cells, probably as a 

consequence of the very activation being sought. Samples stained with dengue 

tetramer before and after freezing have shown very different staining patterns with a 

big reduction in tetramer positive cells. This goes some way to explaining why only 

around 10% or less of stained samples had tetramer positive populations of any size. 

The assays described above should ideally be performed on fresh PBMC taken from a 

large number of patients shortly after blood letting. Such a study would hopefully 

contain within it sufficient samples with good staining that significance could be 

reached. Repeating these findings in that context would enable them to be applied to 

hypotheses relating to dengue pathogenesis with much more confidence. 

One must also be cautious about immediately relating ex vivo observations made 

using tetramers specific for a single epitope and HLA type to the complex in vivo 

situation. Although undeniably immunodominant the HLA All response examined 

here is only one out of a presumed panoply of responses. It would perhaps be 

simplistic to expect to find a direct relationship between the response to a single 

epitope and clinical presentation in an acute viral infection such as dengue. One must 

be similarly reflective when applying information gleaned from work on T cell clones 

to a disease process. Clonal work provides much useful information but it is difficult 

to apply the findings from these artificial situations to an in vivo disease process with 

absolute confidence. Quite apart from any functional artefact that might occur as a 
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result of artificial stimulation, the clones generated in this study are likely to represent 

only a subset of the CD8+ T cells recognising the All GTS epitope. As was noted 

above, the majority of clones generated were cross-reactive and whilst this appears to 

reflect the ex vivo PBMC tetramer staining of patient MD1413 (figure 33) it does not 

appear to be the case with patient BC307 (figure 29). One cannot assume all serotype- 

specific clones would be of low affinity simply because the 3 generated in this study 

were. Neither can one assume the cross-reactive clones generated were a 

representative sample. It is possible that the differing cellular avidities for epitope 

result in the generation of a non-representative spectrum of clones (i. e. high affinity 

clones may be preferentially expanded by the in vitro stimulation used in the cloning 

process). 

The C138-non-binding tetramers described in this thesis may provide a means to 

answer two other questions logically proceeding from the above hypothesis: firstly "Is 

the size of the fraction of antigen-specific CTL showing high avidity related to the 

severity of clinical disease? " and secondly "Is this fraction disproportionately reduced 

by convalescence compared to the size of the antigen-specific CTL population as a 

whole? " The theory proposed above would lead one to hypothesise that the presence 

of a large high-avidity population would be associated with more severe disease as a 

consequence of their greater effector function, in particular cytokine production. 

Furthermore these high avidity cells should represent a significantly smaller fraction 

of the wild-type tetramer positive population by convalescence if, as suggested, they 

are selectively depleted by activation induced cell death. Unfortunately of 17 samples 

stained with both the wild-type and CD-non-binding tetramers only I showed good 

acute and convalescent staining. This sample did not show a significant drop in high- 
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avidity staining by convalescence. It is possible that by the time of clinical 

presentation the modulation of the T cell population is already well under way. The 

majority of patients have been unwell for a few days by the time of hospital admission 

and high avidity cells may be beginning to fall by this time point. 

Another area of considerable interest is the role of cell mediated immunity in severe 

dengue disease in infants. Infants with severe disease would not be expected to have 

any dengue-specific T cell memory population and antibody-dependent enhancement 

provides an elegant account of the pathological process in this age group in particular. 

Yet as noted in the introduction, the permeability of an infant's microvasculature 

varies from that of older children and adults and it may be that the pathology of 

disease in the two age groups is not without its differences. It will fascinating to see 

the results of a study currently taking place in Viet Nam which aims to look at the 

immunology of infant disease, including antigen specific T cell responses. 

CD4+ lymphocytes can demonstrate broad faviviral cross-reactivity 

and are likely to be an important source of inflammatory cytokines and 

CD8+ T cell priming 

CD4+ cells are important sources of cytokines and all the clones described in chapter 

5 produced large amounts of type 1 cytokines in a cross-reactive manner. Clones 

described in previous studies have recognised this epitope, or one closely related to it, 

only in its DEN3 variant(211). The clones generated in this study showed cross- 

reactivity that extended beyond dengue, recognising variant peptides representing the 

corresponding epitope sequence of related flaviviruses: Japanese encephalitis, Yellow 

179 



fever and West Nile virus. The magnitude of the response varied with the extent of the 

homology shown to the dengue sequence but even a very different peptide such as 

that representing Yellow fever precipitated cytokine production and cytolysis. The 

nature of the effector response of dengue specific CD4+ T cells can be altered by the 

specific sequence of the presented epitope. It has been reported that the ratio of TNF- 

a to IFN-y producing CD4+ cells from experimental vaccine recipients is higher after 

stimulation with antigen from heterologous dengue serotypes than homologous. These 

differing patterns of effector response may be significant in the immunopathogenesis 

of DHF(215). 

The broader cross-reactivity seen with CD4+ cells is important. It is possible that 

CD4+ cells are capable of mediating cross-reactive responses to heterologous dengue 

virus precisely because they are able to tolerate small changes in their epitopes. Cells 

behaving in this way could produce an early cytokine response but also rapidly prime 

CD8+ cell populations during secondary dengue. There are many regions of the world 

where more than one flavivirus is prevalent and it has long been debated whether 

exposure to a different flavivirus (either as a vaccine or in "the wild") might modulate 

the immune response to dengue in a manner that might be either deleterious or 

beneficial to the host. Recipients of an experimental Japanese encephalitis vaccine 

have been shown to generate flavivirus cross-reactive CD4+ T cells that recognise the 

E protein(291). Despite many years of widespread Yellow fever vaccination there is 

(aside from a few case reports) little in the way of data indicating a specific 

association - good or bad - between previous flaviviral exposure and subsequent 

dengue disease. 
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CD107a/b is a potentially useful marker of CD4+ T cell cytolytic activity 

CD 107, which exists in 2 subtypes (a and b), is a glycolipid found in the membranes 

of lysosomes, degranulated platelets, activated neutrophils and T cells. It is a marker 

of degranulation and activation of CD8+ cells has been shown to cause a transient 

increase in surface expression of CD107 as granules release their contents onto the 

cell surface(237). Its presence correlates well with cytotoxic activity measured by 

traditional chromium release assays(292). Although it has also been used as a 

surrogate marker for the cytolytic activity of NK cells(289) it has not been widely 

used as a marker of CD4+ cell degranulation. All the CD4+ clones generated in this 

study demonstrated cytolytic activity in chromium release assays. In a manner similar 

to that seen with CD8+ T cell clones, CD107a/b surface expression was transiently 

increased after antigen stimulation of CD4+ T cell clones. It remains to be seen how 

useful CD 107a/b staining of CD4+ cells might be in practice. Preliminary stains on 

peptide stimulated PBMCs did not result in CD107a/b positive populations (data not 

shown). This may reflect the relatively small antigen specific populations present in 

memory after an acute viral infection. The assay may be of more practical use in 

chronic viral infections such as HIV where the antigen specific population is much 

larger. Nonetheless it would be interesting to attempt to assess the ex vivo dengue 

specific CD 107 expression among CD4+ cells in PBMC taken during acute disease, 

perhaps after a brief stimulation with a more physiological antigen spanning a more 

comprehensive portion of the proteome (e. g. viral lysate). Together with perforin 

staining such an experiment might shed some light on whether cytolytic CD4+ cells 

are present in an acute viral infection, as they are now known to be in chronic. 
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Conclusion 

The clinical manifestation of dengue infection would appear to represent the sum of 

the interaction of several components of the immune system. Traditionally debate 

regarding the relative importance of humoral and cell-mediated immunity in the 

pathogenesis of severe dengue has been polarised, with proponents of different 

schools of thought tending to present their data(11) in a manner that implies mutual 

incompatibility'. However a growing body of opinion is adopting a more holistic 

view(290) and the data presented in this thesis supports this "third way". 

This hypothesis could be summarised as follows: viral infection of target cells such as 

macrophages and monocytes is facilitated by antibody enhancement of secondary 

infection and perhaps the phenomenon of original antigenic sin leading to high 

viraemia and antigen loading of antigen-presenting cells (114,115). Memory CD8+ 

CTL and CD4+ T cells from a previous infection that show cross-reactivity to this 

secondary viral serotype are expanded. CD4+ cells produce large amounts of 

inflammatory cytokines, priming CD8+ CTL and other components of the immune 

response. Both CD4+ cells and those CD8+ T cells showing high avidity for certain 

epitopes produce immunopathogenic levels of cytokines certain vasoactive members 

of which contribute to plasma leakage. The large antigen load combined with the high 

avidity of the cytotoxic T cells results in over-activation, cell death and clonal 

deletion. Serotype specific CTL of lower avidity are generated concurrently and 

survive into convalescence with the potential of producing cytokines in a therapeutic 

rather than immunopathogenic manner. It is likely that protective immunity is 

2 Quote from reference 11: "It is evident that, in opposition to the view of Rothman and Ennis, cross- 
reactive T cells that are activated in response to secondary infection with a different serotype are not 
required to produce the high levels of cytokines that accompany severe DHF. " 
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primarily antibody mediated - however it can be postulated that a lack of 

immunopathogenesis, as much as a degree of protection derives from these serotype- 

specific populations in patients with repeated exposure to dengue virus. 

These findings have significant implications for understanding the role of virus- 

specific CD4+ and CD8+ T cells in immunity to dengue virus infection and in the 

pathogenesis of severe dengue disease. Those involved in vaccine development have 

rightly been concerned about avoiding disease enhancing effects as a consequence of 

an insufficiently broad neutralising antibody response. Of course an effective humoral 

response would greatly limit the response required of T cells. Yet it must not be 

forgotten that one the safest and most effective flaviviral vaccines, the 17D Yellow 

fever vaccine, elicits strong, long-lasting humoral and cellular immunity(110,293). 

Neutralising antibodies develop in over 98% of recipients(294) and although less is 

known about the cellular response, virus specific CD8+ T cell responses are 

detectable up to 18 months after immunisation(295,296). Most experts in the field 

believe the best hope for a dengue vaccine lies in the development of a tetravalent 

live-attenuated preparation. In the hunt for a vaccine that produces pan-serotype 

protective immunity without the risk of iatrogenic DHF it is surely prudent to consider 

not only the nature of the antibody response but the specificity, avidity and effector 

function of T cells elicited by dengue vaccine candidates - no matter what one's 

position in the immunopathological debate. 
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APPENDIX 1- amino acid sequence of the flaviviral NS3 protein 

The amino acid sequence of NS3 from the 4 dengue serotypes and 7 other flaviviruses 
with locations of the epitopes referred to in this thesis. ". " indicates positions of homology with the DEN-4 reference sequence. 
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Position of the Al I epitope forming the basis of the studies in chapter S 

Position of the B7 epitope referred in chapter 3 
Position of peptide 99, containing the epitope described in chapter 5 
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APPENDIX 2- the single letter amino acid code 

G Glycine (Gly) 

P Proline (Pro) 

A Alanine (Ala) 

V Valine (Val) 

L Leucine (Leu) 

I Isoleucine (Ile) 

M Methionine (Met) 

C Cysteine (Cys) 

F Phenylalanine (Phe) 

Y Tyrosine (Tyr) 

W Tryptophan (Trp) 

H Histidine (His) 

K Lysine (Lys) 

R Arginine (Arg) 

Q Glutamine (Gin) 

N Asparagine (Asn) 

E Glutamic Acid (Glu) 

D Aspartic Acid (Asp) 

S Serine (Ser) 

T Threonine (Thr) 
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