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Abstract. The influence of the charge imbalance effect on a system of intrinsic Joseph-
son junctions of high temperature superconductors under external electromagnetic radi-
ation is investigated. We find that the charge imbalance is responsible for the slope of
the Shapiro step in the IV-characteristic. The nonperiodic boundary conditions shift the
Shapiro step from the canonical position which is determined by the frequency of the
external radiation. We also find how the system parameters influence the shift of the
Shapiro step.

1 Introduction

The phase dynamics of the layered superconducting materials have attracted a great interest because
of the rich and interesting physics on one side and application perspectives on the other side [1, 2]. In
particular, the nonequilibrium effects created by stationary current injection in high-Tc materials have
been studied very intensively during the last two decades [1–7]. However, the charge imbalance in the
systematic perturbation theory was considered only indirectly as far as it is induced by fluctuations of
the scalar potential [1, 2, 5]. In Ref. [8], it is taken into account as an independent degree of freedom
and therefore the results are different from those of earlier treatments. In addition, due to the fact
that the charge is not screened in the superconducting layers the system forms intrinsic Josephson
junctions (IJJ) [9, 10]. Such system cannot be at equilibrium at any value of the electrical current.
The influence of the charge coupling on the Josephson plasma oscillations was studied in [6, 9].

During the last few years, two theoretical models are widely used to describe the IJJ: the capaci-
tively coupled Josephson junctions (CCJJ) model and the charge imbalance (CIB) model. In the CCJJ
model a non-vanishing generalized scalar potential appears due to the breaking of the charge neu-
trality, but in CIB model it is related to the quasiparticle charge imbalance. Actually, the relaxation
length of the charge imbalance in the layered system could be much larger than any other characteris-
tic lengths. Therefore, both effects could exist in HTSC simultaneously because the thickness of the
superconducting layers is smaller than the Debye length and thus obviously less than the relaxation
length of the charge imbalance. In the present paper we study the nonequilibrium effects created by
current injection in a stack of IJJ under external electromagnetic radiation.
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2 Model

A system of N + 1 superconducting layers (S-layers) presented in Fig. 1 is characterized by the or-
der parameter ∆l(t) = |∆| exp(iθl(t)) and time-dependent phase θl(t). The thickness of the S-layer is

Figure 1. Layered system of N + 1 superconducting layers forms a stack of Josephson junctions. Since the 0-th
and N-th layers are in contact with normal metal, their thicknesses d0

s and dN
s are different from the thickness of

the other S-layers ds inside of the stack due to the proximity effect.

comparable with the Debay screening rD length that leads to the generalized Josephson relation [11].
The total current density Jl through each S-layer is given as a sum of displacement, superconducting,
quasiparticle, diffusion and nonequilibrium terms. Those equations together with the kinetic equations
for the nonequilibrium potentialΨl(t) describe the physics of IJJs in HTSC. In the dimensionless form
the system of equations is

v̇l =
[
I − sinϕl − βϕ̇l + A sinωτ + Inoise + ψl − ψl−1

]
, (1)

ϕ̇1 = v1 − α(v2 − (1 + γ)v1) +
ψ1 − ψ0

β
, (2)

ϕ̇l = (1 + 2α)vl − α(vl−1 + vl+1) +
ψl − ψl−1

β
, (3)

ϕ̇N = vN − α(vN−1 − (1 + γ)vN) +
ψN − ψN−1

β
, (4)

ζ0ψ̇0 = η0
(
I + A sinωτ − βϕ̇0,1 + ψ1 − ψ0

) − ψ0, (5)
ζlψ̇l = ηl(β[ϕ̇l−1,l − ϕ̇l,l+1] + ψ1−1 + ψl+1 − 2ψl) − ψl,

ζNψ̇N = ηN
(−I − A sinωτ + βϕ̇N−1,N + ψN−1 − ψN

) − ψN , (6)

where the dot shows the derivative with respect to τ = ωpt, vl between the layers l − 1 and l, vl(t) ≡
vl,l−1(t), ϕl(t) is the phase difference across the layers l − 1 and l, α = εεo/2e2N(0)d is the coupling
parameter, ε is the dielectric constant, εo is the vacuum permittivity, d is the distance between the
superconducting layers and N(0) is the density of states, I = J/Jc is the dimensionless current density,
Jc is the critical current density, ωp =

√
2eJc/(�C) is the plasma frequency, C is the capacitance.

Other dimensionless parameters are the dissipation parameter β = �ωp/(2eRIc), R is the junction
resistance, the normalized quasiparticle relaxation time ζl = ωpτqp and the nonequilibrium parameter
ηl = 4πr2

Dτqp/(dl
sR), where di

s is the thickness of the S-layers, and τqp is the quasiparticle relaxation
time. The parameter of the nonperiodic boundary conditions γ is γ = ds/d0

s = ds/dN
s . The term

A sinωτ describes the effect of the external radiation with the amplitude A and frequency ω, which
are normalized to Jc and ωp, respectively. To reflect the experimental situation, we have added the
noise Inoise in the bias current with the amplitude ∼ 10−8 which is produced by a random number
generator and its amplitude is normalized to the critical current density value Jc.
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This system of equations is solved numerically using the fourth order Runge-Kutta method. We
assume that due to the proximity effect the thickness of the first and the last S-layers are larger than
the middle one. Therefore, the nonequilibrium parameters depend on the parameter of boundary
conditions γ, η0,N = γηl, where l = 1, 2, . . . , N − 1. We consider the underdamped case with the
McCumber parameter βc = 25 or β = 0.2.

3 Results
In [11] we have shown that in the system of intrinsic Josephson junctions of high temperature super-
conductors under external electromagnetic radiation the charge imbalance is responsible for the slope
in the Shapiro step in the IV-characteristic. The value of the slope increases with the nonequilibrium
parameter. We demonstrate that the coupling between junctions leads to the distribution of the slope
values along the stack. It was shown also that the nonperiodic boundary conditions shift the Shapiro
step from the canonical position V = Nω.

The simulated IV-characteristics of the JJs stack in the case without the charge imbalance η = 0
(dashed line) and at η = 0.2 (solid line) are presented in Fig. 2. The IV-curve without the charge
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Figure 2. The IV-characteristics of JJ stacks without the charge imbalance η = 0 (dashed line) and at η = 0.2
(solid line). The results for the periodic boundary condition are shown for comparison. The enlarged parts of the
IV-characteristics with the SS are shown in the inset.

imbalance at periodic boundary conditions is shown as well. The simulations have been made for a
stack with five JJs, a coupling parameter α = 0.5 and γ = 0.5. We see that the position of the SS
(at periodic boundary condition (PBC)) corresponds to the canonical value of the SS voltage V = 30
in agreement with the value of the external frequency ω = 6 and a number of junctions in the stack
N = 5. The nonperiodic boundary conditions with γ � 0 shifts the outermost branch relatively to the
curve at PBC, leading to a corresponding shift of the Shapiro steps. The charge imbalance manifests
itself as appearance of the slope in the Shapiro step, which is clearly demonstrated in the inset for the
case η = 0.2.

The influence of the coupling parameter on the shift of the Shapiro step is shown in Fig. 3(a).
The increase of α leads to the increase of the shift value. The steps on the IV-characteristic at α =
0, 0.2, 0.6, 1 are indicated by the large dashed rectangle. The IV-characteristics at large α demonstrate
also additional steps to those occurring on an internal branch. These Shapiro steps are evidenced
inside the inset to the small dashed rectangle.
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Figure 3. (a) IV-characteristics of the stack of N = 5 JJ at four coupling parameter values α = 0, 0.2, 0.6, 1. (b)
Distribution of the SS shift along the stack of N = 5 JJ at three parameter values γ = 0.5, 0.8, 1.

The shift of the Shapiro step depends on the value of γ and on the coupling parameter α. Fig. 3(b)
shows the distribution of the shift of the step along the stack with parameters γ = 0.5, 0.8, 1. One
can see that the maximum of the shift values occur at the first and last Josephson junctions. The
thicknesses of the superconducting layers of those junctions are larger than the others. The distribution
of the shift can be also seen in the middle layers due to the coupling between the Josephson junctions.

Thus, the Shapiro step shows a shift of its position from the canonical value Nω, where N is the
number of junctions in the stack and ω is the frequency of the external radiation. The value of this
shift depends on the boundary conditions and the coupling between the Josephson junctions. Due to
the coupling, the effect of the boundary conditions is extended to the neighboring junctions.
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