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Summary

Electronic resonances are metastable atomic or molecular systems that can decay by electron detachment.

They play an important role in biological processes such as DNA fragmentation induced by slow electrons

or in interstellar reactions as in the formation of neutral molecules and molecular anions. As opposed

to bound states, resonances do not correspond to discrete eigenstates of a Hermitian Hamiltonian, and

therefore their theoretical description requires special methods. The complex absorbing potential (CAP)

method can be used to calculate both the energy and the lifetime of a resonance as a discrete eigenstate

in a non-Hermitian time-independent framework. The CAP method allows for applying well-known

bound-state electronic structure methods to resonances as well.

In this work, the applicability of CAP-augmented equation-of-motion coupled-cluster (CAP-EOM-CC)

methods is extended for locating equilibrium structures and crossings on complex-valued potential energy

surfaces of electronic resonances by introducing analytic energy gradients. The structure and energy of

these points are needed for, e.g., estimating the importance of a specific dissociation route or deactivation

process. The accuracy of structural parameters, vertical and adiabatic electron affinities, and resonance

widths obtained with approximate methods and various diffuse basis sets is investigated. Applications of

optimization methods are also presented for systems that are relevant in interstellar or biological processes.

Properties of the complex-valued potential energy surfaces of anionic resonances of acrylonitrile and

methacrylonitrile are connected to experimental observations. Dissociative electron attachment to chloro-

substituted ethylenes is also investigated. This can help in understanding detoxification processes of these

compounds and might facilitate the exploration of DEA pathways for other halogenated molecules as

well.
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1 Introduction

Resonances are metastable states of a system that have the energy to break up into subsystems but remain

intact long enough to be detected experimentally. They are, perhaps, most well-known in connection

with α-decay [1], in which a metastable nuclid decays by emitting an α-particle. However, resonances

are important in many other processes: for atomic and molecular systems, resonances are a key for

understanding inelastic scattering, photo-, and autoionization [2], Auger-decay [3], predissociation [4],

predesorption [5, 6] and high harmonic generation [7]. In the present work, autoionizing electronic

resonances are investigated.

Metastable molecular systems can be formed by collision or by half collision experiments, for

example electron impact to a stable molecule or excitation of a bound state. In biological environments,

slow electrons can create autoionizing resonances by attaching temporarily to biomolecules, and such

resonances can lead to the formation of harmful radicals, and can cause strand breaks in DNA [8–11].

In plasmas, the role of autoionizing states in the recombination of ionized molecules with electrons is

important for understanding chemical evolution in interstellar molecular clouds, combustion engines and

fusion reactors [12]. To characterize resonances experimentally, electron impact [13] and photodetachment

spectroscopy [14] can be used, for example. The decay of a resonance is a stochastic process, which is

characterized by a decay rate. The decay rate of the metastable system can sometimes be determined from

the width of the resonance peak, and is consequently often called resonance width.

Resonances can usually be divided into shape and Feshbach resonances based on their decay mech-

anisms. Shape resonances are formed, e.g., when particles can tunnel through a potential barrier to

escape the system (see References [15] and [16]). In the case of autoionizing states, shape resonances are

above their own ionization threshold and decay by a one-electron process. Shape resonances have higher

energies than their parent states, and thus are embedded in the continuum (see Figure 1.1). Autoionizing

shape resonances are not stable with respect to electron detachment, and their lifetime is usually in the

femtosecond-picosecond range. In contrast, autoionizing Feshbach resonances lie below their ionization
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Figure 1.1: Bound states and autoionizing shape resonances in the eigenvalue spectrum of an anionic
system. The energy of the neutral parent state corresponding to these anionic states is also shown.
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CHAPTER 1. INTRODUCTION

threshold and decay by a two-electron process through a different decay channel, thus they usually

have a longer lifetime than shape resonances. In this work only shape-type autoionizing resonances are

considered.

The theoretical description of resonances is more involved than that of bound states. Resonances

are not stationary states, thus cannot be studied within the time-independent formalism, at least not by

applying a Hermitian Hamiltonian operator as in the standard formulation of quantum mechanics. As

will be discussed in this work, a resonance can be investigated in the time-independent framework, e.g.,

by modifying the Hamiltonian with a complex absorbing potential (CAP). In this case, the resonance

is calculated as a discrete square-integrable state having a complex energy whose real part gives the

position and its imaginary part yields the width of the resonance. This is in contrast to bound states,

which have purely real energies. The addition of the CAP allows for applying standard methods and tools

developed for bound states. A complex-valued potential energy surface (CPES) can be constructed for

each resonance by applying the Born-Oppenheimer approximation, in analogy with the real-valued PES

of bound states.

CPESs facilitate the modeling of processes that involve multiple interacting resonances, such as the

dissociative electron attachment (DEA) process. DEA is important, for example, in the already mentioned

slow electron-induced damage to DNA, in which shape resonances initially localized on the nucleobases

convert to dissociative states that lead to strand breaks [8, 9, 11]. The interplay of resonances with different

lifetimes and different asymptotic behavior is a key for understanding these processes and it is relevant

for many other molecules exposed to low-energy electrons both in the gas phase and in the bulk phase

[10]. For the investigation of such processes, special points on the CPESs, such as equilibrium structures

or intersections of different states need to be located. These points affect the nuclear dynamics strongly.

The autoionization lifetimes of resonances and their changes along the reaction pathway also need to be

considered in order to assess the relative importance of autoionization and dissociation, which can be

competing mechanisms for the deactivation of resonances.

In this work, it is shown that the CAP augmented equation-of-motion coupled-cluster (CAP-EOM-CC)

method can be applied to such problems. Using analytic energy gradients and modified versions of regular

optimization techniques, it is possible to locate special points on multidimensional CPESs efficiently.

For many bound-state methods, analytic energy gradients are well-known and are available in quantum

chemistry programs. However, gradients for metastable-state methods were not available prior to this

work. Here, it is demonstrated how the CPES of a resonance can be studied, and how its characteristics

can be connected to experimental observations.

Before discussing these topics, a short overview of the relevant quantum chemical methods is given

in Chapter 2. The original publications that contain the main results of this PhD work are presented

in Chapter 3, where a short outlook discussing further project plans is also given. Finally, the thesis is

summarized in Chapter 4.
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2 Theoretical Background

In this chapter, the theoretical foundations for describing resonances are given with a focus on the

time-independent non-Hermitian description in CAP-EOM-CC methods. Properties of bound state

methods are discussed as well, and it is reviewed how electronic states can be investigated within the

Born-Oppenheimer approximation by studying their potential energy surfaces. Throughout the chapter,

differences and similarities between the treatment of resonances and bound states are pointed out. Analytic

gradient theory is discussed in connection with CC and EOM-CC methods.

2.1 Theory of bound states and resonances

The postulates of the standard formulation of quantum mechanics state [17] that vectors |Φ〉, that cor-

respond to states of the quantum system at a given time, are elements of a complex Hilbert space H.

Observables, that are associated with physical properties of the system, are Hermitian operators acting on

the elements ofH. For a system in state |Φ〉, the expectation value A of an observable Â is given by

A =
〈Φ|Â|Φ〉
〈Φ|Φ〉 . (2.1)

If the system is in an eigenstate of Â, the expectation value is the corresponding eigenvalue. The

eigenvalues of Hermitian operators are always real numbers which is consistent with the fact that

measurable quantities are real-valued.

The time evolution of the system is given by the time-dependent Schrödinger equation (TDSE)

Ĥ|Ψn(x, t)〉 = i
∂|Ψn(x, t)〉

∂t
(2.2)

in atomic units. Ĥ is the Hamiltonian, which is associated with the total energy of the system En, and

|Ψn〉 is the wave function of state n which is dependent on position x and time t.

For a time-independent Hamiltonian, integrating (2.2) yields

|Ψn(x, t)〉 = e−iĤt|Ψn(x, 0)〉. (2.3)

Bound states |Ψb
n〉 are discrete eigenstates of Ĥ and can be calculated from the time-independent

Schrödinger equation (TISE)

Ĥ|Ψb
n(x, 0)〉 = Eb

n|Ψb
n(x, 0)〉. (2.4)

They are elements of the L2 Hilbert space of square-integrable functions, where the inner product is

defined as

〈Φi|Φj〉 =

∫
Φ∗i (τ)Φj(τ)dτ, (2.5)

where the star denotes complex conjugation. These states necessarily satisfy the boundary conditions

Ψb
n(x→ ±∞) = 0. (2.6)

3



CHAPTER 2. THEORETICAL BACKGROUND

For bound states, (2.3) can be simplified into

|Ψb
n(x, t)〉 = e−iE

b
nt|Ψb

n(x, 0)〉, (2.7)

which describes a stationary state, whose probability density ρb
n does not change in time

ρb
n(x, t) ≡ |Ψb

n(x, t)|2 = |Ψb
n(x, 0)|2 = ρb

n(x, 0), (2.8)

thus a bound state has an infinite lifetime.

In contrast, resonances are not solutions of the TISE in the usual Hermitian formalism and thus cannot

be represented by single discrete states. They can be calculated in the Hermitian formalism by solving

the TDSE for the time evolution of wave packets, which are superpositions of a continuous range of

eigenstates.

The possibility of a time-independent description for resonances can be understood by, e.g., consider-

ing the model problem of Klaiman and Gilary [15]. According to that, a one-dimensional potential well

that supports a bound state is perturbed in a way that a potential barrier is formed, which creates a shape

resonance. The wave packet that corresponds to the resonance remains localized for some time in the

region where the previously bound state was confined (interaction region), although the system now has

the energy to break up into subsystems. The long-time behavior of the resonance |Ψr
n〉 in the interaction

region L can be approximated by an exponentially decaying time-dependent probability density [15]

|Ψr
n(x, t)〉 = e−i(ER,n−iΓn/2)t|Ψr

n(x, t0)〉 for |x| < L, and t > t0, (2.9)

ρr
n(x, t) = |Ψr

n(x, t)|2 = e−Γnt|Ψr
n(x, t0)|2 = e−Γntρr

n(x, t0) for |x| < L, and t > t0, (2.10)

where t0 and L are problem-dependent.

The decay of the resonance is a stochastic process, its rate is given by the resonance width Γn, which

is the inverse of the average lifetime. From (2.9), one can see that the resonance behaves like a stationary

state with complex energy Er
n = ER,n − iΓn/2. This property can be used to obtain the resonance as a

discrete solution of the TISE by imposing outgoing boundary conditions (also called Siegert boundary

conditions)

Ψn(x→ ±∞, t0) = ceiknx, (2.11)

where c is a constant and kn is the wavenumber (kn =
√

2En). For decaying states, conditions Re(kr
n) > 0

and Im(kr
n) < 0 need to be fulfilled. Bound states are also solutions to the TISE with boundary conditions

(2.11), but in that case conditions Re(kb
n) = 0 and Im(kb

n) > 0 need to be applied, in line with (2.6).

A very important difference from bound states is that the Siegert resonance wave function is not

square-integrable. A solution to this problem is to calculate resonances by analytic continuation of the

Hamiltonian into the complex plane or to apply a CAP. These transformations yield square-integrable

resonance wave functions, that enables the description of resonances with techniques similar to bound

state methods.

In the following sections, bound state methods are reviewed, then in Section 2.4 modifications needed

for treating resonances with similar methods in the time-independent non-Hermitian framework are

discussed.
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2.2. SEPARATION OF NUCLEAR AND ELECTRONIC MOTION

2.2 Separation of nuclear and electronic motion

The molecular Hamiltonian can be written as the sum of the nuclear kinetic energy operator T̂ n and the

electronic Hamiltonian Ĥe

Ĥ = T̂ n + Ĥe (2.12)

Ĥe = T̂ e + V̂ en + V̂ ee + V̂ nn (2.13)

where T̂ e is the kinetic energy operator of the electrons, and potentials V̂ are the electron-nucleus (en),

electron-electron (ee) and nucleus-nucleus (nn) Coulomb potentials

T̂ n = −
Nn∑

n

∑

α

1

2Mn

∂2

∂R2
nα

(2.14)

T̂ e = −
Ne∑

i

∑

α

1

2

∂2

∂r2
iα

(2.15)

V̂ en = −
Ne∑

i

Nn∑

n

Zn
|Rn − ri|

(2.16)

V̂ ee =

Ne∑

i

Ne∑

j<i

1

|ri − rj |
(2.17)

V̂ nn =

Nn∑

n

Nn∑

m<n

ZnZm
|Rn −Rm|

(2.18)

R, M , and Z denote nuclear coordinates, masses, and charges, while r is used for electronic coordinates.

Nn is the number of nuclei, Ne is the number of electrons, and α denotes dimensions x, y, z.

T̂ e and V̂ en can be written as a sum of one-electron operators ĥi

T̂ e + V̂ en =

Ne∑

i

ĥi, (2.19)

ĥi = −
∑

α

1

2

∂2

∂r2
iα

−
Nn∑

n

Zn
|Rn − ri|

. (2.20)

Within the Born-Oppenheiner (BO) approximation [18] the motion of the electrons and the nuclei

can be separated, and the problem is divided into two lower-dimensional problems. In the first part of the

calculation, the electronic SE is solved with nuclei fixed at certain positions R

Ĥe|Ψe
k(r,R)〉 = Ee

k(R)|Ψe
k(r,R)〉, (2.21)

this is called the clamped-nuclei approximation. The electronic SE yields the electronic wave function

|Ψe
k〉, and the electronic energy Ee

k of state k at a specific nuclear configuration. The surface formed by

Ee
k as a function of R is called the potential energy surface (PES), as it appears as the potential term that

governs the motion of nuclei in the nuclear SE

(T̂ n + Ee
k(R))|Ψn

l (R)〉 = Ekl(R)|Ψn
l (R)〉, (2.22)
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CHAPTER 2. THEORETICAL BACKGROUND

where |Ψn
l 〉 is the nuclear wave function. Thus in the BO approximation, the total energy can be determined

by solving the nuclear SE (2.22), while the total wave function is given as the direct product of electronic

and nuclear components

Ψ(r,R) = Ψe(r,R)⊗Ψn(R). (2.23)

When the electronic states are well separated, they vary slowly with nuclear coordinates, and the

coupling between nuclear and electronic motion can be completely neglected. However, the BO approx-

imation breaks down when electronic states get close in energy. In that case, nuclear motion, usually

molecular vibrations, can mix electronic states, so nuclear and electronic motion become coupled. In the

so-called adiabatic basis of the electronic wave functions |Ψe
k〉, Ĥe is diagonal, and the coupling is due to

T̂ n only.

〈Ψe
k(r,R)Ψn

l (R)|T̂ n|Ψe
k′(r,R)Ψn

l′(R)〉 =−
∑

nα

1

2Mn
〈Ψe

k(r,R)Ψn
l (R)|Ψe

k′(r,R)
∂2Ψn

l′(R)

∂R2
nα

〉

−
∑

nα

1

Mn
〈Ψe

k(r,R)Ψn
l (R)|∂Ψe

k′(r,R)

∂Rnα

∂Ψn
l′(R)

∂Rnα
〉

−
∑

nα

1

2Mn
〈Ψe

k(r,R)Ψn
l (R)|∂

2Ψe
k′(r,R)

∂R2
nα

Ψn
l′(R)〉.

(2.24)

By integrating over electronic coordinates, (2.24) can be rewritten as

〈Ψe
k(r,R)Ψn

l (R)|T̂ n|Ψe
k′(r,R)Ψn

l′(R)〉 =−
∑

nα

1

2Mn
〈Ψn

l (R)|∂
2Ψn

l′(R)

∂R2
nα

〉δkk′

−
∑

nα

1

Mn
〈Ψn

l (R)|gnαkk′
∂Ψn

l′(R)

∂Rnα
〉

−
∑

nα

1

2Mn
〈Ψn

l (R)|hnαkk′Ψn
l′(R)〉. (2.25)

The first term in (2.25) contributes only to the diagonal elements with respect to electronic states. The

interaction of different electronic states comes from the derivative (also called nonadiabatic) coupling

matrix elements

gnαkk′ = 〈Ψe
k(r,R)|∂Ψe

k′(r,R)

∂Rnα
〉, (2.26)

hnαkk′ = 〈Ψe
k(r,R)|∂

2Ψe
k′(r,R)

∂R2
nα

〉, (2.27)

which are neglected in the BO approximation. h can be expressed using g (see, e.g., Reference [19]), and

g, often referred to as the derivative coupling, can be written as

gnαkk′ =
1

Eek′(R)− Eek(R)
〈Ψe

k(r,R)| ∂Ĥ
e

∂Rnα
|Ψe

k′(r,R)〉, (2.28)

which follows from differentiating (2.21) with respect to Rnα. According to (2.28), the coupling and

thus the probability of a nonadiabatic transition is higher for close lying PESs. At the crossing of two

PESs, the derivative coupling diverges, which shows the breakdown of the BO approximation. Diverging

couplings can be avoided by using a quasidiabatic basis which transfers the coupling from the kinetic term

to the potential term [20]. This is the basis of linear vibronic coupling models, that have been developed

6



2.3. ELECTRONIC STRUCTURE METHODS FOR BOUND STATES

both for stable states [21] and resonances [22], and have been very successful in simulating vibronic

transitions. Possible applications of this model using CAP-EOM-CC methods are discussed in Section

3.5. The quasidiabatic representation is also used in Section 2.5.1 to derive the crossing conditions of two

stable and of two metastable states.

The BO approximation facilitates the description of molecular systems significantly, still, the electronic

SE can be solved for the simplest systems only. For most applications, further approximations have to

be made. In the following sections, approximate methods for solving the electronic SE for bound states

and for resonances are discussed. For the sake of simplicity, the superscript ’e’ will be omitted. The

characteristics of the PES and its implications on nuclear motion are discussed in Section 2.5.

2.3 Electronic structure methods for bound states

2.3.1 The Hartree-Fock method

An approximate method for solving the electronic TISE, and the basis for other more accurate methods, is

the Hartree-Fock (HF) method [23]. The wave function is approximated by a single Slater determinant in

this case, which is a normalized and antisymmetrized linear combination of products of spin-orbitals |p〉
(called molecular orbitals, MOs, in the case of molecules). In the HF method every electron interacts with

the average field of the other electrons, thus the correlation (instantaneous interaction) of electrons is not

considered.

According to the variational principle, the expectation value of Ĥ calculated with an approximate

wave function Φ is higher or equal to the exact ground state energy Eexact
0

Eexact
0 ≤ 〈Φ|Ĥ|Φ〉〈Φ|Φ〉 , (2.29)

where equality holds only when Φ = Ψexact
0 . The HF method is variational: the MOs are optimized in

order to get the best approximation of Eexact
0 with Φ as a single Slater determinant.

The MOs are expanded in terms of basis functions |µ〉, which are usually atom-centered Gaussians

|p〉 =
∑

µ

Cµp|µ〉, (2.30)

where Cµp are elements of the MO coefficient matrix C. Here and in the following, MO indices i, j, ...

are used for occupied orbitals, a, b, ... for virtual orbitals, while p, q, ... denote general orbitals. In the

basis of the atomic orbitals (AOs), denoted by greek letters, the HF energy can be expressed as:

EHF =
1

2

∑

µν

DHF
µν (hµν + Fµν) + Vnn. (2.31)

The density matrix DHF is built from the expansion coefficients

DHF
µν =

∑

i

C∗µiCνi. (2.32)

The one-electron integrals in the AO basis are given by hµν = 〈µ|ĥ1|ν〉, and the Fock matrix F has the

form

Fµν = hµν +
∑

σρ

DHF
σρ 〈µσ||νρ〉, (2.33)

7



CHAPTER 2. THEORETICAL BACKGROUND

where 〈µσ||νρ〉 = 〈µσ| 1
|r1−r2| |νρ〉 − 〈µσ|

1
|r1−r2| |ρν〉 are antisymmetrized two-electron integrals of AOs.

The MO coefficients are determined from the Roothaan-Hall equations

FC = SCε, (2.34)

where S is the overlap matrix Sµν = 〈µ|ν〉 and ε is a diagonal matrix that contains the orbital energies.

These equations have to be solved iteratively, because F depends on C through the density matrix. The

computational cost of a HF calculation scales with the number of basis functions Nbf as N4
bf.

The HF method is a good approximation if a single determinant wave function can describe the system

correctly. The determinants created by all possible occupations of MOs form a complete set, which means

that the exact wave function can be given as the linear combination of all possible determinants. Thus, to

improve upon the HF method, one needs to include more determinants in the wave function. Dynamic

correlation is associated with a wave function that has a single dominant determinant and a large number

of additional determinants with small weights. Inclusion of such additional determinants can be done by

the coupled-cluster (CC) method, for example. In the case of static correlation, the electronic state in

question can be well described by a few determinants with similar weights. A method that includes static

correlation is essential for, e.g., the description of radicals and bond-breaking situations. The distinction

between the two types is not unambigious, and in many situations both are needed.

Approximate quantum chemistry methods are ideally size-consistent and size-extensive. Size-

consistency means that a system consisting of non-interacting subsystems is computed to have the

same energy as the sum of the energies of the individual subsystems [24]. Size-extensivity means that

the energy scales properly with the size of the system [25]. By using an appropriate parametrization of

the wave function, like in the case of the CC method, one can ensure that even approximate methods are

size-consistent and size-extensive.

2.3.2 The coupled-cluster method

In the CC method [26] the wave function is generated by an exponential excitation operator acting on a

reference wave function, which is usually chosen as the HF wave function |ΦHF〉

|ΨCC〉 = eT̂ |ΦHF〉. (2.35)

The excitation operator T̂ is called the cluster operator and it creates all possible singly, doubly, etc.

excited determinants from the reference determinant

T̂ =

M∑

m=1

T̂m =
∑

a

∑

i

tai â
†
aâi +

1

4

∑

a,b

∑

i,j

tabij â
†
aâiâ

†
bâj + ... =

∑

n

tnτ̂n, (2.36)

where â† are second-quantized creation operators [27], â are annihilation operators, and t are the CC

amplitudes. {tn} and {τn} are introduced to simplify the notation of amplitudes {tai , tabij , ...} and excitation

operators {â†aâi, â†aâiâ†bâj , ...}, respectively.

If T̂ includes all possible orders of excitation, i.e. M is chosen as the number of electrons in the

system, the CC wave function is the exact wave function. When truncating T̂ at a given order of excitation,

e.g. as T̂ = T̂1 + T̂2, called singles and doubles approximation (CCSD) [28], the wave function still

includes higher excited determinants due to the exponential operator in (2.35). Truncated CC wave

functions can be systematically improved towards the exact solution by including higher excitations in

8



2.3. ELECTRONIC STRUCTURE METHODS FOR BOUND STATES

T̂ . This, however, entails a considerable increase in computational cost. CCSD has an N6
bf scaling [28],

which allows it to be used for intermediate-sized systems. However, the next level method, CCSDT

(T̂ = T̂1 + T̂2 + T̂3) [29, 30], scales as N8
bf, thus it is applicable only to small systems.

The unknown quantities, the amplitudes are determined by solving the CC equations

〈Φn| H̄ |ΦHF〉 = 0, (2.37)

for all determinants |Φn〉 = τn|ΦHF〉 that are excited up to orderM . Thus, in the case of CCSD, projection

is performed only on singly and doubly excited determinants. H̄ is the similarity transformed Hamiltonian

which can be expanded in terms of commutators as

H̄ = e−T̂ Ĥ eT̂ = Ĥ + [Ĥ, T̂ ] +
1

2!
[[Ĥ, T̂ ], T̂ ] + ... (2.38)

= Ĥ + (ĤT̂ )c +
1

2!
((ĤT̂c)T̂ )c + ... = (Ĥ eT̂ )c (2.39)

where the subscript ’c’ indicates that only connected terms survive. The expansion truncates after the fifth

term [31], because Ĥ contains only one-, and two-electron operators, thus can be connected to maximally

four T̂ operators. The presence of only connected terms ensures size extensivity.

The CC equations (2.37) have to be solved iteratively to obtain amplitudes up to order M . After that,

the CC energy can be calculated as

ECC = 〈ΦHF| H̄ |ΦHF〉 = EHF +
∑

i<j

∑

a<b

(tabij + tai t
b
j − tbi taj )〈ij||ab〉, (2.40)

where only singles and doubles amplitudes contribute. Higher order amplitudes contribute to the energy

indirectly, through the CC equations (2.37).

2.3.3 The equation-of-motion coupled-cluster method

When calculating energy differences between electronic states, the most straightforward method seems

to be calculating the two states separately and then taking their energy difference. However, excitation

energies (ionization and attachment energies as well) can be very small compared to the total energy of the

system, and are size-intensive. This means that they should be the same in a noninteracting supersystem

AB as in the subsystem A (if B is not excited) [32], so calculating them accurately from total energies

becomes even more difficult in larger systems. For the systems investigated in this work, attachment

energies are under a few electronvolts, while total energies are between 104-106 eV. It is thus advantageous

to calculate the energy difference directly: this yields a more balanced description of states.

The equation-of-motion coupled-cluster (EOM-CC) method [33–35] can be used to study multiple

states simultaneously and calculate energy differences directly. According to this approach, target states

|Ψk〉 are generated from the CC reference state by the excitation operator R̂

|Ψk〉 = R̂k |ΨCC〉, (2.41)

where

R̂k =

M∑

m

R̂km =
∑

n

rknρ̂n, (2.42)

9
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EE EA IP

Figure 2.1: Variants of EOM-CC methods

and the choice of operators ρ̂n determines what type of target states are created. Possible choices of ρ̂n
are, for example,

{ρ̂EE
n } = {1̂, â†aâi, â†bâj â†aâi, ...}, (2.43)

{ρ̂EA
n } = {â†a, â†bâj â†a, ...}, (2.44)

{ρ̂IP
n } = {âi, â†bâj âi, ...}. (2.45)

If ρ̂n operators conserve the number of electrons, thus consist of the same number of creation and

annihilation operators (2.43), excited states are generated (see also Figure 2.1). This approach can be used

for calculating excitation energies and is called EOM-EE [36]. In the electron attachment (EOM-EA)

variant [37], ρ̂n operators consist of one more creation operator than annihilation operator (2.44), and

consequently the target states are electron attached states (Figure 2.1). In the ionization potential (EOM-IP)

[38] variant, there is one extra annihilation operator in each ρ̂n (see (2.45)), which creates singly ionized

states in this case (Figure 2.1).

|Ψk〉 are the right eigenfunctions of Ĥ corresponding to eigenvalue EEOM
k , which is the energy of the

excited/ionized/electron attached state

Ĥ|Ψk〉 = EEOM
k |Ψk〉. (2.46)

EEOM
k are also eigenvalues of H̄ with eigenfunctions |Rk〉 = R̂k|ΦHF〉

H̄|Rk〉 = EEOM
k |Rk〉. (2.47)

The excitation/ionization/attachment energy ∆EEOM
k = EEOM

k − ECC is calculated by diagonalizing

H̄ − ECC expressed in the basis of determinants
∑

n

〈Φm|(H̄ − ECC)|Φn〉rkn = ∆EEOM
k rkn. (2.48)

Due to the non-Hermitian nature of H̄ , its right and left eigenfunctions differ. The right eigenvectors

are given by (2.47), while the left eigenvectors are

〈Lk|H̄ = 〈Lk|EEOM
k , (2.49)

with 〈Lk| = 〈ΦHF|L̂k, and the de-excitation operator L̂k defined as

L̂k =

M∑

m

L̂km =
∑

n

lknρ̂
†
n. (2.50)
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Right and left eigenfunctions are related by the biorthogonality condition

〈Lk|Rk′〉 = d δkk′ , (2.51)

where d is usually chosen as 1. For the calculation of ∆EEOM
k , only the right or left EOM amplitudes

have to be determined. However, for the calculation of properties, like gradients, both are needed.

The dimension of the matrix to be diagonalized according to (2.48) is generally very large due to the

large number of determinants even for truncated methods and moderate basis sets. Full diagonalization is

therefore usually not possible, but generally only a small number of states are of interest anyway. The

Davidson algorithm [39] modified for non-Hermitian matrices [40] can be used to calculate the lowest or

some selected eigenstates iteratively.

An important advantage of EOM-CC methods is that the energy difference between the initial and the

target state is calculated directly, this ensures a balanced description of the states that does not exist in

methods where they are calculated independently. Also, the simultaneous calculation of several target

states enables the calculation of coupling terms between interacting states. Furthermore, if the same level

of truncation is used in R̂ as in T̂ , then ∆EEOM
k is size-intensive [32].

The scaling of truncated EOM-CC methods is the same as of truncated CC methods, e.g. N6
bf for

EOM-CCSD, in which the EOM part scales as N6
bf for EE, or N5

bf for EA and IP variants. The cost of

the calculations can be reduced if second order Møller-Plesset perturbation theory (MP2) [41] is used

instead of CCSD for the reference state. The EOM approach is then performed in a similar way as for

EOM-CCSD. This approximate method is called EOM-CCSD(2) or also EOM-MP2, and scales as N5
bf for

EOM-EA/IP-CCSD(2) and N6
bf for the EE variant [42]. EOM-CCSD performs well for states dominated

by singly excited determinants, but higher level terms of R̂ are needed for describing multiply excited

states.

2.4 Non-Hermitian description of resonances

In Section 2.1 it was shown, that by imposing outgoing boundary conditions on the solutions of the TISE,

a decaying resonance arises as a discrete state with complex energy

En = ER,n −
i

2
Γn, (2.52)

where ER is the resonance position and Γ is the resonance width. This means that the TDSE does not

need to be solved for a wave packet for describing resonances, it is enough to calculate only a single state

in the non-Hermitian formalism. However, the exponential divergence of the wave function (2.11) poses a

difficulty, and it is beneficial to transform the wave function into a square-integrable form and utilize the

standard methods and tools of Section 2.3, developed for bound states, for handling resonances as well.

This transformation can be done by analytic continuation of the Hamiltonian into the complex plane.

According to the complex scaling (CS) method [43–46], the coordinates of the Hamiltonian are scaled by

a complex number eiθ. With the correct choice of the scaling parameter θ [16], the resulting Hamiltonian

has the same bound state spectrum, but continuum states are rotated into the complex plane revealing

discrete resonance states. It can easily be seen, that when scaling (2.11)

Ψθ
n(x→ ±∞, t0) = ceikne

iθx = cei|kn|e
−iφeiθx = cei|kn| cos(θ−φ)xe−|kn| sin(θ−φ)x, (2.53)
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the transformed wave function is square-integrable if 0 < θ − φ < π.

Scaling the Hamiltonian can be done either by using real basis functions and scaling the coordinates

of the Hamiltonian operator (usually referred to as direct CS), or by using complex basis functions and

leaving the Hamiltonian operator unchanged (CBF method) [47]. Adding a complex absorbing potential

(CAP) [48, 49] to the Hamiltonian also yields square integrable resonance states [49], and it is known

[50, 51] that specific forms of CAP are related to exterior complex scaling [52]. The CAP method is

discussed in detail in Section 2.4.1.

Application of the direct CS method for molecular systems is more complicated than for atoms,

because it is not straightforward to combine CS with the BO approximation [16]. In principle, both the

electronic and the nuclear coordinates should be scaled, but that would lead to unphysical complex-valued

structural parameters. On the other hand, the electronic coordinates cannot be scaled without scaling the

nuclear coordinates as well, since the electron-nucleus potential is not analytic in the entire space. This

problem can be solved by performing the complex scaling only in the external regions (exterior scaling

and smooth exterior scaling) [52], or by using the complex scaled back-transformation approach [53]. In

the latter approach both the electronic and nuclear coordinates are scaled, the electronic SE is solved for

fixed nuclear coordinates, then the nuclear coordinates are rotated back to the real axis.

CBF and CAP methods do not have the problems of the direct CS method when applying the

BO approximation, with these methods nuclear coordinates are always real. The electronic energy of

resonances is complex-valued within the non-Hermitian formalism, which leads to complex-valued PESs

(CPESs) for resonances. While CAP- and CBF-HF methods yield smooth CPESs, the width of the

resonance does not go to zero at the crossing with its parent state (where it should become stable), and it

was proposed that correlation methods are needed for a consistent CPES [54–56]. Combining the CAP or

CBF method with the EOM-CCSD approach, a balanced description of resonance states and parent states

is achieved, and consequently these methods yield smooth and consistent CPESs [57, 58].

Due to the non-Hermiticity of the CS or CAP Hamiltonian, the c-product [16, 59]

(Φi|Φj) =

∫
Φi(τ)Φj(τ)dτ (2.54)

is used instead of the scalar product (2.5), thus complex conjugation is not performed on the bra state.

The c-product yields a complete set of orthogonal eigenfunctions for the CS or CAP Hamiltonian if

there are no degeneracies. However, the c-norm can be zero for nonzero functions (self-orthogonality)

at degeneracies. In that case, the Hamiltonian is defective and its spectrum is no longer complete. The

self-orthogonality phenomenon and non-Hermitian degeneracies, called exceptional points are discussed

in Section 2.5 and investigated in Publication 4 (Section 3.4).

For a c-normalizable trial wave function Φ, the complex variational principle is valid [59], thus

Ē =
(Φ|Ĥcx|Φ)

(Φ|Φ)
, (2.55)

where Ĥcx denotes a CS or CAP Hamiltonian, is a stationary approximation of the true complex-valued

resonance energy, which justifies the use of standard methods and tools for resonances. However, in

contrast to the standard variational principle (2.29), here Ē is not an upper bound for the energy of the

resonance.
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To understand how the CAP-EOM-CC method can be used for studying processes involving res-

onances, in the next sections the CAP approach and CAP-EOM-CC methods are discussed in more

detail.

2.4.1 The complex absorbing potential method

In the CAP method, an artificial complex potential (−iηW ) is added to the Hamiltonian

Ĥ(η) = Ĥ − iηW, (2.56)

where η is called the CAP strength parameter. Originally, CAPs were introduced in time-dependent

calculations to reduce reflections of the wavepacket from the edges of numerical grids [60]. The role of

the CAP in calculating resonance energies is to change the boundary conditions, and thus turn resonances

into discrete states [48, 49, 61]. In order to avoid large perturbations to the system, the CAP is introduced

only in the outer region and is zero close to the molecule. Requirements for the form of the CAP to

produce discrete resonance states were described by Riss and Meyer [49]. Usually W is chosen as a

purely real, box-shaped quadratic potential

W =
∑

α

Wα, α = x, y, z,

Wα =





0 if |rα − oα| ≤ r0
α,

(|rα − oα| − r0
α)2 if |rα − oα| > r0

α,

where r0
α are the CAP onset or box size parameters. o is the CAP origin, and in this work it is chosen as

the center of nuclear charges

oα =

∑Nn
n Rn,αZn∑Nn
n Zn

. (2.57)

In a complete basis, a CAP of infinitesimal strength would turn the resonance into a discrete state

without introducing perturbation to the system, thus the true resonance energy would be given in the limit

η → 0 [49, 51]. In a finite basis set this no longer applies, and the total error, which comes from the

incomplete representation of the CAP by the finite basis set and the perturbation due to the CAP, has to be

minimized. To get the best estimate for the resonance energy from a finite basis set calculation, the energy

is calculated at a finite, so-called optimal η value (ηopt). A formula proposed by Riss and Meyer [49] for

the calculation of ηopt is

|η dE/dη| = min, (2.58)

which requires the calculation of the energy at different η values. This involves usually a large number of

calculations (typically of the order 10-100), as the magnitude of ηopt varies greatly with system, basis set,

and box size, and thus cannot be estimated in advance. Also, the calculated η trajectories, E(η), can have

quite different shapes. It can happen that there are multiple parameter values that fulfill (2.58) or there

are none at all. A careful investigation of the effects of the CAP parameters by Zuev et al. [62] showed

that results for anionic resonances vary significantly with the applied box size. It was concluded that for

these systems, if box size parameters are chosen as the spatial extent of the wave function of the neutral

molecule
√
〈α2〉, the CAP is well-represented and bound states are perturbed minimally.
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With the following correction scheme the perturbation due to the CAP can be removed in first order of

η [49, 63]:

U = E − ηdE

dη
. (2.59)

The corrected (also called de-perturbed) energy U was shown to be less sensitive to the choice of box size

parameters [62, 63].

In the CAP method the resonance is a discrete state with a square-integrable wave function. This

enables its combination with regular electronic-structure methods, that have been developed for bound

states. The CAP method has been implemented for density-functional theory [64], algebraic diagrammatic

construction [65, 66], multireference configuration-interaction [67, 68], multiconfigurational quasidegen-

erate perturbation theory [69], symmetry-adapted-cluster configuration-interaction [70] (SAC-CI) (which

is similar to EOM-CC), and EOM-CC [62, 71] methods. These introduce different levels of static and

dynamic electron correlation, and have different computational cost, thus can be used accordingly.

2.4.2 Complex absorbing potential coupled-cluster methods

CAP-EOM-CC methods can be created by introducing the CAP either at the HF level or at the CC level

[62, 71]. According to the implementation of Zuev et al. [62], which is used in this work, a CAP-HF

calculation is performed first. The difference from regular HF is that now the c-product (2.54) is used

instead of the scalar product (2.5), so that the variational principle is still valid in the CAP case [59]. Due

to the use of the c-product, routines for real matrices have to be replaced by routines for general matrices.

Solving the Roothaan-Hall equations (2.34) with a modified Fock matrix that contains the CAP results in

complex MO coefficients and complex CAP-HF energy, that depend on the CAP parameters. AO integrals

are real-valued, but transformation to the MO basis with complex coefficients results in complex MO

integrals. The CC reference state is computed by solving the CC equations (2.37) which yield complex

amplitudes. Usually a stable state is chosen as the CC reference state and resonance states are created by

the EOM methods. In this case, the CAP-HF and CAP-CC energies have an imaginary part only because

bound states are perturbed by the finite CAP. Resonances are then calculated from the eigenvalue equation

of H̄ in a similar way as in (2.48), using the Davidson algorithm [39] modified for complex non-Hermitian

matrices [62]. The resulting EOM amplitudes are also complex. The CAP-EOM-CC energy is calculated

for a range of η values and ηopt is then determined by (2.58). The resonance position and width are given

by the real and imaginary parts of the energy at the CAP strength value ηopt.

Biorthonormalization of left and right eigenstates according to the c-product (2.54) leads to the

following conditions for the EOM amplitudes

Re(Lk|Rk′) =
∑

n

(Re(lkn) Re(rk
′
n )− Im(lkn) Im(rk

′
n )) = δkk′ , (2.60)

Im(Lk|Rk′) =
∑

n

(Re(lkn) Im(rk
′
n ) + Im(lkn) Re(rk

′
n )) = 0. (2.61)

CAP-EOM-CC methods have the same scaling of the computational cost as regular EOM-CC methods,

but the prefactor is larger due to the complex algebra applied, and multiple calculations are needed to

determine ηopt. Also, storage requirements are two times larger due to the complex quantities. So far

CAP-EOM-CCSD [62, 71], CAP-EOM-CCSD(2) and the non-iterative triples approximation CAP-EOM-

CCSD(T)(a)∗ [72] have been implemented.
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2.4.3 Characterization of resonances

For correlated wave functions ionization/electron attachment can involve multiple MOs. Dyson orbitals

are one-electron quantities that can be used to charaterize ionized or electron attached states [73, 74].

For (auto)ionizing states the Dyson orbital (Φd) can be interpreted as the wave function of the leaving

electron. It is calculated as the overlap between Ne and Ne − 1 electron wave functions, so in the case of

an anionic shape resonance, the overlap of the anionic resonance wave function and the wave function

corresponding to its decay channel

Φd(1) =
√
Ne

∫
ΨNe(1, ..., Ne)Ψ

Ne−1(2, ..., Ne)d2...dNe. (2.62)

2.5 Special points on potential energy surfaces

Within the BO approximation, the nuclear and electronic motions are separated, and by solving the

electronic SE, a PES is formed which affects the motion of the nuclei (see Section 2.2). With the help

of non-Hermitian transformations like complex scaling, adding a complex absorbing potential or using

complex basis functions, resonances can be treated as discrete, square-integrable states with complex

energy (see Section 2.4). The CPES of a resonance represents the dependence of the position and the

width of a resonance on nuclear coordinates.

In Section 2.2, it was discussed, that adiabatic electronic states can mix due to vibrations, and

transition is most probable near intersections of the interacting surfaces. The interaction between different

resonances and between a resonance and its parent state plus a free electron can result in interesting

phenomena like dissociative electron attachment [8, 9, 11], and can explain electron energy loss or

photoelectron spectra [75–77].

The dimensionality of the CPES grows quickly with the size of the system under consideration: the

number of nuclear degrees of freedom N is equal to 3Nn − 6 for nonlinear molecules, and 3Nn − 5

for linear molecules. This means that studying the CPES can become quite complicated for polyatomic

systems. However, there are special points on the CPES, such as minima (equilibrium structures) and

surface crossings (see Figure 2.2) that can be used to make predictions for the nuclear motion.

reaction coordinate reaction coordinate

R
e(
E

)

-2
Im

(E
)=
Γ

Figure 2.2: Sections of multidimensional (C)PESs corresponding to two metastable states (black curves)
and their parent state (gray curve) along a fictional reaction coordinate. Special points on these surfaces
are resonance equilibrium structures (blue dot), exceptional points between two resonances (red dot),
and crossings between the resonance and its parent state (green dot). After crossing its parent state, the
resonance becomes a stable state with zero resonance width.
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Molecules trapped in minima can be subject to electron loss for a longer time than those that

dissociate. Resonance-resonance crossings, called exceptional points (EPs) [78] increase the probability

of nonadiabatic transitions between two states, which can lead to new pathways for deactivation [22, 79].

The position of crossings between a resonance and its parent state is also interesting for deactivation

pathways, since, after crossing its parent state the resonance becomes a stable state, and will no longer

be subject to autodetachment. This type of crossing is important for estimating the activation energy for

DEA routes [80, 81], which can lead to formation of stable anionic fragments. It was proposed [82], that

at this type of crossings a low-energy electron can get attached to a neutral molecule with high probability.

Nonadiabatic coupling between the anionic resonance state and the parent state + free electron state

might also become important in the autoionization process [82–84]. Experiments suggest that this kind of

coupling has a noticeable effect on the recorded electron energy loss and photoelectron spectra [75–77].

These special points can be located on multidimensional CPESs efficiently by applying analytic energy

gradients (see Section 2.5.2), so it is advantageous if an analytic gradient can be defined for the method to

be applied for molecular resonances. It is also important to have a balanced treatment of states, as a small

shift of a CPES can affect the position of crossings strongly and can lead to different conclusions about

the decay mechanism.

2.5.1 Crossing conditions

The derivative coupling introduced in Section 2.2 enables the transition from one adiabatic electronic

state to another. It depends on the inverse of the energy difference of the states (see (2.28)), so when the

separation of states is small, there is a high probability of transition. It is thus important to locate points

where the surfaces cross. By learning more about the number and the nature of conditions that need to be

fulfilled to arrive at a crossing, efficient methods can be constructed for locating intersections.

For the derivation of the crossing conditions of two states, it is advantageous to switch to a (quasi)diabatic

basis. In the diabatic basis the nuclear kinetic energy is diagonal and the coupling is through the potential

only. Complete diabatization is not possible, but the strongly interacting states can be decoupled from

the other states by using a quasidiabatic representation [19, 20]. In the case of two coupled quasidiabatic

states, the nuclear kinetic energy is approximately diagonal and the electronic Hamiltonian describes the

interaction of the two states

H =

(
ε1 ω

ω ε2

)
, (2.63)

where ε1,2 are the diabatic energies and ω is the diabatic coupling between the two states. The eigenvalues

of matrix H are:

E1,2 =
ε1 + ε2

2
±
√

(ε1 − ε2)2 + 4ω2

2
. (2.64)

In the case of two interacting bound states, the diabatic energies and coupling are real-valued, so the

conditions for degeneracy are: ε1− ε2 = 0 and ω = 0 [85, 86]. Thus the states can be degenerate in N −2

dimensions, and the degeneracy is lifted in the so called branching plane [87]. This type of crossing is

called a conical intersection (CI) due to the double-cone shape of the PESs in the branching plane (Figure

2.3). The energy gap of the two states is linear close to the CI. At the CI only the eigenvalues coalesce, the

wave functions of the two states remain orthogonal. The minimum-energy crossing point (MECP) of two

interacting states is of special importance in excited state processes, where its accessibility determines the
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branching planeparameter space

linear gap

ECI seam

CI

branching plane

Figure 2.3: Hermitian degeneracy seam of interacting bound states in a 3-dimensional parameter space
and behavior of the eigenvalues in the branching plane.

probability of radiationless decay, and its geometry helps in finding the vibrational modes that are most

important in the transition [88].

When describing interacting resonances in the non-Hermitian formalism, matrix H of (2.63) is

complex-valued. The degeneracy of real and imaginary parts of the energy is called an exceptional point

(EP). At this point, the two conditions that have to be fulfilled [79, 89] are

Re(
√

(ε1 − ε2)2 + 4ω2) = 0, (2.65)

Im(
√

(ε1 − ε2)2 + 4ω2) = 0. (2.66)

This means that there can be an N − 2 dimensional EP seam. From the EP seam, two N − 1

dimensional degeneracy seams depart (Figure 2.4): one of the real parts, which is defined by the condition

(2.65), and one of the imaginary parts defined by (2.66). The energy gap is now a square-root function

of the distance from the EP in its vicinity. Due to the topology of the EP, when encircling the EP, it is

possible to arrive at a state different from the initial state [90–92]. For other interesting properties of EPs

see, e.g., References [93–97].

branching planeparameter space

square-root gap

Re(E)

Im(E)

EP seam

Im degeneracy

Re degeneracy

EP

Figure 2.4: Non-Hermitian degeneracy seam of interacting resonances in a 3-dimensional parameter space
and behavior of the eigenvalues in the branching plane.
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CHAPTER 2. THEORETICAL BACKGROUND

In contrast to a CI of bound states, at an EP the Hamiltonian becomes defective as the two eigenfunc-

tions coalesce. The wave function is self-orthogonal at the EP, thus wave function amplitudes diverge.

This behavior can be utilized to check if an EP is in the vicinity by calculating the phase rigidity [98–101],

which is the c-norm divided by the regular norm for a given state. In Publication 4 (Section 3.4), the phase

rigidity for truncated CAP-EOM-CC methods was defined, and its behavior near EPs was studied. The

location of EPs, more specifically the location of the minimum-energy EP (MEEP) and its accessibility is

interesting for nonadiabatic processes involving resonances. The nonadiabatic coupling is singular both at

CIs and at EPs, so these points act as funnels between (C)PESs. A method for locating EPs and MEEPs

for autoionizing resonances was presented in Publication 4 (Section 3.4).

For states that have a different number of electrons, the coupling term ω of (2.63) is zero, and the only

condition that has to be fulfilled for a degeneracy is that the energy difference is zero. Non-interacting

states thus can be degenerate inN −1 dimensions, and there is one coordinate along which the degeneracy

of the states is lifted (see Figure 2.5). The location of crossings between an anionic state and its parent state

is important for assessing the probability of a certain stabilization route. The MECP is of special interest,

as its structure and energy can provide information about the accessibility of a specific dissociation route,

for example. This type of crossing also comes up in the modeling of resonance and parent state + free

electron interactions by EOM-CC in Publication 3 (Section 3.3).

eigenvalue branching parameter space

E

crossing seam

MECP

degeneracy lifted

Figure 2.5: Degeneracy seam of non-interacting states in a 3-dimensional parameter space and behavior
of the eigenvalues in a plane orthogonal to the crossing seam.

2.5.2 Locating equilibrium structures and surface crossings

To locate equilibrium structures, exceptional points or crossing points on multidimensional surfaces

efficiently, gradients of the relevant states are essential. In this section, it is discussed how the gradients

can be used to find such points in the case of bound states, and what additional quantities are needed for

fast optimization algorithms. Methods for resonances were presented in Publications 1, 3 and 4 (Sections

3.1, 3.3 and 3.4).

The electronic energy is a function of nuclear coordinates and can be expanded around a point R0 as

Ek(R) = Ek(R0) + GT
k (R−R0) +

1

2
(R−R0)THk(R−R0) + ..., (2.67)

where Gk is the gradient vector, that consists of the first derivatives with respect to nuclear coordinates

Gknα =
dEk

dRnα
, (2.68)
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and Hk is the Hessian matrix, which consists of second derivatives

Hk
nα,n′α′ =

d2Ek
dRnαdRn′α′

. (2.69)

For sake of simplicity we omit the index for electronic states (k) in the following, unless it is essential for

understanding a method.

At stationary points G is zero, and the sign of the eigenvalues of H can be used to differentiate between

minima and saddle points. Equilibrium structures are local minima, here all the eigenvalues of H are

positive, while transition states are first-order saddle points for which H has one negative eigenvalue.

There are different optimization techniques for locating stationary points, the most well-known is

the Newton-Raphson method. In this method, the expansion in (2.67) approximated to second order is

differentiated, which yields the Newton-Raphson step si = Ri+1 −Ri in iteration i as

si = −(Hi)−1Gi =

Nn∑

j

−f ij
bij

uij , (2.70)

where uij are the eigenvectors and bij are the eigenvalues of the Hessian and f ij is the projection of the

gradient on the jth eigenvector (f ij = (uij)TGi).

The Newton-Raphson method leads to a minimum if the Hessian is positive definite, but the optimiza-

tion can end up in a transition state if the character of the Hessian changes. To guide the search to where

the Hessian has the desired character, shift parameters λi can be used

si =

Nn∑

j

−f ij
bij − λi

uij . (2.71)

According to the Eigenvector-Following algorithm [102], which uses the Rational Function approach

[103], λi are calculated iteratively from

λi =

Nn∑

j

(f ij)
2

bij − λi
. (2.72)

To avoid the calculation of second derivatives, H is usually approximated in the first step of geometry

optimizations, and in the subsequent steps it is updated. An often used updating scheme for minimizations

is the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [104–107]. The Hessian of step i+ 1 is

calculated from the Hessian of the previous step and the current and previous gradients as

Hi+1 = Hi +
∆Gi(∆Gi)T

(∆Gi)Tsi
− Hisi(si)THi

(si)THisi
, (2.73)

where ∆Gi = Gi+1 −Gi.

For the location of surface crossings one of the simplest methods is the direct method of Bearpark et

al. [108]. According to this method, the MECP can be located by using the gradients (G1 and G2) and

the derivative coupling vector (g12 according to (2.28)) corresponding to the two interacting states.

At a CI, the gradient difference vector x12 = G2 −G1 and g12 span the branching plane (depicted in

Figure 2.3). The MECP optimization is done by minimizing the energy difference of the two states and

minimizing the energy of the second state in the (N − 2)-dimensional space orthogonal to the x12 − g12

plane simultaneously. The former can be performed by applying a gradient defined as

f = 2(E2 − E1)
x12

||x12||
, (2.74)
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CHAPTER 2. THEORETICAL BACKGROUND

which goes to zero when a CI is reached. In order to minimize the energy on the (N − 2)-dimensional CI

seam, vectors x12 and g12 are projected out of the gradient of the second state by projector P

g̃ = PG2. (2.75)

The MECP optimization can be done by using the sum of the previously defined gradients

ḡ = f + g̃ (2.76)

in a similar way as G is used for locating equilibrium structures.

If only a CI on the crossing seam is needed and not necessarily the MECP, it is enough to use gradient

f , the calculation of the derivative coupling and g̃ are not needed. In the case of crossings between states

of different symmetry or multiplicity (depicted in Figure 2.5), the derivative coupling is zero, thus P
needs to project out vector x12 only.

2.6 Analytic energy gradients

In the previous section, it was seen that the first derivatives with respect to nuclear coordinates are needed

for locating minima and CIs efficiently on multidimensional PESs. Here computation of the gradient

vector for bound states is reviewed, and in Publication 1 (Section 3.1) the calculation of the gradient

vector for resonances is discussed.

One approach to calculate gradients is numerical differentiation, which requires the calculation of

energies at 6Nn displaced geometries. This can mean a lot of single-point energy calculations if the

system is large. Analytic differentiation is more efficient, because in this case the derivative is given by

an analytic expression that requires only one, though more involved calculation. The implementation

of analytic derivatives is usually a larger programming challenge than that of numerical derivatives, but

calculations employing analytic derivatives have an overall lower computational cost.

To obtain the elements of the gradient vector, the dependence of the Hamiltonian on nuclear coordinates

and the dependence of the wave function on nuclear coordinates through wave function parameters ξi
have to be considered

Gnα = 〈Ψ| ∂Ĥ
∂Rnα

|Ψ〉+ 2
∑

i

〈Ψ|Ĥ|∂Ψ

∂ξi
〉 ∂ξi
∂Rnα

. (2.77)

The dependence on nuclear coordinates can be explicit as in the Hamiltonian, and in basis functions

or implicit as in MO coefficients and CC amplitudes. The derivatives of Gaussian basis functions

are straightforward to calculate, and there are different schemes for calculating one- and two-electron

integral derivatives efficiently [109]. Variational parameters do not contribute to the gradient as for them

〈Ψ|Ĥ| ∂Ψ
∂ξi
〉 = 0 holds, but the derivatives of non-variational parameters contribute. The calculation of the

derivatives of non-variational parameters can be replaced by solving a perturbation-independent linear

equation according to the Z-vector method [110]. This can be demonstrated by employing the method

of Lagrange multipliers [111–113]. According to this method, the local extrema of a function subject

to certain constraints can be found as a stationary point of the Lagrangian L, which is variational in all

parameters.
dE(Rnα, ξi)

dRnα
=
∂L(Rnα, ξi, λi)

∂Rnα
(2.78)

20



2.6. ANALYTIC ENERGY GRADIENTS

The Lagrangian is built by adding the constraints gi = 0 multiplied by Lagrange multipliers λi to the

function to be optimized

L(Rnα, ξi, λi) = E(Rnα, ξi) +
∑

i

λigi(Rnα, ξi) (2.79)

The Lagrange multipliers are determined by making the Lagrangian stationary with respect to ξi

∂L

∂ξi
= 0, for all i. (2.80)

This way the calculation of the derivatives of non-variational parameters for the gradient is avoided,

and only the Lagrange multipliers have to be determined, which are independent of the perturbation.

According to the 2n+ 1 rule, to calculate the (2n+ 1)th energy derivative, it is sufficient to calculate the

nth derivative of the parameters, while the nth derivative of Lagrange multipliers appears only at order

2n+ 2 [111].

In the following sections the Lagrange formulation of CC and EOM-CC gradients is shown. The

modifications that are needed for the CAP-EOM-CC gradient are presented in Publication 1 (Section 3.1).

2.6.1 Coupled-cluster analytic gradient

To minimize the CC energy (2.40) under multiple constraints, the following Lagrangian can be used

LCC =〈ΦHF| H̄ |ΦHF〉+
∑

n

λn〈Φn|H̄|ΦHF〉+
∑

a

∑

i

Zai
∑

µν

C∗µaFµνCνi

+
∑

pq

Ipq(
∑

µν

C∗µpSµνCνq − δpq). (2.81)

The first constraint that appears in (2.81) is that the CC equations (2.37) have to be fulfilled. The

corresponding Lagrange multipliers λn can be calculated by making the Lagrangian stationary with

respect to all CC amplitudes
∂LCC

∂tm
= 0 for all m, (2.82)

which yields the so-called Λ equations

〈ΦHF|(1 + Λ̂)(H̄ − ECC)|Φm〉 = 0 for all m, (2.83)

where the de-excitation operator Λ̂ is defined as

〈ΦHF|Λ̂ =
∑

n

λn〈Φn|. (2.84)

The CC energy is not stationary with respect to orbital rotations, so additional constraints need to be

introduced to achieve orbital relaxation. These additional constraints are the Brillouin condition and the

orthonormality condition of the MOs (second and third constraints in (2.81)).

The changes of the MO coefficients with nuclear coordinates can be parametrized by

∂Cµp
∂Rnα

=
∑

q

Cµq
∂Uqp
∂Rnα

, (2.85)

and the Lagrange multipliers Ipq and Zai are determined by requiring the derivatives of L with respect to

all elements of U to be zero
∂LCC

∂Uqp
= 0, for all p and q. (2.86)
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These conditions yield the Z-vector equations for Zai.

Following (2.78), the gradient vector can be written as

Gnα =
∂L

∂Rnα
= 〈ΦHF|(1 + Λ)e−T̂ ĤxeT̂ |ΦHF〉

+
∑

a

∑

i

Zai
∑

µν

C∗µa

(
∂hµν
∂Rnα

+
∑

σρ

DHF
σρ

∂〈µσ||νρ〉
∂Rnα

)
Cνi

+
∑

pq

Ipq
∑

µν

C∗µp
∂Sµν
∂Rnα

Cνq. (2.87)

where Ĥx is the derivative of the Hamiltonian that does not include contributions from orbital relaxation.

This formula does not include derivatives of amplitudes, coefficients or Lagrange multipliers [114], in

accordance with the 2n+ 1 and 2n+ 2 rules [111]. The gradient can be rewritten as the contraction of

density matrices with integral derivatives [115]

Gnα =
∑

µν

Dµν
∂hµν
∂Rnα

+
∑

µνσρ

Γµνσρ
∂ 〈µσ||νρ〉
∂Rnα

+
∑

µν

Iµν
∂Sµν
∂Rnα

+
∂Vnn

∂Rnα
, (2.88)

where D is the effective one-electron density matrix, Γ is the two-electron density matrix, and I is the

generalized energy-weighted density matrix, all expressed in the basis of AOs. Expression (2.88) is

general for HF, MPn and CC methods, and the difference between methods manifests itself only in the

definition of the density matrices. Detailed expressions for CCSD gradients are given in References [116]

and [117].

In summary, to calculate the CC gradient, the MO coefficients and CC amplitudes are determined,

then the Λ and Z-vector equations are solved. This enables the construction of the density matrices,

which are then transformed to the AO basis, and finally they are contracted with integral derivatives. The

computational cost for solving the Λ-equations is comparable to the cost of solving the CC equations,

while the costs of computing the density matrices and solving the Z-vector equations are much smaller

[117], thus a CC gradient calculation costs approximately twice as much as an energy calculation.

2.6.2 Equation-of-motion coupled-cluster analytic gradient

The EOM-CC method is bivariational for r and l amplitudes, but, just like the CC method, it is not

variational for t amplitudes and MO coefficients. The EOM-CC Lagrangian can be written as

L =〈ΦHF|L̂ H̄ R̂|ΦHF〉 − θ(〈ΦHF|L̂R̂|ΦHF〉 − 1) +
∑

n

ζn〈Φn|H̄|ΦHF〉+
∑

a

∑

i

Zai
∑

µν

C∗µaFµνCνi

+
∑

pq

Ipq(
∑

µν

C∗µpSµνCνq − δpq), (2.89)

where the first term is the EOM-CC energy and the second term comes from the biorthonormality condition.

The Lagrangian is stationary with respect to r and l amplitudes if θ = EEOM. The gradient requires

calculation of both right and left states. In line with the 2n+ 1 rule, derivatives of t amplitudes are not

needed, just a linear equation has to be solved [118] for ζn, analogous to the Λ equations (2.83). The

gradient can be written in the form (2.88), with density matrices determined as given in Reference [119].

Gradient formulas and implementations were presented for EE, IP, and EA variants [38, 120].
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3 Results

In this chapter, the main results of this PhD work are presented. A short introduction and summary is

given before presenting each published article. The corresponding Supporting Information is given in

Chapter 5 for each article.

All methods and applications presented in these articles depend upon the analytic CAP-EOM-CC

gradient presented in Publication 1 (Section 3.1). The availability of analytic gradients opens up many

possibilities to study the CPES of resonances. In this and the subsequent publication (Section 3.2), it was

shown how the real part of the gradient can be used to locate equilibrium structures of resonances, and what

accuracy can be expected with the approximate methods CAP-EOM-CCSD and CAP-EOM-CCSD(2) in

calculating equilibrium structures and adiabatic electron affinities. Different diffuse basis sets were also

investigated in order to come up with an affordable variant that performs well for resonances.

The real part of the gradient is also useful for locating crossings between the real parts of CPESs, as

Publication 3 (Section 3.3) demonstrates. An interesting application is doing a preliminary optimization of

the MECP between anionic and neutral states, which is then completed by a regular EOM-CC optimization.

This can be used to verify the accessibility of DEA pathways [80, 81], and for understanding electron

energy loss spectra [75, 76, 82, 83].

In Publication 4 (Section 3.4), it was shown that the complex-valued gradient can be used to locate

non-Hermitian degeneracies, where both real and imaginary parts of the energies become degenerate. The

location of EPs and MEEPs is important for modeling nonadiabatic processes, because the nonadiabatic

coupling is large nearby, and it is singular at the EP.

EPs might also cause peculiar behavior of the states, as is known for other dissipative systems [90, 121],

and so they have to be further investigated to assess their impact on processes involving autoionizing states.

Another promising project is the calculation of derivative couplings between resonances, which also

utilizes analytic gradients. The coupling as a function of nuclear configuration is crucial for simulating

spectra and modelling multistate phenomena like DEA. This project is shortly discussed in Section 3.5.

Apart from the methodological developments, the systems chosen for demonstrative and benchmark

calculations are of interest themselves. Formaldehyde, formic acid, hydrogen cyanide and acrylonitrile

are present in interstellar medium [122–125], so their reactions with free electrons are interesting for

understanding interstellar chemical evolution. Chloroethylene is a model system for biologically relevant

halogenated substances that can be used as sensitizers in radiation therapy [10]. Chloro-substituted

ethylenes are also of special interest because they are common pollutants [126] that need to be dehalo-

genated to decrease their toxicity [127].
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3.1 Analytic gradients for complex absorbing potential methods

This article lays the foundation of the methods presented in this and subsequent publications for the

optimization of equilibrium structures and crossings of resonances. The analytic gradient can be used

(as described in Section 2.5.2) to perform geometry optimization of molecules that are too large to study

by scans of the CPES, and in this way it enables new applications of the CAP-EOM-CC method. The

analytic gradient formula presented in this article is general for HF, MPn and CC methods with a box-type

quadratic CAP, but extension to other types of CAP is also possible. Implementations of analytic gradients

for CAP-HF, CAP-CCSD, CAP-EOM-CCSD and CAP-EOM-CCSD(2) methods, for the EE, EA and IP

variants of the EOM method, were presented in this publication and in Publication 2 (Section 3.2). Up to

date these are the only methods that yield the position and width of resonances simultaneously and have

analytic gradients implemented, and in this way they are a big step forward in investigating processes

involving resonance states of polyatomic molecules.

The article shows that the advantage of the CAP-EOM-CC method is not only that it usually gives

smooth and consistent CPESs, but also that the simple form of the Hamiltonian enables analytic differ-

entiation of the energy, when considering CAP parameters as slowly changing. The analytic gradients

of regular CC and EOM-CC methods are well-known (see Sections 2.6.1 and 2.6.2) and available in

many quantum chemistry packages. The complex Hamiltonian in the CAP version of these methods

results in complex-valued density matrices, which are calculated in a straightforward manner [62]. The

back-transformation of density matrices from MO to AO basis involves the complex-valued MO coefficient

matrix, which increases the prefactor of the computational cost of this step, but does not change the

scaling. A big advantage of CAP methods in the implementation of the gradient is that AO integrals, and

thus integral derivatives as well, are real, so only the adequate parts of the complex AO density matrices

need to be considered for calculating the real and imaginary gradients. In contrast, for CBF methods,

the implementation of analytic energy gradients is expected to be significantly more complicated, as

integral derivatives involving complex basis functions need to be evaluated. With the direct CS method, as

discussed in Section 2.4, already the construction of a CPES is difficult.

The dependence of the CAP on nuclear coordinates results in two extra terms in the gradient. These

are easily evaluated numerically, which also enables future extensions to other forms of CAP. The indirect

dependence of the energy on nuclear coordinates through the CAP strength and box size parameters is not

taken into account in the analytic gradient, and a scheme including regular updating of the parameters is

proposed. This provides a consistent way of choosing the parameters.

This publication presents only the real part of the gradient, whose application is straightforward; it

can be used in a similar way as the energy gradient of bound states (see Section 2.5.2), e.g., for locating

equilibrium structures and crossings between real parts of CPESs. An application of the latter is the initial

optimization of resonance – parent state crossings (Publication 3, Section 3.3). The imaginary part of

the gradient describes the dependence of the resonance width on nuclear coordinates and it proves to be

essential for locating EPs (Paper 4, Section 3.4), which act as funnels between resonance states, like CIs

do between bound states.
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The general theory of analytic energy gradients is presented for the complex absorbing potential
equation-of-motion coupled-cluster (CAP-EOM-CC) method together with an implementation within
the singles and doubles approximation. Expressions for the CAP-EOM-CC energy gradient are derived
based on a Lagrangian formalism with a special focus on the extra terms arising from the presence
of the CAP. Our implementation allows for locating minima on high-dimensional complex-valued
potential energy surfaces and thus enables geometry optimizations of resonance states of polyatomic
molecules. The applicability of our CAP-EOM-CC gradients is illustrated by computations of the
equilibrium structures and adiabatic electron affinities of the temporary anions of formaldehyde,
formic acid, and ethylene. The results are compared to those obtained from standard EOM-CC
calculations and the advantages of CAP methods are emphasized. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4974094]

Electron attachment to molecules with negative verti-
cal electron affinity (VEA) leads to the formation of tempo-
rary anions that can decay through autodetachment and often
exhibit distinctly different properties and reactivity patterns
than the parent neutral molecules.1,2 The so opened uncom-
mon reaction channels play a role in unwanted processes such
as radiative DNA damage3,4 but can also be exploited produc-
tively, for example, in electron-induced reactions.5–7 These
phenomena and the underlying physical mechanisms such as
dissociative electron attachment1,8 or interatomic Coulom-
bic decay9 cannot be understood in a fixed-nuclei picture but
require to take into account the coupling between electronic
and nuclear degrees of freedom. The importance of nuclear
motion for the understanding of temporary anions is also evi-
dent in photodetachment,10,11 electron transmission,12,13 and
electron-impact spectra14–16 that feature vibrational structure
and thereby allow for the determination of adiabatic electron
affinities (AEAs).

The theoretical treatment of temporary anions is chal-
lenging because they belong to the continuum and cannot be
associated with discrete eigenstates in the Hermitian domain
of the molecular Hamiltonian.17 By means of the Siegert
formalism,17–19 it is, however, possible to associate tempo-
rary anions with adiabatic resonance states with complex
energy. This allows for a characterization in analogy to bound
states and, in particular, the construction of complex-valued
potential energy surfaces (CPESs)20 by invoking the Born-
Oppenheimer approximation. The real part of a CPES can be
interpreted similarly to the PES of a bound state, whereas the
imaginary part yields the local decay rate as a function of
molecular structure.20–22

CPESs of several diatomic and triatomic temporary
anions, such as N−2 ,23–29 H2O�,30 and CO−2 ,31 have been
studied previously, but little is known about the CPESs of
polyatomic species. This is because the efficient determina-
tion of minima, transition states, conical intersections, etc. on

high-dimensional CPES is feasible only by means of ana-
lytical gradients, which have not been available so far for
any method for resonance states. Since analytical gradients
have been derived and implemented for numerous bound-state
electronic-structure methods, including Hartree-Fock (HF),32

coupled-cluster (CC),33,34 and equation-of-motion (EOM)-CC
theory,35 a possible solution is to apply these methods to res-
onances. This has been done, for example, for the benzene
radical anion36 and the cyclooctatetraene dianion37 but is not
satisfying as the metastable nature of the resonance state is
neglected entirely.

In this Communication, we present the theory of ana-
lytic gradients for the complex absorbing potential (CAP)-
EOM-CC method,38–41 which enables the determination of
equilibrium structures of polyatomic temporary anions. While
Siegert energies can be obtained using different techniques
such as straight complex scaling (CS),42–44 exterior scal-
ing (ES),45 complex basis functions (CBF),46,47 stabilization
methods,48,49 and CAPs50,51 that can be further combined with
different electronic-structure methods, CAP-EOM-CC holds
several distinct advantages: First, and in contrast to ES and
CBF approaches, evaluation of the energy gradient does not
require non-standard two-electron integral derivatives. Sec-
ond, the wave functions of a temporary anion and its parent
neutral state are obtained as eigenfunctions of the same Hamil-
tonian in CAP-EOM-CC, which ensures that the imaginary
part of a CPES is zero if and only if its real part is below the
PES of the parent neutral state.29 EOM-CC also offers further
advantages such as an unbiased description of the target states
by taking account of dynamical and non-dynamical electron
correlation at once.

In CAP methods, a purely imaginary potential is added
to the usual molecular Hamiltonian H, which leads to a non-
Hermitian Hamiltonian,

H(η) = H − iηW . (1)

0021-9606/2017/146(3)/031101/5/$30.00 146, 031101-1 Published by AIP Publishing.
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Here, η is the CAP strength parameter and W is in the following
chosen to be of the form:

W =
∑

α

Wα, α = x, y, z, (2)

Wα =

{
0 if |rα − oα | ≤ r0

α,

(|rα − oα | − r0
α)

2
if |rα − oα | > r0

α,
(3)

with r0
α as the box size parameters and the vector o = (ox, oy,

oz) as the origin of the CAP. In our computational protocol,
we choose r0

α as the spatial extent of the wave function of
the neutral molecule (

√〈
α2〉)40 and o as the center of nuclear

charges, that is,

oα =

∑
k Rk,αZk∑

k Zk
, (4)

where Rk,α and Zk are the nuclear coordinates and nuclear
charges, respectively. By this choice of o we ensure that the
molecule is not displaced relative to the CAP during a geom-
etry optimization, which could happen otherwise if o was
defined independently of the nuclear coordinates. Note that
the molecule can still rotate relative to the CAP unless this
would break spatial symmetry.52

Inserting Eq. (1) into the Schrödinger equation leads to
a non-Hermitian eigenvalue problem, from whose complex

eigenvalues E = ER − iΓ/2 the resonance positions ER and
widths Γ are obtained. In CAP-EOM-CC, the resonance wave
function is parametrized as |Ψ) = R eT |ΦHF), where |ΦHF)
is the CAP-HF wave function of the reference state that we
choose as the ground state of the neutral molecule, T is the
cluster operator, and R creates the target states. For tem-
porary anions, the CAP-EOM-EA-CC variant is employed,
where R describes the attachment of an electron to the neutral
molecule. T and R are defined and determined in analogy to
standard EOM-CC theory,53–55 but we use parentheses instead
of chevrons to indicate the c-product.56,57 When |Ψ) is repre-
sented in a complete basis, the energy calculated with the CAP
corresponds to the exact resonance energy in the limit η → 0.51

In a finite basis set, however, an optimal finite ηopt exists that
minimizes the error introduced by the CAP. ηopt is usually
determined based on perturbation theory by minimizing the
expression |η dE/dη |.51

To derive an expression that allows for the efficient eval-
uation of the CAP-EOM-CC energy gradient, we employ
the Lagrangian technique.58,59 Following the same steps
as in standard CC gradient theory, we finally arrive at
the following expression for the Lagrangian in the atomic-
orbital (AO) basis that is valid for any CAP-CC or CAP-
EOM-CC model in which the CAP is introduced at the HF
level:

L =
∑

µν

DHF
µν

(
hµν − i η Wµν

)
+

1
2

∑

µνσρ

DHF
µνDHF

σρ〈µσ | |νρ〉 +
∑

µν

IHF
µν Sµν

+
∑

µν

DCC
µν

(
fµν − i η Wµν

)
+

∑

µνσρ

ΓCC
µσνρ〈µσ | |νρ〉 +

∑

µν

ICC
µν Sµν +

∑

α

λα

(∑
k Rk,αZk∑

k Zk
− oα

)
+ Vnuc. (5)

Here, hµν , fµν , and Sµν are the elements of the one-
electron Hamiltonian, the Fock matrix, and the overlap matrix,
〈µσ | |νρ〉 denotes antisymmetrized two-electron integrals,60

and Vnuc is the nuclear repulsion energy. Whereas all these
quantities are real-valued, the effective one-electron, two-
electron, and generalized energy-weighted density matrices
D, Γ,61 and I are complex-valued. Quantities labeled with
superscripts “HF” and “CC” refer to contributions due to
the response of the CAP-HF and the CAP-CC/CAP-EOM-
CC wave function, respectively. The expressions for the latter
quantities depend on the employed CC/EOM-CC model with
no modifications required due to the CAP.34,35 We note that
the CAP-HF Lagrangian is obtained from Eq. (5) by setting
all “CC” quantities to zero.

Eq. (5) includes two kinds of extra terms compared to
the regular CC/EOM-CC Lagrangian: The contribution of the
CAP to the energy (−i η

∑
µν(DHF

µν +DCC
µν )Wµν) and an extra

constraint to account for the dependence of the CAP origin
on the nuclear coordinates. To obtain this latter term, Eq. (4)
is rearranged and multiplied with Lagrange multipliers λα.
By requiring L to be stationary with respect to o, we
obtain

λα = −i η
∑

µν

(
DHF
µν + DCC

µν

) (
∂Wα

∂oα

)

µν

, (6)

∂Wα

∂oα
=


0, if |rα − oα | ≤ r0

α,
−2 (rα − oα − r0

α), if (rα − oα) > r0
α,

2(−rα + oα − r0
α), if (rα − oα) < −r0

α ,
(7)

where we exploit that only the terms containing the CAP or
the CAP origin depend explicitly on o in Eq. (5).

In addition to the CAP origin, L also depends on the box
size parameters and the CAP strength. Since ηopt and r0

α in turn
depend on the nuclear coordinates, further constraints should
be included in L in principle. However, in our current compu-
tational protocol, which is described further below, we keep
ηopt and r0

α constant while optimizing the geometry so that
there is no need for additional constraints.

An element of the gradient vector dE/dRn,α correspond-
ing to nucleus n and α = x, y, z can then be obtained by taking
the derivative of Eq. (5) and bearing in mind the 2n + 1 and 2n
+ 2 rules.62 For locating minima on the real part of a CPES, only
the real part of the gradient is needed. Since all integral deriva-
tives are real-valued, this yields the following general expres-
sion for the various CAP-CC and CAP-EOM-CC methods:
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Re

(
dE

dRn,α

)
=

∑

µν

[
Re(DHF

µν ) + Re(DCC
µν )

] ∂hµν
∂Rn,α

+ η
∑

µν

[
Im(DHF

µν ) + Im(DCC
µν )

]
∂Wµν

∂Rn,α
+

Zn∑
k Zk

(
∂Wα

∂oα

)

µν


+

∑

µνσρ

[ 1
2

Re(DHF
µν )Re(DHF

σρ) − 1
2

Im(DHF
µν )Im(DHF

σρ) + Re(DCC
µν )Re(DHF

σρ) − Im(DCC
µν )Im(DHF

σρ)

+Re(ΓCC
µσνρ)

]
∂ 〈µσ | |νρ〉
∂Rn,α

+
∑

µν

[
Re(IHF

µν ) + Re(ICC
µν )

] ∂Sµν
∂Rn,α

+
∂Vnuc

∂Rn,α
(8)

where the derivative of the Fock matrix element fµν
= hµν +

∑
σρ DHF

σρ〈µσ | |νρ〉 has been split into a one-electron
and a two-electron contribution. The corresponding CAP-HF
expression is again obtained by setting all “CC” quantities
to zero. Note that even though only the real part of the two-
electron density matrix ΓCC is needed, this quantity is cal-
culated using complex algebra in the molecular orbital (MO)
basis and then back-transformed to the AO basis using complex
MO coefficients. This increases the cost of CAP-CC/CAP-
EOM-CC gradients considerably compared to the CAP-free
case. However, the formal scaling of every CAP method is the
same as that of the corresponding real-valued method.

Eq. (8) illustrates that the computation of the energy gradi-
ent for CAP methods requires the evaluation of two additional
derivatives compared to standard gradient theory: ∂Wµν/∂Rn,α

and (∂Wα/∂oα)µν . Explicit expressions for the latter term are
given in Eq. (7), while the former term becomes

∂Wµν

∂Rn,α
=
∂(Wx)µν
∂Rn,α

+
∂(Wy)µν
∂Rn,α

+
∂(Wz)µν
∂Rn,α

, (9)

∂(Wx)µν
∂Rn,α

=
〈 ∂ χµ
∂Rn,α

���Wx
���χν〉 + 〈

χµ
���Wx

��� ∂ χν∂Rn,α

〉
(10)

with χµ, χν as standard Gaussian basis functions.60 Eqs. (7)
and (10) are evaluated numerically in our implementation in
the same way as detailed in Ref. 40 for Wµν .

CAP-CC and CAP-EOM-EA-CC gradients have been
implemented within the singles and doubles (SD) approxi-
mation into the Q-Chem program package.63 In addition, our
implementation allows for the evaluation of restricted and
unrestricted CAP-HF gradients. Spatial symmetry is exploited
and the libtensor library64 is used for operations on high-
dimensional tensors. The implementation has been verified
by means of numerical differentiation. Currently, the implicit
dependence of E on Rn,α through ηopt and r0

α is not considered
in the expression for the gradient (Eq. (8)), instead we use the
following procedure for geometry optimizations:

1. Determine
√〈
α2〉 of the neutral molecule.

2. Find ηopt for r0
α =

√〈
α2〉.

3. Optimize the geometry while leaving η = ηopt and r0
α

unchanged.
4. Go to 1 until

√〈
α2〉 and ηopt are converged.

Updating the box size parameters is especially important if
the molecule rotates in the box during geometry optimiza-
tion. If this is not the case, re-optimizing the geometry with
updated CAP parameters typically entails only small structural
changes.

In the following, we apply the CAP-EOM-EA-CCSD
method for geometry optimizations of the anionic reso-
nance states of CH2O, HCOOH, and C2H4 and determine
the corresponding AEAs and resonance widths. The aug-
cc-pVDZ+3s3p(A) basis set65 from Ref. 40 is used in all
calculations. This basis is diffuse enough to represent the
coupling of the resonance to the continuum and hence suffi-
cient to illustrate the differences between CAP-including and
CAP-free gradient calculations, which is the focus of our Com-
munication. A quantitative comparison to experimental values
would demand the use of a triple-ζ or quadruple-ζ basis as
will be discussed in more detail further below. Values for the
parameters r0

α and ηopt are compiled in the supplementary
material.

Changes in the box size are related to structural differ-
ences between the neutral molecule and the anion. In the case
of CH2O, the C==O bond length differs significantly between
the neutral and anionic equilibrium structures (1.215 Å vs.
1.286 Å), whereas the differences in the remaining geometri-
cal parameters are negligible (see the supplementary material).
This is reflected in the large change in r0

z compared to the
changes in r0

x and r0
y . The geometrical change can be explained

qualitatively by the π∗ character of the corresponding Dyson
orbital66,67 depicted in Figure 1(a). Note that the anionic equi-
librium structure is planar and belongs to the C2v point group,
i.e., electron attachment does not induce a lowering of the
molecular symmetry.

In the cases of HCOOH and C2H4, non-planar distor-
tion of the molecule is observed upon electron attachment
in addition to lengthening of the C–O and C–C bonds. For
formic acid, the C–O bond lengths change from 1.208 Å
and 1.354 Å to 1.276 Å and 1.451 Å, while for ethylene, the
C–C bond length changes from 1.348 Å to 1.439 Å, which
can again be explained by the π∗ character of the correspond-
ing Dyson orbitals (Figures 1(b) and 1(c)). The differences
in the other bond lengths are very small (see the supplemen-
tary material). The equilibrium structure of HCOOH� is of
C1 symmetry compared to Cs for the neutral molecule, while

FIG. 1. Real parts of CAP-EOM-EA-CCSD Dyson orbitals for electron
attachment to CH2O, HCOOH, and C2H4. Computed with the aug-cc-
pVDZ+3s3p(A) basis set at the equilibrium structures of the respective
resonant anions.
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TABLE I. Theoretical and experimental values for the vertical and adiabatic
electron affinities (VEA and AEA), vertical detachment energies (VDE), and
resonance widths (Γ) of formaldehyde, formic acid, ethylene, and the corre-
sponding anions. Γ0 is the resonance width at the neutral equilibrium structure
and Γres is that at the resonance equilibrium structure. The CAP-EOM-EA-
CCSD/aug-cc-pVDZ+3s3p(A) method was employed in all calculations. All
values are given in eV.

VEA VDE AEA Γ0 Γres

CH2O– Calc. �1.372 �0.837 �1.019 0.353 0.213
Expt. �0.8669 · · · �0.6569 0.2–0.469

HCOOH– Calc. �2.325 �0.482 �1.481 0.252 0.126
Expt. �1.7370 · · · �1.371 · · ·

C2H4
− Calc. �2.228 �1.654 �2.039 0.450 0.307

Expt. �1.7672 · · · �1.5573 0.3–0.772

that of C2H−4 belongs to the C2h point group compared to D2h

for the neutral molecule. For the anion of ethylene, symmetry
lowering from D2h to C2h has also been predicted by HF cal-
culations using very small bases and was rationalized in terms
of σ∗-π∗ mixing.68 ηopt values for CH2O� and HCOOH� are
significantly smaller at the equilibrium structure of the reso-
nance than at that of the neutral molecule, while this decrease
is less pronounced for C2H−4 .

The calculated VEAs and AEAs and vertical detachment
energies (VDE) along with the resonance widths at the neutral
equilibrium (Γ0) and at the resonance equilibrium structure
(Γres) are listed in Table I. For all molecules, AEA is signifi-
cantly lower than VEA in terms of absolute values; the effect
of structural relaxation amounts to 0.85 eV for HCOOH�,
0.35 eV for CH2O�, and 0.19 eV for C2H−4 . Remarkably,
experimental results69–73 also suggest a larger relaxation
energy for HCOOH� than for the other two anions.

The quantitative comparison to experiment is difficult due
to the incomplete basis set, the perturbation due to the CAP,
the truncation of the CC expansion, and the neglect of the zero-
point vibrational energy. Also, the experimental determination
of VEA is problematic.13 The calculated absolute values for
VEA are typically 0.5 eV higher than the corresponding exper-
imental values. This discrepancy can be largely attributed to
the first two effects: CAP-EOM-EA-CCSD calculations for
C2H−4 using the aug-cc-pVQZ+3s3p3d(C) basis set yielded
VEA values 0.24 eV lower than aug-cc-pVDZ+3s3p(A) and
a first-order correction for the CAP perturbation lowered the

energy further by 0.08 eV.40 Similar effects can be anticipated
for the AEA values as well.

Table I shows that Γres is smaller than Γ0 for all three
molecules. This is a general feature of temporary anions
because VDE is always smaller than VEA. When the energy
difference between an anionic resonance and the parent neu-
tral state becomes smaller, the resonance width has to decrease
and, if the two PES cross, it has to become zero as the resonance
turns into a stable state.29

To demonstrate the advantages of a geometry optimization
including a CAP over an approach that treats the resonance
as a bound state, we carried out CAP-free EOM-EA-CCSD
calculations for C2H−4 using a variety of basis sets. This is
documented in Table II.

Using the cc-pVDZ basis set, the lowest EOM-EA-CCSD
root resembles the resonance state and a bent equilibrium struc-
ture of C2h symmetry is obtained for the anion. However, the
AEA is overestimated by 0.9 eV. As we enlarge the basis set,
more and more continuum states appear in the spectrum, mak-
ing it harder to associate a single state with the resonance.74,75

Already for aug-cc-pVDZ, the lowest root has continuum char-
acter describing C2H4+e− rather than C2H−4 , which is reflected
in the optimized geometrical parameters R(CC) = 1.351 Å
and ∠(HCCH) = 180.0◦. As Table II shows, it is still possi-
ble to identify resonance-like higher-lying roots in the larger
bases, but even so, their equilibrium structures differ qualita-
tively from that obtained in the presence of the CAP: regular
EOM-EA-CCSD predicts a planar equilibrium structure and
a too short C---C bond length using the aug-cc-pVDZ and
aug-cc-pVDZ+3s3p(A) basis sets.

This clearly shows that although states with proper-
ties similar to the resonance can be found with bound-state
approaches, this is an artifact of discretizing the continuum by
means of small basis sets and valid results are not guaranteed.
In contrast, in the presence of a CAP, the resonance state is
usually one of the lowest-lying roots also in larger bases and
the determination of the equilibrium structure and the AEA is
straightforward.

In sum, we have derived and implemented analytic
gradients for CAP-HF, CAP-CCSD, and various CAP-EOM-
CCSD methods and proposed a procedure for the geome-
try optimization of temporary anions. Equilibrium structures
and adiabatic electron affinities of the anions of formalde-
hyde, formic acid, and ethylene have been determined for
the first time using CAP methods, and the advantages

TABLE II. Equilibrium structures for neutral C2H4 (0) computed with CCSD and the resonant anion C2H−4 (res)
computed with regular and CAP-augmented EOM-EA-CCSD using different basis sets. AEAs and the followed
root (of Ag symmetry in the C2h point group) in the EOM-EA-CCSD eigenvalue equation are also listed.

R(CC)/Å ∠(HCCH)/deg

Basis 0 Res 0 Res AEA/eV Root

cc-pVDZa 1.345 1.456 0.0 48.7 �2.941 1
aug-cc-pVDZa 1.348 1.418 0.0 0.0 �1.923 2
aug-cc-pVDZ+3s3p(A)a 1.348 1.405 0.0 0.1 �1.983 7
aug-cc-pVDZ+3s3p(A)b 1.348 1.439 0.0 26.6 �2.039 2

aWithout CAP.
bIncluding CAP.
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over applying bound-state methods have been illustrated. The
present work represents a key step towards modeling nuclear
motion in processes involving electronic resonances. We plan
to generalize our current implementation to other types of
resonances and different electronic-structure methods.

See supplementary material for the coordinates of all opti-
mized molecular structures in Z-matrix format, CAP box sizes,
and optimal CAP strengths.
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3.2 Structure optimization of temporary anions

This publication focuses on applications of the CAP-EOM-CC analytic gradient for structure optimization

of resonances. Choosing the right basis set is a very important part of CAP-EOM-CC calculations, as

according to previous studies on vertical quantities [62], the basis set can affect the quality of the results

considerably. However, although a large and diffuse basis set might produce more reliable results, in

applications a compromise has to be made between accuracy and affordability. For this reason, it was

investigated how double- and triple-ζ basis sets with different number and type of diffuse functions

influence the optimized structural parameters, vertical and adiabatic electron affinities and resonance

widths.

An implementation of the CAP-EOM-CCSD(2) gradient, and benchmark calculations, where CAP-

EOM-CCSD and CAP-EOM-CCSD(2) results were compared for different basis sets and various anionic

resonances, were also presented in this publication.

A disadvantage of using a box-shaped CAP, a problem already mentioned in Publication 1 (Section

3.1), is that the orientation of the molecule relative to the box is usually not unambiguous, thus in some

cases the molecule might rotate relative to the box during optimization. In this article, the impact the

relative orientation of the molecule and the CAP has on the energy was investigated. It was shown that by

updating the box size parameters, these effects can be moderated.

During a geometry optimization, it can happen that the optimal value of the CAP strength parameter

changes abruptly with the geometry. This is because at some geometries multiple parameter values fulfill

the requirement (2.58), and at other geometries none do. The disappearance of a certain minimum of

(2.58) can influence the smoothness of the CPES, which is discussed in Publication 3 (Section 3.3).

Geometry optimizations of anionic resonances of acrylonitrile, methacrylonitrile and unsaturated hy-

drocarbons up to 1,3,5-hexatriene, something that was previously impossible with methods for metastable

states, were also presented in this publication. CAP-EOM-CCSD and CAP-EOM-CCSD(2) results with a

double-ζ basis set have a somewhat high deviation (0.2-0.5 eV) from experimental electron affinities, but

trends in electron affinity and resonance width usually correlate well with experiments. For example, the

calculated energy difference between the 2π∗ states of cis- and trans-1,3,5-hexatriene (0.58-0.61 eV) is in

very good agreement with the experimental value (0.55 eV). Using a triple-ζ basis set, and an approximate

zero-point vibrational energy correction extracted from Reference [75] can bring the deviation between

calculation and experiment under 0.1 eV for the adiabatic electron affinity of acrylonitrile. Structural

differences between the resonance and its parent neutral state for acrylonitrile and methacrylonitrile

were analyzed, and connections with peaks of the measured electron energy loss spectra [75, 76] were

suggested.
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ABSTRACT: We determine equilibrium structures, adiabatic
electron affinities, and resonance widths of various temporary
anions to benchmark the complex absorbing potential
equation-of-motion coupled-cluster (CAP-EOM-CC) meth-
od. The second-order approximation to CAP-EOM-CC with
singles and doubles (SD) excitations is found to yield slightly
lower resonance positions and widths than full CAP-EOM-
CCSD. The basis set dependence of adiabatic resonance
positions and widths is similar to that of the vertical quantities.
We demonstrate the usefulness of structure optimizations of
temporary anions by two examples. For the anions of acrylonitrile and methacrylonitrile, we observe good agreement for the
adiabatic electron affinities and structural changes between our theoretical results and two-dimensional electron-energy loss
spectra. For the unsaturated hydrocarbons ethylene, 1,3-butadiene, and cis- and trans-1,3,5-hexatriene, the agreement between
theory and electron transmission spectroscopy is good for the lower-lying π* resonances, while our results for the 3π* resonance
of trans-hexatriene suggest a shortcoming of the method or reinterpretation of the corresponding electron transmission
spectrum. The experimentally determined difference between the electron affinities of the 2π* resonances of the cis isomer and
the trans isomer of hexatriene are reproduced well by CAP-EOM-EA-CCSD and CAP-EOM-EA-CCSD(2).

1. INTRODUCTION
Molecular anions play a key role in many chemical processes
such as electron transfer or bond breaking through dissociative
electron attachment.1 Since the extra electron changes the
bonding pattern, molecular properties and chemical reactivity
of anions and their parent neutral species can differ
substantially. The comprehensive theoretical characterization
of molecular anions requires one to take into account nuclear
motion. In the case of bound anions, that is, when the anion is
lower in energy than the ground state of the neutral molecule,
standard electronic-structure methods can be employed for
investigating the potential energy surfaces (PES) of the
relevant anionic and neutral electronic states and identifying
special points such as equilibrium structures and transition
states.
In contrast, anions that are above the neutral ground state

are electronic resonances and subject to autodetachment.1

Resonances cannot be represented as stationary states in the
Hermitian domain of the molecular Hamiltonian and are,
therefore, not amenable to bound-state electronic-structure
calculations. However, in the non-Hermitian domain, they can
be associated with quasistationary states with complex
energy,2,3

E E i /2R= − Γ (1)

with ER as the resonance position and Γ as the resonance
width. Hence, complex-valued PES (CPES)4 can be con-
structed for an anion at molecular structures where it is not
bound but of temporary nature. CPES can be experimentally
probed, for example, in electron impact,5−7 electron trans-

mission,8−10 and photodetachment11 experiments. Temporary
anions can be observed as resonances in such spectra with the
spectral width corresponding to their inverse lifetime. When
the resonance is sufficiently long-lived compared to the time
scale of nuclear motion, vibrational bands can appear in the
spectrum, and if the Franck−Condon overlap is sufficiently
large, the adiabatic electron affinity (AEA) can be determined.
The interpretation of these experiments calls for reliable
computational methods that are able to locate minimum-
energy structures of polyatomic temporary anions.
Recently, we derived an expression for the analytic energy

gradient for complex absorbing potential equation-of-motion
coupled-cluster (CAP-EOM-CC) methods.12 This makes
CAP-EOM-CC the only method for electronic resonances
that has analytic gradients and thus can be used to optimize
systems larger than the diatomic and triatomic molecules
previously optimized by constructing full-dimensional PES
through single-point energy calculations. In our previous
publication,12 we performed structure optimizations of several
small temporary anions consisting of 4−6 atoms. In this article,
we apply CAP gradients to larger systems and investigate the
performance of different basis sets and approximations to the
many-body treatment in EOM-CC.
In CAP methods,13−17 the Hamiltonian is the sum of the

usual molecular Hamiltonian and the CAP. In our case, the
CAP is a purely imaginary potential multiplied by the strength
parameter η:

Received: February 5, 2018
Published: June 8, 2018

Article

pubs.acs.org/JCTCCite This: J. Chem. Theory Comput. 2018, 14, 3468−3478

© 2018 American Chemical Society 3468 DOI: 10.1021/acs.jctc.8b00128
J. Chem. Theory Comput. 2018, 14, 3468−3478

D
ow

nl
oa

de
d 

vi
a 

L
M

U
 M

U
E

N
C

H
E

N
 o

n 
O

ct
ob

er
 1

, 2
01

8 
at

 1
0:

28
:4

7 
(U

T
C

).
 

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.
 

3.2. STRUCTURE OPTIMIZATION OF TEMPORARY ANIONS

Reprinted with permission from Reference [129]. Copyright 2018 American Chemical Society.

ACS Articles on Request: https://pubs.acs.org/articlesonrequest/AOR-nQNqjQD7TFqX82PWY3Wz

31



i W( )η η= − (2)

W W x y z, , ,∑ α= =
α

α
(3)

W
r o r

r o r r o r

0 if

( ) if

0

0 2 0

l
m
ooo
n
ooo

= | − | ≤
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α α α

α α α α α α (4)

Throughout the article, the box size parameters rα
0 are chosen

as the spatial extent of the wave function of the parent neutral

state R( )2
0⟨ ⟩ in the x, y, and z directions18 unless stated

otherwise. The CAP origin o is chosen as the center of nuclear
charges.12

The operator ( )η from eq 2 has complex eigenvalues
according to eq 1. In a complete basis, one would obtain the
exact resonance position and width with an infinitesimally
small η,13 but in a finite basis set, the limit η → 0 is not
meaningful, and one has to use a finite η, which introduces a
perturbation of the system. Riss and Meyer proposed13 that an
optimal value of η (ηopt) can be determined by minimizing
|η dE/dη|. However, ηopt is not well-defined as this expression
often has multiple minima. In particular, the position and
number of minima in |η dE/dη| can be different at different
geometries and disappearing minima can cause discontinuities
in the CPES of the resonance.
As shown in ref 19, the stabilization of the resonance can be

seen also from the convergence of the spatial extent of the

resonance wave function, R2
r⟨ ⟩ . From the η values

corresponding to minima of |η dE/dη|, we choose the smallest

one for which both real and imaginary parts of R2
r⟨ ⟩ are

stable with respect to a further increase of η.
For structure optimization, we then follow the procedure

proposed in ref 12, which involves repeated updating of the
parameters ηopt and rα

0:

1. Determine 2
0α⟨ ⟩ of the neutral molecule.

2. Find ηopt for rα
0 = 2

0α⟨ ⟩ .

3. Optimize the geometry while leaving η = ηopt and rα
0

unchanged.

4. Go to step 1 and repeat until 2
0α⟨ ⟩ and ηopt are

converged.

In most cases, this procedure entails only moderate changes
in ηopt and rα

0 and provides a smooth path from the equilibrium
structure of the parent neutral state to that of the resonant
anion. However, we encountered some cases in which an
abrupt change in ηopt could not be avoided as will be discussed
in section 2.2.
Instead of minimizing |η dE/dη| for the determination of

ηopt, one can also minimize a deperturbed complex energy
E − η dE/dη13,19 or perform analytic continuation using Pade ́
approximants20 to reach the limit η → 0. Although these
approaches may lead to improved resonance positions and
widths, they share the property that the final energy is not
obtained as an eigenvalue of an approximate Schrödinger
equation rendering the formulation of the corresponding
gradient theories more involved.
The CAP method has been successfully combined with

various electronic-structure methods including density-func-
tional theory,21 algebraic diagrammatic construction,22,23

multireference configuration interaction,24,25 multiconfigura-
tional quasidegenerate perturbation theory,26 symmetry-
adapted-cluster configuration interaction27 (SAC-CI), and
EOM-CC.18,28 We derived analytic gradients for the excitation
energy (EE),29 electron attachment (EA),30 and ionization
potential (IP)31 variants of CAP-EOM-CC and implemented
them within the singles and doubles (CCSD) approximation in
Q-Chem,32 release 5.0.
In this work, we extend our implementation to the CAP-

EOM-CCSD(2) family of methods. EOM-CCSD(2),33 also
called EOM-MP2, is an approximation to EOM-CCSD that
arises from a perturbative analysis of the EOM-CCSD
similarity-transformed Hamiltonian and uses an MP2 reference
state in the EOM procedure. The working equations of the
EOM-CCSD(2) energy calculation are identical to EOM-
CCSD, while the expressions for some density matrix elements
differ slightly and the Z equations that determine the
amplitude response become trivial. The computational cost
of energy and gradient calculations with the EA and IP variants
of EOM-CCSD(2) is reduced compared to EOM-CCSD
because all iterative procedures scale as N5. In contrast, the EE
variant scales as N6, and no reduction of scaling is achieved.
For bound states, it was demonstrated34,35 that the EOM-

EE-CCSD(2) method has an accuracy comparable to EOM-
EE-CCSD. The performance of EOM-EE-CCSD(2) depends
on the basis set, and the standard deviation of the excitation
energy difference from higher order methods (EOM-EE-
CCSDT and CC3 linear response theory) is larger for EOM-
EE-CCSD(2) than for EOM-EE-CCSD.
Here, we use the EA variants of CAP-EOM-CCSD and

CAP-EOM-CCSD(2) to determine resonance positions and
widths of temporary anions as well as their equilibrium
structures. In all calculations of the resonance states, the CAP
is introduced at the Hartree−Fock (HF) level. The
optimization of the parent neutral molecules is done at the
CCSD and MP2 levels. In both schemes, a temporary anion
and its parent neutral state are obtained as eigenstates of the
same Hamiltonian ensuring consistency between the real and
imaginary parts of the CPES.36

Figure 1 describes the quantities that are used throughout
the article for describing temporary anions. The vertical
electron affinity (VEA) is calculated as the difference between
the energy of the neutral ground state and the real part of the
energy of the resonance, both calculated at the equilibrium
structure of the neutral species, whereas the vertical detach-
ment energy (VDE) is the same energy difference evaluated at
the equilibrium structure of the resonance. We calculate the
adiabatic electron affinity (AEA) as the difference between the
energy of the neutral ground state at the neutral equilibrium
structure and the real part of the resonance energy evaluated at
the resonance equilibrium structure neglecting vibrational
energy contributions. Γ0 is the resonance width determined at
the neutral equilibrium structure, whereas Γr is calculated at
the resonance equilibrium structure.
The rest of the article is structured as follows. In section 2,

we examine how the size and diffuseness of the basis set affect
equilibrium structures, electron affinities, and resonance
widths. CAP-EOM-EA-CCSD(2) is compared against CAP-
EOM-EA-CCSD for various molecules and basis sets, and
rotation of the molecule relative to the CAP is also
investigated. In section 3, we use the CAP-EOM-EA-CCSD
and -CCSD(2) methods to study experimentally observed
phenomena: the electron energy loss spectra of acrylonitrile
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and methacrylonitrile and trends in the positions and lifetimes
of the temporary anions of ethylene, 1,3-butadiene, and cis-
and trans-1,3,5-hexatriene. Section 4 provides our concluding
remarks.

2. BENCHMARK CALCULATIONS
2.1. Basis Set Effects. The calculation of anions, bound

and resonant, requires in general very diffuse basis sets due to
the extension of the wave function. When studying resonances
with CAP methods, the basis set in addition needs to describe
the regions where the CAP is active. A problem with such
highly diffuse basis sets is that linear dependencies can occur,
which can be projected out of the basis set but can still lead to
discontinuities in the PES during a geometry optimization.
Also, a CAP gradient calculation is more costly than the
corresponding regular gradient calculation because of the need
to handle complex density matrices.12 These peculiarities
motivate the search for an optimal basis set, which is diffuse
enough to describe the resonance properly yet small enough to
enable calculations beyond model systems and avoid linear
dependency problems.
We tested several basis sets on the π* resonances of CH2O,

C2H4, and HCOOH for which we presented initial results in
ref 12. In these calculations, the standard aug-cc-pVDZ and
aug-cc-pVTZ basis sets37 were augmented by different types
and numbers of extra diffuse functions on the heavy atoms,
following the augmentation scheme “A” described in ref 18. In
the following, we use shorthand notations for the basis sets,
with -DZ and -TZ standing for aug-cc-pVDZ and aug-cc-
pVTZ, and the suffixes, for example +3p3d, specifying the
number and type of extra diffuse functions (three p-type and
three d-type functions in this case).
Figure 2 shows CO and CC bond lengths for these

three temporary anions. The corresponding VEA and AEA
values and resonance widths are given in Figure 3, while ηopt
values for the various molecule−basis combinations are given
in the Supporting Information. Results for CH2O show that
the smallest basis, -DZ without further augmentation, is already
able to capture the resonance, but the calculated EAs and Γs
(VEA = −1.73 eV, AEA = −1.39 eV, Γ0 = 0.51 eV, Γr = 0.47

eV) differ considerably from the experimental values (VEA =
−0.86 eV, AEA= −0.65 eV, Γ in the range of 0.2−0.4 eV).8

Figure 2 shows that adding extra diffuse functions to the -DZ
or -TZ basis sets has practically no effect on the CO bond
length of the neutral molecule (1.215 Å with -DZ and 1.200 Å
with -TZ). However, extra diffuse functions can give
substantially different VEA and Γ0 values (Figure 3) if they
improve the representation of the resonance. As the extra
electron occupies a π* orbital, the representation improves
most when extra p functions are added on the C and O atoms
to the standard basis set. In this case the calculated values
change significantly: VEA becomes −1.37 eV and Γ0 goes
down to 0.35 eV. The importance of p-functions is also seen
from the drastic change in ηopt between -DZ (0.035 au) and
-DZ+3p (0.005 au). Extra d-functions are not as important as
p-functions but also have a significant impact (VEA = −1.31
eV, Γ0 = 0.37 eV), while extra s-functions do not have a
notable effect on the results as expected from symmetry
considerations.
As the description of the resonance improves when p-

functions are added, the optimized structure of the resonance
also changes (Figure 2). Whereas all basis sets predict a longer
CO equilibrium distance for the resonance than for neutral
CH2O in line with the antibonding character of the π* orbital,
the DZ+3p basis yields a shorter bond distance (1.301 Å) than
the -DZ basis set (1.317 Å). The -DZ+3p3d basis yields an
even shorter bond distance (1.295 Å) while diffuse s-functions
make no impact. Going from double-ζ to triple-ζ also shortens
the CO bond, but here the effect is similar for the anion
(0.020 Å) and the neutral molecule (0.015 Å).
The AEA and Γr values exhibit a similar basis set

dependence as the VEA and Γ0 values. The 3p3d augmentation
results in smaller absolute EA values, larger Γ0 and smaller Γr

Figure 1. Schematic drawing of the CPES of a temporary anion
(green) and the PES of its stable neutral parent state (black). The
black dots correspond to the minima of the ER and the Eneutral curves
and thus define the resonance and neutral equilibrium structures. The
quantities used in the article for the description of temporary anions,
vertical and adiabatic electron affinity, vertical detachment energy, and
the resonance widths Γ0 and Γr are also shown in the figure.

Figure 2. CO and CC equilibrium bond lengths of CH2O,
HCOOH, and C2H4 and the corresponding temporary anions
obtained using various basis sets. Structures of temporary anions
computed with CAP-EOM-EA-CCSD and those of neutral molecules
with CCSD.38
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values compared to 3p for both double- and triple-ζ basis sets.
Including more than three diffuse p- or d-functions, however,
changes energies and widths only by about 0.01 eV and the
CO bond distance only by 0.001 Å.
Given these results for CH2O, we focused on differences

between the 3p and 3p3d augmentations and double- and
triple-ζ basis sets for C2H4 and HCOOH. The lower part of
Figure 2 shows that the trends observed for the CO bond
length of CH2O hold for the other two test cases as well;
adding extra d-functions, as well as changing the basis from
double- to triple-ζ, results in shorter equilibrium bond lengths

for the resonances. Figure 3 shows that the basis set
dependence of the VEA and AEA of HCOOH and C2H4 is
somewhat different than that of CH2O. In particular, the AEA
of HCOOH changes by less than 0.02 eV when adding extra d-
functions or going from double- to triple-ζ.
In conclusion, we find aug-cc-pVDZ+3p to be the smallest

basis set that gives qualitatively correct results for energies,
widths, and resonance equilibrium structures. The best way to
improve it is by adding three extra d-functions or going to a
triple-ζ basis if computationally feasible.

Figure 3. EA and Γ values for the π* resonances of CH2O, HCOOH, and C2H4 calculated with CAP-EOM-EA-CCSD using various basis sets.38

Figure 4. Differences between CAP-EOM-EA-CCSD and CAP-EOM-EA-CCSD(2) results for the EA and Γ values of the π* resonances of CH2O,
HCOOH, and C2H4 calculated using various basis sets.38
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2.2. Comparison of CAP-EOM-EA-CCSD and
−CCSD(2). To check the performance of CAP-EOM-EA-
CCSD(2) for EA and Γ values as well as equilibrium structures
of resonances, we repeated the calculations presented in
section 2.1 with CAP-EOM-EA-CCSD(2). The differences
between -CCSD(2) and -CCSD results are plotted in Figure 4.
In general, there is a larger difference between results for the

quantities that were calculated after geometry optimization of
the resonance (AEA and Γr) than for the vertical ones (VEA
and Γ0). This effect is most pronounced for HCOOH
calculated with double-ζ bases. Here, the two methods agree
within less than 0.03 and 0.01 eV for VEA and Γ0, respectively,
while the differences in AEA and Γr (ca. 0.10 and 0.02 eV) are
similar to those observed for CH2O. Moreover, the
calculations on CH2O show that the differences in VEA and
AEA as well as in Γ0 and Γr are similar for all double-ζ basis
sets that contain extra diffuse p-functions.
Figure 4 also shows that triple-ζ basis sets lead to a

somewhat larger difference between CAP-EOM-EA-CCSD
and -CCSD(2) than the corresponding double-ζ basis sets. In
the case of the CH2O molecule, ΔAEA is especially large (ca.
0.15 eV) with the -TZ+3p3d basis set. This is because the
η dE/dη expression has local minima at multiple η values and
the one minimum chosen to define ηopt at the neutral
equilibrium structure disappears during the geometry opti-
mization at the -CCSD(2) level. This means that another η
dE/dη minimum has to be used to define ηopt at the resonance
equilibrium structure, which results in substantially different
ηopt values for the two methods (see Supporting Information).
Interestingly, this difference in ηopt causes a remarkable peak
only for ΔAEA but not for ΔΓr. The -TZ+3p3d basis set also
gives a large ΔΓ0 for CH2O

− (ca. 0.05 eV), which is surprising
as ηopt values at the equilibrium structure of the neutral
molecule are very similar. In the case of C2H4, the CCSD(2)−
CCSD difference is significantly larger than in the cases of
CH2O and HCOOH for both vertical and adiabatic EA and Γ
values (note the different scales in the panels of Figure 4).
Our VEA values for C2H4 obtained with the -TZ+3p3d basis

set (−2.028 and −1.905 eV for CAP-EOM-EA-CCSD and
-CCSD(2)) agree well with those of Falcetta et al.39 who used
standard EOM-EA-CCSD and -CCSD(2) in conjunction with
the stabilization method. However, the CAP method yields
smaller Γ0 values (0.550 and 0.455 eV) than the stabilization
method (0.646 and 0.604 eV). The CAP method behaves in a

similar way compared to the method of complex basis
functions (CBF) as calculations for CH2O

− illustrate: Our
CAP-EOM-EA-CCSD/aug-cc-pVTZ+3p3d value for VEA
(−1.206 eV) agrees well with CBF-EOM-EA-CCSD/caug-cc-
pCVTZ(cm+) (−1.163 eV), but the Γ0 values differ
considerably (0.387 eV vs 0.567 eV).
The comparison of the structures of the three anions shows

that CAP-EOM-EA-CCSD(2) yields longer C−C or C−O
equilibrium distances for all three resonances than -CCSD; the
differences amount to 0.010−0.018 Å. This is in line with the
trend for neutral molecules that MP2 usually gives longer
equilibrium distances than CCSD.40 All C−C and CO
equilibrium bond lengths are compiled in the Supporting
Information.
In addition to examining the difference between CAP-EOM-

EA-CCSD and -CCSD(2) energies and widths for various
basis sets, we also quantified this difference for various π*
resonances using one particular basis set, namely, aug-cc-pVDZ
+3p that was established as the smallest trustworthy basis set
for such systems in section 2.1. The lowest-energy π*
resonances of formaldehyde, formic acid, acrylonitrile,
methacrylonitrile, and ethylene, and the two lowest-energy
π* resonances of 1,3-butadiene and cis- and trans-1,3,5-
hexatriene were investigated for this purpose.
Figure 5 reveals clear linear correlation between AEA and Γr

values calculated with the two methods. In all cases -CCSD(2)
yields smaller AEA (in absolute values) and Γr than -CCSD;
the mean of the differences is 0.128 eV for AEA and −0.025 eV
for Γr. The corresponding differences for VEA and Γ0 are
slightly smaller (0.098 eV and −0.020 eV), consistent with the
results presented in Figure 4 for various basis sets. The
statistics for VEA and Γ0 are available from the Supporting
Information.
In summary, CAP-EOM-EA-CCSD(2) yields results close to

CAP-EOM-EA-CCSD; the difference between the two
methods grows somewhat when going from double-ζ to
triple-ζ basis sets. EA and Γ values calculated with CAP-EOM-
EA-CCSD(2) are typically smaller (in absolute values) than
those calculated with CAP-EOM-EA-CCSD. As a more
complete treatment of electron correlation in general decreases
EAs of temporary anions,41 the counterintuitive performance
of CAP-EOM-EA-CCSD(2) is likely due to error cancellation.

2.3. Orientation of the Molecule Relative to the CAP.
During geometry optimization, rotation of the molecule in the

Figure 5. Comparison of AEA and Γr values calculated with CAP-EOM-EA-CCSD and CAP-EOM-EA-CCSD(2) using the aug-cc-pVDZ+3p basis
set. The investigated resonances are: lowest π* resonance of formaldehyde, formic acid, acrylonitrile, methacrylonitrile, ethylene, 1,3-butadiene
(two states), and cis- and trans-1,3,5-hexatriene (two states).

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00128
J. Chem. Theory Comput. 2018, 14, 3468−3478

3472

3.2. STRUCTURE OPTIMIZATION OF TEMPORARY ANIONS

35



CAP box is allowed if it does not break spatial symmetry.12

This rotation can lead to different ηopt, EA, and Γ values. The
dependence of resonance energies and widths on the size of
the CAP box has been investigated several times,18,21,42,43 but
rotation with respect to the box has not been studied before.
To check the effect of rotation, we considered the π*

resonance of formic acid at the equilibrium structure of the
neutral molecule as an example. This molecule has Cs
symmetry, so rotation is only allowed in the x−y plane
(molecular plane). To assess the importance of recalculating
the box size parameters during a geometry optimization, we
carried out two sets of calculations at the CAP-EOM-EA-
CCSD(2)/aug-cc-pVDZ+3p level: in the first set, the molecule
was rotated around the z-axis by different angles while the box
was held fixed, and in the second set, the box size parameters
were updated while the molecule was rotated. Since these

rotations do not affect z2
0⟨ ⟩ , rz

0 is the same in all calculations.
In the second case (updated box) rotations by 90° result in the
same energy and width, while in the first case (fixed box), only
rotations by 180° do. The obtained EA and Γ values are
plotted in Figure 6.

Rotating the molecule has little effect on the real part of the
energy: in the case of a fixed box, fluctuations smaller than
0.005 eV are observed, which can be reduced to 0.002 eV by
updating the box parameters. The resonance width changes
more with the rotation angle: for a fixed box, fluctuations can
be as large as 0.025 eV, which is around 10% of the absolute
value of Γ in the present case. Updating the box reduces the
fluctuations to 0.007 eV, which is still more than three times
larger than for the real part.
To minimize the impact of such rotations, we suggest to

update the box size parameters and recalculate the ηopt

parameter during the geometry optimization of a resonance
after a minimum has been found. In some cases, when there
are large structural changes or the properties of the resonance
change drastically during geometry optimization, it may even
be necessary to update the box size parameters more
frequently.

3. APPLICATIONS
3.1. Acrylonitrile and Methacrylonitrile. Electron

energy loss (EEL) spectroscopy on acrylonitrile and
methacrylonitrile indicates the presence of three low-lying π*
resonances.7 The lowest anionic states of both molecules
feature rich vibrational structure in the EEL spectra so that the
AEAs corresponding to these states can be determined
experimentally.6,7 The experimental data suggest that the
anion of methacrylonitrile has a considerably shorter lifetime
than that of acrylonitrile.
We carried out structure optimizations for the lowest-lying

anionic states of acrylonitrile and methacrylonitrile and
calculated electron affinities and resonance widths at the
neutral and the resonance equilibrium structures with CAP-
EOM-EA-CCSD and CAP-EOM-EA-CCSD(2). The results
are compiled in Table 1. For acrylonitrile, the vertical

quantities (VEA and Γ0) are similar to those calculated with
CAP/SAC-CI and a triple-ζ basis set using a smooth Voronoi
potential (VEA ranging from −0.48 to −0.38 eV, Γ0 = 0.06
eV).44

Our calculations indicate a very small resonance width of
acrylonitrile at both the neutral and the resonance equilibrium
structure, which agrees with the estimate from experiment.
With CAP-EOM-EA-CCSD(2), the anion is vertically stable
against electron detachment at its equilibrium structure
resulting in zero Γr. For methacrylonitrile, Γ0 and Γr enclose
the experimental value. The resonance widths Γ0 of
acrylonitrile and methacrylonitrile are calculated to differ by
a factor of 2−3 as compared to 7 for the experimental
estimates of Γ. We note that a direct comparison of resonance
widths from theory and experiment is complicated because the
experimental value does not correspond to a particular
geometry, but is averaged over the CPES of the resonance.45

Structure optimization lowers the electron affinities by
approximately 0.2 eV for both molecules and thus brings the
results considerably closer to the experimental EA values (see

Figure 6. Differences in EA and Γ values arising from rotation of the
molecule in a fixed CAP box (red line) and in an updated CAP box
(blue line). Calculated at the CAP-EOM-EA-CCSD(2)/aug-cc-pVDZ
+3p level and compared to the unrotated case.

Table 1. Calculated and Experimental Electron Affinities
and Resonance Widths for the Lowest π* Resonances of
Acrylonitrile and Methacrylonitrilea

method basis VEA (eV) AEA (eV) Γ0 (eV) Γr (eV)

acrylonitrile
-CCSD -DZ+3p −0.583 −0.397 0.065 0.031
-CCSD(2) -DZ+3p −0.409 −0.188 0.048 0.000
-CCSD -TZ+3p −0.529 −0.334 0.060 0.022
-CCSD(2) -TZ+3p −0.332 −0.108 0.038 0.000
expt10 −0.11
expt6,7 −0.138 0.014
methacrylonitrile
-CCSD -DZ+3p −0.707 −0.506 0.172 0.054
-CCSD(2) -DZ+3p −0.573 −0.344 0.122 0.036
expt7 −0.190 0.100

aCalculations were done with CAP-EOM-EA-CCSD and -CCSD(2)
using the aug-cc-pVDZ+3p and aug-cc-pVTZ+3p basis sets.
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Table 1). The remaining deviations from the experimental
AEAs are 0.26−0.32 eV for CAP-EOM-EA-CCSD/aug-cc-
pVDZ+3p, which is in line with the results from section 2.1
and similar to the error bars of EOM-EA-CCSD for bound
anions. With the aug-cc-pVTZ+3p basis, the calculated AEA
deviates by 0.20 eV from the EEL value for acrylonitrile. By
inclusion of zero-point vibrational energy corrections
(ΔZPVE), the accuracy of theoretical results can be further
increased. We estimate ΔZPVE using vibrational frequencies
of the neutral molecules and the anions calculated by Regeta
and Allan at the B3LYP/6-311++G(2df,2p) level.6,7 For
acrylonitrile, the correction amounts to 0.126 eV and for
methacrylonitrile to 0.145 eV. This means that CAP-EOM-EA-
CCSD is capable of providing an electron affinity accurate
within 0.1 eV when combined with the aug-cc-pVTZ+3p basis
set and considering the zero-point vibrational energy
correction. However, it seems that CAP-EOM-EA-CCSD(2)
is subject to substantial error cancellation, as it gives an AEA
within 0.01 eV of the experimental one for methacrylonitrile if
ΔZPVE is considered, while for acrylonitrile it even overshoots
the experimental values.
Structural differences between the neutral molecules and

their anions are summarized in Table 2. For acrylonitrile and
methacrylonitrile, elongation of the C2C3 and the C1N bonds
is observed upon electron attachment, whereas the C1C2 bonds
shrink. The change of the first bond length is more
pronounced (0.06−0.08 Å) than that of the latter two
(0.02 Å and 0.03−0.04 Å, respectively). This agrees with the
shape of the Dyson orbital46 depicted in Figure 7: It is
antibonding between C2 and C3 and between C1 and N and
bonding between C1 and C2. Also, a larger share of the excess
electron density resides on the carbon atoms than on the
nitrogen atom. Elongation of the C1N and C2C3 bonds in the
temporary anions is also suggested by two-dimensional EEL

spectra6,7 that feature prominent signals of the normal modes
that correspond to nuclear motion in these directions.
While acrylonitrile remains planar upon electron attachment,

methacrylonitrile has a nonsymmetric resonance equilibrium
structure according to our calculations. However, the
deflection of the heavy atoms from the molecular plane is
small, and it does not entail a significant energy gain illustrating
that the CPES of the anion is flat in these directions. In the
EEL spectra,7 the CCN out-of-plane bending mode appears for
both molecules with appreciable intensity, which indicates
nuclear motion along this mode upon electron attachment in
both cases despite the different equilibrium structure.
In sum, our results for acrylonitrile and methacrylonitrile

show that a geometry optimization of the respective anions
explains several features of the EEL spectra. Our calculations
confirm the experimental AEAs and trends in energies and
widths of the two species. It is also clear that a more
comprehensive investigation of the anionic CPES beyond the
equilibrium structures is necessary to explain all features of the
EEL spectra such as the appearance of the out-of-plane
bending modes.

3.2. Unsaturated Hydrocarbons. We carried out CAP-
EOM-EA-CCSD and -CCSD(2)/aug-cc-pVDZ+3p structure
optimizations for the π* resonance states of ethylene, 1,3-
butadiene, and cis- and trans-1,3,5-hexatriene to investigate
trends in resonance positions, resonance widths, and
equilibrium structures. The correlation diagrams for EA and
Γ are shown in Figure 8; all calculated values are additionally
compiled in the Supporting Information.
Experimental EAs have been reported for all of these

states.9,47,48 However, the values are of varying quality because
vibrational structure is often only weak or not observed at all in
the spectra. In the case of ethylene, faint undulations are
observed in the electron transmission (ET) spectrum,48 but it
remains unclear whether the lowest feature corresponds to the
0−0 transition. Therefore, only an upper limit of −1.55 eV was
given for the AEA, while the VEA was estimated as −1.74 eV
based on the midpoint of the spectral feature. Owing to clear
vibrational progression, the interpretation of the ET spectra is
easier for the 1π* resonance of butadiene: the AEA was
established as −0.62 ± 0.05 eV. In contrast, the ET spectrum
of the 2π* state of butadiene does not feature any vibrational
progression, and the experimental estimate of the EA (2.8 eV)
is simply the midpoint of the spectral feature.
For cis- and trans-hexatriene, photoelectron49 and optical

spectroscopy50 show that the three π ionization potentials and

Table 2. Equilibrium Structures of Acrylonitrile and Methacrylonitrile and Their Anionsa

neutral anion

CAP-EOM-EA

CCSD
DZ+3p

MP2
DZ+3p

CCSD
3TZ+3p

MP2
TZ+3p

-CCSD
DZ+3p

-CCSD(2)
DZ+3p

-CCSD
TZ+3p

-CCSD(2)
TZ+3p

acrylonitrile
RC1−N 1.172 1.188 1.156 1.168 1.193 1.212 1.173 1.193
RC1−C2 1.452 1.441 1.439 1.421 1.416 1.409 1.393 1.386
RC2−C3 1.350 1.352 1.334 1.333 1.424 1.431 1.404 1.415
methacrylonitrile
RC1−N 1.172 1.189 1.192 1.213
RC1−C2 1.459 1.447 1.418 1.408
RC2−C3 1.351 1.355 1.415 1.428
∠C1−C3−C2−C4 180.0 180.0 176.1 176.2

aBond lengths are given in Å, angles in degrees.

Figure 7. Real parts of the Dyson orbitals of the lowest π* resonances
of acrylonitrile and methacrylonitrile at their equilibrium structures
calculated with CAP-EOM-EA-CCSD/aug-cc-pVDZ+3p.
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the three π−π* excitation energies of both isomers are very
similar, but trends in the π* electron affinities are less clear.
The 1π* state is not seen in the ET spectrum of either isomer
and was, therefore, predicted to be stable against electron
detachment.47 The 2π* anion state of the cis isomer is
considerably lower in energy (1.58 eV) than that of the trans
isomer (2.13 eV) according to ET spectroscopy, while the 3π*
anion state was tentatively assigned to structures at 3.53 eV for
both isomers.47 Vibrational progression could not be observed
for any state of hexatriene.
Figure 8 illustrates that the trends in our calculated VEA and

AEA values qualitatively agree with most of the experimental
observations. Most VEA values calculated with CAP-EOM-EA-
CCSD are 0.5−0.6 eV above the experimental values, which is
similar to what was observed for smaller molecules.12 These
deviations are only partly due to the small double-ζ basis set.
With a triple-ζ basis set, the VEA and AEA values of ethylene
and the 1π* resonance of butadiene change by only 0.06−0.07
eV. Optimizing the structure of the resonances reduces the
EAs of the higher-lying states less (0.08−0.14 eV) than those
of the lower-lying states (0.20−0.25 eV). Our best estimates
(CAP-EOM-EA-CCSD(2)/aug-cc-pVTZ+3p) for the AEAs of
ethylene and butadiene (1π* state) are −1.78 eV and −0.79
eV and deviate by 0.23 and 0.17 eV from the experimental
estimates.
Among the higher-lying resonances, for which there is no

experimental estimate of AEA, several inconsistencies are
observed between theory and experiment: for the 2π* state of
butadiene, the difference between our CAP-EOM-EA-CCSD/
aug-cc-pVDZ+3p value and the experiment is surprisingly
small (0.05 eV). With a triple-ζ basis set, we even obtain a
VEA slightly below the experimental estimate.
Also, we could not locate the 3π* resonance of cis-

hexatriene. We performed additional calculations using differ-
ent CAP box sizes and basis sets of double-ζ and triple-ζ
quality but found only states with substantial continuum
contribution in the energy range below 5 eV. Furthermore, the
3π* resonance of trans-hexatriene was calculated to lie almost
at the same energy as the 2π* resonance. These findings may
indicate that the current approach is not reliable for the 3π*
resonances of these molecules. It could also be that the
structure at 2.13 eV in the ET spectrum of the trans-isomer is
caused by the 2π* and 3π* resonances together, whereas the

signal at 3.5 eV is not due to a π* valence resonance for any of
the isomers.
For the 1π* state of both cis- and trans-hexatriene, our

calculations produce negative values for VEA (0.50−0.68 eV)
and AEA (0.24−0.44 eV) with fairly small resonance widths Γ0

and Γr of less than 0.03 eV. Only the 1π* state of trans-
hexatriene is found to be vertically bound at its own
equilibrium geometry at the CAP-EOM-CCSD(2) level of
theory by about 0.004 eV. Semiempirical calculations yielded
positive EAs in the range from 0.0 to +0.1 eV,9 which agrees
with the absence of these states from the ET spectra.
Interestingly, SAC-CI calculations51 also yielded a negative
EA for trans-hexatriene. Given the deviations between theory
and experiment we observed in sections 2.1 and 3.1, the AEAs
of these states are likely very small, but a final decision about
their signs cannot be made.
The energy difference between the 2π* states of cis- and

trans-hexatriene is calculated to be 0.59 eV using the CCSD
VEA values, and 0.58 eV using the CCSD AEA values, which
illustrates that structural relaxation has a similar effect on these
two states. CCSD(2) yields very similar gaps (0.61 and 0.59
eV); thus both methods reproduce the experimental estimate
of 0.55 eV for this pair of states well and confirm the
assignment of the features in the spectra.
In general, CAP-EOM-EA-CCSD(2) gives lower absolute

VEA and AEA values for all hydrocarbons investigated here
(see Supporting Information). For the lowest resonances, the
CCSD(2)−CCSD difference is 0.12−0.18 eV, which is in line
with the results from section 2.2 (Figure 4), but for the higher-
lying states of butadiene and hexatriene, this difference is
considerably smaller (0.04−0.08 eV).
Even though geometry optimization entails only small

energetic changes for the anions of the unsaturated hydro-
carbons, their equilibrium structures differ significantly from
those of the neutral molecules (see Table 3 and Supporting
Information). For the low-lying resonances, the changes reflect
the nodal structures of the Dyson orbitals depicted in Figure 8.
The elongation of the CC bond in ethylene is consistent with
features in ET9,48 and EEL spectra52−54 that were attributed to
vibrational excitation of the CC stretching mode. Similarly,
the elongation of the C1C2 bond in the 1π* state of butadiene
agrees well with the presence of the CC stretching mode in
the ET spectrum.48 A weaker feature in the same spectrum was

Figure 8. Correlation diagrams of the EA (left panel) and Γ (right panel) values of the π* resonances of some unsaturated hydrocarbons calculated
with CAP-EOM-EA-CCSD/aug-cc-pVDZ+3p. The real parts of the Dyson orbitals at the equilibrium structures of the respective resonances are
also displayed in the left panel. The experimental EA values are taken from refs 9 and 47. The dashed energy levels indicate estimates9 of the EAs of
the lowest anionic states of cis- and trans-hexatriene, which are bound states according to experiment.
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tentatively assigned to the C−C stretching mode and may be
attributed to the shortening of the C2C3 bond.
The trends in the equilibrium structures of the higher-lying

anions are less clear due to through-space interactions.
Structural changes compared to the neutral species are less
pronounced than for the lower-lying resonances and do not
exceed 0.04 Å for any CC bond. However, an experimental
confirmation of these predictions is difficult since vibrational
progression is not observed for the higher-lying states. The
equilibrium structures of the ethylene anion and the 2π* state
of butadiene are reached from the neutral equilibrium
structures via slight out-of-plane distortions, whereas symmetry
lowering is not observed for the other resonances (for the 3π*
state of trans-hexatriene, we restricted the symmetry to C2h a
priori). In both cases, the associated energetic changes are
small compared to those due to the symmetry-preserving
relaxation of the CC bonds. We add that the experimental data
for ethylene neither confirm nor rule out a nonplanar
equilibrium structure.9,52

The widths of all resonances but the 1π* states of cis- and
trans-hexatriene, which are not observed experimentally, are
such that autodetachment happens on the same time scale as
nuclear motion or even faster for the higher-lying resonances
of butadiene and hexatriene. This is consistent with the weak
undulations in the case of ethylene and the complete absence
of vibrational features in the latter cases. However, the 2π*
resonances of the hexatriene isomers are two notable
exceptions: Since their resonance widths are calculated to be
smaller than those of ethylene, we would expect discernible
vibrational progressions in the corresponding ET spectra. We
finally note that the changes in Γ upon geometry optimization
show the opposite trend as the EAs: the lowering is more
pronounced for states that feature a large Γ0, that is, the higher-
lying ones.

4. CONCLUSIONS
In this article, we have applied the recently developed CAP-
EOM-EA-CCSD analytic gradients12 to the structure opti-
mization of various temporary anions. We conducted bench-

mark calculations on equilibrium structures, vertical and
adiabatic electron affinities, and resonance widths using various
augmented basis sets and found aug-cc-pVDZ+3p to be the
smallest basis set that produces qualitatively correct results for
π* resonances. Using a basis set of triple-ζ quality reduces the
adiabatic EAs significantly in accordance with trends
established for vertical EAs,18 whereas the basis set depend-
ence of the resonance widths Γr and Γ0 is weaker and less
uniform. The equilibrium structures of the resonant anions
show a similar basis set dependence as those of the parent
neutral molecules, that is, triple-ζ bases produce somewhat
shorter bond distances than double-ζ bases.
We have extended our initial gradient implementation to

CAP-EOM-EA-CCSD(2). Electron affinities computed with
this method are 0.10−0.13 eV smaller (in absolute values) than
those with CAP-EOM-EA-CCSD when using the aug-cc-
pVDZ+3p basis and thus, owing to error cancellation, deviate
less from experimental data. Resonance widths are computed
to be smaller by about 0.02−0.03 eV. The equilibrium
structures obtained for the resonant anions with the two
methods show similar trends as CCSD and MP2 results for
neutral molecules.
Our results also highlight a shortcoming of the approach: In

some cases, the determination of the optimal CAP strength ηopt
is not straightforward and special care is required to prevent
abrupt changes in ηopt when changing the molecular structure
since this would result in discontinuities in the CPES of the
anion. Unfortunately, there are a few cases where such abrupt
changes could not be avoided, which affects the accuracy of the
results.
Still, despite this deficiency and despite the need to use

heavily augmented basis sets so that often only double-ζ
quality is affordable for the valence part, our present scheme
for the structure optimization of temporary anions has
considerable predictive power and is helpful in interpreting
ET and EEL spectra. We demonstrated this in two exemplary
applications: For the temporary anions of acrylonitrile and
methacrylonitrile, our calculations agree well with two-
dimensional EEL spectra6,7 for AEA values, trends in the
resonance widths, and structural differences between the
anionic and neutral species.
Our results for the π* resonances of the unsaturated

hydrocarbons ethylene, 1,3-butadiene, and cis- and trans-1,3,5-
hexatriene illustrate that through-space interactions affect their
energies and structures considerably and lead to asymmetries
in the correlation diagrams. For the ethylene anion and the
1π* state of butadiene, our values for the AEAs and the
equilibrium structures are in agreement with predictions based
on vibrational progression in the ET spectra. We find that the
description of the third π* state of cis- and trans-hexatriene is
not satisfactory with the current approach. However, the
experimentally determined gap of 0.55 eV between the 2π*
states of cis- and trans-hexatriene is nicely reproduced by both
CAP-EOM-EA-CCSD and CAP-EOM-EA-CCSD(2).
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Table 3. Equilibrium Structures of Ethylene, 1,3-Butadiene,
trans-1,3,5-Hexatriene, cis-1,3,5-Hexatriene, and Their
Anionsa

CCSD/DZ+3p
CAP-EOM-EA-CCSD/DZ

+3p

neutral 1π* 2π* 3π*

C2H4 RC−C 1.348 1.439  
C4H6 RC1−C2 1.353 1.410 1.374 

RC2−C3 1.473 1.422 1.517 
trans-C6H8 RC1−C2 1.354 1.392 1.388 1.360

RC2−C3 1.468 1.425 1.487 1.478
RC3−C4 1.358 1.411 1.362 1.376

cis-C6H8 RC1−C2 1.354 1.391 1.385 
RC2−C3 1.471 1.427 1.481 
RC3−C4 1.361 1.419 1.361 

CCSD/TZ+3p CAP-EOM-EA-CCSD/TZ+3p

neutral 1π*

C2H4 RC−C 1.327 1.414
C4H6 RC1−C2 1.332 1.389

RC2−C3 1.454 1.402
aAll bond lengths are given in Å.
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(34) Kańnaŕ, D.; Tajti, A.; Szalay, P. G. Accuracy of Coupled Cluster
Excitation Energies in Diffuse Basis Sets. J. Chem. Theory Comput.
2017, 13, 202−209.
(35) Tajti, A.; Szalay, P. G. Investigation of the Impact of Different
Terms in the Second Order Hamiltonian on Excitation Energies of
Valence and Rydberg States. J. Chem. Theory Comput. 2016, 12,
5477−5482.
(36) Jagau, T.-C.; Krylov, A. I. Complex Absorbing Potential
Equation-of-Motion Coupled-Cluster Method Yields Smooth and
Internally Consistent Potential Energy Surfaces and Lifetimes for
Molecular Resonances. J. Phys. Chem. Lett. 2014, 5, 3078−3085.
(37) Kendall, R. A.; Dunning, T. H., Jr.; Harrison, R. J. Electron
Affinities of the First-Row Atoms Revisited. Systematic Basis Sets and
Wave Functions. J. Chem. Phys. 1992, 96, 6796−6806.
(38) For technical reasons, several calculations on HCOOH and
C2H4 with the 3p3d augmentation could not be completed.
(39) Falcetta, M. F.; DiFalco, L. A.; Ackerman, D. S.; Barlow, J. C.;
Jordan, K. D. Assessment of Various Electronic Structure Methods for
Characterizing Temporary Anion States: Application to the Ground
State Anions of N2, C2H2, C2H4, and C6H6. J. Phys. Chem. A 2014,
118, 7489−7497.
(40) Helgaker, T.; Jørgensen, P.; Olsen, J. Molecular Electronic-
Structure Theory; Wiley and Sons, 2000.
(41) Jagau, T.-C. Non-Iterative Triple Excitations in Equation-of-
Motion Coupled-Cluster Theory for Electron Attachment with
Applications to Bound and Temporary Anions. J. Chem. Phys. 2018,
148, 024104.
(42) Ghosh, A.; Vaval, N.; Pal, S.; Bartlett, R. J. Complex Absorbing
Potential Based Equation-of-Motion Coupled Cluster Method for the
Potential Energy Curve of CO2

− Anion. J. Chem. Phys. 2014, 141,
164113.
(43) Kunitsa, A. A.; Bravaya, K. B. First-Principles Calculations of
the Energy and Width of the 2Au Shape Resonance in p-
Benzoquinone: A Gateway State for Electron Transfer. J. Phys.
Chem. Lett. 2015, 6, 1053−1058.
(44) Ehara, M.; Kanazawa, Y.; Sommerfeld, T. Low-lying π*
Resonances Associated with Cyano Groups: A CAP/SAC-CI Study.
Chem. Phys. 2017, 482, 169−177.
(45) Sommerfeld, T.; Meyer, H.-D. Computing the Energy-
Dependent Width of Temporary Anions from L2 ab initio Methods.
J. Phys. B: At., Mol. Opt. Phys. 2002, 35, 1841−1863.
(46) Jagau, T.-C.; Krylov, A. I. Characterizing Metastable States
Beyond Energies and Lifetimes: Dyson Orbitals and Transition
Dipole Moments. J. Chem. Phys. 2016, 144, 054113.
(47) Burrow, P. D.; Jordan, K. D. Electron Transmission
Spectroscopy of 1,3,5-Hexatriene: Isomeric Differences in π* Orbital
Energies. J. Am. Chem. Soc. 1982, 104, 5247−5248.
(48) Burrow, P. D.; Jordan, K. D. On the Electron Affinities of
Ethylene and 1,3-Butadiene. Chem. Phys. Lett. 1975, 36, 594−598.
(49) Beez, M.; Bieri, G.; Bock, H.; Heilbronner, E. The Ionization
Potentials of Butadiene, Hexatriene, and Their Methyl Derivatives:
Evidence for Through Space Interaction Between Double Bond π-
Orbitals and Non-Bonded Pseudo-π Orbitals of Methyl Groups? Helv.
Chim. Acta 1973, 56, 1028−1046.

(50) Gavin, R. M., Jr.; Rice, S. A. Spectroscopic Properties of
Polyenes. II. The Vacuum Ultraviolet Spectra of cis and trans-1,3,5-
Hexatriene. J. Chem. Phys. 1974, 60, 3231−3237.
(51) Honda, Y.; Shida, T.; Nakatsuji, H. Excitation Spectra of Cation
and Anion Radicals of Several Unsaturated Hydrocarbons: Symmetry
Adapted Cluster-Configuration Interaction Theoretical Study. J. Phys.
Chem. A 2012, 116, 11833−11845.
(52) Walker, I. C.; Stamatovic, A.; Wong, S. F. Vibrational Excitation
of Ethylene by Electron Impact: 1−11 eV. J. Chem. Phys. 1978, 69,
5532−5537.
(53) Allan, M.; Winstead, C.; McKoy, V. Electron Scattering in
Ethene: Excitation of the a ̃ 3B1u State, Elastic Scattering, and
Vibrational Excitation. Phys. Rev. A: At., Mol., Opt. Phys. 2008, 77,
042715.
(54) Khakoo, M. A.; Khakoo, S. M.; Sakaamini, A.; Hlousek, B. A.;
Hargreaves, L. R.; Lee, J.; Murase, R. Low-Energy Elastic Electron
Scattering from Ethylene: Elastic Scattering and Vibrational
Excitation. Phys. Rev. A: At., Mol., Opt. Phys. 2016, 93, 012710.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00128
J. Chem. Theory Comput. 2018, 14, 3468−3478

3478

3.2. STRUCTURE OPTIMIZATION OF TEMPORARY ANIONS

41



CHAPTER 3. RESULTS

3.3 Crossing points between anionic and neutral surfaces

This article shows that the real part of the CAP-EOM-EA-CC analytic gradient for the anionic resonance

and the real part of the CAP-CC gradient for its parent neutral state can be utilized to locate crossings

between these states when starting from a structure where the anionic state is metastable. For the final

optimization of crossing points, or also when starting from a stable anionic structure, regular EOM-CC

can be used. The knowlegde of the structure and the energy of these crossing points is not only interesting

for the nonadiabatic transition from anionic to neutral + free electron states, but also for the stabilization

of the resonance against direct autodetachment. The accessibility of the MECP can help in estimating the

importance of DEA compared to autodetachment, for example. The MECP is located by minimizing the

energy of the degenerate states, which requires analytic gradients of the two states (similar to the MECP

of bound states, see Section 2.5.2).

The CAP-EOM-CCSD method usually gives a smooth CPES for the resonance far from the crossing,

but near the crossing the determination of the optimal CAP strength parameter might become problematic.

This is demonstrated on the π∗ anionic resonance of formic acid in this publication. When a parameter

value cannot be found according to (2.58), one can use regular EOM-CC, thus approximate the state as

stable, which might result in a discontinuity of the real and imaginary surfaces. Alternatively, one can use

the correction scheme (2.59) [63], which yields smooth surfaces close to the crossing, but the de-perturbed

energy has no analytic gradients available, which makes geometry optimization difficult.

The optimization method was applied to acrylonitrile and methacrylonitrile, whose anionic resonances

were already investigated in Publication 2 (Section 3.2). Here, some more features of the electron energy

loss spectra [75, 76] could be connected to the properties of the CPESs. In particular, it was shown that

the structure of MECPs can help in understanding bright peaks on the threshold line, which correspond to

the emission of nearly zero-energy electrons. Presumably, both the direct and the nonadiabatic processes

take part in forming the spectra, and further studies are needed to investigate their relative contribution to

particular peaks.

Chloro-substituted ethylenes were also investigated in this article. For these compounds, DEA results

from the interplay between two types of anionic resonances: a σ∗ state that is dissociative along the

chlorine-carbon bond, but has a short autoionization lifetime, and a π∗ state, that has a longer lifetime

and lower vertical attachment energy. The coupling of these states through nuclear motion helps in

increasing the probability of dissociation. After determining vertical attachment energies and resonance

widths, and locating MECPs between the lowest anionic resonance and the parent neutral state, the

possibility of a DEA process for different molecules was discussed. The absence of an easily accessible,

dissociative anionic resonance for ethylene explains why DEA is not significant for this molecule. For

chloro-substituted ethylenes, the low energy of the MECP is promising, but the structure and resonance

position of the minimum-energy σ∗–π∗ crossing are also needed to see if DEA can proceed through a

barrierless pathway. These were presented for chloroethylene in Paper 4 (Section 3.4).

In the present article, the difference in measured Cl− yields for electron attachment to dichloroethylene

isomers [130] is connected to the calculated resonance widths. This shows that the characteristics of

both the real and the imaginary part of the CPESs are important for understanding the behavior of such

systems.
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ABSTRACT: The equation-of-motion coupled-cluster singles and doubles (EOM-
CCSD) method with and without a complex absorbing potential (CAP) is applied
for the study of the complex potential energy surfaces (CPES) of temporary anions
and their parent neutral molecules. Crossings between the anionic state and the
neutral state can be connected to the emission of nearly zero-energy electrons,
which is demonstrated by the examples of acrylonitrile and methacrylonitrile. We
show that the location of the minimum-energy crossing point (MECP) relative to
the equilibrium structures of the neutral molecule and the anion can explain
experimentally observed peaks on the threshold line of two-dimensional electron-
energy loss spectra. The location and energy of the MECP is also crucial in
dissociative electron attachment as we illustrate for chloro-substituted ethylenes. It is demonstrated that both the metastable
region of the anionic CPES and the crossing with the neutral PES need to be considered to explain trends in the chloride ion
formation cross sections of dichloroethylenes.

1. INTRODUCTION
Anions that have higher energy than the neutral ground state
are not stable with respect to electron loss.1 Competing with
autodetachment is the nuclear motion, which can lead the
system to more stable configurations, and in some cases, it
might even lead to stable anions. Such stabilization though
nuclear motion drives dissociative electron attachment, where
stable fragmented products are formed through the inter-
mediation of an anionic resonance.
The stability of a resonance with respect to autodetachment

is defined by its lifetime, which depends on nuclear
coordinates. In general, there can be regions in the nuclear
coordinate space where the anion is higher in energy than the
parent neutral molecule, and its lifetime with respect to
electron loss is finite. There can also be regions where the
anion has lower energy than the neutral molecule, so that the
rate of electron loss is zero and the lifetime with respect to
autodetachment is infinite.
In regions where the anion is stable, standard electronic

structure methods can be applied. However, where the anion is
metastable, it cannot be described as a discrete state in the
usual Hermitian formalism. Instead, one can use different non-
Hermitian approaches2,3 that transform the resonance to a
discrete state having complex energy

E E i /2R= − Γ (1)

where ER is the resonance position and Γ is the resonance
width.
The rate of autodetachment is given by the resonance width

from eq 1 and usually decreases as the energy separation of the
anionic state and the neutral state gets smaller (see Figure 1 for

a schematic drawing), but there is no rigorous connection
between the two quantities, in general. In the vicinity of the
crossing seam, autodetachment through nonadiabatic coupling
can become important as well.4,5 For a theoretical model of
this process, the nonadiabatic coupling between the anionic
state and the neutral state plus the outgoing electron needs to
be evaluated. This nonadiabatic detachment process is
governed by a set of propensity rules;5 e.g., for a given energy
of the outgoing electron, the rate of electron detachment
depends inversely on the energy gap between the two potential
energy surfaces (PESs).
Experimentally, electron detachment near the crossing is

characterized by the emission of a nearly zero-energy electron
(Figure 1) accompanied by a vibronic transition. Therefore,
information about the crossing can be inferred, for example,
from bright peaks on the threshold line in two-dimensional
electron-energy loss (2D EEL) spectra.6,7 Alternatively,
vibrational autodetachment experiments also provide informa-
tion about the crossing seam.8

It was proposed that in the vicinity of the crossing a low-
energy electron can be attached to the neutral molecule
efficiently5 and that the position of the crossing can be used to
estimate the activation energy of dissociative electron transfer
processes.9,10 This has often been done by calculating the
energy of the anionic and neutral states with bound state
methods along a particular reaction coordinate neglecting
nonadiabatic effects and the metastable nature of the
anion.9,11−13
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Complex PESs (CPESs) of resonances leading to crossings
with their parent neutral states have been studied previously
only for small systems, mostly diatomics, for which an
exploration using only single-point energy calculations is
feasible (see, for example, refs 14−18.). For larger molecules,
such an approach becomes increasingly demanding, and
analytic gradients are needed to locate special points such as
equilibrium structures and minimum-energy crossing points
(MECPs) on multidimensional PESs. While analytic gradients
are available for many bound-state methods, corresponding
developments for metastable states are limited to the complex
absorbing potential equation-of-motion coupled cluster (CAP-
EOM-CC) method,3,19,20 for which we recently defined a
general analytic energy gradient expression.21 We implemented
analytic gradients for CAP-EOM-CCSD and CAP-EOM-
CCSD(2) and utilized them to locate equilibrium structures
on the CPES of metastable anionic states.21,22 The electron
attachment (EA) variant23 of EOM-CC24−26 is especially well
suited for the study of anionic resonances as it directly yields
the attachment energy for various anionic states in one
calculation and hence provides a balanced treatment of neutral
and anionic states.
In this work, we combine CAP-EOM-CCSD with regular

EOM-CCSD to describe both metastable and stable regions of
anionic PESs to gain a better understanding of processes
following electron attachment to polyatomic molecules. Within
the EOM-CC model, only the description of crossings between
noninteracting states is straightforward, whereas the treatment
of interacting states requires special care due to the
nonsymmetric nature of the EOM-CC Hamiltonian.27,28,29

Here, we handle the crossing states within the framework of

regular EOM-EA-CCSD, which provides neutral and anionic
states and disregards nonadiabatic effects that would arise from
the interaction of the anionic and the neutral plus free electron
states. Within this framework of noninteracting states, the
crossing seam can be N-1-dimensional, where N is the number
of internal nuclear degrees of freedom.
The MECP can be located by minimizing the energy

difference along the gradient difference vector while minimiz-
ing the energy of one of the states in the orthogonal
complement space.30 Starting the MECP search in a region
where the anion is metastable, one needs to consider only ER,
the real part of the energy in order to arrive at the anion−
neutral crossing. To this end, we modified the regular MECP
search algorithm31 in the Q-Chem program package32 to
handle the real part of the energies and gradients computed
with CAP-EOM-CCSD. After getting sufficiently close to the
crossing with CAP-EOM-EA-CCSD, we use regular EOM-
CCSD for the final optimization of the MECP. This is justified
as Γ is expected to be small near the crossing and zero in
regions where the anion is stable. It is also possible to locate
the MECP using only EOM-EA-CCSD starting from a
structure where the anion is bound. However, the energy
and structure of the MECP are only meaningful in relation to
the neutral and anionic equilibrium structures and the energy
of the anion at these points. If the anion is metastable at these
structures, like in the cases considered in this article, its
description requires CAP-EOM-EA-CCSD.
The remainder of the article is organized as follows: in

Section 2, we illustrate the performance of regular and CAP-
augmented EOM-CCSD near the crossing seam by the
example of formic acid and its anion. Section 3 presents two
representative applications to acrylonitrile and methacryloni-
trile as well as various chloroethylenes that illustrate how
energies and structures of MECPs are connected to the decay
or stabilization of temporary anions. Section 4 provides our
concluding remarks.

2. POTENTIAL ENERGY SURFACES NEAR A
CROSSING POINT

To study the behavior of CAP methods and regular bound
state methods near surface crossings, neutral and anionic PESs
connecting the resonance equilibrium structure with the
MECP were calculated for HCOOH with CCSD and
(CAP-)EOM-EA-CCSD using the aug-cc-pVDZ+3p basis set.
This basis set was originally described in ref 20 as
augmentation scheme “A”, and it was shown22 that for π*
resonances this basis generally gives reliable results. The
HCOOH−HCOOH− system represents a sensitive test case as
the energies and structures of the resonance equilibrium and
the MECP are very similar: the largest difference in bond
length is for the C−OH bond, which is 0.026 Å longer at the
MECP. The distortion from planarity is also only slightly
different; the dihedral angle H−O−C−H is smaller by 7° at
the MECP (see Supporting Information for internal
coordinates).
Regular EOM-EA-CCSD is not able to describe the anion

properly in the metastable region, where the anionic state is
above the neutral state. Figure 2 shows that the energy of the
anion is underestimated, while the corresponding Dyson
orbital33 (shown in Figure S1 of the Supporting Information)
illustrates that the farther we go into the metastable region the
more the continuum states mix with the π* resonance. Also, a
second anionic state becomes more localized along the path

Figure 1. Hypothetical potential curves for an anionic state and its
parent neutral state. In the upper panel, the energies relative to the
energy of the neutral state at its equilibrium structure are plotted. Left
of the crossing the anion is metastable with respect to electron loss
having a resonance width that is dependent on the nuclear
configuration (bottom panel). In typical experiments, the electron is
attached to the neutral state at its equilibrium structure, where the
energy difference between the anionic state and the neutral state is the
vertical attachment energy (VAE). Emission of a nearly zero-energy
electron takes place near the crossing between the two states, but
autodetachment can occur at any nuclear configuration where the
anionic state has higher energy than its parent neutral state.
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and has an avoided crossing with the first anionic state (Figure
S1). The mixing of the resonance with pseudocontinuum states
is a known issue when using regular bound state methods and
was, for example, demonstrated in detail in ref 34.
CAP-EOM-EA-CCSD gives reliable results near the

resonance equilibrium structure, but close to the crossing, an
optimal value of the CAP strength parameter η20,35 can no
longer be determined because the minimum in the |η dE/dη|
trajectory, from which the optimal value is identified,35

disappears (Figure S2). If one uses regular EOM-EA-CCSD
from the point where CAP-EOM-EA-CCSD can no longer be
used, there will be a discontinuity in the CPES: the resonance
energy drops by 0.052 eV, while the resonance width drops
abruptly from 0.081 eV to zero. In fact, if one uses CAP-EOM-
EA-CCSD at the resonance equilibrium structure and EOM-
EA-CCSD at the MECP, the energy of the anionic state will be
slightly lower (by 0.011 eV) at the MECP than at the
resonance equilibrium in this particular example. When using
the larger aug-cc-pVTZ+3p basis set, this difference comes
down to 0.003 eV.

Alternatively, one can use the deperturbed complex energy
U = E − η dE/dη,16,35,36 which has been corrected for the
perturbation introduced by the CAP in first order. Using U
instead of E yields a smooth surface near the crossing in the
case of HCOOH−. However, this surface can have a
discontinuity in the bound region if the optimal CAP strength
parameter abruptly goes to zero. Also, the resonance width Γ is
nonzero in this scheme even after the crossing, where the
anion is supposed to be stable. At the MECP, the difference
between corrected CAP-EOM-EA-CCSD and EOM-EA-
CCSD results amounts to 0.024 eV for ΔE and 0.044 eV for
Γ. We note that EOM-EA-CCSD calculations with complex
basis functions also lead to a small inconsistency between ER
and Γ near the crossing.18

3. APPLICATIONS
3.1. Acrylonitrile and Methacrylonitrile. In our previous

paper,22 we discussed some features of the 2D EEL spectra of
acrylonitrile and methacrylonitrile6,7 focusing on the equili-
brium structure of the neutral molecules and the lowest π*
anionic resonance. Several bright peaks could be explained by
the different structure of the anion and the neutral molecule.
Here, we show how the crossing between the anionic and the
neutral surface can explain some more features of these spectra.
One of the main observations in the 2D EEL spectra is that

high-intensity peaks are arranged for both systems along
diagonals that correspond to a specific kinetic energy of the
emitted electron.6,7 One such diagonal is the threshold line,
which corresponds to detachment of a zero-energy electron. A
prominent peak near the threshold line of acrylonitrile shows
that the anionic resonance, prepared in its vibrational ground
state, decays into an excited vibrational state of the neutral
molecule. Assignment of this peak is not unambiguous as both
the ν12 (CH wagging = C2 pyramidalization) and the ν13 (CH2
wagging = C3 pyramidalization) modes of the neutral molecule
have frequencies similar to the EEL value of this peak.7

In methacrylonitrile, bright peaks near the threshold line
were assigned to the ν8 (CH2 scissoring) or ν9 (CH3 umbrella)
modes (EEL value 0.18 eV), the ν6 (CC stretching) mode
(EEL value 0.20 eV), and the ν17 (CH3 asymmetric stretching)
or ν4 (CH3 symmetric stretching) modes (EEL value 0.36 eV)
of the neutral molecule.7 The first peak is probably connected
to the vibrational ground state of the anion, and the second
peak can either be the ground state or an excited state of a low-
frequency mode, while the third peak is probably connected to
the 61 vibrational level of the anion.
According to the Franck−Condon principle, which applies

to the direct electronic autodetachment process, decay into
vibrationally excited states of the neutral molecule indicates
that either the equilibrium structures of the anion and the
neutral molecule are shifted along these modes or the anionic
PES is very flat, so that there is a high overlap between the
vibrational wave functions of the initial and the final state. The
rate of this direct process is the resonance width averaged over
the probability density of the initial (anionic) vibrational wave
function. Thus, the transition probability is expected to be
higher if the vibrational state in question samples parts of the
CPES where Γ is large. Acrylonitrile has a very small resonance
width at the equilibrium structures of both the neutral and the
anionic state (0.065 and 0.031 eV at the CAP-EOM-EA-
CCSD/aug-cc-pVDZ+3p level),22 which suggests that the
nonadiabatic process may also become important for vibra-
tional states with small resonance width.

Figure 2. Energy profiles along the pathway connecting the resonance
equilibrium structure with the MECP between the π* resonance and
the neutral ground state of formic acid. Structures were generated by
linear interpolation and extrapolation using the resonance equilibrium
structure and the MECP structure. ΔE is the energy relative to the
neutral ground state at its equilibrium structure. Calculations were
performed with CCSD for the neutral state; for the anionic state,
EOM-EA-CCSD as well as uncorrected and corrected CAP-EOM-EA-
CCSD results are plotted. For the anionic state, the resonance widths
calculated with CAP-EOM-EA-CCSD are also shown. All calculations
were done with the aug-cc-pVDZ+3p basis set.
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For the nonadiabatic process, the transition probability is
high when the initial and final vibrational states lie close in
energy; that is, when the kinetic energy of the emitted electron
is small.5 For a given energy of the outgoing electron,
transition is most likely at those nuclear configurations where
the anionic and the neutral PES cross. Furthermore, the
derivative overlap of the initial and final vibrational wave
functions is also expected to influence the transition
probability.5 In the case of acrylonitrile, the ν12 and ν13
modes of the neutral molecule have frequencies (0.121 and
0.118 eV) just slightly lower than the adiabatic attachment
energy (0.138 eV),7 so the first condition is fulfilled for the 00

→ 121 and 00 →131 transitions, and nonadiabatic effects are
expected to be significant when the two PESs intersect.
In summary, both processes are expected to contribute to

electron detachment, but the relative significance of the direct
and the nonadiabatic process is different for the individual
vibronic transitions.
By looking at the changes in energy (Table 1) and structure

(Table 2) between the neutral equilibrium structure, the

resonance equilibrium structure, and the MECP, it can be
concluded that the anionic surfaces of both systems are very
flat; the energy of the anion changes by 0.015 eV
(acrylonitrile) and 0.005 eV (methacrylonitrile) between the
resonance equilibrium and the MECP, while the energy of the

neutral state changes by 0.224 and 0.251 eV, respectively. One
should note that at the resonance equilibrium CAP-EOM-EA-
CCSD was used, while the MECP was calculated with regular
EOM-EA-CCSD. This may cause a discontinuity in the CPES
similar to that observed for HCOOH in Section 2, but it is not
expected to change the conclusion that the anionic surface is
much flatter than the neutral surface along the modes that lead
to the crossing.
The resonance equilibrium structure is planar for acryloni-

trile, so in this case, there is no dislocation of the anionic and
the neutral PESs along the C2 or C3 pyramidalization modes
(ν12 and ν13). The direct detachment process might still be
important due to the different curvature of the two surfaces,
but for the quantification of this process, vibrational states and
their resonance widths would need to be calculated.
The MECP has a similar structure as the resonance

equilibrium for both molecules, and the largest differences
are observed for the C2−C3 bond length and nonplanar
distortions (Table 2). The low energy and the structure of the
MECP show that crossings are easily accessible already for the
vibrational ground state of the anion. This suggests that the
bright peaks on the threshold line are at least partly due to
nonadiabatic effects.
There are substantial changes between the neutral

equilibrium structure and the MECP: The C2−C3 bond is
elongated at the MECP for both molecules, and elongation of
the C1−N bond is less pronounced, while the C1−C2 bond is
compressed somewhat. Pyramidalization at the C3 atom (ν13)
is observed for acrylonitrile at the MECP, but pyramidalization
at the C2 atom (ν12) is not significant. Since the MECP can be
reached along this mode, it seems probable that the ν13 mode
of the neutral molecule is excited after electron detachment,
but we cannot rule out participation of the ν12 mode either.
In the case of methacrylonitrile, it seems that both the direct

and the nonadiabatic process can produce the 61 vibrationally
excited state of the neutral molecule because the resonance
equilibrium structure already has a significantly elongated C2−
C3 bond, which is further increased at the MECP. Significant
CH2 scissoring, CH3 umbrella, or CH3 symmetric stretching
were not observed between the optimized structures for
methacrylonitrile, but CH3 asymmetric stretching can be
noticed in the slightly different C−H bond lengths in the
methyl group.
In summary, our results show that several bright peaks at the

threshold line in both 2D EEL spectra, in particular, the
excitation of ν13 for acrylonitrile and that of ν6 for
methacrylonitrile, can be explained by the structure and the
energy of the MECP and the resonance equilibrium structure.
A more detailed understanding of these spectra, in particular,
of the features involving detachment from vibrationally excited
anionic states, would require to consider energies and
resonance widths of individual vibrational states of the anion,
which is beyond the scope of the present work.

3.2. Chloroethylenes. Widely used as chemical inter-
mediates and solvents, chloroethylenes have become one of the
most common groundwater contaminants.37 Reductive
dehalogenation is a key process in their detoxification that
has been studied extensively in various natural and engineered
environments38−41 and in the gas phase via dissociative
electron attachment (DEA),42−46 but its mechanism is still
not completely understood.
It is believed that in the gas phase electron attachment to the

π* orbital produces an anionic resonance that can convert to a

Table 1. Energies of Neutral and π* Anionic States of
Acrylonitrile and Methacrylonitrile Relative to the Neutral
State at Its Equilibrium Structure for Various Nuclear
Configurations (in eV)a

acrylonitrile methacrylonitrile

neutral anion neutral anion

neut. eq 0.000 0.583 0.000 0.707
res. eq 0.194 0.397 0.259 0.506
MECP 0.418 0.412 0.510 0.511

aIn all calculations, the aug-cc-pVDZ+3p basis set was used. Energies
at the neutral and resonance equilibrium structures were presented
previously in ref 22.

Table 2. Equilibrium Structures of the π* Resonance and of
the Neutral Ground State and Structure of the MECP for
Acrylonitrile and Methacrylonitrilea

neutral anion MECP

acrylonitrile
RC1−N 1.172 1.193 1.197
RC1−C2 1.452 1.416 1.409
RC2−C3 1.350 1.424 1.445
∠C1−C3−H2‑C2 (C2 pyr.) 0.0 0.0 4.0
∠C2−H3′−H3‑C3 (C3 pyr.) 0.0 0.0 16.2
methacrylonitrile
RC1−N 1.172 1.192 1.196
RC1−C2 1.459 1.418 1.413
RC2−C3 1.351 1.415 1.437
RC4−H4 1.100 1.110 1.109
RC4−H4′ 1.102 1.103 1.105
RC4−H4″ 1.102 1.114 1.121
∠C1−C3−C2‑C4 180.0 176.1 162.2

aBond lengths are given in Å and angles in degrees. Computed using
the aug-cc-pVDZ+3p basis set.
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σ* state through out-of-plane nuclear motions. The σ* state
dissociates into a chloride ion and a molecular radical; thus, in
total, a chlorine is removed from the molecule. The overall
driving force of the reaction is the high electron affinity of the
chlorine atom; similar reactivity patterns can be observed for
other substituents with high electron affinity.
To gain more insight into the DEA process, we located

MECPs for the lowest-lying anion-neutral crossings for all
chloro-substituted ethylene molecules. At planar structures, for
example, at the neutral equilibrium structure, these systems
have one π* and some low-lying C−Cl σ* resonances
depending on the number of chlorine atoms. The C−H σ*
resonances are presumed to have higher energy and thus do
not participate in the DEA process. At low electron energies,
the electron is captured by the π* resonance, which has longer
lifetime and lower energy than the σ* resonances.
The experimental vertical attachment energy (VAE) to the

π* state is available from electron transmission spectroscopy
(ETS).43,45 The calculated VAEs (Table 3) show good
correlation with experimental values from ETS, with an
average difference of 0.57 eV, which is typical of CAP-EOM-
EA-CCSD with the aug-cc-pVDZ+3p basis set.21,22 VAE values
calculated with the aug-cc-pVTZ+3p basis are closer to
experimental values (0.48 eV difference), but tetrachloro-
ethylene could not be investigated with this basis due to high
computational cost.
The transition from the π* state to a σ* state is enabled

through out-of-plane motions. For the description of this
process, interstate couplings for metastable states would be
necessary. The behavior of the CPESs of resonances near the
crossing47,48 is quite different from the behavior of the PESs of
bound states,49−51 and we direct the reader to ref 48, where
such an intersection between resonances was studied for
chloroethylene with the CAP/Σ(2) method. Here, we
concentrate on crossings between anionic and neutral states
instead.
Anion−neutral crossings in chloroethylenes have been

studied along linear reaction coordinates with bound-state
methods, and the positions of the crossings were used to
estimate activation barriers.13 However, exploring the full
geometry space and locating the MECP along the crossing
seam can yield more accurate structures and energies and
hence more realistic barrier heights.
Our earlier studies showed21,22 that the π* state of ethylene

has a nonplanar, C2h equilibrium structure with an elongated
C−C bond. The MECP with the neutral state has a
nonsymmetric structure with an even longer C−C bond
(Figure 3). Structure optimization of the π* state of

chloroethylenes is problematic due to the interaction with σ*
states and the presence of crossings between these states. The
MECP between the lowest anionic state and the neutral state
has elongated C−Cl bonds, and the chlorine is bent out of the
molecular plane in all cases. At these nonplanar structures, the
σ*, π* classification is no longer sensible.
In Figure 3, it can be seen that at the MECPs the Dyson

orbitals of all chloro-substituted anions have antibonding
character between some of the Cl and C atoms driving the
dissociation of these bonds. In all three dichloroethylenes, the
two Cl atoms are equivalent, and the electron density is
symmetric. In the case of trichloroethylene, however, this is not
true, and dissociation of different C−Cl bonds leads to
different products, namely, cis-, trans-, and 1,1-dichloroethenyl
radicals. The four anionic states that might play a role in the
DEA process can have mixed σC−Cl* and π* character; thus, it is

Table 3. Vertical Attachment Energies and Resonance Widths for the π* Resonances of Ethylene and Chloro-Substituted
Ethylenes and Energy of the MECP between the Lowest-Lying Anionic State and the Neutral Ground State Compared to the
Energy of the Neutral State at its Equilibrium Structurea

exp.43 aug-cc-pVDZ+3p aug-cc-pVTZ+3p

VAE VAE Γ ΔE(MECP) VAE Γ ΔE(MECP)

C2H4 1.73 2.229 0.449 2.660 2.155 0.446 2.638
C2H3Cl 1.28 1.800 0.260 1.059 1.730 0.266 1.146
cis-C2H2Cl2 1.11 1.629 0.071 0.669 1.573 0.056 0.708
trans-C2H2Cl2 0.80 1.401 0.124 0.570 1.335 0.109 0.634
1,1-C2H2Cl2 0.76 1.378 0.240 0.515 1.285 0.245 0.579
C2HCl3 0.59 1.133 0.155 0.358 1.052 0.169 0.395
C2Cl4 0.3 0.982 0.026 0.264   

aExperimental VAEs determined by Burrow et al.43 using electron transmission spectroscopy are also shown. All values are given in eV.

Figure 3. Structures of ethylene and chloro-substituted ethylenes at
the MECP between the lowest-energy anionic state and the neutral
ground state along with the Dyson orbital of the anionic state at the
MECP. In the case of trichloroethylene, two low-energy MECPs were
found. Calculations were performed with the aug-cc-pVDZ+3p basis
set.
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possible that different dissociation products can be reached
from the same anionic state.
We were able to locate the MECP on the crossing seam of

two of these anionic states with the neutral state. The Dyson
orbitals in Figure 3 have clear antibonding character along
some of the C-Cl bonds, but dissociation routes were also
verified by starting structure optimizations from these points.
The two MECPs are at substantially different structures but at
similar energies. The lower-lying MECP is at 0.358 eV (EOM-
CCSD/aug-cc-pVDZ+3p; 0.395 eV with aug-cc-pVTZ+3p),
while the other MECP is at 0.386 eV (0.447 eV with aug-cc-
pVTZ+3p). Calculations along the reaction coordinates of
different dissociation routes with EOM-CCSD are problematic
due to the increasing multireference character of the states, but
our calculations close to the MECP suggest that barriers along
the dissociation routes are much lower in energy than the VAE,
so dissociation to all three isomers is possible from both
MECP points.
Table 3 shows that for ethylene the MECP has higher

energy than the VAE, while for chloro-substituted ethylenes it
is at much lower energy, making it easier to reach. The reason
for this difference is that chloroethylenes have a low-lying σ*
state that can mix with the π* state at nonplanar geometries
and thus stabilize the anion and lower the energy of the
crossing with the neutral state.
Table 3 also illustrates that the aug-cc-pVDZ+3p basis set

describes the MECP points quite well: the difference between
double-ζ and triple-ζ results is similar to or somewhat smaller
than for the VAE values. However, VAE values are lower with
the aug-cc-pVTZ+3p basis, while ΔE(MECP) values are
typically higher, with the only exception being C2H4.
Calculations on chloroethylenes were done previously with

DFT13,52,53 and CCSD(T),13,52 but these methods do not
account for metastability and hence cannot describe the anion
correctly in regions where it has higher energy than the neutral
ground state. One important advantage of the CAP method
over bound-state methods is that resonance widths can be
determined, which gives further insight into the processes
following electron attachment. For example, parent anions are
observed in mass spectra of tetrachloroethylene42,44,46 and in
one experiment also for trichloroethylene.46 This suggests that
the anion can live long enough to reach the detector.
According to our calculations (Table 3), the anion of
tetrachloroethylene indeed has a very small resonance width.
Resonance widths are also helpful in explaining why some

chloroethylene species produce a higher chloride ion yield than
others. Cl− formation cross sections were measured46 for
several haloethylenes including the three dichloroethylene
isomers, and it was found that the cross section grows in the
order geminal, trans, cis. This ordering cannot be explained by
the energetics of the DEA process alone, as all three isomers
have similar VAE and ΔE(MECP) values (Table 3).
However, if one takes a look at the calculated resonance

widths in Table 3, it becomes apparent that the autodetach-
ment process cannot be neglected: the widths are comparable
to typical vibrational frequencies of normal modes that are
relevant for reaching the MECP point, namely, C−Cl
stretching and Cl−C−C−Cl out-of-plane motions that
approximately range from a few hundred to a thousand
wavenumbers (≈0.03−0.12 eV).
This means that electron autodetachment is competing with

stabilization through nuclear rearrangement, and thus, the
probability of reaching a crossing with the neutral state and

subsequent dissociation to Cl− depends not only on the energy
profile along the reaction coordinate but also on the rate of
autodetachment.
The resonance width depends on the nuclear coordinates;

thus, for a comprehensive characterization, one would need to
perform molecular dynamics simulations considering both
resonance energies and widths. However, for the three
dichloroethylene isomers, a qualitative explanation can already
be given considering the resonance widths only at the neutral
equilibrium structures. The cis isomer has the smallest
resonance width, followed by the trans isomer and the geminal
isomer; thus, the anion of the cis isomer has the highest
probability to reach the crossing without emitting an electron,
become stable, and then dissociate to Cl− and a molecular
radical, while the anions of the trans and geminal isomers have
a higher probability to lose an electron on the way. Thus, the
ordering of Γ is consistent with the experimentally observed
Cl− yields.

4. CONCLUSIONS

Crossings between anionic resonances and their parent neutral
states have been investigated for several polyatomic molecules
with CAP-EOM-EA-CCSD and EOM-EA-CCSD. We have
shown that CAP-EOM-EA-CCSD gives reliable results in the
metastable region but often cannot be used in the vicinity of a
crossing. Near the crossing and in regions where the anion is
stable, regular EOM-EA-CCSD can be applied, but the shift
from CAP-EOM-CCSD to regular EOM-CCSD can lead to
discontinuities in the CPES.
The energy and structure of the MECP and the resonance

equilibrium compared to the neutral equilibrium energy and
structure provide information about vibronic transitions
accompanied by the emission of an electron with nearly zero
energy. With the examples of acrylonitrile and methacryloni-
trile, we demonstrated that differences between these
structures can explain some bright peaks on the threshold
line of two-dimensional electron-energy loss spectra.
MECPs are also helpful in explaining the production of

stable anion fragments in dissociative electron attachment
experiments as we illustrated with the example of chloro-
ethylenes. In contrast to vertical attachment, where the
electron is attached to a π* orbital, the Dyson orbitals at the
MECPs have antibonding character between the carbon and
chlorine atoms. While the MECP is substantially higher in
energy than the VAE in ethylene, it has much lower energy in
all chloroethylenes, which, combined with the antibonding
nature of the Dyson orbital, enables dissociation of a C−Cl
bond. However, for a comprehensive characterization of
dissociative electron attachment, the finite lifetime of the
anion in the metastable region should not be neglected. We
have shown that for these systems electron autodetachment
competes with dissociation, and the resonance width has a
substantial effect on the cross sections of Cl− formation.
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3.4. LOCATING EXCEPTIONAL POINTS

3.4 Locating exceptional points

This article focuses on exceptional points, that is, degeneracies of resonances. EPs are well-known in

other fields such as laser physics and optics, but are less known in connection with autoionizing molecular

resonances. Similarities and differences between EPs and CIs are discussed: EPs can be regarded as a

complex analogue of CIs in the sense that they act as funnels between states, but the topology of surfaces

is rather different in the two cases (see also Section 2.5).

An implementation of the imaginary part of the CAP-EOM-CC analytic gradient was presented in

this article, and it was shown that the complex-valued gradient can be used for locating EPs and MEEPs.

This is done in analogy to the direct optimization of CIs [108] (see also Section 2.5.2), but in this pilot

implementation only gradient differences are used. A projection using nonadiabatic coupling vectors

as well would probably improve the algorithm, and is a promising future project (see Section 3.5). The

algorithm was tested on anionic resonances of hydrogen cyanide and chloroethylene.

In the case of same-symmetry crossings of bound states, it is known [132–134] that truncated EOM-

CC methods give a ring of EPs instead of a single CI, which is an artifact due to the non-Hermiticity

of the method. It is shown in this article, that such a problem does not exist for EPs, and truncated

CAP-EOM-CC methods give crossing seams of the expected dimensionality, and the behavior of the

CPESs around EPs is correct. In more detail, N − 1 dimensional real and imaginary degeneracy seams

branch from the N − 2 dimensional EP seam, and form a closed shape in the case of chloroethylene,

in agreement with a complex linear vibronic coupling model and previous ab initio calculations [79].

Divergence of wave function amplitudes is also observed at EPs, and the phase rigidity [98–101], that can

be used to indicate this divergence, is defined for CAP-EOM-CC methods.

With the ability to locate the minimum-energy point on the EP seam, this method can be a strong tool

for describing multistate phenomena involving resonances, such as DEA. Similar to the MECP of bound

states, the MEEP can determine the rate of a reaction proceeding along that route, so its accessibility is of

special interest. In this article, calculations were performed for chloroethylene, whose DEA was already

investigated in Publication 3 (Section 3.3). The chloride ion yield is high when the energy of the attached

electron corresponds to the vertical attachment energy of the π∗ resonance [135–137], which suggests that

the dissociation route is easily accessed from this state. In this work, after locating the MEEP between the

π∗ and σ∗ states, a pathway for DEA was constructed using results from Publication 3 (Section 3.3) as

well. It was found, that with the energy available from the vertical excitation, the MEEP can be reached

easily. The small resonance width along the route ensures that a substantial portion of the molecules can

reach the MECP and dissociate instead of losing an electron and falling back to the neutral state.
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ABSTRACT: We present a method for locating non-Hermitian degeneracies, called
exceptional points (EPs), and minimum-energy EPs between molecular resonances using
the complex absorbing potential equation-of-motion coupled-cluster (CAP-EOM-CC)
method. EPs are the complex-valued analogue of conical intersections (CIs) and have a
similar impact on nonadiabatic processes between resonances as CIs have on nonradiative
transitions between bound states. We demonstrate that the CAP-EOM-CC method in the
singles and doubles approximation (CAP-EOM-CCSD) yields crossings of the correct
dimensionality. The use of analytic gradients enables applications to multidimensional
problems. Results are presented for hydrogen cyanide and chloroethylene, for which the
location of the crossings of anionic resonances is crucial for understanding the dissociative
electron attachment process.

Exceptional points (EPs)1 are non-Hermitian degeneracies
that appear in open quantum systems. They are important

in many different fields, such as optics, laser physics, and
atomic and molecular physics.2,3 In this Letter, we investigate
molecules that are unstable with respect to electron loss, that
is, subject to autoionization.
In the case of autoionizing resonances, EPs have a similar

role in deactivation processes as conical intersections (CIs)
have in the decay of bound excited states. It is well-known that
the interaction of bound electronic states through nuclear
motion is often key for understanding processes such as
ultrafast decay, isomerization, and photodissociation that are
responsible for the photostability of DNA or vision, for
example.4 The probability of a nonadiabatic transition is high
near a CI and near an EP as well, and interstate couplings are
singular at both types of intersections.5 EPs are expected to be
just as ubiquitous for molecular resonances as CIs are for
bound states, but they have been investigated much less.
Linear vibronic coupling (LVC) models were established a

long time ago5,6 for the description of resonance−resonance
interactions. The presence of sharp peaks in the vibrational
excitation cross section of H2 + e− was connected to
overlapping resonance states.7,8 In addition, the interaction
of molecular electronic resonances is also important in
dissociative electron attachment (DEA), which plays a key
role in radiation damage to DNA and in the formation of
molecules in interstellar space.9 We also mention investigations
of nonadiabatic effects in resonant Auger decay10 and
interatomic Coulombic decay.11 However, EPs have been
investigated only for a few autoionizing anions: between the
2A1 and

2B2 states of the water anion,12 and between the 2A″
(π*-type) and 2A′ (σC−Cl* -type) states of the chloroethylene
anion.6 These investigations were done by scanning the

complex-valued potential energy surfaces (CPESs) along a few
modes, which requires a large number of calculations and good
chemical intuition. In this Letter, we present a method based
on analytic gradients for locating EPs on multidimensional
CPESs efficiently.
For the time-independent description of autoionizing

resonances, as well as for other dissipative systems, we can
use non-Hermitian Hamiltonians. Their complex eigenvalues E
= ER − iΓ/2 give the energy and the decay rate.13 EPs, where
the complex eigenvalues of two states become degenerate, are
of special interest because of their importance in nonadiabatic
decay, but also because they have properties radically different
from Hermitian degeneracies (CIs)2,14 (see Figure 1). At an
EP, not only the eigenvalues but also the eigenvectors coalesce,
forming a single self-orthogonal state.13 The topology of EPs
has been confirmed by experiments.15−20 When encircling a
CI, the states do not interchange, but the wave function
acquires a geometric phase.21 In contrast, when encircling an
EP, the two states can interchange,2,22 and the wave function
picks up a geometric phase.23 Encircling the EP in clockwise or
in counterclockwise directions yields different final states,
which was demonstrated by calculations24−26 and by experi-
ments on microwave transmission through a waveguide18 and
in an optomechanical system.19

The crossing conditions for same-symmetry intersections
can be derived in the two-dimensional subspace of the two
strongly interacting states. The energy difference between the
eigenvalues of the two-dimensional Hamiltonian matrix
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is ωϵ − ϵ +( ) 41 2
2 2 , where ϵ1 − ϵ2 is the diabatic energy

difference and ω is the coupling between the two states. In the
case of bound-state crossings, the matrix elements are real, so
there are two conditions for degeneracy: ϵ1 − ϵ2 = 0 and ω =
0.27,28 The eigenvectors remain orthogonal at the CI.
In the case of resonances, ϵ1, ϵ2, and ω can be complex; thus,

to have an EP between the states, both the real part and the

imaginary part of ωϵ − ϵ +( ) 41 2
2 2 have to be zero.6,29 This

means that the dimensionality of the EP seam is N − 2 (where
N is the number of nuclear degrees of freedom), just like the
CI seam for bound states, but the behavior of the crossing
states differs fundamentally between the two cases. The
Hamiltonian becomes defective at the EP, the two wave
functions coalesce, which means that the eigenvectors no
longer span the entire space. In addition, there is one
dimension along which the degeneracy of the real parts or
that of the imaginary parts can be kept, while the other parts
split (Figure 1). The Re and Im degeneracy seams can even
form a closed loop containing two EPs, as was demonstrated
by Feuerbacher et al.6 using an LVC model including linear
resonance widths and complex coupling terms.
Available methods for locating EPs30−34 use peculiarities of

the EP like the state-exchange phenomenon, the square-root
energy gap, or the nonanalytical behavior of energies at the EP.
In the method of Cartarius et al.,31 calculations are performed
along closed adiabatic loops, and the interchange of states is
used as a sign that the EP is inside the loop. In the iterative
three-point and one-point methods of Uzdin and Lefebvre33

and in the octagon method of Feldmaier et al.,34 guesses are
made for the position of an EP in a two-parameter space
utilizing the analytic behavior of the square of the energy

difference. Lefebvre and Moiseyev32 showed that the break-
down of the Pade ́ analytic continuation method can be utilized
as well to find EPs.
These methods are most useful for problems with one

complex parameter or two real parameters, for example, to
describe coalescence in molecular photodissociation, where
EPs can arise at specific values of the wavelength and the
intensity of the laser.35 It was suggested that population
transfer can be achieved between vibronic states of H2

+ and
Na2 by a chirped laser pulse, which can be utilized for
vibrational cooling.25,35−38

In molecules, the number of vibrational degrees of freedom
grows quickly with the size of the system (N = 3Natoms − 6 for
nonlinear molecules), which makes an EP search according to
the above-mentioned methods rather complicated. Also, there
is an (N − 2)-dimensional seam of EPs, from which the most
relevant point for estimating the importance of a nonadiabatic
process is the minimum-energy EP (MEEP). Here, we present
a method for locating EPs and MEEPs within the complex
absorbing potential equation-of-motion coupled-cluster (CAP-
EOM-CC) formalism39 by using analytic gradients. This
method opens up the possibility of studying DEA in
polyatomic systems without the need to impose geometrical
constraints.
We employ the CAP-EOM-CC method with a box-type

quadratic CAP added at the Hartree−Fock (HF) level as
outlined in refs 39 and 40. CAP-EOM-CC provides the two
resonances in one calculation if the same set of parameters
(CAP strength parameter η and box size parameters rα

0, α = x,
y, z) are used for both states,41 which ensures the balanced
description of the crossing states.9

The CAP-EOM-CC right wave function of state λ is defined
as

|Ψ = ̂ |Φλ
λ ̂R e) )T

HF (2)

where T̂ is the cluster operator and operator R̂λ can be chosen
in different forms to create excited, ionized, electron-attached,
or spin-flipped states.42 The scalar product ⟨ϕi|ϕj⟩ is replaced
by the c-product43 (ϕi|ϕj) ≡ ⟨ϕi*|ϕj⟩, which yields a complete
set of eigenvectors if there is no degeneracy.13 At EPs,
however, the c-norm of the corresponding eigenvector is zero,
even though the eigenvector is nonzero (self-orthogonal-
ity).13,43

It should be mentioned here that truncated CC and EOM-
CC methods do not give the correct shape and dimensionality
of same-symmetry crossings of bound states.44−46 This is
because truncation introduces non-Hermiticity, which changes
the crossing conditions. If we look at the problem as a real
nonsymmetric perturbation to a real symmetric matrix, a CI is
blown up to a circle of EPs because of the perturbation, and
complex eigenvalues appear within the circle.47

In the case of a truncated CAP-EOM-CC treatment of
resonances, the Hamiltonian is complex non-Hermitian. As
every complex matrix is similar to a complex symmetric
matrix,29 the crossing conditions of a complex symmetric H of
eq 1 apply, so truncated CAP-EOM-CC is expected to give the
correct dimensionality of the crossing seam. We demonstrate
this by calculations on the anions of hydrogen cyanide and
chloroethylene. Similar to truncated EOM-CC methods,
truncated CAP-EOM-CC can be systematically improved
toward the CAP-FCI limit by including higher-order
excitations.

Figure 1. Degeneracy seams in a three-dimensional parameter space
and behavior of eigenvalues in the branching plane for (a) Hermitian
and (b) non-Hermitian degeneracies.
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Because of the coalescence of the wave functions at an EP,
the wave function amplitudes diverge.13 The phase rigidity
(rλ)

48−51 is the ratio of the c-norm and the regular norm, and it
can be used as an indicator of an EP. Because of the
nonsymmetric nature of CAP-EOM-CC we calculate it as

= Ψ̃ |Ψ
⟨Ψ̃ |Ψ ⟩ = + − +λ

λ λ

λ λ
r

A
A B

i
B

A B
( )

2 2 2 2
(3)

∑= + λ λA L R1 2 Im( ) Im( )
i

i i
(4)

∑= λ λB L R2 Re( ) Im( )
i

i i
(5)

where Ψ̃λ is the left CAP-EOM-CC wave function; Li
λ and Ri

λ

are the left and the right EOM amplitudes corresponding to
single, double, etc. excitations; and we used the fact that left
and right eigenvectors are biorthogonalized using the c-
product

∑Ψ̃ |Ψ = − =λ λ
λ λ λ λL R L RRe( ) (Re( ) Re( ) Im( ) Im( )) 1

i
i i i i

(6)

∑Ψ̃ |Ψ = + =λ λ
λ λ λ λL R L RIm( ) (Re( ) Im( ) Im( ) Re( )) 0

i
i i i i

(7)

The phase rigidity is complex in our case because of different
left and right eigenvectors in truncated CAP-EOM-CC. For
well-separated resonances, its value should be close to 1 with a
negligible imaginary part, and it should go to 0 as the EP is
approached, because the amplitudes and thus the regular scalar
product grow. For a full CC expansion, the phase rigidity
would have purely real values.
To locate EPs on multidimensional CPESs, we use the fact

that both the real and the imaginary energy differences have to
go to zero as the EP is approached. The corresponding
gradient difference vectors can be used to determine directions
in which the energy differences decrease, and a method similar
to the direct method by Bearpark et al.52 for locating crossing
points of bound states can be applied.
We use gradient g̃ to locate any EP between two states

̃ = +g f fRe Im (8)

= − || ||E Ef
x
x

2(Re( ) Re( ))Re 2 1
Re

Re (9)

= − − || ||E Ef
x
x

4(Im( ) Im( ))Im 2 1
Im

Im (10)

where xRe and xIm are the gradient difference vectors

= −x G GRe( ) Re( )Re 2 1 (11)

= − −x G G2(Im( ) Im( ))Im 2 1 (12)

We presented the implementation of Re(G) in an earlier
paper40 and used it for locating resonance equilibrium
structures53 and for the initial optimization of minimum-
energy crossing points (MECPs) between anionic states and
their parent neutral states.54 We complement our implementa-
tion with Im(G) in the current work (see the Supporting
Information for the gradient formula).
To find the minimum-energy exceptional point (MEEP),

one would additionally have to minimize ER of one of the
states in the subspace orthogonal to the two-dimensional
branching plane, as is done for the MECP of bound states.52

While in the latter case the branching plane is spanned by the
gradient difference vector and the nonadiabatic force matrix
element (h),14,55 in the case of EPs the two-dimensional
branching plane is spanned by different combinations of the
xRe, xIm, hRe, and hIm vectors.
In our current implementation, the gradient of the second

state is orthogonalized to the plane spanned by xRe and xIm
using projector

=g GRe( )2 (13)

which is expected to cause slower convergence than
orthogonalization to the branching plane, but the calculation
of hRe and hIm is avoided.
The final gradient used for the MEEP optimization is given

as

̅ = + +g f f gRe Im (14)

The outlined methods were implemented in Q-Chem,56

built upon the MECP search implementation by Epifanovsky
and Krylov.57

To test the EP optimization and MEEP optimization
algorithms and to investigate the topology of EPs within the
CAP-EOM-CC singles and doubles (CAP-EOM-CCSD)
model, we performed calculations on the HCN− anion,

Figure 2. Real and imaginary parts of the CPESs above the branching plane corresponding to the EP at ∠ = 165° from Figure 3 (marked by a red
dot here). The third panel shows the real part of the phase rigidity for the first state. For the definition of u and v vectors, see the Supporting
Information. Calculations were performed with the fixed CAP parameters of the EP (see the Supporting Information).
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which can have a one-dimensional EP seam between two
resonance states of the same symmetry and multiplicity at bent
structures. We looked at crossings between two 2A′ states that
correspond to a 2Π state and a 2Σ+ state in linear geometry and
presumably play a part in DEA to HCN.
For these calculations we used the CAP-EOM-EA-CCSD

method and the standard Dunning basis set aug-cc-pVTZ
augmented with three extra p functions on each atom
(following the augmentation scheme described in ref 39).
The CAP strength parameter was kept fixed at the value 9 ×
10−3 a.u.,58 but the box size parameters were relaxed during the
EP optimization.
First we located EPs at five different constrained bond angles

between 155° and 175° using eq 8 for the optimization. To
verify the shape of the CPESs around EPs, we investigated the
EP corresponding to ∠ = 165°. Because there are just three
degrees of freedom for HCN−, it is simple to determine the
branching plane in this case (see the Supporting Information).
In Figures 2 and 3 it can be seen that the dimensionality of the

EP is correctly described by the CAP-EOM-CCSD method:
there is a one-dimensional EP seam, and the degeneracy is
lifted in the branching plane, as expected. The real parts of the
surfaces remain degenerate in one direction, and the imaginary
parts interchange here, while the imaginary parts are
degenerate in the opposite direction,59 which is also in
agreement with analytical models.
The real part of the phase rigidity of state 1 is plotted in

Figure 2. It is of the order of 10−2 at the approximate EP, but it
is below 0.6 already at radius 0.01 (approximately 0.007 Å
change in the bond lengths). The imaginary part of the phase
rigidity is negligible, with values between −0.008 and 0.007 for
all points calculated (see the Supporting Information).
The EPs found at different bond angles cover a large range

of ER and Γ values (Figure 3), and the difference between the
two states is typically smaller than 6 meV for both quantities

(see the Supporting Information). The third-order interpolat-
ing functions for ER,1 and ER,2 have a minimum at ∠ = 163.16°
and 163.18°, respectively. The MEEP (shown as a red dot in
Figure 3) was converged with a slightly looser threshold than
the previous EP points, so the energy difference of the two
states is somewhat larger than before (20 meV for ER and 2
meV for Γ). The need to use looser thresholds is probably due
to the fact that g is not exactly parallel to the EP line. The
MEEP has internal coordinates RCN = 1.165 Å, RCH = 1.162 Å,
and ∠ = 162.98°, the latter in very good agreement with the
above approximated values, which indicates that the looser
thresholds do not induce a large error in the structure.
To try out our method for a larger system with more degrees

of freedom, we investigated chloroethylene, which is a good
model for biologically important halogenated compounds. For
example, halogenated DNA bases are used as sensitizers in
radiation therapy, and it is believed that DEA involving
resonance states plays a role in this process by inducing strand
breaks in DNA.60 Experimental studies of chloro-substituted
ethylenes61−65 suggest that electron attachment produces a π*
resonance, which, through out-of-plane motions, converts to a
σ* state that is dissociative along a C−Cl bond. This DEA
process for removing a chloride ion from the molecule might
be important in the detoxification of these substances, which
are common pollutants of groundwater.66

In an earlier paper we presented vertical attachment energies
(VAEs) and MECPs between the lowest-energy anionic state
and the parent neutral state for chloro-substituted ethylenes.54

Here, we located the MEEP between the π* and σ* states of
the chloroethylene anion so that we can construct a complete
pathway for DEA. These calculations were carried out using
CAP-EOM-EA-CCSD and the aug-cc-pVDZ+3p basis set (3
extra p functions on C and Cl atoms). The two states have
different symmetry at planar structures (A″ and A′), which
means they cannot interact. At the MEEP, the Cl atom is bent
slightly out of the molecular plane; this allows for the
interaction of the two states. The C−Cl bond and, to a smaller
extent, the C−C bond are elongated compared to the
equilibrium structure of the neutral molecule (see the
Supporting Information). Feuerbacher et al. also located an
EP for this system6 by changing the C−Cl bond length and the
Cl out-of-plane angle in increments and leaving all other
coordinates fixed at their value at the neutral equilibrium
structure. Our method allows for the efficient optimization of
all nuclear coordinates, and in this way it yields the MEEP,
which is more relevant for assessing the probability of the DEA
process.
To check the shape of the CPESs near the MEEP, we

performed calculations in the xRe−xIm plane. The resulting
surfaces (Figure 4) have two EPs in the plane, and the shape
formed by the Re(E) and the Im(E) degeneracy seams
resembles an ellipse. This is in line with LVC results and ab
initio calculations of Feuerbacher et al.,6 who introduced the
term doubly intersecting complex energy surfaces (DICES) for
this phenomenon. In Figure 4 the ellipse fitted to the Im(E)
surface crossing can be seen. The optimized MEEP is not
exactly on the ellipse; differences in bond lengths between the
MEEP and the corresponding approximated point on the
ellipse, EP1, are smaller than 0.001 Å. The C−Cl bond at the
other EP on the ellipse, EP2, is shorter by 0.013 Å than at EP1,
and the H−C−C−Cl dihedral angle is −4.1° at EP2 compared
to 2.3° at EP1 and MEEP.

Figure 3. Resonance positions and widths and the energy of the
parent neutral state along the EP line of HCN−. The optimized MEEP
is marked by a red dot. Optimized structural parameters and box size
parameters are available in the Supporting Information.
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To construct a pathway for DEA, we performed linear
interpolation between the neutral equilibrium structure and the
MEEP and between the MEEP and the MECP. The π* state
has a much smaller resonance width than the σ* state in the
Franck−Condon region, but the width of the latter state
quickly decreases along the DEA pathway (Figure 5). At the

MEEP it is similar to the vertical width of the π* state.
Transition from π* to σ* occurs near the MEEP where the
coupling of the two states is large. From the MEEP both the
position and the width of the σ* resonance decrease
monotonically, until the MECP with the neutral state is
reached, and the anionic state becomes stable with respect to
electron loss. Note that at the MECP regular EOM-CCSD was
used for the calculation of the σ* state; thus, Γ is zero by
definition.

The MEEP has slightly lower energy (1.761−1.768 eV) than
the VAE of the π* state (1.801 eV54), and the MECP is at a
substantially lower energy than the previous two (1.059 eV54),
which means that DEA can proceed along a completely barrier-
free route. The long lifetime of the π* state relative to the σ*
state and the accessibility of the MEEP makes electron
attachment to the π* orbital very likely to produce chloride
ions as suggested also by experiments. However, experiments
find the maximum of the DEA cross section at around 1.2−1.3
eV,63,64 that is, at considerably lower energy than our VAE. A
similar deviation was obtained and analyzed in more detail in
ref 6. We also note that the π* state has a minimum before
reaching the MEEP, which is expected to elongate the time the
anion is subject to electron loss. To model how the properties
of real and imaginary surfaces influence the efficiency of the
DEA process, dynamical simulations of nuclear motion would
be needed.
In summary, we presented a method for locating EPs and

MEEPs on multidimensional CPESs using analytic gradients.
The peculiar shape of CPESs around EPs was discussed, and
the ability of the CAP-EOM-CCSD method to correctly
describe the vicinity of EPs was demonstrated. DEA to
chloroethylene was investigated by locating the MEEP
between π* and σ* anionic states and constructing a pathway
from the neutral equilibrium structure to the σ*−neutral
MECP through the MEEP.
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Figure 5. Resonance positions and widths of π* and σ* anionic states
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DEA pathway. For π* and σ* states, their respective optimal CAP
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Supporting Information).
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3.5. FUTURE PLANS AND FURTHER POSSIBLE APPLICATIONS

3.5 Future plans and further possible applications

As discussed in Section 2.2, the probability of a nonadiabatic transition depends on the magnitude of the

derivative coupling of the states in question. The regular EOM-CC derivative coupling vector can be

computed from the gradients of the interacting states and of a so-called summed state, as described in

Reference [139]. Implementation of this method in the Q-Chem program [140] was presented recently

[141], and implementation of CAP-EOM-CC derivative couplings is currently in progress. CAP-EOM-CC

derivative couplings will further facilitate the investigation of processes involving multiple resonances,

and will probably improve the MEEP optimization algorithm presented in Publication 4 (Section 3.4).

The analytic gradient developed in Publication 1 (Section 3.1) can also be used for simulating

photodetachment spectra within the linear vibronic coupling model [21, 22]. This requires vibrational

frequencies and normal modes for the initial state, which can be calculated using available analytic second

derivatives of regular CC methods, since the initial state is a stable state in this case. Transition dipole

moments, that give the intensity of specific transitions, are also available for CAP-EOM-CC methods [74].

For the final states, which are resonances in this case, only the derivatives of the vertical excitation energy

in the direction of the normal modes of the initial state are needed to evaluate the so-called intrastate

couplings. These derivatives can be calculated easily using CAP-EOM-CC gradients. The interaction of

final states can be incorporated in the calculations by evaluating the so-called interstate couplings, which

can be done in a similar way as the calculation of nonadiabatic couplings for bound states [19, 139]. The

implementation of interstate couplings within the CAP-EOM-CC method is a possible future project.

Second derivatives of the resonance energy will enable the simulation of vibrational spectra within

the double harmonic approximation. For CAP-EOM-CC methods this can be done by evaluating first

derivatives analytically, then second derivatives numerically.
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4 Conclusion

In the present work, new developments in the study of electronic resonances were presented in connection

with complex absorbing potential equation-of-motion coupled-cluster (CAP-EOM-CC) methods. With

the newly implemented analytic energy gradient and optimization algorithms, it is possible to study the

complex-valued potential energy surfaces (CPESs) of polyatomic resonances in an efficient way.

Derivations and implementations of the real and imaginary analytic gradients were presented, and the

differences from the calculation of bound-state gradients were highlighted. It was shown, that the real part

of the complex-valued gradient can be utilized for locating equilibrium structures of resonances, and it is

also helpful in locating intersections between an autoionizing state and its parent state. The performance

of CAP-EOM-EA-CCSD and CAP-EOM-EA-CCSD(2) methods with different basis sets was studied. It

was suggested, that for π∗-type anionic resonances, the basis set aug-cc-pVDZ+3p or, when affordable,

aug-cc-pVTZ+3p should be applied. Methods for locating exceptional points (EPs) and minimum-energy

EPs (MEEPs), that require the complex-valued gradients of the interacting states, were also presented, and

the correctness of the dimensionalities of degeneration seams was confirmed. Possible applications of the

metastable-state analytic gradient to nonadiabatic processes and spectrum simulation were also discussed.

With these newly developed methods, the optimization of metastable systems that were previously out

of reach for metastable-state methods became possible. Among the studied systems are acrylonitrile and

methacrylonitrile, whose two-dimensional electron energy loss (EEL) spectra provide many opportunities

for comparison between theory and experiment. It was shown, that the CAP-EOM-EA-CCSD method can

provide accurate adiabatic electron affinities and resonance widths for these systems, and certain peaks in

the EEL spectra can be explained by the location of special points on the CPESs. For 1,3,5-hexatriene, it

was found that CAP-EOM-EA-CCSD and CAP-EOM-EA-CCSD(2) methods give highly accurate energy

differences between the 2π∗ anionic states of cis and trans isomers with just a 0.03-0.06 eV deviation from

the experimental value. Resonance positions and widths at optimized structures were used for assessing

the relative importance of dissociation and autoionization for anionic resonances of chloro-substituted

ethylenes. The dissociative electron attachment pathway constructed for chloroethylene confirms, that by

a nonadiabatic transition, the possibility of autoionization can be kept low, and with the energy available

from vertical electron attachment dissociation is possible.

Overall, CAP-EOM-CC analytic gradients provide an efficient way to study processes involving

electronic resonances by enabling structure optimizations. Equilibrium structures, MECPs and MEEPs

are a key for understanding decay mechanisms and describing the interplay of multiple resonance states.
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TABLE I. Box size parameters and corresponding optimal CAP strengths. The box size parameters

were chosen as the spatial extent of the wave function (
√

〈α2〉) of the neutral molecule at the

equilibrium structure of the neutral molecule (box0) and at the equilibrium structure of the resonant

anion (boxres). The corresponding ηopt values were determined at the respective structures. The

CAP-EOM-EA-CCSD/aug-cc-pVDZ+3s3p(A) method was employed in all calculations. All values

are in atomic units.

r0x r0y r0z ηopt

CH2O−
box0 3.900 2.970 6.130 0.0054

boxres 3.900 2.995 6.360 0.0007

HCOOH−
box0 9.690 5.320 3.600 0.0070

boxres 9.870 5.485 3.730 0.0012

C2H4
−

box0 7.140 4.670 3.450 0.0070

boxres
a 7.415 3.520 4.675 0.0065

a y and z axes are interchanged at the equilibrium structure of the resonance (C2h symmetry) compared

to that of the neutral molecule (D2h symmetry).

TABLE II. Comparison of structural parameters for formaldehyde and formic acid. Geometries

were optimized with regular CCSD/aug-cc-pVDZ+3s3p(A) for neutral molecules and CAP-EOM-

EA-CCSD/aug-cc-pVDZ+3s3p(A) for resonance states. Bond lengths are given in Å, angles in

degrees.

CH2O CH2O−

R(C=O) 1.215 1.286

R(C–H) 1.112 1.114

∠(H–C–O) 121.7 122.3

HCOOH HCOOH−

R(C=O) 1.208 1.276

R(C–OH) 1.354 1.451

∠(H–O–C–H) -180.0 -137.5

2
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Z-matrix coordinates

CH2O optimized with regular CCSD/aug-cc-pVDZ+3s3p(A)

C

H 1 1.111902

H 1 1.111902 2 116.60068

O 1 1.21549 2 121.699703 3 180 0

CH2O
− optimized with CAP-EOM-EA-CCSD/aug-cc-pVDZ+3s3p(A)

C

H 1 1.114298

H 1 1.114298 2 115.341535

O 1 1.285902 2 122.329232 3 180 0

HCOOH optimized with regular CCSD/aug-cc-pVDZ+3s3p(A)

C

H 1 1.102911

O 1 1.207959 2 125.039614

O 1 1.353773 2 109.950896 3 180 0

H 4 0.971151 1 106.890397 2 180 0

3
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HCOOH− optimized with CAP-EOM-EA-CCSD/aug-cc-pVDZ+3s3p(A)

C

H 1 1.12384

O 1 1.275743 2 121.022739

O 1 1.45142 2 107.906325 3 138.733952 0

H 4 0.97384 1 101.619242 2 -137.489722 0

C2H4 optimized with regular CCSD/aug-cc-pVDZ+3s3p(A)

C

H 1 1.093872

H 1 1.093872 2 116.993541

C 1 1.348024 2 121.503229 3 180 0

H 4 1.093872 1 121.503229 2 0 0

H 4 1.093872 1 121.503229 2 180 0

C2H4
− optimized with CAP-EOM-EA-CCSD/aug-cc-pVDZ+3s3p(A)

C

H 1 1.101802

H 1 1.101802 2 114.732545

C 1 1.438955 2 120.08234 3 154.769797 0

H 4 1.101802 1 120.08234 2 180 0

H 4 1.101802 1 120.08234 2 26.578334 0

C2H4
− optimized with regular EOM-EA-CCSD/aug-cc-pVDZ+3s3p(A)

C

H 1 1.096882

H 1 1.096882 2 116.349147

C 1 1.404978 2 121.825412 3 179.938380 0

H 4 1.096882 1 121.825412 2 180.000000 0

H 4 1.096882 1 121.825412 2 0.064988 0
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C2H4 optimized with regular CCSD/aug-cc-pVDZ

C

H 1 1.094088

H 1 1.094088 2 116.983394

C 1 1.348081 2 121.508303 3 -179.994314 0

H 4 1.094088 1 121.508303 2 180.000000 0

H 4 1.094088 1 121.508303 2 -0.005944 0

C2H4
− optimized with regular EOM-EA-CCSD/aug-cc-pVDZ

C

H 1 1.097595

H 1 1.097595 2 116.277562

C 1 1.418359 2 121.861218 3 179.983940 0

H 4 1.097595 1 121.861218 2 -180.000000 0

H 4 1.097595 1 121.861218 2 0.016955 0

C2H4 optimized with regular CCSD/cc-pVDZ

C

H 1 1.096034

H 1 1.096034 2 116.914952

C 1 1.345179 2 121.542524 3 -179.990817 0

H 4 1.096034 1 121.542524 2 180.000000 0

H 4 1.096034 1 121.542524 2 -0.009608 0

C2H4
− optimized with regular EOM-EA-CCSD/cc-pVDZ

C

H 1 1.115273

H 1 1.115273 2 110.170046

C 1 1.456334 2 115.826915 3 133.900596 0

H 4 1.115273 1 115.826915 2 -180.000000 0

H 4 1.115273 1 115.826915 2 48.712720 0
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Table 1: C=O bond lengths (in Å), EA and Γ values (in eV), and ηopt parameters (in a.u.)
for the neutral and resonance equilibrium structures of the π∗ resonance of formaldehyde.
Calculated with CCSD/CAP-EOM-EA-CCSD and MP2/CAP-EOM-EA-CCSD(2) methods
using aug-cc-pVDZ and aug-cc-pVTZ basis sets augmented by extra diffuse functions.

Basis set R0 Rr VEA VDE AEA Γ0 Γr ηopt,0 ηopt,r
CH2O CAP-EOM-EA-CCSD
-DZ 1.21543 1.31719 -1.727 -1.039 -1.390 0.510 0.465 0.03600 0.03500
-DZ+3s 1.21541 1.31720 -1.727 -1.039 -1.390 0.511 0.466 0.03600 0.03500
-DZ+3p 1.21554 1.30125 -1.371 -0.874 -1.133 0.351 0.233 0.00535 0.00500
-DZ+3d 1.21445 1.30766 -1.547 -0.952 -1.255 0.468 0.371 0.02080 0.01900
-DZ+3s3p 1.21549 1.30124 -1.372 -0.873 -1.133 0.353 0.233 0.00540 0.00490
-DZ+6p 1.21552 1.30182 -1.381 -0.877 -1.139 0.360 0.241 0.00590 0.00550
-DZ+3p3d 1.21445 1.29527 -1.308 -0.856 -1.091 0.372 0.224 0.00340 0.00300
-DZ+6p6d 1.21433 1.29633 -1.323 -0.861 -1.101 0.372 0.230 0.00395 0.00360
-TZ+3p 1.20033 1.28228 -1.296 -0.818 -1.068 0.331 0.206 0.00380 0.00350
-TZ+3p3d 1.20047 1.27494 -1.206 -0.799 -1.011 0.387 0.205 0.00180 0.00155
CH2O CAP-EOM-EA-CCSD(2)
-DZ 1.22290 1.33527 -1.655 -0.897 -1.286 0.496 0.444 0.03500 0.03350
-DZ+3s 1.22287 1.33530 -1.656 -0.898 -1.287 0.497 0.446 0.03500 0.03400
-DZ+3p 1.22307 1.31828 -1.319 -0.763 -1.054 0.333 0.209 0.00540 0.00480
-DZ+3d 1.22189 1.32546 -1.486 -0.826 -1.164 0.454 0.349 0.02100 0.01840
-DZ+3s3p 1.22301 1.31808 -1.319 -0.765 -1.054 0.334 0.211 0.00535 0.00480
-DZ+6p 1.22309 1.31891 -1.328 -0.766 -1.060 0.342 0.218 0.00600 0.00540
-DZ+3p3d 1.22186 1.31207 -1.256 -0.750 -1.015 0.351 0.198 0.00330 0.00295
-DZ+6p6d 1.22186 1.31290 -1.269 -0.752 -1.022 0.351 0.203 0.00390 0.00340
-TZ+3p 1.20883 1.30014 -1.205 -0.673 -0.954 0.299 0.177 0.00375 0.00350
-TZ+3p3d 1.20880 1.28484 -1.122 -0.657 -0.860 0.340 0.175 0.00175 0.00050
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Table 2: C=O/C=C bond lengths (in Å), EA and Γ values (in eV), and ηopt parameters
(in a.u.) for the neutral and resonance equilibrium structures of the π∗ resonances of formic
acid and ethylene. Calculated with CCSD/CAP-EOM-EA-CCSD and MP2/CAP-EOM-
EA-CCSD(2) methods using aug-cc-pVDZ and aug-cc-pVTZ basis sets augmented by extra
diffuse functions.

Basis set R0 Rr VEA VDE AEA Γ0 Γr ηopt,0 ηopt,r
HCOOH CAP-EOM-EA-CCSD
-DZ+3p 1.20796 1.28195 -2.325 -0.373 -1.526 0.250 0.102 0.00710 0.00560
-DZ+3p3d 1.20684 1.27910 -2.271 -0.411 -1.518 0.337 0.105 0.00430 0.00370
-TZ+3p 1.19329 1.26581 -2.287 -0.417 -1.545 0.271 0.104 0.00475 0.00400
-TZ+3p3d 1.19340 1.26327 -2.354 -0.472 -1.531 0.302 0.057 0.01200 0.00230
HCOOH CAP-EOM-EA-CCSD(2)
-DZ+3p 1.21477 1.29501 -2.302 -0.174 -1.425 0.243 0.078 0.00710 0.00530
-DZ+3p3d 1.21359 -2.248 0.329 0.00430
-TZ+3p 1.20094 1.28027 -2.221 -0.175 -1.399 0.251 0.069 0.00470 0.00335
-TZ+3p3d 1.20108 1.27816 -2.283 -0.220 -1.389 0.283 0.066 0.01180 0.00180
C2H4 CAP-EOM-EA-CCSD
-DZ+3p 1.34808 1.43898 -2.229 -1.632 -2.035 0.449 0.302 0.00720 0.00635
-DZ+3p3d 1.34762 -2.132 0.468 0.00465
-TZ+3p 1.32727 1.41428 -2.155 -1.663 -1.977 0.446 0.291 0.00440 0.00405
-TZ+3p3d 1.32752 -2.028 0.550 0.00230
C2H4 CAP-EOM-EA-CCSD(2)
-DZ+3p 1.34808 1.45153 -2.109 -1.304 -1.858 0.415 0.244 0.00700 0.00565
-DZ+3p3d 1.34756 1.44431 -2.022 -1.390 -1.817 0.421 0.236 0.00450 0.00370
-TZ+3p 1.32856 1.43012 -2.011 -1.288 -1.777 0.392 0.212 0.00430 0.00360
-TZ+3p3d 1.32880 1.41708 -1.905 -1.439 -1.726 0.455 0.238 0.00220 0.00170

Table 3: Statistics on the CAP-EOM-EA-CCSD(2) - CAP-EOM-EA-CCSD differences in
VEA and Γ0 values using the aug-cc-pVDZ+3p basis set. The investigated resonances are:
lowest π∗ resonance of formaldehyde, formic acid, acrylonitrile, methacrylonitrile, ethylene,
1,3-butadiene (two states), cis- and trans-1,3,5-hexatriene (two states).

quantity mean std. dev. min max
VEA 0.098 0.052 0.023 0.173
Γ0 -0.020 0.013 -0.007 -0.050
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Table 4: Effect of rotation of the molecule with respect to a fixed box on EA and Γ (in eV)
values. Calculated for the π∗ resonance of HCOOH with the CAP-EOM-EA-CCSD(2)/aug-
cc-pVDZ+3p method. The box size parameters are r0x = 9.726 a.u., r0y = 5.321 a.u., r0z =
3.603 a.u. ηopt parameters are given in a.u.

rotation ηopt EA Γ
0◦ 0.0072 2.3032 0.2428
15◦ 0.0072 2.3037 0.2445
30◦ 0.0072 2.3048 0.2487
45◦ 0.0073 2.3064 0.2547
60◦ 0.0072 2.3076 0.2617
75◦ 0.0071 2.3082 0.2670
90◦ 0.0071 2.3078 0.2682
105◦ 0.0073 2.3068 0.2644
120◦ 0.0074 2.3055 0.2575
135◦ 0.0074 2.3044 0.2505
150◦ 0.0074 2.3038 0.2455
165◦ 0.0072 2.3033 0.2431

Table 5: Effect of rotation of the molecule when the box size is updated on EA and Γ (in eV)
values. Calculated for the π∗ resonance of HCOOH with the CAP-EOM-EA-CCSD(2)/aug-
cc-pVDZ+3p method. Box size parameters and ηopt parameters are given in a.u.

rotation r0x r0y r0z ηopt EA Γ

0◦ 9.726 5.321 3.603 0.0072 2.3032 0.2428
15◦ 9.442 5.810 3.603 0.0076 2.3030 0.2443
30◦ 8.734 6.828 3.603 0.0080 2.3038 0.2484
45◦ 7.710 7.967 3.603 0.0081 2.3043 0.2499
60◦ 6.569 8.931 3.603 0.0080 2.3033 0.2469
75◦ 5.635 9.548 3.603 0.0074 2.3027 0.2431
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Table 6: Equilibrium structures (in Å) of acrylonitrile and its lowest π∗ resonance calculated
with the CCSD/CAP-EOM-EA-CCSD methods using the basis set aug-cc-pVDZ+3p.

Neutral equilibrium structure
C
N 1 1.1715
C 1 1.4522 2 179.09
H 3 1.0926 1 116.08 2 0.00
C 3 1.3497 1 122.17 2 180.00
H 5 1.0921 3 120.36 1 180.00
H 5 1.0927 3 121.59 1 0.00

Resonance equilibrium structure
C
N 1 1.1932
C 1 1.4159 2 179.66
H 3 1.0951 1 115.62 2 -180.00
C 3 1.4245 1 124.23 2 0.00
H 5 1.0944 3 120.53 1 -180.00
H 5 1.0946 3 121.70 1 0.00

Table 7: Equilibrium structures (in Å) of acrylonitrile and its lowest π∗ resonance calculated
with the MP2/CAP-EOM-EA-CCSD(2) methods using the basis set aug-cc-pVDZ+3p.

Neutral equilibrium structure
C
N 1 1.1880
C 1 1.4413 2 179.08
H 3 1.0922 1 116.48 2 0.00
C 3 1.3524 1 122.24 2 -180.00
H 5 1.0906 3 120.18 1 -180.00
H 5 1.0913 3 121.34 1 0.00

Resonance equilibrium structure
C
N 1 1.2122
C 1 1.4085 2 179.62
H 3 1.0944 1 116.25 2 -180.00
C 3 1.4314 1 123.95 2 0.00
H 5 1.0932 3 120.33 1 -180.00
H 5 1.0933 3 121.40 1 0.00
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Table 8: Equilibrium structures (in Å) of acrylonitrile and its lowest π∗ resonance calculated
with the CCSD/CAP-EOM-EA-CCSD methods using the basis set aug-cc-pVTZ+3p.

Neutral equilibrium structure
C
N 1 1.15154
C 1 1.42981 2 178.92
H 3 1.07671 1 116.16 2 0.00
C 3 1.32858 1 122.42 2 180.00
H 5 1.07685 3 120.48 1 180.00
H 5 1.07729 3 121.39 1 0.00

Resonance equilibrium structure
C
N 1 1.17295
C 1 1.39253 2 179.71
H 3 1.07840 1 115.64 2 -180.00
C 3 1.40400 1 124.44 2 0.00
H 5 1.07834 3 120.64 1 -180.00
H 5 1.07854 3 121.51 1 0.00

Table 9: Equilibrium structures (in Å) of acrylonitrile and its lowest π∗ resonance calculated
with the MP2/CAP-EOM-EA-CCSD(2) methods using the basis set aug-cc-pVTZ+3p.

Neutral equilibrium structure
C
N 1 1.1681
C 1 1.4206 2 179.05
H 3 1.0774 1 116.60 2 0.00
C 3 1.3326 1 122.39 2 -180.00
H 5 1.0765 3 120.34 1 -180.00
H 5 1.0772 3 121.11 1 0.00

Resonance equilibrium structure
C
N 1 1.1926
C 1 1.3857 2 179.63
H 3 1.0792 1 116.25 2 -180.00
C 3 1.4152 1 124.17 2 0.00
H 5 1.0784 3 120.49 1 180.00
H 5 1.0785 3 121.19 1 0.00
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Table 10: Equilibrium structures (in Å) of methacrylonitrile and its lowest π∗ resonance
calculated with the CCSD/CAP-EOM-EA-CCSD methods using the basis set aug-cc-
pVDZ+3p.

Neutral equilibrium structure
C
C 1 1.3510
H 2 1.0921 1 121.54
H 2 1.0928 1 120.38 3 -180.00
C 1 1.4585 2 119.27 3 0.00
N 5 1.1717 1 177.88 2 -180.00
C 1 1.5147 2 124.64 3 -180.00
H 7 1.1001 1 110.11 2 0.00
H 7 1.1023 1 110.51 2 120.44
H 7 1.1023 1 110.51 2 -120.44

Resonance equilibrium structure
C
C 1 1.4150
H 2 1.0940 1 121.91
H 2 1.0957 1 120.16 3 -176.90
C 1 1.4181 2 122.13 3 -1.81
N 5 1.1918 1 179.50 2 175.74
C 1 1.5145 2 120.19 3 -177.88
H 7 1.1035 1 111.56 2 -173.99
H 7 1.1104 1 111.22 2 -53.74
H 7 1.1142 1 111.83 2 65.29
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Table 11: Equilibrium structures (in Å) of methacrylonitrile and its lowest π∗ resonance
calculated with the MP2/CAP-EOM-EA-CCSD(2) methods using the basis set aug-cc-
pVDZ+3p.

Neutral equilibrium structure
C
C 1 1.3549
H 2 1.0909 1 121.31
H 2 1.0916 1 120.15 3 -180.00
C 1 1.4469 2 119.37 3 0.00
N 5 1.1886 1 177.73 2 -180.00
C 1 1.5095 2 124.39 3 -180.00
H 7 1.0983 1 110.17 2 0.00
H 7 1.1003 1 110.42 2 120.53
H 7 1.1003 1 110.42 2 -120.53

Resonance equilibrium structure
C
C 1 1.4080
N 2 1.2129 1 179.44
C 1 1.4276 2 122.13 3 169.51
H 4 1.0931 1 121.60 2 -2.39
H 4 1.0948 1 119.93 2 -178.21
C 1 1.5093 2 118.04 3 -14.24
H 7 1.1020 1 111.58 2 9.91
H 7 1.1092 1 111.31 2 130.09
H 7 1.1121 1 112.13 2 -110.83

Table 12: Optimal CAP strength parameters for neutral (0) and resonance (r) equilibrium
structures of acrylonitrile and methacrylonitrile.

Method Basis ηopt,0 ηopt,r
acrylonitrile -CCSD -DZ+3p 0.00130 0.00110

-CCSD(2) -DZ+3p 0.00120 0.00000
-CCSD -TZ+3p 0.00080 0.00055
-CCSD(2) -TZ+3p 0.00080 0.00000

methacrylonitrile -CCSD -DZ+3p 0.00230 0.00225
-CCSD(2) -DZ+3p 0.00225 0.00200
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Table 13: Equilibrium structures (in a.u.) for C4H6 and C4H
–
6 with CCSD/CAP-EOM-EA-

CCSD methods and aug-cc-pVDZ+3p basis set

neutral
C 1.15824879 -0.77153448 0.00000000
C -1.15824879 0.77153448 0.00000000
C 3.51572517 0.21593769 0.00000000
C -3.51572517 -0.21593769 0.00000000
H 0.90796502 -2.82918925 0.00000000
H -0.90796502 2.82918925 0.00000000
H 3.82136896 2.26200351 0.00000000
H -3.82136896 -2.26200351 0.00000000
H 5.19135928 -0.99096360 0.00000000
H -5.19135928 0.99096360 0.00000000

1π∗

C 1.14850869 -0.69804120 0.00000000
C -1.14850869 0.69804120 0.00000000
C 3.63565377 0.25503496 0.00000000
C -3.63565377 -0.25503496 0.00000000
H 0.94258096 -2.77333918 0.00000000
H -0.94258096 2.77333918 0.00000000
H 4.01448680 2.29457588 0.00000000
H -4.01448680 -2.29457588 0.00000000
H 5.27248621 -1.01098074 0.00000000
H -5.27248621 1.01098074 0.00000000

2π∗

C -1.14332218 0.83628855 -0.04225960
C 1.15535695 -0.87481153 -0.04319739
C -3.50504564 -0.23288549 0.09140251
C 3.50254222 0.22344763 0.08692577
H -0.89330313 2.79100779 -0.72847278
H 0.90287608 -2.82617203 -0.74192471
H -3.72731240 -2.24706632 0.54695201
H 3.67663652 2.23911496 0.55188736
H -5.23311375 0.90321318 -0.06990385
H 5.25930498 -0.86756682 -0.08194513
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Table 14: Equilibrium structures (in a.u.) for C4H6 and C4H
–
6 with CCSD/CAP-EOM-EA-

CCSD methods and aug-cc-pVTZ+3p basis set

neutral
C 1.14716647 -0.75661102 0.00000000
C -1.14716647 0.75661102 0.00000000
C 3.47006818 0.21193579 0.00000000
C -3.47006818 -0.21193579 0.00000000
H 0.90354454 -2.78580535 0.00000000
H -0.90354454 2.78580535 0.00000000
H 3.77301689 2.23072223 0.00000000
H -3.77301689 -2.23072223 0.00000000
H 5.12010090 -0.98230226 0.00000000
H -5.12010090 0.98230226 0.00000000

1π∗

C 1.12297235 -0.70334816 0.00000000
C -1.12297235 0.70334816 0.00000000
C 3.59181968 0.18797525 0.00000000
C -3.59181968 -0.18797525 0.00000000
H 0.88646232 -2.74566459 0.00000000
H -0.88646232 2.74566459 0.00000000
H 4.00221948 2.19222753 0.00000000
H -4.00221948 -2.19222753 0.00000000
H 5.18135544 -1.09080404 0.00000000
H -5.18135544 1.09080404 0.00000000
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Table 15: Equilibrium structures (in a.u.) for C4H6 and C4H
–
6 with MP2/CAP-EOM-EA-

CCSD(2) methods and aug-cc-pVDZ+3p basis set

neutral
C 1.14793728 -0.77021334 0.00000000
C -1.14793728 0.77021334 0.00000000
C 3.51105828 0.21742472 0.00000000
C -3.51105828 -0.21742472 0.00000000
H 0.90192368 -2.82713762 0.00000000
H -0.90192368 2.82713762 0.00000000
H 3.80737643 2.26207197 0.00000000
H -3.80737643 -2.26207197 0.00000000
H 5.18130461 -0.99221755 0.00000000
H -5.18130461 0.99221755 0.00000000

1π∗

C 1.13998869 -0.69708393 0.00000000
C -1.13998869 0.69708393 0.00000000
C 3.64253473 0.25828220 0.00000000
C -3.64253473 -0.25828220 0.00000000
H 0.94126217 -2.77195943 0.00000000
H -0.94126217 2.77195943 0.00000000
H 4.01349760 2.29682735 0.00000000
H -4.01349760 -2.29682735 0.00000000
H 5.27193291 -1.01319449 0.00000000
H -5.27193291 1.01319449 0.00000000

2π∗

C -1.13850844 -0.87355058 0.03777280
C 1.13210188 0.85373443 0.05328573
C -3.50842255 0.20989600 -0.08600416
C 3.50238525 -0.22833363 -0.07688891
H -0.89882402 -2.81197705 0.77977144
H 0.89023986 2.78279689 0.81883977
H -3.70334046 2.21545387 -0.57232640
H 3.69852758 -2.22735143 -0.58995826
H -5.23837174 -0.91781401 0.06790966
H 5.23157674 0.89739461 0.09792588
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Table 16: Equilibrium structures (in a.u.) for C4H6 and C4H
–
6 with MP2/CAP-EOM-EA-

CCSD(2) methods and aug-cc-pVTZ+3p basis set

neutral
C 1.13751737 -0.75639288 0.00000000
C -1.13751737 0.75639288 0.00000000
C 3.46815441 0.21349134 0.00000000
C -3.46815441 -0.21349134 0.00000000
H 0.89835181 -2.78722821 0.00000000
H -0.89835181 2.78722821 0.00000000
H 3.76117581 2.23301467 0.00000000
H -3.76117581 -2.23301467 0.00000000
H 5.11497566 -0.98397297 0.00000000
H -5.11497566 0.98397297 0.00000000

1π∗

C 1.11487154 -0.70356763 0.00000000
C -1.11487154 0.70356763 0.00000000
C 3.60185330 0.18861391 0.00000000
C -3.60185330 -0.18861391 0.00000000
H 0.88274112 -2.74761002 0.00000000
H -0.88274112 2.74761002 0.00000000
H 4.00800401 2.19336193 0.00000000
H -4.00800401 -2.19336193 0.00000000
H 5.18406482 -1.09909123 0.00000000
H -5.18406482 1.09909123 0.00000000
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Table 17: Equilibrium structure (in a.u.) for trans-C6H8 and the first trans-C6H
–
8 resonance

with the CCSD/CAP-EOM-EA-CCSD method and aug-cc-pVDZ+3p basis set

neutral
C 1.14890925 -0.57194635 0.00000000
C -1.14890925 0.57194635 0.00000000
C 3.55524252 0.80997198 0.00000000
C -3.55524252 -0.80997198 0.00000000
C 5.84714695 -0.32594812 0.00000000
C -5.84714695 0.32594812 0.00000000
H 1.25126503 -2.64390473 0.00000000
H -1.25126503 2.64390473 0.00000000
H 3.44107538 2.87969113 0.00000000
H -3.44107538 -2.87969113 0.00000000
H 7.59489464 0.77395879 0.00000000
H -7.59489464 -0.77395879 0.00000000
H 6.02293048 -2.38739919 0.00000000
H -6.02293048 2.38739919 0.00000000

1π∗

C 1.20158176 -0.57857876 0.00000000
C -1.20158176 0.57857876 0.00000000
C 3.55513607 0.73085651 0.00000000
C -3.55513607 -0.73085651 0.00000000
C 5.97926409 -0.29013075 0.00000000
C -5.97926409 0.29013075 0.00000000
H 1.27062928 -2.65965355 0.00000000
H -1.27062928 2.65965355 0.00000000
H 3.41714079 2.80950613 0.00000000
H -3.41714079 -2.80950613 0.00000000
H 7.65366028 0.92303350 0.00000000
H -7.65366028 -0.92303350 0.00000000
H 6.28897156 -2.33940020 0.00000000
H -6.28897156 2.33940020 0.00000000
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Table 18: Equilibrium structures (in a.u.) for trans-C6H
–
8 resonances with the CAP-EOM-

EA-CCSD method and aug-cc-pVDZ+3p basis set

2π∗

C 1.18248598 -0.50656339 0.00000000
C -1.18248598 0.50656339 0.00000000
C 3.60303864 0.92023011 0.00000000
C -3.60303864 -0.92023011 0.00000000
C 5.90547929 -0.33377387 0.00000000
C -5.90547929 0.33377387 0.00000000
H 1.36806007 -2.57826868 0.00000000
H -1.36806007 2.57826868 0.00000000
H 3.51596886 2.99144185 0.00000000
H -3.51596886 -2.99144185 0.00000000
H 7.71114212 0.67878702 0.00000000
H -7.71114212 -0.67878702 0.00000000
H 5.99555935 -2.40406385 0.00000000
H -5.99555935 2.40406385 0.00000000

3π∗

C 1.13778443 -0.62901503 0.00000000
C -1.13778443 0.62901503 0.00000000
C 3.52748570 0.81794784 0.00000000
C -3.52748570 -0.81794784 0.00000000
C 5.83325071 -0.31603311 0.00000000
C -5.83325071 0.31603311 0.00000000
H 1.21715547 -2.70160031 0.00000000
H -1.21715547 2.70160031 0.00000000
H 3.36170422 2.88559437 0.00000000
H -3.36170422 -2.88559437 0.00000000
H 7.59021819 0.77700888 0.00000000
H -7.59021819 -0.77700888 0.00000000
H 5.99168524 -2.38106748 0.00000000
H -5.99168524 2.38106748 0.00000000
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Table 19: Equilibrium structure (in a.u.) for trans-C6H8 with the MP2 method and aug-cc-
pVDZ+3p basis set

neutral
C 1.15522611 -0.57300646 0.00000000
C -1.15522611 0.57300646 0.00000000
C 3.53630344 0.80632650 0.00000000
C -3.53630344 -0.80632650 0.00000000
C 5.83720385 -0.32836610 0.00000000
C -5.83720385 0.32836610 0.00000000
H 1.24907461 -2.64498510 0.00000000
H -1.24907461 2.64498510 0.00000000
H 3.42542272 2.87494027 0.00000000
H -3.42542272 -2.87494027 0.00000000
H 7.57846682 0.77634495 0.00000000
H -7.57846682 -0.77634495 0.00000000
H 6.00628350 -2.38740728 0.00000000
H -6.00628350 2.38740728 0.00000000
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Table 20: Equilibrium structures (in a.u.) for trans-C6H
–
8 resonances with the CAP-EOM-

EA-CCSD(2) method and aug-cc-pVDZ+3p basis set

1π∗

C 1.21195118 -0.58013025 0.00000000
C -1.21195118 0.58013025 0.00000000
C 3.54198287 0.73207454 0.00000000
C -3.54198287 -0.73207454 0.00000000
C 5.98518561 -0.28206418 0.00000000
C -5.98518561 0.28206418 0.00000000
H 1.27316459 -2.66110428 0.00000000
H -1.27316459 2.66110428 0.00000000
H 3.40422004 2.80975905 0.00000000
H -3.40422004 -2.80975905 0.00000000
H 7.64735799 0.94341347 0.00000000
H -7.64735799 -0.94341347 0.00000000
H 6.29490773 -2.32882303 0.00000000
H -6.29490773 2.32882303 0.00000000

2π∗

C 1.19114934 -0.50232774 0.00000000
C -1.19114934 0.50232774 0.00000000
C 3.58846164 0.92471910 0.00000000
C -3.58846164 -0.92471910 0.00000000
C 5.90276364 -0.33765633 0.00000000
C -5.90276364 0.33765633 0.00000000
H 1.37485704 -2.57395078 0.00000000
H -1.37485704 2.57395078 0.00000000
H 3.50887236 2.99537622 0.00000000
H -3.50887236 -2.99537622 0.00000000
H 7.70515870 0.67582992 0.00000000
H -7.70515870 -0.67582992 0.00000000
H 5.97911355 -2.40628415 0.00000000
H -5.97911355 2.40628415 0.00000000
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Table 21: Equilibrium structure (in a.u.) for cis-C6H8 with the CCSD method and aug-cc-
pVDZ+3p basis set

neutral
C 1.28614048 1.46514760 0.00000000
C -1.28614048 1.46514760 0.00000000
C 2.93311135 -0.77311253 0.00000000
C -2.93311135 -0.77311253 0.00000000
C 5.48676997 -0.61792344 0.00000000
C -5.48676997 -0.61792344 0.00000000
H 2.25611649 3.29594339 0.00000000
H -2.25611649 3.29594339 0.00000000
H 2.04821736 -2.64282058 0.00000000
H -2.04821736 -2.64282058 0.00000000
H 6.66965158 -2.31057247 0.00000000
H -6.66965158 -2.31057247 0.00000000
H 6.45068776 1.21277993 0.00000000
H -6.45068776 1.21277993 0.00000000
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Table 22: Equilibrium structures (in a.u.) for cis-C6H
–
8 resonances with the CAP-EOM-

EA-CCSD method and aug-cc-pVDZ+3p basis set

1π∗

C 1.34060280 1.44787996 0.00000000
C -1.34060280 1.44787996 0.00000000
C 2.99180629 -0.68453295 0.00000000
C -2.99180629 -0.68453295 0.00000000
C 5.62050253 -0.66842051 0.00000000
C -5.62050253 -0.66842051 0.00000000
H 2.26244283 3.31159967 0.00000000
H -2.26244283 3.31159967 0.00000000
H 2.08899496 -2.55755294 0.00000000
H -2.08899496 -2.55755294 0.00000000
H 6.70339984 -2.42990891 0.00000000
H -6.70339984 -2.42990891 0.00000000
H 6.69166120 1.10630318 0.00000000
H -6.69166120 1.10630318 0.00000000

2π∗

C 1.28548119 1.47528407 0.00000000
C -1.28548119 1.47528407 0.00000000
C 2.88440530 -0.82089800 0.00000000
C -2.88440530 -0.82089800 0.00000000
C 5.49183222 -0.59458323 0.00000000
C -5.49183222 -0.59458323 0.00000000
H 2.29065200 3.29114436 0.00000000
H -2.29065200 3.29114436 0.00000000
H 1.96959243 -2.67437275 0.00000000
H -1.96959243 -2.67437275 0.00000000
H 6.74122568 -2.24485004 0.00000000
H -6.74122568 -2.24485004 0.00000000
H 6.39758342 1.26926134 0.00000000
H -6.39758342 1.26926134 0.00000000
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Table 23: Equilibrium structure (in a.u.) for cis-C6H8 with the MP2 method and aug-cc-
pVDZ+3p basis set

neutral
C 1.29240559 1.46002076 0.00000000
C -1.29240559 1.46002076 0.00000000
C 2.91474023 -0.76741988 0.00000000
C -2.91474023 -0.76741988 0.00000000
C 5.47627787 -0.61818967 0.00000000
C -5.47627787 -0.61818967 0.00000000
H 2.25790919 3.29272538 0.00000000
H -2.25790919 3.29272538 0.00000000
H 2.03303769 -2.63727444 0.00000000
H -2.03303769 -2.63727444 0.00000000
H 6.65058414 -2.31321973 0.00000000
H -6.65058414 -2.31321973 0.00000000
H 6.43365595 1.21279947 0.00000000
H -6.43365595 1.21279947 0.00000000
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Table 24: Equilibrium structures (in a.u.) for cis-C6H
–
8 resonances with the CAP-EOM-

EA-CCSD(2) method and aug-cc-pVDZ+3p basis set

1π∗

C 1.35151012 1.46455408 0.00000000
C -1.35151012 1.46455408 0.00000000
C 2.98034696 -0.66074508 0.00000000
C -2.98034696 -0.66074508 0.00000000
C 5.62374930 -0.65924691 0.00000000
C -5.62374930 -0.65924691 0.00000000
H 2.26556452 3.33167726 0.00000000
H -2.26556452 3.33167726 0.00000000
H 2.07728581 -2.53247473 0.00000000
H -2.07728581 -2.53247473 0.00000000
H 6.68964729 -2.42794045 0.00000000
H -6.68964729 -2.42794045 0.00000000
H 6.69407371 1.11314109 0.00000000
H -6.69407371 1.11314109 0.00000000

2π∗

C 1.29171663 1.47335809 0.00000000
C -1.29171663 1.47335809 0.00000000
C 2.86493350 -0.81648694 0.00000000
C -2.86493350 -0.81648694 0.00000000
C 5.48652921 -0.59579483 0.00000000
C -5.48652921 -0.59579483 0.00000000
H 2.29329314 3.29060221 0.00000000
H -2.29329314 3.29060221 0.00000000
H 1.95097122 -2.66918507 0.00000000
H -1.95097122 -2.66918507 0.00000000
H 6.72682898 -2.25011012 0.00000000
H -6.72682898 -2.25011012 0.00000000
H 6.38598886 1.26843434 0.00000000
H -6.38598886 1.26843434 0.00000000
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Table 25: EA (in eV), Γ (in eV), and ηopt (in a.u.) values for π∗ resonances of conjugated hy-
drocarbons calculated with the CAP-EOM-EA-CCSD and CAP-EOM-EA-CCSD(2) meth-
ods using the aug-cc-pVDZ+3p basis set.

Molecule State Method VEA VDE AEA Γ0 Γr ηopt,0 ηopt,r
C2H4 π∗ -CCSD -2.229 -1.632 -2.035 0.449 0.302 0.00720 0.00635

-CCSD(2) -2.109 -1.304 -1.858 0.415 0.244 0.00700 0.00565
C4H6 1π∗ -CCSD -1.282 -0.800 -1.040 0.136 0.099 0.01500 0.01400

-CCSD(2) -1.142 -0.617 -0.878 0.124 0.088 0.01450 0.01300
2π∗ -CCSD -2.874 -2.437 -2.740 0.709 0.568 0.02100 0.02300

-CCSD(2) -2.838 -2.327 -2.682 0.683 0.522 0.02100 0.02300
trans-C6H8 1π∗ -CCSD -0.637 -0.162 -0.401 0.031 0.012 0.00260 0.00200

-CCSD(2) -0.497 0.004 -0.244 0.024 0.000 0.00260 0.00000
2π∗ -CCSD -2.647 -2.449 -2.553 0.362 0.272 0.04900 0.04600

-CCSD(2) -2.595 -2.362 -2.484 0.337 0.244 0.04800 0.04500
3π∗ -CCSD -2.658 -2.564 -2.613 0.560 0.521 0.05000 0.05000

cis-C6H8 1π∗ -CCSD -0.680 -0.189 -0.436 0.032 0.012 0.00240 0.00180
-CCSD(2) -0.541 -0.025 -0.283 0.025 0.009 0.00240 0.00160

2π∗ -CCSD -2.055 -1.892 -1.974 0.258 0.223 0.04700 0.04200
-CCSD(2) -1.983 -1.800 -1.895 0.244 0.206 0.04500 0.04600

Table 26: EA (in eV), Γ (in eV), and ηopt (in a.u.) values for π∗ resonances of C4H6

calculated with the CAP-EOM-EA-CCSD and CAP-EOM-EA-CCSD(2) methods using the
aug-cc-pVTZ+3p basis set.

Molecule State Method VEA VDE AEA Γ0 Γr ηopt,0 ηopt,r
C4H6 1π∗ -CCSD -1.226 -0.729 -0.978 0.128 0.082 0.00900 0.00900

-CCSD(2) -1.053 -0.516 -0.745 0.108 0.069 0.00950 0.00950
2π∗ -CCSD -2.675 — — 0.831 — 0.01150 —

-CCSD(2) -2.632 — — 0.786 — 0.01150 —
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Table 1: HCOOH resonance equilibrium structure and MECP calculated with CAP-EOM-
EA-CCSD and EOM-EA-CCSD using the basis set aug-cc-pVDZ+3p. Bond lengths in Å.

Resonance equilibrium
C
H 1 1.126984
O 1 1.281950 2 120.762759
O 1 1.465019 2 107.189032 3 -135.867439
H 4 0.970919 1 100.733931 2 136.471503

MECP
C
H 1 1.132298
O 1 1.292856 2 118.994072
O 1 1.490655 2 105.740439 3 -129.986315
H 4 0.970713 1 99.442048 2 129.786837

Table 2: Box size parameters (r0α, α = x, y, z) and optimal CAP strength parameters (ηopt)
used for calculating the uncorrected and corrected CAP-EOM-EA-CCSD/aug-cc-pVDZ+3p
potential energy curves of HCOOH – (displayed in Fig. S1). Parameters are given in a.u.
From point ’d’ an optimal CAP strength cannot be determined in the uncorrected case, due
to the vanishing minimum of the |η dE/dη| trajectory (see Fig. S2).

r0x r0y r0z ηopt uncorr. ηopt corr.

a 9.868 5.500 3.735 0.0056 0.0120
Res. eq. 9.880 5.505 3.744 0.0056 0.0120
b 9.890 5.510 3.754 0.0053 0.0120
c 9.898 5.516 3.763 0.0052 0.0120
d 9.903 5.523 3.773 – 0.0115
MECP 9.907 5.531 3.783 – 0.0115
e 9.908 5.540 3.793 – 0.0115
f 9.907 5.549 3.803 – 0.0110
g 9.903 5.560 3.813 – 0.0110
h 9.898 5.571 3.824 – 0.0110
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Figure 1: Energy profiles along the pathway connecting the resonance equilibrium structure
with the MECP between the π∗ resonance and the neutral ground state of formic acid.
Structures were generated using linear interpolation and extrapolation using the resonance
equilibrium structure and the MECP structure. Calculations were performed with CCSD
for the neutral state. For the anionic state EOM-EA-CCSD as well as uncorrected and
corrected CAP-EOM-EA-CCSD results are plotted. The Dyson orbitals of the two anionic
states present in regular EOM-EA-CCSD calculations in the metastable region are also
shown. All calculations were done with the aug-cc-pVDZ+3p basis set.
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Figure 2: |η dE/dη| trajectories used for determining the optimal CAP strength param-
eters for different nuclear configurations of the uncorrected CAP-EOM-EA-CCSD/aug-cc-
pVDZ+3p potential energy curve of HCOOH – plotted in Fig. S1.

Table 3: Acrylonitrile MECP calculated with EOM-EA-CCSD/aug-cc-pVDZ+3p. Bond
lengths in Å.

C
N 1 1.197477
C 1 1.409300 2 179.556824
H 3 1.095762 1 115.408426 2 179.813684
C 3 1.445444 1 124.540788 2 6.446210
H 5 1.098069 3 119.869090 1 -15.287186
H 5 1.098246 3 118.826412 1 -168.056804

Table 4: Methacrylonitrile MECP calculated with EOM-EA-CCSD/aug-cc-pVDZ+3p. Bond
lengths in Å.

C
C 1 1.412692
N 2 1.195576 1 179.278265
C 1 1.437156 2 121.832567 3 -150.530281
H 4 1.096716 1 120.177435 2 14.558099
H 4 1.099002 1 118.722219 2 168.542772
C 1 1.514251 2 116.858237 3 46.930507
H 7 1.105257 1 111.859686 2 -24.753851
H 7 1.108957 1 111.034133 2 -144.834326
H 7 1.120857 1 112.226242 2 96.566612
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Table 5: C2H4 MECP calculated with EOM-EA-CCSD. Bond lengths in Å.

aug-cc-pVDZ+3p
C
H 1 1.123335
H 1 1.133371 2 105.025105
C 1 1.525511 2 111.460740 3 -128.285145
H 4 1.123463 1 111.443130 2 164.020645
H 4 1.133613 1 117.497711 2 42.766773

aug-cc-pVTZ+3p
C
H 1 1.103128
H 1 1.112359 2 106.005435
C 1 1.506563 2 112.015909 3 -129.511494
H 4 1.103133 1 112.013519 2 166.643307
H 4 1.112364 1 117.618097 2 43.472435

Table 6: C2H3Cl neutral equilibrium structure calculated with CCSD. Bond lengths in Å.

aug-cc-pVDZ+3p
Cl
C 1 1.751506
H 2 1.091227 1 113.060877
C 2 1.341480 1 122.835055 3 -180.000000
H 4 1.091911 2 122.089510 1 0.000000
H 4 1.092678 2 119.201497 1 -180.000000

aug-cc-pVTZ+3p
Cl
C 1 1.729108
H 2 1.074196 1 113.343715
C 2 1.320776 1 123.200792 3 -180.000000
H 4 1.076073 2 121.876806 1 0.000000
H 4 1.077067 2 119.287963 1 -180.000000
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Table 7: C2H3Cl MECP calculated with EOM-EA-CCSD. Bond lengths in Å.

aug-cc-pVDZ+3p
Cl
C 1 2.067891
H 2 1.098495 1 107.087218
C 2 1.359662 1 119.827617 3 -147.884380
H 4 1.096160 2 121.353256 1 -32.955248
H 4 1.102907 2 121.795674 1 146.650820

aug-cc-pVTZ+3p
Cl
C 1 2.015209
H 2 1.080192 1 106.114268
C 2 1.346708 1 120.217167 3 -143.827618
H 4 1.080053 2 121.571808 1 -38.128613
H 4 1.087369 2 121.634884 1 141.538879

Table 8: cis−C2H2Cl2 neutral equilibrium structure calculated with CCSD. Bond lengths in
Å.

aug-cc-pVDZ+3p
Cl
C 1 1.736045
H 2 1.090810 1 114.684671
C 2 1.342729 1 124.753375 3 -180.000000
H 4 1.090804 2 120.579338 1 -180.000000
Cl 4 1.736179 2 124.752544 1 0.000000

aug-cc-pVTZ+3p
Cl
C 1 1.713701
H 2 1.073212 1 115.034160
C 2 1.322102 1 124.818100 3 -180.000000
H 4 1.073209 2 120.146097 1 -180.000000
Cl 4 1.713708 2 124.818123 1 0.000000
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Table 9: cis−C2H2Cl2 MECP calculated with EOM-EA-CCSD. Bond lengths in Å.

aug-cc-pVDZ+3p
Cl
C 1 1.829700
H 2 1.092389 1 110.526116
C 2 1.368134 1 121.865404 3 -149.331747
H 4 1.092378 2 119.937653 1 164.356249
Cl 4 1.829780 2 121.864964 1 -49.100725

aug-cc-pVTZ+3p
Cl
C 1 1.800667
H 2 1.074116 1 110.783265
C 2 1.350923 1 121.997509 3 -149.256756
H 4 1.074116 2 119.566795 1 163.704951
Cl 4 1.800673 2 121.997420 1 -49.627487

Table 10: trans−C2H2Cl2 neutral equilibrium structure calculated with CCSD. Bond lengths
in Å.

aug-cc-pVDZ+3p
Cl
C 1 1.745454
H 2 1.090454 1 114.924338
C 2 1.340383 1 121.010391 3 -180.000000
H 4 1.090449 2 124.081260 1 0.000000
Cl 4 1.745606 2 121.012672 1 -180.000000

aug-cc-pVTZ+3p
Cl
C 1 1.722331
H 2 1.073289 1 115.178855
C 2 1.319407 1 121.619426 3 -180.000000
H 4 1.073264 2 123.201764 1 0.000000
Cl 4 1.722332 2 121.619660 1 -180.000000
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Table 11: trans−C2H2Cl2 MECP calculated with EOM-EA-CCSD. Bond lengths in Å.

aug-cc-pVDZ+3p
Cl
C 1 1.875033
H 2 1.090033 1 110.272548
C 2 1.341581 1 122.106646 3 165.326429
H 4 1.090016 2 125.823343 1 13.259173
Cl 4 1.876219 2 122.059191 1 -149.638398

aug-cc-pVTZ+3p
Cl
C 1 1.842139
H 2 1.072429 1 110.439126
C 2 1.327301 1 122.361141 3 163.034199
H 4 1.072430 2 124.759473 1 15.938822
Cl 4 1.842192 2 122.360810 1 -144.611145

Table 12: 1,1-C2H2Cl2 neutral equilibrium structure calculated with CCSD. Bond lengths in
Å.

aug-cc-pVDZ+3p
Cl
C 1 1.744038
C 2 1.340484 1 122.733746
H 3 1.090573 2 120.183860 1 0.000000
H 3 1.090577 2 120.182513 1 -180.000000
Cl 2 1.744067 1 114.536061 3 -180.000000

aug-cc-pVTZ+3p
Cl
C 1 1.722031
C 2 1.318772 1 122.739583
H 3 1.074417 2 120.114621 1 -180.000000
H 3 1.074422 2 120.116060 1 0.000000
Cl 2 1.722143 1 114.533453 3 -180.000000

8

5.3. SI FOR PUBLICATION 3

105



Table 13: 1,1-C2H2Cl2 MECP calculated with EOM-EA-CCSD. Bond lengths in Å.

aug-cc-pVDZ+3p
Cl
C 1 1.835702
C 2 1.372471 1 118.025242
H 3 1.092488 2 120.100745 1 -163.633820
H 3 1.092501 2 120.106653 1 20.462458
Cl 2 1.835953 1 113.765918 3 -144.664052

aug-cc-pVTZ+3p
Cl
C 1 1.807304
C 2 1.357550 1 117.687463
H 3 1.076045 2 120.019437 1 -163.695323
H 3 1.076047 2 120.020025 1 22.242334
Cl 2 1.807370 1 113.406236 3 -143.027424

Table 14: C2HCl3 neutral equilibrium structure calculated with CCSD. Bond lengths in Å.

aug-cc-pVDZ+3p
Cl
C 1 1.730030
C 2 1.344241 1 124.487400
H 3 1.089666 2 120.897372 1 -180.000000
Cl 3 1.732813 2 123.690720 1 0.000000
Cl 2 1.743179 1 115.678943 3 -180.000000

aug-cc-pVTZ+3p
Cl
C 1 1.708374
C 2 1.322567 1 124.140967
H 3 1.071229 2 120.290740 1 -180.000000
Cl 3 1.710191 2 123.970002 1 0.000000
Cl 2 1.720132 1 115.763291 3 -180.000000
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Table 15: C2HCl3 MECP1 calculated with EOM-EA-CCSD. Bond lengths in Å.

aug-cc-pVDZ+3p
Cl
C 1 1.806469
C 2 1.369628 1 121.864935
H 3 1.089419 2 121.987553 1 -162.066453
Cl 3 1.754334 2 121.988982 1 31.518549
Cl 2 1.773441 1 114.259607 3 -148.007413

aug-cc-pVTZ+3p
Cl
C 1 1.778496
C 2 1.350729 1 121.764631
H 3 1.070460 2 121.412750 1 -161.714474
Cl 3 1.733786 2 121.949957 1 33.346973
Cl 2 1.743486 1 114.246038 3 -148.776563

Table 16: C2HCl3 MECP2 calculated with EOM-EA-CCSD. Bond lengths in Å.

aug-cc-pVDZ+3p
Cl
C 1 1.751683
C 2 1.358434 1 122.674706
H 3 1.089113 2 121.238166 1 173.276784
Cl 3 1.770244 2 124.900857 1 -1.588060
Cl 2 1.872080 1 114.525927 3 155.313931

aug-cc-pVTZ+3p
Cl
C 1 1.727026
C 2 1.341318 1 122.311211
H 3 1.070165 2 120.862173 1 174.778126
Cl 3 1.751820 2 125.008404 1 2.301780
Cl 2 1.837736 1 113.936351 3 154.794601
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Table 17: C2Cl4 neutral equilibrium structure calculated with CCSD. Bond lengths in Å.

aug-cc-pVDZ+3p
Cl
C 1 1.732611
C 2 1.351294 1 122.377288
Cl 3 1.732675 2 122.374680 1 -180.000000
Cl 3 1.732703 2 122.351106 1 0.000000
Cl 2 1.732865 1 115.265822 3 -180.000000

Table 18: C2Cl4 MECP calculated with EOM-EA-CCSD. Bond lengths in Å.

aug-cc-pVDZ+3p
Cl
C 1 1.741041
C 2 1.360979 1 121.305499
Cl 3 1.741004 2 121.341803 1 178.822011
Cl 3 1.786828 2 123.735319 1 -14.422100
Cl 2 1.789103 1 113.721723 3 -167.290037
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Table 19: Box size parameters (r0α, α = x, y, z) and optimal CAP strength parameters (ηopt)
used for calculating the VAE of chloroethylenes. Calculations were done with CAP-EOM-
EA-CCSD/aug-cc-pVXZ+3p (X=D,T). Parameters are given in a.u.

basis r0x r0y r0z ηopt
C2H3Cl -DZ+3p 13.690 6.460 4.545 0.01600

-TZ+3p 13.530 6.375 4.500 0.01000
cis−C2H2Cl2 -DZ+3p 19.840 10.790 5.425 0.01900

-TZ+3p 19.585 10.665 5.370 0.01200
trans−C2H2Cl2 -DZ+3p 24.745 7.200 5.420 0.02700

-TZ+3p 24.460 7.105 5.365 0.01700
1,1-C2H2Cl2 -DZ+3p 17.185 12.930 5.420 0.05500

-TZ+3p 16.975 12.760 5.365 0.03200
C2HCl3 -DZ+3p 25.010 16.505 6.175 0.00650

-TZ+3p 24.685 16.285 6.110 0.00425
C2Cl4 -DZ+3p 26.260 23.760 6.850 0.01400
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CAP-EOM-CC complex gradient formula

In Ref. 1 we derived the real part of the general CAP-CC/CAP-EOM-CC analytic gradient,

but expressions for the imaginary part or the complex gradient were not given. Following

the Lagrangian technique that was also applied in Ref. 1, the elements of the complex CAP-

EOM-CC gradient G can be given as

Gn,α =
∑

µν

Dµν

[
∂hµν
∂Rn,α

− iη ∂Wµν

∂Rn,α

− iη
(

Zn∑
k Zk

∂Wα

∂oα

)

µν

]
(1)

+
∑

µνσρ

Γµνσρ
∂ 〈µσ||νρ〉
∂Rn,α

+
∑

µν

Iµν
∂Sµν
∂Rn,α

+
∂Vnuc

∂Rn,α

,

where Rn,α are nuclear coordinates for nucleus n and α = x, y, z. The effective one-electron

density matrix D, the two-electron density matrix Γ, and the generalized energy-weighted

density matrix I are complex-valued, and their forms depend on the specific CC or EOM-

CC method used. The one-electron Hamiltonian h, the overlap matrix S and two-electron

integrals over atomic orbitals 〈µσ||νρ〉 are real, as well as the nuclear repulsion energy Vnuc.

The dependence of the CAP (W ) on nuclear coordinates through basis functions is considered

through the term

∂Wµν

∂Rn,α

=
∂(Wx)µν
∂Rn,α

+
∂(Wy)µν
∂Rn,α

+
∂(Wz)µν
∂Rn,α

, (2)

∂(Wx)µν
∂Rn,α

=
〈 ∂µ

∂Rn,α

∣∣∣Wx

∣∣∣ν
〉

+
〈
µ
∣∣∣Wx

∣∣∣ ∂ν

∂Rn,α

〉
. (3)

The CAP origin o is defined as the center of nuclear charges Zk

oα =

∑
k Rk,αZk∑
k Zk

. (4)

For a box-type quadratic CAP of the form

W =
∑

α

Wα , α = x, y, z , (5)
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Wα =





0 if |rα − oα| ≤ r0α

(|rα − oα| − r0α)2 if |rα − oα| > r0α,

(6)

the derivatives with respect to the CAP origin are given by

∂Wα

∂oα
=





0 if |rα − oα| ≤ r0α

−2 (rα − oα − r0α) if (rα − oα) > r0α

−2 (rα − oα + r0α) if (rα − oα) < −r0α .

(7)

The real part of the gradient has already been given in Eq. 8 of Ref. 1. The imaginary

part can be written as:

Im (Gn,α) =
∑

µν

[
Im(DHF

µν ) + Im(DCC
µν )
] ∂hµν
∂Rn,α

(8)

−η
∑

µν

[
Re(DHF

µν )+Re(DCC
µν )
][∂Wµν

∂Rn,α

+
Zn∑
k Zk

(
∂Wα

∂oα

)

µν

]

+
∑

µνσρ

[
1

2
Re(DHF

µν ) Im(DHF
σρ ) +

1

2
Im(DHF

µν ) Re(DHF
σρ )

+ Re(DCC
µν ) Im(DHF

σρ ) + Im(DCC
µν ) Re(DHF

σρ ) + Im(ΓCC
µνσρ)

]
∂ 〈µσ||νρ〉
∂Rn,α

+
∑

µν

[
Im(IHF

µν ) + Im(ICC
µν )
] ∂Sµν
∂Rn,α

where CAP-HF and CAP-CC/CAP-EOM-CC contributions (denoted by superscripts ’HF’

and ’CC’) have been separated.
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Hydrogen cyanide

Determining the branching plane

For determining the branching plane for the EP at ∠=165°, interpolation was performed in

parameter space (RCN / Å, RCH / Å, ∠ /degree) between the EP points found at different

bond angles (Table 1), then the tangent of the EP curve was calculated at ∠=165°. The

branching plane is by definition the plane orthogonal to this tangent vector. The CPES

of the two resonances were calculated along loops with different radius around the EP in

the branching plane. For Fig. 2 of the manuscript we chose orthonormal vectors u and v

in the brancing plane as u=(0.706969, 0.707122, -0.013141) and v=(0.707083, -0.707083,

-0.008230) in parameter space.

Figure 1: Imaginary part of the phase rigidity of state 1 above the branching plane of the
EP at ∠=165°.
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Table 1: Structural parameters (in degrees and Å) and box size parameters (in
a.u.) of HCN− at EPs with constrained bond angles and at the MEEP. The
CAP strength parameter was fixed at 9 · 10−3 a.u. for all calculations. The
aug-cc-pVTZ+3p basis set was used for all atoms.

∠ RCN RCH r0x r0y r0z
155.00 1.0467 1.1524 5.380 2.980 2.920
160.00 1.1208 1.1567 5.610 2.995 2.955

EPs 165.00 1.1948 1.1680 5.840 3.015 2.990
170.00 1.2736 1.1939 6.095 3.035 3.025
175.00 1.3826 1.2510 6.460 3.075 3.070

MEEP 162.98 1.1647 1.1623 5.745 3.005 2.980

Table 2: Energies of the anionic resonance states and the neutral parent state (in
eV) of HCN at EPs, relative to the energy of the neutral state at its equilibrium.
Calculations were performed using the aug-cc-pVTZ+3p basis set for all atoms.

∠ Eneutral ER,1 ER,2 Γ1 Γ2

155.00 1.159 3.276 3.283 1.638 1.625
160.00 0.318 2.323 2.328 1.449 1.452

EPs 165.00 0.361 2.221 2.224 1.241 1.235
170.00 1.035 2.668 2.673 0.982 0.984
175.00 2.594 3.774 3.778 0.661 0.658

MEEP 162.98 0.260 2.176 2.197 1.330 1.328
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Chloroethylene

Table 3: Structural parameters (in degrees and Å) of the π∗–σ∗ MEEP of
chloroethylene. Calculated with the aug-cc-pVDZ+3p basis on C and Cl atoms
and aug-cc-pVDZ on H atoms.

Cl
C 1 1.94152
H 2 1.09473 1 111.665
C 2 1.38821 1 119.045 3 177.134
H 4 1.09510 2 120.976 1 2.347
H 4 1.09742 2 121.297 1 -178.849

Table 4: Structural parameters (in degrees and Å) of the neutral equilibrium
structure of chloroethylene. Calculated with the aug-cc-pVDZ+3p basis on C
and Cl atoms and aug-cc-pVDZ on H atoms. Taken from Ref. 2.

Cl
C 1 1.75151
H 2 1.09123 1 113.061
C 2 1.34148 1 122.835 3 -180.000
H 4 1.09191 2 122.090 1 0.000
H 4 1.09268 2 119.201 1 -180.000
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Figure 2: The ellipse was fitted to the crossing points of the interpolated imaginary surfaces
presented in Fig. 4 of the manuscript, the points used for the fitting are given in blue. Points
where the interpolated real surfaces are closer than 0.002 Hartree are also given, but were
not used for the fitting. The optimized MEEP is in the origin, thus does not lie directly
on the ellipse, the corresponding point on the ellipse was estimated as EP1, which was then
mirrored to the minor axis of the ellipse to give the estimated location of EP2.

Table 5: Cartesian coordinates (in Å) of EP1 and EP2 of chloroethylene.

EP1

Cl 1.1447210810 -0.1044185516 -0.0015383398
C -0.6751812328 0.5746365806 0.0118873160
H -0.6978638851 1.6689695564 -0.0188074250
C -1.7303753188 -0.3257904302 -0.0040977793
H -1.5502490740 -1.4061751557 0.0143686527
H -2.7728518632 0.0171599389 -0.0160886718

EP2

Cl 1.1373988837 -0.1014240913 0.0180901559
C -0.6746409041 0.5616584823 -0.0336991856
H -0.6993208418 1.6695581883 -0.0096217898
C -1.7225010499 -0.3185033114 0.0077707409
H -1.5496496482 -1.4042887230 0.0030214840
H -2.7730854325 0.0173805551 0.0001641714
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Table 6: Position and width of the π∗ and σ∗ anionic resonance states and en-
ergy of the neutral parent state of chloroethylene along the DEA route (in eV).
Energies are given relative to the energy of the neutral state at its equilibrium.
Points A1 to A3 were generated using linear interpolation between the neutral
equilibrium structure and the π∗–σ∗ MEEP, B1 to B3 using linear interpola-
tion between the π∗–σ∗ MEEP and the σ∗–neutral MECP. For the resonances
CAP-EOM-EA-CCSD was used, the neutral state was calculated with regular
CCSD. All calculations were done with aug-cc-pVDZ+3p on C and Cl atoms
and aug-cc-pVDZ on H atoms.

Eneutral ER,π∗ Γπ∗ ER,σ∗ Γσ∗

neut. eq. 0.000 1.801 0.260 2.268 1.115
A1 0.029 1.731 0.237 2.198 0.950
A2 0.108 1.707 0.218 2.089 0.738
A3 0.228 1.721 0.203 1.956 0.502
MEEP 0.380 1.761 0.267 1.768 0.279
B1 0.480 2.011 0.278 1.529 0.181
B2 0.627 2.241 0.299 1.349 0.118
B3 0.820 2.505 0.323 1.193 0.072
MECP 1.059 2.806 0.349 1.059 0.000

Table 7: Box size parameters and optimal CAP strength parameters (in a.u.) of
the π∗ and of the σ∗ anionic resonance states of chloroethylene along the DEA
route. At the MEEP η = 0.01550 was used, and at the MECP there is no optimal
parameter for the σ∗ state, thus η = 0 was applied. All calculations were done
with aug-cc-pVDZ+3p on C and Cl atoms and aug-cc-pVDZ on H atoms.

r0x r0y r0z ηopt,π∗ ηopt,σ∗

neut. eq. 13.690 6.460 4.545 0.01650 0.04000
A1 13.880 6.510 4.555 0.01600 0.04000
A2 14.070 6.565 4.565 0.01550 0.04000
A3 14.255 6.620 4.575 0.01550 0.04200
MEEP 14.445 6.670 4.585 0.01550† 0.01550†
B1 14.575 6.660 4.600 0.01750 0.01600
B2 14.705 6.640 4.625 0.01800 0.01400
B3 14.830 6.610 4.670 0.01950 0.00900
MECP 14.960 6.570 4.730 0.02200 0.00000†

† not optimal values
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