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Abstract: Background: Multiple sclerosis (MS) is an autoimmune disorder of the central
nervous system. MS is a T cell-mediated disease characterized by the proliferation, infiltration,
and attack of the myelin sheath by immune cells. Previous studies have shown that
cyclization provides molecules with strict conformation that could modulate the immune system.
Methods: In this study, we synthesized peptide analogues derived from the myelin basic protein
(MBP)82–98 encephalitogenic sequence (dirucotide), the linear altered peptide ligand MBP82–98 (Ala91),
and their cyclic counterparts. Results: The synthesized peptides were evaluated for their binding
to human leukocyte antigen (HLA)-DR2 and HLA-DR4 alleles, with cyclic MBP82–98 being a strong
binder with the HLA-DR2 allele and having lower affinity binding to the HLA-DR4 allele. In a
further step, conformational analyses were performed using NMR spectroscopy in solution to
describe the conformational space occupied by the functional amino acids of both linear and cyclic
peptide analogues. This structural data, in combination with crystallographic data, were used to study
the molecular basis of their interaction with HLA-DR2 and HLA-DR4 alleles. Conclusion: The cyclic
and APL analogues of dirucotide are promising leads that should be further evaluated for their ability
to alter T cell responses for therapeutic benefit against MS.

Keywords: multiple sclerosis; MS; cyclic peptide; MBP; dirucotide; HLA-DR2; HLA-DR4;
myelin basic protein; altered peptide ligand

1. Introduction

Multiple sclerosis (MS) is a chronic neurodegenerative disease that affects protein constituents
within the myelin sheath, such as myelin basic protein (MBP), myelin oligodendrocyte glycoprotein,
and proteolipid protein. One of the characteristics of MS is the presence of encephalitogenic CD4+ T
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helper (h) 1 cells mediating disease, which recognize peptide epitopes such as MBP83–99, MBP87–99,
and MBP1–22. These agonist peptide epitopes and their altered peptide ligands (APL; mutation by one
to two amino acids) have been extensively studied by our group and others for their ability to modulate
immune responses [1–10] and/or inhibit experimental autoimmune encephalomyelitis (EAE), which is
one of the best animal models to study MS. An association of MS with the human leukocyte antigen
(HLA)-class II is well established, linking MS to HLA-DR2 (DRB1*1501) and HLA-DR4 (DRB1*0401)
alleles [11]. HLA-DR2 and HLA-DR4 are involved in the presentation of myelin epitopes to their
surface on antigen-presenting cells to the T cell receptor (TCR).

Cyclic peptides are considered as mimetic candidates of their linear relatives and as modulators of
immune cells. Cyclic peptides pose a number of advantages compared to their linear counterparts [12]
in that they are more resistant to degradation by proteolytic enzymes [2,9,10,13,14]. In addition,
cyclic peptides are conformationally restricted, and may constitute a key step toward the design
and development of non-peptide mimetics. Previously, we reported that the APL of MBP87–99 with
one to two amino acid modifications at the principal TCR contact sites diverted immune response
from Th1 to Th2 and generated antibodies that did not cross-react with the native MBP protein [5–7].
In addition, cyclic APLs, including cyclo (91–99) (Ala96) MBP87–99 and cyclo (87–99) (Arg91, Ala96)
MBP87–99, have a significant impact on the proliferation and cytokine profile of MBP87–99-specific CD4+

T cells from MS patients. Such cyclic APL were also shown to bind to HLA-DR4, and were more stable
to lysosomal enzymes than their linear counterparts [2,9,10]. These findings are a preliminary step
toward the design and synthesis of linear and cyclic APLs as promising candidates that may affect
antigen presentation to the TCR and regulate immune response.

The 17-mer linear peptide MBP82–98 (known as dirucotide; DENPVVHFFK91NIVTPRT) was
shown to suppress autoreactive T cells following intravenous injections in preclinical and clinical
studies [15]. In a phase II human clinical trial in HLA-DR2 and HLA-DR4 patients with MS, dirucotide
was shown to be safe and prolonged the median time to disease progression [16]. Dirucotide is licensed
to BioMS Medical Corp and shared the development with Eli Lilly and Company. In a phase III
clinical trial of 612 subjects, there were no enhanced primary and secondary endpoints achieved.
Thus, in the population studied, dirucotide did not provide any benefit compared to placebo [17].
As a consequence, all further clinical trials were discontinued. However, it was later shown that at
six weeks and six months after treatment, there was an increase in the number of CD4+CD25+Foxp3+

regulatory T cells; hence, there is the possibility that dirucotide is capable of reversing peripheral
anergy and inducing T cell regulation [18]. In an attempt to improve the actions of dirucotide and
re-establish its potential to induce regulatory T cells, we mutated position 91 to Ala (TCR contact
residue; DENPVVHFFA91NIVTPRT) to result in the APL, linear MBP82–98 (Ala91). In addition,
we cyclized dirucotide and its APL counterpart in order to improve its stability. We describe their
synthesis, binding affinity to HLA-DR2 and HLA-DR4 alleles, and conformational analysis by nuclear
magnetic resonance (NMR) and molecular dynamics simulations in complex with HLA-DR2 and
HLA-DR4. We confirm that cyclic peptides bind to HLA-DR2 and HLA-DR4, which are peptides
that have a higher stability to degradation compared to their linear counterpart [9], opening new
avenues for the discovery of enhanced new generation immunomodulators in the treatment of MS.
These studies pave the way for linear and cyclic dirucotide mutants to be conjugated to mannan,
in order to further regulate immune responses [2–4,7,19].

2. Materials and Methods

2.1. Chemistry

2.1.1. Solid-Phase Peptide Synthesis of Linear and Cyclic-MBP82–98 Analogues

All peptide analogues of MBP83–99 and MBP82–98 (DENPVVHFFKNIVTPRT), as shown in
Table 1, were synthesized in solid phase using 2-chlorotrityl chloride resin (CTLR-Cl, Barlos resin).
The Fmoc/tBu conventional methodology was chosen as the best way for the synthesis of the peptide
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analogues, as previously described by our group [20]. All of the amino acids were purchased from
CBL (Patras, Greece). The couplings were accomplished within three hours in order to reduce
racemization and side effects during this process, which was controlled by chloranil test and thin-layer
chromatography (TLC). For the Fmoc group, peptide removal was treated in every cycle with 25%
piperidine in dimethylformamide (DMF) solution. The cleavage of the peptide from the resin using
mild conditions of dichloromethane/trifluoroethyl alcohol (DCM/TFE), in a 7/3 solution, allowed the
high yield of free from the resin protected peptide, and subsequently its head to tail cyclization.

Table 1. Peptide analogues and their one-letter amino acid sequence.

Peptides Peptide Analogue of MBP82–98 Sequence

P1 MBP83–99 ENPVVHFFK91NIVTPRTP
P2 MBP82–98 (Ala91) DENPVVHFFA91NIVTPRT
P3 cyclic MBP82–98 cycloDENPVVHFFK91NIVTPRT
P4 cyclic MBP82–98 (Ala91) cycloDENPVVHFFA91NIVTPRT

MBP: myelin basic protein.

2.1.2. Cyclization Procedure

Cyclization of the linear protected MBP82–98 peptide was carried out in liquid phase.
O-benzotriazol-1-yl-N,N,N’,N’-tetramethyluronium tetrafluoroborate, 1-hydroxy-7-azabenzotriazole,
and 2,4,6 collidine were used as coupling reagents, allowing fast reactions and high yield of the cyclic
protected analogue (Scheme 1) [20]. The mixture was stirred overnight, and the cyclization procedure
was accomplished within 24 h and monitored by thin-layer chromatography using nbutanol/acetic
acid/water (4/1/1) as the solvent system, and analytical HPLC using a 3.5-µm C4 Nucleosil RP column.
The protected cyclic product was then treated with 95% trifluoroacetic acid in DCM solution containing
5% dithiothreitol/water/anisole/trimethyl saline as scavengers, leading to the final, free from side
chain protected group’s cyclic peptide. Purification of the crude peptide analogues was performed
under preparative HPLC using a seven-µm Nucleosil RP-C18 RP semi-preparative column (Figure 1).
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Figure 1. Analytical HPLC (left) and electron spray ionization mass spectrometry (ESI-MS) (right)
of purified lyophilized (A) linear MBP82–98 (Ala91) peptide, (B) cyclic MBP82–98 (Ala91) peptide and
(C) cyclic MBP82–98 peptide (solvent A: 0.1% trifluoroacetic acid in H2O, solvent B: 0.1% trifluoroacetic
acid in ACN). Column Nucleosil RP-C18 RP, seven µm.

2.2. Competition Binding of Linear and Cyclic MBP82–98 to HLA-DR2 and HLA-DR4

The binding of peptides to HLA-DR2 and HLA-DR4 was performed as previously
demonstrated [21–23]. Briefly, epstein-barr virus transformed homozygous human B cell lines
HTC-Lan (DRB1*1501, DRB5*0101) or BSM (DRB1*0401) were used for isolating MHC class II molecules.
HTC-Lan and BSM cell pellets were lyzed by Nonidet P-40, and HLA-DR2/DR4 were isolated from
homogenates by affinity chromatography using the monoclonal antibody L243. The purity of the
preparation was checked by 12% SDS-PAGE (shown), high pressure size exclusion chromatography
and western blotting (not shown). Competition binding assays for MBP82–98 peptide analogues were
carried out using fluorescent 7-amino-4-methylcoumarin-3-acetic acid (AMCA)-labeled allele-specific
MBP83–99 for HLA-DR2b chain or HA306–318-peptide for HLA-DR4. Solubilized HLA-DR2 (0.66 mM)
and HLA-DR4 (0.11 mM) were incubated for 48 h at 37 ◦C with MBP83–99-(AMCA)-labeled peptide
or N-terminally 7-amino-4-methylcoumarin-3-acetic acid (AMCA)-labeled influenza matrix peptide
(AMCA-HA306–318-peptide), dissolved in 150 mM of sodium phosphate, pH 6.0, containing 15%
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acetonitrile, and 0.1% Zwittergent-12 (Calbiochem, San Diego, CA, USA). Competition assays were
performed in a one-µM solution of AMCA peptide. All of the samples were analyzed on a Pharmacia
Superdex 75 HR 5/20 high performance gel filtration column. The column was operated at a flow rate
of 0.3–0.4 mL/min using the HPSEC buffer, pH 6.0. The eluent passed through a Shimadzu fluorescence
spectrometer (350/450 nm) and a Merck ultraviolet detector (214 nm) set in series. Fluorescence and UV
signals eluting with the HLA-DR dimers were recorded by a model D 2500 integrator (Merck-Hitachi).
To determine the binding differences between 50-fold, 20-fold, and 10-fold excess of peptide binding
to HLA-DR2 or HLA-DR4, GraphPad Prism (Version 7, GraphPad Software Inc, San Diego, CA, USA)
was used to perform two-way ANOVA followed by Tukey’s multiple comparisons test to determine
the significance between each dose, with p < 0.05 considered significant.

2.3. Structure Elucidation and Conformational Studies

2.3.1. NMR Spectroscopy

For both cyclic and linear MBP82–98 (Ala91) analogues, data were acquired at 298 K on a Varian
600-MHz spectrometer equipped with a triple resonance probe. One-dimensional (1D) 1H-NMR,
two-dimensional (2D) 1H-1H TOCSY, and 2D-1H-1H NOESY spectra were recorded using spectral
width from −1 to 15 ppm without presaturation of the H2O signal. The pulse widths for all of the
experiments were 6.25, and the number of increments was 256. The number of scans was set to 48 for
the 2D 1H-1H TOCSY, and 56 for the 2D 1H-1H NOESY spectra. The mixing time was set tm = 250,
and the number of scans was equal to 56. For data processing and spectral analysis, Mnova software
(version 6.2.0, Mestrelab Research S.L., Santiago de Compostela, Spain) was used.

A 2D TOCSY spectrum (total correlation spectroscopy) creates correlations between all of the
protons within a given spin system, as long as there are couplings between every intervening proton.
This is useful for identifying protons on amino acids. Magnetization may be transferred successively
over up to five or six bonds as long as successive protons are coupled. Thus, all of the protons on a
given amino acid show a correlation with all of the other protons on the same amino acid, but not with
protons on different amino acids. A 2D NOESY spectrum is one of the most useful for conformational
studies, since it allows correlating nuclei through space (at a distance smaller than 5Å). By measuring
cross-peak intensity, distance information can be extracted.

2.3.2. Conformational Analysis

A MacroModel module of Schrodinger 2013 package was used for the conformational studies.
The linear and the cyclic analogues MBP82–98 (Ala91) were designed and minimized with an OPLS_2005
force field, the dielectric constant was set to 45, simulating the DMSO environment of the NMR
solvent. Minimization was performed with the PRCG (Powell–Reeves conjugate gradient) algorithm,
using 100,000 iterations and a convergence threshold of 0.01 kcal/mol Å. Energetically minimized
conformations were further subjected to molecular dynamic simulations. During the molecular
dynamics (MD) simulations, the method of stochastic dynamics was implemented; the simulation
temperature was 600 K, the time step was equal to 1.5 fs, the equilibration time was equal to 2000 ps,
and the simulation time was equal to 20,000 ps. Five hundred (500) conformations resulted after MD
simulations, which were classified into 10 families (clusters), according to the rotation of dihedral
angles ϕ (rotation: N-Ca), ψ (rotation: Ca-CO), andω (rotation: CO-N). At a final stage, conformers
that satisfy the distance constraints were minimized using the parameters mentioned above.

2.3.3. Binding Mode of Peptide-HLA-DR Complexes

All of the crystal structures were visualized and studied using PyMOL (the PyMOL Molecular
Graphics System, Version 1.8 Schrödinger, LLC., New York, NY, USA). Construction of the linear
peptides was made by the direct replacement of amino acids in crystal structures of HLA-DR2b
(Pdb code 1BX2) and HLA-DR4 (pdb code 4MCY) in PyMOL. Cyclization for MBP82–98 was performed
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manually by joining the C-terminal and N-terminal residues in Discovery Studio version 3.5
(Discovery Studio, version 3.5. Accelrys Inc; San Diego, CA, USA: 2012). Minimizations of all the HLA
and all of the peptide analogues were done using the conjugate gradient algorithm for 500 steps in
Discovery Studio version 3.5.

3. Results and Discussion

APL closely resemble their native (agonist) peptide, with one to two altered amino acid residues;
also, usually for autoimmunity, they closely resemble those that interact with the TCR [24] as opposed
to changes to residues within the peptide-binding groove, which is commonly altered for cancer
peptides [25,26]. APL from dominant myelin epitopes in MS have shown promise in preclinical animal
studies based on the effort to alter the cytokine profile (from Th1 to Th2) and/or induce regulatory
T cells. Early studies showed that mutations to the peptide MBP72–85, which is an immunodominant
epitope in Lewis rats, inhibited the stimulation of T cells and the clinical progression of EAE [27].
Likewise, the MBP87–99 immunodominant autoreactive T cell epitope, with one amino acid mutation
at K91 to A91, also suppressed EAE in Lewis rats and reduced the secretion of pro-inflammatory
cytokines, TNFα and IFNγ [28]. In addition, the longer agonist MBP83–99 peptide with one amino
acid mutation ((Y91) MBP83–99) or two amino acid mutations ((R91, A96) MBP83–99) induced interleukin
(IL)-4 secretion by T cells in mice, although IFNγwas still present [5]. When conjugated to reduced
mannan, high IL-4 cytokines resulted, and no IFNγ (Th1 to Th2 switch) [6].

The cyclization of peptides is of great interest, since the partial stability of linear peptides
restricts them as potential therapeutics. We have extensively studied cyclic peptides for their
enhanced stability and their potential to be used as immunotherapeutics in MS due to their
altered three-dimensional conformation. In fact, we recently showed that the cyclization of the
immunodominant myelin oligodendrocyte glycoprotein (MOG35–55) T cell epitope induces mild
transient acute EAE without chronic axonopathy [29]. Similarly, cyclization of the agonist proteolipid
protein (PLP139–151) epitope resulted in low disease burden, and minimal inflammatory, demyelinating,
and axonopathic pathology compared to the linear PLP139–151 peptide [30]. This data supported
for the first time the concept that the cyclization of an established encephalitogenic agonist peptide
ameliorates the underlying pathological processes of EAE, and provided promising new peptide leads
for the immunotherapy of MS.

Dirucotide is a linear MBP82–98 peptide that, when injected in high concentrations in patients
with MS, suppressed T cell responses against MBP82–98 epitope and delayed disease progression [16].
However, in larger phase III trials, no added benefit was noted compared to the placebo group in
patients with relapsing remitting MS and in secondary progressive MS [17,18]. As a result, further
planned/scheduled clinical trials were terminated. Of interest, dirucotide was shown to induce
CD4+CD25+Foxp3+ regulatory T cells following its injection in patients with MS [18]. It is likely
that the low stability of linear MBP82–98 peptide or that an agonist was used in these studies may
have resulted in no additional benefit to patients in phase III trials. In an attempt to improve the
outcomes of dirucotide, we designed and synthesized modified dirucotide peptides by either the APL
approach (one amino acid mutation at position 81), or cyclization of the agonist dirucotide peptide.
Here, we show their synthesis, their binding to HLA-DR2 and HLA-DR4, and their structural profile
by NMR and molecular dynamics simulations in complex with HLA-DR2 and HLA-DR4.

3.1. Synthesis and Purification of Peptide Analogues

The purity of the final peptides was over 98%, as determined by HPLC analysis and electron
spray ionization mass spectrometry (ESI-MS) (Figure 1).

3.2. Structure Elucidation and Conformational Studies of Cyclic and Linear Peptides

The 1H NMR spectrum of cyclic MBP82–98 (A91) (Scheme 2A) is presented in Figure 2, and the
NMR assignment is reported in Table 2. The crucial Nuclear Overhauser Effects (NOE) for the
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conformational arrangement of the peptide are presented in Table 3. Low-energy conformers of linear
MBP82–98 (Ala91) that satisfy NOE distant constraints are shown in Figure 3.Brain Sci. 2018, 8, x FOR PEER REVIEW  8 of 16 
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Scheme 2. Chemical structure of (A) cyclic MBP82–98 (A91) and (B) linear MBP82–98 (A91).

Table 2. Nuclear Overhauser Effects (NOE) distance constrains and corresponding distances for each
class of conformers for cyclic MBP82–98 (A91).

Crucial NOEs Distance (Å) +10% (Å) −10% (Å) Conformer 237.40 kJ mol−1

D82 β′H E83 β/β′H 2.22 2.44 1.99 2.62
D82 β′H T98 γH CH3 2.92 3.21 2.62 3.21

T95 γH CH3 P96 δH 2.91 3.20 2.61 3.28
N84 NH V87 NH 3.07 3.37 2.76 3.38

H88 2,4Ar. F89 NH 3.08 3.39 2.78 2.84

The cyclic peptide was energetically minimized and subjected to molecular dynamics simulations.
Produced conformers were classified into 10 different families (clusters), according to the rotation of
dihedral angles ϕ (rotation: N-Ca), ψ (rotation: Ca-CO), andω (rotation: CO-N). Low-energy conformers
from each family were selected as representative ones. Representative conformers from all families are
mainly characterized by a β-turn, following an (i, I + 3) interaction between the CO of N84 and the NH
of V87. From the 10 produced families, conformer 1 (Figures 2 and 3) is in agreement with all of the NOE
constrains, and more specifically with the crucial interaction between NHs of N84 and V87; furthermore,
it has the lowest energy (237.40 kJ mol−1) compared to the other families. Moreover, an H-bond was
observed between the CO group of F89 and the final NH group of N92 (Figure 2).
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Figure 3. Low energy conformers of the linear MBP82–98 (A91), which satisfies the NOE distance
constraints. Both demonstrate the interaction between A91 and V94, while the interaction between the
terminal D82 and T98 is apparent for conformer 2.

In regard to linear MBP82–98 (Ala91) (Scheme 2B), Figure 3 presents the low-energy conformers
1 and 2, which satisfy the NOE distance constraints, and Table 3 presents the corresponding
peak assignment. The low-energy conformers of linear MBP82–98 (Ala91) are shown in Figure 3.
NOESY spectrum for the linear analogue presented signals only between sequential NHs;
thus, no crucial NOE was observed for the conformational arrangement of the peptide (Table 3).
In addition, the linear peptide was energetically minimized and subjected to molecular dynamics
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simulations. Ten different families were produced, from which only two (representative conformer 1
and 2) satisfied the NOE distance constraints; Table 3 presents the corresponding peak assignment.
More specifically, both conformers are characterized by a β-turn (CO A91-NH Val94) (Figure 3). For the
case of conformer 1, an H-bond was observed between the N92 NH and the side chain CO of N92.
Interestingly, an H-bond between the side chain of D82 and the OH of T98 provides a more closed
conformation for conformer 2, which had the lowest energy compared to all of the other families.

Table 3. NOE distance constraints and corresponding distances for each class of conformers for the
linear MBP82–98 (A91).

Crucial NOEs Distance (Å) +10% (Å) −10% (Å)
Conformer 1

248.52 kJ mol−1
Conformer 2

192.93 kJ mol−1

V86 NH V87 NH 2.41 2.65 2.17 2.35 2.60
I93 NH V94 NH 2.38 2.62 2.14 2.71 2.40
R97 NH T98 NH 2.81 3.09 2.53 2.45 2.52
N92 NH I93 NH 3.31 3.64 2.98 2.97 2.94
F90 NH A91 NH 3.24 3.56 2.91 3.24 3.49
E83 NH N84 NH 3.15 3.47 2.84 2.65 2.83

3.3. Cyclic Peptides Bind to HLA-DR2 and HLA-DR4

HLA-DR2 and HLA-DR4 were purified in the lab, and both HLA- were shown to be pure by
SDS-PAGE gels (Figure 4A). Competition binding of MBP82–98 peptide analogues to the HLA-DR2b
chain and HLA-DR4 was determined (Figure 4). The cyclic MBP82–98 peptide binds to HLA-DR2 with
reduced affinity compared to its linear counterpart at 10-fold, 20-fold and 50-fold excess, but still with
comparable affinity (Figure 4B). The linear MBP82–98 (Ala91) peptide bound with much lower affinity,
as seen in the presence of 10-fold and 20-fold excess, but was comparable to linear agonist MBP82–98

peptide at 50-fold excess (Figure 4B). However, the binding affinity of cyclic MBP82–98 peptide to
HLA-DR4 was considerably lower compared to its linear counterpart and linear APL MBP82–98 (Ala91)
(Figure 4C). By molecular dynamics simulations, pocket 1 (P1) in HLA-DR4 is smaller compared to
pocket P1 in HLA-DR2; meanwhile, P4 in HLA-DR2 is wider, and this could be a significant factor
resulting in the lower affinity of cyclic MBP82–98 peptide [31,32]. Nonetheless, cyclic MBP82–98 peptide
binds to HLA-DR2 and HLA-DR4 alleles with considerable affinity; we had also shown previously that
other cyclic MBP epitopes bind mouse and human MHC class II alleles [2,33]. Whether this binding
affinity and its subsequent interaction with the TCR is adequate to induce anti-inflammatory effects
needs to be determined.
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Figure 4. (A) SDS-PAGE analysis (12%) of detergent solubilized HLA-DR2 (DRB5*0101/DRB1*1501; left)
or HLA-DR4 (DRB1*0401; right) where 5–8×109 of the Epstein Barr virus (EBV)-transformed B cell line
HTC-LAN and BSM were lysed, respectively, and their affinity was purified using the immobilized
monoclonal antibody L243. After concentration on a 30-kDa membrane, 670–700 g of the human leukocyte
antigen (HLA)-II were obtained and stored in phosphate buffered saline at a concentration of 0.5 mg/mL.
The purity of HLA-DR2 and HLA-DR4 were about 85%. (B) Competition binding of the MBP82–98

peptide analogues in 10-fold, 20-fold, and 50-fold excess of AMCA-labeled MBP83–99, which is specific to
the HLA-DR2b chain, was used as the peptide competitor, and (C) AMCA-labeled HA306–318, which is
specific to the HLA-DR4, was used as the peptide competitor. All of the experiments were in triplicates,
where ** p < 0.01 and *** p < 0.001.
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3.4. Structural Elements of Different Peptides Binding to HLA Alleles

In order to evaluate the results of the binding of peptides, structural models of their binding
to their corresponding HLA alleles were made. Firstly, complexes of MBP82–98, linear MBP82–98

(A91), and cyclic MBP82–98 bound to HLA-DR2b were formed using the crystal structure of MBP83–96

in complex with HLA-DRB1*15:01 (pdb code 1bx2) [32]. The linear MBP82–98 (A91) peptide was
constructed by adding C-terminal and N-terminal residues to the MBP83–96 peptide, and by replacing
K91 to A91. Cyclic MBP82–98 was constructed by joining the terminal caps. All of the complexes were
then minimized to obtain the final models (Figure 5). Figure 5A shows the binding of MBP82–98 to the
HLA-DR2b domain, where MBP residues 87–95 occupy pockets P1–P9. In Figure 5B, the A91 mutant is
shown. Normally, the K91 of the MBP peptides occupies pocket P1, which is a T cell contact residue.
However, since the binding assay was made in the absence of the T cell receptor, K91 could form a
hydrogen bond with N70 from chain b. Therefore, the Ala91 mutant should have a lower affinity, as
seen in Figure 4. The cyclic MBP82–98 peptide has a higher affinity than MBP82–98 (A91). Even though
most of the HLA pockets are occupied after the cyclization (Figure 5C), no clear assumption can be
made on its decreased binding affinity compared to the linear agonist peptide. However, the presence
of K91 and a possible contact with N70 can explain the increased affinity compared to the A91 mutant.
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Figure 5. Binding of MBP83–99, linear MBP82–98 (A91), and cyclic MBP82–98 to HLA-DR2b (panels (A),
(B), and (C), respectively). Peptides are shown in orange cartoon representation and sticks (side chains),
while chains α and β are depicted in cyan and pink cartoon, respectively.
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For HLA-DR4, complexes of HA306–318, MBP82–98 (A91), and cyclic MBP82–98 bound to HLA-DR4
were made using the crystal structure of influenza hemagglutinin peptide (HA306–318) bound to
HLA-DRB1*0401 (pdb code 1j8h) (Figure 6A) [34]. The docking of peptides was made on the basis
of the HLA-DR2a reported crystal structure [35]. In this structure, it was noted that the MBP amino
acids register shifted by three residues, compared to the HLA-DR2b crystal structures. This may be
due to the presence of G86β and K71β in DR2β, compared to V86β and A71β in DR2a, resulting in a
smaller P1 and a wider P4 pocket. In the case of HLA-DRB1*0401, the residues in the corresponding
positions are G86β and K71β; therefore, the binding was made according to the HLA-DR2a crystal,
where pockets P1–P9 are occupied by residues F90–T98. Compared to the HLA-DR2 binding affinity
experiments, in the case of HLA-DR4, MBP82–98 (A91) has a considerable higher affinity than cyclic
MBP82–98 (Figure 4), which could be attributed to two different factors, the cyclic character and the
three-residue registry shift.
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Figure 6. (A) Crystal structure of HA306–318 bound to HLA-DRB1*0401 (pdb code 1j8h). The peptide is
shown in yellow cartoon representation and sticks (side chains), while chains α and β are depicted in
cyan and pink cartoon, respectively. (B) Model for the binding of linear MBP82–98 (A91) and (C) cyclic
MBP82–98 to HLA-DR4. MBP peptides are shown in orange cartoon representation.
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4. Conclusions

The current study presents the synthesis of peptide analogues derived from the dirucotide peptide
(MPB82–98) encephalitogenic sequence, the APL linear MBP82–98 (A91), and their cyclic counterparts.
The peptides were synthesized in solid phase using 2-chlorotrityl-chloride resin as a solid support.
The cyclization was carried out in liquid phase under stirring overnight. In our studies toward the
rational design of cyclic peptides, we used structure-activity relationships (SAR) information to identify
critical amino acids and applied NMR Nuclear Overhauser Effects Spectroscopy (NOESY) strategies for
studying the conformation of the peptides. In particular, NMR and molecular dynamics study of linear
MBP82–98 (A91) revealed a conformer 2 (Figure 3) with the head-to-tail amino acids D82 and T98 in close
proximity, which was suggestive of a cyclic conformation. This NOE/MD simulations information
is a lead factor for the design of head-to-tail cyclic mutants, and justified the synthesis of a cyclic
dirucotide peptide. The synthesized peptides were further evaluated for their binding to HLA-DR2
and HLA-DR4 alleles with cyclic MBP82–98 being a strong binder with the HLA-DR2 and having lower
affinity to the HLA-DR4 allele. Lastly, binding studies were performed in order to describe the binding
sites when bound to HLA-DR2 and HLA-DR4 alleles. The cyclic dirucotide analogue, in addition to
its APL, are promising leads to be further evaluated for their ability to modulate T cell responses in
humans with MS, in particular for their ability to modulate autoimmune pro-inflammatory T cells to
anti-inflammatory and regulatory T cells.
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