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original research

Genomic-enabled Prediction Accuracies  
Increased by Modeling Genotype ×  
Environment Interaction in Durum Wheat

Sivakumar Sukumaran, Diego Jarquin,* Jose Crossa,* Matthew Reynolds

Abstract
Genomic prediction studies incorporating genotype × environment 
(G×E) interaction effects are limited in durum wheat. We tested 
the genomic-enabled prediction accuracy (PA) of Genomic 
Best Linear Unbiased Predictor (GBLUP) models—six non-G × E 
and three G × E models—on three basic cross-validation (CV) 
schemes— in predicting incomplete field trials (CV2), new lines 
(CV1), and lines in untested environments (CV0)— in a durum 
wheat panel grown under yield potential, drought stress, and heat 
stress conditions. For CV0, three scenarios were considered: (i) 
leave-one environment out (CV0-Env); (ii) leave one site out (CV0-
Site); and (iii) leave 1 yr out (CV0-Year). The reaction norm models 
with G × E effects showed higher PA than the non-G × E models. 
Among the CV schemes, CV2 and CV0-Env had higher PA (0.58 
each) than the CV1 scheme (0.35). When the average of all 
the models and CV schemes were considered, among the eight 
traits— grain yield, thousand grain weight, grain number, days to 
anthesis, days to maturity, plant height, and normalized difference 
vegetation index at vegetative (NDVIvg) and grain filling 
(NDVIllg)—, plant height had the highest PA (0.68) and moderate 
values were observed for grain yield (0.34). The results indicated 
that genomic selection models incorporating G × E interaction 
show great promise for forward prediction and application in 
durum wheat breeding to increase genetic gains.

In past years, the breeding technology referred to as 
‘genomic selection’ (GS) (Meuwissen et al., 2001) has 

been implemented in plant breeding where several species 
of economic importance including wheat have been shown 
increased genomic-enabled prediction accuracy (PA) for 
several traits (Crossa et al., 2017). Genomic selection uses 
dense molecular markers to predict the breeding value of 
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accuracy; PH, plant height; TGW, thousand-grain weight; TRN, 
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Core Ideas

•	 Genomic-enabled prediction accuracy of G×E models 
was superior to the non-G×E models.

•	 Forward prediction and sparse testing in durum 
wheat shows great promise.

•	 Genomic-enabled prediction accuracy of yield and 
components traits were highly associated with heritability.
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individuals that have been genotyped but not phenotyped 
(testing population, TST) by means of a population that 
has both genotypic and phenotypic data (training popula-
tion, TRN), and by fitting a statistical model which is used 
to predict breeding values of the non-phenotyped selection 
candidates. Performances for various complex traits of the 
TST population are predicted using allelic identity with 
loci that were found to be associated with the phenotype 
in the TRN. It is necessary to intensively phenotype and 
genotype diverse lines from a breeding program to pro-
vide potential TRN and TST sets to robustly and precisely 
calibrate genomic prediction models (Crossa et al., 2017).

Wheat breeding researchers have significantly 
improved PA over pedigree breeding for several economi-
cally important traits such as grain yield, maturity, and 
grain quality (de los Campos et al., 2009; Crossa et al., 
2010; Pérez-Rodríguez et al., 2012). These studies have used 
random cross-validation of data sets comprising individu-
als being phenotyped and genotyped to mimic what breed-
ers will face when performing GS-assisted breeding. These 
empirical results obtained by random cross-validation sug-
gest that GS can increase genetic gains by shortening the 
breeding cycle and/or enhancing testing efficiency in field 
evaluations. In general, results of using random cross-vali-
dation on genomic wheat breeding data based on the stan-
dard Genomic Best Linear Unbiased Predictor (GBLUP) 
indicate that GS can significantly increase prediction accu-
racy related to pedigree and marker-assisted selection for 
low heritability traits. Nevertheless, these initial empirical 
results were obtained using single environments and thus 
do not exploit information across environments.

Standard GBLUP models were extended to multi-
environment settings. Burgueño et al. (2012) used a 
multi-environment version of the GBLUP where G × E for 
grain yield in bread wheat was modeled using genetic cor-
relations; the authors found that the multi-environment 
GBLUP had a higher PA than the single-environment 
GBLUP. It should be pointed out that Burgueño et al. 
(2012) did not attempt to incorporate environmental vari-
ables as surrogates for environments. Jarquín et al. (2014) 
proposed an extension of the GBLUP G × E random 
effects models where the main effects of genomic (mark-
ers) and environmental covariables, as well as their first 
order interactions (marker ×environmental covariates), 
are introduced using covariance structures that are func-
tions of marker genotypes and environmental covari-
ables. The studies by Burgueño et al. (2012) and Jarquín 
et al. (2014) employed grain yield of bread wheat data 
and applied random cross-validation to assess two pre-
diction problems: (1) the performance of lines that have 
been evaluated in some environments, but not in oth-
ers (cross-validation 2, CV2) and (2) the performance of 
lines that have not been evaluated in any of the observed 
environments (cross-validation 1, CV1). However, other 
prediction problems that do not involve random cross-
validation are considered in what we call CV0: (1) predict-
ing an environment (i.e., site-year combination) that was 
not included in the usual set of testing environments in 

the evaluation system (leave-one-environment-out); and 
(2) predicting a year using information from previous 
years (forward prediction). These prediction problems 
were recently studied by Jarquín et al. (2017) in bread 
wheat lines evaluated in the Kansas State University Hard 
Red Winter Wheat Breeding Program for different sites 
and years. Results of Jarquín et al. (2017) showed that the 
GBLUP G × E models had relatively high prediction accu-
racy values (0.4) when predicting the yield performance 
in untested environments and also high prediction ability 
(0.54) when predicting yield in incomplete field trials for 
sites with a moderate number of lines (sparse testing).

The GBLUP G × E model (Jarquín et al., 2014) can 
also be applied with pedigree data where the numerical 
relationship matrix (A) is derived from pedigree relation-
ship information (Pérez-Rodríguez et al., 2015). Recently, 
in bread wheat, the GBLUP G × E based on A information 
was applied to large-scale screening of international nurs-
eries focusing on the Wheat Yield Consortium Yield Trial 
and the Stress Adapted Trait Yield Nursery of CIMMYT, 
which were both grown in major spring wheat production 
areas worldwide (Sukumaran et al., 2017b). The authors 
showed that higher predictive ability was achieved by 
modeling G × E using the pedigree information given in 
the numerical relationship matrix A. Furthermore, the 
GBLUP G × E model can be used to include both genomic 
and pedigree information and thereby increase genomic-
enabled and pedigree-enabled prediction accuracy. In 
bread wheat breeding, Sukumaran et al. (2017b) showed 
that the genomic prediction models with interaction terms 
due to genomic (G) × environment and pedigree (A) × E 
were the best models for grain yield prediction.

A recent study by Pérez-Rodríguez et al. (2017) showed 
a method for combining genomic and pedigree information 
in a single-step model and assessing the PA of a large num-
ber of bread wheat lines (58,798), spanning years and evalu-
ated in several environments, for predicting grain yield 
performance in several South Asian sites (in India, Paki-
stan, and Bangladesh), using the GBLUP G × E model of 
Jarquín et al. (2014). The results indicated that PA achieved 
by models using only pedigree information, only genomic 
information, or both pedigree and genomic information to 
predict environments in India, Pakistan, and Bangladesh 
is higher (0.25–0.38) than prediction accuracy using only 
phenotypic correlations (0.20). The results of this study 
indicated that the single-step approach combining pedigree 
and marker information is useful for reducing genotyping 
costs while maintaining the prediction accuracy of unob-
served individuals at relatively intermediate levels.

Most of the previously mentioned genomic-enabled 
prediction results refer to the complex trait—grain yield—
measured in bread wheat. However, genomic-enabled 
results applied to durum wheat have not been very abun-
dant. A recent study on 1184 lines from the North Dakota 
State University durum wheat program was done with the 
main objectives of identifying QTL to be used in marker-
assisted selection and also for studying genomic-enabled 
predictions on quality traits (e.g., test weight, semolina 
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color, and gluten, etc.) (Fiedler et al., 2017). The authors 
found that PA for quality traits ranged from 0.20 to 0.66. 
Although the durum wheat lines were evaluated in sev-
eral site-year combinations, no genomic-enabled predic-
tion incorporating genomic × environment interaction 
was assessed. A genomic-enabled prediction model using 
durum wheat lines was proposed by Crossa et al. (2016); 
the model is based on Bayes B model and can be used for 
genomic prediction under penalized regression or as selec-
tion variables (marker selection).

Based on the above considerations and the fact that 
PA studies in durum wheat are scarce, we conducted a 
genomic-enabled prediction study using the GBLUP G 
× E model of Jarquín et al. (2014), on durum wheat lines 
evaluated in yield potential, drought, and heat stress 
environments over 2 yr (cycles 2014–15 and 2015–16), 
with the main objective of examining the PA of models 
for complex traits (e.g., grain yield), as well as less com-
plex traits (e.g., days to heading and days to maturity). 
Another objective of this research was to study several 
prediction problems: (1) random cross-validations CV1 
and CV2, and (2) cross-validation CV0 for leaving-one-
environment-out, leaving-one-site-out, and the predic-
tion of future years (forward prediction).

Materials and methods
Germplasm
We used a durum panel (Triticum turgidum subsp. 
durum) that consisted of 208 entries, which was a sub-
set of the 15,000-durum accessions characterized from 
CIMMYT’s gene bank. These accessions were screened 
for visual biomass, grain yield, flowering time, and plant 
height and a subset of 208 lines were developed which 
were closer to the durum checks in agronomic perfor-
mance. The panel also consisted of lines from CIMMYT’s 
International Wheat Improvement Network (IWIN) 
nurseries (http://www.cimmyt.org/international-wheat-
improvement-network-iwin/): 2IDYN, 3IDYN, 15IDYN, 
33EDUYT, 34IDSN, and 24EDYT-SA. These lines origi-
nated from different countries—Chile, Ethiopia, Ecuador, 
Lebanon, Iran, Mexico, and Syria— as per International 
Wheat Information System records. The present panel 
was also used for a genome-wide association study using 
DArTseq markers and QTL hotspots were identified for 
agronomic traits under yield potential, drought stress, 
and heat stress conditions (Sukumaran et al., 2018).

Phenotypic Experimental Data
Phenotyping was conducted at the Campo Experimental 
Norman E Borlaug, CIMMYT’s main research station 
at Cd. Obregon, Sonora, Mexico, under yield potential 
(well-watered and high radiation, YP), drought stress 
(DT), and heat stress (HT) environments. These condi-
tions were achieved by changing the planting date and 
irrigation schedule (Table 1). The panel was grown in 2m 
plots with 0.75cm between the rows, in a raised bed sys-
tem. The diseases and pests prevalent in the region were 

controlled by relevant fungicide and pesticide applications 
as needed. The following traits were measured; grain yield 
(YLD), thousand-grain weight (TGW), grain number m-2 
(GNO), days to anthesis (DTA under YP but days to head-
ing - DTH- under DT and HT), plant height (PH), days 
to maturity (DTM), and normalized difference vegetative 
index (NDVI) at vegetative (NDVIvg) and grain filling 
(NDVIllg) stages for 2 yr (2014–15 and 2015–16) following 
established protocols (Pask et al., 2012). More details about 
the phenotypic measurements are described in an earlier 
publication (Sukumaran et al., 2018).

Genotypic Experimental Data
Sukumaran et al. (2018) detailed about the genotyping of 
the panel. In short, we collected fresh leaves from each 
line and a modified cetyltrimethylammonium bromide 
method was used for DNA extraction (Saghai-Maroof 
et al., 1984). Electrophoresis in 1% agarose gel was used 
to determine the DNA quality and concentration. High-
throughput genotyping was conducted using DArTse-
qTM technology (Sansaloni et al., 2011) at the facility in 
CIMMYT, Mexico; Genetic Analysis Service for Agricul-
ture. The genomic DNA was digested with a combination 
of two restriction enzymes, PstI (CTGCAG) and HpaII 
(CCGG) and a genomic representation of the samples 
was generated by ligating barcoded adapters to identify 
each sample to run within a single lane of an Illumina 
HiSeq2500 instrument (Illumina Inc., San Diego, CA). 
Approximately 500,000 unique reads per sample were 
generated by sequencing up to 77 bases of the amplified 
fragments. We used a proprietary analytical pipeline—
developed by DArT P/L—to generate SNPs.

Data Availability
The phenotypic and genetic data are available at http://hdl.
handle.net/11529/11053. A consensus map from Diversity 
arrays was used for the present study and physical posi-
tions of the markers are available at the link above.

Phenotypic Data Analysis
We used META-R software to estimate the variance 
components—analysis of variance— and to predict the 

Table 1. Information about the durum panel grown 
under yield potential (YP), drought stress (DT), and 
heat stress (HT) conditions and weather parameters 
(Sukumaran et al., 2018).†

Year Env.
Planting 

date
Harvest  

date Tmean TRange Prec. Irrig.
Tmax > 

35
2014–15 YP 28-Nov-14 22-May-15 19.4 11.8–28.2 84.2 3 0

DT 09-Dec-14 07-May-15 19.4 11.8–28.1 84.0 0 0
HT 20-Mar-15 14-Jul-15 25.9 18.0–34.2 61.2 6 47

2015–16 YP 16-Dec-15 17-May-16 16.1 08.1–26.2 20.4 3 0
DT 02-Dec-15 13-Apr-16 16.2 08.2–26.4 20.2 0 0
HT 26-Feb-16 14-Jun-16 22.4 13.4–32.1 17.4 6 26

† Env. = environments; Tmean = Mean temperature during the crop cycle; TRange = mean minimum and 
maximum temperatures; Prec. = precipitation; Irrig. = No. of irrigations; Tmax > 35, Number of days 
when temperatures were above 35°C.
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Best Linear Unbiased Predictions (BLUPs) (Alvarado et 
al., 2015). Lines (L), environments (E) and L × E interac-
tion, were considered as random factors, while location, 
block, and replication were considered as fixed factors to 
estimate the BLUPs. In addition, BLUPs for YLD, TGW, 
and GNO were calculated using DTH as a co-variate. 
The following formula was used to estimate broad-sense 
repeatability (H2):

2
2

2 2 2/ /
L

L LE e

H
I rI

s
s s s

=
+ +

where 2
Ls  is the variance for the line effect, 2

LEs  is the line 
by environment interaction variance, 2

eσ  is error vari-
ance, r is the number of replications and I is the number 
of environments.

Genomic-Enabled Prediction Models
Baseline Model

The following linear predictor represents the response of the 
jth (j = 1,…,J) line tested in the ith (i = 1,…,I) environment 
{yij} as the sum of an overall mean μ plus random deviations 

around zero due to environmental ( )2~ 0,  
iid

i EE N σ 
  

 and line 

effects ( )2 ~ 0,
iid

j LL N σ 
  

, the interaction between the ith envi-

ronoment and the jth line  2(0, )
iid

ij LELE N s 
  

  and a random 

error term ( )2~ 0,
iid

ij ee N σ 
  

.

ij i j ij ijy E L LE e= + + + +µ

where N(.,.) denotes the normal density, iid stands for 
independent and identically distributed responses and 

2
Eσ , 2

Lσ , 2
LEσ , 2

eσ  are the corresponding variances for 
environment, line, line × environment and residual 
terms. This model does not allow borrowing of infor-
mation among lines because they were treated as inde-
pendent outcomes. The models used in this study were 
derived from the baseline model by either subtracting 
terms or modifying the underlying assumptions.

Main Effects Models

Model 1 (M1). Environment + Line Main Effects (L + E)
This model is obtained by retaining the first three com-
ponents from the baseline model while their underlying 
assumptions remain unchanged.

ij i j ijy E L eµ= + + +  � [1]

Here environments were considered as site-by-year com-
binations.

Model 2 (M2).Site + Line Main Effects (L + S)
The previous model considers environments as inde-
pendent outcomes; thus, borrowing information among 
environments is not possible. In an attempt to recover 

information from the same site observed in different years, 
a model that includes this site effect was considered.

kj k j kjy S L eµ= + + +  � [2]

Here kjy  represents the response of the jth line observed 
in the kth site (k = 1,…,K) with ( )2~ 0,  

iid

k SS N σ and 2
Sσ  act-

ing as its correspondent variance component. This model 
intends to recover information from the same site but 
observed in different years by ignoring the year effect.

Model 3 (M3).Year + Line Main Effects (L + Y)
This model ignores the site effect by assuming no soil/
environmental changes between sites in the same year 
but across years. Thus, all sites in the same year are 
treated as the same and the only variation affecting the 
responses (besides the lines) is the one that occurs from 
one yr to another.

lj l j kjy Y L eµ= + + +  � [3]

where ljy  denotes the response of the the jth line observed 
in the lth year (l = 1,…,Y) with ( )2~ 0,  

iid

l lY N σ and 2
lσ  its 

variance component. This model intends to borrow infor-
mation between sites observed in the same year.

Model 4 (M4). Environment +  
Marker Main Effects (L + G + E)
Considering an alternative representation of the line 
effect jL  in Model [1] as a linear combination between 
markers and their correspondent marker effects, 

1

p

j jm m
m

g x b
=

=∑ , genomic information can be introduced 

using the following linear predictor

ij i j j ijy E L g eµ= + + + +  � [4]

where ( )2~ 0,
iid

m bb N σ  represents the random effect of 
the mth (m = 1,…,p) marker and 2

bσ  its correspondent 
variance component. Using the results from the multi-
variate normal distribution, ( )1g , ,g 'J= …g , the vector 
of genetic effects, follows a normal density with zero 
mean vector and co-variance matrix ( ) 2

gCov σ=g G  
with 

p
′

=
XXG  as the genomic relationship matrix. It 

describes genetic similarities among pairs of individu-
als. Here X represents the centered and standardized 
(by columns) genomic matrix and 2 2

g bpσ σ= ×  acts 
as the correspondent variance component such that 

{ } ( )2g ~ 0,j N σ= gg G . In this model, the line effect jL  is 
retained in the model to account for imperfect informa-
tion and model mis-specification due to imperfect link-
age disequilibrium.

Model 5 (M5). Site + Marker Main Effects (L + S + G)
This model was built using M2 as the initial starting 
point but adding a genetic component (marker informa-
tion), as shown in the previous model. Thus, M5 becomes
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kj k j j kjy S L g eµ= + + + +  � [5]

Model 6 (M6). Year + Marker Main Effects (L + Y + G)

Similar to the previous two models, M6 adds molecular 
marker information to model M3, so that it becomes

lj l j j kjy Y L g eµ= + + + +  � [6]

Models with Interaction
A disadvantage of the previous models is that they only 
consider the main effect of the lines across environ-
ments, thereby avoiding specific responses of each line 
in each environment and these relies predictive ability 
exclusively on genetics. In this case, each line would 
show the same genetic values across environments. To 
overcome this issue, the informed (at the genetic level) 
G × E interaction is introduced via co-variance struc-
tures, as shown by Jarquín et al. (2014). Here the naïve 
interaction component ijEL  is replaced by ijgE , where 

( ){ } 0, ( ) ( )ijgE N= ° 2
gE∼ g g E EgE Z GZ' Z Z' σ  and gZ  

and 
EZ  are the correspondent incidence matrices for 

molecular markers and environments, 2
gEs  is the asso-

ciated variance component for this interaction and ‘
’ represents the Hadamard or Schur product (element-
to-element product) between two matrices. Conceptu-
ally, this component allows the inclusion of all first 
order interactions between each marker and each 
observed environment.

Model 7 (M7). Genomic × Environment Interaction  
[L + E + G + (G × E)]
This model extends model M4 by adding the previously 
introduced interaction term as follows:

ij i j j ij ijy E L g gE e= + + + + +µ � [7]

Model 8 (M8). Genomic × Site Interaction;  
L + S + G + (G × S)
Similar to model M7, this model extends M5 
by adding the interaction term between geno-
types and sites. Here the interaction between each 
molecular marker and each site is included via 

( ){ } 0, ( ) ( )kj SgS N= ° 2
gS∼ g g SgS Z GZ' Z Z' σ , where SZ  

and 2
gSσ  are the incidence matrix of the sites and the 

associated variance component, respectively.

kj k j j kj kjy S L g gS e= + + + + +µ �
[8]

Model 9 (M9). Genomic × Year Interaction  
[L + Y + G + (G × Y)]
This model is an extension of model M6 that 
includes the interaction between each molecu-
lar marker and each year. For this, the vector 

( ){ } 0, ( ) ( )lj YgY N= ° 2
gYg g YgY Z GZ' Z Z'∼ σ  was added.

lj l j j lj kjy Y L g gY e= + + + + +µ  � [9]

where YZ  represents the incidence matrix for years and 
2σYg  is the corresponding variance component associated 

with this random effect.

Assessing Different Prediction Problems using 
Various Cross-Validation Strategies
Nine GBLUP models were used to compare three basic 
cross-validation schemes that mimic real prediction prob-
lems that breeders might face in the field. These problems 
are presented here: starting from the easiest to the most 
difficult one: (1) incomplete field trials (CV2) where some 
lines are observed in some environments but not in oth-
ers; the goal here is to predict the crop performance of 
these lines in environments where these have not yet been 
observed, (2) prediction of newly developed lines (CV1) in 
an attempt to measure the predictive ability of new lines 
that have not yet been observed in any field, predictive 
ability between observed and unobserved lines is based 
primarily on genetic similarities as main source of infor-
mation, and (3) predicting already observed lines in unob-
served environments (CV0). Here, the main interest is to 
predict the crop performance of lines in potentially new 
environments. The latter cross-validation scheme gives an 
idea of the stability of the lines across a diverse set of envi-
ronmental conditions. Three scenarios were considered 
for CV0 depending on whether site, year, or site-year com-
bination (environment) are considered for prediction: (i) 
leaving one environment out (CV0-Env); (ii) leaving one 
site out (CV0-Sites); and (iii) leaving 1 year out (CV0-Year). 
For the three different CV0 no random cross-validations 
is performed and the observed values in one site or year 
or environments are directly correlated with the predicted 
values on those trials (e.g., environment, site, year).

For random cross-validation CV1 and CV2, the pre-
diction accuracies of the nine models were calculated by 
performing random fivefold cross-validation where 20% of 
the durum wheat (testing set) were predicted and 80% were 
observed and used as training set. For CV1 none of the 20% 
of the lines in the testing set were observed in any of the 
environments (site and year combination), whereas for CV2 
the 20% of the lines in the testing set were observed in some 
environments but not in the others. The prediction accuracy 
is computed as the correlations between the observed and 
predicted values within same environments.

Results
Agronomic Performance of the Durum Panel
The highest grain yield was observed under YP (5.79 t/
ha; H2 = 0.80), followed by DT (2.33 t/ha; H2 = 0.47), and 
HT (1.64 t/ha; H2 = 0.30). TGW observed also varied 
among the different environments, under YP (44.4 g; 
H2 = 0.87), DT (40.8 g; H2 = 0.69), and HT (31.8 g; H2 = 
0.63). The same trend—yield followed by DT and HT—
was observed for all traits. The DTA and DTM also 
followed a similar pattern, where the shortest duration 
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of the crop was in HT (DTA = 55.5 d; DTM = 84.1 d) 
followed by to DT (DTA = 71 d; DTM = 100 d) and YP 
(DTA = 76 d; DTM = 113 d). Under YP conditions, High 
H2 values were observed for all traits (0.79 to 0.95) except 
for NDVIvg and NDVIllg (H2 = < 0.40). However, under 
the DT and HT stress conditions, NDVI values had mod-
erate to high (> 0.58) H2 values (Table 2).

The traits which showed very high correlation under 
drought (r = 0.72) and heat (r = 0.94) were GNO and 
YLD, and DTA and DTM were the traits with the high-
est correlation (r = 0.91) under YP condition. The TGW 
and GNO were negatively associated (r = -0.50) in YP 
and DT, but showed significantly less association (r = 
-0.06) under HT. The association of YLD and TGW was 
the highest under HT (r = 0.24), followed by YP (r = 0.14) 
and DT (r = 0.12). The YLD was negatively associated 
with DTA (r = -0.35), DTM (r = -0.26), and PH (r = -0.34) 
under YP conditions, but the effects were not significant 
under DT and HT. Under HT, PH was positively associ-
ated with YLD (r = 0.44). The NDVIvg was significantly 
associated with PH (r = 0.65) under HT (data not shown).

Genomic Prediction
We used the GBLUP G × E model to predict the lines 
using five different prediction problems methods: (1) pre-
dicting years (CV0-Year); (2) predicting sites (CV0-Sites); 
(3) predicting environments (CV0-Env); (4) predicting 
lines untested in the environment (CV1); and (5) predict-
ing lines in incomplete trials (CV2) (sparse testing). The 
results of the correlations between the predicted values 
and observed values for each environment are shown in 
the Supplementary Tables: CV0-Year (Supplementary 
Table 1), CV0-Sites (Supplementary Table 2), CV0-Env 
(Supplementary Table 3), CV1 (Supplementary Table 4), 
and CV2 (Supplementary Table 5).

When years were predicted using the information 
from other year (CV0-Year; predict 2015 from 2016, or 
vice versa), high prediction accuracies were observed 
between the predicted values and observed values in each 
environment for each trait (Supplementary Table 1). The 
average correlations between the predicted and observed 

values for CV0-Year from six environments indicated 
high correlations for models that included the G × E 
term (Table 3). The trait with the highest average PA in 
six environments was PH (0.750) and the lowest was 
YLD (0.362). The TGW, DTA, and DTM had PA > 0.60, 
whereas the PA for GNO, NDVIllg, and NDVIvg were 
0.37 to 0.43. Among the different models, M8, which had 
the G × S term, was the best model for four out of eight 
traits. For each trait, the models with the interaction term 
were the best models: M7 (PH and TGW), M8 (DTA, 
DTM, GNO, NDVIvg, and YLD), and M9 (NDVIllg).

Predicting the sites (CV0-Sites) based on all other 
sites—choosing one site among YP, DT, and HT and predict-
ing a site using the other two sites—also showed medium-
to-high prediction accuracies (Supplementary Table 2). 
The highest PA across six environments was for PH (0.755) 
and lowest was for YLD (0.300) (Table 4). The best models 
for DTM (0.651) and TGW (0.568) showed high PA, while 
NDVIvg (0.476), NDVIllg (0.444), and GNO (0.361) were 
moderate. For three traits, the models with the interaction 
term were the best: M8 (DTA) and M9 (GNO and YLD).

In the prediction scheme CV0-Env, each environ-
ment was predicted based on all other environments and 
the correlations were high between the observed and pre-
dicted values in each environment (Supplementary Table 
3). When the average of six environments was taken, 
the PA was moderate to high, with PH being the highest 
(0.775) and YLD being the lowest (0.400) (Table 5). All 
other traits had a PA > 0.41 for the best model for each 
trait: DTA (0.724), DTM (0.696), GNO (0.419), NDVIllg 
(0.482), NDVIvg (0.515), and TGW (0.625). Six out of 
eight traits had high PA when models with the interac-
tion term were used, M7 (NDVIvg and PH) and M8 
(DTA, DTM, TGW, and YLD).

When the CV1 scheme was tested for each envi-
ronment, the mean and standard deviations of the cor-
relation between predicted and observed values were 
estimated (Supplementary Table 4). The average correla-
tions between predicted and observed values in six envi-
ronments for each trait are shown in Table 6. The highest 
average PA was observed for DTA (0.41) and lowest was 

Table 2. Descriptive statistics and repeatability (H2) estimated through the best linear unbiased predictions (BLUPs) 
of a durum panel grown under yield potential, drought, and heat stress conditions in 2014–15 and 2015–16 
(Sukumaran et al., 2018).

Traits† Mean
Yield potential

H2 Mean
Drought stress

H2 Mean
Heat stress

H2Range Range Range
YLD 5.79 2.67–7.42 0.80 2.33 1.16–3.54 0.47 1.64 0.2–2.56 0.30
TGW 44.43 31.98–57.24 0.87 40.8 31.1–51.1 0.69 31.8 24.08–40.65 0.63
GNO 12999 2090–18,379 0.79 8914 4318–12,174 0.22 4621 811–7574 0.41
DTA 76 67–102 0.94 71 61–79 0.71 55.5 47–81.2 0.86
DTM 113 104–144 0.90 100 95–108 0.81 84.1 75.5–101.2 0.78
PH 96.8 81.8–134.2 0.95 68.47 56.5–97.1 0.83 54.2 40.1–77.3 0.66
NDVIvg 0.41 0.31–0.48 0.30 0.38 0.30–0.44 0.72 0.32 0.22–0.44 0.58
NDVIllg 0.56 0.44–0.65 0.37 0.39 0.31–0.57 0.82 – – –

† YLD = grain yield (t/ha); TGW = thousand-grain weight (g); GNO = grain number/m2; DTA = days to anthesis; DTM = days to maturity; PH = plant height (cm); normalized difference vegetative index at 
vegetative (NDVIvg) and grain filling (NDVIllg) stages.
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for NDVIvg (0.18). Among the models, the best model 
was M7 with the G × E interaction term for all traits.

When the CV2 scheme was tested for the lines, the cor-
relation between the predicted and observed values for each 
environment was high (Supplementary Table 5). The aver-
age correlation between observed and predicted values for 
six environments for each trait indicated the highest PA was 
for PH (0.76) and the lowest was for YLD (0.40) (Table 7). 
The best models for the traits were M7 for GNO, NDVIllg, 
NDVIvg, PH, TGW, YLD, and M8 for DTA and DTM. The 
models with interaction terms were the best for all traits.

We compared the PA of different cross-validation 
schemes, traits, and all models. When comparing differ-
ent traits in different CV schemes, CV1 had the lowest PA. 
The YLD was the trait with the lowest PA for the four CV 
schemes, but just like GNO, it did not show lower values in 
the CV1 scheme, whereas all other traits showed a decreas-
ing trend (Fig. 1A). The trait with the lowest PA in the CV1 
scheme was NDVIvg. When the cross-validation schemes 
were compared for each model, the lowest PA were for 
CV1 (Fig. 1B). Three models even had negative prediction 
accuracies in the CV1 scheme: M1 (L + E), M2 (L +S), and 
M3 (L + Y). In most cases, models with interaction terms 
performed better than the main effect models.

Comparing models among the CV schemes, the mod-
els with interaction terms (M7, M8, and M9) had higher 
prediction accuracies than their main effect models when 
all traits and all cross-validation schemes were considered 
(Fig. 2A). Among them, M7 had the highest PA > 0.51, 
followed by M8 (0.49) and M9 (0.46) combining all traits 
and cross-validation schemes. Models M1 (L + E), M2 
(L +S), and M3 (L + Y) had the lowest PA < 0.40. The PH 

had the highest average PA among all traits (0.68) when 
the average of all models and all cross-validation schemes 
were used, and the lowest (0.34) was for YLD (Fig. 2B). 
Four traits—PH (0.68), DTA (0.61), DTM (0.57), and TGW 
(0.56)—had PA > 0.50 when the averages of all models and 
all cross-validation schemes were used. Accounting for all 

Table 4. Average correlations between predicted and 
observed values for the traits in cross-validation scenario 
(CV0-Sites) leaving one site out (HT, SQ, and YP) and 
other sites were used to predict the site that was left out 
(HT, SQ, and YP). The values below correspond to the 
average correlations between predicted and observed 
values of six environments (HT 2015, YP 2015, DT 2015, 
HT 2015, YP 2015, and DT 2015) for each trait. The best 
model for each trait is underlined. For details of each 
environment, see Supplementary Table 2.

Traits/Models M1† M2 M3 M4 M5 M6 M7 M8 M9
DTA 0.675 0.675 0.665 0.680 0.680 0.627 0.681 0.684 0.618
DTM 0.646 0.649 0.632 0.648 0.651 0.605 0.649 0.650 0.603
GNO 0.325 0.298 0.329 0.347 0.342 0.353 0.328 0.348 0.361
NDVIllg 0.423 0.398 0.424 0.444 0.436 0.442 0.427 0.429 0.433
NDVIvg 0.476 0.363 0.476 0.472 0.314 0.453 0.479 0.330 0.464
PH 0.750 0.742 0.743 0.755 0.731 0.684 0.752 0.740 0.679
TGW 0.568 0.568 0.567 0.566 0.549 0.536 0.566 0.555 0.535
YLD 0.261 0.231 0.265 0.284 0.293 0.293 0.267 0.293 0.300

† M1, E + L; M2, L + S; M3, L + Y; M4, L + G + E; M5, L + S + G; M6, L + Y + G; M7, (E + L + G + 
(G × E); M8, L + S + G + (G × S); M9, L + Y + G + (G × Y). L = line effect; E = environment (site–year 
combination) effect; G = main effect of genomic markers; G × E = genotype × environment interaction; 
S = site effect; G × S = genotype × site interaction; Y = year effect; G × Y = genotype × year interaction.

Table 3. Average correlations between predicted and 
observed values for the traits in cross-validation scenario 
(CV0-Year) where 1 year was left out (2015 or 2016) 
and the other year was used to predict the year that 
was left out (2015 or 2016). The values correspond to the 
average correlations between predicted and observed 
values of six environments (HT 2015, YP 2015, DT 2015, 
HT 2015, YP 2015, and DT 2015) for each trait. The best 
model for each trait is underlined. For details of each 
environment, see Supplementary Table 1.

Traits/Models M1† M2 M3 M4 M5 M6 M7 M8 M9
DTA 0.631 0.631 0.628 0.684 0.683 0.635 0.677 0.687 0.671
DTM 0.610 0.610 0.591 0.635 0.634 0.595 0.628 0.642 0.617
GNO 0.317 0.316 0.285 0.354 0.353 0.323 0.337 0.376 0.331
NDVIllg 0.441 0.439 0.418 0.479 0.479 0.457 0.451 0.429 0.480
NDVIvg 0.363 0.364 0.367 0.366 0.367 0.360 0.369 0.400 0.367
PH 0.740 0.739 0.732 0.745 0.743 0.662 0.750 0.748 0.706
TGW 0.596 0.596 0.591 0.599 0.600 0.580 0.609 0.608 0.594
YLD 0.278 0.277 0.237 0.325 0.325 0.305 0.305 0.362 0.306

† M1, E + L; M2, L + S; M3, L + Y; M4, L + G + E; M5, L + S + G; M6, L + Y + G; M7, (E + 
L + G + (G × E); M8, L + S + G + (G × S); M9, L + Y + G + (G × Y). L = line effect; E = 
environment (site–year combination) effect; G = main effect of genomic markers; G × E = 
genotype × environment interaction; S = site effect; G × S = genotype × site interaction; 
Y = year effect; G × Y = genotype × year interaction.

Table 5. Average correlations between predicted and 
observed values for the traits in cross-validation scenario 
(CV0-Env) leaving one environment out (HT 2015, YP 
2015, DT 2015, HT 2015, YP 2015, and DT 2015) and all 
other environments were used to predict the environment 
that was left out (HT 2015, YP 2015, DT 2015, HT 2015, 
YP 2015, and DT 2015). The values below correspond 
to the average correlations between predicted and 
observed values in six environments (HT 2015, YP 2015, 
DT 2015, HT 2015, YP 2015, and DT 2015) for each trait. 
The best model for each trait is underlined. For details of 
each environment, see Supplementary Table 3.

Traits/Models M1† M2 M3 M4 M5 M6 M7 M8 M9
DTA 0.711 0.710 0.697 0.715 0.715 0.670 0.717 0.724 0.652
DTM 0.686 0.689 0.665 0.688 0.691 0.643 0.689 0.696 0.635
GNO 0.404 0.386 0.392 0.419 0.394 0.389 0.412 0.404 0.393
NDVIllg 0.460 0.438 0.460 0.482 0.471 0.475 0.470 0.457 0.456
NDVIvg 0.511 0.410 0.503 0.509 0.366 0.494 0.515 0.437 0.484
PH 0.772 0.766 0.765 0.773 0.757 0.699 0.775 0.750 0.694
TGW 0.618 0.618 0.618 0.617 0.608 0.594 0.623 0.625 0.574
YLD 0.361 0.340 0.350 0.377 0.371 0.348 0.376 0.400 0.342

† M1, E + L; M2, L + S; M3, L + Y; M4, L + G + E; M5, L + S + G; M6, L + Y + G; M7, (E + L + G + 
(G × E); M8, L + S + G + (G × S); M9, L + Y + G + (G × Y). L = line effect; E = environment (site–year 
combination) effect; G = main effect of genomic markers; G × E = genotype × environment interaction; 
S = site effect; G × S = genotype × site interaction; Y = year effect; G × Y = genotype × year interaction.
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traits and all models, the best cross-validation schemes 
were CV0-Env and CV2, both with an average PA of 0.58 
(Fig. 3). CV0-Sites and CV0-Year had similar PA (0.53), but 
higher PA than the CV1 scheme (0.35).

Discussion
The application of genomic prediction models in breed-
ing programs can increase genetic gains by shortening 
the breeding cycle. In our study, we validated genomic 
prediction models incorporating G × E interaction 
term to the GBLUP model of Jarquín et al. (2014, 2017) 
in a CIMMYT durum wheat panel, which was pheno-
typed under contrasting environments; well-watered, 
drought stress and heat stress conditions. Crossa et al. 
(2016) did perform genomic-enabled prediction stud-
ies in durum wheat using the Bayes B variable selection 
model together with the GBLUP G × E that considers the 
main effects of markers across all environments and the 
marker specific environment effect.

We tested nine genomic prediction models—six 
models non-G × E and three with G × E interaction terms 
in five cross-validation schemes for eight traits in three 
different environments. Results indicated high PA when 
models with G × E terms were used (Burgueño et al., 2011; 
Pérez-Rodríguez et al., 2015; Jarquín et al., 2017). The pre-
diction accuracies reported here in durum wheat are rela-
tively high and for some traits slightly higher than those 
reported in spring wheat. The environmental covariables 
on the environments used in this study varies and this 
might have influenced the response traits like NDVI, grain 
yield, etc. In addition, the amount of precipitation for the 2 
yr was different, could have influence the response of some 
traits, especially grain yield, and contributed to the G × E 
interaction. The GBLUP G × E could have incorporated 
environmental covariables (Jarquín et al., 2014) and stud-
ied their influence, however in the study no environmental 
covariables were added into the model.

Among the cross-validation schemes, CV2 and CV0-
Env had the highest PA and CV1 had the lowest PA. This 

Table 6. Average correlations and standard deviations (µ ± σ) between predicted and observed values for the 
traits in cross-validation scenario (CV1) using five-fold cross-validation for each environment (HT 2015, YP 2015, 
DT 2015, HT 2015, YP 2015, and DT 2015) using nine different models (M1 to M9). The values below correspond to 
the average correlations between predicted and observed values in six environments (HT 2015, YP 2015, DT 2015, 
HT 2015, YP 2015, and DT 2015) for each trait. The best model for each trait is underlined. For details of each 
environment, see Supplementary Table 4.

Traits/Models M1† M2 M3 M4 M5 M6 M7 M8 M9
DTA -0.09 ± 0.07 -0.08 ± 0.06 -0.10 ± 0.06 0.39 ± 0.03 0.39 ± 0.04 0.32 ± 0.04 0.41 ± 0.04 0.40 ± 0.04 0.33 ± 0.04
DTM -0.09 ± 0.06 -0.07 ± 0.06 -0.10 ± 0.06 0.31 ± 0.03 0.32 ± 0.03 0.22 ± 0.04 0.33 ± 0.04 0.32 ± 0.04 0.25 ± 0.04
GNO -0.10 ± 0.06 -0.07 ± 0.07 -0.07 ± 0.07 0.27 ± 0.02 0.25 ± 0.02 0.25 ± 0.02 0.36 ± 0.03 0.29 ± 0.02 0.27 ± 0.02
NDVIllg -0.12 ± 0.05 -0.10 ± 0.06 -0.10 ± 0.06 0.30 ± 0.03 0.28 ± 0.03 0.28 ± 0.03 0.30 ± 0.03 0.29 ± 0.03 0.28 ± 0.02
NDVIvg -0.12 ± 0.06 -0.07 ± 0.07 -0.10 ± 0.05 0.13 ± 0.04 0.08 ± 0.03 0.13 ± 0.04 0.18 ± 0.03 0.13 ± 0.03 0.14 ± 0.04
PH -0.08 ± 0.08 -0.09 ± 0.06 -0.10 ± 0.05 0.50 ± 0.02 0.50 ± 0.01 0.49 ± 0.01 0.51 ± 0.02 0.50 ± 0.02 0.49 ± 0.01
TGW -0.09 ± 0.07 -0.08 ± 0.07 -0.09 ± 0.06 0.31 ± 0.03 0.29 ± 0.03 0.26 ± 0.03 0.39 ± 0.03 0.33 ± 0.03 0.28 ± 0.03
YLD -0.10 ± 0.06 -0.07 ± 0.07 -0.06 ± 0.07 0.26 ± 0.01 0.26 ± 0.01 0.25 ± 0.01 0.33 ± 0.03 0.29 ± 0.02 0.26 ± 0.01
† M1, E + L; M2, L + S; M3, L + Y; M4, L + G + E; M5, L + S + G; M6, L + Y + G; M7, (E + L + G + (G × E); M8, L + S + G + (G × S); M9, L + Y + G + (G × Y). L = line effect; E = environment (site–year 
combination) effect; G = main effect of genomic markers; G × E = genotype × environment interaction; S = site effect; G × S = genotype × site interaction; Y = year effect; G × Y = genotype × year interaction.

Table 7. Average correlations and standard deviations (µ ± σ) between predicted and observed values for the 
traits in cross-validation scenario (CV2) using five-fold cross-validations for the environments (HT 2015, YP 2015, 
DT 2015, HT 2015, YP 2015, and DT 2015) using nine different models (M1 to M9). The values below correspond 
to the average correlations between the predicted and observed values in six environments (HT 2015, YP 2015, 
DT 2015, HT 2015, YP 2015, and DT 2015) for each trait. The best model for each trait is underlined. For details of 
each environment, see Supplementary Table 5.

Traits/Models M1† M2 M3 M4 M5 M6 M7 M8 M9
DTA 0.69 ± 0.02 0.69 ± 0.02 0.56 ± 0.04 0.70 ± 0.02 0.70 ± 0.02 0.60 ± 0.03 0.72 ± 0.02 0.72 ± 0.02 0.58 ± 0.03
DTM 0.66 ± 0.03 0.66 ± 0.03 0.44 ± 0.06 0.67 ± 0.03 0.67 ± 0.03 0.48 ± 0.05 0.67 ± 0.03 0.69 ± 0.03 0.48 ± 0.05
GNO 0.37 ± 0.03 0.29 ± 0.05 0.25 ± 0.05 0.40 ± 0.02 0.35 ± 0.03 0.33 ± 0.03 0.44 ± 0.03 0.37 ± 0.03 0.34 ± 0.03
NDVIllg 0.42 ± 0.03 0.36 ± 0.04 0.31 ± 0.05 0.45 ± 0.02 0.42 ± 0.04 0.39 ± 0.04 0.46 ± 0.02 0.42 ± 0.04 0.38 ± 0.04
NDVIvg 0.49 ± 0.02 0.27 ± 0.05 0.45 ± 0.03 0.49 ± 0.02 0.27 ± 0.04 0.46 ± 0.03 0.52 ± 0.02 0.28 ± 0.04 0.47 ± 0.03
PH 0.75 ± 0.01 0.71 ± 0.02 0.61 ± 0.04 0.76 ± 0.01 0.72 ± 0.02 0.64 ± 0.02 0.76 ± 0.01 0.71 ± 0.02 0.63 ± 0.02
TGW 0.60 ± 0.01 0.58 ± 0.02 0.54 ± 0.03 0.61 ± 0.01 0.59 ± 0.02 0.56 ± 0.02 0.66 ± 0.01 0.62 ± 0.02 0.56 ± 0.02
YLD 0.32 ± 0.04 0.25 ± 0.05 0.20 ± 0.06 0.36 ± 0.03 0.33 ± 0.04 0.30 ± 0.04 0.40 ± 0.03 0.36 ± 0.04 0.31 ± 0.04
‡ M1, E + L; M2, L + S; M3, L + Y; M4, L + G + E; M5, L + S + G; M6, L + Y + G; M7, (E + L + G + (G × E); M8, L + S + G + (G × S); M9, L + Y + G + (G × Y). L, line effect; E, environment (site–year 
combination) effect; G, main effect of genomic markers; G × E, genotype × environment interaction; S, site effect; G × S, genotype × site interaction; Y, year effect; G × Y, genotype × year interaction.
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is similar to previous reports in spring wheat (Sukumaran 
et al., 2017a; b) and cotton (Pérez-Rodríguez et al., 2015). 
Earlier studies have reported low heritability as the reason 
for low PA for CV1, in the present experiment we have 
seen irrespective of the trait heritability the PA are lower 
for CV1. In durum wheat, earlier studies have shown PA 
for CV2 was higher than for CV1 (Crossa et al., 2016). 

Among the traits, PH was the highest predicted trait pos-
sibly because its heritability estimates were higher than the 
heritability estimates for YLD, which had the lowest PA. 
The TGW had very high PA similar to an earlier study in 
spring wheat and was highly predicted (Velu et al., 2016).

This study indicated that good PA could be obtained 
for YLD and its components even when predicting lines, 
environments, years, and sites are missing. According to 
the results, it is practical to implement genomic predic-
tion and selection in a cost-effective manner by using 
more environments to test the germplasm by reducing 
replications or phenotyping only a fraction of the lines. 
The G × E models should be used to get good predicted 
values when using the CV1 scheme, where negative PA 
were observed when main effect models were used.

The present study in durum wheat demonstrated 
that environments, sites, and years can be predicted 

Fig. 1. Average correlations between predicted and observed 
values for five different cross-validation schemes: environments 
predicted using other environments (CV0-Env), sites predicted 
using other sites (CV0-Sites), years predicted using other years 
(CV0-Year), a set of lines predicted using other lines in the same 
environment (CV1), and sparse testing (CV2); (A) for different 
traits and (B) nine different models.

Fig. 2. Average correlations between predicted and observed 
values for the (A) nine different models considering all traits and all 
cross-validation scenarios and (B) for different traits. Model 1, E + 
L; M2, L + S; M3, L + Y; M4, L + G + E; M5, L + S + G; M6, L + Y 
+ G; M7, (E + L + G + (G × E); M8, L + S + G + (G × S); M9, L + 
Y + G + (G × Y). L = line effect; E = environment (site–yr combina-
tion) effect; G = main effect of genomic markers; G × E = genotype 
× environment interaction; S = site effect; G × S = genotype × site 
interaction; Y = year effect; G × Y = genotype × year interaction.

Fig. 3. Average correlations between predicted and observed 
values for five different cross-validation scenarios: environments 
predicted using other environments (CV0-Env), sites predicted 
using other sites (CV0-Sites), years predicted using other years 
(CV0-Year), a set of untested lines predicted using other lines in 
the same environment (CV1), and sparse testing (CV2) consider-
ing all models and all traits.
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reasonable well and thus facilitating an efficient use of 
time and funds for predicting unobserved lines (Yu et 
al., 2016; Crossa et al., 2017; Jarquín et al., 2017). The PA 
reported in this study is good enough to discard the lines 
in a real breeding program (Velu et al., 2016). As found 
in other crops like maize where GS has been success-
fully applied (Beyene et al., 2015) and the good genomic-
enabled prediction found in spring and winter wheat, 
the results of this study indicated that GS in durum 
wheat can be successfully applied in breeding programs. 
(Habash et al., 2009).

Conclusions
In the present study, we used the reaction norm models 
for genomic prediction and applied them to a durum 
panel phenotyped under well-watered, drought stress, 
and heat stress conditions. Addition of G × E interac-
tion terms to the model increased the PA in all cross 
validation schemes. The best cross validation scheme was 
predicting missing lines and predicting lines in untested 
environments (CV2). Forward prediction of years and 
sites (CV0) were also moderate to high than the CV1 
scheme. High heritability traits showed high PA in all CV 
schemes. The results stress the importance of genomic 
prediction models incorporating G × E interactions to 
predict the performance of lines in forward breeding for 
application in durum-breeding programs.
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