
Open Research Online
The Open University’s repository of research publications
and other research outputs

Beauty and the beast: New approaches to teaching
computing for humanities students at the University of
Aberdeen
Journal Item
How to cite:

Holland, Simon and Burgess, Gordon (1992). Beauty and the beast: New approaches to teaching computing
for humanities students at the University of Aberdeen. Computers and the Humanities, 26 pp. 267–274.

For guidance on citations see FAQs.

c© 1992 Kluwer Academic Publishers

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1007/BF00054272

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/189591644?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1007/BF00054272
http://oro.open.ac.uk/policies.html

1

AUCS / TR9111

Beauty and the Beast: new approaches to teaching
computing for humanities students at the University of

Aberdeen.

Simon Holland and Gordon Burgess †
Friday, 24 May, 1991

Department of Computing Science
University of Aberdeen

King's College
Old Aberdeen,

 AB9 2UB, Scotland, UK.

Abstract

This paper reports on the history and development of a new undergraduate course teaching
Computing for Humanities Students at the University of Aberdeen, and assesses some new
teaching approaches developed on the course. It is noted that teaching computing to
humanities students has sometimes been viewed with suspicion by both Computer Science
and Humanities Departments. The two camps tend to fear, for different reasons, that
issues and practices important to their disciplines will be compromised or watered down.
Humanities students are often lacking in enthusiasm for computers. This paper describes an
attempt to reverse any such attitudes on the part of staff and students and to take
undergraduates considerably beyond mere word processing and computer literacy. Various
methods and techniques used in the course are presented and their value assessed. The
importance of using a consistent computer interface to helping students form a stable
conceptual model of computers is considered. The value of teaching more about Human
Computer Interaction and Artificial Intelligence than is usual in Humanities Computing
courses is considered. A number of lessons are drawn from the course.

Key Words

Education, Human Computer Interaction, Artificial Intelligence, Computing, Humanities.

This paper appeared as

 Holland, S. and Burgess, G. (1992) Beauty and the Beast: new approaches to teaching
computing for humanities students at the University of Aberdeen. In Computers and the
Humanities 26: 267-274.

† Department of German, Kings College, University of Aberdeen, Scotland.

2

Beauty and the Beast: new approaches to teaching computing for
humanities students at the University of Aberdeen.

Simon HOLLAND

Department of Computing Science, Kings College, University of Aberdeen, Scotland, AB9

2UB.

Tel: 44 224 272284 Fax: 44 224 487048 email (Janet): simon@uk.ac.abdn.cs.

Gordon BURGESS

Department of German, Kings College, University of Aberdeen, Scotland.

Tel: 44 224 272494 Fax: 44 224 276730 email (Janet): g.burgess@uk.ac.aberdeen.

Abstract

This paper reports on the history and development of a new undergraduate course teaching

Computing for Humanities Students at the University of Aberdeen, and assesses some new

teaching approaches developed on the course. It is noted that teaching computing to

humanities students has sometimes been viewed with suspicion by both Computer Science

and Humanities Departments. The two camps tend to fear, for different reasons, that

issues and practices important to their disciplines will be compromised or watered down.

Humanities students are often lacking in enthusiasm for computers. This paper describes an

attempt to reverse any such attitudes on the part of staff and students and to take

undergraduates considerably beyond mere word processing and computer literacy. Various

methods and techniques used in the course are presented and their value assessed. The

importance of using a consistent computer interface to helping students form a stable

conceptual model of computers is considered. The value of teaching more about Human

Computer Interaction and Artificial Intelligence than is usual in Humanities Computing

courses is considered. A number of lessons are drawn from the course.

Key Words

Education, Human Computer Interaction, Artificial Intelligence, Computing, Humanities.

3

Introduction

Teaching Computing to Humanities Students is sometimes viewed with doubts by both

Computer Science and Humanities Departments. Some computer scientists suspect that

such courses purvey a tepid, watered-down version of their discipline. Some humanities

scholars are sceptical of whether mechanical procedures and devices can offer much of real

value to the proper study of the humanities at undergraduate level. Students and teachers of

the courses sometimes have their own doubts: some students seem to be interested in little

more than improving their employment prospects by simple association with computers;

teachers are sometimes frustrated by humanities students' indifference, hostility or lack of

enthusiasm for computing in the Humanities. In setting up CS1002, Computing for

Humanities students, in its first year as a full graduating subject at the University of

Aberdeen, a key aim was to turn all of these attitudes, where they existed, upside down. In

this article we examine the extent to which the course has succeeded and the lessons to be

drawn.

Background

First of all, we will give a little historical context. Although this particular course is new,

the teaching of aspects of computing to humanities students has a relatively long history at

the University of Aberdeen. In 1981, an undergraduate course for German honours

students was introduced, called 'The computer and the literary text'. The coursework was

all done using the University's mainframe computer. Students had to learn to use a time-

sharing system, and to create, edit and manipulate files (using a text editor rather than a

word processor), before moving on to an introduction to FAMULUS, SNOBOL, and

concordances (Oxford Concordance Program). The course, one option among many for

this particular group of students, proved extremely popular over the years, even if not

always for what we might have regarded as the 'right' reasons. Many students felt that

listing a course with the word 'computer' in the title gave them an edge in their job

applications. However, it was clearly not an interdisciplinary course in humanities

computing: it was restricted to honours students of German; all the examples and the texts

for manipulation and analysis were taken from German sources; a good deal of emphasis

was placed on the problems of dealing with foreign, specifically French and German,

character sets; and, as the title indicated, the course was slanted as to how to use a

computer for the specific purposes of linguistic and literary analysis. In the main, other

modern languages departments took a polite interest, but did not feel the need to copy our

initiative or get involved in teaching humanities computing. Moreover, with the exception

4

of Computer-assisted language learning, humanities departments did not use computers to

teach their own subject.

This, then, was the background of humanities computing teaching at the undergraduate

level, when in November 1988 Professor Derek Sleeman, Head of the Department of

Computing Science at Aberdeen, proposed setting up a new course in computing for stu-

dents from all departments in the Faculty of Arts and Divinity. Letters inviting expressions

of interest or, indeed, offers of participation were sent to all heads of department and to

other individuals believed to have an interest in computing, and a working-party was set

up. Spearheaded by Computing Science, an initial syllabus was put together which was

then approved by the relevant Board of Studies, and the course was allowed to go ahead on

a non-graduating basis for one year in the first instance. That course was revised in the

light of experience, and is now running as a graduating course with a full number of credits

under the modular system for under-graduate degrees introduced in October 1990.There are

two very obvious differences between the course as it was then and the course as it is now.

First: the change in status from non-graduating to graduating. Second: the earlier course

used MSDOS machines, whilst the present one uses mainly Macintosh SE30s.

Aims of the course

The formally stated aims of the graduating course were relatively modest. Students were

expected to learn the terminology, key concepts, components, and customs of computing;

the basics of using common application packages and very simple programming; the most

notable ways in which computers have been used in various areas of the humanities by

practitioners and researchers; and how to make everyday use of computers appropriately in

arts courses. Our unstated aims were more ambitious. Firstly, we wanted to give our

students exposure to a much wider range of applications programs than is normal for a

short course aimed at non-mathematical complete beginners. Secondly, we wanted to

encourage a confident, independent, exploratory attitude amongst students which we hoped

would eventually give them the chutzpah to work out for themselves how to use new

machines, new software and how to apply them to new humanities problems. Thirdly, we

wanted our students to become critical about many existing applications of computers in the

liberal arts, and to understand the depth of intellectual challenge of using computers

seriously in the humanities.

5

A non-graduating 'dry run' of the course

Let us look briefly at the earlier non-graduating course. It was open to all students,

undergraduate or postgraduate, and staff in the faculty, whether or not they had any

previous computing experience. Two factors in particular, we thought, might militate

against its popularity. First: since it was non-graduating, students would get no academic

recognition for their participation and work in the course, although students completing the

course did have the opportunity to write an essay and sit an examination paper: those who

were successful were awarded a certificate. Second: it had to be held at lunchtime (1-2

p.m.), since this was the only available slot, although even this clashed with two large

first-year classes.

In the event the course attracted an initial take-up of over 60 students. Ironically, the fact

that the course was non-graduating gave us one big advantage in getting it off the ground:

we were allowed to advertise it!

The course ran over the first two terms of the session, and took the form of an hourly

lecture plus an hourly practical session per week, i.e. 34 hours of instruction in all.

Broadly speaking, the lectures and practicals in the first term were designed to give

students a basic knowledge of the modest set of three packages used in the non-graduating

course - word-processing (Microsoft Word), databases (Dataease), and concordancing

(Micro-OCP) - together with hands-on experience of the packages themselves. The

introductory lectures were given mainly by Computing Science staff, and the initial

practical sessions were supervised by specialist Computing Science demonstrators.The

practical work was based on IBM-PC-clone machines, since classrooms full of these

machines were already available and were already supplied with software packages that we

thought would be workable (or at least liveable with!), if not always ideal.

The vast majority of participants had no previous experience of computing in any form - or

even, in many cases, any knowledge of keyboards. It quickly became apparent that much

more back-up than we had envisaged would, in fact, be necessary for the practical

sessions. Students required assistance both on a one-to-one basis and in the form of tutorial

handouts and exercise sheets. Although students were encouraged in the practical sessions

to take an individual and exploratory approach rather than work through a rigidly defined

corpus of work, many needed a good deal of direction, guidance and encouragement,

particularly when changing from one package to another. This was reflected in a written

6

questionnaire students were asked to complete on the lectures and practicals for each term.

Reaction to the scope and level of the lectures was generally positive, although several

students felt that the practical sessions were insufficiently structured and wanted more set

exercises to work through, with clearly defined goals for each session. Outside tutorial

hours, it may be added, students had free access to the computing facilities whenever these

were not being used for other classes.

After the introductory lectures, the majority of talks were given by staff from various de-

partments within the Faculty of Arts and Divinity itself - Education, English, French,

German, History, Philosophy and Logic, and Practical Theology. Tutors generally drew

on their own research experience to exemplify and discuss the use of computers in their

own disciplines. Subjects covered included: bibliographical information storage and re-

trieval, CALL, artificial intelligence, intelligent tutoring systems, hypertext, using a com-

puter in the day-to-day running of a church ('Practical Theology'), literary and linguistic

text analysis, concordances, music, and the social impact of computing. Where viable, the

practical sessions were designed around the lectures, with each lecturer responsible for set-

ting exercises and arranging supervision (with assistance from Computing Science) for his

own subject. Two major exceptions to this were: the practical associated with the lecture on

hypertext took place as a semi-demonstration, with students crowded round the one Apple

Macintosh computer we had at our disposal at that time; and the computer music practical

took the form of a demonstration of how to write, play and manipulate music, again using

non-IBM-type machines. In addition, one lecture slot was taken over by Marylin Deegan

from the Computers in Teaching Initiative Centre for Literature and Linguistics Studies

attached to the University of Oxford.

The graduating course

With the introduction of the graduating course in October 1990, we were able to build on

the expertise gained from the previous year. The broad range of subjects was retained, and

even increased with the introduction of lectures on the use of computers in Law, human

computer interaction, and the ethics of computing, two of these topics being included as a

result of the interest generated amongst staff by the previous year’s course. This was made

possible by that fact that the course now runs over twelve weeks, with two lectures and

two tutorial sessions per week (i.e. 48 contact hours in all). The additional time also allows

us to address some of the 'bittiness' that we previously experienced in some of the topics

covered.

7

An overall lack of cohesiveness can be a major potential hazard with courses of this nature.

It is all too easy for students to be given a very superficial overview of too many disparate

aspects of a subject, without connections being made between separate elements, so that

any one can relate to, and illuminate, others. We sought to address any potential shortcom-

ing in two ways. First: all tutors were given the complete programme in advance, and en-

couraged to listen to others' lectures. Second, as the two course conveners, we attended

every lecture and most of the practical sessions: we had deliberately spaced our own slots

over the whole course, so that we were able to draw things together for the students at

regular intervals, as well as anticipating what was to come in later lectures.

We had perceived the major failing of the previous year to be the difficulty which many

students experienced in the tutorials and the sometimes massive amounts of tutorial help

they required, especially to master each new package as it was introduced. We were deeply

frustrated by the fact that so much time had to be spent in teaching students to memorize

inconsistent sets of commands, each relevant to just one package. All of the systems we

used (operating system, word processor, concordance package, database) had quite

different interfaces. It become apparent that some students were confusing these interfaces

badly, and that this confusion was undermining their confidence in their ability to

understand and control computers. This was tackled - and, as our experience is now

suggesting, remedied in several ways. Of these, the major factor has been switching from a

"command line" computing environment to a well-designed and well-integrated direct

manipulation environment. In practical terms this decision was implemented by switching

from MSDOS to the Macintosh graphical user interface (GUI) environment.

The human machine interface as a teaching resource

A well-designed graphical user interface environment has a number of well-documented

advantages (Smith et al, 1982) over a command line environment, principal among which

is the consistent user interface metaphor and syntax between different applications. This led

in our case to four concrete practical benefits. Firstly, at the beginning of the course we

could boost students' confidence by introducing them to applications that we knew from

personal experience could be learned by five year olds in less than a minute (a mouse-

driven public domain drawing package, and a simple game to improve mouse manipulation

skills.)

8

Secondly, we found (as others have) that because all applications used the same consistent

interface, once students had mastered one package they could master subsequent packages

very rapidly, and focus on the task in hand rather than its syntax. For this reason, we were

able to introduce a far wider range of computer applications in the practical sessions than in

the non-graduating trial year, even taking into account the extra hours available. New

practical topics introduced included communications programs; use of the UK Joint

Academic electronic mail network (JANET); use of the UK Humanities bulletin board

HUMBUL; spreadsheets; hierarchical outlining, Prolog and Hypercard. A third concrete

benefit was that because most actions on screen were reversible (i.e. there was an "undo"

button that worked) and since most actions had clearly visible consequences, students were

willing to explore new application programs for themselves without fear of irrecoverable

error and with confidence in their ability to work out what they were doing. (We had

always exhorted our students in the trial year to do this, but with little success.) The fourth

and final main benefit was that despite the introduction of new topics, students were able to

learn more in the time about the basic topics, such as word processing: for example, a

higher proportion of students were able to rapidly master more powerful features of word

processing such as indexing, style sheets, outlining, etc.

We feared that one potential disadvantage about the switch to Macintoshes was that in some

parts of the course where we still needed to use MSDOS (for example, the concordance

program was only available on MSDOS), students might be put under a lot of strain. They

would be forced rapidly to learn a completely new operating system (MSDOS) and a new

style of interaction for the sole purpose of leaning a new application package. Indeed, some

of our colleagues worried that our students were being 'featherbedded' on Macintoshes and

would later perform badly when exposed to MSDOS. To our great surprise, the Macintosh-

trained students by and large not only learned the MSDOS style of interaction very

quickly, but went on master in a single session more of the concordance program than the

trial year's students had done. This was an informal observation rather than a formal

experiment, but it surprised us and we gave some thought to trying to account for it.

Forming a stable conceptual model of the computer

One way we able to make tentative sense of these observations was in terms of

Sniederman's (1987) syntactic/semantic model of user knowledge. Our hypothesis ran as

follows. By gaining practical experience of computers in an environment where the user

interface was consistent, our students had built up a stable, meaningful picture of the kinds

9

of thing a computer can do (in terms of Shniederman's theory, this is referred to as

"semantic knowledge of the computer domain"). By contrast, in the trial year, students had

had to focus on the memorisation of syntactical knowledge which, because essentially

arbitrary, is unstable in memory without constant rehearsal. When the Macintosh trained

students faced an unfamiliar MSODS interface, the combination of a clear general

understanding of the semantics of interacting with a computer and a habit of exploring new

applications autonomously gave them a stable base from which to learn the new syntax

with the minimum of confusion.

Of course, these observations are informal and open to more rigorous experimental testing:

it could be argued that the gains were just due to better teaching in the second year. In any

case, it is undoubtedly true that students found the graphics interface much easier to grasp

and use than the command-line interface of MSDOS. Much time was previously spent on

irritatingly minor tasks like memorising the correct syntax for copying files, listing files and

sub-directories, invoking applications, and so on: all this was obviated in the GUI

environment. It is also true that students have been far more willing to explore applications

for themselves. It should also be emphasised that we have no special brief for or against

any particular manufacturer or environment. Our aim was simply to use the most

affordable, consistent and well-designed user interface for a personal computer - which we

judged (and still judge) to be the Macintosh interface.

With so many new applications to be covered, we wished to encourage students to explore

applications in ways of their own choice, for example: working through an introductory

Hypercard stack, reading the manual, working through our set exercises or exploring

freely; but at the same time we wanted to maintain standards and prevent fragmentation in

the practicals. No new teaching methods were needed for this: we found that the time-

honoured discipline of setting very specific written learning objectives for each session

supplemented with optional excercises and explanatory material that provided a set of

alternative paths to those objectives worked very well.

Benefitting from network access

As well as having their own hard disk, the classroom computers were linked to a central

fileserver, on which we placed files relating to the course (summaries of lectures, notices

relating to the course, etc.) which students could pull down to their own floppy disks and

manipulate as they wished. The computers were also linked to the university’s central sys-

10

tem and to JANET (the UK academic electronic mail network). As already noted, this made

it possible, for example, for students to access HUMBUL (the main UK research-oriented

humanities bulletin board) and LANCS.PDSOFT (a UK archive of public domain

software). But it also allowed case study work, as in the tutorial on bibliographies. For one

task, students had to use KERMIT to log on to the university library on-line catalogue, use

the catalogue search facility to locate certain items, and then copy these over, pasting them

into their own bibliographical database. This was easily achieved by switching and pasting

between processes under Multifinder in the Macintosh environment.

Artificial Intelligence and Human Computer Interaction for beginners

As well as changes in hardware, software and practical teaching approach, we made a

small but significant change in the graduating year in our approach to the teaching of

theoretical elements of Computer Science. After tackling the basics, we decided to put

more stress on areas of Computer Science such as human computer interaction and

artificial intelligence where, historically speaking, researchers with arts training and

backgrounds have made disproportionately large contributions.1 Shneiderman (1987)

talks of designing user interfaces as a "complex and highly creative process which blends

intuition, experience and careful consideration of numerous technical issues".

Winograd(1990) stresses its similarity to design disciplines like architecture. We wanted

students to become aware of areas within computing where opportunities exist for those

with an arts background to make substantial contributions without having to major in

computer science.

For related reasons, we decided not to teach programming in procedural languages in the

graduating year (in the trial year we did not teach programming at all). Instead, we opted

for an outline practical introduction to the artificial intelligence programming language

Prolog. We had good precedent for this in the work of the Prolog Education group (PEG,

1987). Prolog is well suited to reasoning about symbolically expressed relationships and it

can be argued that in many ways it is better adapted for use as an intellectual tool in the

humanities than procedural languages such as Pascal.

1For example, Sterling Beckwith (forthcoming) has noted that major contributors to human computer

interaction and artificial intelligence such as Marvin Minsky, Alan Kay, Bill Buxton, and Jaron Lanier (we

could add Christopher Longuet-Higgins, Terry Winograd, Phil Johnson-Laird and Herbert Simon) are all

musicans or have been involved in music as part of their research.

11

We were influenced in our decision by experiments such as those at IRCAM (the Institute

de Recherche et Coordination Acoustique/Musique) in Paris, and the Utrecht School of Art

(Honing, 1989). At IRCAM, computer-naive conservatoire music students were taught the

artificial intelligence language LISP for use as a music composition tool (Wessel, 1987).

In this experiment, key concepts of LISP and artificial intelligence programming were

taught using direct analogies from music composition and demonstrated using musical

instruments connected to computers. We did not go this far (we have also omitted natural

language processing so far - although it this an area where Prolog is almost uniquely simple

and powerful to use (Bratko, 1990)). We focussed instead on a brief practical introduction

to Prolog linked with lectures on logic (from the Philosophy department) and lectures on

artificial intelligence. We also briefly introduced some ideas about objected-oriented

programming using a practical session with the language Hypertalk. Hypertalk is the

language of the Macintosh prototyping tool Hypercard,which we used to allow students to

begin designing and making prototypes of simple interfaces.

One by-product of our efforts to present this material as clearly as possible was the

development of a simple but useful computer-based presentational technique, new at any

rate to us. Some lectures were presented using a "hierarchical outliner" courtesy of a

luggable Macintosh with an overhead display device. This allowed electronic lecture slides

to be dynamically expanded or contracted during presentations depending on the degree of

audience comprehension. This not only saved the cost of preparing acetates, it had the

added benefit that after the talk, the lecture notes could be dumped on the file server for

students to study at their leisure with a consequent saving of handout preparation costs.

Conclusions

In general terms, the interdisciplinary nature of the course has had three major effects.

First: there has already been some useful interdisciplinary cross-fertilisation of ideas and

methods. For example, the course has lead to a small but highly energetic research project

on AI and Film with the collaboration of the English and Computing Science Departments.

Second: the Faculty of Arts and Divinity as a whole has attained a higher profile in

computing need and usage than could ever have been achieved by individual departments

(or individuals within departments). Apart from anything else, this should give it a stronger

voice in the future shaping of hardware and software requirements within the university.

12

Third: it has raised the computer-awareness of colleagues both within and outside the

Faculty of Arts and Divinity who hitherto have not seen anything in computing for them.

Resources in both human and technical form were, of course, the essential prerequisites. It

is important to stress that, throughout the planning stages and in the teaching itself, we

were fortunate in being able to call on the support and the expertise of Computing Science

on the one hand, and of many individuals scattered throughout departments in the faculty

on the other.

Another important factor has been that we were able to utilise some of the fairly extensive

centrally provided computing facilities, with both hardware and software provision, avail-

able on campus. In addition, we were awarded a small materials grant from central

University funds which enabled us to acquire items of software and site-licences requested

by individual lecturers for specific applications or subject-areas. The course was also in-

cluded in the University's successful bid for funding from the Department of Trade and

Industry's Enterprise Initiative scheme, which will provide future funding.

Perhaps the most important thing to stress is that we did not pre-select or pre-determine one

particular sphere of activity for students. If a university education, particularly in

humanities subjects, as opposed to some sort of narrowly focussed, goal-directed

professional training, is supposed to be about expanding students' awareness, stretching

their imagination and their intellect; and opening their eyes: then I would suggest that we

have mostly succeeded in fulfilling these perhaps unfashionable ideals.

The final question to consider is how the course fared in terms of the attitudes mentioned at

the beginning of this article. The Computer Science Department now considers this course

to be one out of which innovations in teaching computing have arisen and can be expected

to continue to arise. The extent to which attitudes amongst Humanities staff have become

more positive can be judged by the fact that several faculty members have attended lectures

and started talking to the Computer Science Department about collaborative projects.

Students have given enthusiastic feedback, worked hard on a number of extra-curricular

humanities computing projects of their own devising, carried out independent research as

part of the course, and, in some cases, written assessed essays of publishable quality. As

an informal indicator of attitudes, humanities students from the course have also variously

13

bought their own Macintoshes (unusual in Britain) held course parties, formed a course

band and started editing and producing a campus-wide computing magazine.

Computing and Humanities Departments have co-operated extensively to create this course.

The course allows a lot of freedom within limits that are carefully structured and tightly

controlled, and offers students an introduction to humanities computing that goes some

way beyond mere word processing and computer literacy. We consider that finding ways

to use computers to their fullest extent in the Humanities is one of the major intellectual

challenges of the next few decades. We have tried to communicate the excitement of this

challenge to our students, and in future years we hope to find ways of continuing to do

this yet more effectively.

References

Bratko, I. (1990) Prolog Programming for Artificial Intelligence. Menlo Park, Addison

Wesley.

Beckwith, S. (forthcoming) Hunting Musical Knowledge in Darkest Medialand. In

Edwards, A. and Holland,S. (forthcoming) Eds. Multimedia and multimodal interface

design in education. Springer Verlag, London.

Honing, Henkjan (1989) Personal communication. Utrecht Art School, Utrecht.

PEG (1987) Proceedings of the 2nd International Conference of the Prolog Education

Group (PEG 87). Exeter, UK 8th-10th July 1987.

Shniederman, B. (1987) Designing the User Interface. Menlo Park, Addison Wesley.

Smith, D.C., Irby,C., Kimball, R., Verplank, W., and Harslem, E. (1982) Designing the

Star User Interface. Byte 7(4), April 1982 242-282.

Wessel, David (1987) Personal communication, IRCAM, Paris.

Winograd,T. (1990) What can we teach about Human Computer Interaction? Proceedings

of CHI 1990 (ACM SIGCHI conference on Computer Human Interaction). pp. 443 - 449.

14

