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Abstract 

Therapeutic drug monitoring is primarily undertaken for narrow therapeutic inde:\ 

drugs, such as immunosuppressants. These drugs have reduced the incidence of acute 

rejection and improved allograft survival. However, due to their narrow therapeutic 

index, small variations in blood levels may result in inadequate levels of 

immunosuppression or toxic drug concentrations. To overcome these problems 

individual dose regimen based-on phannacokinetic monitoring has been proposed in the 

past years. Indeed, several studies have previously documented a significant association 

between cyclosporine whole blood levels and patient's clinical outcome, expressed as 

rejection episodes as well as drug-related adverse events. 

Novel immunosuppressive agents have been recently introduced on the market (such as 

rapamycins and mycophenolic acid-releasing formulations). However, data on their 

phannacokinetics, which in tum could be useful for the definition of therapeutic ranges, 

are scanty. To address this issue we have used a chromatographic method for the 

measurement of mycophenolic acid levels in kidney transplant recipients. Although this 

immunosuppressant is usually given in a fixed daily dose regimen, we found a positive 

correlation between drug levels, but not dose, and renal function. As additional analysis, 

significant phannacokinetic interactions between mycophenolic acid and concomitant 

immunosuppressive regimens have been identified. Similarly, novel chromatographic 

methods for the analysis of rapamycins in the whole blood have been developed in our 

laboratory, and applied to identify phannacokinetic interactions between these anJ other 

inununosuppressive agents. In the last part of my research project. I have also presented 

preliminary data on the application of pharmacogenetics analysis in patients given 

cyclosporine as part of their immunosuppressive regimen. 
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In conclusion, it can be reasonably speculated that TDM based on pharmacokinetic. as 

well as novel pharmacogenetic approaches, can be considered as reliable tools to guide 

drug dosing in organ transplantation setting, ultimately resulting in a significant 

improvement of long term graft and patient survival. 
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Chapter 1 

INTRODUCTION 
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Organ transplantation as a treatment modality for patients with end-stage organ diseas~s 

of the kidney, heart, liver, pancreas and small bowel has achieved impressi\-e results in 

the past two decades, thanks to a better understanding of basic immunobiology. more 

advanced measures for medical and surgical management, and n~w pharmacological 

treatments [1]. Indeed, although immunosuppressive therapies to overcome host 

reaction to allografts have been employed since the early days of clinical 

transplantation, immunosuppressive agents and treatment protocols are constantly 

evolving [2]. 

Historical perspective 

The pharmacological era of immunosuppression began In 1916, when Hektoen [3] 

showed that benzene treatment reduced antibody production in experimental animals. 

Later, Schwartz et al observed that treatment with 6-mercaptopurine, a competitive 

inhibitor of many purine synthetic pathways, reduced antibody production and 

prolonged skin allograft survival in rabbits [4]. Subsequently, azathioprine (AZA) - an 

imidazole derivative developed to prevent the susceptibility of the unshielded mercapto-

group of 6-mercaptopurine to hydrolysis in the gut - was shown by CaIne and 

colleagues [5] to prolong the survival of human renal transplants. In the same period, 

steroids, the second stage in the development of therapeutic immunosuppression, 

showed various effects to reduce inflammatory processes mediated by mononuclear 

cells [6]. From 1964 to 1978, renal transplants were carried out using combinations of 

azathioprine and the steroid prednisone, showing about a one-year graft survi val rate in 

50% of recipients. However, even in successful cases, this approach was complicated by 

bone-marrow suppression, gastrointestinal disorders or opportunistic infections [7 J. 

Thus, new, potent, selective and less toxic drugs were urgently needed. Since the 

introduction of cydosporine (CsA) in 1978 [8]. there has been linle douht about it:-; 

..., 
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value as the single most important agent in the armamentarium of maintenance 

immunosuppression for organ transplantation. In the middle nineties triple-drug therapy 

with cyclosporine, corticosteroids and azathioprine became the most frequently used 

regimen for kidney recipients [9]. 

More recently, better understanding of the basic immune mechanisms and more insights 

in the pharmacokinetic properties of different molecules have led to the development of 

several new xenobiotic immunosuppressants (tacrolimus, mycophenolate mofetiI. 

sirolimus, everolimus, FTY720), novel formulations of traditional drugs (cyclosporine 

Neoral, mycophenolate sodium), as well as polyclonal antilymphocyte agents 

(antilymphocyte or antithymocyte globulins [ALG, ATG]) or monoclonal antibodies 

specifically directed against immunological targets (anti-CD3 [OKT3]. anti-CD52 

[alemtuzumab or campath-IH], anti-CD20 [rituximab]), which have entered clinical 

trials in the past few years [2]. Altogether, these new drugs contributed to great 

evolvement of immunosuppressive drug regimens for maintenance of solid organ 

allografts observed over the past few decades, increasing I-year graft survival from less 

than 40% in the early '60 to an actual survival of over 900/0 [10]. 

Despite the great results obtained in the short-terms, it should be pointed out that current 

anti-rejection drugs, however, invariably reduce systemic immunity non-selectiyely 

which translates in more risk of infections and cancer. Moreover, these agents present 

several side effects and, in some instance, can be extremely toxic for the graft, 

especially for the kidney [11]. all factors that can contribute to chronic rejection. 

ultimately resulting in poor long term graft survi val and graft loss [12]. 

It was soon realized that adverse events associated \\ith phannacologic 

imnlUllosuppression were mainly related to daily drug exposure and could be minimizcLi 

to some extent by carefully titration of the optimal individualized dosage. Sevcral 

appn)aches havc been used to assess the appropriateness of the dosing regimen for an 

- 8 -



immunosuppressive drug. The first involved the assessment of clinical response. This 

approach, however, has serious limitations, because signs of rejection or toxicity may be 

difficult to recognize, or the clinical manifestations can appear late, so that patients do 

not recover also after drug withdrawal [13]. Therefore, it was clear that alternative 

approaches had to be developed, giving birth to a new important and exciting tield of 

study: Therapeutic Drug Monitoring (TDM). 

A TDM program [14] for immunosuppressive drugs must include consideration 

concerning the use of specific and sensitive analytical methods, identification of the 

optimal biological matrix, and choice of the best parameter to be assessed as surrogate 

marker of drug activity. Traditional TDM has been performed using pharmacokinetic 

approaches [14], but also complementary strategies have been developed in the last few 

years [15,16]. The ultimate goal of traditional as well as innovative TDNI studies is to 

tailor the best immunosuppressive regimen for each patient. 

The pharmacokinetic approach 

Pharmacokinetics involves the measurement of drug concentrations in biological fluids 

and the subsequent relationship of these levels to drug dosing and ultimately to clinical 

events. The assumption is that the plasmalblood concentration mirrors the concentration 

at the site of action. Drug levels could be greatly influenced by environmental factors, 

such as hepatic or renal dysfunction, as well as hormonal levels and/or pharmacokinetic 

interactions \\ith other co-administered drugs. all combinations that can VaI)' 

significantly during the course of treatment [17]. These observations provide support for 

phanl1acokinetics, because periodical evaluations of drug exposure are able to identit\ 

external intluences, and can predict daily drug exposure and clinical outcome. This 

approach, also termed as clinical phannacokinetic monitoring, has been applied to th~ 

field of organ transplantation starting from the end of 1960s [17J. Sinc~ th~n. s~v~ral 
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studies have shown the predictive impact of pharmacokinetics on decreased mortality. 

morbidity and efficacy/adverse events from immunosuppressive drug therapy [18.19]. 

Although pharmacokinetics represents a step forward, as compared to the simply 

observation of clinical response, it presents some limitations. Pharmacokinetic studieS 

can start only when a given drug is administered to the patients. requiring the 

assumption of steady state conditions and patient's compliance. ~oreover. there is still 

controversy about which are the best phannacokinetic parameters that should b~ 

considered to monitor drug effect. The area under the time-concentration curve (AVC) 

represents the golden standard to assess daily drug exposure. Unfortunately. measuring 

Aue requires the collection and analysis of multiple samples, which is costly and time-

consuming for patients and clinical staff. To overcome these problems, alternative 

approaches have been developed by limited Sampling Strategy (LSS), a technique 

aimed to estimate a phannacokinetic parameter, as AVC, using a small number of 

samples [20]. Several equations have been developed so far, but there is still lack of 

agreement on the choice of the optimal LSS for each immunosuppressive ag~nt. 

All these limitations provide the rationale for searching complementary/additional 

strategies to manage narrow therapeutic index drugs beyond pharmacokinetics. 

Pharmacodynamic monitoring of immunosuppressive drugs 

Phannacokinetics has been used for many years to relate immunosuppressants dose to 

drug exposure in vivo. Although this is the primary method to measure drug absorption. 

distribution, metabolism, excretion and interactions with other drugs. it does not directly 

assess the phannacological effects on immune cells 
. . 
10 \'1\'0. As r~sults 

pharmacokinetics cannot account for the inter-subject variability in the s~nsitivities to 

immune suppression bv similar blood concentrations of immunosuppressants. 
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Therefore, the current practice of relying solely on pharmacokinetics for clinical 

decisions on the dosage and the choice of immunosuppressants is far from ideal. 

In contrast to pharmacokinetics, pharmacodynamics of immunosuppressants quantitates 

drug effects at its target site, after drug exposure to immune cells in vivo. If 

measurement at the target is not possible, the enzyme activity should be measured in a 

matrix that provides good surrogate marker for enzyme activity at the target site [15] . 

. Pharmacodynamic assays of orally active immunosuppressants either measure the drug 

effect on a discrete molecule that is important for lymphocyte activation or measure 

more complex biological events required for normal immune functions [21]. Indeed, 

pharmacodynamic assays have been reported for the monitoring of esA, azathioprine, 

mycophenolate mofetil, and rapamycin [15,21]. 

Pharmacodynamic monitoring might provide better understanding of mechanisms of 

actions of different immunosuppressants, as well as direct assessment of 

pharmacologic-induced immunosuppression. These approaches have, therefore, the 

potential to augment pharmacokinetic monitoring to optimise the dosing regime of anti­

rejection drugs. However, because many of pharmacodynamic assays are time­

consuming and not amenable for use in routine clinical laboratories [15], the future 

challenge is to develop robust methods to facilitate the further evaluation and 

application of these approaches. 

Pharmacogenetics as a new tool to tailor immunosuppressive therapy 

The advent of the genomic era has brought several new fields of study, including 

pharmacogenomics, which seeks to link drug treatment with the individual's genetic 

make-up. This new science holds many promises for improved treatment of a large 

variety of medical conditions, including immunosuppression for organ transplantation 

[22], providing a promising and complementary tool to traditional TDM. The key-point 
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is to understand whether clinical pharmacogenomics is already applicable today to 

organ transplantation. Early observations focused simply on drug metabolism [23]. 

However, today there is great interest in the full spectrum of drug disposition, including 

absorption, distribution, and pharmacological targets. One of the potential advantages of 

this type of approach lies on the common metabolic pathways for several 

immunosuppressive agents. CsA, tacrolimus, sirolimus and the novel rapamycin­

analogue everolimus are all transported by P-glycoprotein - a protein encoded by the 

multidrug resistant gene t (MORt) - and metabolised by the cytochrome 3A4 

(CYP3A4) and to a less extent by CYP3A5 [24]. Thus, the study of patient's genotype 

can provide predictive value for regimens which include the concomitant administration 

of several drugs, a common condition for organ transplant recipients. 

The presence of variants in genes encoding for the drug targets or other genetic 

polymorphisms with indirect effects on drug response are less known. Thus, they 

represent an exciting challenge for the future. However, one should consider that also 

many non-genomic factors, including concomitant drug administration, 

pharmacological enzyme-induction, and illness may have a significant impact on the 

above mentioned proteins, and must be taken into account also when a 

pharmacogenomic approach is planned. 

Therapeutic drug monitoring of novel immunosuppressants: preliminary experience 

withMPA 

MMF is widely used in kidney or heart transplantation using a fixed-daily dose 

regimen. However, data are recently emerging that provide the scientific basis for 

therapeutic drug monitoring of MP A in transplant patients receiving MMF, the parent 

drug, in combination with other immunosuppressive agents. There is a significant 

relationship between the dose-interval MPA AVC and risk for acute rejection based on 
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retrospective investigations in renal and heart transplant patients and on prospective 

investigations in renal transplant patients [17,19]. The MPA dose-interval AUe varies 

naturally by more than 10-fold in renal and heart transplant patients. Other significant 

sources of pharmacokinetic variability for MP A include the effects of concomitant 

medications - especially when new drugs (i.e sirolimus) are concomitantly used - and 

the effects of disease states such as renal dysfunction and liver disease on the steady 

state MP A exposure. MP A is extensively bound to albumin, with a range of protein 

binding of 97-99% in patients with normal renal and liver function. Factors that alter the 

protein binding can affect the relationship between total concentration and free 

concentration which, in turn, is pharmacologically active [114]. For this reason, under 

circumstances of perturbed binding, the interpretation of total MP A plasma 

concentration must take into account the altered MP A binding. Further research is, 

however, needed to draw defInite conclusion on this topic. 

Individualized MMF dose evaluation, guided by MP A plasma concentrations, is 

becoming the standard of practice at a growing number of transplant centers worldwide 

because of these factors and because of the need to closely evaluate the 

immunosuppressionafforded by MP A when a change in the immunosuppression 

regimen in stable transplant patients is planned. Investigations of therapeutic drug 

monitoring strategies with the goal to optimize the use of MMF, focusing in particular 

on drug-to-drug interactions, are ongoing. Based on statistics from the Analytical 

Services International Ltd, there are nearly 80 centres participating in the MP A 

program. Most of them are European, whereas only a few centers in America are 

currently monitoring MP A. However, given the emerging strong support for the clinical 

outcome benefit of MP A monitoring, it can be expected that greater demand for MP A 

monitoring will occur, focusing also on the pharmacokinetics of MP A released from the 

recently developed enteric-coated formulation [107]. 
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Therapeutic drug monitoring of novel immunosuppressants: preliminary experience 

withSRL 

SRL was recently approved in Europe, where the licence specifies its use for 

prophylaxis of graft rejection in adult kidney transplant recipients, and with the use of 

blood concentration monitoring. TDM of SRL is still in its infancy but data have 

accumulated from several clinical trials, some of which were concentration-controlled, 

showing that there is a good correlation between SRL trough concentration (as 

surrogate marker of SRL AVC) and clinical outcome, expressed as rejection episodes 

and drug-related toxicity [17,18]. Therefore, to date, all the monitoring 

recommendations refer to this sampling. Preliminary evidence is also available that SLR 

exposure could be significantly influenced by concomitant CsA administration. 

However, the potential drug-to-drug interactions between SRL and other agents usually 

administered to organ transplant recipients are unknown. When SRL is used in 

combination with a calcineurin inhibitors predose concentrations are generally targeted 

in the range 5-15 ng/mL [17,18], whereas specific SRL ranges in CsA- or TRL-sparing 

regimen are lacking. 

Therapeutic drug monitoring of immunosuppressive agents in the Centre of Bergamo: 

single-centre experience with CsA 

CsA is the principal immunosuppressant currently used to prevent graft rejection after 

organ transplantation. Given the appreciable interindividual variation both in clinical 

response and in drug exposure despite the same dosage regimen, it was early realized 

that close monitoring of CsA blood levels was a useful adjunct to its optimal 

administration. In particular, the AVC, either calculated from the individual complete 

phannacokinetic profile or predicted using LSS, was identified as the best predictor of 

CsA daily exposure and clinical outcome [25]. These approaches are, however. time 
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consuming and seldom feasible in routine out-patient clinical monitoring. Thus, m~1 

of trough (Co) blood CsA concentration has been widely adopted to adjust CsA dose in 

individual subjects since twenty years ago. In the last few years, however, e\'idence has 

accumulated that blood sampling at 2 h post-dosing (C2), might provide a better 

estimate of CsA exposure than the traditional Co-based monitoring [25]. It should be 

pointed that the defInition of the best single-point sampling (Co or C2) to monitor patient 

exposure to CsA is still a matter of debate. This concern is mainly related to the limited 

data available showing the clinical usefulness of using single point strategy to monitor 

daily CsA exposure. The utility of CsA Co was initially proposed based upon reports of 

a correlation between low trough values and increased incidence of acute rejection 

episodes, as well as high concentrations and nephro- or hepatotoxicity [26]. 

Nevertheless, this approach was proven as not always reliable in routine clinical 

practice due to the fact that some patients experienced a worst outcome despite CsA Co 

levels within the therapeutic range. In search of more accurate single point sampling 

markers of CsA drug monitoring, in the last few years C2 has been proposed as a useful 

surrogate of the maximum drug concentration (Cmu), which in turn is effective in 

predicting acute rejection [27]. It should be pointed, however, that no studies have 

formally compared the predictive value of these two samplings in term of clinical 

outcome. Therefore, we have strictly measured serial Co and C2 levels in over 330 

kidney transplant recipients during the first 6 months post-surgery and found that CsA 

trough levels early post-transplant (day 2, 9 and 14) were the strongest predictor of 

acute rejection over 6 month follow-up [28]. In particular, Co levels within 300 to 440 

ng/mL were associated with the lowest risk of rejection, while C2 levels considered 

alone had no predictive value at all. The large number of phannacokinetic 

measurements (Co; N=2236 and C2; N=2128) together with the stringent follow-up 

protocol, suggests that the predictive value of C2 is overrated, at least in the early phase 
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post-surgery. To extend our findings, we have retrospectively analyzed full 

pharmacokinetic profiles of 58 patients at more than one year post surgery [29]. A 

logistic regression analysis of the interaction between pharmacokinetic parameters and 

graft function showed that Co but not C2 significantly predicted long-term clinical 

outcome, expressed as renal function deterioration. Altogether, these findings suggest 

that C2 is not a superior surrogate marker of the daily CsA exposure than Co, either in 

the short and long-term. period post-surgery. Additionally, by analyzing full CsA 

pharmacokinetic profiles, we have shown that not all kidney transplant recipients 

behave in the same manner as for absorption, distribution, metabolism and elimination 

of CsA. In particular, interindividual variation in the absorption process may segregate 

distinct population of patients [29]. Of note, patients with an "atypical" absorption 

profile are those which benefit less from single point-based limited sampling strategy to 

monitor daily CsA exposure [29], a condition that may expose these patients to chronic 

over- or under- cyclosporine exposure with dramatically clinical consequences. This 

concept was exemplified by our fmdings that in some patients the use single point-based 

monitoring may result in inadequate immunosuppression, leading to a significant 

increased risk to develop long-term complications of chronic CsA overexposure, such 

as Kaposi's Sarcoma (KS), a skin cancer. Indeed, we have compared the incidence of 

KS in transplant patients receiving Neoral or Sandimmune as a part of their 

immunosuppressive therapy [30]. 668 kidney transplant recipient followed at our 

Nephrology Unit from 1970 to 2003 entered this retrospective analysis. 300 were on 

CsA Sandimmune-based and 308 on CsA Neoral-based therapy. The primary endpoint 

was the occurrence of KS. The disease was diagnosed in 20 out of 608 patients given 

CsA with an incidence rate of 4.7 per 1000 patients per year. No episodes of KS were 

found in the pre-CsA era. Among patients on CsA, those treated with Neoral had 4 fold 

higher incidence rates of KS than in the Sandimmune group (10.7 vs 2.3 per 1000 
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patients per year). Kaplan-Meier analysis shows that patients on Neoral had lower 

cumulative KS-free probability than those on Sandimmune. Cox's analysis documented 

that Neoral was a positive predictor of KS development as compared to Sandimmune 

(hazard ratio: 2.237). Among patients on Neoral those who developed KS had higher 

daily exposure to the drug assessed by pharmacokinetic studies. Therefore, we 

concluded that in recipients of kidney transplant CsA Neoral increases the risk of KS as 

compared to the Sandimmune formulation, possibly due to enhanced drug 

bioavailability and ultimately patient's daily CsA exposure. To avoid or limit these 

dramatic consequences, we would suggest that all transplant recipients, beside Co or C2 

routine monitoring, should undergo at least one pharmacokinetic profile in order to be 

classified according to CsA absorption pattern. 

It should be pointed, however, that drug concentration measurements are only a part of 

the decision tree for dose adjustment. They must be viewed in the context of other 

complementary fields that include biochemical and clinical analysis, as well as novel 

therapeutic monitoring approaches. As an example of this concept, we have conducted a 

randomized trial aimed at investigating whether per-protocol biopsies, in combination 

with routine pharmacokinetic studies, could be useful tools to implement steroid or CsA 

sparing regimens in kidney transplant recipients [187]. As main result, we have found 

that per-protocol biopsy more than one year after transplantation is a safe procedure to 

guide change of immunosuppressive regimen and to lower the risk of major drug­

related side effects. Alternative approaches, beside pharmacokinetics, have been 

recently proposed to tailor the best immunosuppressive regimen for each patient. For 

instance, pharmacodynamic monitoring involves measurement of the biological effect 

of the drug at its target site [15]. Indeed, we have previously developed a method for the 

assessment of calcineurin, the pharmacological target of CsA, in whole blood. When we 

applied this assay to monitor kidney transplant recipients we found that CsA levels did 
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not predict daily calcineurin activity, whereas a single determination of the eIlZ)me at 

baseline was a useful surrogate for the daily inhibition of the enzyme by CsA [188]. It 

should be pointed out, however, that phannacodynamic tests are actually too complex 

for clinical use and often require radioactive materials. As additional drawbacks, studies 

aimed at investigating the potential predictivity of pharmacodynamic approaches in 

terms of rejection and/or drug toxicity are still lacking. 

Those involved in TDM are now realizing that individual patient's exposure to 

immunosuppressive agents can be influenced by the genetic background. Indeed, it has 

been proposed that interinvidual differences in CsA response may be due, at least in 

part, to sequence variants in genes encoding drug-metabolizing enzymes, drug 

transporters, or drug targets. Recently, genetic variants in the CYP3A4 and CYP3A5 

genes, responsible for the metabolism of CsA, have been described, and shown to be 

associated with an impaired enzyme activity [41]. Another factor that might influence 

drug disposition is the P glycoprotein (p-gp), the product of the MDRI gene. This 

protein is an efflux pump, which removes lipophilic drug, like CsA, tacrolimus and 

sirolimus, from the intracellular space. Several polymorphisms have been found for the 

MD R 1 gene [41]. Of these, three mutant alleles on exons 12, 21 and 26 correlate with 

expression of MDRI gene, and function of P-gp. Actually, only few studies have 

investigated the impact of these polymorphisms on the bioavailability of CsA or 

tacrolimus. Most of them showed contradictory results [41]. Many factors can explain 

the great heterogeneity in the preliminary pharmacogenetic analyses, including limited 

number of subject considered, and weakness of pharmacokinetic parameters studied, 

which often do not include full AVCs. The major limitation of these approaches. 

however, is the study of single polymorphism rather then the potential influence of 

additive factors such as the haplotypes, that generally contain more infonnation than did 

individual SNP. Therefore, further investigations in this field are needed. 
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Aims of the present study 

According to the actual knowledge in the field of therapeutic drug monitoring of 

immunosuppressive agents, my research activity will be devoted to: 

develop an analytical method useful for the assessment of ~1PA plasma len~ls in 

kidney transplant recipients, with the goal to optimizing ~1~IF dosing in th~se 

patients; 

study potential drug-to-drug interactions between ~lP A and other agents 

commonly administered to kidney transplant recipients; 

compare the pharmacokinetics of MPA from patients given l\1~IF with that 

derived from the novel enteric-coated mycophenolate sodium formulation; 

develop an UPLC-UV method applicable for TDM of sirolimus in the routine 

clinical practice, with the goal to study the effect of concomitant 

immunosuppressive therapy and to optimize drug dosing; 

to assess the role of SNPs in the MDRI gene in predicting CsA exposure in a 

large population of kidney transplant recipients. 
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Chapter 2 

SCOPE OF THE THESIS 
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The aim of this thesis is to apply TDM studies to kidney transplant recipients to 

optimise the management of new immunosuppressive agents, with the ultimate goal to 

improve patient clinical outcome. In particular, I have focused my research on the 

pharmacokinetics of mycophenolic acid (MP A)-releasing formulations - namely 

mycophenolate mofetil (MMF) as well as mycophenolate sodium (EC-MPS) - and 

sirolimus (SRL), with particular emphasis on the potential drug-to-drug interactions 

between these novel immunosuppressants and other agents commonly administered to 

kidney transplant recipients. Additionally, in the last part of the thesis, I have also 

presented preliminary data on pharmacogenetics, a new science which could represent a 

complementary approach to pharmacokinetics for the individualisation of 

immunosuppressive therapy for each patient. 

Mycophenolic acid 

MP A is a potent immunosuppressive agent commonly used following organ 

transplantation [31]. At clinically relevant concentrations, MP A is approximately 97% 

bound to plasma albumin. It has been shown that the unbound, rather than the total 

concentration of MP A is a predictor of MP A inhibitory effect on inosine 

monophosphate dehydrogenase (lMPDH). Therefore, the measurement of the free 

concentration of MP A, in addition to the total drug concentration, is advisable for 

pharmacokinetic investigations. 

MPA is metabolized to an inactive glucuronide conjugate MP AG, a pharmacologically 

active acyl glucuronide metabolite and a 7 -O-glucoside metabolite. MP A is primarily 

excreted renally as MP AG and to some extent in the bile. MP AG is excreted in the gut 

and reabsorbed as MP A, a mechanism commonly known as enterohepatic recirculation 

(EHC) resulting in the occurrence of a secondary plasma peak 6-12 h after oral M~fF 

administration [31]. 
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As a guide to dosage adjustment, it is advisable to measure the concentration of ~IPA 

(total and free) and MPAG in transplant recipients. An eIlZ)me multiplied immunoassay 

technique is available on the market, however this method overestimates the MP A 

concentrations due to cross-reactivity with the MPA metabolites [32]. Therefore, high­

performance liquid chromatography (HPLC) methods remain the standard for 

detennination of MP A and its major metabolite MP AG. Thus, simple and rapid 

methods for the quantification of total, free MP A and MP AG, which could be reliably 

applied for TDM studies, are welcome. 

Sirolimus 

Sirolimus (SRL), a 31-membered triene macrolide lactone with a hemiketal-masked a­

P-dioxocarboxamide and a molecular weight of 913.6 Da, is a novel antirejection drug 

with potent immunosuppressive activity both in vitro and in vivo [33,34]. Studies in 

humans have shown a relationship between trough blood SRL concentrations and 

immunosuppressive efficacy and toxicity of the drug [18]. This suggests that monitoring 

of the SRL concentrations is advisable to optimize drug dosing regimen. 

Since the drug has a narrow therapeutic index (NTI), it is important to develop an 

adequate method to quantify SRL in biological matrices. Several HPLC methods have 

been developed so far for quantifying SRL in whole blood with extraction steps using a 

variety of solvents and mixtures, or with liquidlliquid and subsequent solid phase 

extraction [35]. These HPLC methods used both ultraviolet (UV) and mass 

spectrometry (MS) detection (HPLC-MS or HPLClMSIMS). Although these methods 

meet many or all generally accepted criteria for validated analysis of 

immunosuppressive drugs, they are often cumbersome, have a very long sample 

preparation and/or chromatographic time, require glassware preparation (silanized or 

light protected tubes), use toxic solvents (i.e. l-chlorobutane) or involve equipments 
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(HPLC-MS) not commonly available in the clinical laboratory that need great 

investment. Therefore, given the increasing use of SRL in clinical transplantation. there 

is now need for more feasible methods to be applied in the routine clinical practice 

which also would allow simultaneous measurement of large number of samples. 

Development and validation of analytical methods for the measurement of 

immunosuppressants in plasma or whole blood 

The application of TOM to routine clinical practice requires the measurement of drugs 

concentrations in biological fluids. On this regard, selective and sensitive methods for 

the quantitative evaluation of drugs are critical for the successful conduct of 

pharmacokinetic studies. It is, therefore, mandatory to demonstrate that a particular 

method used for quantitative measurement of analytes in a given biological matrix is 

reliable and reproducible for the intended use. Thus, before to apply TOM to MPA and 

SRL monitoring, I have worked for the development of HPLC methods useful for the 

quantification of these immunosuppressants and, most important, I have assessed 

whether the performance of the assays was in agreement with the FDA Guidance for 

Bioanalytical Method Validation [36]. As described in Chapters 3-5, I have determined 

selectivity, accuracy, precision recovery, linearity and stability for each of the analytes 

assessed in the present thesis (namely, MP A, MP AG, SRL and CsA), using HPLC 

methods with UV detection developed in our Laboratory. Once proven acceptable 

performance, these methods have been subsequently applied to TDM ofMPA and SRL. 

Therapeutic drug monitoring of MP A 

In the second part of the thesis I have faced with TOM of MP A, the active metabolite of 

MMF and EC-MPS. MP A is now routinely used in solid organ transplantation in a fixed 

daily dose regimen. However, no correlation has been shown between drug dose and 
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clinical outcome [37]. Therefore, alternative approaches to guide MP A dosing have 

been advocated. 

To address this issue, we have taken advantage from the MYcophenolate Steroid 

Sparing (MY.S.S.) Study [38]. This multicenter, prospective randomised parallel group 

trial compared clinical outcome in recipients of cadaver-kidney transplant over 6-

month treatment with MMF or azathioprine (AZA) along with CsA and steroids (phase 

A), and over 15 more months without steroids (phase B). Ninety out of the 356 patients 

in the MY.S.S. study were enrolled from the Centre of Bergamo, and half of these were 

given MMF. Therefore, we decided to measure MP A plasma levels (trough levels and 

MPA AUCO-12 predicted using a LSS with sampling at: 0, 20, 40, 75 and 120 after MMF 

administration) in the 46 patients from the centre of Bergamo, and try to correlate MP A 

pharmacokinetic parameters with clinical outcome during the fJISt 6-9 months (Chapter 

6). Graft function was expressed as creatinine clearance, and MMF tolerability was 

evaluated by periodical assessment of blood cell count. At the completion of phase A, 

patients entered phase B if they had no more than two acute rejection episodes, no 

episodes of steroid-resistant rejection during phase A and had stable renal function with 

no proteinuria. Nearly 50% of the patients enrolled in phase A entered phase B [38]. To 

investigate the impact of steroids withdrawal on MP A pharmacokinetics, we measured 

MP A plasma trough levels, predicted MP A AUCO-12 and MP A free fraction in 26 

patients out of 46 who completed phase B and in an additional control group of patients 

who did not discontinue steroids. This additional analysis, presented in Chapter 7, 

introduced a "hot topic" in the field of organ transplantation, the problem of drug-to­

drug interactions. Kidney transplant recipients are chronically given with 3 or more 

immunosuppressive agents which, sometimes, are substrates or act as inducers or 

inhibitors for the same transport-metabolic system. This might be dangerous for the 

patients, especially when they are treated with fixed drug regimens, as usually done 
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with MMF. Indeed, evidence is available that CsA and tacrolimus exerted a different 

effect on the entero-hepatic recirculation ofMPA from glucuronidated metabolites [39]. 

However, no data were available on the pharmacokinetics of MP A in patients given 

MMF in combination with SRL, when compared with that drawn from patients treated 

with MMF and CsA. Therefore, as a part of a protocol aimed at investigating the 

efficacy of Campath-IH induction therapy in a steroid-free regimen, we measured MP A 

plasma levels in patients treated with low-dose SRL or low-dose CsA both in addition 

to low-dose MMF. To better compare the effects of both drugs on MPA enterohepatic 

recirculation, full pharmacokinetic profiles (at 0, 20, 40, 75, 120 min and at 3, 4, 5, 6, 7, 

8, 10 and 12 h), instead of limited samplings (at 0, 20, 40, 75 and 120 min), were 

collected. Results of this study are given in Chapter 8. Patients given Campath-l H in 

combination with CsA and MMF were also used as reference group in a subsequent 

study aimed at assessing the pharmacokinetics of MP A from a cohort of patients given 

CsA and the new enteric-coated formulation of MP A (EC-MPS) as part of an 

intensified, multi-factorial therapy open trial. As described in Chapter 9, MPA exposure 

after EC-MPS administration was determined using a full sampling (at 0, 20, 40, 75, 

120 min and at 3, 4, 5, 6, 7, 8, 10 and 12 h) both at month 6 and 12 post-surgery, and 

compared with that observed in the control group of patients given MMF and CsA. 

Therapeutic drug monitoring of SRL 

Rapamycins, namely SRL and everolimus, are a new class of immunosuppressive 

agents characterized by peculiar mechanisms of action, narrow therapeutic index, and 

strong relation between drug exposure and patients' outcome (40), all conditions that 

require strict therapeutic drug monitoring. In 2001, after the development of the HPLC 

method with ultraviolet detection for the assessment of SRL whole blood levels 

(described in Chapter 4), our Laboratory has become a centralized institution in Italy to 
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measure drug concentrations in blood samples from 40 Italian Transplant Centres. Over 

2,600 SRL trough levels were assessed from nearly 500 kidney transplant recipients. All 

Centres referring to our Laboratory for the assessment of SRL concentrations were 

asked to provide information on SRL daily dose and concomitant immunosuppressive 

regimen. Given the large number of SRL measurements available, we sought to 

investigate the possible effect of concomitant immunosuppressive regimens (such as 

CsA, tacrolimus, MP A and steroids) on SRL exposure, expressed as dose-adjusted 

whole trough levels (Chapter 10). As additional aim, we analysed patients with serial 

SRL measurements with the goal to assess intra-and interpatient variability, and to 

develop an algorithm useful to guide changes of SRL dosing. 

Preliminary applications with pharmacogenetics 

The advent of the genomic era gives birth to pharmacogenetics, a science that studies 

how the genome may affect the action of a drug. This science is of particular importance 

for drugs characterized by a narrow therapeutic index, such as the immunosuppressants 

[41]. Preliminary studies focused on polymorphisms of genes encoding for enzymes 

actively involved in drug metabolism, drug transport, and pharmacological target. 

Pharmacogenomics holds promise for improvement in the ability to individualize 

immunosuppressive therapy based on the patient's genetic profile, and can be viewed as 

a support to the traditional pharmacokinetic-based therapeutic drug monitoring. Our 

preliminary experience of pharmacogenetic approaches applied to CsA monitoring was 

presented in Chapter 11. These data referred to 120 out of 356 kidney transplant 

recipients from the MY.S.S. trial who gave written infonned consent for genetic testing. 

Presence of single nucleotide polymorphisms (SNPs) in the gene encoding for the P­

glycoprotein was assessed. 
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Finally, the findings of all the studies presented above were discussed and put in the 

perspective of a better improvement of long term patient's outcome after organ 

transplantation (Chapter 12). 
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Part I 

DEVELOPMENT OF ANALYTICAL METHODS 

FOR THE MEASUREMENT OF MYCOPHENOLIC 

ACID, SIROLIMUS AND CYCLOSPORINE 
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Bioanalytical method validation 

The assessment ofMPA (total and free), MPAG, SRL and CsA was done using HPLC 

methods. Prior to the application of HPLC methods to TOM of novel 

immunosuppressants, the performance of these assays was tested in accordance with the 

FDA Guidance for Bioanalytical Methods Validation for Human Studies [36]. 

Measurement of each analyte in the biological matrix should be validated. Typical 

method development and establishment for a bioanalytical method include 

detennination of selectivity, accuracy, precision, recovery, and calibration curve, 

stability of analytes in spiked samples and application of the method to routine drug 

analysis. Acceptance criteria for each on the above mentioned parameters are described 

below. 

Reference standards 

Analysis of MP A, SRL and CsA in the biological matrix (plasma or whole blood) was 

carried out using samples spiked with reference standards and using quality control 

samples (QCs). To avoid bias in the preparation of the spiking solutions only 

authenticated analytical reference standards of known identity and purity were used 

(either certified reference standards or commercially supplied reference standards 

obtained from a reputable commercial source). 

Selectivity 

The selectivity of each method was evaluated as lack of matrix interference by analysis 

of human drug-free blood samples from different volunteers (n=15). To investigate 

potential endogenous interference, blank samples were spiked with high concentrations 

of the most common immunosuppressive agents and analyzed. In additio~ to test 

potential concomitant medication or xenobiotic interference, blood from different 
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transplant patients on immunosuppressive therapy and most common antifun;al. 

antihypertensive and hypolipidemic agents were analyzed. 

Linearity 

The linearity of each method was tested by constructing standard curves from the lower 

limit of quantification (LLOQ) to the upper limit of quantification, plotting the peak 

height ratios of the drug to internal standard (IS) versus the nominal drug concentration. 

and applying a linear least squares regression analysis without weighing Each method 

was considered linear if the coefficients of regression (~), calculated as mean of 10 

curves was equal or better than 0.99. 

Imprecision and inaccuracy 

The within- and between-day coefficient of variation (CV%) and the inaccuracy of each 

method were assessed by calculating daily and overall CV s and bias values for QC 

(usually five replicates at each concentration per analytical run) that were assayed in 

five separate analytical runs. The methods were considered acceptable if imprecision at 

each concentration was less than 15% for both within and between day variability. The 

inaccuracy should be between ± 150/0. 

Lower limit of quantification 

The lowest standard on the calibration curve was accepted as LLOQ if the analyte 

response at the LLOQ was at least 5 times the response compared to blank response. In 

addition the analyte peak should be identifiabk. discrete. and reproducible with an 

impreclslon -::::20% and inaccuracy between::: 200/0. 

- 30 -



Recovery 

To determine the extraction efficiency, the peak-height ratios of spiked blood samples 

(plasma for MP ~ MP AG) were compared to those obtained from direct injections of 

the same amount of the analyte. The assay was accepted if recovery exceeded 60%. 

Dilution integrity 

. The ability to dilute samples originally above the upper limit of the standard curve 

should be demonstrated by inaccuracy and imprecision parameters in the validation. To 

establish dilution stability, samples at high concentrations were diluted two folds and 

five folds using the adequate drug-free biological matrix. Deviation from the nominal 

value was determined on three replicates. 

Stability studies 

Stability procedures evaluate the stability of the analyte during sample collection and 

handling, after long-term (frozen at the intended storage temperature) and short-term 

(bench top, room temperature), storage, and after going through freeze and thaw cycles 

and the analytical process. Conditions used in stability experiments reflect situations 

likely to be encountered during actual sampling handling and analysis. The procedure 

should also include an evaluation of analyte stability in stock solutions. 

Each analyte stability (MP A, SRL and CsA) was determined after three freeze-thaw 

cycles using the appropriate biological matrix. Six aliquots, each at two concentrations 

(one in the low and one in the high range) were prepared. Three aliquots were analyzed 

o promptly prepared, the other three were stored at -20 C thawed at room temperature 

and refrozen under the same conditions. The cycle was repeated for two more times and 

analyzed on the third cycle. Comparison between mean results was performed 

calculating the percentage difference. 
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Short term stability of the analytes, simulating work bench conditions, was e\aluateJ on 

six aliquots, each at two concentrations stored at -200 C. Three aliquots were thaweJ at 

room temperature over a time period of 15 hours. After 15 hours the other three aliquots 

were thawed and both sets were extracted and processed. Means of the response were 

compared and percentage difference calculated. 

Long term stability has been established storing eighteen aliquots of two concentrations 

at -20°C and measuring the concentration over a period of 28 days. ~1em 

concentrations obtained have been compared to the mean of back-calculated valu~s for 

the standards at the same concentrations from the fITst day of long term stability. 

Stability of MPA, SRL and CsA in the autosampler was evaluated for 24 hours. Ten sets 

of quality control were extract and placed in the autosampler at room temperature (at 

+4°C for SRL). Five sets of samples were analyzed immediately, the other five sets ~4 

hours later. Long term stability of standard working solutions was evaluated at two 

temperatures (+4 and -20°C) and over 28 days. 

Application of validated method to routine drug analysis 

Each calibration curve, generated in each analytical run, covered the expected unknOVtl1 

sample concentration. Samples below LLOQ or above the highest standard were not 

considered (samples with higher concentrations were diluted and reassayed). During 

each analytical run a number of QC samples prepared separately were analyzed (usually 

one at the start and one at the end of the analytical run). If QC (matrix spiked with the 

analyte) fallout the 15% of their respective nominal \·alues. the run \vas rejected. \\ ben 

available, samples from the \lPA. SRL and CsA International Proficiency Testing 

Scheme (IPTS). were also processed [4~.43]. 
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Chapter 3 

DETERMINATION OF TOTAL, FREE MYCOPHENOLIC ACID 

AND ITS GLUCURONIDE METABOLITE USING HPLC WITH UV 

DETECTION 
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Total and free MPA plasma concentrations were measured by HPLC. introducing S\.I;T:e 

modifications to already published methods [44,45,46]. ~fPAG was estimated as \IP.-\ 

after hydrolysis mediated by p-glucuronidase (see below). 

TotalMPA 

Human plasma, chemicals and materials 

Calibration standards and QCs were prepared using pools of plasma samples from 15 

healthy volunteers and from 20 kidney and liver transplant recipients not gi ven ~ I~IF or 

EC-MPS (used to test potential concomitant medications). 

Standards of MPA and MPAG were initially donated by Roche Phannaceuticals (Palo 

Alto, CA). After 2002, MPA was bought from Sigma (St Louis, MO)~ together with p­

toluic acid (PTA, used as internal standard). All the batches of MP A have a purity > 

98% and were provided with the certificate of analysis. Acetonitrile, methanol were 

HPLC grade and were purchased by BDH (UK), all other chemicals were from Sigma. 

HPLC quality deionized water was prepared using Milli Q50 (\1illipore, Bedford, t\IA). 

Bond-Elut CI8, 200 mg, 3 ml cartridges were obtained from Varian (Leini, Italy). 

Stock solutions, calibrators, and quality control standards 

Stock solutions, containing 10, 100 mgIL of MPA and 50 mgIL PI A were prepared in 

methanol and stored at 4°C until use. Aliquots of the stock MPA solutions were diluted 

with drug free plasma to give 6 calibrators (0.1, 1,5, 10,20 and 40 ~IPA mg,'L). Two 

in-house QCs were prepared in drug-free plasma with a final concentration of 2 and 20 

mg/L \1PA. Calibrators and QCs were stored at -20°C until use. 
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Sample preparation 

Over 95% of ~PA is bound to albumi~ whereas only a limited amount of the drug is 

distributed within blood cells [39]. Therefore, plasma is the matrix of choice for the 

assessment of MP A levels in the blood. 

Five hundred microliters of plasma was mixed with 1.5 mL of water. 50 IlL of internal 

standard and 750 ~L of 0.1 N HC!. The mixture was applied to a C 18 solid phase 

extraction column pre-conditioned with 2 mL of methanol followed by 2 mL of water. 

The column was dried and then eluted with 1 mL of methanoVO.1 ~ acetate buffer 

(80:20 v/v) pH 4. Samples were collected in HPLC vials. 

HP Le apparatus and conditions 

A System Gold HPLC equipped with a model 166 UV detector set at 254 nm and a 

model 507 autosampler (Beckman, Fullerton, CA) were used. The autosampler was kept 

at room temperature, and a 50 JlL aliquot sample was injected. The separation was 

carried out at room temperature using a C18 column, 250 x 4.6 mrn, 5 /lm (Hypersil 

BDS, Hewelett Packard, Ge). A guard column (LiChrosper 100 RP-18, 5 /lm) was 

placed just before the column. The mobile phase for elution of the column was 45%) 

acetonitrile and 55% aqueous phosphoric acid (0.05%), at flow rate of 0.8 mL/min. Data 

were collected and processed using a 32 Karact software for HPLC system (Beckman. 

Fullerton, CA). 

Assay validation 

\lethod performance was determined in accordance with the FDA Guidance for 

Bioanalytical Methods Validation for Hwnan Studies [36]. 



MPAG 

MPAG was enzymatically hydrolyzed to MPA using ~-glucuronidase (100,000 U.'rnL. 

Sigma, St Louis, MO). This enzyme must be stored at 4°C under darkling conditions. to 

avoid degradation. ~-glucuronidase solution was diluted \\ith phosphate bufTer (0.1 ~L 

pH 6) to reach a concentration of 100 VlmL, and 950 ~L of the final solution was added 

to 50 ~L of plasma for each sample. The mixture was incubated for 1 h at 37°C and 

then processed as for total MP A determination. Final MP A concentration was the sum 

of the contribution of MPA present in each sample, and MPA derived from \IPAG. 

Therefore, MPAG concentration was estimated by subtracting the \IPA concentration 

(previously analyzed without ~-glucuronidase) from total drug concentration\. measured 

after addition of ~-glucuronidase, and normalizing for the molecular weight of both 

compounds. 

FreeMPA 

Materials 

The Centifree Micropartition System (Amicon, Beverly, MA) with a molecular weight 

cut-off of 30 KD was used to obtain an ultrafiltrate for free MP A determination, and the 

devices were centrifuged in a Beckman centrifuge with fixed angle rotor (JA21). 

Because some batches of filters were found to contain impurities that interfered with the 

chromatograms, all filters were routinely sonicated and washed with methanoVwater 

(1: 1) before use. 

Stock solutions, calibrators, and quality control standards 

\Vorking solutions of ~lPA (1 mgIL) and PTA (2.5 mg.,1.J) wen~ prepared in methanol. 

The \ IPA working solution was used to prepare 6 calibrators in ultraliltrate of drug free 



plasma (0.005, 0.02, 0.04, 0.1, 0.5 and 1 mgIL). Two set of QCs were prepared in 

methanol (at concentration of 0.01 and 0.7 mgIL) and stored at -20°C until use. 

Sample preparation 

For ultrafiltration procedure, 800 f.1L of plasma was added to the sample reservoir and 

the tube centrifuged at 5500 rpm (at 20°C) for 40 minutes, yielding approximately 400 

. f.1L of ultrafiltrate. Three hundred-fifty f.1L of ultrafiltrate was mixed with IS (50 J.1L) 

and with a phosphate buffer (l0 f.1L, pH 2), and transferred in a polypropylene vial. 

HP Le apparatus and conditions 

HPLC system and column were the same used for the assessment of total MPA. 

Injection volume was 100 f.1L. The mobile phase consisted of solution A (250 ml 

acetonitrile and 300 mL of 20 mM phosphate buffer pH 3.0) and solution B (700 ml of 

acetonitrile and 300 mL of 20 mM phosphate buffer pH 6.5), eluted at flow rate of 1.2 

mL/min with a gradient from 3% B to 100% B as follows: 

Time (min) %B Duration (min) 

4.5 25 0.5 

12.0 100 0.5 

14.5 3 0.5 

30.0 inject 0.1 

Compounds were quantified by absorbance at 215 nm. Data were collected using a 

recorder Shimadzu and processed with Microsoft Excel. 

Assay validation 

Method performance was detennined in accordance with the FDA Guidance for 

Bioanalytical Methods Validation for Human Studies [36], as previously described. 
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TotalMPA 

Chromatographic separation 

Results 

As shown in Figure 1, MP A (retention time 6.3 min) and IS (retention time 4.6 min) 

were well resolved and no interference was observed from plasma peaks at the elution 

. times of these analytes. In addition, analysis of plasma samples from transplant 

recipients receiving immunosuppressants other that MMF revealed no interfering peaks 

from endogenous and exogenous compounds. The chromatographic run required 8 min 

per sample. 

Linearity 

The assay was linear in the concentration range from 0.1 to 100 mgIL with a mean 

regression coefficient value of 0.999 of 10 replicated curves (0.1, 0.5, 1, 5, 10, 20, 40, 

60, 80, and 100 mg/L). For routine assessment ofMPA plasma levels we used a 6-point 

equation (0.1,0.5, 1,5, 10,20 and 40 MPA mg/L). 

Imprecision, inaccuracy and LLOQ 

Imprecision and inaccuracy were tested, both as intra-and inter-day evaluations, at 5 

concentrations (0.1, 1, 10, 20 and 40 mg/L). As shown in Table 1, the method was 

accurate and precise, with inaccuracy and imprecision less than 10%. LLOQ was set at 

0.1 mgIL. 

Recovery 

The solid-phase extraction procedure had an average recovery of 770/0 for MP A and 

72% for PTA, verified at 2 concentrations (2 and 20 mgIL). 
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Stability studies 

Stability studies were performed using plasma samples spiked with MPA at 2 and 20 

mgIL. MP A concentration values were not affected by freeze-thaw cycles as well as by 

short-term (at room temperature for 10h h) and long-term stability tests (stored at -20°C 

for 1 month). Moreover, both drug concentrations were stable also in the autosampler, 

at room temperature, for at least 24 h. Working solutions (MPA 10 and 100 mgIL) were 

stable at 4°C for at least 1 month (see Table 2). 

Application of the validated method to routine MP A analysis 

The present method has been used to routinely measure MP A plasma trough levels as 

well as complete (from 0 to 12 h) and predicted (from 0 to 2 h) MP A AUCo-12 in kidney 

transplant recipients given MMF or EC-MPS as part of their immunosuppressive 

regimen. Two in-house QCs were used during each analytical run (MP A at 2 and 20 

mg/L). The temporal distribution of the inaccuracy of our HPLC method is presented in 

Figure 2. From June 2005, the method is enrolled in the MP A International Proficiency 

Testing Scheme, with a mean inaccuracy of 6%. 

MPAG 

To test the feasibility of the proposed procedure, we added fresh ~ glucuronidase to 9 

samples spiked with know amount of MPAG (namely,S, 10, 20, 40, 60, 80, 160, 320 

and 500 mg/L) and the mixture was incubated for 1 h at 37°C. Subsequently, the 

samples were processed as previously described for MP A. In these experimental 

conditions, more than 99% of the glucuronide was converted to MP A. 

Beta glucuronidase, stored at °4C and protected from the light, was stable for at least 6 

months. When exposed to the light, these enzymes gradually lose its activity (tested 

periodically using known amount of MP AG). 
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FreeMPA 

Chromatographic separation 

Figure 3 shows the first part of the chromatograms from ultrafiltrate drug-free samples 

spiked with different MP A solutions (we did not collect data during the equilibrating 

period). The retention time of IS and MPA were 7.9 and 12.4 min. The total 

chromatographic run required 30 min per sample. 

Linearity and LLOQ 

The method was linear in the concentration range from 0.005 to 1 mg,!L of \lPA 
---

(~=0.992), and the LLOQ was 0.005 mg/L. 

Imprecision and inaccuracy 

The performance of the HPLC method for the assessment of free \lPA was worSL than 

that used for the measurement of total MP A. However, inaccuracy and imprecision WLre 

still in agreement with the FDA Guidelines (see Table 3). 

Stability 

The concentrations of MPA (0.01 and 0.5 mg/L) prepared in drug free ultratiltrJte 

remained unchanged after three cycles of freeze and thaw, and were not atTected by 

storage of the samples at room temperature for 12 h or by storage of ultrafillrate 

samples in the autosampler for at least 24 h. In every instance th~ percentage diffLr~nce 

from the nominal "alues was below 150/0. 
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Legend to Figures 

Figure 1. Typical chromatograms of mycophenolic acid (YIP A) and para-toluic aciJ 

(PTA, internal standard) from human plasma spiked with r..1PA (0.5 mg. 'L) and frvm a 

patient given mycophenolate mofetil (MMF) as part of the immunosuppressive regimen 

(11.3 mg/L). For comparison drug-free plasma taken from healthy volunteer is also 

given (Bk). 

Figure 2. Temporal distribution of the inaccuracy of the HPLC method used for the 

assessment of MPA plasma concentrations, calculated from two in-house quality 

controls (at 2 and 20 mgIL). 

Figure 3. HPLC chromatograms of free MPA and PTA of ultrafiltrate from healthy 

volunteer (Bk) and from a patient under treatment with MMF (free \lPA 0.07 mg/L). 
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Table 1. Perfonnance of the HPLC method for the detennination of plasma MP A concentration 

Spiked MP A concentration (mglL) 

0.1 1 10 20 40 

Within-day assay 

Mean ± SO (ng/mL) 0.11 ± 0.01 1.1 ± 0.05 10.0±0.1 19.9 ± 0.4 40.1 ± 0.3 

Imprecision (CVV/o) 9.1 4.5 1.0 2.1 0.7 

Inaccuracy ru/o) 7.9 6.5 0 -4.5 -0.5 

Bdwl'cn-day assay 

f\1ean ± Sf) (llglmL) 0.0<) :i 0.01 1.1 -1: 0.1 10.I±O.3 19.9 lO.5 40.4 J 0.7 

Imprecision (C J rr;,~) 11. I 9.1 3.0 2.5 1.7 

Inaccuracy (%) -8.9 7.7 1.0 -1.0 1.0 



Table 2. Results of the stability studies using plasma samples spiked with MPA 

Parameters Results (%) * 

2 mg/L 20 mg/L 

Freeze-thaw (3 cycles) -2.4 + 1.7 

Short term plasma samples (10 h at room temperature) + 3.2 t 2.1 

Long-term plasma sample (28 days at _20DC) - 2.0 +3.3 

Autosampler (24 h at room temperature) t 2.0 - 1.1 

Long-tenn stock solution (28 days at -20°C) + 3.0 +4.4 

Long-term stock solution (28 days at +4°C) +4.0 12.X 

·l"of1lparis(}11 bdween meu" results was perji)rmeJ calculating the percenluge difference 



Table 3. Performance of the HPLC method for the determination of free MPA 

Spiked free MP A concentration ("'gIL) 

0.005 0.02 1.0 

Within-day assay 

Mean ± SD (ng/mL) 0.006 ± 0.0011 0.022 ± 0.003 1.12 :1: 0.08 

Imprecision (CVO/u) 18.3 13.6 7.1 

Inaccuracy ~/o) 20.0 10.0 12.0 

Between-day assay 

Mean:1 SD (llg/mL) 0.006 ± 0.0011 0.0191-0.002 1.15 ± 0.05 

Imprecision (C J '%) 18.3 10.5 4.3 

Inaccuracy (%) 20.0 -5.0 14. <) 



Chapter 4 

ASSESSMENT OF SIROLIMUS CONCENTRA TIO~S IN WHOLE 

BLOOD BY HPLC WITH UV DETECTIO~ 
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Human whole blood samples, chemicals and materials 

For the preparation of in-house QCs and calibration standards, different pools of whole 

blood samples from 15 healthy volunteers was used. In addition, subsequent to signing 

of an informed consent form, EDT A anticoagulated whole blood samples were obtained 

from 30 kidney, heart and liver transplant recipients not given SRL. 

Standard samples of SRL (purity ranging from 97 to 98%, according to different 

. batches) and 32-0-desmethoxyrapamycin (internal standard, IS) were generous gifts 

from Wyeth-Ayerst Research Laboratories (princeton, NJ) and furnished with adequate 

information on drug source, lot number, expiration date and certificate of analysis. 

Acetonitrile and methanol (BDH, Milan, Italy) were HPLC grade; acetone and hexane 

HPLC grade were supplied by Fluka (Milan, Italy). Zinc sulphate heptahydrate, 

analytical grade, was purchased from Fluka and a 5% solution was prepared in distilled 

water. All other chemicals were analytical grade. Bond-Elut C 18, 200 mg, 3 ml 

cartridges were obtained from Varian (Leini, Italy). 

Stock solutions, calibrators and quality control standards 

Stock solutions containing 50 and 100 lJg/mL were appropriately prepared in methanol 

for SRL and IS, respectively. SRL working solutions of 100,500, and 2000 ng/mL were 

prepared in 50/50 methanol/water, and for IS a working solution of 1000 ng/mL was 

prepared in methanol. All the solutions were stored at -20°C. 

Taking into account the therapeutic range of SRL trough levels, calibrator samples were 

prepared mixing appropriate volumes of SRL from stock working solutions to EDT A 

anticoagulated human whole blood from healthy volunteers to achieve different 

concentrations from 2.5 to 60 ng/mL (2.5, 5, 10, 15, 20, 40, and 60 ng/mL). Calibrators 

were prepared by diluting each spiking solution to 10 ml with K3 EDTA control human 

whole blood in 10 ml volumetric flasks. The flasks were stopper and shaken to mix. 
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Pools are measured into 1 mL aliquots in polypropylene tubes and frozen at -20°C until 

use. Three in-house QCs, representing the low, medium and high concentrations. were 

prepared in drug-free whole blood with a final concentration of 3, 10 and 30 nglmL 

SRL. Calibratio~ QCs and reference standards were aliquoted and stored at -20°C until 

use . 

. Sample preparation 

SRL is extensively distributed in red blood cells, independently of concentration and 

temperature [47], so we decided to use whole blood as the preferred matrix for method 

validation. 

One millilitre volume of whole blood sample was pipetted into disposable 

polypropylene tubes and supplemented with 50 flL of IS solution (1000 nglmL). The 

tubes were vortex-mixed for 40 seconds; 1.5 mL of zinc sulphate solution was first 

added followed by a 1.5 mL acetone. The tubes were vortex-mixed for a further 50-60 

seconds and centrifuged at 3000 g for 5 minutes at room temperature. The clear 

supernatant was poured into another polypropylene tube, diluted with 2 mL distilled 

water, mixed and loaded onto a Bond-Elut cartridge (preconditioned with 1 mL 

acetonitrile followed by 1 mL methanol and finally by 1 mL distilled water) placed on a 

Vac Elut 20 Manifold (Varian). The Bond-Elut cartridges were washed with 1.5 mL of 

70% methanoU30% water. In each step the solvent was allowed to drop out from the 

cartridge. Then 500 flL hexane was added and the column was allowed to go dry under 

vacuum. SRL and IS were eluted in polypropylene tubes with 1 mL acetonitrile. In all 

steps the flow rate did not exceed 1 mUmin. The eluate was taken to dryness either 

under a gentle nitrogen stream in a water bath at 37°C or in a model RC 10.09 

centrifugal evaporator (Jouan, Saint-Herblain, France) and the residue was dissolved in 

0.15 mL of water-methanol-acetonitrile (40/30/30) and transferred in a polypropylene 
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vial. Internal calibration curves for SRL were prepared for each set of samples. At least 

60 samples (including controls and calibration curve) can be extracted in 4 h and 

processed by HPLC in less than 20 h. 

HP Le apparatus and conditions 

A System Gold HPLC equipped with a model 166 UV detector set at 278 run and a 

model 508 auto sampler (Beckman, Fullerton, CA) with the sample tray kept at 4°C, 

were used. A 90 JlL aliquot of sample was injected onto reversed-phase C 18, 5 J.1M, 

guard column (Alltima, 7.5 x 4.6 mm, Alltech, Sedriano, Milan, Italy) connected to a 75 

x 4.6 mm column packed with Ultrasphere C8, 3 J..lm (Beckman) heated at 50°C by a 

Model 880 oven (Spark-Holland, Emmen, The Netherlands) and was eluted by a 

mixture of distilled water/methanollacetonitrile (34/30/36) pwnped at a rate of 1 

mllmin. Due to the high percentage of the organic phase that may dry off, resulting in 

increased retention time, the mobile phase was prepared every one or two days before 

analysis, filtered and degassed under vacuum using a polycarbonate O.4-J..lm membrane. 

An in-line filter (0.5 Jlm) was placed between the autosampler and the column. Data 

were collected and processed using a 32 Karat software (Beckman, Fullerton, CA). 

Method Validation 

Method performance was determined in accordance with the FDA Guidance for 

Bioanalytical Methods Validation for Human Studies [36], as described above. 

In addition, the present method has been enrolled in the Sirolimus international 

Proficiency Testing Scheme [42]. For the Proficiency Test initially 78 blinded samples, 

packaged as 5 batches of samples each, were analyzed. In addition. ongoing proficiency 

was tested by analyzing 3 blinded samples from the Reference Laboratory every month. 
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Results 

Chromatographic separation 

Figure 4 displays the chromatograms of extracts prepared from a blank blood spiked 

with known amounts of SRL and from blood of a transplant patient given SRL. The 

retention time of SRL and IS were 13.1 and 14.5 min, respectively, and the 

chromatographic step required 18 min per sample. Both SRL and IS eluted as 

symmetrical and relatively sharp peaks. Blank blood samples from healthy volunteers 

did not show peaks corresponding to SRL and IS retention times. This was confinned in 

30 kidney, heart and liver transplant recipients in a SRL-free regimen. Representative 

chromatogram of a blank sample is shown in Figure 4. On the other han<L a 

concentration-dependent increase in the SRL peak height was documented when known 

amounts of the drug were added to blood samples to achieve a final concentration of 2.5 

and 40 ng/mL, respectively. Moreover, a distinct peak of SRL was found in the blood 

sample collected from a kidney transplant patient given SRL as a part of the 

immunosuppressive therapy. Furthermore, no chromatographic interference was found 

between SRL or IS and other immunosuppressants such as esA, MP A, azathioprine and 

steroids as shown when blood samples from transplanted patients were added in vitro 

with SRL, or when blood from healthy subjects was spiked in vitro with SRL and 

immunosuppressants. Even high concentration of the above mentioned drugs did not 

affect the SRL chromatographic profiles. 

Occasionally a sharp peak occurred in some chromatograms at about 10.5-11 min -

which did not affect the assay's performance - probably dependent on the different lot of 

Bond-Elut cartridges used. 

The minimal overlapping between SRL and IS peaks observed when concentrations 

higher than 40 ng/mL were analyzed did not influence the accuracy of the analysis. This 

was confinned by injecting a lower volume (40 J.1L) of the same sample at t\\~o 
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concentration levels. The complete separation between the analytes was restored and 

results were similar (40 J.1L injection: 39.4±1.1 nglmL; 90 J.1L injection: 39.8±1.0 

ng/mL. 40 J.1L injection: 80.7±5.5 nglmL; 90 J.1L injection: 82.5±4.7 nglmL). 

Linearity 

Linearity was determined by least-squares linear regression analysis of the peak height 

of SRLIIS versus SRL concentration. The method demonstrated excellent linearity over 

the range of2.5-100 nglmL (~, calculated as mean of 10 curves, was 0.998). 

Since SRL trough levels from organ transplant recipients were greatly below the upper 

limit of quantification, we decided to use 7 points ranging from 2.5 to 60 ng/mL for the 

calibration curves used in the routine clinical practice. Linear regression of the peak 

height ratio of the drug/lS versus the concentration for calibration curves produced a 

coefficient of regression greater than 0.998. A typical equation describing the 

calibration curve was y=0.02358 (SE:0.00015)x + 0.02075 (SE:0.00313). 

Imprecision and inaccuracy 

The within-day and between-day coefficients of variation for SRL in whole blood are 

reported in Table 4. The within-day imprecision of the assay, as estimated by the 

coefficient of variation of the measurement from spiked samples, was below 6.6%. The 

between-day coefficient of variation was still low (8.0%). The precision of our method 

was good also when replicates from a patient sample were considered (mean 7.7+0.4 

nUml; CV 5.7%, n=5). The inaccuracy of the method was low and, as expected, data 

were better for the highest SRL concentration tested (40 ng/mL). The result of 

inaccuracy obtained with the lowest concentration of the drug (2.5 ng/mL) was still 

acceptable (8.8%). 
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The extraction procedure of the samples was tested with different blood yolurnes 

(ranging from 300 to 600 JlL) at 7.5 nglmL (mean 7.9+0.4 nglmL; n=5) and 22.5 nglmL 

(mean 22.0+0.7; n 5). In each instances we obtained an acceptable precision (CV less 

than 6.0%). These results suggest that there is no need of additional changes in the 

method protocol when small volume of samples is available. 

LLOQ 

The LLOQ was established at 2.5 nglmL, in agreement with the FDA Guidelines 

(signal/noise ration> 5, imprecision below 20%, inaccuracy between +20%). This is a 

suitable value to detect accurately the expected low SRL trough concentration in 

transplant patients. 

Recovery 

The overall recovery, calculated by comparing the peak-height ratios of spiked samples 

with those obtained by direct injections of the same amount of SRL and IS, was 

checked at 5 and 20 ngimL. The overall recovery was 64.4 + 3.0% for SRL and 63.3 + 

1.9% for IS. 

Dilution integrity 

To establish dilution stability, blood samples at concentration of 100 and 200 ng/mL 

were diluted with SRL-free whole blood, and SRL concentration was determined on 

three replicates. A two-fold dilution of samples with concentration of 100 ng/mL and 

200 ng/mL was associated with an inaccuracy of -2.1 + 3.60/0 and 1.4 + 3.9010, 

respectively, while a S-fold dilution of 200 ng/mL revealed an inaccuracy of -S.4 + 

4.3%. 
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Stability studies 

Stability studies were performed using whole blood samples spiked with SRL at 5 and 

50 nglmL. As shown in Table 5, SRL concentration values were not significantly 

affected by freeze-thaw cycles as well as by short-term (at room temperature for 15 h) 

and long-term stability tests (at least 28 days stored at -20°C). Both concentrations of 

SRL were stable, also when leaved in the auto sampler for at least 24 h. 

Working solutions of SRL (methanol/water 50/50) were stable for at least 28 days if 

kept at -20°C, but not at 4°C. 

Application of validated method to routine drug analysis 

We have applied the validated method for the assessment of SRL daily blood 

concentration profile after the morning oral drug administration in several kidney 

transplanted patients. In addition, the present method has been used to routinely monitor 

SRL trough levels from heart and kidney transplant recipients given the drug as part of 

their immunosuppressive regimen. An analytical run was usually performed every 7-10 

days. Two or three in-house QC (prepared separately from the calibration curves) were 

used during each analytical run. In addition monthly samples from the SRL IPTS were 

processed. Temporal distribution of the inaccuracy of our HPLC method (from results 

of the SRL IPTS) from November 2001 to September 2005 is presented in Figure 5. 

The median inaccuracy of the present method was -6.0% (95% confidence intervals: -

8.9 to -3.1 %). 
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Legend to Figures 

Figure 4. Typical chromatograms of sirolimus (SRL) and internal standard (I.S.) from 

drug-free blood taken from healthy volunteer (Bk), blood spiked with 2.5, 40 ng1mL 

SRL, and a trough blood sample (7.1 ng/mL) taken from a kidney transplant recipient 

immediately before the next oral dose of SRL. 

Figure 5. Temporal distribution of the inaccuracy of the HPLC method used for the 

assessment of SRL whole blood concentrations, derived from the results of the 

Sirolimus International Proficiency Testing Scheme. 
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Table 4. Performance of the HPLC method for the determination ofSRL concentration in whole blood 

Spiked SRL concentration (ng/mL) 

2.5 5 10 20 40 

Within-day assay 

Mean ± SO (ng/mL) 2.7± 0.2 5.0 ± 0.4 10.3 ± 0.2 19.1±0.7 39.3 ± 0.6 

Imprecision (CVO/o) 7.4 8.0 1.9 3.7 1.5 

Inaccuracy CU/o) 8.0 0.0 3.0 -4.5 -l.X 

Between-day assay 

ivkan 1: SD (nglmL) 2.7 ± 0.2 5.0 ± 0.2 10.3 ± 0.3 1 R.X ! 0.5 42.3 ! o.x 

Illlpn:cision (('1"%) 6.6 3.1 2.7 2.7 I.X 

I nacc urac y (%) x.x -0.8 3.0 -5.X 5.7 



Table 5. Results of the stability studies using whole blood samples spiked with SRL 

Parameters Results (%) * 

5ng/mL 50 ng/mL 

Freeze-thaw (3 cycles) - 4.1 +2.5 

Short tenn blood samples (15 h at room temperature) + 7.7 - 1.9 

Long-tenn blood sample (28 days at -20°C) +2.4 + 3.7 

Autosampier (24 h at 4°C) 14.4 -I 3.1 

Long-tenn stock solution (28 days at -200 e) -+- 4.0 1 6.1 

Long-term stock solution (28 days at 14°C) 1- 32 125 

·(·Uf1IIJtJri.WII Dt'lH't't'II 1Tlt'(Jf/ resul/s was perfurmed ("£l/eu/£l/inK the percen/age dijference 



Chapter 5 

MONITORING OF CYCLOSPORINE IN WHOLE BLOOD 

USING A HPLC-UV METHOD 
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CsA was measured by UPLC with uv detectio~ using the method from Kahn et al 

[48], with some modifications, as described below. 

Human whole blood, chemicals and materials 

Calibration standards, QCs and blanks were prepared using pools of whole blood 

samples from healthy volunteers (n 15) and from kidney (n=10) and liver (n-l0) 

transplant recipients not given CsA. 

CsA and cyclosporine D (IS) were kindly supplied by Novartis Pharma (Basel, CH), 

with a declared purity of 100%. Methanol and acetonitrile (BDH, UK) were of HPLC 

grade. All other solvents were of analytical grade (Sigma, St Louis, MO). Deionized 

water was prepared using a Milli Q50 system (Millipore, Bedford, MA). 

Stock solutions, calibrators and QCs 

Stock solutions containing 100 mg/L of CsA and IS, as well as working solutions (10 

mg/L for CsA and 20 mgIL for IS) were prepared in methanol. For calibration of the 

analytical system appropriate volumes of CsA from stocked working solutions were 

added to 1 mL EDT A anticoagulated human whole blood to achieve 7 different CsA 

concentrations (20, 50, 100, 200, 500, 1000 and 2000 ng/mL). QCs were prepared 

spiking known volumes of CsA from working solutions to drug free whole blood in 

order to obtain three concentrations (30, 300, 900 ng/mL CsA). CsA solutions, 

calibrators and QCs were stored at -20°C. 

Sample preparation 

To one mL of peripheral vein blood samples we added IS (50 ~L), hydrochloric acid 

O.2N (1 mL), and heptane (1 mL). The mixture was vortexed for 10 sec to lyse the 

blood cells. Subsequently we added diethyl ether (8 mL) and each tube was tightly 
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capped. Extraction of CsA was effected on a reciprocal shaker. The organic phase was 

clarified by centrifugation for 15 min at 3000 RPM. The ether layer was decanted into a 

clear glass tube and washed with sodium hydroxide 0.1 N (lmL). Following a second 

centrifugation for 10 min, the ether layer was transferred into a clean glass tube and 

evaporated to dryness under a gentle nitrogen stream in a water bath at 37°C. The 

residue was redissolved in 200 J.1L of the mobile phase and washed by vortexing for 30 

sec with heptane (1 mL). The sample was finally centrifuged (10 min at 3000 RPM) and 

the lower ,aqueous layer transferred in a polypropylene vial. 

HP Le apparatus and conditions 

A system Gold HPLC with a IN detector set at 214 run and a model 580 auto sampler 

(Beckman, Fullerton, CA) was used. A 50 J.1L of aqueous layer was injected into a C-8 

HPLC column (150 x 4.6 mm, 5 ~, Beckman) heated at 72°C by a LC oven 101 

(perkin Helmer, Milan). Isocratic liquid chromatography separation was carried out 

using a mobile phase of water/methanol/acetonitrile (27/32/41) at a flow rate of 1 

mL/min. Data were collected and processed using a 32 Karact software (Beckman). 

Method Validation 

Method performance was determined in accordance with the FDA Guidance for 

Bioanalytical Methods Validation for Human Studies [36], as described above. 

Since July 2003, this method is enrolled in the Cyclosporine international Proficiency 

Testing Scheme [43]. Ongoing proficiency is tested by analyzing 3 blinded samples 

from the Reference Laboratory every month. 

- 63 -



Results 

Chromatographic separation 

Figure 6 displays the chromatograms of extracts prepared from a CsA-free sample. a 

blank blood spiked with known amounts of CsA and from blood of a transplant patient 

given CsA. The retention time of CsA and IS were 12 and 16.5 min, respectively, and 

the chromatographic step required 20 min per sample. 

Linearity and LLOQ 

Linearity was determined by least-squares linear regression analysis of the peak height 

of CsAlIS versus CsA concentration. The method demonstrated excellent linearity from 

20 to 5000 ng/mL (~, calculated as mean of 10 curves, was 0.996). The LLOQ was 

established at 15 ng/mL (inaccuracy: 12.3 + 3.3%, imprecision: 15.8 + 4.9%). 

Imprecision and inaccuracy 

The within- and between-day performance of this method was assessed by calculating 

CV% and bias values for the three QCs (30, 300 and 900 nglmL in five replicates at 

each concentration per analytical run) that were assayed in 5 separate analytical runs. As 

shown in Table 6, the performance was satisfactory. 

Recovery 

The overall recovery, checked at 50 and 1000 nglmL ofCsA, was 70.4 + 3.8% for CsA 

and 68.3 + 4.5% for IS, respectively. 

Dilution integrity 

To establish dilution stability, blood samples at concentration of 1000 and 4000 nglmL 

were diluted with CsA-free whole blood, and CsA concentration was detennined on 
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three replicates. A two-fold dilution of samples with concentration of 1000 nglmL and 

4000 nglmL was associated with an inaccuracy of 4.5 + 2.1% and 2.2 = 3.9%, 

respectively, while a 5-fold dilution of 4000 ng/mL revealed an inaccuracy of -3.8 + 

2.8%. 

Stability studies 

Stability studies were performed using whole blood samples spiked with CsA at 50 and 

1000 ng/mL. CsA concentration values were not significantly affected by freeze-thaw 

cycles as well as by short-term (at room temperature for 15 h) and long-term stability 

tests (at least 28 days stored at -20°C). Both concentrations of CsA were stable, also 

when leaved in the autosampler for at least 24 h at room temperature. Working solutions 

ofCsA were stable for at least 2 months, kept at 4°C (Table 7). 

Application o/validated method to routine drug analysis 

The present method has been used to routinely monitor CsA trough levels and full 

pharmacokinetic profiles from kidney transplant recipients given the drug as part of 

their immunosuppressive regimen. An analytical run was usually performed every 2-4 

days. Three in-house QC were used during each analytical run in addition to samples 

from the CsA IPTS (when available). Temporal distribution of the inaccuracy of our 

HPLC method compared with results from the IPTS is presented in Figure 7. The 

median inaccuracy of the present method was -7.9% (95% confidence intervals: -9.8 to 

2.8%). 
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Legend to Figures 

Figure 6. Chromatograms of cyclosporine (CsA) and LS. (cyclosporine 0 or CsO) from 

whole blood sample spiked with 25 nglmL CsA and from kidney transplant recipients 

given CsA as part of their immunosuppressive regimen (CsA Co: 243 nglmL, CsA C2: 

581 nglmL). 

Figure 7. Temporal distribution of the inaccuracy of the HPLC method used for the 

assessment of CsA whole blood concentrations, derived from the results of the 

Cyclosporin International Proficiency Testing Scheme. 
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Table 6. Performance of the HPLC method for the determination of CsA levels 

Spiked CsA concentration (ng/mL) 

30 300 900 

Within-day assay 

Mean ± SD (n};lmL) 32±2 297 ± 15 888 ± 23 

Imprecision (CVO/o) 6.3 5.1 2.6 

Inaccuracy (1/0) 6.7 -1.0 -1.3 

Between-day assay 

~ kan ± SD (1l};lmL) 28 ± 3 299 ± 12 X90 ± 21 

Imprecision (( 'J F%) 10.7 4.0 2.4 

Inaccuracy (%) -6.7 -0.3 -1.1 

j 



Table 7. Results of the stability studies using whole blood samples spiked with esA 

Parameters Results (%) * 

50 nglmL 1000 nglmL 

Freeze-thaw (3 cycles) 3.4 -2.3 

Short tenn blood samples (15 h at room temperature) -I- 6.7 - 1.7 

l,ong-tenn blood sample (28 days at -20°C) + 3.1 -/ 1.3 

Autosampler (24 h at room temperature) + 5.0 - 2.2 

Long-tenn stock solution (28 days at -20°C) + 2.0 -I 2.1 

I ,ong-term stock solution (28 days at 14°C) I 3.2 - 1.5 

·coml,oriso" ht'fll't't'fI mea" results W(H perfurmed calc-lIlatinK the pt'rcentaKe dt/F'rt'IIl'C 
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Chapter 6 

PHARMACOKINETICS HELP OPTIMIZI:\,G ;\lYCOPHE~Ol'-\ TE 
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Introduction 

Three large double-blind randomized trials in kidney transplant recipients [49,50,51] 

have shown that addition of MMF, a novel immunosuppressive drug [52], to CsA and 

prednisone allowed reduction in the rate of acute rejection during the first 6 or 12 

months after transplantation as compared to azathioprine- or placebo-treated patients. 

Since then, MMF has been widely used in a fixed daily dose of 2 g, in two divided 

administrations, as a part of a combination regimen with CsA and steroids. A fixed 

dosage of MMF has been proposed also for patients undergoing heart or liver 

transplantation, based on results of clinical trials [53,54], as well as for the limited 

nwnber of patients with chronic nephropathies unresponsive to conventional treatment 

[55]. 

MMF is the morpholinoethyl ester prodrug form of the active immunosuppressive 

molecule MP A, toward which is rapidly converted following oral ingestion [56]. MP A 

is, itself, metabolized to the phenolic glucuronide (MP AG), which is mostly eliminated 

in the urine [56]. By selectively and reversibly inhibiting IMPDH, a key enzyme in the 

de novo pathway of purine synthesis, MP A prevents the proliferation of both T and B 

lymphocytes [52,56]. 

Thus, as in the case of CsA and tacrolimus [57,58,59], individualizing MMF dose 

instead of using a fixed dose, might help to optimize immunosuppression and minimize 

potential toxic effect. This would require routine therapeutic drug monitoring by 

measuring plasma MP A concentration. Previous studies have shown a correlation 

between the MPA AVC and the risk of graft rejection [37]. However, contrary to C~ 

data showing the usefulness of monitoring MP A concentration or defining a therapeutic 

window in tenns of plasma MPA concentrations are scanty [60]. 
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In the current study we examined 1) the need of optimizing MMF dosing by ~lPA 

pharmaCOkinetic monitoring in stable kidney transplant patients: 2) the possible 

association between MPA pharmacokinetic parameters and kidney graft functio~ and 

3) whether measurement of free MP A compared to total plasma MP A concentration 

provides additional information as for MMF -induced change in blood cell count 
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Methods 

Patients 

Forty-six consecutive adult renal transplant patients (17 female, 29 male) who had 

received kidney graft from 6 to 9 months before, were studied (Table 8). All were 

recipients of first kidney transplant from cadaver donors, aged 15 to 58 years. They 

were on triple immunosuppressive therapy with CsA Neoral, prednisone and MMF. 

Patients started with the conventional 2g1day MMF dose, in two divided 

administrations. Eighteen of them, however, required MMF dose reduction within the 

frrst 2 months post-transplant due to adverse events, i.e. leukopenia, thrombocytopeni, 

diarrhoea and CMV infections. Changes in MMF dosing was performed by the 

physicians on the basis of clinical parameters suggesting drug-induced toxicity and not 

based on MP A pharmacokinetics. Thereafter MMF daily dose remained fixed, ranging 

from 500 mg to 2g1day according to patient needs. At the time of the evaluation all 

patients had stable graft function. 

Study design 

The study was described in detail to all patients before admission and informed consent 

was obtained in each instance. On the morning of the study, blood samples were 

collected for routine haematological analysis, and for determination of trough blood 

level of esA and plasma total MPA and MPAG. Then each patient was given the 

morning dose of CsA and MMF and underwent evaluation of simplified 

pharmacokinetic profiles. Thus for CsA pharmacokinetics blood samples were collected 

in heparinized tubes at 60 and 180 minutes after dosing [61] and stored at -20 O( until 

analysis. For MP A and MP AG pharmacokinetics blood samples in EDT A-tubes were 

drawn at 20, 40, 75 and 120 minutes [37]. Thereafter samples were centrifuged at 3000 
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g, plasma separated, and stored at -20°C until analysis for MPA and MPAG 

concentration. In a subgroup of patients (n=23) the percentage of free 
~IPA 

concentration at time 0, in addition to total MP A trough level, was determined. 

MPA, MPAG and CsA measurement 

MP A (total and free) and MP AG plasma concentrations as well as CsA whole blood 

. levels were measured by reverse phase HPLC as described in Chapter 3. 

Pharmacoldnetic parameters 

Trough levels of MPA and MPAG were determined. The MPA AUCo-12 was predicted 

using the equation of Hale et al [37]. AVC from 0 to 2 h (AUCo-2) was calculated using 

the trapezoidal rule. For the 2- to 12 h interval, the concentrations (CJ at 6, 8 and 12 h 

were estimated by the empiric equation: 

Ct = 0.14 + 1.25 x Co 

In which Co is the predose MP A level. Main MP A phannacokinetic parameters were 

adjusted for the daily MMF dose and expressed as per g MMF. Free MPA was 

expressed as percentage rate of unbound / total MP A. 

Trough level of blood CsA was determined and the CsA AVCo-12 was calculated using a 

three-point strategy (sampling at 0, 1 and 3 h post CsA dosing) with the follo\\ing 

equation: 

AUCO-12 = 5.189 x Co + 1.267 X C1 + 4.150 X C) + 135.079 [61] 
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Statistical analysis 

Results are reported as means ±SD. Data were analyzed with paired or unpaired t test 

for normally distributed parameters. For non-normally distributed parameters the 

Wilcoxon test was used. The statistical significance level was defined as P<O.OS. 
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Results 

Variability of MP A pharmacokinetics 

Table 9 summarizes baseline graft function and MP A phannacokinetic parameters. 

Serum creatinine and urea concentrations were widely distributed ranging from normal 

to moderate renal insufficiency values. In each patient, however, these values were 

. comparable to those measured during the previous 3 months, indicating stable graft 

function. 

Plasma MPA trough levels ranged from 0.24 to 7.04 mg/L, and the estimated MPA 

AUCO-12 values were in parallel from 10.1 to 99.8 mg·hIL. Similar wide range values 

were found for average MP AG concentration. 

Since in these patients the MMF daily dose was not uniform, although fixed for a given 

patient we normalized MP A pharmacokinetic parameters for the dose regimen. As 

shown in Figure 8 (panel A), only 37% of patients had similar normalized MPA trough 

level, the remaining being largely distributed in the low or high range of the frequency 

profile for a given plasma MPA value. Similarly, a large interindividual variability in 

MPA AUCO-12h was documented (Figure 8, panel B). 

Association between MP A pharmacokinetics and kidney graft function 

Figure 9 reports the correlation between MP A pharmacokinetics parameters and graft 

function. Plasma MP A trough levels were positively and significantly correlated with 

patients' creatinine clearance values (panel A, r=O.50, p<O.O 1). A significant correlation 

was also found between MPA AUCO-12 and renal function measured as creatinine 

clearance (panel B, r=0.52, p<O.Ol). Both MPA trough levels and MPA AUCO-12, 

however, did not correlate with the given MMF dose (r=O.I). 
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Table 10 shows demographic characteristics and functional and pharmacokinetic 

parameters in two subgroups of transplant patients characterized according to MP A 

AUCO-12 > or <40 mg*hIL. The two groups were comparable for gender, body weight, 

kidney donor age as well as number of rejection episodes. Patients with MP A AUCo-12 

group >40 mg*hIL were slightly but significantly younger than those of group <40 

mg*hIL (p<O.OS). Patients with MP A AUCO-12h >40 mg*hJL had better renal function, 

as documented by a significantly lower serum creatinine concentration (p<O.05), and 

higher creatinine clearance (p<0.01) values, than those with lower MPA AUC. This 

finding was confmned even after normalizing creatinine clearance values for body 

surface area to limit the potential influence of gender and body weight on renal function 

estimation. However, no difference in CsA dose, blood CsA trough level as well as 

CsA-AUC was found between the two groups of patients. Similar fmdings were 

achieved when patients were considered according to plasma MP A trough level > or 

<1.5 mg/L (data not shown). 

We also analyzed values of MP A phannacokinetic parameters in patients arbitrarily 

subdivided according to tertiles of serum creatinine concentration, namely <1.3 mgldL 

(mean 1.1 mg/dL normal graft function), >1.3 to <1.6 mgldL (mean 1.5 mgldL mild 

renal insufficiency) and > 1.6 mg/dL (mean 2.1 mg/dL moderate renal insufficiency). As 

shown in Figure 10, the highest MPA AUCO-12 value was associated with the lowest 

terti Ie of serum creatinine concentration. At variance the lowest mean MP A AUCO-12 

values were found in patients with the highest serum creatinine (moderate renal 

insufficiency). Similar findings were observed for MPA trough level: the highest MPA 

trough level (2.33±1.80 mg/L) was linked to the lowest serum creatinine tertile, whereas 

the lower MPA trough level (1.17±O.71 mg/L) was associated with the highest tertile of 

serum creatinine concentration. The difference between MP A AUC or trough levels and 

serum creatinine tertiles was statistically significant (p<0.05). However, CsA dose (130, 
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152, 134 mg/day), blood CsA trough level (194.9, 182.5, 168.5 ng/mL) and CsA-AUC 

(4981,4825,5045 ng/mL.h) were comparable between the tertile groups. 

Plasma free MPAfraction and blood cell count 

The percentage of free MP A trough concentration in plasma of patients with anaemia 

was higher than that in patients with normal red blood cells (RBC) count (RBC <4.2 

x106/JlL: 2.31±0.71 %; RBC >4.2 x106/JlL: 1.63±0.88 %, P<0.05). Similar findings 

were observed with free MPA trough concentration (RBC <4.2 x106/JlL: 0.064±0.025 

Jlg/mL; RBC >4.2 x106/JlL: 0.030±0.022, P<0.05) By contrast total MPA trough 

concentration was comparable in anaemic and normocytemic patients (RBC <4.2 

x106/JlL: 3.32±2.26 Jlg/mL; RBC >4.2 x106/JlL: 3.53±2.57 mgIL). Moreover, the 

percentage of free MP A and the free MP A concentration but not total MP A trough 

values significantly correlated with RBC count (% free MPA: r=0.51, P<0.05; free 

MPA concentration: r=0.50, P<0.05; total MPA: r=0.13, P=0.54; Figure 11) or 

hematocrit values (% free MPA: r=0.46, P<0.05; free MPA concentration: r=0.54, 

P<0.05; total MPA: r=0.27, P=0.21; Figure 11). 

A significantly negative correlation was also shown between percent free but not free or 

total MPA trough level and leukocyte cell count (% free MPA: r=0.45, P<0.05; free 

MPA concentration: r=0.13 P=0.30; total MPA: r=0.18, P=0.41; Figure 12). 
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DisCUJsion 

The first finding of the present study is that in kidney transplant recipients with stable 

graft function given MMF as a part of their antirejection therapy, both plasma MP A 

trough level and MPA AVCO-12h were highly variable despite patients received a fixed 

daily dose of the prodrug, even after norma1ization of values for the different total MMF 

. dosage used by single patients. Difference in MP A pharmacokinetic values can not be 

attributed to poor reproducibility of the assay, since our coefficient of variation for 

MPA measurement by HPLC was 3.4%. On the other hand, our results confinn 

previous observation that, although the bioavailability of MP A is high and approaches 

94% in healthy subjects and renal transplant patients [60], the 12-h dose interval MPA 

AVC showed a > 1 O-fold range for renal transplant patients on a fixed MMF dose of 2 

g/day [60,63]. Moreover, it has been reported in healthy subjects and kidney transplant 

recipients that the plasma MP A concentration-time profile for a single dose of oral 

MMF, after an overnight fast, rapidly increased and peaked approximately after 1 h, 

followed by an initial rapid decrease, and then a secondary peak at 6-12 h [64]. This 

pattern is probably attributable to an enterohepatic pathway involving MP AG passage 

into the gastrointestinal tract via biliary excretion, conversion to MP A via glucuronidase 

action in gut flora, and reabsorption of the latter into the systemic circulation [56]. Thus, 

the interpatient MP A pharmacokinetic variability as well the documentation of an 

enterohepatic circulation pathway for MP AGIMP A, would suggest that, as currently 

performed with CsA or tacrolimus, dosage adjustment to achieve an appropriate plasma 

MP A trough level or MP A AVC target concentration should be advisable. 

Somewhat earlier in the clinical development of MMF, a retrospective statistical 

evaluation of MP A dose-interval AUe data in relation to the incidence of acute 

rejection was performed in patients enrolled in a MMF Japanese renal transplant clinical 
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study [65] and given fixed doses of 1, 2, 3, or 4 g MMF daily. A 

Pharm.acokinetic/pharmacodynamic correlation between MP A AUCO-12 and the risk for 

acute rejection [60] was observed in that the risk for acute rejection decreased with 

increasing MP A AUC. A more recent prospective concentration-clinical response study 

confirmed a strong significant relationship between rejection risk and MPA AVC but 

not MMF dose [31]. Moreover, similar results were found in heart transplant patients in 

. which the incidence of acute rejection episodes were clearly related to the MMF plasma 

trough level [66,61], in the presence of therapeutic CsA or tacrolimus blood levels. 

These studies strongly support the need of therapeutic drug monitoring to optimize 

MMF dosing and reduce the risk of graft rejection early post-transplant. Here we 

extended these observations and found a significant correlation between MPA AUCO-

12 and graft function (as creatinine clearance) in kidney transplant recipients 6 to 9 

months post-surgery. Moreover patients with renal function in the highest tertile of 

serum creatinine concentration had the lowest MPA AUCO-12 and trough level, despite 

no difference in CsA exposure between the tertiles. Certainly these findings do not 

allow us to conclude for a causal relationship between plasma MP A levels and renal 

function. However, some considerations may indirectly help to confinn the possible 

association between these parameters. It is known that MP A levels and probably 

metabolism are influenced by protein binding, since MP A is avidly and extensively 

bound to human serum albumin [44]. Many reports describe reduced drug binding in 

disease associated with hypoalbuminemia, e.g. liver disease, various types of renal 

dysfunction, burn injuries and malnutrition [68,69]. However, our transplant patients 

were in good health, with normal serum albumin level, and no clinical and laboratory 

evidence of liver disease, which could exclude a reduced binding of MPA. Moreover, 

free MP A concentrations and free fraction of MP A are elevated in many patients with 

severe renal dysfunction (creatinine clearance <20 mUmin) when on chronic MMF 
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therapy [70], due to both the uremic state per se and by competition for albumin binding 

sites with the renally eliminated metabolite MPAG. This was not the case for the 

patients we studied, who had normal renal function or mild to moderate renal 

dysfunction and average plasma MP AG level <100 mgIL. Furthermore, differences in 

graft function in the two groups of patients with MP A AUC > or <40 mg·hJL were not 

due to different immunological response or CsA exposure, since the number of rejection 

. episodes early post-surgery and CsA dose and pharmacokinetic parameters were 

comparable. This would also exclude that difference in plasma MP A levels were due to 

different blood concentrations of CsA, given the fact that CsA has been previously 

shown to influence MPA trough level in kidney transplant recipients [71]. 

On the other hand, attempts to define the pharmacokinetic relationship for MMF-related 

adverse events have not been always successful and experience suggest that drug dose 

(not MPA pharmacokinetics) provide the most predictive information for adverse events 

such as diarrhoea [50,51,72]. Others, however, have documented that increased level of 

MP A were significantly related to the occurrence of overall side-effects, albeit in a 

small group of patients [73]. Moreover, haematological side-effects such as the low 

haemoglobin level but not low leukocyte count were also related to MP A trough 

concentrations [74]. All these MPA pharmacokinetic data related to total plasma MPA 

concentrations, i.e. the sum of both protein bound and free MP A, but it is only the free 

MPA concentration that has pharmacological activity [75]. Thus, post-transplant total 

MP A plasma concentration may not reflect changes in free MP A level and hence the 

occurrence of MMF -related side-effects. Here, we evaluated the percentage of free 

MP A trough concentration as compared to total MP A level in relation to different blood 

cell counts in a subgroup of the same kidney transplant recipients. Actually, the 

percentage of free MP A concentration over total MP A better reflects the actual 

exposure of patients to the drug than the free MPA concentration itself. We found that 
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the percentage of free plasma MP A but not total MP A significantly correlated \\ith the 

risk of anaemia., indicating the importance of measuring unbound MP A fraction at least 

to monitor changes in blood cell count possibly related to MMF administration. 

Although in most of our patients white blood cell count was in the normal range, a 

significant correlation between free MP A plasma fraction and total leukocyte count was 

also observed. 

In summary, we have confirmed that in kidney transplant recipients given MMF at a 

fIXed dose regime~ as a part of a triple immunosuppressive therapy including CsA and 

steroid, MP A pharmacokinetics parameters are highly variable. We also showed 1) an 

association between MPA AUCO-12 or plasma MPA trough level and graft function, 

and 2) that percentage free but not total plasma MP A trough concentration negatively 

correlated with RBC as well as leukocyte count. 

Altogether these findings suggest that a fixed dose regimen of MMF might no longer be 

the best approach for the management of transplant patients. MP A phannacokinetic 

monitoring might contribute to limit the risk of MMF -related toxicity. Whether 

optimizing MP A dose by monitoring levels may help to maintain graft function in the 

long-term is an intriguing possibility raised by the present fmdings. Prospectively 

designed clinical trials are required to definitely address this important issue. 
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Legend to Figures 

Figure 8. Frequency distribution plot of plasma MP A trough levels (panel A) and MP A 

area under the time concentration curve from 0 to 12 h post-MMF dosing (AUCo.ll) 

(panel B) in 46 kidney transplant patients . 

. Figure 9. Relationship between plasma MP A trough levels (panel A) or MP A AUCo-12 

(panel B) and creatinine clearance values in kidney transplant recipients (n=46). 

Figure 10. Relationship between mean MP A AUCO-12 values and tertiles of serum 

creatinine concentration in 46 kidney transplant recipients. Values are mean + SO. 

*p<O.OS versus <1.3 mgldL serum creatinine tertile. 

Figure 11. Correlation between total MP A trough levels (panel A) or percentage of free 

MPA (panel B) and red blood cell count (RBC) in 11 kidney transplant recipients. 

Relationship between total MP A trough levels (panel C) or percentage of free MP A 

(panel D) and hematocrit in the same patients. 

Figure 12. Correlation between total MP A trough levels (panel A) or percentage of free 

MPA (panel B) and leukocyte cell count (WBC) in 11 kidney transplant recipients. 
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Table 8. Patient demographics and donor characteristics 

No. of patients 
Age (yr) 
Weight (kg) 
Time after T x (months) 
Cadaver/living donor 
Donor age (yr) 

M, male; F, female; Tx, transplantation. 

Range 

46 (29 M/17 F) 
19-6-1 
44-97 
6-9 
46/0 
15-58 



Table 9. Baseline graft function and MPA pharmacokinetic parameters 

Mean Range 

S.creatinine(mgjdL) 1.4 0.8-2.5 
Creatinine clearance (mLjmin) 74.2 22.6-117.6 
S. urea (mg/dL) 58 37-115 
C trough MPA (~lg/mL) 1.82 0.24-7.04 
MPA AUCO- 12 h (pg/mL . h) 42.0 10.1-99.8 
MPAG (pg/mL) 35.7 12.3-93.6 



Table 10: demographics, graft function, ~fPA r.d CsA 
pharmacokinetic parameters in kidney transplant recIpIents 
according to MP A A YC > or < 40 mg*hIL 

NPA AUC0-12h p-values 

>40 j.1Q;mL· h < 40 Jl~FnL· h 

Patients (n) 21 25 
Age(yr) 31.9±9.0 39.0 ± 12.4 p<O.a5 

Sex 11 M,,10F 18 M:6 F 
Weight (kg) 61.7 ± 11.3 67.0 ± 12.9 ns 
Rejection 2 3 ns 

episodes 
Donor age {yr} 33.0 ± 15.5 38.0 + 17.0 ns 
C trough MPA 2.82 ± 1.59 0.97 ± 0.46 p<0.01 

~g/mL} 
MPA AU~12h 61.6 ± 18.8 25.6 + 7.4 p<O.01 

(j.tg/mL· h) 
S. creatinine 1.3 ± 0.3 1.5 + 0.4 p<O.05 

(mg/dL) 
Creatinine clear- 85.7 ± 23.2 64.5 + 17.5 p<0.01 

ance (mLJmn) 
GsA dose (mg/d) 141 ± 24 140+34 ns 
C trough ~ 190 ± 51 197 ± 59 ns 

(ng/mL) 
GsA AUCo...12 h 5201 ± 1011 5340:: 1277 ns 

(ng,;mL' h) 
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Introduction 

Three large double-blind randomized trials [49,50,51] in kidney transplant recipients 

have shown that the addition of the novel antirejection drug MMF to an 

immunosuppressive regimen consisting of CsA and prednisone significantly reduced the 

rate of acute rejection during the first 12 months after transplantation as compared to 

azathioprine- or placebo-treated patients. Since then, MMF has been widely used in a 

flXed daily dose of 2 g, in two divided administrations, as adjunctive therapy in 

combination with a calcineurin inhibitor, CsA or tacrolimus, and steroids. Recent 

evidence, however, suggests that a fixed dose regimen of MMF might no longer be the 

best approach for the management of transplant patients, and drug pharmacokinetic 

monitoring is advised [19,37,60,66]. 

Following oral administration MMF is rapidly absorbed and hydrolyzed to the active 

compound MPA, by non-specific intestinal esterases [56]. MPA is then converted to 

inactive metabolites by glucuronidation mediated by the human uridine diphosphate 

glucuronosyltransferase (UDp-On enzyme family [56]. The main metabolite, 7-

hydroxy-glucuronide (MP AO), is excreted in urine but may contribute to the 

enterohepatic circulation of MP A after excretion into the bile and hydrolysis in the 

gastrointestinal tract [75]. Recent reports also demonstrate that at least two acyl 

glucuronides ofMPA can be detected in the blood and formed in vitro [76]. 

Modulation of MP A metabolism by concomitant administration of drugs other than 

MMF may, therefore, result in the modification of MPA clearance and eventually 

bioavailability. Previous studies in transplant recipients have indeed sho\\n that CsA 

influences MP A phannacokinetics to the extent that a significant difference was found 

in the MP A trough level between CsA versus non-CsA treated patients, despite they 

~ --ted with an identical MMF dose [71]. Changes in ~fPA exposure may be 
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ally and clinically relevant, as indicated by increasing evidence of a causal 

__ ~hip between MPA phannacokinetics and acute rejection [19J7,60,66] or 

incidence of MP A-related side effects [73,77]. 

Glucocorticoids have been reported to induce glucuronosyltransferase expression, 

enhancing the activity of UDP-GT in rat hepatocyte cells in culture and in vivo in 

rodent animal models [78]. Both UDP-GT lA and 2B isoforms are up-regulated by 

dexamethasone in a dose- and time-dependent manner [79]. Moreover, a precocious 

development of UDP-GT activity occurred in fetal rats after glucocorticoid 

administration to the mothers [80]. All together these observations led us to hypothesize 

that glucocorticoids, by modulating UDP-GT activity could interfere with MP A 

metabolism in transplant patients given steroids and MMF as a part of their 

immunosuppressive therapy. The theoretical impact of steroids on MPA 

pharmacokinetics, however, has not been investigated so far. 

In the current study - which is a part of a multicenter clinical trial aimed at investigating 

the steroid-sparing potential of a MMF-based regimen in kidney transplants - we 

sought: 1) to compare the MP A pharmacokinetic profiles in the early post-transplant 

period (within the first month), when patients were given relatively high dose steroids, 

with those in the later phase (6 months post-transplant) under a lower maintenance 

corticosteroid regimen, while receiving a fixed daily dose of MMF; 2) to examine the 

effect of steroid withdrawal on MP A bioavailability in the same kidney transplant 

patients by comparing MPA pharmacokinetics at 6 month post-surgery (while on MMF, 

steroids and CsA), at the end of the steroid tapering phase (9 months post-transplant) 

and of follow-up (21 months post-transplant). 
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Methocb 

Patients 

Twenty-six consecutive adult renal transplant patients (IS males, 11 females) - enrolled 

as a part of a clinical trial aimed at investigating the steroid sparing potential of a MMF­

based immunosuppressive regimen [38] - were included in the present study. All were 

recipients of first kidney transplant from cadaver donors, and aged from 19 to 61 years. 

They were on triple-drug immunosuppressive regimen consisting of CsA Neora1~ 

methylprednisolone (MP) and MMF during the first 6 months. In this period Neoral 

dosing was established on the basis of blood CsA trough levels targeted to 250-440 

ng/mL, 200-300 nglmL and 150-250 ng/mL from day 0 to 7, day 8 to 30, and month 2 

to 6 post-transplant, respectively. After intraoperative infusion of 500 mg 

methylprednisolone (MP), steroid dosing was then progressively tapered to 16 mg/day 

up to day 12 post transplant, with maintenance 8 mg/day dose achieved by 4 months 

post surgery and maintained for 2 months (month 6). MP was then progressively 

tapered over 90 days, and then withdrawn. Patients in the control group were on triple 

immunosuppressive therapy with CsA, MP (8 mg/day) and MMF. All patients started 

with the conventional 2 g/day MMF dose, in two divided administrations. Ten of them, 

however, required MMF dose reduction within the first 6 months post-transplant due to 

adverse events. Changes in MMF dosing were performed by the attending physicians 

based on clinical parameters suggesting drug-induced toxicity, but not on MPA 

pharmacokinetics. Thereafter, MMF daily dose remained fixed, ranging from SOO mg to 

2 g/day according to patient needs. 

At 6 months post-transplant~ patients were allowed to enter the steroid-sparing phase if 

the following inclusion criteria were met: serum creatinine ~ 2.0 mgldL; stable renal 
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function in the last 3 months; proteinuria < 1 glday; no more than 2 acute rejection 

episodes in the fll'St 6 months; no previous steroid-resistant acute rejection episodes. 

The study was described in detail to all patients before admission and informed consent 

obtained in each instance. 

Study design 

In this prospective study we first examined the effect of steroids on MP A 

pharmacokinetic profiles by comparing kinetic parameters early post-transplant (within 

the frrst month), when patients were given relatively high dose of steroids, with those at 

6 months post-surgery under a lower maintenance steroid dosage, but still on triple 

immunosuppressive drug regimen (Figure 13). In the same patients we then assessed the 

impact of steroid withdrawal on MP A bioavailability evaluating MP A pharmacokinetic 

par~eters and MP AG trough concentration at different time points, namely at month 9 

(end of steroid tapering phase) and month 21 (end of follow-up) post-transplant (Figure 

13). As control for this second phase of the study, an additional group of 12 kidney 

transplant recipients were also monitored at month 21 post-transplant, when they were 

still on triple-drug therapy with esA Neoral, steroids, and MMF. 

Moreover, in a subgroup of 12 study patients the percentage of free MPA at time 0, in 

addition to total MP A trough level, was determined within the first month and at 6, 9 

and 21 months post-transplant. 

On the morning of the pharmacokinetic studies blood samples were collected for routine 

biochemical analysis and for determination of trough level of plasma MP A, MP AG and 

blood esA. Each patient was then given the morning dose of MMF and esA and 

underwent evaluation of simplified pharmacokinetic profiles. For MP A 

pharmacokinetics, blood samples in EDT A-tubes were dra\W at 20, 40, 75 and 120 

minutes [37]. Thereafter, samples were centrifuged at 3000 g, plasma separated, and 
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stored at -20°C until analysis by HPLC. For CsA pharmacokinetics, blood samples 

were collected in heparinized tubes at 60 and 180 minutes after dosing [61] and stored 

at -20°C until analysis. 

MP A, MP A G and CsA measurement 

MPA (total and free) and MPAG plasma concentrations as well as CsA whole blood 

levels were measured by reverse phase HPLC as described in Chapter 3. 

Pharmacokinetic parameters 

Trough levels of MPA and MPAG were determined. The MPA AUCO-12 was predicted 

using the equation of Hale et al [37]. AUC from 0 to 2 h (AUCO-2) was calculated using 

the trapezoidal rule. For the 2- to 12 h interval, the concentrations (C t) at 6, 8 and 12 h 

were estimated by the empiric equation: 

Ct = 0.14 + 1.25 x Co 

In which Co is the predose MP A level. Main MP A pharmacokinetic parameters were 

adjusted for the daily MMF dose and expressed as per g MMF. Free MPA was 

expressed as percentage rate of unbound / total MP A. 

Trough level of blood CsA was determined and the CsA AUCO-12 was calculated using a 

three-point strategy (sampling at 0, 1 and 3 h post CsA dosing) with the following 

equation: 

AUCO-12 = 5.189 x Co + l.267 X C1 + 4.150 X C3 + 135.079 [62] 
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Statistical Analysis 

Results are reported as means -+- SD. Data were analyzed with paired and unpaired t test. 

Correlation between CsA AUCO_12 and plasma MPA clearance was perfonned by 

regression analysis. The statistical significance level was defmed as p<O.OS. 
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Results 

MPA and MPAG pharmacokinetics in the early post-transplant period 

Mean MMF dose was numerically but not significantly higher within the fust month 

than at 6 months post-transplant (1846+375 vs. 1596+530 mg/day). Dose-normalized 

MP A trough levels in the fust month post-transplant tended to be lower than 6 month 

post-Tx values, but the difference did not reach statistical significance (1.3 7+0.62 

versus 2.00+1.26 mg/L). Similarly, a significantly lower dose-normalized maximum 

plasma MP A concentration in the fust month as compared to 6 months post-transplant 

was found (7.34+5.47 vs. 17.16+10.01 mg/L; p<0.05). As shown in Figure 14 (panel 

A), dose-normalized MPA AVCO-12 was lower at 1 than 6 months post-surgery, \\ith 

values achieving statistically significant difference (32.94+10.98 versus 50.87+22.37 

mg*hIL/g MMF; p<O.OI). Consistent with the change in AVC, mean apparent plasma 

clearance of MP A was significantly higher in the first month than at 6 months post­

transplant (p<0.01, Figure 14, panel B). When absolute, non-normalized values ofMPA 

trough, maximum plasma concentration and AVC were considered, similar results were 

found. 

By contrast, MPAG trough levels were significantly higher in the first month as 

compared to month 6 post-transplant values (50.72+34.06 versus 33.28+14.22 mg/L; 

p<0.05). 

In the subgroup of patients, in whom the percentage of free MP A was also measured. 

higher values in the first month as compared to 6 months post-surgery were found 

(5.98+l.63 versus 2.23+0.59%, p<O.OI). 

- 101 -



MPA and MPAG pharmacokinetics after steroid \dthdrawal 

Table II summarizes the variation in MP A pharmacokinetic parameters at the end of 

tapering and after complete steroid discontinuation. 

Dose-normalized MP A trough level progressively increased from month 6 (triple 

therapy) to month 9 (end tapering) and month 21 (dual therapy) post-transplant. The 

latter MP A trough level value was significantly higher (p<0.05) than that measured at 

the same time point post-surgery in control patients who were still on triple therapy \\ith 

CsA, steroids and MMF. Dose-normalized peak MP A concentration also tended to 

increase with time as compared to month 6 values. Therefore, at the end of follow-up 

(month 21), peak MP A levels were significantly higher (p<0.05) than at month 6 and 9 

post-transplant. In patients who discontinued steroids, higher (p<0.05) peak MP A levels 

than in controls on triple drug therapy at month 21 post-surgery were also found. 

Similarly, normalized MPA AUCO_12 progressively increased, reaching statistical 

significance (p<0.05) at month 21 as compared to month 6 post-transplant. The 

difference in MP A AUCO_12 values were even more significant (p<0.0 1) when patients 

who discontinued steroids and controls were compared. Apparent plasma clearance of 

MPA showed progressive and significant decline (p<0.01) up to month 21 post­

transplant in patients with steroid withdrawal (Figure 15). A statistically significant 

difference in plasma MP A clearance between steroid withdrawal and control groups 

was also documented (p<0.01). Consistently, MPAG trough levels progressively 

declined in patients who discontinued steroids reaching statistical significance at month 

21 as compared to month 6 post-transplant (24.30+ 1l.43 versus 33.28+ 14.22 mglL: 

p<0.05; Figure 16). At this time point MP AG trough levels were also significantly 

lower than in control group (36.43=17.65 mg!L: p<O.05). 

Despite changes in these phannacokinetic parameters associated with taperIng and 

discontinuation of steroids. percentage of free ~IP:\ measured in the subgroup of 
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patients was comparable at the three observation time points (month 6: 2.23=0.59~,o: 

month 9: 2.40+0.53; month 21: 2.51 +0.34%). 

Impact of CsA on plasma MP A pharmacokinetics 

Since lowering CsA exposure per se may be a factor that affects ~IP A phannacokinetics 

[39,71], we also measured CsA pharmacokinetic parameters in the same patients 

undergoing steroids tapering and withdrawal, and in controls still on triple-drug regimen 

up to month 21 post-transplant, and related them to changes in plasma MPA clearance. 

As reported in Table 12, there was a numerical reduction in CsA dose in patients who 

discontinued steroids from month 6 to 21 post-surgery. This was paralleled by a 

tendency to decline of CsA trough levels and AUCO_12 values. Changes in CsA 

pharmacokinetic parameters were associated with decrease in plasma MP A clearance 

(Table 12). In control patients at month 21 post-transplant both blood CsA trough and 

CsA AUCO_12 values were even numerically lower than those in patients with steroid 

withdrawal at the same time-points (Table 12). Nevertheless, control patients on triple­

drug therapy had significantly higher plasma MP A clearance than patients on dual-drug 

regimen at month 21 post-transplant (Table 12). By regression analysis, no significant 

correlation was found between AUCO-12 and plasma MPA clearance values when data 

of the two groups of patients were considered (r=0.012, P=0.914, Figure 17). 

Biochemical and haematological parameters 

Table 13 shows renal function. as serum creatinine and serum urea concentration. as 

well as serum albumin level - factors that could potentially affect ~ lPA binding and 

pharmacokinetics [44,69] - in the study patients and controls. Serum conccntrations of 

creatinine and urea did not change to a significant extcnt during the follow-up in 

patients who discontinued steroids, and mean values were comparable to those of 
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controls at month 21 post-transplant. Similarly, serum albumin concentration remains 

stable and comparable in the two groups of patients. 

There was a progressive reduction of red and white blood cell count in parallel \\ith 

tapering and discontinuation of steroids, which was associated with the increased :\IPA 

exposure (Table 13). A significant correlation between MPA AUCO-12 and red blood 

cell count during the study period was also found (r=0.33; p<O.Ol). 
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Discussion 

Potential pharmacokinetic interactions between MP A and other immunosuppressive 

agents may induce significant changes in MP A exposure with relevant clinical 

consequences in term of efficacy and side effects. 

Here we found that in cadaver kidney transplant recipients on immunosuppressive 

. therapy with CsA Neoral, steroids and fixed dose of MMF, plasma clearance of MP A 

was higher early post-surgery than at 6 months when patients were still on triple-drug 

regimen. This translated into a lower MP A daily exposure within the first month post­

transplant. 

The reasons for lower MP A exposure early post-transplant could be multifactorial. Poor 

gastrointestinal absorption of MMF in the peri operative phase may account, at least 

partially, for these MP A pharmacokinetic differences. This possibility is supported by 

the fact that the maximum MP A concentration achieved in the plasma, which reflects 

the degree of drug absorption, was also lower in the first month post-transplant than at 6 

month. 

In addition, a potential effect of CsA on MP AG enterohepatic circulation pathway can 

not be excluded [39,71]. Different MPA levels could also reflect differences in the rate 

of drug metabolism through modulation of the glucuronosyltransferase enzyme in the 

liver. In this respect, in vitro evidence is available that glucocorticoids, which are 

usually given at high daily doses in the early postoperative period as a part of the 

immunosuppressive therapy, enhance the activity of UDP-glucuronosyltransferase in 

adult rat hepatocytes in culture and in human liver specimens [78,79,80]. These fmdings 

raise the possibility that in our patients high dose steroids early post-transplant activate 

pathways of MP A metabolism, eventually leading to lower than expected exposure to 

MPA. Induction of liver UDP-glucuronosyltransferase by glucocorticoids might also 
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enhance the production of the main MP A metabolite, MP AG [75], which in tum 

displaces MP A from the albumin binding sites increasing the free plasma fraction of the 

compound [44]. This was indeed what we have found in the present study in which the 

MP AG concentration and the percentage of free MP A were almost 2 fold higher early 

post-transplant than at 6 months when patients were on low maintenance steroid dose. 

On the other hand, the high percentage of free MP A might compensate the overall lower 

MP A bioavailability early post-transplant, which was expected to translate in less 

MMF-induced immunosuppression. 

While together these results are quite supportive of the involvement of steroids in the 

metabolism ofMPA, at this stage they are still indirect and not conclusive. We therefore 

sough to examine in the same kidney graft recipients the impact of steroid withdrawal 

on MP A pharmacokinetic parameters starting at 6 months post-surgery. Although MMF 

dose was unchanged, the apparent MP A plasma clearance and the MP AG trough levels 

progressively declined during the three month steroid tapering, and further reduced after 

discontinuation of the drug, resulting in higher MP A exposure. By contrast, control 

patients, still on triple-drug therapy including steroids at the end of follow-up, had 

significantly higher MP A plasma clearance and MP AG trough values. All together, 

these findings confirm our initial observation that steroids affect MP A 

pharmacokinetics. 

However, an additional confounding factor in the interpretation of our results derives 

from published observations that also esA may interfere with MPA metabolism [39,71]. 

Lowering esA exposure, as it occurred in patients discontinuing steroids, is indeed a 

factor that could have decreased the MP A plasma clearance and then enhanced MP A 

bioavailability. To explore this possibility we compared esA and MPA bioavailability 

in patients who underwent steroid withdrawal and in controls still on standard 

immunosuppression with esA, steroid and MMF at 21 months post-transplant. 
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Although in patients who discontinued steroids CsA relative bioavailability was higher 

than in the control group, MP A plasma clearance was markedly lower in the fonner 

group. This indicates that the contribution of CsA to the observed MP A 

pharmacokinetics changes in patients discontinuing steroids was marginal, if any. 

Failure of CsA to affect MP A metabolism was also supported by the lack of any 

correlation between patient exposure to CsA and MP A plasma apparent clearance 

values considering the whole patient and control population, although possible 

deficiencies of MP A clearance calculation can not be excluded. These findings are 

seemingly at variance with results of MP A monitoring in kidney transplant recipients 

showing highly significant difference in MP A concentration between patients treated 

with or without a CsA-based regimen [39,71,81]. It should be considered, however, that 

in the latter studies the influence of CsA on MP A pharmacokinetics was documented 

through comparison with a completely CsA-free regimen, whereas our patients were 

still on CsA-treatment. This is in line with evidence by other investigators that in a 

comparative study on the effect of conventional CsA or tacrolimus dose, no impact of 

CsA on MPA trough level was reported [82,83]. Thus we can speculate that CsA may 

interfere with MP A pharmacokinetics only when significant variations in patient's 

exposure to CsA may occur, or when we compare CsA-based with tacrolimus-based 

regimens, under comparable treatment with steroids [84]. 

It is known that MP A concentrations and metabolism are influenced not only by co­

medication but also by protein binding - MP A is avidly bound to human serum albwnin 

[44] - renal dysfunction, and liver disease [69] which could have also contributed to the 

changes in MP A pharmacokinetics we found during follow-up. However, the patients 

were in good health, with normal serum albumin level and no clinical and laboratory 

evidence of renal or liver disease during the entire study period. 
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Changes in MP A exposure may be biologically and clinically relevant. Ind~ed. 

according to previous observation [74], RBC count simificantlv correlated \\ith the - ~ 

~PA AUCO-12 as documented by a progressive reduction in RBC values associated 

with increase in MPA exposure. More important, however, is the fact that normal renal 

function and no acute rejection episodes were reported in patients who discontinued 

steroids but without any changes in the remaining immunosuppressive regimen. This 

would imply that the enhanced MP A exposure compensates, at least in part. the 

apparently lower immunosuppressive level achieved with the dual therapy of CsA and 

MMF. 

Our present findings may be of clinical value also in the light of recent data that \ 1\IF 

reduced the risk for development of chronic allograft failure and late renal allograft loss 

independently of acute rejection [85]. 

In conclusion, this is the first demonstration that corticosteroids interfere with \IPA 

bioavailability in solid organ transplant patients. Discontinuation of steroid dosing 

reduces the apparent plasma MP A clearance and thus enhances the total bioavailability 

of the compound. Higher MP A exposure may help to overwhelm the lower overall 

immunosuppression provided by the remaining unchanged dual drug regimen, while 

allowing patients to safely avoid the side effects of long-tenn steroid administration. 

Whether MP A pharmacokinetic changes induced by steroid withdrawal translate into 

lower risk of acute graft rejection than that reported in patients on conventional 

azathioprine-based therapy undergoing per protocol corticosteroid discontinuation to 

avoid the long-tenn sequelae of the treatment [86], is under investigation in a 

prospectively designed multicenter clinical trial. 
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Legend to Figures 

Figure 13. Study design is reported of MP A pharmacokinetic evaluation during the 

early period post-transplant (high dose steroids), at month 6 Qow maintenance steroid 

dosage), at month 9 (end of tapering steroids), and at month 21 post-Tx (1 year after 

steroid withdrawal) in 26 kidney allograft recipients. A control group of 12 kidney 

transplant patients on triple immunosuppressive therapy at month 21 post-Tx was also 

evaluated. 

Figure 14. AVC (panel A) and plasma clearance (panel B) of MP A within the first 

month after transplantation (while patients were on high dose steroids) and at month 6 

post-transplant (under a lower maintenance steroid regimen) in 26 kidney graft 

recipients on triple immunosuppression with MMF, CsA and steroids. *p<O.OI versus 

fust month post-surgery. 

Figure 15. Changes of plasma MPA clearance during tapering and after steroid 

withdrawal starting at 6 month post-transplant. Month 6 post-Tx: patients on triple-drug 

regimen with CsA, steroids, and MMF; month 9 post-Tx: end of steroid tapering; and 

month 21 post-Tx: one year after steroid withdrawal. #Control patients on triple 

immunosuppressive therapy still at month 21 post-surgery were also included. *p<O.O 1 

versus month 6 and controls; °p<O.05 versus month 9. 

Figure 16. Change of plasma MP AG trough level during tapering and after steroid 

withdrawal starting at 6 months post-transplant. #Control patients still on triple 

immunosuppressive therapy at month 21 post-surgery. *p<O.05 versus triple therapy at 

month 6th and versus controls at month 21 st post-transplant. 
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Figure 17. Regression analysis of the relationship between CsA daily exposure (AUCO-

12h) and plasma MPA clearance in study and control kidney transplant patients. 

R=O.012; P=O.914. Closed and open circles indicate patients who discontinued steroids 

and controls, respectively. 
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Table 11: 

Time post-tx 

6'}, month 

I}, 
9 month 

sl 

21 mOllth 

sl 
21 month 

(Colltrols) 

MMF dose and dose-nonnalized MP A phannacokinetic parameters 

MMF dose 

(mg/day) 

1596 +530 

1500 +598 

1500 +559 

1458 +582 

CtMPA 

(rrg/Vg MMF) 

2.00+ 1.26 

2.15 + 1.52 

3.13 ±2.35 # 

1.64+0.77 

Cmax MPA 

(rrg/Vg MMF) 

17.16 +10.91 

16.78 +9.47 

o 
20.49 +8.77 

15.23 +5.06 

AUCo_12 MPA 
(mg*hlVg MMF) 

50.87 +22.37 

54.91 +24.17 

66.66 +30.92 • § 

45.51 + 13J>6 

Values an: meani SD. ·p<O.05 vs month 6; § p<O.O I vs controls; #p<O.05 vs controls; °p<O.05 vs month 6, 9, and controls 

alld controls. 



Table 12: Impact of esA phannacokinetics on plasma MP A clearance at month 6, 
9 and 21 post-transplant 

6 'hmonth 

/11 h 9 mont 

21' month 

\/ 

J 1 month 
(C 'oil/rots) 

CsA dose 
(mg/12h) 

145+26 

142+31 

128+26 

125+18 

CtCsA 
(ng/mL) 

191+52 

197+63 

178+71 

106+35· 

AUC 0-12 CsA 
(ng·hlmL) 

5313+ 1150 

5093+1252 

4202+869· 

• 3536+769 

CLMPA 
(mVmin) 

398.4+205.4 

368.0JJ57.5 

*#§ 298.4+120.9 . 

402.9+ 147.2 

Values arc meall.1 SD. • p ..... O.OI ~'.\" month 6; #p<O.OI vs month 21 (Controls); §p<O.05 V.f month (). 



Table 13: Biochemical and hematological parameters 

Time post-tx S.Creatinine S. Urea S. Albumin RBC WBC 
(mg/dL) (mg/dL) (g/dL) (xl 06

/ JLL) (xl0 3/ ILL) 

III 
6 month 1.30+0.33 53.5 + 18.9 3.9+0.4 4.7+0.9 9.2+2.5 

III 
9 month 1.42 +0.41 56.6+19.1 3.8+0.3 4.5 +0.8 6.8+2.0 

sl 
21 month 1.34+0.16 58.3 + 14.4 4.0+0.3 4.3 +0.8 * 6.9 ±1.1 

sl 
2 J month 1.33 +0.37 65.1 +26.3 3.7+0.6 4.8+0.6 8.0+2.2 

(Colltrols) 

Values an~ mean + SD. ·p<0.05 vs controls 



Chapter 8 

INFLUENCE OF CO-MEDICATION ON MYCOPHENOLIC ACID 

PHARMACOKINETICS IN ORGAN TRANSPLA~T A TIO:\ 
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Introduction 

MP A, the active immunosuppressant form of the pro-drugs MMF and the new 

mycophenolate sodiwn, is a widely used component of immunosuppressive regimens in 

organ transplantation [87]. This immunosuppressant is commonly administered in a 

fixed daily dose. Recent evidence, however, suggests that a fixed dose regimen no 

longer might be the best approach for the management of transplant patients, and drug 

pharmacokinetic monitoring is advised [19,37,60,66]. Indeed, a significant predictive 

value for assessment of the risk for acute rejection [19,37,60], renal function [88] and 

drug-related side effects [74,77] has been shown for the 12-h dose interval MPA AUCO-

12 and, although the data are less precise, for the predose trough MP A concentration. 

Following oral administration, MP A is converted to inactive metabolites by 

glucuronidation mediated by the human UDP-GT enzyme family [56,87]. The main 

metabolite, 7 -hydroxy-glucuronide, is excreted in urine but may contribute to the 

enterohepatic circulation of MP A after excretion into the bile and hydrolysis in the 

gastrointestinal tract [75]. Recently, three carboxyl-linked additional glucuronides have 

also been detected in vitro and in vivo [89]. 

Previous studies have shown that concomitant immunosuppressive therapy significantly 

influences MP A bioavailability. In particular we have documented that glucocorticoids, 

by inducing UDP-GT expression, interfere with MMF bioavailability [90]. Other 

investigators reported significantly increased MP A concentrations in patients treated 

with MMF plus tacrolimus [81,83]. These fmdings led to the hypothesis that the major 

cause for increased MP A levels during co-administration of tacrolimus is inhibition of 

the glucuronidation ofMPA by tacrolimus [83,91]. At variance, Others have shown that 

combining MMF with the other calcineurin inhibitor CsA reduced MP A exposure 

[39,71], suggesting that CsA may inhibit the transport of MPA metabolites into bile 
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from hepatocytes and reduce enterohepatic cycling of MPA, ultimately leading to a 

decrease in MPA concentrations in the 4 to 12-h window of the Aue profile [39]. 

SRL is a new immunosuppressant characterized by a unique mechanism of action and a 

potential ability to synergize with other antirejection drugs [35]. In the clinical practice 

SRL is usually given in association with low-dose calcineurin inhibitors and steroids or 

antimetabolites such as MMF and AZA [92]. However, the use of novel induction 

. therapies (Le. with the humanized anti-CD52 monoclonal antibody Campath-I [93]), 

that provide enough immunosuppression, is allowing the development of different 

immunosuppressive-sparing regimens [93,94,95]. SRL can, therefore, may be safely 

used in combination with Campath-I H induction and MMF avoiding the administration 

of calcineurin inhibitors. 

Emerging data suggest that MP A phannacokinetics in patients receiving concomitant 

SRL therapy might be comparable to the situation observed for tacrolimus. Indeed some 

Authors have previously found that MP A trough levels were significantly higher in 

kidney transplant recipients treated with MMF in combination with SRL as compared 

with those given MMF with CsA [96,97]. However, prospective studies, with strict drug 

monitoring and full pharmacokinetic evaluations aimed at formally assess the effects of 

SRL on MP A exposure are still lacking. 

The current study - which is a part of a protocol aimed at investigating the efficacy of 

Campath-lH induction therapy in a steroid-free regimen in kidney transplantation - was 

designed to test the different, if any, effects of SRL- or CsA-coadministration on MPA 

exposure. To address this issue we : I) measured serially MPA trough levels in patients 

treated with low-dose SRL or low-dose CsA both in addition to low-dose MMF over 12 

months post-operatively; and 2) compared 12-b MP A phannacokinetic profiles in both 

groups perfonned at month 6 and 12 after surgery. 
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Methods 

Patients 

Twenty-one patients (13 men; 8 women) with end-stage renal disease who underwent 

primary kidney transplant were enrolled under an Ethics Committee-approved protocol 

at the Ospedali Riuniti Bergamo, Italy, following written informed consent They were 

allocated to one of the following two study groups according to a randomization design: 

Group 1 (n 11) was assigned to Campath-1H, low-dose SRL and low-dose MMF; 

group 2 (n 10) entered a regimen with Campath-lH, low-dose CsA and low-dose 

MMF. 

Campath-l (Alemtuzumab, Schering Plough, Milano, Italy) was given as a single 

intravenous infusion (30 mg, over 2 hours) intraoperatively on the day of transplant 

(day 0). Corticosteroids were administered for the first 2 days after transplantation. 

Thereafter, patients were free of steroids. Patients randomized to SRL received the drug 

(Wyeth, Rome, Italy) at the oral dose of 4 mg/day in a single morning administration 

starting on the day 1 after transplant. SRL dosing was adjusted to maintain whole blood 

levels within the 5-10 ng/mL range. In the CsA-based group, the drug was started just 

after surgery (1-2 mg/kg/day) and CsA doses were adjusted to achieve trough blood 

concentration of 120 to 200 ng/mL in the first month post-surgery, and of 70 to 120 

ng/mL thereafter. Patients of both groups were given MMF at the oral low dose of 250 

to 750 twice a day starting on day 1 postoperatively according to total blood leukocyte 

count. MMF dosing was adjusted according to plasma trough level targeted to MP A 

concentration of 0.5-1.5 mg/L. 

The administration of prokinetic drugs, resins, or any agent known to interfere with 

MP A absorption, distribution, metabolism and/or elimination was not allowed during all 

the study period. 
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Study Design 

This prospective study first examined the effects of SRL and CsA on dose-adjusted 

MP A trough levels measured every 5 days starting from day 5 plst-Tx, when patients 

reached steady-state of drug distributio~ to day 90, and then at month 4,6 and 12 plst­

surgery. 

Moreover, at month 6 and 12 post-transplant, all patients underwent a 12-hour MPA 

pharmacokinetic profile. On the morning of the pharmacokinetic studies blood samples 

were collected for routine biochemical analysis and for the determination of trough 

levels of plasma MP A and blood SRL or CsA. Each patient was then given the morning 

dose of MMF and SRL or CsA. All the drugs were given orally (MMF and CsA b.i.d., 

SRL once a day). The pharmacokinetics of MP A was based on an analysis of EDT A­

tubes collected from the antecubital vein at 20, 40, 75, 120 minutes and 3, 4, 5, 6, 7, 8, 

10 and 12 h after drug administration. Thereafter, samples were centrifuged at 3000 g, 

plasma separated, and stored at -20°C until analysis. For SRL and CsA 

pharmacokinetics, blood samples were collected in heparinized tubes at 0.5, 1,2,3,4,5, 

6, 8, 10 and 12 hours after dosing and stored at -20°C until analysis. All drug 

measurements were performed by high-performance liquid-chromatography (HPLC) as 

previously described in Chapters 3-5. MP A, SRL and CsA concentration-time profile 

was recorded for all patients, together with the time to reach the maximmn 

concentration (Tmax) and the maximum drug concentration (CmaJ. The AVC from time 

equal to 0 to the last sampling point (12 h) was calculated by the trapezoidal rule. 

Experimental studies have shown that CsA, but not tacrolimus, decreased the 

enterohepatic cycling of MP A [17]. To test this hypothesis, we also estimated the MP A 

AUC from 4 h to 12 h after drug administration (AUC4-12), an interval time 

corresponding to the appearance of a secondary MP A peak due to enterohepatic cycle 

with conversion of MP AG to MP A. 
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The AVCo-12 is recognized as the best predictor of drug exposure. This approach is, 

however, time consuming and increases the discomfort of the patient as it requires 

multiple sampling analysis. As an alternative, abbreviated AVC profiles with limited 

sampling protocols have been proposed [98]. Therefore, as additional analysis, we 

tested the feasibility of a previously published equation to predict daily MP A exposure 

using a limited sampling strategy [37]. This approach requires only 5 samples collected 

in the first 2 hour after MMF admjnistration (at 0,20,40, 75 and 120 min). 

As stated above, MMF dose for each patient was modified according to white cell blood 

count. To take into account this confounding factor MP A trough levels measured from 

day 5 to month 6 post-surgery, as well as MPA pharmacokinetic parameters assessed at 

month 6 and 12 post-Tx, were adjusted for the daily MMF dose. 

Statistical analysis 

Results are reported as means + SD. Unpaired t-test was used to compare MPA levels 

(dose-adjusted trough concentrations throughout the study period and MP A 

pharmacokinetic parameters measured at month 6 and 12 post-surgery) between group 1 

(given MMF with SRL) and group 2 (given MMF and CsA). The statistical significance 

was defined as p < 0.05. The ratio between each MPA value measured in the SRL group 

and the corresponding value measured in the CsA group was used to estimate the degree 

of the differences between the two groups as follows: 

MPA Pharmacokinetic parameter (Co, AUC) measured in the SRL group 

ltatio -- -----------------------------------------------------------------------------------------

MP A Phannacokinetic parameter (Co, AUC) measured in the CsA group 
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Linear regression analysis between MP A AUCO-12 predicted with the equation proposed 

by Hale et a1 [37] and measured CsA AUCo.12 was performed. Agreement between the 

predicted and measured MP A AUC was estimated using the Bland and Altman 

approach [99,100], where the percentage difference is plotted against the mean MP A 

AUC between the two series. We considered acceptable values within 1 SO of the 

differences. 
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Results 

Recipients' demographics 

All patients enrolled in the study were Caucasians. Mean age of recipients was 49 years 

with a range of 24 to 71 years. The majority of renal transplants were performed from 

cadaver donors (90%). Patients randomized to SRL- or CsA-based maintenance 

immunosuppression were comparable as for the distribution of baseline demographics, 

including age, sex, and HLA matching among the donors and the recipients (data not 

shown). 

Immunosuppressive drugs monitoring 

Mean immunosuppressive drug dose, whole blood trough SRL and CsA, and plasma 

trough MP A concentrations are shown in Table 14. As anticipated, the mean SRL 

trough levels fell within the planned range of 5 to 10 ng/mL. The mean dose used to 

achieve these levels was between 3.6 and 4.3 mg/day. Similarly, mean CsA trough 

levels were maintained within the expected range low target range during the 12 month 

follow-up (Table 14). 

Mean MP A trough levels during this period were within the chosen range of 0.5-1.5 

mgIL. However, we observed that, despite quite comparable MMF doses during all the 

study period, MP A levels were close to the high threshold for patients belonging to the 

SRL group and to the low threshold for those of CsA group. To better investigate this 

unexpected finding, we adjusted MP A trough levels for the daily drug given to each 

patient and then studied the temporal distribution of MP A concentrations in the two 

groups of patients. As shown in Figure 18, at each time point starting from day 10 post­

surgery, dose-adjusted MPA trough levels were significantly higher in patients given 
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SRL as compared to those treated with CsA The average ratio of dose adjusted MP A 

trough levels between SRL and CsA groups was 4.4. 

Pharmacokinetic studies 

As shown in Table 14, there were no differences in SRI.. or CsA trough levels within all 

the study period. Similarly, SRL AUCo-24 (283 at month 6 vs 334 ng·h/mL at month 12, 

. p=O.40) and CsA AUCO-12 (3246 at month 6 vs 3080 ng·h/mL at month 12, p=O.63) 

were comparable during the two pharmacokinetic evaluations. 

Results of the MPA 12 h pharmacokinetic studies, performed at month 6 and 12 post­

transplant, are given in Tables 15 and 16. To take into account different MMF doses as 

potential confounding factor, we adjusted all pharmacokinetic parameters for the daily 

drug dose administered to each patient. 

At month 6, we found that MP A trough levels were significantly higher in the SRL 

group compared to CsA. The ratio between the two series of MP A trough levels was 

4.5. Although less pronounced, the same trend was confirmed at month 12 (2.3 + 1.3 vs 

0.9 + 0.4 mgIL/g MMF, p=0.0151). Despite the observed significant differences of 

MP A trough levels, looking at the pharmacokinetic profiles (Figures 19-20), we found 

only slight differences for MP A T max and Cmax between the two groups of treatment At 

variance, dose-adjusted MPA AUCO-12 at month 6 was significantly higher in the SRL 

group as compared with patients given CsA. It should be pointed out, however, that the 

ratio between the two series of AUCO-12 was 1.8, thus greatly inferior to that observed 

with dose-adjusted MP A trough levels (4.5). Again, at months 12 post-Tx, the 

differences ofMPA AUCo-12 were less pronounced, with a ratio between the two groups 

of 1.4. 
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Different effects ofSRL and CsA on MP A enterohepatic cycle 

As shown in Figures 19-20, the main differences in the pharmacokinetic profiles 

between SRL and CsA groups were found in the late phase starting 4 hours after MMF 

administration, whereas no significant differences were observed in the first part of the 

kinetic profile. 

It is now well established that metabolites of MP A undergo enterohepatic recirculation 

. (EHC) and, after hydrolysis in the gastrointestinal tract, release a secondary peak of 

MPA, usually 4 to 12 hours after MMF administration [75]. To assess whether SRL and 

CsA might affect the MPA EHC we measured MPA AUC from 4 h to 12 h after drug 

dosing (AUC4-12). Using this approach we found that dose-adjusted MP A AUC4-12 were 

significantly higher in patients given SRL as compared with those treated with CsA 

both at month 6 (19.9 + 9.2 vs 6.5 + 3.3 mg·hIL) and 12 post-surgery (17.2 + 6.5 vs 6.8 

+ 2.5, mg·hIL; Figure 21). Of note, the ratio of AUC4-12 between SRL and CsA groups 

were higher (month 6: ratio=3.1; month 12: ratio=2.5) as compared with that estimated 

for corresponding AUCO-12. The lack of secondary MP A peak in patients treated with 

CsA may therefore explain the significantly low MP A trough levels in these patients. At 

variance, all patients given SRL had a secondary MPA peak 4 to 12 b after MMF 

administration, ultimately leading to higher MP A trough levels than those given CsA. 

MP A A UCO-11 prediction by limited sampling strategy 

The above mentioned data suggested that trough levels are not the best way to monitor 

daily MPA exposure. Therefore, as additional analysis, we also extrapolated AUCo.l1 

using a previously published equation [37] routinely used in our Clinical Centre to 

monitor patient's exposure to MPA [88,90]. Despite a tendency to overestimate MPA 

exposure (Tables 15-16), the correlation between the measured and predicted AUC was 

good (r=O.90). Bland & Altman analysis [99.100] showed that 85% of values were in 

- 128 -



the accepted range of + 1 SD. Moreover, this approach reliably predicted the effect of 

concomitant immunosuppressive administration on MP A exposure, as confirmed by 

similar ratios of MP A AUCO-12 between the two groups observed with the measured and 

predicted AUCO-12 (month 6, measured AUCO-12: ratio =1.8, predicted AUCo.12: ratio = 

2.1; month 12, measured AUCO-12: ratio =1.4, predicted AUCo.12: ratio = 1.4). Of note, 

there ratios were lower than that observed with the trough levels (month 6, rati0=4.S; 

month 12, ratio=2.6). 
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Discussion 

Potential pharmacokinetic interactions between MP A and other immunosuppressive 

agents may induce significant changes in MP A exposure with relevant clinical 

consequences in terms of efficacy and side effects, especially when a drug is given in a 

fixed dose regimen. 

. In this study we found that in kidney transplant recipients on immunosuppressive 

therapy with MMF, MPA levels were influenced by the concomitant 

immunosuppressive regimen. Indeed, co-administration of SRL and MMF was 

associated with higher dose-adjusted MP A trough levels and AVC than those measured 

under CsA-based regimen. 

So far, only two studies have previously investigated the impact of SRL co 

administration on MP A levels [96,97]. However, both these observations were 

retrospective, considered only MP A trough levels as surrogate marker of daily drug 

exposure, and patients were monitored for a short time after transplantation (3 months). 

As additional weakness, in these studies MP A concentrations were assessed using an 

immunoassay, a method that cross reacts with MP A metabolites, ultimately 

overestimating MPA values [32]. At variance with these studies, we have fonnally 

compared two cohorts of kidney transplant recipients randomized to receive SRL or 

CsA in addition with MMF. Patients were monitored, starting immediately after 

transplantation, over a long follow-up (1 year), using a strict sampling of MPA levels 

measured by HPLC, universally recognized as the gold standard method to assess MPA 

concentrations [63]. With this approach we extended previous finding showing that 

dose-adjusted MPA trough levels were consistently 4- to 5-fold higher in the SRL ann 

than in esA group during all the study period. Of note this difference was present also 

at 1 year post-transplantation. 
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SRL and esA are metabolized by the cytochromes P4S0 3A [3S] with phase I reactions, 

whereas MP A is mainly detoxificated by phase n metabolic reaction, Ytithout 

involvement of the cytochromes P4S0 3A [7S,87]. Indeed, we excluded a potential 

influence of SRL or esA on MP A metabolism. 

As alternative hypothesis, we speculated that SRL and CsA may exert a different action 

on MP A absorption, distribution and/or elimination. Therefore, to better investigate the 

. potential mechanisms involved in this unexpected pharmacokinetic interaction, we 

studied the 12 h MP A kinetic profiles in the two groups of patients, both at month 6 and 

12 after transplantation, when patients were in stable clinical conditions and fixed 

immunosuppressive therapy. Using this approach we confirmed that dose-adjusted 

MPA trough levels were 3-S fold higher in the SRL group. Subsequently, we analyzed 

the daily MP A exposure and found that dose-adjusted MP A AUCo.12 was nearly I.S-2 

fold higher in patients given SRL than those treated with CsA. However, moving from 

time 0 to time 12 h after MMF dosing we observed no significant differences for MP A 

e max and T max between the two groups. This finding led us to conclude that different 

effects of SRL or CsA on MP A absorption, if any, were negligible. 

The plasma concentration-time profile of MP A after oral MMF administration is usually 

characterized by a sharp initial peak around 1 hour and the occurrence of a secondary 

peak usually 6 to 12 hours post dose [7S]. This late peak has been attributed to 

glucuronidated MP A metabolites that undergo enterohepatic recirculation (EHC). EHC 

is the process by which drug, or a drug metabolite, is excreted by the liver into the bile 

and is then reabsorbed back into the portal circulation [60]. In the case of conjugated 

drug metabolites, as MP A metabolites, deconjugation mediated by the colonic bacteria 

in the gut flora precedes the uptake process. After deglucuronidation of the metabolites. 

MP A was reabsorbed in systemic circulation as shown by the appearance of the 

secondary peak [7S]. Any drugs, such as cholestyramine [10 I], able to influence EHC 
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of MP A metabolites may, therefore, affect daily MP A exposure. Indeed, a previous 

study in animals have shown that esA, by inhibiting the transport of MP A metabolites 

into bile from hepatocytes, decreased the enterohepatic cycling of MP A and thereby 

significantly reduced MPA concentrations in the 4- to 12-h window of the AVC profile 

as compared with rats treated with MMF alone or in combination with tacrolimus [39]. 

For the fust time, we have documented a similar trend observed in animals by Van 

. Gelder et al [39] also in humans. Indeed, looking at the pharmacokinetic profile we 

found that, despite no significant differences in MP A AVC in the first few hoW'S after 

MMF administration, patients in the esA group experienced the absence of a second 

MP A peak as documented by significant low MP A AUC4-12 levels compared to patients 

given SRL. According to this analysis of the data, therefore, the post-absorption, post­

distribution phase of the MP A AUe profile during which enterohepatic cycling of MP A 

is most prominent was suppressed in the esA-treated patients. We can therefore 

speculated that interruption of the EHC secondary to inhibition of MP A conjugated 

metabolites' transport across biliary duct epithelium into bile by CsA explained the 

significantly higher values for dose-adjusted MPA eo and AVC in patients receiving 

concomitant SRL and MMF compared to those given CsA and MMF. 

At variance with animal studies [39], we did not measure MPAG levels. We did it in the 

past [88,90]. However, interest in measuring MPAG levels has declined in the last few 

years after the understanding of its pharmacological inactivity and the discovery at least 

other 2-3 acyl glucuronidated MP A metabolites [89]. Although data of MP AG are 

lacking, we are confident that our results may be strong enough to support the 

hypothesis that the observed differences in MP A pharmacokinetic profile in patients 

given SRL or esA are mainly driven by the different effect on MP A enterohepatic 

recirculation. 
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Since EHC usually manifests 6 to 12 hours after MMF dosing, MP A levels 12 h 

(trough) were mainly influenced by the inhibitory action of CsA, with values 3-5 fold 

higher in the SRL group. Given the fact that the secondary MP A peak is usually 50-

70% lower than the Cmax, its contribution to daily MP A exposure is less prominent, as 

documented by only a 1.5-2 fold difference in MP A AUCO-12 between the two groups. 

These findings suggested that trough levels may not be the best way to monitor daily 

MP A exposure, especially when patients are treated with different MMF-based 

therapies. In our routine clinical practice, we estimate MP A AUCO-12 using an equation 

that requires 5 samples collected within the first 2 hours after MMF dosing [37]. In the 

present study we have shown a good correlation between MP A AUCo.12 measured and 

predicted using the equation of Hale et al [37]. Of note, the degree of the 

pharmacokinetic interaction between MP A and SRL or CsA was better predicted with 

the estimated AUC rather then by MP A Co levels. This approach may, therefore, 

represent a useful tool to monitor daily MP A exposure when the full 0-12h 

pharmacokinetic sampling can not be performed, as usually happened in the clinical 

conditions. 

In conclusion, to our knowledge this is the first clinical demonstration that CsA inhibit 

MP A enterohepatic recirculation, ultimately resulting in higher MP A daily exposure as 

compared with other CsA free regimens. As additional finding, the MP A Co-based 

monitoring may overestimate the degree of this pharmacokinetic interaction. These 

results should be carefully taken into account when MMF -based regimen are 

implemented, especially when the drug is administered at a fixed daily dose and patients 

are switched to different poly-pharmacological therapies. 
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Legend to Figures 

Figure 18. Mean dose-adjusted ~ A trough levels from day 5 to year 1 after 

transplantation in kidney transplant recipients treated with SRL or CsA. both in addition 

to MMF. °p<O.Ol vs esA group; *p<O.05 vs esA group. 

Figure 19. Dose-adjusted MP A concentration-time curves from 0 to 12 hours after 

MMF administration in patients at month 6 post-surgery and treated with SRL or Cs.\. 

°p<O.Ol vs esA group; *p<O.05 vs esA group. 

Figure 20. Dose-adjusted MPA concentration-time curves from 0 to 12 hours after 

MMF administration in patients at month 12 post-surgery and treated with SRL or Cs.-\. 

°p<O.OI vs esA group; *p<O.05 vs CsA group. 

Figure 21. Area under the curve from 4h to 12 h (AUC4-12) after ~l\lF administration in 

kidney transplant recipients treated with SRL or CsA. 
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Table 14. lmmWlosuppressive drug dosing and trough levels 

Sirolimus group (n--ll) 

Time Mean SRL Dose Mean SRL trough Mean MMF Dose Mean MPA trough 
Post-Tx (mglday) (nglmL) (mg/day) (",glmL) 

J week 3.6 ± 1.7 4.5 ± 1.9 542 ± 144 0.61 ± 0.56 

1 weeb 4.3 ±0.8 9.1 ±2.2 484 ±63 0.88 ± 0.63· 

J manlll 4.3:t 1.7 9.4 ± 3.2 571 ± 182 1.13 ± 0.94° 

J manilas 4.3 ± 1.8 8.3 ±2.7 621 ± 430 1.54 ± 1.05° 

6 months 4.0 ± 1.5 7.9 ± 2.3 591±202 1.67± 1.12· 

11 mon/hl 4.0 ± 1.0 10.1 ±4.S 1200:t 447 2.7S ± 1.63 0 

Cyclosporine group (n=JO) 

Time Mean CsA Dose Mean CsA trough Mean MMF Dose Mean MPA trough 
Post-Tx (mg/day) (nglmL) (mg/day) (llg/mL) 

I H'ed 343 ± 191 145 ± 110 688 :t 372 0.22 ± 0.14 

1weeu 243± 106 134 ± 59 550 ± 158 0.33 ± 0.32 

I monlh 279 ± 109 133 ± 61 S59 ± 166 0.26 ± 0.14 

J mOIJ/lu 263 ± 74 124 ± 52 608 ±204 0.41 !: 0.34 

6 monllu 269 ± 78 119 ±34 7'0 ± 267 0.49 ± 0.38 

11 months 207 ±'7 101 ± 31 813 !. 2'9 0.66 ± 0.24 
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Table 15. MP A pharmacokinetic parameters at month 6 post-transplantation in patients 
treated with SRL or CsA both in combination with MMF 

UP A Pharmacokinetic SRLGroup CsA Group P-value 
parameters (n=ll) (n=lOJ 

MMF Dose (mg/day) 591 ±202 750+267 0.1570 

MP A Co (mg/L) 1.67 ± 1.12 0.49 ± 0.38 0.0117 

CJDose (mg/Ug MMF) 2.87 ±2.08 0.63 ± 0.40 0.0082 

Cmu (mg/L) 10.66 ± 9.28 11.74 ± 6.56 0.7829 

C...JDose (mg/Ug MMF) 17.09 ± 8.97 15.28 ± 5.60 0.6221 

Tmu (min) 63 ± 100 46± 19 0.6444 

AUCO-ll (mg·hlL) 24.63 ± 13.88 18.78± 11.47 0.3441 

AUCO-lfDosc (mg·hlUg MMF) 41.52 ± 14.76 23.66 ± 7.77 0.0006 

AUCO-llo (mg·hlL) 32.25 ± 18.41 19.97 ± 11.08 0.1129 

AUCO-l~o (mg·hlUg MMF) 54.59 ± 28.54 25.53 ± 7.10 0.0124 

AUC4_11 (mg·hlL) 11.45 ± 6.14 5.07 ±3.73 0.0186 

AUC4-lfDosc (mg·hlUg MMF) 19.93 ± 9.31 6.46 ± 3.31 0.0012 

• AUC predided ..... die 0Ip .... by fWI c:c .. P7] 



Table 16. MP A pharmacokinetic parameters at month 12 post-transplantation in patients 
treated with SRL or CsA, both in combination with MMF. 

MP A Pharmacokinetic SRLGroup CsA Group P-value 
parameters (n=JJ) (n-JO) 

MMF Dose (mg/day) 813 ±259 1200+447 0.0706 

MPA Co (mg/L) 0.66 ±0.24 2.75 ± 1.63 0.0037 

CJDosc (mg/Ug MMF) 0.89 ±0.44 2.30 ± 1.30 0.0151 

Cmax (mg/L) 12.53 ± 3.91 13.46 ± 6.32 0.7471 

C..IDose (mg/Ug MMF) 15.89 ±4.30 11.11 ± 2.96 0.0528 

T .... (min) 30 ± 11 24±9 0.3193 

AUCO-I2 (mg·hlL) 20.37 ± 6.57 43.92 ± 24.60 0.0236 

AUC0-11J)ose (mg·hlUg MMF) 26.00 ± 8.61 35.45 ± 10.02 0.0914 

AUCO-I2° (mg·hlL) 23.03 ± 6.08 S2.88 ± 26.34 0.0092 

AUC~IIJ)ose° (mg·hlUg MMF) 30.23 ± 10.11 43.89 ± 16.31 0.0936 

AUC .. 12 (",g·WL) 5.14±2.18 21.38 ± 13.04 O.OOSI 

AUC .. 11J)ose (",g·WUg MMF) 6.81 ±2.52 17.18 ± 6.49 0.0016 



Chapter 9 

PHARMACOKINETICS OF THE NEW El\TERIC-COATED 

MYCOPHENOLATE SODIUM AND COMPARISON \VITH THE 

TRADITIONAL MOFETIL FORMULATION 1:\ KID:\EY 

TRANSPLANT RECIPIENTS 
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Introduction 

Mycophenolate mofetil (MMF), the ester prodrug of mycophenolic acid (MP A), is a 

potent immunosuppressive agent actually used as a part of standard immunosuppressive 

regimens in combination with a ca1cineurin inhibitor or sirolimus, and steroids [107]. 

MMF is usually administered at a fixed oral dose of 1000 mg twice daily, and 

therapeutic drug monitoring is not routinely performed. Recent evidence, however, 

suggests that a flXed dose regimen of MMF no longer might be the best approach for the 

management of transplant patients, and drug pharmacokinetic monitoring is advisable 

[19,88,90]. 

Despite excellent efficacy, MMF is associated with tolerability problems, particularly 

because of gastrointestinal (01) adverse events such as nausea/vomiting, diarrhoea, 

abdominal pain and gastritis [87,103]. Additionally, also haematological toxicity has 

been reported after MMF use [74]. These adverse events often lead to a reduction in 

drug dose or discontinuation of MMF from the immunosuppressive regimen, leading to 

sub therapeutic dosing and impaired clinical outcomes [104,105]. 

To overcome the problems associated with MMF use, an enteric-coated fonn of 

mycophenolate sodium (EC-MPS, MyforticR
) has been recently developed, which, via 

its advanced formulation, has the potential to extend the therapeutic window of MP A 

through enhanced tolerability relative to MPA exposure [87,106]. Unlike MMF, which 

releases MP A in the stomach, EC-MPS releases MP A in the small intestine. 

Previous studies [107,108,109] have shown that 720 mg of EC-MPS and MMF 1000 

mg deliver near, equimolar doses of MP A and provide bioequivalent MP A exposure, 

defined as the AVC. Therefore, it is now generally accepted that these two doses are 

therapeutically equivalent [106,109]. Results of pivotal phase III studies have shown 

that EC-MPS has a comparable efficacy and safety profile to MMF in de novo and 
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maintenance renal transplant patients [109,110]. The incidence of GI adverse events 

was similar for MMF and EC-MPS, though the severity of GI side effects 'With EC-MPS 

tended to be lower in the study of maintenance patients [110]. Furthermore, a non­

significant trend for fewer de novo patients receiving the new formulation requiring 

dose reduction, drug withdrawal, or interruption due to GI adverse events compared to 

the traditional MMF formulations has been observed [109,110]. 

Up to now, only few studies have formally compared the pharmacokinetics of MPA 

released from EC-MPS with that obtained after MMF administration [111,112]. 

Nevertheless, most of these studies were incomplete, with no baseline patient 

demographic or statistical analysis included, and an omission of full kinetic profiles. 

Moreover, they focused on the comparison between the two MP A-releasing 

formulations only after single drug dose administration [111] or providing only 

pharmacokinetic data from the early period after transplantation [112]. Therefore, 

complete data on the pharmacokinetics of MP A after chronic EC-MPS administration in 

stable kidney transplant recipients are still lacking. 

Indeed, the current study was designed to: 1) investigate the full phannacokinetics of 

MP A after EC-MPS administration in stable renal transplant patients at month 6 post­

surgery; 2) to assess the intra- and inter-patient variability of MP A pharmacokinetics 

by comparing values at month 6 with those obtained at month 12 post-surgery; 3) to 

compare the above mentioned pharmacokinetic parameters with those observed in a 

control group of patients, well matched for concomitant immunosuppressive therapy 

and time after transplantation, given MMF instead of EC-MPS; 4) to estimate the 

correlation between each sampling time points and daily MP A AUCo-12 for both 

formulations. 
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Materials and methods 

Study population 

Ten adult renal transplant patients (4 malesl6 females) referred to the Kidney Transplant 

Centre of the Ospedali Riuniti Bergamo, and enrolled in an intensified multi-factorial 

therapy open trial, were included in the present study. They were on triple 

immunosuppressive therapy, including CsA Neoral, corticosteroids and EC-MPS. 

All patients received EC-MPS twice daily, every 12 hours in the morning and in the 

evening, at starting dose of 720 mg (2 enteric coated tablets of 360 mg b.i.d). EC-MPS 

was commenced as soon as possible after transplant at a daily dose of 1440 mg and drug 

dose remained flXed through all the study period. Some of the patients, however, 

required drug dose reduction, due to adverse events. In case of leukopenia (leukocyte 

count <4000/mm3
), neutropenia (absolute neutrophil count <1500/mm3), or other 

moderate/severe adverse events, EC-MPS dose was reduced by 50%. In any case, 

changes in EC-MPS dosing were perfonned by the attending physicians based on 

clinical parameters suggesting MP A-induced toxicity, but not according to MP A 

pharmacokinetics. For comparison, ten adult renal transplant recipients (6 males! 4 

females) transplanted in the same period in our Transplant Unit, well matched for time 

post-transplantation and concomitant immunosuppressive therapy, given MMF instead 

of EC-MPS were also included in the pharmacokinetics evaluations. 

Only patients with stable renal function in the previous 4 months (defined by less than 

15% differences in serum creatinine values during monthly evaluations) were included 

in the present pharmacokinetic study. Patients with existence of any surgical or medical 

condition, other than the current transplant, which might significantly alter the 

absorption, distribution, metabolism or excretion of the study medications, and/or 

presence of severe diarrhoea or active peptic ulcer disease, were excluded from the 

- 145-



study. The study protocol was described in detail to the patients before admission and 

written informed consent to enter the study was obtained. 

Study design 

This prospective study first evaluated the MP A pharmacokinetic parameters at month 6 

post-surgery in patients given EC-MPS or MMF. The MPA complete 12-hour plasma 

concentration-time profile was recorded for all patients, together with the time (T max> to 

reach the maximum concentration (Cmax) and MP A AUCO-12, calculated with the 

trapezoidal rule. On the morning of the pharmacokinetic studies, blood samples were 

collected for routine haematological analysis and for the determination of trough levels 

of plasma MP A. Then, each patient was given the morning dose of EC-MPS or MMF 

under fasted conditions. Thereafter, no particular restrictions on food intake were 

applied during the day. For MPA pharmacokinetics, blood samples in EDTA-tubes were 

drawn at 20,40, 75, 120 minutes, and 3, 4, 5,6, 8, 10 and 12 hours. Thereafter, samples 

were centrifuged at 3800 x g, plasma separated, and stored at -20°C until analysis by 

HPLC as described in Chapter 3. At month 12 post-transplantation, all patients given 

EC-MPS or MMF underwent a second pharmacokinetic evaluation, together with 

routine haematological analyses. Using this approach, we were able to estimate both 

intra- and interpatient variability from both MP A-releasing formulations. 

As additional analysis, each sampling time was correlated with the daily MP A 

exposure, expressed as MP A AUCQ-12, with the goal to identify time points useful for 

the development of limited sampling strategies aimed at predicting daily MP A exposure 

after EC-MPS administration. 

Patients experiencing drug-related toxicity were allowed to modify the daily EC-MPS 

or MMF dose. To take into account this potential confounding factors. all the MPA 

pharmacokinetic parameters were adjusted for the daily drug dose, and expressed as 
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equivalent of MP~ assuming a 1:1 equivalence between EC-MPS 720 mg and ~lMF 

1000 mg, as previously documented [106-112]. 

Statistical analysis 

Results are reported as means + SD. Differences in MPA pharmacokinetics within and 

between the two MPA-releasing formulations at month 6 and 12 post-surgery were 

. analyzed using the ANOV A test. Within- and between-patient variability of the main 

MP A pharmacokinetic parameters were expressed as CV%. Correlation between plasma 

MPA concentrations ranging from 0 to 12 hour post dosing and MPA AUCO-12 were 

performed by linear regression analysis. The statistical significance level was defined as 

p < 0.05. 
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Results 

Recipients' demographics 

All patients enrolled in the present study were Caucasians, and recipients of first kidney 

transplant from cadaver donors. As shown in Table 17, patients given EC-MPS were 

comparable to those given MMF as for demographics, renal and liver function, as well 

as for haematological profile both at month 6 and 12 post-surgery. 

Pharmacokinetics of the two MP A -releasing formulations 

The mean MP A pharmacokinetic parameters for the EC-MPS and MMF groups are 

shown in Table 18. Absorption was slower for EC-MPS than for MMF, consistent with 

a functional enteric coating for EC-MPS. Indeed, at month 6 post-surgery, mean Tmax 

was 130 min for EC-MPS and 46 min for MMF (p<0.01). Mean MPA exposure, defined 

either by dose-adjusted AUCO-12 and MP A Cmax, were not different between the two 

groups. The same findings were confirmed also at month 12 post surgery (Table 18). 

However, at variance with previous observations, we found that dose-adjusted MP A 

trough levels were 4.7-fold higher in patients given EC-MPS than those given MMF 

(Table 18, Figure 22). To better investigate potential differences in the MP A 

pharmacokinetic profiles between the two formulations, we looked at the single kinetic 

curves for each patient. As shown in Figures 23 and 24, unexpected, atypical kinetic 

profiles ofMPA in patients given EC-MPS were observed both at month 6 and 12 post­

transplantation. Of note, all patients given EC-MPS presented multiple peaks of MPA 

(on an average of 3 peaks per patient). Interestingly, some patients had MPA emu at 

480 minutes after drug dosing (Figure 22), whereas others had MP A Cmax peaking at 

time 0 (basal). Conversely, the control group of patients treated with MMF presented 

regular MP A pharmacokinetic profiles, consistent with previous observations [75]. with 
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maximum peak of MP A always within 2 hours (Figw-e 22), and the presence of a 

second, flat peak at 6-12 hours post MMF dosing, corresponding to the well-known 

enterohepatic recirculation ofMPA metabolites [75]. 

Variability of MP A pharmacokinetics parameters 

All patients underwent pharmacokinetic evaluations both at month 6 and 12 after 

. transplantation. As a measure of the intra-patient variability of plasma MP A levels, the 

CV% was calculated for main pharmacokinetic parameters between the two study visits 

in patients given EC-MPS and, for comparison, in those given MMF. We found a higher 

variability of MP A pharmacokinetics in patients given the new enteric coated 

formulation than those treated with the traditional MMF formulations (Table 19). 

Despite the low number of patients (n 10 for each group), these differences reached 

statistical significance (Cmax: CV: 45.7% vs 15.1%, p<0.05). 

As additional analysis, we also evaluated the inter-patient variability of MP A 

pharmacokinetics in the formulations both at month 6 and 12 post-surgery. As 

documented in Table 19, we confirmed that the use of the new EC-MPS formulation 

was associated with significant variability in MP A pharmacokinetics as compared with 

MMF. 

Correlation between MP A A UCO-12 and single sampling points 

As demonstrated in Table 20, the regression analysis between individual plasma MP A 

concentrations and MP A AUCO-12 documented an overall better correlation with the 

MMF formulation. Of note, this findings applied for all single time points (with the only 

exception of the sampling at 20 minutes), with differences in the correlation coefficient 

(r) that, in some cases, were more than double (at 20, 75, 120, 240, and 600 minutes 

post drug administration) between the two MP A-releasing fonnulations. 

- 149-



Given the observed low correlation between single MP A sampling points and daily 

MP A exposure, we were not able to develop feasible limited sampling strategies useful 

to predict MPA AUCO-12 in patients given EC-MPS (data not shown). 
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Discussion 

The main finding of the present study was that the pharmacokinetics of MP A released 

from the new enteric-coated formulation of mycophenolate sodium is extremely 

variable and irregular as compared with that found in stable kidney transplant recipients 

given MMF. Despite no apparent differences in mean MP A exposure expressed as MP A 

AUCO-12, we observed aberrant kinetic curves in single patients, with an extremely high 

variability both in the T max and MP A Co. Additionally, patients given EC-MPS 

presented multiple peaks of MP A, an effect never observed after MMF administration. 

These fmdings were at variance with those recently published by Arns et al [111], . 
showing that, after single EC-MPS or MMF administration, the pharmacokinetic curves 

for all treatments were similar. It should be pointed out, however, that in that study only 

mean pharmacokinetic profiles were presented, with no data showing the variability 

associated with single MP A sampling points. Moreover, as stated above, only single 

drug administration were considered. Therefore, these results can not be applied to 

patients, as ours, chronically exposed to EC-MPS. 

Only a very few studies have compared the pharmacokinetics of MP A released from 

EC-MPS with that from MMF in patients chronically treated with these drugs 

[111,112]. As a result of differences in the molecular weight, EC-MPS 720 mg contains 

a near equimolar quantity of MP A as MMF 1000 mg. Pharmacokinetic analysis have 

shown that the administration of EC-MPS at 720 mg and MMF 1000 mg resulted in 

similar MP A Cmax and AUC, documenting bioequivalence between the two 

formulations. Actually, the bioequivalence guidelines for approval of generic 

formulations require a similar average bioavailability compared with the reference 

formulation, with the 90% confidence interval of the relative mean AUe and Cmax of the 

test to reference formulation within 0.8 to 1.25 [113] . However, this approach presents 
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some important limitations, one of the most important being the assumption to consider 

average bioavailability instead of single evaluations. This concept was underlined and 

emphasized by our findings. Indeed, looking at mean MP A Cmax and AUCG-11, we found 

no differences between EC-MPS and MMF, confirming bioequivalence between the 

two formulations. However, looking at the single MP A pharmacokinetic profiles, we 

documented enormous differences between the two formulations. In particular, patients 

given EC-MPS presented MP A trough levels 4- to 5-fold higher that those found in 

patients given MMF, despite no differences in the MPA AUCG-12. It can be reasonably 

speculated that our results may have important clinical consequences when Co-based 

monitoring is used as a guide to optimize MP A therapy, as recently suggested by 

international consensus conferences [114]. 

Enteric-coating was designed to improve the OI adverse event profile of MMF releasing 

MPA in the small intestine, an effect evidenced by a delay in the MPA Cmax [87,106]. 

Overall, this trend was confmned also by our data, showing that mean MP A T max was 

longer in patients given EC-MPS than those given MMF. However, when we looked at 

the single data, we observed a very huge distribution in the Tow" covering a period from 

o to 480 min after EC-MPS administration. These unexpected findings allow us to 

speculate that some patients, actually via unknown mechanisms, may experience some 

problems in the absorption of EC-MPS, a pattern also confirmed by the presence of 

multiple MP A peaks. This trend resembles early observations after cimetidine 

administration [115], suggesting a potential influence of food intake in the absorption of 

EC-MPS but not MMF. Since all patients from both groups received the morning dose 

of the study medication under fast conditions, but had no particularly restriction to food 

thereafter, we were not able to draw definite conclusion on this issue. 

It is now generally accepted that the measurement of MP A AU412 is the most reliably 

tool for the assessment of daily MPA exposure [114]. However, this approach is seldom 
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feasible in the routine clinical practice an~ therefore, limited sampling strategies for the 

prediction of AUC have been early advocated for MMF [37,75,114], but are still 

lacking for EC-MPS. To pursue this goal we have tried to identify a few, near-the-~ 

sampling points useful to predict MPA AUCO-12 in patients given EC-MPS. However, 

we found a very high variability, both intra- and inter-patient, among all the 

pharmacokinetic parameters of MP A obtained from patients treated with mycophenolate 

. sodium. This was also documented by poor correlations between single sampling points 

and MP A AUC 0-12 after EC-MPS, but not MMF, administration. For all these results, 

we were not able to provide an equation useful to reliably predict MP A daily exposure 

in patients given the new enteric-coated formulation ofMP A. 

In conclusion, we have shown that, despite average bioequivalence, the 

pharmacokinetic of MP A released from EC-MPS is extremely variable and irregular as 

compared with that observed after MMF administration in stable kidney transplant 

recipients chronically exposed to these two formulations. Given the emerging strong 

support for the clinical outcome benefit of MP A monitoring in transplant setting, further 

studies are warranted to better investigate the mechanisms underlying differences in the 

absorption processes between EC-MPS and MMF. 
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Legend to Figures 

Figure 22. Distribution ofMPA Tmax and dose-adjusted Co in patients treated with EC­

MPS or MMF. Data are depicted as mean, minimum and maximum values for each 

phannacokinetic parameter. *p<0.0 1 vs Tmax and CO in the MMF group. 

Figure 23. Temporal distribution (from time 0 to time 720 minutes after drug 

administration) of single daily MP A concentrations in kidney transplant recipients at 

month 6 after surgery given EC-MPS or MMF. 

Figure 24. Temporal distribution of single daily MP A concentrations in kidney 

transplant recipients at month 12 after surgery given EC-MPS or MMF. 
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Table 17. Demographic and hematological data of kidney transplant recipients given 
mycophenolate sodium (EC-MPS, n 10) or mycophenolate mofetil (MMF, n=10). 

EC-MPS MMF 

Monlh6 Month 12 Monlh6 Month 12 

Age (yr) 41 ± 12 39± 13 44± 12 44± 12 

Body Weight (leg) 72.1 ± IB.5 70.1 ± 16.9 75.3 ± 17.3 77.7 ± 17.3 

S.Creatinine (mg/dL) 1.54 ±0.42 1.51 ± 0.56 1.66 ± 0.36 1.56 ± 0.27 

Creatinine cl. (mUm In) 64.3 ± 17.4 67.0 ± 17.B 55.4 ± IB.9 65.4 ± 17.B 

S.Urea (mg/dL) 64± 13 59± 17 66±2B 63±20 

AST(lUIL) 17±4 17 ±5 20± 10 19 ±4 

ALT (lUlL) IB±5 15±4 27±26 IB ± 10 

GGT(IUIL) IB± 10 20± IB 35±43 36±33 

RBC (I (Jd/jdJ 4.28 ±0.71 4.37 ± 0.45 4.10 ± 0.31 4.37 ± 0.52 

WBC (I (Jd/jdJ 7.70 ± 3.51 7.69 ± 2.81 5.39 ± 2.18 5.90 ± 1.61 



Table 18. Pharmacokinetic parameters of kidney transplant recipients given EC-MPS (n=10) or 
MMF(o 10). 

Pbannacokinetic EC-MPS MMF 

parameters 
Month 6 Month 12 Month 6 Month 12 

Dose (MPA eqlday) 1040 ±379 997 ±365 750 ±267 850±242 

Co (mglL) 4.07 ±4.07- 6.50 ± 6.56- 0.49 ±0.38 0.72 ± 0.26 

CofDose (mglL IMPA eq) 5.93 ± 5.01- 7.98 ± 7.01° 1.26 ± 0.80 1.64 ± 0.62 

C_ (",glL) 18.11 ± 10.20 15.95 ± 7.03 11.74 ± 6.56 12.23 ± 3.54 

C../Dose (",glL IMPA eq) 25.51 ± 11.30 25.57 ± 14.78 30.56 ± 11.21 29.84 ±8.67 

T_(",In) 130 ± 107- 118 ± 129- 46± 19 30 ± II 

AUCo.12 (IItg·1rIL) 36.65 ± 11.7r. 41.04 ± 19.53° 18.94 ± 11.62 21.14 ± 6.01 

AUCe.111Dole (IItg-WLlMP A eq) 53.11 ± 12.72 51.16 ± 11.29 47.64 ± 15.77 SI.2I ± IS.37 

-,.co.OS ft""'. -p<G.OI ft"'" 



Table 19: Intra- and inter-patient variability of main MP A phannacokinetic parameters in kidney 
transplant recipients given EC-MPS or MMF at month 6 and 12 post-surgery. 

Pharmacokinctic 

parameters 

CjDosc (mKIL IMPA ell) 

CmajDose (mglL IMPA eq) 

T IOU (mill) 

AlJCO.1 2 /Dosc (mg·h/UMI'A eq) 

.p' 0 OS V5 MMF; °p<O.OI vs MMF 

Intrapatient variability 

(CV % month 6 vs J 2) 

EC-MPS MMF 

32.8 38.7 

45.7· 15.1 

66.7 32.5 

24.9 12.4 

Interpatient variability 

(CV% at month 6) 

EC-MPS MA4F 

84.4· 63.9 

44.3 36.7 

82.4· 41.2 

23.9 33.1 

Interpatient variability 

(CV % at month J 2) 

EC-MPS MMF 

87.8° 37.8 

57.8 29.1 

109.4· 35.1 

31.1 29.') 



Table 20: Correlation between single MP A sampling points and MP A AUC 0-12 in patients given 
EC-MPS orMMF. 

Time-point of 
EC-MPS MMF 

sampling (min) r Regression equation r Regression equation 

Co 0.76 AUC = 2.21 Co + 27.08 0.87 AUC -18.60 Co + 8.87 

<;0 0.69 AUC=3.41 <;0+25.75 0.16 AUC = 0.58 <;0 + 22.47 

C40 0.14 AUC = 0.57 C40 + 36.92 0.75 AUC = 1.93 C40 + 0.52 

C;, 0.18 AUC - -0.58 C;, + 42.8 0.89 AUC = 2.29 C;, + 9.6 

CllO 0.28 AUC = 0.53 CllO + 35.05 0.91 AUC:II 5.16 CI20 + 7.65 

ClIO 053 AUC = 2.41 ClIO + 29.73 0.75 AUC = 7.82 ClIO + 11.27 

<;40 0.35 AUC - 2.36 ~40 + 33.96 0.80 AUC = 11.52 Cm + 9.18 

0.42 AUC = 1.33 C. + 33.27 0.59 AUC:oo 8.82 ClOO + 13.87 CJOO 

0.58 AUC =: 4.29 ~ + 29.75 0.82 AUC- 19.19 ~ +4.31 ~ 

C. 0.59 AUC - 3.82 C410 + 30.94 0.93 AUC == 23.88 C410 + 5.58 

C600 
0.47 AUC .. 6.05 C600 + 27.62 0.91 AUC" 13.04 C600 + 13.61 

Cno 0.68 AUC" 11.05 Cno + 21.76 0.88 AUC CII 15.65 Cno + 12.3 



Part III 

THERAPEUTIC DRUG MONITORING 

OF SIROLIMUS 

- 16~ -



Chapter 10 

THERAPEUTIC DRUG MONITORING OF SIROLIMUS: EFFECT 

OF CONCOMITANT IMMUNOSUPPRESSIVE THERAPY AND 

OPTIMIZATION OF DRUG DOSING 
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Introduction 

SRL is a macrocyclic lactone isolated from Streptomyces hygroscopicus characterized 

by a potent immunosuppressive activity [116]. Interest in the use of sirolimus in organ 

transplantation derives from its unique mechanism of action, its low side-effect profile, 

and its ability to synergize with other immunosuppressive agents [117]. SRL has no 

effect on calcineurin enzyme, but it reduces T -lymphocyte activation at a later stage in 

the cell cycle, by inhibiting the post interleukin-2 receptor mTOR signal transduction 

pathway [118]. 

The drug is metabolized by the cytochrome P4S0-3A4 isoenzyme (CYP3A4), a family 

of enzymes involved in the metabolism of several immunosuppressive agents currently 

used in combination as antirejection treatments in organ transplantation [24]. This may 

lead to potential pharmacokinetic interactions that eventually affect SRL blood 

concentrations and ultimately may result in over- or under-immunosuppression or 

toxicity [119,120]. So far, this issue remains ill defmed. Monitoring blood sirolimus 

levels is mandatory to optimize the drug dosing regimen, since the dose is itself a poor 

predictor of drug exposure [121]. At variance, SRL trough levels (CO> show good 

correlation with the daily drug exposure, defined as the area under the time­

concentration curve (AUC0-2J, and with clinical outcomes, both as rejection episodes 

and drug-related toxicity [40]. HPLC, with either UV or MS detection, is now the only 

available technique for the assessment of SRL whole blood levels [35,122]. 

In the past two years our laboratory served as a centralized institution in Italy to 

measure SRL concentrations in blood samples of kidney transplant recipients on 

different SRL-based immunosuppressive regimens. These samples referred only to SRL 

trough levels, and no complete phannacokinetic profiles were perfonned to study 

additional phannacokinetic parameters. Although the AUe is an accurate index of 
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patient exposure to the drug, this measurement is quite expensi\"e. time-consuming. and 

increases the discomfort for the patients, making it seldom feasible in routine clinical 

monitoring. Therefore, the Co-based SRL monitoring is commonly used as a surrogate 

marker of daily drug exposure in the routine clinical practice. Thus, given the large 

number of SRL measurements available in our laboratory referring to different time 

samplings post transplant and to different settings of drug combination, we sough to 

investigate the possible effect of concomitant immunosuppressive agents on SRL trough 

levels (Co) as an index of patient exposure to the drug. In particular, we examined: 1) 

the potential influence of CsA, tacrolimus (TRL), M~IF and steroids on dose­

normalized SRL trough concentration; and 2) the variability of SRL trough levels 

according to different time points post surgery. In addition, we tested an algorithm 

based on measured SRL trough levels useful to guide changes of SRL dosing. 
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Materials and Methods 

Patients and blood sampling 

Four hundred ninety-five transplant recipients of cadaver kidneys from 40 Italian 

Transplant Centres were included in the present study. Patients were at a median of 258 

days post-surgery (from day 0 to 14 years), and treated with different 

immunosuppressive regimens that include CsA, TRL, MMF, and steroids. In most 

patients, SRL was given in association with a ca1cineurin-inhibitor (CsA 58%; TRL 

19%) in dual (28%) or triple therapy with steroids (46% ). Alternatively, patients were 

treated with SRL in combination with MMF (7%), or steroids (9%) alone, or in triple 

combination (8%). For a detailed description of the different immunosuppressive 

regimens see Table 22. The patients received SRL 4 hours after the morning CsA dose, 

as suggested by the drug manufacturer. 

Study design 

Serial SRL blood levels centrally assayed in our Laboratory between June 2001 and 

October 2003 were considered (n 2,658). Samples were collected in EDT A-containing 

tube and sent (frozen at -20°C) to the central Laboratory. At the same time the Centres 

were asked to provide information on: day of transplant, actual SRL daily dose, 

concomitant immunosuppressive regimen and graft function as serum creatinine. 

Complete required data were available for 689 SRL trough levels, which belong to 189 

patients. Measured SRL concentrations were initially divided in three groups according 

to immunosuppressive regimen: 1) SRL, CsA with or without steroids; 2) SRL, TRL 

with or without steroids; 3) SRL, MMF with or without steroids. The impact of CsA, 

TRL, MMF, or steroids on SRL trough levels was first examined. We also assessed the 

consistency of SRL trough levels measured at different time points post transplant \\ith 
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the recently proposed guidelines of target SRL blood concentrations, according to the 

adopted immunosuppression regimen [123]. Moreover, similarly to what has been 

recently proposed for CsA Neoral dose adjustment [124], we also evaluated the 

feasibility of adjusting SRL dose to a given blood trough target using the following 

equation: 

NewSRLdose 

Predicted SRL Cone. = Old SRL Cone. X --------------­

Old SRLdose 

SRL concentration measurement 

Whole blood sirolimus concentrations were measured using a validated HPLC method, 

already described in Chapter 4 [122]. 

Statistical analyses 

Dose-normalized SRL trough values were compared between different groups 

according to different immunosuppressive regimens by ANOV A. Bonferroni t-tests of 

difference between means were performed when ANOV A showed a significant 

difference (p<O.05). 

Agreement between blood SRL concentrations measured and predicted with the above 

mentioned equation was assessed using a linear regression analysis. In addition, the 

Bland and Altman approach [99], where the percentage difference [100] is plotted 

against the mean SRL value, was used. We considered acceptable values within 1 

standard deviation (SO) of the difference. 
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Results 

Concomitant immunosuppressive therapy and SRI levels 

In patients given CsA or TRL as a part of their immunosuppressive therapy. mean SRL 

dose as well as trough levels were lower than in those recei\ing ~1~IF but not 

calcineurin inhibitors (Table 21). Normalization of SRL trough level to dru~ dose, 

however, resulted in a significantly higher trough values in patients on Cs.-\, than in 

those treated with TRL (p<O.05) or MMF (p<O.O 1). 

Since some patients were also given steroids, we further characterize the potential 

additional effects of corticosteroids on SRL trough levels by comparing dual or triple 

immunosuppressive regimens with or \\ithout steroids. As sho~ in Table 22, the 

addition of steroids to CsA- but not to TRL-based immunosuppressive regimen 

significantly lowered the dose-normalized SRL trough levels as compared to the dual 

regimen without steroids (p<O.OI). A similar trend was found for ~t\tF-based 

immunosuppression, in which steroids resulted in numerically lower normalized SRL 

trough levels than steroid-free patients. 

Considering the impact of MMF on SRL blood concentration, normalized SRL trough 

levels were lower with (2.91+1.52 ng/mL/mg SRL; p<O.05) than without \t\tF 

(4.15+2.23 ng/mL/mg SRL) added to a dual regimen of SRUCsA. ~Ioreover. 

combining MMF with SRL resulted in a significant reduction in dose-normalized SRL 

trough levels (3.26+ 1.86 ng/mL/mg SRL) compared with the dual Cs.\-SRL regimen 

(p<O.05). When dual SRL-based regimens were compared, dose-nonnJlized SRI. 

trough levels were significantly higher with CsA (p<O.05) than TRL and \ t\ 1F but not 

steroids. 
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Distribution of SRL trough levels with- or without CsA 

Blood SRL trough concentrations measured by HPLC ranged from 1.0 to 46.4 nglmL. 

To evaluate the agreement of SRL trough levels with current regulatory guideline 

ranges - according to whether patients were given or not CsA - SRL concentrations 

were divided based on samples from patients with or without CsA as a part of their 

immunosuppressive regimen. As shown in Figure 25, 71.2% of SRL trough levels from 

. patients receiving the drug in combination with CsA fell in the proposed therapeutic 

range of 5-15 nglmL. Among these samples,. 72% were between 5-10 nglmL. 

Conversely, only 36.7% patients without CsA fell in the proposed SRL trough range 

(10-20 nglmL), while the majority of samples (75.0%) were in the range of5-15 nglmL. 

Modelling SRL dose according to drug levels 

In 166 patients who did not change SRL dose and concomitant immunosuppressive 

therapy during consecutive visits (503 determinations), the intrapatient and interpatient 

variability of SRL trough levels, defined by the mean coefficient of variation, were 19% 

and 47%, respectively (Table 23). These parameters were significantly affected by the 

time post-surgery, with the first week after transplantation associated with the greatest 

intra- and interpatient variability (Table 23). 

To provide an algorithm that would help in choosing the appropriate SRL dose and 

ultimately limiting the drug trough level variability, a simple dose-adjustment fonnula 

recently proposed for CsA monitoring [124] was tested. To this purpose we used data 

from 82 patients who underwent 186 modifications of SRL dose, and correlated the 

measured and predicted SRL trough levels. As shown in Figure 26, a significant 

correlation was found between SRL concentrations measured after drug dose change 

and those predicted with the proposed fonnula. The mean percentage error of prediction 

was 4.1 + 34%, with 71 % of estimations within the threshold acceptable error of ~ 300/0. 
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This arbitrary value results from the sum of the mean intrapatient variability found in 

patients who did not undergo to SRL dose change (20%), and the performance of the 

method used to assess SRL levels (an imprecision and accuracy of nearly 10%). To 

overcome the limitation of the arbitrary estimate of this threshold in error, a more 

conservative approach [99], that defines as acceptable 1 SD of the mean in the 

percentage difference of SRL values [100], was considered. As shown in Figure 27, 

73% of predicted SRL values fell in the proposed range. 
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Discussion 

In this study we found that in kidney transplantation the degree of patient exposure to 

SRL is not only influenced by drug dosing, but also by the concomitant 

immunosuppressive regimen. Concomitant administration of SRL and CsA was 

associated with higher dose-normalized SRL blood trough levels than those measured 

under TRL- or MMF -based regimens. These findings indicate potential 

phannacokinetic interaction between different immunosuppressants. They confirmed 

drug interactions previously reported in animal models [125-127], and in humans [128], 

in which CsA was found to significantly increase SRL blood levels. 

Different mechanisms may underlay this drug interaction. CsA and SRL share common 

transport and metabolic pathways, thus, both drugs may compete for the binding to P 

glycoprotein and for the metabolism by intestinal and hepatic CYP3A4 enzyme [129]. 

Because the molar quantity of CsA in a typical daily dose far exceeds that of SRL (> 1 0 

times), it might be expected that CsA preferentially interacts with CYP3A4 and thus 

inhibits SRL metabolism [35]. In addition, CsA acts not only as substrate but also as 

inhibitor of CYP3A4 [130]. Both these mechanisms explain the high normalized SRL 

trough levels we found when the drug was given as part of a CsA based 

immunosuppressive regimen. Conversely, TRL is only a substrate but not an inhibitor 

ofCYP3A4 [130]. Moreover, therapeutic blood concentrations ofTRL are in the molar 

quantity close to those of SRL. This implies that one molecule of TRL may compete 

with one molecule of SRL for CYP3A4. Thus, the likelihood of TRL to interact with 

this enzyme is similar to that of SRL, but far lower than that of esA. This ultimately 

may explain why the influence of TRL on SRL metabolism, if any, is less evident This 

is further supported by studies in liver and kidney-pancreas transplant recipients 

showing that neither pharmacokinetic profiles of SRL nor those of TRL were altered by 
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simultaneous administration of the two drugs [131]. Similarly, Ciancio et al have 

recently shown that dose-nonna1i:red SRL trough levels, expressed as bioavailability 

index, were significantly higher in patients receiving CsA, than in those given TRL 

[128]. 

Intestinal CYP3A4-mediated drug metabolism, P-gp expression, and cell membrane 

permeability are factors that most likely affect the bioavailability of SRL, CsA and 

. TRL. It is therefore possible that the drugs interact not only at hepatic level but also at 

the small intestinal level where drug absorption occurs. Experimental studies in rats 

have indeed shown marked pharmacokinetic interactions when SRL and CsA were 

administered simultaneously by gavage but not via continuous intravenous infusion, 

suggesting that the gastrointestinal surface may be an important site of drug interaction 

[127]. Moreover, in healthy volunteers given a single oral dose of SRL the rate and 

extent of SRL absorption and exposure were significantly affected not only after 

simultaneous but also after staggered drug administration with Neoral [132]. This was 

also true in kidney transplant recipients [133]. The finding that in our patients - who 

were given SRL dose 4 hours after CsA morning dose - SRL trough levels were still 

affected by CsA administration, confirm previous observations and implies that the 

interaction between the two drugs occurs not only in the liver but, at least in part, at the 

gastrointestina1level. 

At variance with CsA, co-administration of MMF resulted in a significant reduction of 

dose-normalized SRL trough levels. Indirect evidence of mutual pharmacokioetic 

interaction between MMF and SRL is available in transplant patients. A multicenter 

clinical trial [96] has shown that, despite low MMF dose employ~ patients treated 

with MMF and SRL have MP A (the active compound of the prodrug MMF) trough 

levels significantly higher than in patients treated with a ca1cineurin-inhibitor and 

nonnal MMF dose. Similarly, others have found in renal transplant recipients that MMF 
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may be given at lower dose than conventional when used in association with SRL in 

renal transplant recipients [134]. Both these studies provide clear evidence that SRL 

significantly affect MP A pharmacokinetics. Conversely, we found that c0-

administration of MMF and SRL resulted in a significant reduction of dose-normalized 

SRL trough levels. The mechanisms of MMF-SRL interaction, however, remain ill 

defined. The possibility exists that MP A, by affecting cytokine production [135], may 

. induce the expression of P glycoprotein and/or CYP3A4, resulting in a significant 

reduction in dose-normalized SRL trough levels. Alternatively, but not mutually 

exclusive, MP A and SRL may interact at metabolic level. This is supported by the fact 

that a phase I metabolite of MP A produced by CYP3A4/S (the same enzyme involved 

in SRL metabolism) has been recently identified [136], although in the past MPA was 

thought to be metabolized exclusively by phase II reactions. 

Here we also documented that even steroids influence SRL trough concentration. So far, 

available data on the effects of steroids on SRL patient exposure are conflicting, with 

some studies [137] but not others [138] showing pharmacokinetic interactions between 

SRL and prednisolone. In vitro and in vivo evidence show that glucocorticoids increase 

the expression and activity of CYP3A4 [139,140]. These findings raise the possibility 

that steroids activate pathways of SRL metabolism, eventually leading to a lower 

exposure than expected to SRL. This was indeed what we found in the present study. 

The addition of steroids to a dual therapy regimen of CsA and SRL resulted in a 

significant reduction in dose-normalized SRL trough levels; the same trend was 

observed when this class of drugs was associated with MMF and SRL. Conversely, the 

combination of steroids with TRL and SRL, did not result in a significant reduction in 

dose-normalized SRL concentrations. Several confounding factors may have, however, 

influenced the latter observation. Indeed, it has been recently shown that steroids 

influence TRL pharmacokinetics [141], suggesting a complex scenario of interactions 
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between TRL, steroids and possibly SRL. Moreover, our patients on triple therapy with 

steroids, TRL and SRL had higher degree of renal dysfunction (measured as serum 

creatinine levels) than those given only TRL and SRL, which could have resulted in 

SRL accumulation and higher than expected SRL blood levels. The accumulation of 

SRL due to renal dysfunction may have ultimately masked the possible trend to lower 

SRL levels secondary to TRLISRL pharmacokinetic interaction. 

. We then investigated whether the distribution of SRL trough levels in patients given the 

drug with or without CsA, meets the registration guidelines for SRL target blood ranges 

[35,40,123,142]. This was feasible since our samples did belong from different 

Transplant Centres, each with a given drug combination and SRL blood target protocol 

for routine drug monitoring. The recommended therapeutic window for SRL trough 

levels, when the drug is given concomitantly with a calcineurin inhibitor, is 5-15 ng/mL 

[35,40]. More than 70% of the samples assayed in our study fell within this range, 

although most of them were in the lower 5 to 10 ng/ml window. Two double blind 

randomized clinical trials [123,142] have recently shown that CsA can be safely 

discontinued three months after kidney transplantation, provided that SRL dose is 

increased to target blood trough levels of 20 to 30 ng/mL (if measured by 

immunoassay) [123] or of 10 to 20 nglmL (if assayed by HPLC) [142]. Such difference 

in the target range relates to the fact that the immunoassay gives cross-reaction with 

SRL metabolites resulting in a significant overestimation [143]. Here we showed by 

HPLC that most of patients who 'per protocol' discontinued esA had SRL trough levels 

lower than the recommend blood window of 10 to 20 ng/mL or more close to the 

expected 5 to 15 ng/mL range for triple therapy including esA. These findings 

underline the tendency of most transplant physicians to underdosing SRL in the dual 

immunosuppressive regimen of SRL and steroid, when esA has been withdrawn from 

the initial triple therapy. While this strategy may still be safe in respect to the risk of 
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acute rejection and/or on long-term graft outcome, formal data derived from ad hoc 

designed study are not yet available. Therefore, they should go forward warily in 

adopting this SRL regimen without a clear rationale. 

As previously reported [144], SRL levels exhibited a great intra-patient variation that 

further supports the need of therapeutic drug monitoring for this novel 

immunosuppressant. A correct drug monitoring approach should rely on reliable 

methods to assess drug level and on adequate tools to calculate the drug dose required to 

obtain a given drug level. Here we described and provided evidence of reliability of a 

prediction equation to calculate the new SRL dose required to target a given therapeutic 

range, when adjustment of SRL dosing is needed to meet clinical requirements. To our 

knowledge, this is the first attempt to provide such a tool for the improvement of SRL 

monitoring in transplant patients. 

The present study has certainly some shortcomings. This is a retrospective analysis of 

the available data of SRL trough levels provided by different transplant Units. They, 

however, did not include doses and levels of the other immunosuppressive agents co­

administered with SRL. With this limitation, it should be pointed out that so far data on 

the effects of currently used immunosuppressive agents on SRL trough levels are 

scanty. This is the first demonstration that not only esA and TRL, but also MMF and 

steroids may affect SRL blood levels in kidney transplant patients. 

An additional shortcoming is that the apparent concentration of the drug measured in 

the blood, as in our study, may not accurately reflect the drug level in the lymphoid 

organs and in the graft. Alternative approaches have been recently proposed to tailor the 

best immunosuppressive regimen. For instance, pharmacodynamic monitoring involves 

measurement of the biological effect of the drug at its target site [15], and 

phannacogenomics, a genome-wide approach aimed at identifying the nenvork of genes 

that govern an individual's response to drug therapy [41]. These novel strategies hold 
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many promises for the future. However, they will never replace traditional therapeutic 

drug monitoring completely but, rather, act as complementary fields resulting in a better 

patient management. 

Prospectively designed multicenter clinical trials are now needed to assess whether SRL 

pharmacokinetic changes related to drug-drug interaction would translate to a different 

risk of rejection or graft outcome. 
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Legend to Figures 

Figure 25. Frequency distribution of the dose-nonnalized SRL trough le"els in patients 

treated with SRL and with- (panel A), or without esA (panel B). Shaded areJS represent 

SRL therapeutic windows, according to the immunosuppressive therapy (panel A: 5-15 

ng/mL; panel B: 10-20 ng/mL). 

Figure 26. Linear regression plot between SRL levels measured with a HPLC method 

and predicted with a proposed fonnula in 82 patients who underwent 186 modifications 

ofSRL dose. 

Figure 27. Bland and Altman plot for measured and predicted SRL concentrations. The 

percentage difference from the measured SRL concentration is plotted against the mean 

SRL value. The mean percent difference is displayed by a bold solid line. Dotted lines 

represent + 1 SO of difference. 
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Table 21. SRL blood trough levels according to the immunosuppressive regimens 

Therapy 

SRL + CsA (n=400) 

SRL + TRL (n= 128) 

SRI. + MMF (n=J02) 

• p<-O.O 1 vs SRLt MMF 
o p<O.05 vs SRL + TRL 

SRL Dose 

(mglday) 

2.7 + 1.4 

3.1+1.5 

4.3 + 1.6 

SRLCt 

(nglmL) 

8.58 + 4.38 

8.09 + 4.44 

10.57 + 4.93 

C t / Dose 

(nglmUmg SRL) 

3.77 + 2.35 • 0 

3.24 -+- 2.16 

2.84..t 1.81 



Table 22. SRL blood trough levels according to different immunosuppressive regimens 

Therapy SRLDose SRLCt Ctl Dose S. Creal 
(mg/day) (ng/mL) (ng/mUmg SRL) (mg/dL) 

SRL + CsA + Ster (n=221) 2.7 + 1.7 7.92 + 4.07 3.53 + 2.45 2.21 + 1.59 

SRL + CsA (n= 165) 2.6 + 1.0 9.58 + 4.66 4.15 + 2.23 a,b 2.03 + 1.55 

SRL + CsA+ MMF (n=14) 2.8 + 1.3 7.21 + 3.48 2.91 + 1.52 2.16 + 0.80 

SRL + TRL + Ster (n=98) 3.1+1.4 8.15 + 4.34 3.26 + 2.22 2.64 + 1.08 
0 

SRL + TRL (n=30) 3.1+1.8 7.89 + 4.84 3.18 + 1.97 2.00 + 0.69 

SRL + MMF + Stcr (n=57) 4.5+1.1 10.54 + 5.38 2.52 + 1.73 
c,d 

2.32 + 1.09 

SRL t tv1MF (n-45) 3.9 +2.0 10.60 + 4.35 3.26 + 1.86 2.16 + 1.20 

SI{L + Stcr (nc-:5Y) 3.1 + 2.0 8.46 + 3.77 3.85 + 2.91 2.77+1.19· 

• p' () 01 vs SRLtCsAtStcr. SR1.tTRLtSICl ~ p<005 vs SRUTRL. SRUMMF, and SRUCsAtMMF • p<O.OI V5 SRUCsA 

• p' 001 vs SRLt C!;A t Stcr. SRLtCsA. and SRLtStcr 4 p<O.05 vs SRL-tTRL+Stcr 0 p<005 V5 SRLtCsA 



Table 23. Iotra- and ioterpatieot variability of SRL blood trough levels according to time post-surgery 

Time post-surgery 

1 week (0-19) 

1 month (0=27) 

3 moots (n=21) 

6 months (0=29) 

> (, months (n=70) 

Ovt:rall (n~166) 

SRLDose 
(mglday) 

2.6 + 1.0 

2.9 ± 1.2 

2.9 + l.2 

2.6 + l.6 

2.9 + 1.6 

2.9 + 1.4 

SRLC1 
(nglmL) 

7.2+4.5 

7.5 +3.9 

8.2 + 3.9 

7.9+3.9 

8.2 + 3.7 

8.0 + 3.8 

Intrapatient 
CVO/o 

27%* 

160/0 

15% 

17% 

18% 

19% 

• p < 0.01 vs month 3; p < 0.05 vs months 1,6 and> 6 0 p<O.05 vs other groups 

Interpatient 
CVO/o 

63%0 

52% 

48% 

49% 

45% 

47% 



Part IV 

PHARMACOGENETIC-BASED THERAPEUTIC 

DRUG MONITORING: PRELIMINARY 

EXPERIENCE WITH CYCLOSPORINE 
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Immunosuppressive drugs are often associated with high risk of serious adverse events. 

including infections and cancer [145]. The narrow therapeutic index unique to each 

patient, as well as variable absorption, distribution and elimination properties give 

reason for individual response and risk of side effects related to the treatment with 

immunosuppressants. Therefore, periodic monitoring of plasmalblood concentrations of 

drugs is required. The goal is to maintain levels of immunosuppressive drugs within 

. their therapeutic ranges, as variations outside these limits are often associated with 

adverse clinical outcomes or under treatment [64]. Moreover, as emphasized in the 

previous chapters, pharmacokinetic-based therapeutic drug monitoring may be helpful 

also to study and eventually predict potential drug-to-drug interactions. It should be 

pointed out, however that, although the extensive literature on immunosuppressive drug 

monitoring to guide therapy [17,64], there is still controversy amongst the effective 

impact of a concentration-controlled based immunosuppressive regimen [14], since in a 

significant proportion of patients acute rejection or drug-related toxicity occur despite 

drug levels fell within the therapeutic range [146]. Therefore, we are in need of novel 

strategies for a better management of transplant recipients, which could support the 

conventional TDM. 

By examining the genetic factors that contribute to variability in drug response in 

individual patients, pharmacogenetics could provide a promising and complementary 

tool in this field. The field of pharmacogenetics could not have evolved without the 

development of new technological resources that allow scientists to access and process 

the enormous amount of information embedded in the human genome. Actually, the 

most diffuse technological advances are focused on single-nucleotide polymorphisms 

(SNPs), which form the backbone of molecular genetics technology. SNPs are common 

variations in the structure of a gene and consist of one-nucleotide alteration in the 

sequence of a gene [147]. It has been estimated that there are 30 millions of SNPs in the 
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human genome, accounting for 90% of all inter-individual variations. These genetic 

variations can result in altered catalytic activity of enzymes, with gain or loss of 

function by gene replication, gene deletion or gene miss-splicing. Certain SNP's will 

also exert a more indirect influence by altering genes or promoter regions that determine 

transcription and translation of the gene of interest. Thus, SNPs offer a potentially 

useful tool for pharm.acogenomics to identify genetic markers that might be predictive 

. of toxicity, side effects or lack of response to a drug. However, it should be pointed out 

that this approach is expected to be clinically relevant for those SNP's that are strongly 

linked to a corresponding phenotype [148], whereas those characterized by a bell­

shaped distribution [149] and less evident phenotypes might have a limited clinical 

impact. These promising technologies could be useful tools to address the main 

challenge of pharmacogenetics: to predict which individual will benefit most from 

which drug. This task applies for all drugs but is of particular importance for those 

characterized by a NTI, such as the immunosuppressive agents that represent the ideal 

candidates for phannacogenomic approaches. 

Today, the key-point is to understand whether clinical pharmacogenetics is already 

applicable today to organ transplantation. Early observations focused simply on drug 

metabolism [150,151]. However, there is also great interest in the full spectrum of drug 

disposition, including absorption, distribution and pharmacological targets. One of the 

potential advantages of this type of approach lies on the common metabolic pathways 

for several immunosuppressive agents. CsA, TRL, SRL and the novel rapamycin­

analogue everolimus are all mainly transported and metabolized by the cytochrome 3A­

P-glycoprotein system [24]. Thus, the study of patient's genotype can provide predictive 

value for multiple drug therapy as in transplant patients. In particular, P-glycoprotein, a 

member of the A TP-binding cassette family encoded by the multidrug resistant gene 

(MDR 1) regulates the cellular efflux of several substrates, including the 
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immunosuppressive drugs [152]. Several SNP have been identitied for ~1DRI gene. all 

potentially important in predicting the efficacy and/or toxicity of these drugs. The 

presence of variants in genes encoding for drug targets or other genetic polymorphisrns 

with indirect effects on drug response are less known. Thus, they represent an exciting 

challenge for the future. 

Following there are preliminary results of a study aimed at inyestigating whether the 

identification of SNPs in the MDRI gene could be used as useful tool to predict drug 

exposure in organ transplant recipients. Chapter 11 focused on CsA. However. it can be 

reasonably speculated that the same approach could be applied in the near future also 

for other immunosuppressants [41]. 
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Chapter 11 

MDRI POL YMORPHISMS IN EXON 26, BUT NOT 12, 

INFLUENCES INDIVIDUAL CYCLOSPORINE LEVELS IN 

KIDNEY TRANSPLANT RECIPIENTS 
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Introduction 

CsA is one of the main immunosuppressant currently used to prevent graft rejectio~ 

which has significantly contributed to improve allograft and patient survival [153]. This 

drug is, however, characterized by a narrow therapeutic index, an unpredictable 

absorption profile, and important side effects [11,154]. Given the appreciable inter­

individual variation in blood CsA concentration despite the same drug dosage, major 

efforts have been devoted in the past to individualize CsA dose to maximize the efficacy 

and minimize toxicity of the treatment. To this purpose, several approaches have been 

proposed to monitor daily CsA exposure as useful tools to tailor drug dosage for each 

patient [20]. In particular, two blood sampling points, at time zero (CO) or at 2 hours 

after CsA dosing (C2) are currently used in the clinical practice [25]. However, this 

pharmacokinetic-based therapeutic drug monitoring is not without pitfalls. Indeed, some 

Authors failed to document a significant association between CsA pharmacokinetic 

parameters and patient's clinical outcome [14]. Therefore, complementary strategies 

have been advocated. 

The advent of the genomic era has provided new insights into the molecular basis of 

human genetic disorders, and pharmacogenetics - a science that studies how the 

genome may affect the full spectrum of drug disposition - is undoubtedly a potential 

source of additional information, as complementary field to the traditional 

pharmacokinetics. In the past few years, large number of studies has shown that genetic 

polymorphisms in drug-metabolizing enzymes and transporters may predict drug 

efficacy as well as drug toxicity [23,41]. 

CsA disposition is mainly influenced by the P-glycoprotein (p-gp), the product of the 

MDRI gene [155]. This protein is an effiux pump, which removes lipophilic drugs, like 

CsA, from the intracellular space. P-gp is mainly found in the hepatocytes, kidney 
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proximal tubular cells, and the brush border surface of enterOC)1eS [155]. The function 

and the anatomic localization of P-gp suggest that this transporter acts as a protective 

barrier to keep toxins (drugs or xenobiotics) out of the body by excreting thes~ 

compounds into bile, urine, and the intestinal lumen. To date. about 30 S~Ps hav~ been 

reported for the MDRI gene [155]. However, only SNPs in exons 12.21 and 26 were 

associated with lower P-gp expression/activity. SNP in exon 12 is silent. whereas S:\Ps 

at exon 21 result in two distinct amino acid changes, namely, Ala863Ser (G2677T) and 

Ala893Thr (G2677 A). The silent SNP in exon 26 (C3435T) was the first variant to be 

associated with altered protein expression [156]. More recently, also SNPs in exons 12 

and 21 were found to be associated with altered drug disposition [157,158]. 

Genetic polymorphisms of MDRI gene in transplant recipients may therefore result in 

significant reduction in P-gp expression, eventually increasing the exposure of patients 

to immunosuppressants, such as CsA, with potential clinical consequences in terms of 

efficacy and adverse effects. So far, only few studies have investigated the impact of 

MDRI SNPs on the bioavailability of immunosuppressive agents. Whereas studies 

focusing on TRL have consistently shown that genetic polymorphisms of the MDRI 

gene in exons 12,21 and 26 can predict drug bioavailability and toxicity [159]. those 

dealing with CsA led to contradictory results [41,159], possibly due to the limited 

number of patients studied or inadequate pharmacokinetic monitoring. 

Therefore, the present study was designed to assess whether single nucleotide 

polymorphisms in MDRI gene (exon 12 CI236T and exon 26 (3435T), alone or in 

combination (as haplotypes and genotypes). were associated with variable Cs.\ levels 

(at week 1 and at month 1, 3 and 6 after transplantation) in a large cohort of 120 kidney 

transplant recipients enrolled in the \IYcophenolate Steroid-Sparing (\1Y.S.S.) Tri~u 

[38]. 
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Material and ~Iethods 

Patients 

120 Caucasian patients ~17 years old), enrolled in the MY.S.S. Trial - a prospective, 

randomized, multicenter, European study of first cadaver renal transplant recipients 

randomly allocated to receive azathioprine or mycophenolate mofetil in addition to the 

Neoral microemulsion fonnulation of CsA and steroids for the flIst six months post­

surgery (for a detailed description of the study see reference [38]) - entered this 

phannacogenetic study. 

CsA was initially infused intravenously (on average 4 mglkg daily) from the day of 

surgery (day 0) to day 3 and then, given orally twice a day (Neoral ~ovartis, Basel. 

CH). CsA dose was adjusted to maintain blood drug trough levels within 250-440 

ng/mL from day 0 to 7, and within 200-300 ng/mL from day 8 to the end of the first 

month. Thereafter, CsA trough concentrations were targeted to 150-250 ng/mL up to 6 

months postoperatively. Patients were randomly assigned to receive treatment with 

mycophenolate mofetil (l g twice a day), or azathioprine (100 or 150 mg/day according 

to body weight < or > of 75 Kg). Corticosteroid dosing early post-transplant was 

dictated by the participating centre's practice, whereas all patients received 16 mg/day 

of methylprednisolone from day 12 to 60 post-transplant tapered to 8 mg/day ther~after. 

None of the patients was given medications known to interfere with P-gp function 

(inducers or inhibitors). A control group of 100 healthy volunteers was also considered 

to assess the frequency distribution of ~IDRI S~Ps (ex on 12 and 26), All study 

participants (kidney transplant recipients and controls) provided \\Titten informed 

consent for genetic testing. 
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CsA pharmacolcinetic parameters 

Whole blood samples were collected immediately before (CO) and at 2 hours after CsA 

administration (C2) daily within the first week after surgery, and every two weeks until 

the end of month 6 post-transplant. To limit intra-individual variability of CsA values, 

blood drug concentration was calculated as the mean of three replicate measurements by 

HPLC, using a validated method described in Chapter 5. Each CsA concentration was 

. adjusted for the corresponding 12-h drug dose, expressed as mg/kg body weight CsA 

exposure, defined by the area under the time-concentration curve (AVCO-12), was 

estimated using the two-point equation proposed by Keown et a1 [160], as follows: 

AVC = 12.34 x (CO) + 2.48 x (C2) + 441.42. The apparent clearance of CsA was 

calculated as the ratio between CsA dose and CsA AVC. 

DNA collection and isolation 

Blood from kidney transplant recipients and healthy volunteers was drawn from an 

anticubital vein into vacutainer containing K3EDTA. One vacutainer was collected for 

each patient (4 mL of whole blood), and the samples were placed at -20°C. For 

genotype determination, genomic DNA was isolated from EDTA-anticoagulated whole 

blood using the Nucleon BACC2 kit (Amersham, Biosciences, Buckinghamshire, UK). 

According to the Manufacturer instruction, in order to minimise damage to DNA in 

collected blood samples, blood should be extracted within 8-12 months of collection. 

All the samples used for the present study were processed within one month of 

collection. V sing as aseptic procedure we added 4 times the volume of reagent A to the 

blood sample, then we rotary mixed 4 minutes at room temperature and centrifuged at 

3000 RPM for 8 min. The supernatant was discarded and to the pellet we added 2 mL of 

reagent B. We vortexed briefly to resuspend the pellet and transferred the suspension to 

a 15 mL screw capped propropylene centrifuge tube. Following resuspension and 
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transfer to a clean tube we added 3 J.1L of a to J.1g1mL RNase solution and incubated the 

tube in a water bath at 37°C for 30 minutes. Subsequently we added 500 J.1L of sodium 

perchlorate solution (for the deproteinisation), mixed by hand, inverting the capped tube 

at least 7 times. For DNA extraction 2 mL of chloroform was added and each sample 

was mixed by hand, inverting the capped tube at least 7 times. Without remixing the 

phases we added 300 J.1L of Nucleon resin and centrifuged at 2800 RPM for 5 min. For 

DNA precipitation, we transferred the upper phase (holding the tube vertically, without 

disturbing the brown Nucleon resin layer) to a clean tube of minimum volume 7.5 mL 

and added 2 volumes of cold absolute ethanol. The tube was mixed by inversion until 

the DNA precipitate appeared. For DNA washing, we centrifuged at top speed for 5 min 

to pellet the DNA and discarded the supernatant. We added 2 mL cold 70% (v/v) 

ethanol, mixed several time by inversion, re-centrifuged and discarded again the 

supernatant (this step can be repeated if necessary). Finally, we aired dry the pellet for 

10 min (ensuring that all the ethanol has been removed), re-dissolved DNA in an 

appropriate volume of water or TE buffer (TRISIHCI and EDT A). The DNA should re­

dissolve within 2 h when using a rotary mixer. 

Genotyping 

MORt exon 12 (C1236n and exon 26 (C3435n SNPs were considered in the present 

study. The genotypes ofMORl were identified by a Polymerase Chain Reaction-Single 

Stranded Conformational Polymorphism analysis (PCR-SSCP). This analysis is based 

on two steps. First the DNA sequence of interest is PCR-amplified, and second, the 

amplified DNA is heat-denaturated and size-fractionated by native polyacrylamide gel 

electrophoresis (native PAGE). After heat denaturation the mobility of single-stranded 

DNA fragments is size-and sequence-dependent with single-stranded DNA molecules 

adopting secondary structure conformations by intramolecular base pairing. For a given 
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double-stranded fragment there will be two bands identified following SCCP, one 

corresponding to each of the two original DNA strands. If the two fragments differ by 

as little as single base pair the denaturated strands are likely to adopt different 

conformations and therefore to be distinguishable following native PAGE. The 

difference is identified by a shift in mobility of one or both of the mutant bands relative 

to the wild-type control strands. The migration of single-stranded DNA and the 

conformational changes are influenced by the percentage of acrylamide, the 

electrophoresis temperature and the ionic strength of the electrophoresis buffer. 

Therefore, before to analyse our samples, I worked to identify the appropriate and 

reproducible conditions for each of the given fragments from exon 12 and 26. 

peR-seep 

PCR is a process that can amplify minute amounts of nucleic acid, thus generating 

ample material for further analysis. Subsequently PCR products are analyzed by gel 

electrophoresis for size separation. Scan for sequence alterations were perfonned using 

SCCP and confirmed by direct sequencing. Conventional PCR thennocycling is based 

on three steps: denaturation (separation of the complementary strands), annealing (the 

oligonucleotide primers hybridize to the template) and extension (polymerization of the 

fragment of interest), as three separate reactions that occur after reaching equilibrium at 

defined temperatures. 

For the PCR we need two oligonucleotide primers for each of the exons, which act as 

sites for initiation of the replication, and the DNA polymerase enzyme, for the 

amplification of the region of the template DNA that will be copied. 

The sense primer: 5' -AGTCAGTICCTATATCCTGTGTCTGTGA-3' and antisense: 

5'-GCAGTCACATIGCACATCTTICT-3' for exon 12 as well as sense primer: 5'-

GACTGCAGCA TIGCTGAGAACA-3' and antisense: 5' -
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. AATITCTCITCACITCTGGGAGACC-3' for exon 26 (Sigma-Aldrich, UK) were 

designed using the Gene-Jockey Software. For DNA polymerization we used AmpliTaq 

Gold (PE Applied Biosystems, Foster City, CA, USA), which is a thermostable D~A 

polymerase. Upon receipt, the AmpliTaq Gold and reagents (GeneAmp PCR Buffer and 

MgCh solutions) were stored at -20°C. 

PCR reaction was performed in a 20 J.1L volume, containing 100 ng DNA, 15 pmol of 

. each primer, 16 nmol deoxynucleoside triphosphates (dNTP), 2.25 mmollL magnesium 

chloride, 1 U AmpliTaq Gold polymerase. The PCR thermal cycling conditions for 

exon 12 and 26 consisted of a 10 min denaturation at 94°C, then 35 PCR cycles of 94°C 

for 45 s, 55°C for 30 s, and 72°C for 45 s, followed by a 10 min extension at 72°C. 

Reaction products were mixed with 20 J.1L of loading buffer, denatured at 65°C for 10 

min and electrophoresed onto non-denaturing 6% (62/1 acryllbis) acrylamide gel in 

TAE buffer (PH 6.8) at 35 Watt for 3-5 h at 4°C. SCCP bands were visualized on the 

gels by silver staining. 

Direct sequencing (ABI 377 sequencer, 8000CEQ Beckman Coulter, Fullerton, USA) 

was used to confirm the results in three individuals (one homozygous, one 

heterozygous, and one homozygous mutated on SCCP) for each of the two exons, used 

as controls for genotyping. The different genotypes for C1236T and C3435T SNPs were 

classified as follows: wild type (C/C), heterozygous (Cff) and homozygous for the 

allelic variant (T ff). 

Haplotype and combined genotype analysis 

Haplotype and combined genotype analysis included the SNPs 1236C>T and 3435C>T. 

The term haplotype was originally referred to indicate set of genes that are closely 

linked, however, it has been also recently used to consider different S~Ps allocated in 

the same gene [161]. Here, haplotype analysis included the S~Ps C1236T and C3435T. 
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Each genotype was assigned a haplotype pair. With the assumption th..lt each haplotype 

is predominantly inherited, comparisons were perfonned between carriers and 

noncarriers of a given haplotype. For haplotype coding "1" is referred as "identical to 

the reference sequence (1236C and 3435C) and "2~' as "different from the reference 

sequence". The frrst digit refers to position 1236, the second digit refers to position 

3435. For genotype coding "0" refers as "homozygous identical to the refer~nce 

sequence (1236C, 3535C), "1" as "heterozygous" and "2" as "homozygous different 

from the reference sequence". Different allelic combinations of both variants of S~Ps 

1236 and 3435 can result in four possible haplotypes and nine possible g~notypes. as 

shown in Table 24. 

Statistical Analysis 

For analysis of continuous pharmacologic variables, patient genotypes were used as 

categorical independent variables. The values of CsA pharmacokinetic parameters are 

expressed as the mean ± standard deviation (SD). Between-group comparisons for 

MDRI SNPs and genotypes were perfonned by one-way ANOVA using, as the 

multiple comparisons post-test, the Bonferroni test. P value less than 0.05 wa;; 

considered statistically significant. 
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Results 

Frequency of MDRI variants in renal transplant patients 

The genotype and allelic frequencies for ex on 12 and 26 are shown in Table 25. Of the 

120 kidney transplant recipients, 35% had the MDRI wild type genotype in exon 12 

(C/C), whereas 42% were heterozygous (Crn and 23% were homozygous for the 

polymorphic variant (Tff). The frequency of MDRI SNP in exon 26 (C3435T) was 

39.0% (C/C), 42% (Crn, and 19% (T/T). These frequencies were in agreement with 

those observed in a control population of healthy subjects (Table 25) and in the 

available literature [156,158,162]. 

Effect of MDRI SNPs on CsA pharmaco/dnetics 

We first examined the potential relationship between each MDRI SNP and CsA 

pharmacokinetic parameters. As shown in Table 26, there was no significant difference 

in dose-adjusted CsA levels among the different exon 12 genotypes (C1236T) both in 

the early phase (week 1) and in the stable phase (first month) post transplantation. 

Similarly, no difference was found at the end of month 3 and 6 post surgery. These 

results were confirmed also when patients carrying the wild-type exon 12 genotypes 

were compared with those bearing at least one mutant allele (C/C vs crr + Trr, data not 

shown). 

At variance, mean CsA Co and C2 concentration/dose ratio correlated with exon 26 

C3435T SNP (Table 27). Indeed, dose-adjusted CsA levels were significantly lower in 

patients with the wild-type genotype than in those carrying one or two mutants alleles at 

1, 3, and 6 months post transplantation (Table 27). This pattern was confinned also 

considering the AUCO-12 as surrogate marker of daily CsA exposure. 
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Since it has been previously shown that the T allele was associated with reduced P_gp 

activity [156], we also compared CsA pharmacokinetic parameters between wild-type 

subjects (C/C) and those with at least one mutant allele for exon 26 (Cff + TfI). At 

month 1 post surgery, dose-adjusted CsA Co and C2 levels were significantly lower in 

wild-type patients than in those carrying the mutant allele (CsA CO: 35 + 14 

ng/mL/mg/kg vs 46 + 15 nglmUmg/kg, p<O.OOI; CsA C2: 191 + 80 nglmUmglkg vs 

238 + 89 nglmL/mg/kg, p<0.001, Figure 28). The influence of exon 26 C3435T SNP 

was confrrmed also when CsA AUC and oral clearance (CL) were considered (CsA 

AUCO-12: 6193 + 1470 ng*hlmL vs 6874 + 1294 ng*hlmL, p=O.0121; CsA CL: 9.1 + 

5.3 mL/minlkg vs 7.6 + 4.7 mUminlkg, p=O.0125, Figure 29). 

Haplotype analysis 

We then examined by haplotype analysis whether the combined SNPs in exon 12 and 

26 were predictive of CsA exposure. Different allelic combinations of both variants of 

SNPs 1326 (exon 12) and 3435 (exon 26) resulted in nine possible genotypes and 4 

haplotypes (Table 24). All possible genotypes and haplotypes were detected in the study 

population. CsA pharmacokinetic parameters were compared between carriers of 

different SNP variants and different genotypes derived from haplotype pairs, as well as 

between carriers and noncarriers of each haplotype. As shown in Table 28, at week 1 

and month 1 post-transplant patients homozygous wild-types for both SNPs carrying the 

genotype 22 (171236, 173435) had comparable CsA levels to those with the genotype 

00 (CCI236, CC3435), homozygous for the variants in exons 12 and 26. Similarly, no 

significant differences were observed between genotype 01 (CCI236, CT3435) and 

genotype 21 (TI1236, CT3435), and between other genotypes. Only a patient carrying 

the 02 genotype (CCI236fIT3435) showed dose-adjusted CsA trough blood levels 2 to 

3-fold higher than with aU other genotypes, both at week 1 and at month I post-
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transplant Together these findings confirmed that SNPs in exon 12 were not predictive 

of CsA concentrations even when considered together with SNP in exon 26. No 

significant difference was observed between different haplotype carriers, suggesting that 

this analysis may be of poor clinical relevance for the prediction of CsA levels, at least 

when exons 12 and 26 are considered. 
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Discussion 

The present study shows that in 120 kidney transplant recipients CsA pharmacokinetic 

parameters significantly correlated with exon 26 (C3445n, but not with exon 12 

(CI236T) SNP of the MDRI gene. Patients carrying at least one variant allele of this 

gene had higher dose-adjusted CsA CO, C2 and AUC levels than wild-type subjects . 

. This effect was marginal in the first week post-transplant, but became highly significant 

in the more stable phase postoperatively, namely at months 1,3 and 6. 

P-glycoprotein (P-gp), the product of the MDRI gene, is an efflux transporter highly 

expressed in the enterocyte, and, to a lesser extent, in the liver, kidneys, brain, testis, 

muscle and adrenals [155]. Its absence or altered expression results in higher than 

normal absorption of a given drug from the intestine and its accumulation in different 

tissues, an effect of great relevance for narrow therapeutic index agents, such as CsA 

[41]. It has been previously shown that some SNPs in the MDRI gene affect P-gp 

expression/activity [156]. In particular, patients carrying at least one variant allele in 

exon 26 of the MDRI gene (C3435n had marked reduction in P-gp expression [156). 

Since this glycoprotein offers resistance to drug crossing from the enterocyte to the 

bloodstream, patients with impaired P-gp expression are at risk of being exposed to 

drug levels higher than expected for a given drug dose, as early documented for digoxin 

[156]. 

This could have been occurred in our patients who were given CsA as part of their 

immunosuppressive therapy initially as i. v. infusion and then orally from day 4 post­

surgery. This possibility is supported by the finding that MDRI SNP in exon 26 was 

significantly related to CsA levels only later on in a more stable phase, but not in the 

early post-transplant period. Early postoperatively, when the patients were receiving 

CsA intravenously, the contribution of MDRt to CsA exposure by the modulation of 
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intestinal drug absorption would be negligible. Moreover during the first few days of 

oral CsA administration, CsA concentrations might be influenced by environmental 

non-genetic factors, more than MDRI gene polymorpbisms, such as the normaJi71ltion 

of gastrointestinal motility, the level of graft function, and the pharmacokinetic 

interactions with co-administered drugs [17]. Only later, when gastrointestinal function 

normalizes, graft function stabilizes, and concomitant therapy is fixed, the variants in 

. MDRI gene become relevant in regulating patients' exposure to CsA by affecting P_gp 

expression/activity and eventually drug absorption. 

So far, only few studies have investigated the impact of MDRI SNPs on the 

bioavailability of CsA, and most of them with contradictory results. Early 

pharmacogenetic studies failed to document an association between MDRI ex on 26 

SNP and CsA phannacokinetic parameters in healthy volunteers [163], as well as in 

stable renal and heart transplant recipients [164-166]. However, in some of these studies 

a trend, although not significant, of higher CsA values in subjects carrying crr and Trr 

in exon 26 as compared with the ctC group was reported. Therefore, it can not be 

excluded that the low number of patients considered, weakness in study design and in 

pharmacokinetic parameters considered, may have biased the results. At variance with 

these studies, we have prospectively followed a large cohort of kidney transplant 

recipients, monitored immediately after surgery and in a more stable phase, considering 

both the traditional Co-based sampling time and the recently proposed C2-based 

monitoring, together with a predicted AUC, as surrogate marker of daily CsA exposure. 

Of note, to reduce intrapatient variability, CsA levels were calculated as the mean of 

three consecutive measurements and adjusted to the daily CsA dose. These approaches 

led us to limit the influence of potential confounding factors, and underline the role of 

MDRt exon 26 C3435T polymorphism as a major determinant of CsA concentrations. 

Our findings are in agreement with those recently observed in a small cohort of liver 
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transplant recipients given CsA as a part of the immunosuppressive regimen [167]. As 

further support to our results, different studies have documented a significant influence 

ofpolymorphisms of the MDRI gene on tacrolimus bioavailability [159]. Ind~ it has 

been found that SNPs in exon 21, and 26 were positive predictors of tacrolimus 

exposure and drug toxicity in liver [168], heart [169] and kidney [158] transplant 

recipients. As far as exon 26, these studies confirmed that patients carrying at least one 

T allele had dose-adjusted tacrolimus levels significantly higher than wild-types. 

In the past few years, it has been hypothesised that haplotypes, by considering more 

SNPs together, may provide more information than individual SNPs do. Studies in heart 

[27] and kidney [28] transplant recipients have shown that esA levels significantly 

correlated with the MDRI haplotype, suggesting that haplotypes, in addition to single 

SNP genotypes, could influence CsA disposition. Others [170,171], however, argued 

against this conclusion, showing that MDRI haplotypes did not affect esA 

phannacokinetics. In our study population four different haplotypes and nine different 

genotypes were found. Analysis that consider together SNPs from exon 12 and 26, 

found no statistical differences between carriers of different MDRI haplotypes as far as 

pharmacokinetic parameters. Nevertheless, among the 120 studied patients, one was 

homozygous CC for exon 12 and IT for ex on 26 (genotype 02). This patient had the 

highest mean dose-adjusted Co values at the end of first week and first month post-

surgery compared to other genotypes. Although we can not exclude that this observation 

could be biased by several confounding factors (i.e. gastrointestinal disorders, altered 

CsA metabolism, etc), this atypical pattern merits further investigations, as it might 

potentially affect CsA pharmacokinetics and ultimately clinical outcome. 

In conclusion, the present study has shown that patients carrying mutant alleles for ex on 

26, but not exon 12 ofMDRl gene, are exposed to higher esA levels compared to wild­

type subjects, with potential increased risk to experience drug-related toxicity. The 
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identification of variant MDRI alleles performed before transplantatio~ while patients 

are in the waiting list, could provide useful information to tailor esA dose as early as 

possible after transplantation, with the ultimate goal to improve efficacy, decrease 

toxicity and increase long term graft survival. 
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Legend to Figures 

Figure 28. Correlation between exon 26 SNP (C3435T) and dose-adjusted CsA levds 

(Co and C2) recorded in 120 kidney transplant recipients 1 month after surgery. The box 

plot showed CsA concentrations, clustered according to the allelic variation in ~vfDRl 

ex on 26 (pure wild-type versus patients with at least one mutant allele). 

Figure 29. Correlation between exon 26 SNP (C3435T), CsA AUCO-12 and CsA oral 

clearance recorded in 120 kidney transplant recipients 1 month after surgery. The box 

plot showed CsA phannacokinetic parameters. clustered according to the allelic 

variation in MDRI exon 26 (pure wild-type versus patients with at least one mutant 

allele). 
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Table 24 :Nine genotypes and four haplotypes ofMDRI derived from SNP C1236T (exon 12) and SNP C3435T 
(exon 26) 

Genotype 00 Genotype 01 Genotype 02 Genotype 10 Genotype 11 Genotype 12 Genotype 20 Genotype 21 Genotype 22 

Pos 1236 C C C C c C C T C T C T T T T T T T 

Pos 3435 C C C T T T C C C T T T C C C T T T 

Haplotype 1 1 1 1 11 12 12 12 11 21 11 22 12 22 21 21 21 22 22 22 

Ocnocypc codin&: 0, bomoz)'IOIII idcnlk:ll to the refcrcncc lCquaIQC (l236C, 343SC); I, bctcrozyaous; 2. homozygous different from"fcrcnce aequcooe. The first disit 
rdcn to poIilioa 1236,abc second digit to poIition 3435. HIpIotypc codina: I, idcatical to abc rcf.eraM:c JCqUCIICC (l236C, 343SC); 2, difrcrent &om "fi:RnCC 1Cquc:ncc. 

Tbc finI diJit rem 10 position 1236, the ICCODd disit to positioa 3435. for FKJlYpO 11 a second hlplotype pair (12121) is pouiblc, but hlplotypc pair 11122 II much 
more likely baed 011 prcyiouI bIpIoIypo frcqucncics. 



Table 25: Frequencies of the two SNPs on MDRt gene evaluated in renal transplant recipients and 
in healthy controls 

Exon 12 (C1236T) Exon 26 (C343ST) 

C/c CIT Tff C/c en Tff 

Patient genotype (0=120) 42 (35.0%) SO (41.7%) 28 (23.3%) 42 (3S'()OIo) 49 (40.8%) 29 (24.2%) 

Control genotype (n=I00) 30 (30.0-10) 44 (44.0-10) 26 (26.0-10) 31 (31.0-10) 51 (51.0010) 18 (18.0010) 



Table 26 :distribution of CsA phannacokinetic parameters in 120 kindey transplant recipients 
according to MDRI exon 12 genotype (CI236T) 

CsA pharmacoldnetic parameters MDRJ exon J 2 genotype 

JVeek 1 post-TX C/C crr rrr 

Mean Co (ng/mL) 252 + 87 253 + 75 265 + 114 

Mean C2 (ng/mL) 1139 + 352* 1404 + 455 1402 + 482 

Mean dose (mg/day) 511 + 130 486+110 501 + 150 

Mean Coldoselbw (nglmL/mglkg) 32 + 13 35 + 13 36 + 14 

Mean Cidoselbw (nglmUmglkg) 189 + 70 196 + 70 186 + 80 

Mean AUC (ng*hlm/,) 6901 + 1423 6956 + 1711 7212 + 2284 

IUon!" J po.\'I-1~\ CIC CIT TIT 

tv1e.m Co (nglmL) 234 + 62 249 + 67 245 + 63 

r--..kan ('2 (nglm/,) 1293 + 357 1289 + 344 1262. 47<) 

Mean Jose (mglday) 395 + 98 406 + 133 382 -t 132 

tv1ean C\/Josc/bw (nglmIJmglkg) 39 + 13 42 + 17 46 + 13 

\ kan C.JJosc/bw (ng/mIJmglkg) 217 + 73 216 i. 87 238. 12] 

Mean AlJe' (ng*hml.) 6541 + 1304 6711+1371 65()() i. 1<)15 

·A..,,( )I 'A 1'l'.\/. P () ()·r 



Table 27: distribution of CsA pharmacokinetic parameters in 120 kindey transplant 
recipients according to MDRI exon 26 genotype (C343 51) 

CsA pharmacokinetic parameters 
MDRl exon 26 genotype 

CIC crr DT 

Week 1 post-TX 

Mean Co (nglmL) 253 ± 971\ 250 ± 69 296 ± 128 

Mean C;z (nglmL) 1345 ± 365 1434 ± 537 1380 ± 509 

Mean CrJdose/bw (nglmUmglkg) 34 ± 14 36 ± 15 41 ± 18 

Mean C;zfdose/bw (nglmUmglkg) 186 + 80 202 ± 73 189 ± 70 

Month 1 post-TX 

Mean Co (nglmL) 222 + 70· 258 ± 53 251 ± 70 

Mean dose (mglday) 412 ± 118 403 ± 127 376 ± 103 

Mean CrJdose/bw (nglmUmglkg) 35 ± 11· 44 ± 15 44± 14 

Mean C;zfdose/bw (nglmUmglkg) 199 + 80 0 234 ± 80 231 ± 109 

Month 3 post-TX 

Mean Co (nglmL) 200 + 61 217 ± 64 197 ± 46 

Mean C;z (nglmL) 1135 + 315 1106 ± 281 1215 ± 377 

Mean CrJdose/bw (nglmUmglkg) 40 + 11· 51 ± 19 51 ± 18 

Mean C;zIdose/bw (nglmUmg/kg) 231 ± 67 0 261 ± 99 285 ± 94 

Month 6 post-TX 

Mean Co (nglmL) 169 + 50 185 ± 61 169 ± 37 

Mean C;z (nglmL) 907 ± 291 920 -+- 261 902:: 189 

Mean CrJdose/bw (nglmUmg/kg) 36 ± 21· 46:= 17 47:= 1~ 

Mean C;zIdose/bw (nglmUmg/kg) 193 ± 95
0 225 ± 77 2~9 = 77 

,»<0.05 vs IT; .p<0.05 vs CT and IT;"p<O.Ol vs CT and IT; 'p<O.OS \'5 CT; 5p<O.C5 \'5 CT, p<O.Ol \$ IT 



Table 28 :CsA Pharmacokinetic parameters in 120 kidney transplant recipients with different MDRt genotypes and 
haplotypes 

Week I Month I 

n CofD/l1W CfDIBW AUC CoIDlBW C/DIBW AUC 
(nwmllmglKg) (nWmLlmgIKg) (ng·h/mL) (ntYmUmwKg) (IIg1ml1mglKg) (1I8·lt/n.L) 

Gmotype 

00 32 34 ± 13 188 ± 82 6958 ± 1435 37 ± 13 201 ±75 6303 ± 1446 

01 14 44±24 189 ± 21 6084 ±2911 44 ± 13 278±4 6887 ± 917 

02 I 97±S· 144 ± 16 9977 ±212 71 ± 80A 178 ± 11 7398 ± 58 

10 6 22±4 144 ±20 5817 ± 834 2S± 13 164 ±59 6091 ± 2376 

I I 33 3S ± 13 200.±. 71 6741 + 1589 46 + 17 225 ± 91 6981 + 1129 

12 12 41 ± 14 208 ± 77 7838 ± 1741 36± 14 221 ... 85 6160 ± 1007 

20 4 39 ± 16 224 ± 78 764S ± 1451 45 ± 16 241 ± 133 5558 ± 817 

21 2 33 ± 15 196 ± 40 7313 ± 622 46± 15 216±31 6566 ± 214 

22 16 36 ± 14 179 ± 66 7002 ± 2615 46.± 14 239 ± 125 6893 ± 2190 

IIllplotyp~ 

Carrier II 85 35:t 14 194 ±76 6857 ± 1613 40 ± IS 216 ± 80 6660 ~t 1363 

Noncarrier II 3S 40 ± 18 195 ± 89 7556 ± 2162 44 ± 14 231 ± 14 6517 ± 1695 

Camer 12 27 43 ±20 204 ± 79 7664 ± 2029 41 ± 14 241 ± 68 6741 ± 924 

Noncnrricr 12 93 34 ± 13 191 ± 72 6873 ± 1702 42 ± 15 216 ± 92 6591 ± 1559 

Carrier 21 12 30 + 13 185 + 64 6872 ± 1437 36 ± 16 199 + 88 6003 ± 1697 

Noncarrier 21 108 37 ± IS 195±75 7078 ± 1845 42 ± 15 223 ± 88 6702 ± 1409 

Carrier 22 63 36 ± 13 196 ± 69 7032 ± 1852 44 ± 15 228 ± 97 6827.:!: 1527 

Noncarrier 22 57 36 ± 17 191 ± 78 7087 ± 1707 38 ± 14 213 ± 78 6413:t 1430 

• AHOV A ICII p<O 00 I: IkMIfcmJni .... p<o.GOl n ... GIber poI)pCIlI ~ I 
-ANOVA Iat- 0.00": nonf""",, lAC p<O.OOI n FftOCYpO 10", "p<O.~ VI pnoI)1JC 00 .. month 1 



Chapter 12 

CONCLUSION AND FUTURE PERSPECTIVES 



During the past decade, as increasing number of more powerful immunosuppressive 

agents became available, the short-term rate of organ survival significantly improved, 

yet the long-term results did not Although graft survival rate at 1 year post-surgery is 

now exceeding 90%, after a decade it drops to nearly 40% [172]. The initial excitement 

that followed a report that long-term survival of renal allografts may be improving, 

especially in recipients who had never had an episode of acute rejection [173], has faded 

as newer data [174] showed that the long-term risk of graft loss has not improved. The 

reasons for chronic allograft dysfunction involve many factors that concerned variable 

tissue injury at the time of transplantation or during subsequent episode of rejection. 

However, even in the case of grafts with good function in the early years after 

transplantation, progressive tissue damage and slow decrements in function may 

develop, most often with considerable vasculopathy. Chronic allograft dysfunction 

affects all transplanted organs and is the most common cause of graft loss in the long­

term. 

Both immunologic and non-immunologic factors play a key role in promoting poor 

long-term graft survival. Among these, long-term use of immunosuppressive agents 

does contribute to chronic graft injury [175]. Paradoxically, a transplanted organ 

initially protected from the immunological injury by immunosuppressive drugs may be 

subsequently damaged and lost to chronic toxicity caused by these same agents. As a 

matter of fact, all anti-rejection drugs have specific side effects and additively 

contribute to an overall state of immunosuppression, which leads to an increased risk of 

various malignant conditions [176], most commonly lymphoproliferative disorders or 

squamous cell carcinoma of the skin. Such drugs contribute also to the increased risk of 

cardiovascular disease, which is the most common cause of premature death in 

transplant recipients [177]. Moreover. excessive total immunosuppression causes a 

susceptibility to infectious disease [178], such as cytomegalovirus, Epstein-Barr virus, 

- 213 -



and the more recently recognized polyomavirus, which causes nephropathy and renal 

allograft loss [179]. Indeed, over the past decades major efforts have been done to 

optimize the use of immunosuppressive agents reducing side effects yet maintaining 

graft survival. Nevertheless, this individualization depends on the judgement of the 

physicians, as robust treatment guidelines have not yet been established. 

Major finding of the present research project 

Pharmacokinetic studies in humans often involve analysis of large number of samples 

and therefore require simple, rapid and reliable analytical methods. Furthermore, daily 

analysis of an increasing number of drugs as part of the routine drug monitoring 

activity, urges the need for HPLC methods that can be easily run and rapidly set up. 

Therefore, the fust part of my research activity was devoted to the development and 

validation of analytical methods which could be used to measure plasma levels of MP A 

as well as blood levels of SRL and CsA. 

To date several HPLC methods have been described for determination of total MPA. As 

potential advantages, the method described in Chapter 3 utilizes a simple extraction 

procedures using solid phase extraction (SPE) columns and does not involve any 

centrifugation, use of vacuum or drying of residues following extraction. Additionally, 

the use of PTA as IS, which is the first analytical peak eluted, allow us to stop the 

chromatographic run immediately after the elution of MPA (at 8 min), and to proceed 

fast with a new injection. Moreover, the robustness of the method makes it easy to 

generate reproducible results. More difficult is the assessment of free MP A, since we 

have to manage a signal which is less than 5% of that observed with total MP A. To 

overcome this problem, we have moved from a wavelength of 254 run to 215 nm~ 

doubled the injection volume and used a gradient, with a great improvement in the 

signal. As additional shortcoming, the ultrafiltration procedure is extremely variable. 
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Indeed, we have observed that small variation in the temperature (Le., 1°C) and/or in the 

time of the centrifugation, were associated with great difference in the volume of the 

ultraftltrate obtained. To measure unbound MP A it is, therefore, mandatory to strictly 

monitor the operational conditions. It should be pointed, however, that, despite a greater 

variability in inaccuracy and imprecision than that observed for total MP A, the 

performance of the described method for the assessment of free MP A was still in 

agreement with the FDA Guidelines [36]. 

Quantification of SRL in biological matrices is not easy, given the very low dose of the 

drug routinely employed that reflects its high potency. Moreover, the assay may be 

affected by several variables including the recovery of the analyte during sample 

processing and potential interfering peaks in the chromatograms. Here, we developed a 

new method for SRL determination in whole blood specimens, which is robust enough 

to be run on standard HPLC equipment, using only basic analytical reagents [122]. As 

shown in Chapter 4, the assay has adequate sensitivity, precision and accuracy for 

therapeutic monitoring of the drug in transplant patients. Taking into account the sample 

preparation step and the chromatographic time, at least 60 samples per day can be 

extracted and analyzed by a single technician, using two Vac Elut Manifold chambers. 

This method overcomes the analytical difficulties and the long time required for sample 

preparation described in the previously published procedures together with the need of 

using special (light protected) or treated (silanized) glassware [35]. As previously 

documented for total MP A assessment, the Bond-Elut cartridges with 200 mg of sorbent 

applied also for the detennination of SRL allowed the use of very small volumes for 

either cleaning-up and elution steps, thus speeding up the solidlliquid extraction step 

and further reducing the time of drug measurement. 

Although the present research has mainly focused on TOM of MP A and SRL, some 

additional aims required the assessment of CsA concentrations (see Chaplers 6-11). 
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Thus, as described in Chapter 5, I have also described and validated a HPLC method 

with UV detection for the measurement of CsA in whole blood. It must be pointed ou~ 

however, that the liquid-liquid extraction procedure, used in this meth~ presents some 

problems, mainly related to the use of glass tubes and toxic solvents, as well as a very 

long time for sample processing. Moreover, this method is associated with a poor 

recovery. Therefore, we have very recently planned to develop a HPLC method with 

. SPE extraction also for the assessment of CsA concentrations in whole bl~ given 

alone or in combination with everolimus, a new immunosuppressive agent with a 

structural formula close to that ofSRL [180]. 

The performance of the methods presented in Chapters 3, 4, and 5 was in agreement 

with the FDA Guidelines [36]. Thus, they were applied for TOM of novel 

immunosuppressants (namely MPA and SRL), as described in the second and third parts 

of the thesis (Chapters 6-10). 

Although there is little controversy amongst clinicians prescribing CsA that measuring 

this drug in blood is a useful adjunct to its optimal administration, the same concept 

does not apply to MMF, a new immunosuppressant characterized by a narrow 

therapeutic index. Actually, this drug is widely used in a fixed daily dose, despite 

growing evidence showing that this regimen no longer might be the best approach for 

the management of transplant patients [181,192]. Indeed, we have explored the 

possibility to optimize MMF dosing by MP A pharmacokinetic monitoring by studying 

46 stable adult kidney transplant patients receiving CsA, steroids and MMF at a flXed 

daily dose, guided by haematological parameters [88]. As first finding, we observed an 

over 10-fold variability of MP A dose-adjusted phannacokinetic parameters, allowing us 

to speculate that the knowledge of the daily MMF dose was no guide to drug exposure. 

Moreover, we also found a significant correlation between MPA AUC and graft 

function. Indeed, patients exposed to higher concentrations of MP A presented lower 
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serum creatinine values and higher creatinine clearance than those with lower MP A 

exposure, providing a strong rationale for measuring MP A levels to guide MMF dosing 

(Chapter 6). 

Pharmacokinetic-based monitoring may be useful not only to tailor dosage but also to 

unmask potential drug-drug interactions. This concept applies generally to all NT! drugs 

but is of particular relevance in the transplant setting, where patients are chronically 

treated with several combinations of drugs. For instance, modulation of MPA 

absorption, distribution, metabolism and/or excretion by concomitant administration of 

drugs J3lher than MMF might affect MP A bioavailability and eventually clinical 

'= outcome [39,71,81]. Indeed, as a part of a steroid-sparing clinical trial, we have found 

that glucocorticoids, by inducing enzymes involved in MP A metabolism, interfere with 

drug bioavailability [90]. In particular, steroid reduction and discontinuation paralleled 

with a progressive increase of MP A exposure (Chapter 7). These results are of 

particular relevance for those centres that are adopting steroid-sparing regimens with the 

goal to limit drug-related chronic adverse events. If these approaches are pursued using 

MMF at fixed daily dose, progressive steroid reduction may, therefore, results in 

excessive MPA exposure with increased MMF-related toxicity. 

Beside steroids, MMF is usually given in combination with CsA or TRL. However, the 

introduction in the clinical practice of a new class of immunosuppressive agents, 

namely rapamycins (SRL and everolimus), is allowing the development of calcineurin 

inhibitor-free regimens that combine MMF with sirolimus. As a part of a protocol 

aimed at investigating the efficacy of induction therapy with a new monoclonal 

antibody, Campath-1H, we have found that SRL and CsA exert different effects on 

MP A exposure. Co-administration of SRL and MMF was associated with higher dose­

adjusted MPA levels and AUC than those measured under CsA-based regimens 

(Chapter 8). As working hypothesis, we suggest that CsA reduces the enterohepatic 
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recirculation of MP A from MP AG, its glucuronidated metabolite, whereas SRL did not. 

This was confirmed by the lack of a secondary peak of MP A in almost all patients 

treated with CsA and MMF [182]. Again, these results should be carefully taken into 

account when MMF is given at fixed doses and patients are switched to different poly­

pharmacological therapies. 

As additional confounding factor, a new formulation of MP A, the enteric coated sodium 

salt (EC-MPS), is now in development. A formal comparison of the pharmacokinetic 

profiles of these two formulations, as we did (Chapter 9) has evidenced dramatic 

differ~nces, especially in the absorption process [183]. In particular, patients given EC­

MPS had MPA trough levels 4-fold higher than those found in patients given MMF. 

Our results may have important clinical consequences when Co-based MP A monitoring 

is used to optimize MPA therapy, as recently suggested by International Consensus 

Conferences [114]. The great variability ofMPA Co levels after EC-MPS administration 

does not allow the implementation of trough-based TOM in patients chronically treated 

with the novel MP A-releasing formulation, an event that might potentially translate in a 

sub-optimal clinical outcome. Similarly, the very high variability, both intra- and inter­

patient, among all MP A pharmacokinetic parameters from patients treated with EC­

MPS and the poor correlations between single sampling points and MPA AUCO- l2 after 

the administration of the enteric-coating fonnulation did not allowed the development 

of a suitable equation to reliably predict MP A daily exposure in these patients. 

Therefore, at variance with MMF [37,114], these results argue against the possibility to 

implement a limited sampling strategy-based therapeutic drug monitoring of MP A in 

patients given EC-MPS, with potential detrimental effects for the patient and for the 

graft in the long tenn. 

As mentioned above, a new class of immunosuppressive agents is now available on the 

market, referred as "rapamycins" (namely SRL and everolimus). For SRL. measurement 
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of the drug levels is actually a license requirement in Europe and is recommended in 

specific clinical settings in the USA [184]. In the past 3 years our laboratory served as a 

centralized institution in Italy to measure SRL trough samples from more than 40 Italian 

Transplant Units. These samples corresponded to nearly 500 kidney transplant 

recipients treated with different SRL-based immunosuppressive regimens. A 

retrospective analysis of all the data evidenced some important pharmacokinetic 

interaction that involved SRL. In particular, we found that dose-adjusted SRL trough 

levels were significantly higher in patients given CsA than in those given tacrolimus 

[185]. Moreover, we observed that MMF and/or steroids reduced SRL bioavailability. 

As additional analysis, we proposed a dose-adjustment fonnula which can be used to 

guide SRL dose changes, with the goal to reduce variability in SRL exposure, a 

condition known to affect clinical outcome (Chapter 10). 

Everolimus is a macrolide bearing a 2-hydroxyethyl chain substitution at position 40 on 

the SRL structure, rationally developed to improve the phannacokinetic characteristics 

of the innovator compound. We have recently developed and validated an HPLC-UV 

method for determining everolimus concentrations in human whole blood [186]. 

Unfortunately, this novel immunosuppressant is not yet available on the Italian market. 

We have, therefore no data on TOM studies focusing on everolimus. As future research, 

we will apply our recently developed method to measure daily fluctuations of 

everolimus concentrations, with the goal to assess whether the introduction of the 

chemical modification in position 40, may effectively translate in a better 

pharmacokinetic profile of everolimus as compared with SRL. 

All together, these results pointed phannacokinetics as the most useful approach to 

monitor and optimize drug dosing not only for traditional immunosuppressants (such as 

CsA and TRL), but also for novel anti-rejection agents, namely MP A and SRL. 
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It should be pointed, however, that drug concentration measurements are only a part of 

the decision tree for dose adjustment. They must be viewed in the context of other 

complementary fields that include biochemical and clinical analysis, as well as novel 

therapeutic monitoring approaches. As an example of this concept, we have conducted a 

randomized trial aimed at investigating whether per-protocol biopsies, in combination 

with routine pharmacokinetic studies, could be useful tools to implement steroid or CsA 

. sparing regimens in kidney transplant recipients [187]. As main result, we have found 

that per-protocol biopsy more than one year after transplantation is a safe procedure to 

guide change of immunosuppressive regimen and to lower the risk of major drug­

related side effects. 

Alternative approaches, beside pharmacokinetics, have been recently proposed to tailor 

the best immunosuppressive regimen for each patient. For instance, pharmacodynamic 

monitoring involves measurement of the biological effect of the drug at its target site 

[21]. Indeed, I have also involved in the development of a method for the assessment of 

calcineurin, the pharmacological target of CsA, in whole blood. When we applied this 

assay to monitor kidney transplant recipients we found that CsA levels did not predict 

daily calcineurin (CN) activity, whereas a single determination of CN at baseline was a 

useful surrogate for the daily inhibition of the enzyme by CsA [188]. It should be 

pointed out, however, that pharmacodynamic tests are actually too complex for clinical 

use and often require radioactive materials. As additional drawbacks, studies aimed at 

investigating the potential predictivity of pharmacodynamic approaches in tenns of 

rejection and/or drug toxicity are still lacking. Therefore, alternative roads, beside 

pharmacodynamics, should be travelled. 

Those involved in TOM are now realizing that individual patient's exposure to 

immunosuppressive agents can be influenced by the genetic background. Indeed, it has 

been proposed that interinvidual differences in drug response may be due. at least in 
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part, to sequence variants in genes encoding drug-metabolizing enz:mes. drug 

transporters, or drug targets [41,159]. Accordingly, the identification of an indiyidual's 

genetic make-up may be useful to choose the best treatment for each patient. As 

compared to pharmacokinetic studies, pharmacogenetic studies can be conducted eyen 

before the beginning of treatment, they do not require the assumption of steady-state 

conditions, are constant for an individual's lifetime and can provide predictive yalue for 

multiple drugs. Hence, as last part of my research activity, I have attempted to assess the 

role of pharmacogenetics in the field of organ transplantation. To perform this study we 

.-
took advantage from the large amount of pharmacokinetic data from patients enrolled in 

the MY.S.S. trial [28,38]. Over 2,000 CsA trough and C2 measurements, collected 

during the first 6 months post-surgery, were available. As preliminary analysis we 

studied the potential association between CsA pharmacokinetics parameters and genetic 

variants in the MDRl, the gene encoding for the P-gp (Chapter 11). This protein works 

as an efflux: pump, which removes lipophilic drugs, like CsA, from the intracellular 

space. As working hypothesis we speculated that genetic polymorphisms of the MDRI 

gene could result in significant reduction in P-gp expression, eyentually increasing the 

exposure of these patients to CsA. Indeed, preliminary results, performed in 120 out of 

the 350 patients enrolled in the MY.S.S. trial, documented that a polymorphism in the 

exon 26 of the MDRI (C3435T) was associated with higher CsA levels than wild types. 

suggesting that also genetic assessments can be considered useful tools to guide drug 

dosing [189]. Assuming that P-gp exerts its activity on many lipophilic substrates. it can 

be reasonably speculated that these findings could applied also to other 

immunosuppressive agents. such as tacrolimus. SRL and eyerolimus. 
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Future directions 

Transplantation has transformed the treatment of patients with organ failure in a number 

of clinical settings, and immunosuppressive drug therapy is fundamental to its success. 

During the past decade several new potent anti-rejection molecules with different modes 

of action and different side-effect profiles have become available, and some will be 

available in the near future [190,191]. They include agents that deplete T cell (anti CD3, 

CD52-specific monoclonal antibodies) or B cell (CD20-specific monoclonal antibodies) 

signal transduction pathways, blockers of co stimulatory pathways (CD40-specific 

antibodies, CTLA4Ig, LEA29y), agents that interfere with lymphocyte trafficking 

(LF A-I-specific antibodies, FTY720) and small-molecules drugs (SRL, everolimus, 

MP A-releasing formulations, mizoribine, leflunomide, FK778, JAK3 inhibitors and the 

new CsA analogue ISA247). Nowadays immunosuppression after renal transplantation 

is no longer one single regimen applicable to all patients. In the selection of the optimal 

immunosuppressive protocol, individual drug-related toxicity, recipient-donor related 

risk factors as well as all the available information have to be taken into account. It can 

be reasonably speculated that interest in the measurement of immunosuppressive drugs 

as a guide to therapy will show no signs of waning. As the number of 

immunosuppressive drug combinations increases, so does the complexity of 

interpretating the concentration data. Indeed, also for some of the new 

immunosuppressive agents mentioned above (such as FK778, mizoribine and ISA247) 

will benefit from pharmacokinetic-based TOM as a guide to tailor the best dosage for 

each patient. Periodical evaluations of drug exposure can be able to detect external 

influences (i.e. drug-drug interactions, hormonal levels, kidney and/or liver dysfunctio~ 

etc) that can vary over time. From this point of view, traditional phannacokinetic-based 

TOM will undoubtedly play a key role to optimal drug prescription also for the next 

years. 

- 222-



However, it is expected that, in the future, in addition to targeting a patient's drug 

concentrations within a therapeutic range as in traditional TDM, physicians are more 

than likely to be making dosage recommendations for individual drugs based also on a 

large amount of additional information, such as pharmacodynamic profiles, as well as 

according to individual patient's genotype. On pure mechanistic grounds, measurement 

of pharmacodynamic parameters (for example, the biological activity of a drug) may 

more closely correlate with clinical outcomes than pharmacokinetic parameters. This 

approach has shown great analytical limitations when applied to assess calcineurin 

activity after CsA or tacrolimus administration or in the attempts to measure P70S6 

kinase in patients chronically given SRL or everolimus. At variance, still promising is 

the assessment ofIMPDH activity in peripheral blood mononuclear cells [192). Indeed, 

preliminary studies have reported significant associations between IMPDH activity and 

risk of acute rejection as well as MMF-related toxicity. More data are now needed to 

fully establish the prognostic value of IMPDH activity, and longitudinal studies are 

eagerly awaited. 

As exemplified in Chapter 11, pharmacogenetics is another promising science which 

could provide important infonnation for the individualization of the immunosuppressive 

regimen. Almost all the available literature in this field focuses on AZA, CsA and TRL 

[41,159), whereas data on novel immunosuppressive agents are scanty. To date, there 

are only two studies which have investigated the role of SNPs in the MDRI and CYP3A 

genes on SRL exposure [193,194]. Results from these observations, derived using SRL 

trough levels as surrogate markers of daily drug exposure, were controversial. Indeed, 

both these studies have shown that, unlike TRL, SRL trough concentrations and dose 

requirements were not affected by MDRI polymorphisms, whereas the predicting value 

of CVP3As genotyping was documented by Anglicheau et al [193], but not by Mourad 

[194]. These fmdings were not conclusive and provide a rationale for future 
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investigations focusing on genetic determinants of SRL and everolimus exposure. On 

the same line, pharmacogenetic studies on MP A are largely inadequate. It is well know 

that MPA is extensively glucuronidated by several UDP-GTs, a family of enzymes 

characterized by several genetic polymorpbisms [195,196]. In the only article available, 

it has been shown that the T-275A and C-2152T SNPs of the UGTIA9 gene promoter 

are associated with significantly lower MP A exposure in renal transplant recipients 

. treated with the fixed 2 g MMF daily dose and part of this effect was caused by 

interruption in the EHC of MPA [197]. These observations demonstrated for the first 

time that, in vivo, interindividual variability in the pharmacokinetics of MP A can be 

partially explained by genetic variation. Given the high allelic frequency of the 

UGTIA9 SNPs (approximately 15% in white subjects), as well as the 2-fold reduction 

in MP A exposure in comparison with noncamers, these fmdings are also likely to be 

clinically relevant and offer both a rationale and a means for a personalization of MMF 

treatment. As additional confounding factor, it has been recently reported that MP A 

exposure is influenced by the activity of the multidrug resistance-associated protein 2 

(MRP2), a protein expressed at the apical surface of hepatocytes, where it functions to 

excrete conjugation products (such as MPA glucuronidated metabolites) into bile [198]. 

Similarly to what has been reported for MDR1, also SNPs in the MRP2 gene have been 

reported [199]. Therefore, it can be reasonably expected that future pharmacogenetic 

studies will focused also on the potential association between MRP2 allelic variants and 

MPA exposure. 

To strengthen the role of pharmacogenetics in the field of organ transplantation it is 

important that genetic studies will not include only information on inheritance variants 

in gene encoding for enzymes involved in drug disposition but, even more importantly, 

also in genes involved in the pharmacological response. To date, no publications were 

available on SNPs in the pharmacogical targets of immunosuppressive agents 
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(calcineurin, IMPDH, P70S6 kinase, etc). However, it has been recently demonstrated 

that SNPs in the gene encoding for cytokines actively involved in the moJub:ion of the 

immune system influence the outcome of kidney transplantation [200]. These results 

provide indirect evidence that, beside genes encoding for metabolizing eI1Z)mes, also 

allelic variants in the pharmacological target might affect drug response, ultimately 

affecting the outcome of the graft and patient survival. 

It is expected that the availability of complete information on patient's status 

(pharmacokinetics, dynamics, genomics, and clinical data) will allow us move from a 

diagnosis-directed approach to one that is prevention-directed and patient-tailored. 

However, to pursue this ambitious project, we urge need the development of algorithms 

working within neural networks able to incorporate the large amount of data from 

kinetic, clinical, dynamic and genetic testing and providing predictive dosag~ 

algorithms useful for personalised therapies. If we succeed, we will be able to identify 

not only the best drug to be administered to a particular patient, but also the most 

effective and safest dosage from the outset of therapy, already befor~ transplant surgery. 

Nevertheless, it should be reminded that, regardless of whether we are referring to 

traditional TDM or that of the future, we need to ensure that we are providing ideal 

immunosuppression for our patients and are helping to improve the quality of health 

care. Indeed, the ultimate goal of personalized therapy is the improvement of long tl!rrn 

organ survival, eventually leading to indefinite tolerance of the graft. 
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