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ABSTRACT
Landscape Vehicular Anti-Ram (LVAR) systems are a group of protective
barriers, which are designed using natural materials (e.g., boulders) and
have proven to both effectively protect sensitive structures against
threats and be aesthetically pleasing. This paper presents two
consecutive vehicular crash tests hitting the same single boulder
embedded in AASHTO coarse aggregate fill. A LS-DYNA model was
developed to simulate the field-scale tests, which were instrumented
with high-speed cameras and pressure cells. A readily available truck
model from the National Crash Analysis Center was modified and
implemented in the LS-DYNA model. The boulder and surrounding soil
were modeled using the Mohr-Coulomb failure criteria. The model
parameters were calibrated using results from the first field-scale test
with a truck traveling at 48.3 km/hr (30 mph) impacting the LVAR system.
The calibrated model was then used to simulate the second field-scale
test, which involved a truck traveling at 80.5 km/hr (50 mph) impacting
the same LVAR system without resetting the boulder or soil. The
calibrated model was able to provide the global response of the
system, including the time-history of the translational displacement
and rotation of the boulder, and was in good agreement with field-

International Journal of Protective Structures – Volume 5 · Number 4 · 2014                                            435

*Corresponding author: tqiu@engr.psu.edu

http://crossmark.crossref.org/dialog/?doi=10.1260%2F2041-4196.5.4.435&domain=pdf&date_stamp=2014-12-01


scale test results. This suggests that the overall global response was
dominated by the dynamic behavior of the truck and boulder system
upon impact. Hence, a simple material model for soil and boulder is
sufficient for simulating the tests conducted.

Key words: anti-ram systems, boulder, crash tests, field-scale tests,
numerical modeling, soil-structure interaction

1. INTRODUCTION
The development of perimeter barriers has become critical for protecting buildings and
facilities against vehicular impacts. Landscape Vehicular Anti-Ram (LVAR) systems are a
group of protective barriers that effectively protect against threats using natural materials
(e.g., boulders) and, as a result, can be aesthetically pleasing. Typical bollard systems are a
collection of anti-ram barriers that typically use bollards with a deep, stiff foundation to
achieve a proper standoff distance. The development process of these systems includes field-
scale testing and numerical modeling to effectively design and validate these systems
subjected to vehicular impacts. Field-scale tests involve using medium-duty trucks for
vehicular impacts into these systems to validate each of the systems designed based on
numerical modeling. Abundant field-scale testing and numerical modeling have been
conducted on typical bollard systems [1–7]; however, limited research exists for LVAR
systems [8].

In order to adopt a unified test method to test the crashworthiness of vehicle barriers such
as anti-ram devices, the U.S. Department of State (DOS) established a standard for device
designs, the Specification for Vehicle Crash Test of Perimeter Barriers and Gates (SD-STD-
02.01) [9] in 1985. SD-STD-02.01 specified preliminary criteria related to the test vehicle
(diesel or gas engine medium-duty truck (6800 kg)), ballast attachment, impact velocity and
penetration distance. With the use of small-sized cars in more recent terrorist attacks, the
American Society for Testing and Materials (ASTM) established a new standard–Standard
Test Method for Vehicle Crash Testing of Perimeter Barriers (F2656-07) [10]. This test
method provides a structured procedure to establish a penetration rating for perimeter
barriers subjected to vehicle impact as well as site condition requirements during installation
and testing and standard vehicular energy requirements. ASTM F2656-07 test standards have
been used in numerous research projects including those tested at the Larson Transportation
Institute [1, 2, 8] and the Texas Transportation Institute [11].

Numerical modeling of anti-ram barrier systems has been generally conducted using 
LS-DYNA [12], which is known to be a reliable program for modeling vehicular impact and
contains a library of constitutive models developed for high-strain-rate loads for a number of
materials. LS-DYNA also has several different contact formulations that are effective in
high-strain-rate impacts including single-surface, one- and two-way contacts. These
common contact formulations accurately maintain compatibility between parts within the
model. Numerous researchers have investigated typical bollard systems using LS-DYNA as
a means to validate field-scale tests [1–7]. O’Hare et al. [1] developed Streetscape Vehicular
Anti-Ram (SVAR) systems with shallow foundations, including street benches, bus stops and
street signs, which were able to conform to site restrictions, use cost effective standard
materials, and accommodate varying architectural aesthetics. The design of the SVAR
systems was optimized using LS-DYNA and then validated through field-scale testing. Other
researchers validated DOS standard impact conditions for anti-ram bollards known as K4, K8,
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and K12 through field-scale testing; using LS-DYNA, researchers were able to offer
recommendations and modifications for each of the barriers after validation since the model
simulations predicted the standard impact conditions [3].

Research conducted at the Larson Transportation Institute, affiliated with the
Pennsylvania State University, on the design and performance of a LVAR system consisting
of a boulder embedded in compacted fill will be summarized herein. Two field-scale tests
were conducted and used to rate the performance of barrier systems against M30 (vehicular
speed of 48.3 km/hr (30mph)) and M50 (vehicular speed of 80.5 km/hr (50mph)) impacts.
Due to minimal movement of the boulder and displacement of the surrounding soil at M30,
a M50 test was conducted to assess the performance of the system at a higher vehicular
impact velocity without replacing the boulder or surrounding soil. Using high-speed
cameras, pressure cells, and field surveys the boulder movement and soil pressure were
obtained from each test. A LS-DYNA model was developed to predict the overall global
response of the system to vehicular impact and the simulated results were compared to the
collected field data. In the following sections, the field-scale tests are first described followed
by descriptions of the LS-DYNA model and selection of model parameters. Lastly, results
and discussions on the capability of the LS-DYNA model in capturing global response of the
LVAR system are presented. This paper focuses on the numerical predictions and measured
performance for a LVAR system in the field-scale. The results therefore provided a useful
basis for evaluating the predictive capabilities and limitations of the numerical analyses.

2. FIELD-SCALE TESTING
Vehicular impact tests were conducted according to ASTM F2656-07 - Standard Test Method
for Vehicle Crash Testing of Perimeter Barriers [10], which establishes a penetration rating
for perimeter barriers subjected to a vehicular impact. The test facility uses a rigid rail to
provide vehicle guidance, a reverse towing system to accelerate the test vehicle to the
required speed, and a release mechanism that disconnects the tow cable and steering
guidance prior to impact. The propulsion system used to bring the test vehicle up to the
desired impact speed consists of a tow vehicle, a tow cable, two re-directional pulleys
anchored to the ground, a speed multiplier pulley attached to the tow vehicle, a quick-release
mechanism, and a ground anchor. For a detailed description of the system, please refer to
Reese et al. [8].

Two consecutive, full-scale field tests were conducted and consisted of the same
Rockville White (RW) granite boulder embedded in AASHTO uniformly-graded coarse
aggregate soil. Test 1 was for a M30 impact while Test 2 was for a M50 impact. In between
these tests, the RW granite boulder was not reset and surrounding soil was not recompacted.
Field surveys were completed before and after each test to determine the final displacement
of the boulder and each truck.

The test vehicles used in this study were medium-duty diesel trucks. The truck used in
Test 1 was a 1999 International 4700 single-unit flatbed truck. Barrels with ballast were
secured on the bed of the truck making the test inertia weight 6745 kg. The height to the
lower edge of the front bumper was 0.48 m and the height to the upper edge of the front
bumper was 0.75 m. The second truck used was a 1999 International 4700 single-unit flatbed
truck. Test inertia weight of the vehicle was 6827 kg. The height to the lower edge of the
front bumper was 0.48 m and the height to the upper edge of the front bumper was 0.76 m.

According to ASTM F2656-07 (2007) standards, during the installation of the RW
boulder, the excavation should extend along the horizontal direction behind the boulder to a
distance equal to 1.5 times the boulder embedment depth [10]. As shown in Figure 1, this
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criterion is satisfied. Prior to each test, the extent of excavation was surveyed and the
geometry was utilized as an input parameter for the numerical simulations to be discussed
later. Prior to boulder placement, the AASHTO uniformly-graded coarse aggregate soil was
placed into the excavated pit to the desired elevation in lifts of approximately 0.2 m and
compacted using a tamping compactor. The boulder was then lowered into the pit and
centered for the impact. Similar procedures were followed to backfill the pit with compacted
aggregates.

The RW granite boulder was approximately 1.98 m wide (W) × 1.68 m long (L) × 3.43 m
high (H) as shown in Figure 1. The total embedment depth (D) was 2.03 m. The approximate
weight of the boulder was 27, 200 kg. No natural fissures or joints were observed in the
boulder. Based on the information provided by the quarry, the bulk density and compressive
strength of the boulder were approximately 2696 kg/m3 and 142 MPa, respectively [13].
Small-scale testing was completed to confirm these values and will be briefly discussed in a
subsequent section.

The field tests were instrumented with high-speed cameras to record the motions of the
truck and boulder immediately prior to and after the crash and pressure cells were embedded
in the soil to monitor pressure variations during the tests. The high-speed camera systems are
fully autonomous and can capture images up to 29,000 frames-per-second with a maximum
resolution of 1016 × 1016. Three cameras (see Figure 2) were used during each test and they
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were positioned (1) at a 90° angle and 20.5 meters to the center of the test article to measure
dynamic penetration; (2) at a 90° angle and 15.9 meters above the center of the test article to
capture enough surface area prior to and after impact to determine impact speed, impact
angle, exit angle and debris field; and (3) behind the test article at a distance of 32.2 meters
centered along the guidance rail to record the approach of the test vehicle to track its
alignment with respect to the center of the test article. Specific points on the impacted system
were tracked using fiducials that allow tracking of critical points during impact. High-speed
video and still images from Camera 1 were utilized to determine boulder movement time
history for comparison with LS-DYNA simulations. Figure 3 represents two tracking
fiducials and still images at different stages of impact for Test 1.

Hydraulic-type pressure cells [14] were embedded inside the compacted aggregates to
monitor earth pressure time histories at the front and back of the boulder during each impact.
The cells use two flat plates, welded together at their periphery, and are separated by a small
gap filled with a fluid. When a load is applied to the cell, the hydraulic fluid is squeezed
between the two plates and a pressure build occurs with the change in pressure being
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converted to an electric signal. The resulting pressure-time histories can provide insight into
the dynamic soil-boulder response upon impact and are utilized for numerical comparison to
LS-DYNA simulations. General locations of the pressure cells are shown in Figure 1.

3. LS-DYNA MODEL
The LS-DYNA [12] research/commercial code was utilized to perform Finite Element Method
(FEM) simulations to model the vehicular impact tests. This code was chosen due to its proven
capability in modeling impact events [1, 3, 6, 8, 11]. The FEM model is shown in Figure 4,
which details the different mesh densities used for the truck, boulder, and soil domain. This
section will briefly discuss the truck, boulder, and soil constitutive models used in the
numerical simulation as well as stress initializations used to simulate the initial condition of
both tests under gravity loading and the initial condition of the M50 test after the M30 impact.

3.1. TRUCK MODEL
Field-scale frontal impact tests against anti-ram barriers have indicated that a truck typically
absorbs approximately 70% of the impact energy for a M30 rated test [3]. Therefore, a
realistic truck model that can capture the correct amount of energy absorption during an
impact event is essential. The truck model used for the simulations, shown in Figure 4, was
modified from a model readily-available in the National Crash Analysis Center (NCAC)
database [15, 16]. The FEM model was based on a 1996 Ford F800 single unit truck as
shown in Figure 5(a) and was developed to meet the needs of roadside hardware research and
development community while reducing computational requirements. The NCAC truck
model was developed to ensure that the load transfer between the truck and hardware, the
deformation of the truck, and the overall behavior of the truck during impact simulations
would be as accurate as feasible given the model computational requirements.

The truck requirement for ASTM F2656-07 is a Ford F650 or Ford F750, which was
different than the NCAC truck model. Field-scale tests, however, utilized a flatbed medium
duty truck with ejectable added cargo mass in the form of 55-gallon barrels filled with ballast
and secured towards the front of the truck’s bed with ratchet straps. Modifications to the
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truck model, as shown in Figure 5(b), were needed to meet the criteria of the standard. Joint
revolution constraints were added to allow the wheels to rotate and truck ramping. The
closed bed on the original truck was removed, leaving an open truck bed for the added ballast
barrels. The ballast barrels were added to meet the required weight according to ASTM
F2656-07. An accelerometer was added at mass center of the truck to monitor the response
time history to compare vehicle dynamics from field-scale tests and numerical simulations.
Last, definitions of conservative failure strains for all truck’s materials were added to prevent
unrealistic energy absorption due to extreme deformation.

The modified truck model consisted of 1606 eight-node constant stress solid elements,
20,318 four-node Belytschko-Tsay shell elements and 201 Hughes-Liu with cross section
integration beam elements. Three validation checks and visual comparison to field-scale
Test 1 were conducted to ensure the modified truck model could capture the global response
of the ASTM-specified truck under impact [17, 18]. First, the truck model was validated
using checks of equilibrium by preloading the truck with a gravity load using LS-DYNA.
The normal force on the rigid floor beneath the truck was then compared to the weight of
the truck to ensure the mass of the truck satisfied ASTM F2656-07. Second, energy
conservation was checked to ensure that excessive internal energy, such as hourglass
energy, did not contribute to spurious numerical results as shown in Figure 6. The figure
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shows a relatively constant energy suggesting that there are no unusual characterizations in
the structure of the model that would result in unrealistic dissipation of energy. Sliding
energy, associated with friction between the truck and barrier, also increases during the
simulations. Third, using the numerical simulation from Test 1 (speed of 48.3 km/hr), the
ratio of the internal energy of the truck after impact to the initial energy of the system (i.e.,
kinetic energy of the truck) indicated that the truck absorbed approximately 69% of the
impact energy, which is consistent with the field-scale test conducted by Omar et al. [3].
The absorbed energy is due to plastic deformation and fracturing of various truck
components. Lastly, Figure 7 provides a visual comparison of the simulation versus field-
scale Test 1. This sequential view shows that there was similar behavior of the vehicle for
each of the time steps shown.

3.2. CONSTITUTIVE MODEL FOR BOULDER AND SOIL
The LS-DYNA Material Type 173, “Mohr-Coulomb (M-C)” [12, 19] was utilized to model the
boulder and soil behavior in the FEM simulations. The M-C model was used to represent the
soil and boulder due to its ability to effectively and simplistically capture impact conditions
present in the field testing. Although the M-C constitutive model is simple and cannot
capture sophisticated post-failure constitutive behaviors such as the strain softening response
and fracture propagation, it is considered sufficient to model the boulder behavior during the
field tests as no damage to the boulder was observed and it essentially behaved as a rigid
mass. The M-C model is also considered sufficient in modeling the constitutive behaviors of
the compacted granular fill as small deformations of the fill were observed after the impacts.
The Mohr-Coulomb characterizes failure of a material based on its cohesion, normal stress
and friction angle as follows [12]:

                                                                                                             (1)

where tmax is the shear strength on a plane, sn is the normal stress on that plane, c is cohesion
and φ is the friction angle. Model parameters for the boulder and soil are discussed later.

τ σ φ= +c tan ( )nmax
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3.3. PRELOAD AND STRESS INITIALIZATION
A springback analysis procedure readily available in LS-DYNA was utilized to preload the
system with gravity so that the stress-dependent soil strength and conditions prior to impact
were modeled correctly. Once a steady-state condition was reached, information from the
model was outputted and used for all subsequent modeling using a sequential analysis.
Pressure distributions in the soil with respect to depth and total body equilibrium from the
steady-state condition were checked to ensure that gravity was applied correctly.

A stress initialization procedure in LS-DYNA was utilized to model consecutive impacts
on the boulder that, as discussed earlier, occurred without resetting the boulder or
recompacting the soil. For the simulation of Test 1, sufficient analysis time was utilized to
allow the system to reach a steady-state condition. Then, pertinent information from the end
of the simulation, which included the deformed geometry of the soil-boulder system, residual
stress and strain patterns within the soil-boulder elements, and boundary conditions of the
soil domain, was carried over to the beginning of the Test 2 simulation. An undeformed
truck, using the Test 2 speed, was then used in the numerical model for the Test 2 simulation.

4. MODEL PARAMETERS
Data collected from Test 1, such as recorded boulder translations and rotations, were utilized
to calibrate input parameters for the LS-DYNA model including constitutive parameters for
the boulder and soil, contact algorithms, and domain size. Test 1 was chosen for calibration
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due to the minimal rotational and translational movement of the boulder during impact. This
section will discuss general parameters for contact algorithms used in the simulation, boulder
material model to determine key parameters, and calibration of soil material parameters. The
calibrated model is subsequently utilized to predict the global response of the LVAR system
for Test 2 and compare with data collected from high-speed cameras and pressure cells.

4.1. BOULDER MODEL
Laboratory tests were conducted at CITEL to determine the RW boulder material properties
for numerical simulation under different conditions (e.g., quasi-static and high-strain rates)
that would be subsequently implemented into computational models. These tests included
uniaxial compression, split tension, Chevron bend, split Hopkinson pressure bar tests, and
Schmidt hammer [20–22]. Uniaxial compression tests determined the ultimate compressive
strength; split tension tests measured the uniaxial tensile strength; Chevron bend tests
determined the fracture toughness of rock material and its Young’s modulus [20]. In addition
to these quasi-static tests, split Hopkinson pressure bar (SHPB) tests were conducted to
evaluate the rate effects of material behavior [21]. The Schmidt Hammer test was conducted
in the field to quickly determine the compressive strength of rock material [22]. Based on the
tests conducted an initial shear modulus of 9480 MPa was determined, which is consistent
with typical properties of granite published in literature [23, 24].

The boulder domain was constructed using eight-node constant stress solid elements.
Each element was 100 mm x 100 mm x 100 mm. This mesh size was selected to create a
smooth transition from the boulder domain to the soil domain, which is described below, and
also to create adequate nodal contacts between the two contact surfaces.

A single variant analysis was conducted to determine the sensitivity of the numerical
simulation to the initial shear modulus (G) of the boulder, which demonstrates that the
boulder displacement was relatively insensitive to the change of boulder stiffness. For
example, Figure 8 shows the effect of changing the boulder’s shear modulus by ± 25% on
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boulder displacement time history while keeping other parameters constant. Additional
sensitivity analyses also confirmed that other global responses of the system (e.g., boulder
rotation and truck penetration) are insensitive to the boulder’s shear modulus. This is likely
due to several reasons. First, the boulder’s response was largely elastic during the field tests
as no fracture of the boulder was observed after the tests. Second, the boulder rotation and
displacement were likely governed by the surrounding soil, which has considerably lower
stiffness and strength than the boulder. Consequently, the boulder essentially behaved as a
rigid mass transferring the impact momentum and energy to the surrounding soil. The
selected boulder properties were summarized in Table 1.

4.2. SOIL MODEL
The soil domain, representing the AASHTO uniformly-graded coarse aggregate, was
constructed using eight-node constant stress solid elements. The extent of the soil domain
needs to accurately predict the global response of the impact event. Since the impact event
occurred over a short duration, the extent of the modeled soil domain does not need to be
expansive as long as the reflected wave does not influence the simulation. Based on these
considerations, the soil domain extends one embedment depth from the impact face, sides
and beneath the boulder and three embedment depths behind the boulder as shown in
Figures 1 and 4. This domain was computationally efficient and accurately predicted the
global response. Boundaries of the modeled soil domain were constrained based on
anticipated motion of each side of the exterior soil domain. For example, the sides of the soil
domain (parallel and perpendicular to impact) were restrained against translation normal to
their exterior surfaces and the bottom of the soil domain was restrained in the vertical direction.
These imposed boundary conditions adequately constrained the soil domain when attempting
to predict global response of the system because of the impact event’s short duration.

In conjunction with model calibration, a sensitivity study was conducted to determine an
optimal mesh density for the soil with respect to model accuracy and computational efficiency.
The mesh transitioned from the highest mesh density (i.e., finest) near the boulder to the lowest
density (i.e., coarsest) at the exterior of the soil domain as seen in Figure 4. This transition was
based on anticipated distribution of strain intensity within the soil domain. To realistically
model the soil as a continuum, each soil element should represent a sufficient number of soil
particles, and, for the soil used in these tests (i.e., AASHTO uniformly-graded coarse
aggregate), the smallest realistic soil element size was determined to be 50 mm in each local
Cartesian direction based on the average aggregate size. A mesh sensitivity study was
conducted to investigate the effect of the smallest element size of 50 mm, 75 mm, and 100 mm
on the numerical simulation to determine the optimal mesh density near the boulder, where
large displacements were anticipated, and to increase computational efficiency while
maintaining an accurate global response of the system. Results of this parametric study indicate
that the smallest element size of 75 mm provided optimum combination of accuracy and
computational efficiency. The largest mesh density on the exterior of the soil domain remained
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Table 1. Summary of boulder and soil parameters used in M-C model

                                          Elastic shear                          Friction                            Dilation
                      Density           modulus         Poisson’s        angle         Cohesion        angle
                 (tonne/mm3)         (MPa)              ratio        (degrees)        (MPa)       (degrees)
Boulder      3.056 × 10–9                9480                0.25             37.8               18.3                0
Soil              2.1 × 10–9                      20                  0.25              45             0.0048            15



constant at 250 mm. Hence, the optimum mesh was determined to be 75 mm near the boulder-
soil interface and smoothly transitioning to 250 mm at the exterior of the soil domain.

Calibration of the M-C constitutive parameters for the backfill soil was conducted based
on the results of Test 1. These parameters included shear modulus (G), friction angle (φ),
dilation angle (ψ ), and cohesion (c). Based on the gradation and angularity of the AASHTO
coarse aggregate the friction angle is estimated to be 45° and the dilation angle is estimated
to be 15° [25]. A sensitivity analysis indicated that shear modulus and cohesion had a greater
influence on the global response of the system than the friction and dilation angles. Figure 9
shows a comparison of simulated boulder displacement versus time based on varied values
of G and c with recordings from Test 1. Figure 9 shows that the boulder translational
displacement increases as the shear modulus of soil decreases. A combination of G = 20 MPa
and c = 4.8 kPa yielded an excellent match with field-scale recordings. Hence, this
combination was used for subsequent simulations. Table 1 summarizes material constitutive
properties used in this study.

4.3. CONTACT ALGORITHMS
Contact algorithms were used to mimic frictional interaction between the boulder and soil,
truck and LVAR system, and self-contact of truck components. One- or two-way contact
sliding interfaces, which prevented nodes of selected elements from penetrating the surfaces
of others, were used to represent boulder-to-soil and vehicle-to-LVAR barrier contact. The
one-way formulation was checked to determine if the nodes of a defined slave part penetrated
the surfaces of a defined master part while two-way formulation was checked for penetrations
in both directions [19]. The static contact friction angle between the boulder and soil was
selected to be 22.5° (i.e. 0.5*φ ) [26] which gives a friction coefficient of 0.414. The dynamic
coefficient of friction is assumed to be the same as the static coefficient. The static coefficient
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of friction between the truck and LVAR system was 0.4 [1]. A standard penalty formulation
that places interface springs normal to all penetrating nodes and contact surfaces was chosen
to represent interaction between the truck and boulder because the stiffness of each was
approximately in the same order of magnitude. A soft constraint penalty formulation, which
calculates the stiffness of the interface springs based on stability considerations during a given
time step, was chosen for contact between the boulder and soil due to large differences in their
stiffness magnitudes [12]. These penalty-based formulations were useful because no special
treatment of intersecting interfaces is required. In addition, this approach minimizes
hourglassing that could potentially occur in elements representing the soil due to large
deformations that are anticipated in the soil during the impact events [19].

5. RESULTS AND DISCUSSION
Two field-scale tests were conducted and used to rate the performance of LVAR barrier
systems against M30 and M50 impacts. Using the data collected from the field and calibrated
soil and boulder material models the results are discussed in the following section. The final
position of the truck after impact from Test 1 and Test 2 and snapshots of their respective 
LS-DYNA simulations are shown in Figure 10. From this qualitative comparison, the only
observed differences were that the truck hood detached in both field-scale tests and the
barrels did not eject in Test 1 when compared against the simulation. The amount of truck
deformation was very similar between the field-scale test and respective simulations.
Quantitative investigations that follow revealed that these observed differences played a
minor role in relation to overall performance and the LS-DYNA model was determined to
have accurately predicted actual impact behavior.

Figure 11 presents a comparison of simulated boulder translational displacement versus
time with test recordings based on fiducial tracking for Tests 1 and 2. Figure 12 shows the
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(a) Field-Scale Test 1 (b) Simulation Test 1

(c) Field-Scale Test 2 (d) Simulation Test 2

Figure 10. Comparison of final impact condition of field-scale tests and
LS-DYNA simulations: (a) Field-Scale Test 1; (b) Simulation Test 1; (c) Field-
Scale Test 2; and (d) Simulation Test 2



corresponding plot for boulder rotation. Both plots show good agreement between the test and
simulation, although there is a slight disparity for boulder rotation in Test 2. This disparity was
attributed to soil particles in the numerical simulation unable to fill the void created behind
the boulder after the impact when the boulder reaches equilibrium during a simulation; in the
field-scale test, loose soil particles were able to fill the void created behind the boulder after
impact when the boulder was rebounding. Nevertheless, Figure 11 and Figure 12 demonstrate
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that LS-DYNA adequately captured the overall dynamic response of this LVAR system under
vehicular impact. The calibrated soil properties also predicted the response of Test 2, which
was rated for M50 as discussed previously.

Figure 13 shows the comparison of the simulated pressure-time histories at the location
of the pressure cells with those recorded by the pressure cells for Test 1. Figure 14 shows the
corresponding plot for Test 2.
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These figures show that the LS-DYNA model can capture the magnitude of the pressure
experienced by the pressure cells during impact testing. In both figures, the simulated
pressure-time history starts out at some value while the recorded pressure-time history starts
near zero. This is attributed to the type of pressure cell used in the field-scale tests. The
pressure cell only measures the change in pressure and has a zero reading at constant pressure,
while the LS-DYNA simulations measure the pressure with respect to depth. The disparity
between the simulated and recorded pressure-time histories might be due to a combination of
several reasons. First, the effect of soil-pressure cell interaction in the field test was not
considered in the LS-DYNA simulations since the pressure cells were not modeled. The
simulated pressure-time histories in LS-DYNA were obtained by monitoring the pressure-
time histories of the elements at the corresponding locations of the pressure cells. Second, the
soil parameters were calibrated against the global response of Test 1, for which the response
of the truck and boulder may have played a dominate role. Therefore, the calibrated soil
parameters may not be able to accurately reflect the pressure-time history within the soil;
however Figure 13 and Figure 14 indicate that the magnitudes of soil pressures were captured.

6. CONCLUSIONS
There is a lack of LVAR field-scale tests and corresponding numerical modeling to
investigate the performance of these systems under vehicular impact. This paper presents
two field-scale tests with corresponding LS-DYNA models to predict the global response of
the system under vehicular impact. The LVAR system consisted of a single granite boulder
embedded in AASHTO coarse aggregate subjected to M30 and M50 impact tests. Using
high-speed cameras and pressure cells, information collected was used to calibrate both soil
and boulder material parameters. This study suggests that: 1) a realistic truck model is
imperative to accurately predict the global response of an LVAR system; and 2) using a
simplistic material model for boulder and soil, LS-DYNA simulations were able to predict
the global response such as boulder translational displacement and rotation during the impact
events. Lastly, soil and boulder material properties calibrated based on the first test involving
a vehicular impact at a lower speed were used to accurately predict the response of a second
test involving a vehicular impact at a higher speed.
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