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The prevalence of type 2 diabetes (T2D) is rising rapidly and in Mexicans is ∼19%. T2D
is affected by both environmental and genetic factors. Although specific genes have been
implicated in T2D risk few of these findings are confirmed in studies of Mexican subjects.
Our aim was to replicate associations of 39 single nucleotide polymorphisms (SNPs) from
10 genes with T2D-related phenotypes in a community-based Mexican cohort. Unrelated
individuals (n = 259) living in southeastern Mexico were enrolled in the study based at
the University of Yucatan School of Medicine in Merida. Phenotypes measured included
anthropometric measurements, circulating levels of adipose tissue endocrine factors
(leptin, adiponectin, pro-inflammatory cytokines), and insulin, glucose, and blood pressure.
Association analyses were conducted by measured genotype analysis implemented in
SOLAR, adapted for unrelated individuals. SNP Minor allele frequencies ranged from 2.2
to 48.6%. Nominal associations were found for CNR1, SLC30A8, GCK, and PCSK1 SNPs
with systolic blood pressure, insulin and glucose, and for CNR1, SLC30A8, KCNJ11, and
PCSK1 SNPs with adiponectin and leptin (p < 0.05). P-values greater than 0.0014 were
considered significant. Association of SNPs rs10485170 of CNR1 and rs5215 of KCNJ11
with adiponectin and leptin, respectively, reached near significance (p = 0.002). Significant
association (p 0.001) was observed between plasma leptin and rs5219 of KCNJ11.=
Keywords: Single Nucleotide Polymorphisms (SNP), association analysis, minor allele frequency, type 2 diabetes,

obesity

INTRODUCTION
Epidemiological studies have shown that obesity is associated
with an increased risk of mortality (Flegal et al., 2007) includ-
ing via increased risk of T2D and cardiovascular disease (Ogden
et al., 2007). Obesity and T2D have strong genetic components
(Rankinen et al., 2006; Sandholt et al., 2010). Recent genome-
wide association studies (GWAS) have identified single nucleotide
polymorphisms (SNPs) in or near a large number of genes that
are related to obesity and T2D phenotypes (Tung and Yeo, 2011).
The mechanism by which variation in these genes influences
body weight and biomarkers of glucose metabolism is not yet
known.

The prevalence of T2D in Mexico in 2000 was 10.9%. By
the year 2012 this prevalence almost doubled to 19%. The
prevalence of being overweight or obese (BMI ≥ 25 kg/m2) is
higher in Mexican women (73.0%) than men (69.4%) sim-
ilar to obesity alone (BMI ≥ 30 kg/m2) (Gutierrez et al.,
2012). These national statistics are reflected in the regions
within the country, including the state of Yucatán. Strong

predictors of diabetes included a family history of the dis-
ease, an increased body mass index, elevated liver-enzyme levels,
smoking status, and reduced measures of insulin secretion and
action.

As our study subjects are from the Yucatán peninsula, we are
interested in the results from a significant study on the state of
health in the population of Mérida, Yucatán performed in 1999,
which revealed some noteworthy statistics when compared to the
prevalence for metabolic and cardiovascular risk factors around
Mexico documented in 2000. For adults between 20 and 75 years
of age, 45% of men and 73% of women were overweight (BMI ≥
27.8 for men and ≥ 27.3 for women), and 19.5% of men and
41.1% of women were obese (BMI ≥ 30). T2D was seen in 6.1%
of men and 7.4% of women (Arroyo et al., 1999). This may reflect
a particular trend for a relatively higher index of these risk factors
in the general population of the Yucatán compared to the rest of
México as it is seen in more recent epidemiologic studies (Arroyo
et al., 2007; Gutierrez et al., 2012). Therefore, intrinsic genetic fac-
tors should not be ignored as the Yucatán population has a very
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unique Maya-Hispanic racial admixture that has experienced very
little out-migration.

The genetic factors involved in the development of obesity and
T2D include SNPs in genes that encode proteins influencing body
composition as well as fat and glucose metabolism (Hirschhorn
and Daly, 2005). These includes those influencing: (a) fatty acid
oxidation and glucose uptake by adiponectin through increased
AMPK and PPAR-α ligand activities (ADIPOR1, ADIPOR2)
(Yamauchi et al., 2003; Crimmins and Martin, 2007), (b)
proinsulin and proglucagon processing and cleavage (PCSK1)
(Choquet et al., 2013), (c) activation of the CB1 receptor to
increase de novo lipogenesis in the liver (CNR1) (Osei-Hyiaman
et al., 2005), (d) stimulation of the Wnt signaling pathway with
activation of B-catenin and target genes in the nucleus, repress-
ing proglucagon synthesis in enteroendocrine cells (TCF7L2) (Jin
and Liu, 2008), (e) regulation of glucose metabolism in liver
and pancreas (GCK) (Wang et al., 2013), (f) a KATP channel
that plays a major role in insulin secretion (KCNJ11) (Olson and
Terzic, 2010), and (g) regulation of insulin secretion in humans
through a pancreatic β-cell-specific zinc transporter (SLC30A8)
(Chimienti et al., 2006). These genes were carefully selected due
to their possible role in the etiology of obesity and T2D, in addi-
tion to their association with insulin-mediated glucose profile and
an abnormal expression of adipose tissue endocrine and inflam-
matory factors. Such parameters have been well-documented as
obesity-related metabolic complication leading to cardiovascular
pathology and endothelial dysfunction.

Chronic-degenerative and metabolic diseases related to nutri-
tion, lifestyle changes, and genetic predisposition are increas-
ing at alarming rates. Diseases such as arterial hypertension,
T2D, dislipidemias, and obesity, all traditionally viewed as risk
factors for coronary heart disease and cerebrovascular disease,
now constitute a rapidly advancing, world-wide epidemic (Roger
et al., 2011). Many studies indicate that México is in the midst
of an epidemiological transition that began in the 1950s. It is
experiencing a dramatic decrease in mortality from infectious
diseases and a sustained increase in mortality from chronic-
degenerative diseases (Rivera et al., 2002). National statistics show
that the primary cause of general mortality in Mexico is heart
disease (Sanchez-Castillo et al., 2005). These nationally repre-
sentative surveys are reflected in the regions within the country.
Since 1990, the primary cause of death in the adult popula-
tion in Yucatan has been heart disease (Arroyo et al., 2007).
Studies of cardiovascular risk factor’s prevalence conducted in
the Yucatan, also indicate that the prevalence of such conditions
are significantly present in this population when compared to
those reported in such Mexican national surveys (Arroyo et al.,
1999).

In the present study we hypothesize that a population of
unrelated individuals from the Yucatan, sharing a common cul-
tural environment and perhaps peculiar intrinsic genetic fac-
tors, may help detect associations between obesity and type
2-related genes and risk factor phenotypes. Thus, a community-
based cohort from the Yucatan Peninsula was utilized to exam-
ine the associations between the genetic polymorphisms in
obesity and T2D-related genes and risk factors of metabolic
origin.

MATERIALS AND METHODS
STUDY POPULATION
We recruited individuals born and living in the metropolitan area
of Merida, Yucatan, a region of southeastern Mexico. These unre-
lated individuals served as probands used to recruit extended
families for the Genetics of Metabolic Disease in Mexico (GEMM)
family study (Bastarrachea et al., 2007, 2012). Families were
recruited based on family size rather than on any disease status.

PHENOTYPING
All phenotypes studied constitute risk factors for T2D and obe-
sity. All participants gave written informed consent to participate
in this study. The study was approved by the ethical commit-
tee of the School of Medicine, Autonomous University of the
Yucatan.

The clinical examination included basic anthropometric mea-
sures. Blood samples were collected after an overnight fast of at
least 12 h. Stature was measured to the nearest centimeter, and
weight was measured to the nearest 0.1 kg, with the subject in light
clothing and without shoes. BMI (kg/m2) was calculated from this
data. Waist circumference was measured to the nearest centime-
ter with a steel tape measure placed midway between the highest
point of the iliac crest and the lowest point of the costal margin.
The systolic (first phase) and diastolic (fifth phase) blood pres-
sures were measured to the nearest millimeter Hg with a manually
operated sphygmomanometer on the right arm of the seated par-
ticipant. Three readings were recorded for each individual, and
the subject’s blood pressure was defined as the average of the sec-
ond and third readings. Serum samples were obtained from whole
blood after clotting.

Upon arrival at Texas Biomedical Research Institute (TBRI),
in San Antonio, TX, samples were inventoried. Biochemical phe-
notypes measured included glucose, insulin, interleukin 6 (IL-6),
interleukin 1 beta (IL1β), tumor necrosis factor alpha (TNFα),
leptin, and adiponectin. Most of the biochemical phenotypes
were analyzed on a Luminex 100 IS platform, consisting of an
advanced optometric flux designed to analyze up to 17 different
cytokines and chemokines in less than 2 h in ∼25 μL of plasma.
An automated clinical chemistry analyzer was used as well as an
Immulite 1000, which run ELISA and RIA analysis using ∼10 μL
of serum.

SNP SELECTION
A total of 39 SNPs from 10 genes were selected based on their
associations in previously reported GWA studies across vari-
ous populations (Hirschhorn and Daly, 2005). These genes are
adiponectin (ADIPOQ) (Takahashi et al., 2000), adiponectin
receptors 1 and 2 (ADIPOR1 and ADIPOR2) (Yamauchi et al.,
2003; Crimmins and Martin, 2007), proprotein convertase sub-
tilisin/kexin type 1(PCSK1) (Choquet et al., 2013), cannabinoid
receptor 1 (CNR1) (Osei-Hyiaman et al., 2005), fat mass and obe-
sity associated (FTO) (Frayling et al., 2007), glucokinase (GCK)
(Matsutani et al., 1992; Wang et al., 2013), potassium inwardly-
rectifying channel, subfamily J, member 11 (KNCJ11) (Olson and
Terzic, 2010), solute carrier family 30 (zinc transporter), mem-
ber 8 (SLC30A8) (Chimienti et al., 2006) and transcription factor
like7-like 2 (TCF7L2) (Jin and Liu, 2008).
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SNP GENOTYPING
DNA was isolated from frozen buffy coats using organic sol-
vents. Single nucleotide polymorphisms (SNPs) were typed using
the multiplex VeraCode technology from Illumina according to
the manufacturer’s protocol (Illumina, San Diego, CA). Details
of the technology are given in Voruganti et al. (2010). Briefly,
the technology is based on allele-specific primer extension. Raw
data, consisting of intensities of fluorescence, were imported into
the analysis software Bead Studio (Illumina). Cluster calls were
checked for accuracy and genotypes were exported as text files for
further use in association analysis. Replica samples were included
as controls for genotyping and allele calling consistencies.

STATISTICAL ANALYSES
Descriptive statistics and sex-specific differences (Students t-test)
were calculated using statistical package for social sciences (SPSS,
version 10.0; SPSS Inc., Chicago, USA). Genotype frequencies for
each SNP were calculated using a maximum likelihood estimation
method and were tested for departures from Hardy-Weinberg
equilibrium. Estimates of linkage disequilibrium (LD) between
SNPs were determined by calculating pair-wise D′ and r2 statis-
tics. As a first step in investigating the association between the
SNPs in candidate genes and variation in diabetes-related phe-
notypes, we employed a measured genotype analysis (Boerwinkle
et al., 1986), as implemented in the software package sequen-
tial oligogenic linkage analysis routines (SOLAR) (Almasy and
Blangero, 1998). This approach extends the classical variance
components-based biometrical model to account for both the
sporadic effects of unrelated individuals and the main effects of
SNP genotypes. For each SNP, we compared this saturated model
with a null model in which the main effect of the SNP is con-
strained to zero. The test statistic, twice the difference in loge
(likelihood) between the saturated model and the SNP-specific

null, is distributed as a chi-square with one degree of freedom.
Based on LD between SNPs, the effective number of SNPs was
32, which was used to calculate the empirical p-value (Ma et al.,
2012). After accounting for SNPs in high LD, the p-value of 0.0014
was considered significant.

The T2D and obesity phenotypes were the dependent variables
and SNPs were modeled using an additive genetic model (coded 0,
1, and 2 copies of the minor allele). SNP by environment interac-
tion term was added as an additional covariate to the model which
was originally adjusted for age, sex, age ∗ sex age2, age2 sex (inter-
action of age with sex, age squared, and interaction of age squared
with sex) and the SNP. (Age squared was included to model possi-
ble non-linear effects such as accelerated changes in later life, etc.
The interactions model possible differential effects of age in men
and women, etc.) All environments (internal and external) were
modeled as dichotomous variables.

RESULTS
The study was conducted in 259 (149 women and 110 men)
unrelated individuals from the GEMM Family Study. Sex-specific
distribution showed significant differences in adiposity-related
measures such as body weight, waist circumference, total body
fat, leptin, and adiponectin. Systolic blood pressure was also sig-
nificantly different between men and women, with men having
higher pressure. Men also had higher body weight and waist cir-
cumference. However, women had significantly higher values of
body fat, leptin, and adiponectin. Sex-specific descriptives are
shown in Table 1.

Of the total 39 SNPs genotyped, 7 were located within or near
TCF7L2, 5 from FTO, PCSK1, and ADIPOQ, 4 from SLC30A8
and ADIPOR2, 3 from CNR1 and GCK, 2 from KCNJ11, and one
from ADIPOR1. One SNP, ADIPOR2m63422, was dropped from
our study due to genotyping error. Minor allele frequency of the

Table 1 | Descriptive statistics of phenotypes used in the study.

Phenotype Mean (SD) p-value

All Women Men

N 259 149 110

Age (yrs) 30.64 (11.0) 31.57 (11.04) 29.37 (10.88) 0.113

Body weight (kg) 68.82 (10.1) 62.76 (13.1) 77.04 (13.9) <0.001

BMI (kg/m2) 27.18 (5.2) 26.85 (5.6) 27.63 (4.4) 0.226

Waist circumference (cm) 85.93 (13.1) 82.85 (13.7) 90.09 (11.0) <0.001

Body fat (%) 28.83 (8.7) 32.13 (8.4) 24.35 (7.1) <0.001

Glucose (mg/dl) 81.88 (9.0) 81.21 (8.3) 82.93 (7.6) 0.162

Leptin (ng/ml) 13.48 (9.6) 18.62 (9.0) 6.61 (5.02) <0.001

Insulin (μIU/ml) 20.05 (8.5) 19.80 (8.0) 20.40 (9.1) 0.574

IL1B (pg/ml) 1.54 (1.5) 1.55 (1.5) 1.51 (1.4) 0.825

IL6 (pg/ml) 6.47 (12.7) 7.15 (12.1) 5.55 (13.6) 0.322

TNFα (pg/ml) 7.29 (3.0) 7.25 (3.1) 7.34 (2.9) 0.726

Adiponectin (μg/ml) 12.16 (5.2) 13.50 (5.0) 10.40 (5.1) <0.001

Systolic blood pressure (mmHg) 113.93 (15.0) 108.83 (14.1) 120.85 (13.2) <0.001

Diastolic blood pressure (mmHg) 75.20 (10.9) 74.44 (11.0) 76.25 (10.6) 0.186

*P-values describe the level of significance when comparing men and women for the given phenotypes. P < 0.004 indicates significant difference between men

and women (p < 0.05 with Bonferroni correction for 12 comparisons).

www.frontiersin.org November 2014 | Volume 5 | Article 380 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Genetic_Disorders/archive


Hernandez-Escalante et al. Diabesity-related SNP associations in Yucatecans

remaining 39 SNPs ranged from 2.2 to 48.6% (Table 2). Nominal
associations were found for CNR1, SLC30A8, GCK, and PCSK1
SNPs with systolic blood pressure, insulin and glucose, and for
CNR1, SLC30A8, KCNJ11, and PCSK1 SNPs with adiponectin

Table 2 | Genotype frequencies.

Gene SNP Major Minor Minor allele Position

allele allele frequency of the SNP

ADIPOQ rs3774262 G A 23.6 Intron
rs2241766 A C 23.6 Coding-

synonymous
rs1063539 C G 22.7 UTR-3′

rs1501299 C A 28.5 Intron
rs266729 G C 33.5 Upstream- 5′

ADIPOR1 rs2275737 C A 30.3 Intron

ADIPOR2 rs2058112 G A 6.2 Intron

rs1044471 G A 34.0 UTR-3′

rs10773982 G A 43.2 Intron
rs1029629 C A 45.4 Upstream-5′

CNR1 rs10485170 A G 2.9 –
rs1049353 G A 9.5 Coding-

synonymous
rs6454674 A C 23.8 Intron

FTO rs1421085 A G 17.8 Intron
rs7193144 A G 16.4 Intron
rs8050136 C A 16.3 Intron
rs9939609 T A 16.8 Intron
rs17817449 A C 16.4 Intron

GCK rs1799884 G A 24.2 Upstream-5′

rs12673242 A G 15.1 Intron
rs2268576 G A 38.1 Intron

KCNJ11 rs5215 A G 37.1 Missense
rs5219 G A 36.7 Missense

PCSK1 rs6232 A G 2.2 Missense
rs6233 A G 44.3 Coding-

Synonymous
rs6234 G C 16.0 Missense
rs6235 G C 15.9 Missense
rs271921 G A 39.5 Intron

SLC30A8 rs6469675 A G 20.4 Intron
rs2464592 A G 26.8 Intron
rs2466293 A G 48.6 UTR-3′

rs13266634 G A 26.1 Missense

TCF7L2 rs7903146 G A 17.1 UTR-3′

rs7085532 A G 18.4 Intron
rs4506565 A T 18.5 Intron
rs7901695 A G 18.1 Intron
rs6585194 C G 24.7 Intron
rs10885406 A G 23.8 Intron
rs290483 A C 42.5 Intron

and leptin (p < 0.05). Association of SNPs rs10485170 of CNR1
and rs5215 of KCNJ11 with adiponectin and leptin, respectively,
reached a p-value of 0.002. After adjusting for multiple testing, the
association between plasma leptin levels and rs5219 of KNCJ11
remained significant (Table 3). Minor alleles of rs10485170 and
rs5215 were associated with lower levels of adiponectin and lep-
tin, respectively. In contrast, minor allele of rs5219 was associated
with higher levels of leptin (Table 4). The SNP by environ-
ment interaction was significant for SNP by sex interaction for
rs6469675 of SLC30A8 and systolic blood pressure (p = 0.02) and
SNP by BMI interaction for rs2268576 of GCK and percent body
fat (p = 0.03).

DISCUSSION
The main finding of this study is the association of the KCNJ11
SNP rs5219 with circulating levels of leptin. KCNJ11 encodes
a KATP channel kir6.2 that plays an important role in insulin
secretory function in pancreatic β-cells (Olson and Terzic, 2010).
Interestingly, leptin is known to inhibit insulin secretion by acti-
vating these channels in pancreatic β-cells (Spanswick et al.,
2000). Leptin and insulin also modulate the KATP channel func-
tion in hypothalamic neurons involved in food intake and body
weight (Spanswick et al., 1997; Miki et al., 2001). GWAS have
identified several gene polymorphisms to be associated with

Table 3 | Measured genotype analysis results.

Gene SNP Trait P-value

CNR1 rs10485170 Adiponectin 0.002

Systolic blood pressure 0.042

SLC30A8 rs6469675 Insulin 0.029

rs2464592 Adiponectin 0.015

Systolic blood pressure 0.028

GCK rs12673242 Body weight 0.023

rs2268576 BMI 0.042

Body fat 0.025

Glucose 0.028

BMI 0.016

Body fat 0.011

Glucose 0.028

Adiponectin 0.034

KCNJ11 rs5215 BMI 0.017

Body fat 0.033

Leptin 0.002

rs5219 BMI 0.012

Body fat 0.022

Waist circumference 0.039

Leptin* 0.001

PCSK1 rs6233 Waist circumference 0.047

Leptin 0.018

rs271921 Glucose 0.022

Leptin 0.024

*Significant p-value is in bold.
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Table 4 | Genotype-specific phenotype means for significant or near significant associations.

Phenotype Gene SNP Effect size (%) AA (SD) AG (SD) GG (SD)

Adiponectin (μg/ml) CNR1 rs10485170 3.8 12.36 (5.3) 9.12 (3.1) –

Leptin (ng/ml) KCNJ11 rs5215 3.6 14.00 (9.3) 13.48 (10.3) 12.19 (8.3)

Leptin (ng/ml) KCNJ11 rs5219 3.9 12.19 (8.5) 13.34 (10.2) 14.10 (9.3)

obesity and T2D risk factors. Our SNPs were selected based on
those studies. In the current study, we not only replicated the
previously identified association, but also found association of
these SNPs with phenotypes not reported in prior GWAS. Besides
rs5219 of KCNJ11, rs5215 also showed strong association with
leptin levels, reflecting the role of leptin in KATP channel mod-
ulation of insulin secretion (Kieffer et al., 1997; Olson and Terzic,
2010).

It is worth mentioning that in our data the rs10485170 SNP
from gene CNR1 was not significantly associated with circulating
levels of adiponectin (p < 0.002). Previous studies on this gene,
which codes for an endocannabinoid receptor 1 that is involved
in appetite and energy homeostasis (Despres et al., 2006), have
nevertheless shown association with obesity-related phenotypes
(Pi-Sunyer et al., 2006; Russo et al., 2007). In rodent models,
cannabinoid receptor1 (CB1) inhibits the production and release
of adiponectin (Matias et al., 2006). In a study in Romania, SNP
rs1049353 was associated with lower adiponectin levels (Dinu
et al., 2011). In addition, two human studies did not find evidence
of association between CNR1 expression and plasma adiponectin
levels (Lofgren et al., 2007; Pagano et al., 2007). Further research is
needed in order to elucidate the link between the polymorphisms
of the CNR1 gene and adiponectin levels.

Findings from this cohort study suggest that a particular unre-
lated population born and living in the Yucatan, a region of the
southeast in Mexico, sharing the same environment, could help
target genes involved in complex traits. The fact that we were able
to obtain positive results for associations previously reported in
the literature suggests that the study of this Yucatan population
can be very useful in research on genetics of common, complex,
highly prevalent diseases.
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