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Abstract. This contribution is a status report on a research program aimed at obtain-
ing quantum-gravitational physics inside a cosmological horizon through dS/CFT, i.e.
through a holographic description at past/future infinity of de Sitter space. The program
aims to bring together two main elements. The first is the observation by Anninos, Hart-
man and Strominger that Vasiliev’s higher-spin gravity provides a working model for
dS/CFT in 3+1 dimensions. The second is the proposal by Parikh, Savonije and Verlinde
that dS/CFT may prove more tractable if one works in so-called “elliptic” de Sitter space
– a folded-in-half version of global de Sitter where antipodal points have been identi-
fied. We review some relevant progress concerning quantum field theory on elliptic de
Sitter space, higher-spin gravity and its holographic duality with a free vector model. We
present our reasons for optimism that the approach outlined here will lead to a full holo-
graphic description of quantum (higher-spin) gravity in the causal patch of a de Sitter
observer.

1 Introduction to higher-spin dS/CFT

For decades, the great conceptual problem in theoretical physics has been that of quantum gravity. In
the real world, this problem remains unsolved – we don’t know how nature reconciles the two simple
facts � � 0 and G � 0. However, one can also frame quantum gravity as a less demanding question:
how can these two facts be reconciled even in principle, in any fictitious but mathematically consistent
universe? This version of the question is now essentially solved. The first fully convincing solution
(by the author’s standards) was the discovery of AdS/CFT in the late 1990’s [1–3]. There, a non-
gravitating conformal field theory (CFT) provides a complete description of quantum-gravitational
observables at spatial infinity, in a universe with negative cosmological constant Λ < 0. Remarkably,
at around the same time that AdS/CFT was discovered by theorists, astronomical observations [4, 5]
have falsified its core premise: it appears that our Universe has a cosmological constant of the “wrong
sign”, i.e. Λ > 0. Thus, despite some wide-spread impressions, quantum gravity is both theoretically
tractable and observationally falsifiable: an entire class of theoretical models has been found, and has
been falsified by observation! Naively, this is very strange: one would expect that any observation
relevant to quantum gravity should involve the tiny Planck scale. Instead, due to the way in which
holography interchanges UV and IR, we find a crucial dependence of the theory on Λ, i.e. on the
behavior of spacetime at the largest distances.

The sign ofΛmay at first seem like a technical detail, but in fact it has a crucial implication for our
place in the Universe. In asymptotically anti-de Sitter (AdS) spacetime, with Λ < 0, spatial infinity is
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a physical place. Lightlike signals can go there and back again in finite time, while massive probes
and observers can get arbitrarily close. Thus, the observables calculated by AdS/CFT make opera-
tional physical sense, and it’s easy to accept that only this kind of observables that can be precisely
defined. After all, the bulk spacetime’s geometry is experiencing quantum fluctuations, or perhaps is
fundamentally ill-defined altogether. It is only at infinity, where the Planck length becomes negligible,
that one can have a fixed classical geometry, and therefore pin down precise notions for what is being
prepared and measured. All of this is quite satisfactory and consistent, except it is not applicable to
the real world. In asymptotically de Sitter (dS) spacetime, with Λ > 0, spatial infinity is completely
irrelevant to observable physics, even though it may still exist from a “God’s eye” perspective. In-
stead, every observer is trapped inside a cosmological horizon of finite area. In effect, when passing
from AdS to dS, the roles of space and time get interchanged. In dS, instead of taking finite time to
cross an infinite distance, causal signals take infinite time to cross a finite distance – the distance to
the horizon. While AdS has a conformal boundary at spatial infinity, dS has boundaries at past and
future infinity. While the AdS boundary is a physically meaningful place, the dS boundary is instead
a pair of times. Moreover, for every observer, most of the dS boundary is inaccessible: at infinity, the
horizon radius appears pointlike, so the observer can only access the initial and final endpoints of her
wordline.

Thus, we now have on our hands an updated version of the problem of quantum gravity: to
reconcile the three simple facts � � 0, G � 0 and Λ > 0. The implication is to understand quantum
gravity in finite regions of space, or at least in the largest region that is physically relevant – the causal
patch of an observer in asymptotically dS spacetime. Given the success of AdS/CFT, it is tempting
to try a similar approach, i.e. to construct dS/CFT [6] – holography in de Sitter space. As already
covered by the above discussion, the move from AdS to dS introduces a host of conceptual issues:
how to treat the two boundaries at past & future infinity? How can time emerge holographically from
a spacelike boundary? Since the boundary is inaccessible to any single observer, how do we translate
the CFT’s output into physics inside an observer’s horizon? Is the Hilbert space of an observer’s causal
patch finite-dimensional, as implied by Bekenstein’s entropy formula? Is this Hilbert space the same
for all observers? What are the implications for the measurement procedure in quantum mechanics,
which relies on a measurement apparatus with an infinite-dimensional state space?

For a number of years, these issues were widely discussed – see e.g. [7–14]. However, active
interest has gradually died down, due to the absence of a reliable working model on which to test the
various ideas. Indeed, while AdS/CFT models abound, the vast majority of them turn pathological if
we try to flip the sign of Λ. There are two simple reasons for this. First, string theory in general and
AdS/CFT in particular are well-understood only in the presence of unbroken supersymmetry, which
is incompatible with the dS spacetime symmetry structure. Second, in addition to the graviton and
other massless or light fields, string theory generically contains a tower of massive excited modes.
When infinity is a time instead of a place, these massive fields oscillate – in analogy with the e−imt

behavior in Minkowski space – which implies complex conformal weights on the boundary. Both of
these problems are difficult, though perhaps potentially solvable. For the time being, if one wants a
working model of dS/CFT, one had better work with a theory that does not require supersymmetry,
and does not contain any massive fields. In, 2011, a model of just this type has been put forward [15].

The model of [15] is a duality between type-A higher-spin gravity in dS 4 and a free vector model
on the 3d boundary at future infinity. It results from flipping the sign of Λ in the corresponding
AdS/CFT model of [16]. Higher-spin gravity [17, 18] is an interacting theory of an infinite tower of
massless fields with increasing spin; in the minimal version, there is one field for every even integer
spin (s = 0, 2, 4, . . . ). The infinite tower of massless fields corresponds to an infinite-dimensional
gauge symmetry – higher-spin symmetry – which extends the ordinary spacetime symmetry of Gen-
eral Relativity (GR). In the holographic model of [15, 16], a global version of the infinite-dimensional
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behavior in Minkowski space – which implies complex conformal weights on the boundary. Both of
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spin (s = 0, 2, 4, . . . ). The infinite tower of massless fields corresponds to an infinite-dimensional
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higher-spin symmetry is unbroken, which can be realized in the boundary CFT if and only if the latter
is free [19]. One can think of higher-spin gravity as the “opposite of supergravity”: it extends the
spacetime gauge symmetry in a bosonic direction rather than a fermionic one. Unlike supergravity,
though, higher-spin theory is very different from GR coupled to matter, since the spin-2 graviton is
now joined by fields of spin s > 2. Moreover, unlike in string theory, where most of the fields are
heavy and decouple at low energy, here all of the higher-spin fields are massless, and they all interact
at once and at all orders in derivatives. As a result, the interactions of higher-spin theory are nonlocal
at the cosmological scale, and are nothing like those of GR. Thus, this model is highly unrealistic.
However, it permits us to do holography with Λ > 0, and, as an added bonus, does not require the
extra dimensions of string theory: the bulk is really (A)dS4, without the additional compact factor that
is always present in stringy AdS/CFT.

By the time the model of [15] was proposed, work on the conceptual underpinnings of dS/CFT has
largely died down. The main conceptual framework that was left standing, and was used in [15], is that
of [11]. There, the Lorentzian dS space is treated as a natural analytic continuation of Euclidean AdS,
sharing the same symmetries and the same boundary. Using the well-understood Euclidean AdS/CFT
dictionary, this leads one to recognize the CFT partition function as the Hartle-Hawking wavefunction
[20] of the Lorentzian dS at future infinity. While this interpretation is very solid, it fails to address the
issue of cosmological horizons: the wavefunction at future infinity is not accessible to any observer,
and a dictionary is still needed between that and the physics inside an observable patch.

Our goal, then, is to extract the physics within causal patches for the higher-spin dS/CFT model
of [15]. In other words, we wish to revisit the old conceptual questions of dS/CFT, this time within
the context of a working model. Specifically, we will pick up the suggestion of [10], where it was
proposed that dS/CFT should become more tractable on a folded-in-half version of de Sitter space,
where every observer can access all of space (though not all of spacetime). We contend that, while
this idea has some well-known problems when applied to GR, it is a match made in heaven with
the higher-spin model. If our marriage between the two proves successful, we will have the first-
ever working model of quantum (sort-of-)gravity inside a cosmological horizon. Given the great
differences between real-world GR and higher-spin theory, such a model may not address all the
outstanding questions about Λ > 0 quantum gravity. However, some questions, such as the dimension
of the causal patch’s Hilbert space, should be general enough that they can be usefully addressed even
within this toy system.

2 Folding de Sitter space in half

Global de Sitter space is the hyperboloid of constant spacelike radius in the ambient flat spacetime
R1,4:

dS 4 =
{
xµ ∈ R1,4 | xµxµ = 1

}
. (1)

The asymptotes to this hyperboloid are the past-pointing and future-pointing null directions in R1,4.
These make up the boundaries of dS 4 at past and future infinity:

I± =
{
�µ ∈ R1,4 | �µ�µ = 0 ; �0 ≷ 0 ; �µ � λ�µ ∀λ > 0

}
. (2)

An observer in dS 4 is specified by her worldline’s asymptotic endpoints pi ∈ I− and p f ∈ I+. We
identify the observable patch as the region inside both past and future horizons; for a detailed argument
on this point, see [24].

In several ways, the spacetime (1) is “twice too big”: it has two boundaries (2) rather than one;
only half the spacetime (the Poincare patch) is relevant to cosmology; and, most crucially for us,
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Figure 1. A Penrose diagram of dS 4/Z2. Opposite points in the diagram are identified. Past and future infinity
are identified into a single boundary I. The observer’s worldline endpoints pi, pf ∈ I define horizons Hi,Hf ,
which divide the spacetime into two independent “quadrants”: the causal patch D (identified with its antipode)
and its complement U, which contains I. The arrows denote the direction of the Killing vector ξµ that generates
time translations in the causal patch. The observer induces a time orientation in regions where ξµ is causal, i.e.
in the causal patch and on the horizons.

every observer sees only half of space. Thus, before we can construct a dictionary from I± into
the observable patch, we must somehow disentangle the relevant information from that pertaining
to the antipodal patch. A way out was suggested by [10], in a modern echo of an old proposal by
Schrodinger. The idea is to fold de Sitter space in half, in the unique way that preserves its full
symmetry group O(1, 4). In the R1,4 language, this is accomplished by identifying every point xµ with
its antipodal point −xµ. The spacetime and its boundary thus become:

dS 4/Z2 =
{
xµ ∈ R1,4 | xµxµ = 1 ; xµ � −xµ

}
; I =

{
�µ ∈ R1,4 | �µ�µ = 0 ; �µ � λ�µ ∀λ

}
. (3)

The folded-in-half spacetime dS 4/Z2 is known as elliptic de Sitter space; the word “elliptic” refers to
the spacelike separation between the identified pairs of points ±xµ. The spacetime (3) has only one
boundary: past and future infinity are identified with each other. Crucially, every observer’s causal
patch now covers all of space, though not all of spacetime. See figure 1 for the causal structure of
dS/Z2 with a chosen observer.

As we discuss in the next section, dS/Z2 has a peculiar but consistent causal structure. The main
reason why the dS/Z2 approach of [10] was abandoned is that this subtle consistency is not preserved
by gravitational perturbations. However, we have already made the compromise of committing to the
higher-spin model of [15], where the bulk theory is very different from GR. As we discuss below, this
may allow us to evade the conflict between the causal structure and bulk perturbations.

3 Observer-dependent quantum mechanics

The folding in half of de Sitter space carries one obvious complication: since we’re identifying op-
posite points in both space and time, global time orientability is lost. In dS/Z2, there is no consistent
distinction between past and future lightcones. Nevertheless, there is never an observable violation

4

EPJ Web of Conferences 168, 01007 (2018) https://doi.org/10.1051/epjconf/201816801007
Joint International Conference of ICGAC-XIII and IK-15 on Gravitation, Astrophysics and Cosmology



Figure 1. A Penrose diagram of dS 4/Z2. Opposite points in the diagram are identified. Past and future infinity
are identified into a single boundary I. The observer’s worldline endpoints pi, pf ∈ I define horizons Hi,Hf ,
which divide the spacetime into two independent “quadrants”: the causal patch D (identified with its antipode)
and its complement U, which contains I. The arrows denote the direction of the Killing vector ξµ that generates
time translations in the causal patch. The observer induces a time orientation in regions where ξµ is causal, i.e.
in the causal patch and on the horizons.

every observer sees only half of space. Thus, before we can construct a dictionary from I± into
the observable patch, we must somehow disentangle the relevant information from that pertaining
to the antipodal patch. A way out was suggested by [10], in a modern echo of an old proposal by
Schrodinger. The idea is to fold de Sitter space in half, in the unique way that preserves its full
symmetry group O(1, 4). In the R1,4 language, this is accomplished by identifying every point xµ with
its antipodal point −xµ. The spacetime and its boundary thus become:

dS 4/Z2 =
{
xµ ∈ R1,4 | xµxµ = 1 ; xµ � −xµ

}
; I =

{
�µ ∈ R1,4 | �µ�µ = 0 ; �µ � λ�µ ∀λ

}
. (3)

The folded-in-half spacetime dS 4/Z2 is known as elliptic de Sitter space; the word “elliptic” refers to
the spacelike separation between the identified pairs of points ±xµ. The spacetime (3) has only one
boundary: past and future infinity are identified with each other. Crucially, every observer’s causal
patch now covers all of space, though not all of spacetime. See figure 1 for the causal structure of
dS/Z2 with a chosen observer.

As we discuss in the next section, dS/Z2 has a peculiar but consistent causal structure. The main
reason why the dS/Z2 approach of [10] was abandoned is that this subtle consistency is not preserved
by gravitational perturbations. However, we have already made the compromise of committing to the
higher-spin model of [15], where the bulk theory is very different from GR. As we discuss below, this
may allow us to evade the conflict between the causal structure and bulk perturbations.

3 Observer-dependent quantum mechanics

The folding in half of de Sitter space carries one obvious complication: since we’re identifying op-
posite points in both space and time, global time orientability is lost. In dS/Z2, there is no consistent
distinction between past and future lightcones. Nevertheless, there is never an observable violation

of causality: there are no closed timelike curves, and every observer’s causal patch is time-orientable.
Since I− and I+ have been identified, an observer in dS/Z2 is defined by a pair of points pi, p f on the
single boundary I. The time orientation in the causal patch is then induced by the ordering of pi and
p f , i.e. by the orientation of the observer’s worldline. Different observers induce time orientations on
different causal patches. Where their causal patches intersect, the time orientations of two different
observers may or may not agree.

This peculiar status of the arrow of time carries crucial implications for quantum mechanics in
dS/Z2. Indeed, the operator algebra [q, p] = i for e.g. a particle depends on our convention for
the sign of the velocity, and therefore on the signs of time derivatives. As a result, while quantum
mechanics is consistent in observable patches of dS/Z2, there is no global, observer-independent
quantum mechanics of the entire Universe. This situation is reminiscent of the idea of horizon com-
plementarity [9, 22]. Horizon complementarity sets out to solve the black hole information paradox
by positing that it depends on a consistent quantum description of the entire Universe, which need not
exist. If every observer can only access a partial region of spacetime due to horizons, then a consistent
quantum description of every such region should suffice. Complementarity then goes on to posit that
these descriptions in the different patches are in fact equivalent – that the same Hilbert space is being
encoded in different ways.

As we can see, apart from its broader significance for holography, field theory on elliptic de Sitter
space forms a unique theoretical laboratory for the idea of complementarity. Indeed, complementarity
is essentially “forced” by the two sides of every horizon being identified. In addition, at the classical
level, every observer indeed sees a different encoding of the same information: while the observers see
different causal patches, each of them covers a complete time slice. Finally, unlike in most discussions
of complementarity, the system is well-defined and under complete control.

In [23, 24], we carried out a detailed study of quantum field theory (QFT) in dS/Z2 and its observer
dependence. The key idea is to introduce ordinary dS as a double cover of dS/Z2, and to use QFT on
dS as the observer-independent global structure. The subtlety lies in the different mappings dS/Z2 →
dS that are induced by different observers. As a result, dS/Z2 inherits the local field operators from
dS , but the operator algebra becomes observer-dependent. In addition, mixed states in dS/Z2 naturally
arise from pure antipodally symmetric states in dS .

Within this framework, we were able to show that observers agree on all the expectation values
in the intersections of their causal patches, provided that they consistently agree (or consistently dis-
agree) on the time orientation. However, when two observers agree on the arrow of time in one region
and disagree in another, they will generally disagree on the entanglement between these two regions.
In more physical terms, they will disagree on the entanglement across one of their horizons. In partic-
ular, one observer’s pure state can appear as mixed to another. As far as we can tell, this picture, while
peculiar, is perfectly consistent. It therefore demonstrates that horizon complementarity may have
been conceived too narrowly. In the dS/Z2 universe, we see a generalized version of complementar-
ity: the quantum world-pictures of different observers are not fully equivalent, but they are mutually
consistent where it is required.

4 Massless holography in dS 4/Z2

Having understood the structure of QFT on elliptic de Sitter space, one can proceed towards the
main task: reconstructing the Lorentzian quantum physics inside a causal patch from the Euclidean
partition function of the boundary CFT. As we’ve seen in the previous section, this reconstructed
quantum physics (e.g. the operator algebra) will necessarily depend on the choice of observer. In
[24], we accomplished this task in the limit of non-interacting (but quantum) bulk fields. Already
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at this level, it is important that we’re working specifically with the higher-spin model, because our
construction depends crucially on the fact that the bulk fields are massless.

The specific problem solved in [24] can be phrased as follows, using a spin-0 field for simplicity.
A choice of observer in dS 4/Z2 breaks the spacetime symmetry group O(1, 4) down to the subgroup
R × O(3) of time translations and rotations. This suggests a basis alm(ω), a∗lm(ω) for the field’s modes
in the causal patch, where the frequency ω and the angular momentum numbers (l,m) are conserved.
Since the field is free, each of these modes is a harmonic oscillator, with ω already specified as its
frequency. On the other hand, a similar decomposition into modes clm(ω), c∗lm(ω) can be performed
for the boundary data at past/future infinity I (note that the generator of time translations is spacelike
outside the causal patch and tangential to I). Since the causal patch covers all of space, there must be
a one-to-one mapping between the oscillators a, a∗ and the boundary modes c, c∗. Using the R ×O(3)
symmetry and the linearity of the field equations, we see that this mapping must take the form:

alm(ω) = Nl(ω)clm(ω) , (4)

where Nl(ω) are some c-number coefficients. Taking the oscillators a, a∗ to be normalized, we can
read off the operator algebra and Hamiltonian that are induced on the Euclidean boundary data at I
by our choice of observer:

[
ĉlm(ω), ĉ†l′m′ (ω

′)
]
=

1
|Nl(ω)|2

· 2πδ(ω − ω′)δll′δmm′ ; (5)

Ĥ =
∫ ∞

0

dω
2π

∑
lm

ω |Nl(ω)|2 ĉ†lm(ω) ĉlm(ω) . (6)

Thus, our task is to derive the coefficients |Nl(ω)|2. Also, since we are constructing a holographic
dictionary, this must be done strictly from the CFT partition function, with no bulk calculations. This
turns out to be possible, thanks to a peculiar property of free massless bulk fields: their two types of
boundary data (Dirichlet vs. Neumann, electric vs. magnetic) correspond directly to the two possible
signs of antipodal symmetry, i.e. to the two possible kinds of fields in the dS 4/Z2 bulk [25–27]. We
refer to [24] for the full construction, simply citing here the result:

|Nl(ω)|2 = S l(ω) · 1
2

(
coth

πω

2

)η (−1)l

, (7)

where S l(ω) are the coefficients in the Gaussian approximation to the CFT partition function:

ZCFT
[
clm(ω), c∗lm(ω)

] ∼ exp

−
∫ ∞

0

dω
2π

∑
lm

S l(ω) |clm(ω)|2
 . (8)

The significance of the result (7) is that it shows how, as a matter of principle, one can derive a
quantum operator algebra and a Lorentzian time evolution out of the CFT on the Euclidean boundary.
However, since we’ve used so extensively the special features of free massless fields on dS 4/Z2, one
may worry that a generalization to the interacting level will prove too difficult. If there is hope, it must
lie in the fact that the interactions of higher-spin gravity are themselves very special. In the remaining
sections, we will discuss some recent work in higher-spin theory that gives us cause for optimism.

5 Higher-spin gravity on a fixed geometry
The free-field result of the previous section relied on the R × O(3) symmetry of a causal patch in
dS 4/Z2. Even putting aside worries about causality, what are we to do once the geometry is gravita-
tionally altered and the symmetry destroyed? At first, this problem seems even worse in higher-spin
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dictionary, this must be done strictly from the CFT partition function, with no bulk calculations. This
turns out to be possible, thanks to a peculiar property of free massless bulk fields: their two types of
boundary data (Dirichlet vs. Neumann, electric vs. magnetic) correspond directly to the two possible
signs of antipodal symmetry, i.e. to the two possible kinds of fields in the dS 4/Z2 bulk [25–27]. We
refer to [24] for the full construction, simply citing here the result:

|Nl(ω)|2 = S l(ω) · 1
2

(
coth

πω

2

)η (−1)l

, (7)

where S l(ω) are the coefficients in the Gaussian approximation to the CFT partition function:

ZCFT
[
clm(ω), c∗lm(ω)

] ∼ exp

−
∫ ∞

0

dω
2π

∑
lm

S l(ω) |clm(ω)|2
 . (8)

The significance of the result (7) is that it shows how, as a matter of principle, one can derive a
quantum operator algebra and a Lorentzian time evolution out of the CFT on the Euclidean boundary.
However, since we’ve used so extensively the special features of free massless fields on dS 4/Z2, one
may worry that a generalization to the interacting level will prove too difficult. If there is hope, it must
lie in the fact that the interactions of higher-spin gravity are themselves very special. In the remaining
sections, we will discuss some recent work in higher-spin theory that gives us cause for optimism.

5 Higher-spin gravity on a fixed geometry
The free-field result of the previous section relied on the R × O(3) symmetry of a causal patch in
dS 4/Z2. Even putting aside worries about causality, what are we to do once the geometry is gravita-
tionally altered and the symmetry destroyed? At first, this problem seems even worse in higher-spin

gravity than it does in GR. Indeed, in its usual formulation, higher-spin theory is “even more” gener-
ally covariant: the metric is not just dynamical, it is now relegated to a gauge-dependent component
of the infinitely larger higher-spin connection.

In [28], we uncovered a feature of higher-spin gravity that offers a way around this problem.
Through a slight (and locally equivalent) reformulation, higher-spin theory can change from a “more-
than-gravitational” theory on a featureless manifold into a “non-gravitational” theory on a fixed
(A)dS4 geometry! Crucially, one can do this without deforming the higher-spin gauge symmetry,
i.e. without substantially complicating the field equations. The reason why this is possible is the dif-
ferent relationship in GR vs. higher-spin theory between diffeomorphisms and the dynamical spin-2
field. In GR, the dynamical spin-2 field is quite crucially the “gauge field” for local translations, i.e.
for diffeomorphisms, i.e. it must be identified with the spacetime metric. In higher-spin theory, one
instead has, as a component of the higher-spin gauge group, a local “translation” symmetry that is
completely divorced from diffeomorphisms, i.e. that only acts on fields at a given point. The reason
for this is that the field equations of higher-spin gravity are written in an “unfolded” formulation, in
which both the ordinary fields and their full tower of spacetime derivatives are packaged together into
a single “master field”. Thus, a translation can be performed by accessing the fields’ derivatives that
are already encoded at the given point, without the need to go to an adjacent point, i.e. without a
diffeomorphism.

With the gauge symmetry thus divorced from diffeomorphisms, there is no longer any need to
identify the dynamical spin-2 field as the spacetime metric. Instead, it can live, alongside the fields of
all other spins, on a fixed external geometry. We must note, though, that this external geometry must
then be pure (A)dS4 (or a topological modification thereof, such as dS 4/Z2). While this result arises
naturally in [28] through a mechanism peculiar to higher-spin gravity, it can be understood already
at the level of free massless fields: for spin 2 and higher, the very consistency of free massless field
equations on a fixed background severely constrains the allowed background geometries [29].

To sum up, on one hand, higher-spin gravity is similar to GR, and therefore interesting: it contains
a spin-2 massless field, and has a diff-invariant formulation. On the other hand, it is different from
GR, and therefore tractable, by virtue of having a formulation on a fixed background geometry. For
our present purpose, the implication is that we can continue working on a pure dS 4/Z2 geometry, with
its causal structure and symmetries, even at the interacting level.

6 Bulk and CFT from twistor space

Even if we are allowed to keep the dS 4/Z2 geometry at the interacting level, the interactions of
higher-spin gravity must still be contended with. In the present section, we outline an angle of attack
on this problem. The key intuition is that in higher-spin holography with unbroken global higher-
spin symmetry, there is a sense in which the free theory is enough. To see one way in which this
is true, consider the partition function, i.e. the effective bulk “on-shell action”, as a functional of
boundary data. This can be expressed equivalently as a non-linear functional of the linearized bulk
solution corresponding to this boundary data. Now, for ordinary local theories, the linearized bulk
solution is a very awkward parameterization of the boundary data, so this observation is only of
philosophical interest. In higher-spin gravity, on the other hand, thanks to the unfolded formulation,
the entire bulk solution is conveniently encoded within the master field at any single point. Thus,
expressing the partition function via the linearized solution becomes practical. Moreover, the answer
is almost completely fixed by higher-spin symmetry, up to an overall coefficient at every order in the
perturbative expansion [30, 31].

In a recent work [32], we were able to go further, and obtain the complete expression for the
partition function in terms of the linearized bulk solution. To accomplish this, we made use of the
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fact that even with the bulk interactions taken into account, the boundary CFT remains free. In other
words, all the effects of bulk interactions are contained within the correlators of a free boundary theory.
However, this can be put to practical use only if we express the bulk and boundary theories in some
common language. This is the main achievement of [32].

The common language that we used to unify bulk and boundary in the higher-spin/free-CFT model
is Penrose’s twistor theory [33, 34]. Twistors are spinors of the spacetime symmetry group – in our
case, O(1, 4). They correspond geometrically to totally-null planes (in the complexified 4d bulk) or
to null geodesics (on the complexified 3d boundary). These objects are ideally suited for describing
massless fields, and indeed play a central role in the formulation of higher-spin gravity. In particular,
the Penrose transform relates functions in twistor space to solutions of the free massless field equations
in the 4d bulk. In [32], we rewrite the Penrose transform within the geometric framework of [28], i.e.
in the context of higher-spin gravity on a fixed (A)dS4 geometry. We then present a “holographic dual”
of the Penrose transform, which relates the same twistor functions to the boundary CFT’s sources and
operators. Finally, we express the CFT partition function in the twistor language, which is directly
related via the Penrose transform to the linearized bulk solution.

Without going into any technical detail, we present here some of the key formulas. The CFT action
can be written as follows, with bilocal sources Π(�′, �) coupled to the bilocal single-trace operators
φI(�)φ̄I(�′), where �, �′ are boundary points:

S CFT[Π(�′, �)] = −
∫

d3� φ̄I�φ
I −
∫

d3�′d3� φ̄I(�′)Π(�′, �)φI(�) . (9)

The source Π(�′, �) can be packaged into a twistor function f (Y) via:

F(Y) = − 1
4π

∫
d3� d3�′ Π(�′, �)

√
−2� · �′ δ�(Y) � δ�′ (Y) , (10)

where δ�(Y) is a certain delta function depending on the boundary point �, and � is the star product of
higher-spin algebra. The partition function can now be written in terms of F(Y) as:

ZCFT[F(Y)] ∼ exp
(
−N

4
tr� ln�[1 + F(Y)]

)
= (det�[1 + F(Y)])−N/4 , (11)

where tr� is the higher-spin-invariant trace operation, and det� is the corresponding determinant.
On the bulk side, the twistor function F(Y) is related to a linearized bulk solution via the Penrose
transform:

F(Y) = C(x; Y) � iδx(Y) , (12)

where the master field C(x; Y) serves as a generating function for fields and their derivatives at the
bulk point x, while δx(Y) is a bulk version of δ�(Y).

7 Outlook and summary

In this note, we motivated higher-spin holography in “elliptic” de Sitter space dS 4/Z2 as a promis-
ing approach for developing the first-ever working model of quantum (higher-spin) gravity inside a
cosmological horizon. We described the successful solution [24] of this problem at the level of free
bulk fields, and presented some results to indicate that the full interacting theory may prove tractable
as well. The next step in this program should be to rewrite the free-field result of [24] in the twistor
language of [32], described in the previous section. Then, if we are lucky, the full interacting result
will readily present itself, similarly to the partition function (11) in [32].
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is Penrose’s twistor theory [33, 34]. Twistors are spinors of the spacetime symmetry group – in our
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operators. Finally, we express the CFT partition function in the twistor language, which is directly
related via the Penrose transform to the linearized bulk solution.

Without going into any technical detail, we present here some of the key formulas. The CFT action
can be written as follows, with bilocal sources Π(�′, �) coupled to the bilocal single-trace operators
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I −
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The source Π(�′, �) can be packaged into a twistor function f (Y) via:

F(Y) = − 1
4π

∫
d3� d3�′ Π(�′, �)

√
−2� · �′ δ�(Y) � δ�′ (Y) , (10)

where δ�(Y) is a certain delta function depending on the boundary point �, and � is the star product of
higher-spin algebra. The partition function can now be written in terms of F(Y) as:

ZCFT[F(Y)] ∼ exp
(
−N

4
tr� ln�[1 + F(Y)]

)
= (det�[1 + F(Y)])−N/4 , (11)

where tr� is the higher-spin-invariant trace operation, and det� is the corresponding determinant.
On the bulk side, the twistor function F(Y) is related to a linearized bulk solution via the Penrose
transform:

F(Y) = C(x; Y) � iδx(Y) , (12)

where the master field C(x; Y) serves as a generating function for fields and their derivatives at the
bulk point x, while δx(Y) is a bulk version of δ�(Y).

7 Outlook and summary

In this note, we motivated higher-spin holography in “elliptic” de Sitter space dS 4/Z2 as a promis-
ing approach for developing the first-ever working model of quantum (higher-spin) gravity inside a
cosmological horizon. We described the successful solution [24] of this problem at the level of free
bulk fields, and presented some results to indicate that the full interacting theory may prove tractable
as well. The next step in this program should be to rewrite the free-field result of [24] in the twistor
language of [32], described in the previous section. Then, if we are lucky, the full interacting result
will readily present itself, similarly to the partition function (11) in [32].

In the work described here, we are making heavy use of the very special and wildly unrealistic
properties of higher-spin gravity. As a result, even if we succeed at extracting quantum physics inside
the horizon, many of the original questions ofΛ > 0 quantum gravity may not even make sense within
our treatment. However, this shouldn’t be the case for every interesting question. In particular, we
hope to find out whether the Hilbert space inside the horizon is finite-dimensional, and whether its
dimension is captured by the Bekenstein-Hawking black hole entropy formula.

Finally, we must note that higher-spin gravity is of interest for reasons other than its applicability
to Λ > 0. The developments described in the previous two sections are of general relevance to the
study of this theory. A successful formulation of the quantum physics inside a causal patch of dS 4/Z2
should be of similarly broad relevance, as it will constitute a more direct quantization of higher-spin
gravity than what is currently available.
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