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Quantitative characterization of spin-orbit torques in Pt/Co/Pt/Co/Ta/BTO heterostructures due to
the magnetization azimuthal angle dependence
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(Received 9 May 2017; revised manuscript received 6 July 2017; published 4 August 2017)

Substantial understanding of spin-orbit interactions in heavy-metal (HM)/ferromagnet (FM) heterostructures is
crucial in developing spin-orbit torque (SOT) spintronics devices utilizing spin Hall and Rashba effects. Though
the study of SOT effective field dependence on the out-of-plane magnetization angle has been relatively extensive,
the understanding of in-plane magnetization angle dependence remains unknown. Here, we analytically propose a
method to compute the SOT effective fields as a function of the in-plane magnetization angle using the harmonic
Hall technique in perpendicular magnetic anisotropy (PMA) structures. Two different samples with PMA, a
Pt/Co/Pt/Co/Ta/BaTiO3 (BTO) test sample and a Pt/Co/Pt/Co/Ta reference sample, are studied using the derived
formula. Our measurements reveal that only the dampinglike field of the test sample with a BTO capping layer
exhibits an in-plane magnetization angle dependence, while no angular dependence is found in the reference
sample. The presence of the BTO layer in the test sample, which gives rise to a Rashba effect at the interface, is
ascribed as the source of the angular dependence of the dampinglike field.

DOI: 10.1103/PhysRevB.96.054407

I. INTRODUCTION

The modulation of a ferromagnetic (FM) layer via an
in-plane current in a heavy-metal (HM)/FM bilayer is gen-
erally attributed to spin-orbit torque (SOT) effects [1,2]. An
understanding of the SOT effects is crucial for application
devices using magnetization reversal [1–8], high-frequency
oscillation [9–12], and domain-wall [13–15] and skyrmion
motion [16,17].

A charge current in the HM/FM wire directed along the x

direction generates dampinglike torque �τD = −HD
�M × (m̂ ×

ŷ) and fieldlike torque �τF = −HF
�M × ŷ on the FM layer,

where ŷ describes the direction of electron spin from spin-
polarized current to the local magnetization and ẑ the direction
of the surface normal [18–21]. The torques are characterized
by the corresponding effective fields as a dampinglike field
�HD = HDm̂ × ŷ and a fieldlike field �HF = HF ŷ. These

SOTs are believed to be generated from the bulk spin Hall
effect (SHE) [1,9,22–24] in the HM material with strong
spin-orbit interaction and the Rashba effect [1,25–27] at the
interface with strong interfacial spin-orbit coupling, yet the
identification of the dominant term remains difficult as both
the SHE and Rashba effect generate both torques with the same
expression [2,23,28].

Fan et al. [29] managed to identify the contributions of
the Rashba effect from interface effects by inserting a copper
layer at the interface to minimize the Rashba effect and
distinguish effects from Rashba and from SHE in Pt/CoFeB
bilayers. However, the ratio between dampinglike and fieldlike
torques has been detected to vary between ∼1 [30] and up to
∼8 [31], which shows a rather complicated behavior. A Ta-
thickness dependence study using harmonic Hall measurement
technique in Ta/CoFeB/MgO structure with perpendicular
magnetic anisotropy (PMA) suggests a sign change of the
fieldlike torque at small thicknesses of Ta (<1.5 nm), which is
also nontrivial [32].

*wensiang@ntu.edu.sg

Theoretical predictions based on the Boltzmann transport
equation and diffusion theory suggest two mechanisms with
different dependencies on the thickness of the HM layer [28],
but they also predict fieldlike and dampinglike torques are
independent on the rotation of magnetization normal to the
film plane [20]. Garello et al. [33] showed a strong angular
dependence on the magnetization polar angle with respect
to the current direction, which cannot be explained by the
Boltzmann theory.

Another model based on the tight-binding theory predicts a
strong angular dependence in SOTs with the Rashba spin-orbit
coupling being comparable to the exchange coupling strength
[34]. The origin of current-induced SOTs in HM/FM structures
with PMA is still under debate. Hence, angular dependence
measurements of SOTs are a powerful tool to deeply under-
stand the underlying physics in HM/FM structures and to apply
them to spin-orbit spintronics devices.

In this paper, we investigate current-induced effective fields
in Pt/Co/Pt/Co/Ta/BaTiO3 (BTO) and a Pt/Co/Pt/Co/Ta refer-
ence sample using the harmonic Hall measurement technique.
We propose a method to measure the SOT effective fields for
PMA materials as a function of the azimuthal angle ϕ between
the magnetization and the current direction.

The dampinglike term is found to be ∼17.0 Oe per
1 × 1011A/m2 and the fieldlike term to be ∼12.7 Oe per
1 × 1011A/m2. The Pt/Co/Pt/Co/Ta reference sample without
BTO shows no angular dependence of both SOT terms, which
is in agreement with the assumption of a weakly dependent
azimuthal dependence of the SOT effective fields [30]. For
the Pt/Co/Pt/Co/Ta/BTO test sample, an angular dependence
of the dampinglike term is found with minima at 45° and
225°, whereas no angular dependence is found for the fieldlike
term. The Rashba effect, which is caused from the BTO/Ta
interface or from an intrinsic electric field within the weakly
ferroelectric BTO, is ascribed as the source of the angular
dependence of the dampinglike field. Also, large angular
dependence of the effective anisotropy field HK is found for
the Pt/Co/Pt/Co/Ta/BTO test sample, whereas small variation
in the anisotropy field as a function of the azimuthal angle is
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FIG. 1. (a) Schematic of the Hall voltage measurement setup. (b)–(d) Computed coefficients α and β as a function of the angle ϕH for (b)
ξ = 0, (c) ξ = 0.2, and (d) ξ = 0.4.

found for the Pt/Co/Pt/Co/Ta reference sample. However, the
relationship of the dampinglike field and the anisotropy field
is still questionable.

II. ANALYTICAL SOLUTION

In this section, we provide a theoretical model to extract the
current-induced effective fields in a PMA magnetic structure
with arbitrary magnetization orientation via Hall voltage mod-
ulation. Shown in Fig. 1(a) is the schematic representation of
a magnetic wire structure with Hall bars attached transversely
to the long axis of the wire. More information on the analytical
derivations can be found in the Supplemental Material [35].
For the magnetic wire, the transverse Hall voltage VH typically
contains contributions of the anomalous Hall effect (AHE),
planar Hall effect (PHE), and spin Hall magnetoresistance
(SMR) [32,36–38] and can be written as

VH = 1
2I�RA cos θ + 1

2I�RP &Ssin2θ sin 2ϕ, (1)

where �RA and �RP &S are Hall resistances, which accounts
for the resistance change due to AHE and PHE/SMR,
respectively. Here, I is the constant current in the magnetic
wire. Also, θ and ϕ are the polar and azimuthal angle of the
magnetization vector �M of the wire, as seen in Fig. 1(a). The
contributions from the PHE and SMR to the Hall voltage have
identical symmetry and as such cannot be distinguished. For
external fields applied in the plane with negligible out-of-plane
contributions to the wire structure, the ordinary Hall effect
can be neglected. The presence of an in-plane magnetic field,

external or current induced, will lead to a deviation of the
magnetization vector, resulting in a change in Hall voltage. The
stable polar and azimuthal angles of the magnetization vector
(ϕ, θ) are determined by the applied field �H . The current-
induced effective field � �H modulates the magnetization
vector via small deviations defined here as (�ϕ, �θ ). For an
alternating current (ac) source, the current-induced harmonic
modulation of the magnetization from the stable angle can be
written as

I
ac−→ Iac sin ωt,

�ϕ
ac−→ �ϕ sin ωt,

�θ
ac−→ �θ sin ωt,

where ω = 2πf is the angular frequency with frequency f and
Iac is the amplitude of the ac. For sufficiently small frequency,
the change in magnetization angle will adiabatically trail the ac
without any phase shift. The Hall voltage can be reformulated
in terms of harmonic Hall voltages as [32,37,39]

VH = V0 + Vω sin ωt + V2ω cos 2ωt, (2)

where V0 is a constant voltage, Vω is the first harmonic Hall
voltage, and V2ω is the second harmonic Hall voltage. For small
magnetization angle variations (�ϕ � 1, �θ � 1), applying
the Taylor expansion to the induced harmonic magnetization
modulation signals, the first harmonic Hall voltage can be
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written as

Vω = 1
2 [�RA cos θ + �RP &Ssin2θ sin 2ϕ]Iac. (3)

The second harmonic Hall voltage is given by

V2ω = 1
4 ([�RA sin θ + �RP &S sin 2θ sin 2ϕ]�θ

− 2�RP &Ssin2θ cos 2ϕ�ϕ)Iac. (4)

The influence of the externally applied fields or current-
induced effective fields on the magnetization vector can be
deduced from the total magnetic energy ETotal equation, which
is given as

ETotal = − 1
2HKMScos2θ − �M • �H, (5)

where HK is the effective out-of-plane magnetic anisotropy
field, where HK = 2KU /MS − 4πMS , with KU being the
uniaxial magnetic anisotropy energy, MS the saturation mag-
netization, and −4πMS the demagnetizing field. The polar
and azimuthal angles of the magnetization vector in the
presence of an externally applied in-plane field �H can be
derived by solving the stable energy derivatives ∂E/∂ϕ = 0
and ∂E/∂θ = 0. The components of the external field with
magnitude H and applied along an azimuthal angle ϕH acting
along the x and y axes are given by HX−ext = H cos ϕH

and HY−ext = H sin ϕH , respectively. The polar and azimuthal
angles of the magnetization vector are then given as

ϕ = arctan

(
HY−ext

HX−ext

)
, (6)

θ = arcsin

(
HX−ext cos ϕ + HY−ext sin ϕ

HK

)
. (7)

The current-induced effective fields � �H can be also
decomposed into terms acting along the x axis �HX and y

axis �HY . The current-induced magnetization modulation can
then be represented as

�ϕ = ∂ϕ

∂ �H � �H = �HY HX−ext − �HXHY−ext

H 2
X−ext + H 2

Y−ext
, (8)

�θ = ∂θ

∂ �H � �H = �HX cos ϕ + �HY sin ϕ

HK

. (9)

Assuming the magnetization follows the external field
adiabatically for low frequency of ac, the azimuthal angle of the
magnetization can be set as ϕH = ϕ. By substituting Eqs. (6)
and (7) into Eq. (3), the first harmonic Hall voltage exploiting
the simplification for small angles (cos θ = √

1 − sin2θ ≈
1 − 1/2sin2θ ) can be written as

Vω ≈
[
±1

2
�RA

(
1− 1

2

H 2

HK
2

)
+ 1

2
�RP &S sin 2ϕH

H 2

HK
2

]
Iac.

(10)

The ± sign corresponds to the case where the initial
magnetization vector is pointing along the ±z direction as the
magnetization polar angles are θ for +z, π − θ for −z, and
±�θ for the ±z direction. Similarly, for the second harmonic

Hall voltage, substituting Eqs. (6)–(9) into Eq. (4) results in

V2ω =
{

1

4
[±�RA − 2�RP &S sin 2ϕH ]

× (�HX cos ϕH + �HY sin ϕH ) − 1

2
�RP &S cos 2ϕH

× (�HY cos ϕH − �HX sin ϕH )

}
H

HK
2 Iac. (11)

We define the second derivative of Eq. (10) bω ≡
∂2Vω/∂H 2 and the first derivative of Eq. (11) b2ω ≡ ∂V2ω/∂H

to remove the H component from the equations. The depen-
dencies on Iac and HK can be removed by dividing b2ω by bω,
BϕH

= b2ω/bω, resulting in

BϕH
= α�HY + β�HX, (12)

where the coefficients α and β are given by

α = −1

2
sin ϕH + ξ cos 2ϕH

±1 − 2ξ sin 2ϕH

cos ϕH , (13)

β = −1

2
cos ϕH − ξ cos 2ϕH

±1 − 2ξ sin 2ϕH

sin ϕH , (14)

where ξ is the ratio of P&S resistance (�RP &S) to AHE
resistance (�RA), ξ = �RP &S/�RA. As seen from Eqs. (13),
(14), the coefficients α and β are functions of the applied
angle ϕH (= ϕ) and the ratio ξ . Here, the full magnetization
azimuthal angular dependence is incorporated in contrast to
previous calculations [32,37,39]. Given that �HX and �HY

are two independent variables, to extract their respective values
from the measurement of BϕH

, two independent measurements
need to be carried out and prior knowledge of the coefficients
α and β is required.

The terms α and β are dependent on both the orientation
of the applied field ϕH and the material parameter ξ . Shown
in Figs. 1(b)–1(d) are representative plots of α and β as a
function of the azimuthal angle of the external field with the
ratio ξ set to 0, 0.2, and 0.4, respectively. For the limiting
case where ξ = 0, which corresponds to no effective PHE or
SMR, α and β exhibit a sinusoidal trend as a function of the
azimuthal angle of the applied field. For FM material with an
effective PHE&SMR, where ξ > 0, characteristically different
trends for α and β are observed as a function of the angle, as
seen in Figs. 1(c) and 1(d). The trend is highly dependent on
the magnitude of ξ . Irrespective of the value of ξ , the curves
for α and β intersect at azimuthal angles of 45° and 225°. For
azimuthal angle of 0°, the magnitude of the coefficients α and β

are given by α = ξ and β = −0.5, respectively. Interestingly,
at azimuthal angle of 90°, the values of the coefficient have
swapped, resulting in α = −0.5 and β = ξ , which indicates a
mirror symmetry at angle 45°. As such, the dependence of the
coefficients can be mathematically written as

α(ξ,ϕH ) = β ′(ξ,ϕ′
H ), where ϕ′

H = 90◦ − ϕH , (15)

β(ξ,ϕH ) = α′(ξ,ϕ′
H ), where ϕ′

H = 90◦ − ϕH . (16)

The coefficients α′ and β ′ can be substituted in Bϕ′
H

in
Eqs. (12)–(14) which results in

Bϕ′
H

= α′�HY + β ′�HX

= β�HY + α�HX = B90◦−ϕH
. (17)
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As such, we can derive the current-induced effective fields
using Eqs. (12) and (17) as

�HY = αBϕH
− βB90◦−ϕH

α2 − β2
, (18)

�HX = βBϕH
− αB90◦−ϕH

β2 − α2
. (19)

By using the point symmetry of α and β curves at an angle
of 135°, as seen in Figs. 1(b)–1(d), a general expression for the
coefficients can be obtained as α(ξ,ϕH ) = −β ′(ξ,270◦ − ϕH )
and β(ξ,ϕH ) = −α′(ξ,270◦ − ϕH ). The effective fields are
then given by

�HY = αBϕH
+ βB270◦−ϕH

α2 − β2
, (20)

�HX = βBϕH
+ αB270◦−ϕH

β2 − α2
. (21)

The symmetry in the curves enables the determination of
current-induced effective fields to be cross-checked using the
same measurement data.

III. RESULTS AND DISCUSSION

To investigate the angular dependence of the SOT effective
fields, Ta(5)/Pt(3)/Co(0.9)/Pt(1)/Co(0.9)/Ta(1) reference
stacks were grown at room temperature on Si/SiO2 (300 nm)
substrates using dc magnetron sputtering deposition technique.
The numbers in brackets correspond to the respective film
thicknesses in nanometers. The magnetization hysteresis loop
as obtained using Magneto optical Kerr setup reveals that the
continuous film has an intrinsic PMA with a coercivity of
200 Oe acting as a single FM layer. A test sample was grown
by depositing a 10 nm BTO layer directly on the reference
stack sputtered using RF magnetron sputtering technique.
Before the BTO layer growth, the reference stack was reverse
sputtered in Ar plasma for 30 s twice to remove any naturally
oxidization of the Ta layer. No field or heat treatment was
carried out on the samples.

Both the reference and test samples were patterned into
a Hall cross structure using a combination of electron beam
lithography and argon ion milling techniques. The Hall cross
structures comprised of a 6-µm-wide current channel and Hall
bars. The length of the current channel and the Hall bars was
40 µm. A Keithley 6221 ac current source and a 7265 Dual
Phase DSP Lock-In Amplifier were used for harmonic Hall
voltage measurement. The ac frequency was set to 309 Hz at
room temperature for all our measurements, which ensures an
adiabatically change of magnetization vector [40].

A. Determination of PHE&SMR to AHE ratio

The ratio of the P&S resistance to AHE resistance ξ =
�RP &S/�RA is an intrinsic material property, and knowledge
of the ratio is crucial for evaluating the coefficients α and β.
Due to limitations in our experimental setup in applying large
fields to saturate the magnetization of the PMA wire in-plane, a
technique is devised for determining the P&S resistance using
low external fields (H � HK ). From Eq. (1), the maximum
and minimum values for RH due to PHE or SMR would occur
when the azimuthal angle is set to +45◦ and −45◦, respectively.

FIG. 2. (a) Hall resistance as a function of applied field with
azimuthal angle ±45◦. The polar angle θH is set to π /2 as defined in
Fig. 1. (b) The subtracted normalized resistance �R̃−

H as a function

of [1 − (�R̃+
H )

2
] and linear fit to the data points.

The AHE resistance is measured to be ∼0.673 � with an Iac

current in the wire of 1 × 1011A/m2. Normalizing the Hall
resistance RH in terms of the AHE resistance �RA results in

R̃H = RH

�RA

= 1

2
cos θ + 1

2
ξsin2θ sin 2ϕ. (22)

Summing or subtracting R̃H measured at azimuthal angles
of +45◦ and −45◦ leads to the following expressions, which
separate both terms in R̃H :

�R̃+
H = R̃ +45o

H + R̃ −45o

H = cos θ, (23)

�R̃−
H = R̃+45o

H − R̃−45o

H = ξsin2θ = ξ [1 − (�R̃+
H )

2
]. (24)

Shown in Fig. 2(a) are the Hall resistance curves for the
sample with magnetization set along +z orientation as the
external field is swept at azimuthal angles of ±45◦. From
Eq. (24), the difference between the two curves in Fig. 2(a)
�R̃−

H is calculated and plotted as a function of [1 − (�R̃+
H )2],

as seen in Fig. 2(b). A linear relation is observed, and the
gradient of the slope gives the term ξ . For our sample structure,
the ratio is calculated to be ξ = 0.205 ± 0.001.

The ratio ξ can be cross-checked by an alternative method
by comparing the parabolic coefficients bω from the first
harmonic Hall voltage directly.

The parameter bω = ∂2Vω/∂H 2 can be extracted by a
parabolic fit of the measured data points of the first harmonic
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Hall voltage as a function of the externally applied field, with
the externally applied field directed at angles ±45◦ with respect
to the current direction. The fitting parameters at applied fields
with azimuthal angle ±45◦ can be read as

b±45o

ω = ∂2Vω

∂H 2(ϕH = ±45◦)
= − �RA

2HK
2

(
1 ∓ 2

�RP &S

�RA

)
Iac.

(25)

An expression for the ratio ξ without prior knowledge of the
anomalous Hall resistance �RA is derived as

ξ = 1

2

(
b−45o

ω − b+45o

ω

)
(
b−45o

ω + b+45o

ω

) . (26)

This value is obtained by ξ = 0.203 ± 0.001. For all
subsequent computations in our experiment, a value of ξ =
0.204 is used. This value is obtained from averaging ξ

computed by both methods.

B. SOT effective fields as function of current

To evaluate the SOT effective fields, first and second
harmonic Hall voltages are measured as a function of external
in-plane magnetic field for two cases: the external field applied
along the current direction (x direction) and applied along the
direction transverse to the current (y direction). The externally
applied field is swept in the range of ±1.9 kOe to increase the
signal-to-noise ratio. Hall voltages for the sample magnetized
along the ±z orientation are shown in Fig. 3. If the applied
field is swept along the x or y direction, Eqs. (10) and (11)

simplify to

Vω = ±1

2
�RAIac ∓ 1

2

H 2

HK
2 Iac for x, y direction, (27)

V2ω =
(

±1

4
�RA�HX − 1

2
�RP &S�HY

)

× H

HK
2 Iac for x direction, (28)

V2ω =
(

±1

4
�RA�HY − 1

2
�RP &S �HX

)

× H

HK
2 Iac for y direction. (29)

Figures 3(a) and 3(b) show first harmonic Hall voltages
for externally applied fields swept along the (a) x and (b)
y direction with a constant current density of 1 × 1011A/m2

in the wire. Figures 3(a) and 3(b) exhibit identical curves,
as expected from Eq. (27). The second harmonic Hall
voltages for externally applied fields swept along x and y

directions are shown in Figs. 3(c) and 3(d). The second
harmonic Hall voltages exhibit linear relationships with the
external field, which is consistent with Eqs. (28) and (29).
As seen in Fig. 3(c), identical slopes with an offset voltage
at zero applied field of �V2ω ∼ 0.3 μV are obtained for
magnetization orientations with opposite out-of-plane signs,
±z orientation. The identical slope in Fig. 3(c) corresponds
to a constant coefficient in Eq. (28) as the magnetization
is opposed, which gives + 1

4�RA�HX − 1
2�RP &S�HY =

FIG. 3. (a) and (b) First harmonic Hall voltage as a function of the applied in-plane field. (a) shows the Hall voltage with field pointing
along the x direction and (b) with field pointing along the y direction. (c) and (d) Second harmonic Hall voltage as a function of the applied
in-plane field. (c) shows the Hall voltage with field pointing along the x direction and (d) with field pointing along the y direction. The black
points correspond to a sample magnetized +z orientation, and the red points correspond to a sample magnetized in –z orientation.
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FIG. 4. (a) Effective dampinglike field as a function of the
applied current density in the wire for sample magnetized along ±z

orientation. (b) Effective fieldlike field and calculated Oersted field
as a function of the current density for sample magnetized along ±z

orientation. The Oersted field was calculated from currents flowing
in the nonmagnetic channels.

− 1
4�RA�HX − 1

2�RP &S�HY . This implies a constant SOT
effective field in the y direction (�HY ) and an SOT effective
field with opposite x direction (�HX), as the magnetization
orientation is changed. This is consistent with the SOT
effective field description in the y direction of the fieldlike
term ( �HF = HF ŷ) and in the x direction of the dampinglike
term ( �HD = HDm̂ × ŷ).

In Fig. 3(d) is shown the second harmonic Hall volt-
age as the external field is applied along the y direction.
The magnitudes of slopes for the sample with opposite
magnetization orientation are identical but exhibit a sign
change. This implies from Eq. (29) a sign change of the
coefficient, which gives + 1

4�RA�HY − 1
2�RP &S �HX =

−(− 1
4�RA�HY − 1

2�RP &S �HX). This is consistent with
a constant SOT effective field in the y direction (� �HY =
�HF ) and an SOT effective field with opposite x direction

(� �HX = �HD). The same offset voltage at zero applied field of
�V2ω ∼ 0.3 μV is observed.

From first and second harmonic Hall voltages, the SOT
effective fields can be computed using Eqs. (18) and (19) for
external fields applied along the x (ϕH = 0o) and y (ϕH = 90o)
directions. Equations (18) and (19) using annotations for the

ratios BϕH =0o = BX and BϕH =90o = BY simplify to

�HY = −2
(BY ± 2ξBX)

1 − 4ξ 2
, (30)

�HX = −2
(BX ± 2ξBY )

1 − 4ξ 2
. (31)

As expected, Eqs. (30) and (31) reduce to a form consistent
with that derived by Hayashi et al. [39], where no angular
dependent term is present. The respective SOT effective fields
obtained using Eqs. (30) and (31) as a function of the current
density are shown in Fig. 4.

As seen in Fig. 4(a), the effective dampinglike field as
a function of the current density in the wire shows a linear

FIG. 5. Sample was magnetized along +z orientation. (a) Fit from
the second derivative of the first harmonic Hall voltage as a function
of the azimuthal angle ϕH . (b) Linear fit of the second harmonic Hall
voltage as a function of the azimuthal angle ϕH . (c) BϕH

as a function
of the azimuthal angle ϕH and a fit according to Eq. (12).
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behavior. The effective dampinglike field is obtained to
∼±17.4 Oe/1011A/m2 for the ±z orientation of the mag-
netization. In Fig. 4(b), the effective fieldlike field shows
linear behavior at larger current densities with identical slopes
for ±z orientations of the magnetization. At low current
densities, a large signal-to-noise ratio is responsible for the
small uncertainty of the fieldlike term. The effective fieldlike
field is found to ∼8.4 Oe/1011A/m2 for both magnetization
orientations. The Oersted field from the Ta/Pt sublayer as well
as the Ta top layer is computed according to Hayashi et al.
[39], which also scales linearly. The Oersted field, assumed
to originate mainly from the Ta/Pt sublayer, is directed
along the negative y direction. The Oersted field corrected
effective fieldlike field is obtained to 12.7 Oe/1011A/m2. In
a study using a Ta(4)/Pt(3)/Co(0.9)/Ta(1) stack material, a
dampinglike term of ∼80 Oe/1011A/m2 and a fieldlike term
of ∼50 Oe/1011A/m2 is reported [41]. The increase of almost
five times might be related to our double-layer FM layer and a
1.5 nm layer of TaOx cap used in the reported study. The ratio ξ

in our sample is 0.204, whereas in the reported study, the ratio
is ∼0.34, which is significantly larger. The ratio �HX/�HY

is ∼1.4 for our sample and ∼1.6 for the sample reported.

C. Angular dependence of SOT fields using harmonic Hall
voltage scheme in Pt/Co/Pt/Co/Ta/BTO sample

To evaluate SOT effective fields as a function of the
azimuthal angle ϕH = ϕ with respect to the current direction
in PMA structures, first and second harmonic Hall voltages

Vω and V2ω are measured as a function of the external applied
field with magnetization direction of the FM wire set along the
+z orientation for all subsequent measurements. The current
density was set to 1 × 1011A/m2 in the wire to increase the
signal-to-noise ratio, and the azimuthal angle ϕH is varied in
5° steps. For each field sweep at respective azimuthal angle,
the first harmonic Hall voltage is fitted by a parabolic function
to obtain the second derivative in H , bω = ∂2Vω/∂H 2, and the
second harmonic Hall voltage is fitted by a linear function to
obtain the first derivative in H , b2ω = ∂V2ω/∂H . The fitting
parameters bω and b2ω as a function of the azimuthal angle
ϕH are shown in Figs. 5(a) and 5(b), respectively. As seen in
Fig. 5(a), the parameter b2ω exhibits a predominantly cos ϕH

trend. In Fig. 5(b), the parameter bω exhibits a clear sin 2ϕH

behavior, which is expected from Eq. (10). To remove the
dependencies of the current and anisotropy field, the ratio
BϕH

= b2ω/bω is computed, as shown in Fig. 5(c). Assuming
the SOT effective fields are constant with azimuthal angle ϕH ,
the ratio BϕH

can be directly fitted using Eq. (12) and a ratio
of ξ = 0.204 to evaluate mean values for SOT effective fields,
as seen in Fig. 5(c). The mean values for the SOT effective
fields from the fitting function in Fig. 5(c) are determined as
8.4 Oe/1011A/m2 for the fieldlike field and 17.0 Oe/1011A/m2

for the dampinglike field. This is consistent with the SOT
effective fields computed in the previous section.

To evaluate the dependency of the SOT effective fields on
the azimuthal angle, the SOT effective fields are computed
from BϕH

using Eqs. (18)–(21) in the analytical solution

FIG. 6. Computed SOT effective fields for the BTO sample as a function of azimuthal angle ϕH of the applied field with respect to current
direction. (a) Dampinglike effective field according to Eq. (19). (b) Dampinglike effective field according to Eq. (21). (c) Fieldlike effective
field according to Eq. (18). (d) Fieldlike effective field according to Eq. (20). The dashed lines are symmetry axes.
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FIG. 7. Computed SOT effective fields for the reference sample without BTO as a function of azimuthal angle ϕH of the applied field with
respect to current direction. (a) Dampinglike effective field according to Eq. (19). (b) Dampinglike effective field according to Eq. (21). (c)
Fieldlike effective field according to Eq. (18). (d) Fieldlike effective field according to Eq. (20). The dashed lines are symmetry axes.

section, as seen in Fig. 6. Both SOT effective fields can
be cross-checked by using different symmetry axes with the
same measured data points. The symmetry axes are indicated
as red dashed lines in Fig. 6. At symmetry axes where
α2 = β2, no effective field can be computed. At angles ϕH

close to the symmetry axes, the computation delivers larger
errors, whereas small errors are obtained between symmetry
axes. The mean value for the dampinglike field is found to
∼17.1 Oe/1011A/m2, which is similar to the value obtained
from angles 0 and 90°. Comparing Figs. 6(a) and 6(b), we
obtain similar relations with two minima at azimuthal angles
of 45° and 225°. This provides a clear indication of azimuthal
angular dependence of the dampinglike effective field in
the Pt/Co/Pt/Co/Ta/BTO heterostructure. The mean value of
the fieldlike field is found to ∼8.8 Oe/1011A/m2, which is
also similar to the value obtained at 0° and 90°. Comparing
Figs. 6(c) and 6(d) for the fieldlike field, no such relation is
observed.

The lack of angular dependency for the fieldlike term may
be attributed to the smaller ratio of the Rashba spin-orbit
coupling to the exchange coupling of the magnetic material.
As predicted by Lee et al. [34], when the Rashba spin-orbit
coupling is larger than the exchange coupling, an angular
dependency of the SOT terms might arise.

D. Angular dependence of SOT fields in the
Pt/Co/Pt/Co/Ta reference sample

We also performed harmonic angular dependence measure-
ments for the reference sample of Pt/Co/Pt/Co/Ta without BTO

capping layer. The Ta top layer should be naturally oxidized,
which may be responsible for small variations of the SOT
effective field magnitudes. The SOT effective fields of the
reference sample without BTO as a function of the azimuthal
angle ϕH is shown in Fig. 7. The dampinglike field for different
symmetry axes indicated as dashed lines is shown in Figs. 7(a)
and 7(b). The mean value of the dampinglike field is found
to ∼17.4 Oe/1011A/m2, which is slightly larger compared to
the test sample with BTO. Comparing Figs. 7(a) and 7(b), no
significant relationship is observed. In Figs. 7(c) and 7(d) are
shown the fieldlike fields for different symmetry axes. The
fieldlike field is found to ∼7.8 Oe/1011A/m2, which is slightly
lower compared to the test sample without BTO. Comparing
Figs. 7(c) and 7(d) indicates no significant relationship. It
should be noted that similarities in Figs. 7(a) and 7(c) as well
as in Figs. 7(b) and 7(d) indicate measurement artifacts and are
not related to angular dependence of SOT effective fields. The
lack of SOT angular dependence on the azimuthal angle in the
Pt/Co/Pt/Co/Ta reference sample may be related to the small
Rashba spin-orbit coupling as the sample is weakly oxidized.

E. Effective magnetic anisotropy field dependence
on azimuthal angle

The out-of-plane magnetization vector modulation via
current depends on the effective out-of-plane anisotropy field
as seen from Eq. (9). The effective out-of-plane anisotropy
field can be expressed as HK = 2KEff /MS with KEff the
effective magnetic anisotropy constant and MS the saturation
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FIG. 8. (a) Hall resistance of BTO sample as a function of applied magnetic field along 45° in-plane angle with respect to the current.
The parabolic fit is carried out taking data points between −3 kOe and 3 kOe for positive Hall resistance into account. (b) Averaged effective
anisotropy field HK of BTO sample of azimuthal angles ϕH = [0◦, 90◦, 180◦, 270◦] as a function of the current density in the wire. The ratio
ξ is 0.204. (c) Effective anisotropy field HK of BTO sample as a function of azimuthal angle ϕH using a computed ratio ξ of 0.204. (d) Effective
anisotropy field HK of sample without BTO as a function of azimuthal angle ϕH using a computed ratio ξ of 0.204. For (a), (c), and (d), the
current density in the wire was set to 1 × 1011A/m2.

magnetization. Furthermore, the PMA is known to arise from
spin-orbit effects such as Rashba spin-splitting and other
spin-orbit effects [42,43]. As such, to investigate the effect
of the out-of-plane anisotropy to the SOT effective fields, the
out-of-plane anisotropy field can be extracted from the same
harmonic Hall voltage measurement reformulating Eq. (10) in
terms of the out-of-plane anisotropy field as

HK =
√

− 1

2bω

(�RA − 2�RP &S sin 2ϕH )Iac

=
√

−�RA

2bω

(1 − 2ξ sin 2ϕH )Iac. (32)

To confirm the validity of this equation, we performed large
field sweep at ϕH = 45◦ with maximum field range of ±11.5
kOe as seen in Fig. 8(a). The out-of-plane anisotropy field can
be extracted from the cross-section of the plotted parabolic fit
with the nearly saturated Hall resistance, as seen in Fig. 8(a).
The effective out-of-plane anisotropy field is estimated to
∼10.5 kOe.

Using the coefficient bω from the parabolic fit for low
external fields, a precise value can be computed for the
out-of-plane anisotropy field using Eq. (32). In Fig. 8(b), the
out-of-plane anisotropy field is shown as a function of the
current density in the wire for low field range of ±1.9 kOe. The

AHE resistance of 0.673 � and a ratio ξ of 0.204 is used. The
out-of-plane anisotropy field was averaged by using the first
harmonic Hall voltages measured at externally applied field
angles of ϕH = [0◦, 90◦, 180◦, 270◦], where no effective
contributions of the PHE or SMR is expected. The out-of-plane
anisotropy field decreases linearly from ∼10.21 kOe to around
∼10.13 kOe as the current density in the wire is increased from
0.1 to 1 × 1011A/m2. This decrease in out-of-plane anisotropy
field is related to SOT effective fields with increasing current
density in the wire [30,42,43].

The out-of-plane anisotropy field as a function of azimuthal
angle is shown in Fig. 8(c). The out-of-plane anisotropy field
varies in a range of 550 Oe with a mean value of ∼10.1 kOe.
Two maxima at angles ϕH ≈ 45◦ or ϕH ≈ 270◦ and two
minima at angles ϕH ≈ 180◦ or ϕH ≈ 360◦ with nearly
linear relationship between the extrema are observed. The
out-of-plane anisotropy field can generally be corrected by the
in-plane anisotropy field and an externally applied out-of-plane
field component, which could arise from a misalignment in our
setup while rotating the sample in the experiment, as given
by HK−corr = HK − Hδ cos(ϕH + χ ) − HI sin2ϕH , where δ

and χ are the offset polar and azimuthal angles from current
direction to the applied field direction. Here, HI is the in-plane
anisotropy effective field. As the out-of-plane anisotropy field
cannot be fitted to this equation, the cause of the relationship
should be related to the SOT effective fields. The out-of-plane
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anisotropy field of the reference sample without BTO as a
function of the azimuthal angle is shown in Fig. 8(d). The
out-of-plane anisotropy field varies in a range of less than
∼150 Oe at a mean value of around 11.0 kOe. The small
anisotropy field variation may be related to noise which does
not exhibit any significant trend. Still a direct influence of
the out-of-plane anisotropy field to the obtained SOT effective
fields is not conclusive.

IV. CONCLUSIONS

In this paper, we have developed and experimentally tested
a harmonic Hall technique to quantify SOT effective fields as
a function of the magnetization azimuthal angle with respect
to the current direction in PMA structures. Based on the
energy balance equation, analytical solutions are provided to
extract the SOT effective fields from first and second harmonic
Hall voltages measured at two different azimuthal angles of
the external field. Two methods to quantify the ratio of two
different symmetries in Hall voltages originated from AHE on
one side and from PHE and SMR on the other side are provided
for low external magnetic field sweeps. An experimental study
was carried out on a Pt/Co/Pt/Co/Ta/BTO test sample and
Pt/Co/Pt/Co/Ta reference sample with PMA. The ratio of the
AHE resistance to PHE&SMR resistance for the test sample
has been found to 0.204 using both methods. The dampinglike
term for the test sample is found to be ∼17.4 Oe per
1 × 1011A/m2 and the fieldlike term to be ∼12.7 Oe per 1 ×
1011A/m2, corrected by computed Oersted field of ∼4.3 Oe
per 1 × 1011A/m2. An angular dependence of the dampinglike
term is found for the test sample with minima at 45° and

225°, whereas no angular dependence is found for the fieldlike
term. For the reference sample Pt/Co/Pt/Co/Ta without BTO,
no angular dependence of both terms is observed, which is
in agreement with the assumption of a weakly dependent
azimuthal dependence of the SOT effective fields [33,44].
Thus, we assume the angular dependence of a dampinglike
field originating from the Rashba effect from an intrinsic
electric field in the BTO or from the BTO/Ta interface. We
also quantified the out-of-plane anisotropy field as a function
of the azimuthal angle for both samples. A weakly dependent
behavior in a range of 150 Oe with an anisotropy field of
∼11.0 kOe is found for the sample without BTO, whereas a
strong angular dependence of the BTO sample is found with
peaks at 45° and 275◦ with a modulation of ∼550 Oe at an
anisotropy field ∼10.1 kOe. However, the correlation of the
anisotropy field and the dampinglike field as a function of the
magnetization azimuthal angle remains debatable.
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