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Abstract. Dictated by Symmetry Principle, string theory predicts not General Relativity
but its own gravity which assumes the entire closed string massless sector to be geo-
metric and thus gravitational. In terms of R/(MG), i.e. the dimensionless radial variable
normalized by mass, Stringy Gravity agrees with General Relativity toward infinity, but
modifies it at short distance. At far short distance, gravitational force can be even repul-
sive. These may solve the dark matter and energy problems, as they arise essentially from
small R/(MG) observations: long distance divided by much heavier mass. We address the
pertinent differential geometry for Stringy Gravity, stringy Equivalence Principle, stringy
geodesics and the minimal coupling to the Standard Model. We highlight the notion of
‘doubled-yet-gauged’ coordinate system, in which a gauge orbit corresponds to a single
physical point and proper distance is defined between two gauge orbits by a path integral.
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1 Introduction

Ever since Einstein formulated his theory of gravity, i.e. General Relativity (GR), the metric, gµν,
has been privileged to be the only geometric and hence gravitational field, on account of the adopted
Riemannian geometry. All other fields or particles are meant to be ‘extra’ matters. In particular,
the Riemannian metric sets a proper length which every free particle would minimize, following the
geodesic,

ẍλ +
{
λ
µ ν

}
ẋµ ẋν = 0 . (1)

The gravitational coupling to matters, or to the Standard Model, is ‘minimally’ fixed by the metric
and covariant derivatives which ensure both diffeomorphisms and local Lorentz symmetry. In the
words of Cheng-Ning Yang, symmetry dictates interaction.

On the other hand, string theory suggests us to put a two-form gauge potential, Bµν, and a scalar
dilaton, φ, on an equal footing along with the metric. Forming the massless sector of closed strings,
they are ubiquitous in all string theories, with the conventional (Riemannian) description given by

∫
dDx
√−ge−2φ

(
Rg + 4∂µφ∂µφ − 1

12 HλµνHλµν
)

where H = dB . (2)

Furthermore, a genuine stringy symmetry, called T-duality, can mix three of them [1, 2]. These may
well hint at the existence of Stringy Gravity which should take the entire closed string massless sector
to be geometric and gravitational. For this, a novel differential geometry beyond Riemann is required,
in particular to shed light on the O(D,D) T-duality symmetry hidden in the above action.

After series of pioneering works on ‘doubled sigma models’ [3–8] and ‘double field theory’
(DFT) [9–13] (c.f. [14–16]), such an idea of Stringy Gravity has materialized. The word ‘double’
refers to the fact that doubled (D+D)-dimensional coordinates are used for the description of D-
dimensional physical spacetime. While such a usage was historically first made in the case of a torus
background – by introducing a dual coordinate conjugate to the string winding momentum – the dou-
bled coordinates turned out to be far more general: they can be applied to any compact or non-compact
spacetime, as well as to not only string but also to particle physics.

2 Stringy Gravity: Uroboros solution to Dark Problems

2.1 Stringy differential geometry

Stringy Gravity of our interest adopts the doubled-yet-gauged coordinate system [17] which meets two
properties. Firstly, an O(D,D) group is a priori postulated, having the constant invariant “metric",

JAB =

(
0 1
1 0

)
. (3)

With the inverse, JAB, it can freely raise and lower the O(D,D) vector indices (capital letters,
A, B, · · · ). Secondly, the doubled coordinates are gauged by an equivalence relation,

xA ∼ xA + ∆A(x) , (4)

where ∆A is an arbitrary ‘derivative-index-valued’ vector. This means that its superscript index must
be identifiable as that of derivative, ∂A = JAB∂B. For example, with arbitrary functions, Φi, belonging
to the theory, ∆A =

∑
i, jΦi∂

AΦ j. The equivalence relation (4) can be realized by requiring that every
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AΦ j. The equivalence relation (4) can be realized by requiring that every

field or function in Stringy Gravity – such as Φi itself, physical fields, local symmetry parameters and
their arbitrary derivatives – should be invariant under the coordinate gauge symmetry shift,1

Φk(x + ∆) = Φk(x) ⇐⇒ ∆A∂A = 0 . (5)

In this way, it becomes not a point but a gauge orbit in the doubled coordinate system that corresponds
to a single physical point. The above coordinate gauge symmetry invariance is equivalent to so called
the ‘section condition’ in DFT,

∂A∂
A = 0 . (6)

With respect to the off block-diagonal form of the O(D,D) metric (3), the doubled coordinates split
into two parts: xA = (x̃µ, xν), and hence ∂A∂

A = 2∂̃µ∂µ. The general solution to the section condition
is then given by ∂̃µ ≡ 0, up to O(D,D) rotations [10, 11].

General covariance in doubled-yet-gauged spacetime, or doubled diffeomorphisms, are given by

δxA = VA , δ∂A = −∂AVB∂B = (∂BVA − ∂AVB)∂B , (7)

and for a covariant tensor (or tensor density with weight ω),2

δTA1···An = −ω∂BVBTA1···An +
∑n

i=1 (∂BVAi − ∂Ai VB)TA1···Ai−1
B

Ai+1···An . (8)

The whole massless sector of closed strings, or stringy gravitons, consist of a unit-weighted scalar
density given by an exponentiation of DFT-dilaton, e−2d, and a symmetric projector,

PAB = PBA , PA
BPB

C = PA
C , (9)

which accompanies the complementary, orthogonal projector, P̄AB = JAB − PAB. It follows that the
difference of the two projectors sets a symmetric O(D,D) element, i.e. DFT-metric, PAB− P̄AB = HAB,
satisfyingHAB = HBA andHA

CHB
DJCD = JAB.

The above O(D,D) covariant defining properties of the stringy gravitons can be conventionally
solved by {gµν, Bµν, φ}. However, not all the solutions can be parametrized by these GR variables.
Stringy Gravity is more general than GR: it encompasses ‘non-Riemannian’ geometries where the
Riemannian metric, gµν, cannot be defined, even locally (see [18–20] for examples and [21] for the
complete classification and relations to Newton-Cartan/Carroll gravities, chiral strings etc.).

Requiring compatibility with all the stringy gravitons, i.e. ∇Ad = 0, ∇APBC = 0, ∇AP̄BC = 0, and
imposing some torsionless conditions, one can uniquely determine the connection for a diffeomor-
phism covariant derivative, ∇A = ∂A + ΓA [22],

ΓCAB = 2
(
P∂C PP̄

)
[AB]
+ 2
(
P̄[A

DP̄B]
E − P[A

DPB]
E
)
∂DPEC

−4
(

1
PM

M−1 PC[APB]
D + 1

P̄M
M−1 P̄C[AP̄B]

D
)(
∂Dd + (P∂E PP̄)[ED]

)
.

(10)

This stringy analogue of the Christoffel symbol constitutes subsequently a scalar curvature, S (0) , and
a two-indexed “Ricci” curvature, PA

C P̄B
DS CD, which further leads to the stringy counterpart of the

conserved Einstein tensor: GAB = 4P[A
C P̄B]

DS CD − 1
2JABS (0) satisfying ∇AGAB = 0 [23].

The scalar curvature multiplied by the unit-weighted integral measure, e−2dS (0) , sets then the action
for pure Stringy Gravity, which agrees with (2) upon Riemannian parametrization and up to total
derivatives. Its equations of motion amount to the vanishing of the stringy Einstein tensor, GAB = 0,
or equivalently S (0) = 0 and PA

C P̄B
DS CD = 0. In particular, constant background solutions include

not only the flat Minkowskian spacetime but also non-Riemannian ones, e.g. HAB = JAB, etc. [21].
1See also Eq.(13) for the cases where the doubled coordinates are dynamical fields.
2Eq.(8) corresponds to the passive counterpart of “generalized Lie derivative" à la Siegel [10].
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2.2 Minimal coupling to the Standard Model

To couple to fermions, it is necessary to introduce a pair of vielbeins, VAp, V̄Ap̄, which form the mu-
tually orthogonal projectors, PAB= VApVB

p, P̄AB= V̄Ap̄V̄B
p̄, and satisfy their own defining properties:

VApVA
q = ηpq , V̄Ap̄V̄A

q̄ = η̄p̄q̄ , VApV̄Ap̄ = 0 , VApVB
p + V̄Ap̄V̄B

p̄ = JAB . (11)

The unbarred and barred lowercase letters are the vector indices of twofold local Lorentz symmetries,
Spin(1,D−1) and Spin(D−1, 1), subject to Minkowskian metrics, ηpq (mostly plus) and η̄p̄q̄ (mostly
minus), respectively. The vielbeins diagonalize JAB and HAB simultaneously, with the eigenvalues,
(η,+η̄) and (η,−η̄). Physically, the doubling of the spin groups implies a pair of locally inertial frames
which exist separately for the left and right closed string modes [24].3 Now, to take care of all the local
symmetries in Stringy Gravity, the covariant derivative generalizes to ∇A = ∂A +ΓA +ΦA + Φ̄A, where
the last two are Spin(1,D−1) and Spin(D−1, 1) connections. These are fixed by the compatibility
with the vielbeins, ∇AVBp = 0, ∇AV̄Bp̄ = 0, and thus related to the stringy Christoffel symbol (10) [26].

With the basics of the stringy differential geometry, {d,VAp, V̄Ap̄,∇A, S (0)}, the Standard Model can
be straightforwardly, and minimally, coupled to Stringy Gravity [27]. In particular, fermionic kinetic
terms read

e−2d ψ̄γA∇Aψ = e−2d ψ̄VA
pγ

p(∂Aψ+
1
4ΦApqγ

pqψ) ≡ √−g χ̄γµ(∂µχ+ 1
4ωµpqγ

pqχ+ 1
24 Hµpqγ

pqχ
)
. (12)

The second equality, or ‘≡ ’, holds up to the Riemannian reduction of ∂̃µ ≡ 0, and a field redefinition
of the fermion, χ ≡ 2−

1
4 e−φψ, which couples to the Riemannian vierbein and B-field, as if fundamental

string. That is to say, dilaton φ is dark to the fermion, χ.4 Although quantum field theory is supposed
to describe “point-like" particles, the Dirac spinor χ seems to remember its stringy origin.

From Stringy Gravity point of view, H-flux is part of the torsionless connection, and the stringy
Christoffel symbol (10) cannot be transformed point-wise to vanish by doubled diffeomorphisms.
That is to say, locally inertial (normal) frames do not exist in Stringy Gravity: the Equivalence Prin-
ciple is broken for a string. This should not be a surprise, since string is an extended object, subject
to “tidal force”, or H-flux. It is also consistent with the absence of a four-indexed “Riemann” curva-
ture in Stringy Gravity [22, 28]. Eq.(12) then implies the violation of the Equivalence Principle for
fermions (c.f [29] or “fifth force”). We continue to discuss the recovery of the principle in section 2.4.

Given the twofold local Lorentz symmetries, one needs to decide the spin group for each fermion
in the Standard Model after preparing two sets of gamma matrices. An open question, which could be
answered experimentally, is whether the spin groups of quarks and leptons are different (or not) [27].

2.3 Uroboros solution to the Dark Matter and the Dark Energy problems

Motivated by the coupling of the Standard Model to the closed string massless sector, such as (12), the
most general, asymptotically flat, spherically symmetric vacuum solution to D= 4 Stringy Gravity
was studied in [30] (see also [31]). The solution lets the stringy Einstein tensor vanish identically,
GAB = 0, and therefore corresponds to the stringy analogue of the Schwarzschild solution to GR. Yet,
it possesses three free parameters: not only mass, M (measurable at infinity), but also, say H-flux
and dilaton charge. All of them ought to reflect the intrinsic properties of the implicitly assumed

3Ensuring the twofold spin groups in the maximally supersymmetric DFT [25] and the doubled-yet-gauged Green-Schwarz
superstring action [20], the conventional IIA and IIB theories are unified into a single unique theory that is chiral with respect
to both spin groups. The distinction of IIA and IIB then refers to two different types of (Riemannian) ‘solutions’ rather than
‘theories’.

4On the other hand, gauge bosons couple to gµν and φ only: H-flux is dark to the gauge bosons.
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matter localized at the center, which deserve, combined with (12), further explorations, possibly in
connection with ‘energy condition’ in GR.

The generic spherical solution would be regarded to feature a naked singularity, if it were inter-
preted from GR point of view, c.f. (2). But, strictly within the framework of Stringy Gravity, it may be
non-singular: all the stringy curvature tensors are trivial. Inevitably, the notion of singularity depends
on the differential geometry in use. Investigation into the geodesic completeness is of interest.5

Analysis of the circular geodesic around the center in ‘string frame’ – to be justified in section 2.4
below – shows that the rotation curve generically features a maximum and thus non-Keplerian over a
finite range, while becoming asymptotically Keplerian toward infinity [30]. Specifically, with appro-
priately tuned H-flux and dilaton charge, in terms of R/(MG), i.e. the dimensionless radial variable
normalized by mass, Stringy Gravity agrees with GR becoming Keplerian for large R/(MG)� 108,
but modifies it at shorter distance, R/(MG)� 2 × 106 (c.f. MOND [32]). At far shorter distance, grav-
itational force can be even repulsive. These may solve the dark matter and energy problems which are
essentially based on small R/(MG) observations: long distance divided by much heavier mass.

Namely, the self-interaction of the closed string massless sector makes Stringy Gravity modify
GR at ‘short’ distance in terms of R/(MG), such that it may explain the observed galaxy rotation
curves, hence solve the dark matter problem. Further, the repulsive force at far shorter distance can
be responsible for the accelerating expansion of the Universe, and thus solve the dark energy problem.

Rotation curves in Stringy Gravity [30]

Dimensionless rotation curves, Vorbit vs. R/(MG),
around the spherical vacuum in Stringy Gravity
feature generically a maximum. By tuning the free
parameters, one can make the maximum veloc-
ity comparable to the observations of galaxy ro-
tations. Intriguingly as unintended consequence,
the horizontal scale, R/(MG), also appears con-
sistent with the observatory data of visible mat-
ters, c.f. ‘Uroboros’ spectrum below. For sufficient
small R/(MG), the gravitational force can be repul-
sive and the orbital velocity is not defined. Chang-
ing the horizontal axis from R/(MG) to the phys-
ical radius, R, the rotation curves can oscillate for
nontrivial radial mass distribution functions, M(R).

‘Uroboros’ spectrum of the dimensionless radial variable normalized by mass in natural units.
Observing stars and galaxies far away, we can probe deep into the short distance natrue of GRAVITY.

5c.f. both (1) and (17), as well as cosmic censorship à la Penrose.
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2.4 Proper distance in doubled-yet-gauged spacetime: Justification for String Frame

Shifting gears, we now discuss how to define the proper distance in doubled-yet-gauged spacetime.
First of all, we note that the usual infinitesimal one-form, dxA, is neither doubled diffeomorphism co-
variant, δ(dxA) = dxB∂BVA � dxB(∂BVA − ∂AVB), (7), (8), nor coordinate gauge symmetry invariant,
d∆A = dxB∂B∆

A � 0, (5). Thus, the naive contraction with the DFT-metric, dxAdxBHAB, cannot give
any sensible definition of the proper length. To cure the problem, one needs to gauge dxA explic-
itly, introducing a connection, AA, which should satisfy the same property as the coordinate gauge
symmetry generator, ∆A (5),

DxA := dxA −AA , AA∂A = 0 . (13)

Provided the connection transforms appropriately, DxA becomes a well-behaved vector of stringy
geometry, meaning doubled diffeomorphism covariant and coordinate gauge symmetry invariant [18].
We propose then to define the proper distance in doubled-yet-gauged spacetime by a path integral [33],

|| x1 , x2 || := − ln
[ ∫
DA exp

(
−
∫ 2

1

√
DxADxBHAB

) ]
. (14)

By letting ∂̃µ ≡ 0 andAA ≡ (Aµ, 0), we get DxA ≡ (dx̃µ − Aµ, dxν). That is to say, only the half of the
doubled coordinates, i.e. x̃µ directions, are gauged. Furthermore, with the Riemannian parametriza-
tion of the DFT-metric, we get

DxADxBHAB ≡ dxµdxνgµν +
(
dx̃µ − Aµ + dxρBρµ

)
(dx̃ν − Aν + dxσBσν) gµν . (15)

Thus, after integrating out the auxiliary connection, Aµ, our proposal (14) reduces, at least classically,

to the conventional proper distance in Riemannian geometry,
∫ 2

1

√
dxµdxνgµν , which is certainly

independent of the gauged x̃µ coordinates:
∣∣∣∣∣∣ xA

1 , xA
2

∣∣∣∣∣∣ =
∣∣∣∣∣∣ xµ1 , xµ2

∣∣∣∣∣∣ . (16)

In this way, indeed the formula (14) measures the distance between two ‘gauge orbits’.
The exponent in (14) sets immediately the action for a point particle propagating in the doubled-

yet-gauged spacetime, or its square root free einbein formulation [30, 34]. As a consequence, after
the auxiliary connection being integrated out, the point particle couples to gµν only. That is to say,
both φ and Bµν are dark to particles: they are hard to detect by any experiment based on particle
concept. Further, the point particle follows the geodesic defined not in the Einstein frame but in the
string frame. Namely, the Equivalence Principle is restored in the string frame for a point particle.
This preferred choice of the frame is all due to the fundamental symmetries of Stringy Gravity.

The above path integral definition of the proper length can be easily generalized to (Nambu-
Goto type) area and volume, which in turn gives the doubled-yet-gauged actions for string or Green-
Schwarz superstring [18, 20]. In particular, with auxiliary worldsheet metric, hi j, and the stringy
Christoffel symbol (10), the Euler-Lagrange equations of the string action reduce, upon Riemannian
backgrounds (c.f. non-Riemannian [21]), to

1√
−h
∂i

(√
−hHABDixB

)
+ ΓABC

(
P̄B

DDixD
) (

PC
E DixE

)
= 0 , (17)

which can be viewed as the stringy analogue of the point particle geodesic equation (1).
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geometry, meaning doubled diffeomorphism covariant and coordinate gauge symmetry invariant [18].
We propose then to define the proper distance in doubled-yet-gauged spacetime by a path integral [33],

|| x1 , x2 || := − ln
[ ∫
DA exp

(
−
∫ 2

1

√
DxADxBHAB

) ]
. (14)

By letting ∂̃µ ≡ 0 andAA ≡ (Aµ, 0), we get DxA ≡ (dx̃µ − Aµ, dxν). That is to say, only the half of the
doubled coordinates, i.e. x̃µ directions, are gauged. Furthermore, with the Riemannian parametriza-
tion of the DFT-metric, we get

DxADxBHAB ≡ dxµdxνgµν +
(
dx̃µ − Aµ + dxρBρµ

)
(dx̃ν − Aν + dxσBσν) gµν . (15)

Thus, after integrating out the auxiliary connection, Aµ, our proposal (14) reduces, at least classically,

to the conventional proper distance in Riemannian geometry,
∫ 2

1

√
dxµdxνgµν , which is certainly

independent of the gauged x̃µ coordinates:
∣∣∣∣∣∣ xA

1 , xA
2

∣∣∣∣∣∣ =
∣∣∣∣∣∣ xµ1 , xµ2

∣∣∣∣∣∣ . (16)

In this way, indeed the formula (14) measures the distance between two ‘gauge orbits’.
The exponent in (14) sets immediately the action for a point particle propagating in the doubled-

yet-gauged spacetime, or its square root free einbein formulation [30, 34]. As a consequence, after
the auxiliary connection being integrated out, the point particle couples to gµν only. That is to say,
both φ and Bµν are dark to particles: they are hard to detect by any experiment based on particle
concept. Further, the point particle follows the geodesic defined not in the Einstein frame but in the
string frame. Namely, the Equivalence Principle is restored in the string frame for a point particle.
This preferred choice of the frame is all due to the fundamental symmetries of Stringy Gravity.

The above path integral definition of the proper length can be easily generalized to (Nambu-
Goto type) area and volume, which in turn gives the doubled-yet-gauged actions for string or Green-
Schwarz superstring [18, 20]. In particular, with auxiliary worldsheet metric, hi j, and the stringy
Christoffel symbol (10), the Euler-Lagrange equations of the string action reduce, upon Riemannian
backgrounds (c.f. non-Riemannian [21]), to

1√
−h
∂i

(√
−hHABDixB

)
+ ΓABC

(
P̄B

DDixD
) (

PC
E DixE

)
= 0 , (17)

which can be viewed as the stringy analogue of the point particle geodesic equation (1).
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