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Abstract Plants react to seasonal change in day length through altering physiology and

development. Factors that function to harmonize growth with photoperiod are poorly understood.

Here we characterize a new protein that associates with both circadian clock and photoreceptor

components, named PHOTOPERIODIC CONTROL OF HYPOCOTYL1 (PCH1). pch1 seedlings have

overly elongated hypocotyls specifically under short days while constitutive expression of PCH1

shortens hypocotyls independent of day length. PCH1 peaks at dusk, binds phytochrome B (phyB)

in a red light-dependent manner, and co-localizes with phyB into photobodies. PCH1 is necessary

and sufficient to promote the biogenesis of large photobodies to maintain an active phyB pool

after light exposure, potentiating red-light signaling and prolonging memory of prior illumination.

Manipulating PCH1 alters PHYTOCHROME INTERACTING FACTOR 4 levels and regulates light-

responsive gene expression. Thus, PCH1 is a new factor that regulates photoperiod-responsive

growth by integrating the clock with light perception pathways through modulating daily phyB-

signaling.

DOI: 10.7554/eLife.13292.001

Introduction
Plants have evolved to coordinate physiology and phenology with seasonal variation in the environ-

ment (Wilczek et al., 2010). These adaptations to changing day length are called photoperiodic

responses, which are regulated by both the circadian clock and specific signaling pathways, including

light sensory systems (Shim and Imaizumi, 2015). In plants, photoperiod regulates myriad pro-

cesses, including the transition to flowering (Valverde et al., 2004), cold acclimation (Lee and Tho-

mashow, 2012), and growth (Niwa et al., 2009; Nomoto et al., 2012). In Arabidopsis, daily

hypocotyl elongation is accelerated in short days compared to long day conditions, and requires

both the circadian clock and light signals to properly react to changing photoperiods (Niwa et al.,

2009; Nozue et al., 2007).

Circadian clocks provide an adaptive advantage by synchronizing internal physiology to the exter-

nal environment, allowing for an efficient allocation of resources in plants (Dodd et al., 2005). More

than 20 clock components have been characterized in Arabidopsis, forming a complex network of

interlocking transcription-translation feedback loops (Hsu and Harmer, 2014; Nagel and Kay,
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2012; Pokhilko et al., 2012). Among them, a tripartite protein complex named the Evening Com-

plex (EC) regulates circadian rhythms and suppresses hypocotyl growth in the evening

(Nusinow et al., 2011). Mutations in any of the EC components, EARLY FLOWERING 3 (ELF3)

(Hicks et al., 2001), EARLY FLOWERING 4 (ELF4) (Doyle et al., 2002) or LUX ARRHYTHMO (LUX)

(Hazen et al., 2005; Onai and Ishiura, 2005), leads to arrhythmic circadian oscillations, elongated

hypocotyls, and early flowering regardless of day length (Nagel and Kay, 2012). The EC regulates

hypocotyl elongation by repressing the expression of two critical bHLH transcription factors PHYTO-

CHROME INTERACTING FACTOR 4 and 5 (PIF4 and PIF5) (Nusinow et al., 2011), which are two

key regulators in phytochrome-mediated light signaling pathways (Huq and Quail, 2002;

Khanna et al., 2004). Furthermore, ELF3 directly binds to the red light photoreceptor phytochrome

B (phyB) (Liu et al., 2001) and the E3-ligase CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1)

(Yu et al., 2008), connecting the clock to light signaling.

Arabidopsis possesses five red/far-red light absorbing phytochromes (phyA to E) (Clack et al.,

1994; Sharrock and Quail, 1989). Phytochromes are converted to the Pfr (active) form upon red

(660 nm) light treatment, and reverted to the Pr (inactive) form either upon far-red (730 nm) light

exposure or by incubation in the dark in a process termed dark reversion (Rockwell et al., 2006).

Signaling through phytochromes regulates germination, shade avoidance, circadian rhythms, photo-

synthesis, hypocotyl growth and flowering time (Kami et al., 2010). During the day, phytochromes

play a prominent role sensing environmental light signals to suppress growth: phyB in the Pfr state

binds to PIFs (such as PIF3, 4 and 5) to regulate their post-translational turnover (Bauer et al., 2004;

Lorrain et al., 2008; Nozue et al., 2007). Taken together, daily growth rhythms in seedlings are the

result of both post-translational degradation of PIF3, 4, and 5 by phytochromes (Lorrain et al.,

2008; Soy et al., 2012) and transcriptional regulation of PIF4 and PIF5 by the EC (Nozue et al.,

2007; Nusinow et al., 2011).

Photoconversion of phyB by red light induces its localization to discrete subnuclear domains

named photobodies (Chen and Chory, 2011; Chen et al., 2003). Light conditions that drive the Pr/

Pfr equilibrium towards Pfr will promote formation of large photobodies in vivo (Chen et al., 2003),

which correlates with the photoinhibition of hypocotyl elongation and the degradation of PIF3

eLife digest Most living things possess an internal “circadian” clock that synchronizes many

behaviors, such as eating, resting or growing, with the day-night cycle. With the help of proteins

that can detect light, known as photoreceptors, the clock also coordinates these behaviors as the

number of daylight hours changes during the year. However, it is not known how the clock and

photoreceptors are able to work together.

The circadian clocks of animals and plants have evolved separately and use different proteins. In

plants, a photoreceptor called phytochrome B responds to red light and regulates the ability of

plants to grow. Most plants harness sunlight during the day, but grow fastest in the dark just before

dawn. In 2015, researchers identified a new protein in a plant called Arabidopsis that is associated

with several plant clock proteins and photoreceptors, including phytochrome B. However, the role

of this new protein was not clear.

Now, Huang et al. – including many of the researchers from the 2015 work – studied the new

protein, named PCH1, in more detail. The experiments show that PCH1 is a critical link that

regulates the daily growth of Arabidopsis plants in response to the number of daylight hours. PCH1

stabilizes the structure of phytochrome B so that it remains active, even in the dark. This prolonged

activity acts as a molecular memory of prior exposure to light and helps to prevent plants from

growing too much in the winter when there are fewer hours of daylight. Since PCH1 is also found in

other species of plants, it may play the same role in regulating growth of major crop plants.

The next challenge is to understand how the binding of PCH1 to phytochrome B alters the

photoreceptor’s activity. In the future, Huang et al. hope to find out if manipulating the activity of

PCH1 can improve the growth of crops in places where there is a large change in day length across

the seasons.

DOI: 10.7554/eLife.13292.002
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(Chen et al., 2003; Van Buskirk et al., 2014). Since proper degradation of PIFs is critical to regulate

growth (Al-Sady et al., 2006; Lorrain et al., 2008), one proposed function of photobodies is to sta-

bilize the phyB Pfr form, which allows active phyB to continue controlling the level of PIFs and sup-

pressing hypocotyl growth in prolonged darkness or in short-days (Rausenberger et al., 2010;

Van Buskirk et al., 2014). Current mathematical models of red-light signaling dynamics predict a

yet undiscovered factor that directly modulates photobody formation in vivo in response to light

(Klose et al., 2015).

Here we present the characterization of an EC-associated protein called PCH1 (for PHOTOPERI-

ODIC CONTROL OF HYPOCOTYL 1). Our results define PCH1 as a new clock-regulated phyto-

chrome-binding factor that regulates photoperiodic growth by stabilizing phyB-containing

photobodies in the evening, thereby providing a molecular mechanism for prolonging red-light sig-

naling after prior light exposure.

Results

PCH1 (At2g16365.2) encodes a conserved, evening-peaked, EC-
associated protein
A protein encoded by At2g16365, a gene that was described as required for transcriptional

responses to lincomycin-induced chloroplast damage (Ruckle et al., 2012), was repeatedly co-puri-

fied with the EC by tandem affinity-purification coupled with mass spectrometry (AP-MS) analyses

(Huang et al., 2015). According to the TAIR10 database (Lamesch et al., 2011), At2g16365 has

four splice variants encoding different protein products, three of which contain an F-box domain

(At2g16365.1, 3 and 4) (Figure 1—figure supplement 1A). All peptides from AT2G16365 that co-

purified with the EC were mapped to At2g16365.2 (Figure 1—supplement 2 and Huang et al.,

2015), which contains the first two exons and lacks the sequence encoding the F-box domain. Semi-

quantitative RT-PCR analysis and RNA-seq reads from a publically available RNA-seq dataset

(Gulledge et al., 2014) indicated that only At2g16365.2 is transcribed (Figure 1—figure supple-

ment 1B and Figure 1—figure supplement 3). Therefore, all presented constructs are based on

the dominant isoform At2g16365.2. Furthermore, a T-DNA insertion loss-of-function line in

At2g16365 (SALK_024229, Ruckle et al., 2012) resulted in a short-day-specific hypocotyl phenotype

(described below). Thus, the At2g16365 gene was renamed PHOTOPERIODIC CONTROL OF

HYPOCOTYL 1 (PCH1).

Examination of microarray data from long day, 12L:12D and short day time courses (Light: Dark

hours = 16:8, 12:12 and 8:16, respectively) from the DIURNAL database (Michael et al., 2008b;

Mockler et al., 2007) found that expression of PCH1 cycled with a peak of expression occurring in

the evening. PCH1 mRNA accumulates after dawn, reaches a maximum at Zeitgeber time 8 (ZT8)

and decreases towards the end of night (Figure 1A). This expression pattern was validated by quan-

titative PCR (qPCR) analyses using cDNA samples of short-day grown seedlings (Figure 1B).

To test if PCH1 protein levels oscillate, a transgene expressing PCH1-His6-FLAG3 under the con-

trol of the PCH1 promoter in pch1 (SALK_024229) (PCH1p::PCH1) was generated and protein abun-

dance was monitored during a short day time course. The PCH1-His6-FLAG3 fusion protein

accumulates after dawn, reaches a peak level in the early evening (ZT9) and a trough at subjective

dawn (Figure 1C), similar to PCH1 expression (Figure 1B). Under 12L:12D and long day conditions,

PCH1-His6-FLAG3 in PCH1p::PCH1 plants continues to peak near the dusk transition (Figure 1—fig-

ure supplement 4). In a PCH1 constitutive expression line (PCH1ox3), PCH1 protein levels were con-

stant under all photoperiods, unlike PCH1p::PCH1 (Figure 1C and Figure 1—figure supplement 4).

To determine if PCH1 is present in other plant species, PCH1 orthologs were identified. Pairwise

alignments of Arabidopsis PCH1 with orthologs from Oryza sativa, Brachypodium distachyon, and

Populus trichocarpa indicate percent identity is 19.6%, 20.81% and 32.03%, respectively (Clustal

Omega, http://www.ebi.ac.uk/Tools/msa/clustalo/). The last 43 amino acids of the C-terminus are

highly conserved among PCH1 orthologs (Figure 1—figure supplement 5). In addition, PCH1 ortho-

logs share the evening-phased expression pattern under 12L:12D (Figure 1D), suggesting that

PCH1 may have conserved time-of-day-specific functions (Michael et al., 2008a).
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pch1 exhibits day-length specific defects in hypocotyl elongation
The association of PCH1 with the EC and light signaling components suggested that PCH1 may reg-

ulate hypocotyl elongation (Huang et al., 2015). Therefore, hypocotyl lengths of 4-day-old wild

type, phyB-9 (Reed et al., 1993), elf4-2, elf3-2 (Nusinow et al., 2011) and pch1 loss-of-function

mutant (Ruckle et al., 2012) seedlings were compared under long day, 12L:12D and short day con-

ditions (Figure 2A). Unlike phyB-9, elf3-2 and elf4-2, which exhibit longer hypocotyls than wild type

Figure 1. PCH1 (At2g16365.2) encodes a conserved evening-phased protein. (A) Time-course gcRMA (GeneChip Robust Multiarray Averaging) values

of PCH1 expression (from Diurnal database, http://diurnal.mocklerlab.org/, Mockler et al., 2007) under short day, 12L:12D and long day conditions

(Light: Dark hours = 8:16, 12:12 and 16:8, respectively). Grey shading indicates dark period. (B) Time-course qPCR analysis of PCH1 expression using

cDNA samples (from ZT 0 to 24, with 3 hr intervals) of 4-day-old seedlings grown under short day conditions, normalized to IPP2 and APA1. Mean ± SD

(n=3 biological reps). (C) Anti-FLAG immunoblotting detecting PCH1-His6-FLAG3 levels using protein extracts from time-course samples (from ZT 0 to

24, with 3 hr intervals) of 4-day-old, short-day-grown PCH1p::PCH1 and PCH1ox3 plants, which express the tagged PCH1 protein driven by the PCH1

native promoter or the 35S CaMV promoter, respectively. Actin was used for normalization. Rectangles above blots represent light/dark conditions

under which samples were flash frozen in liquid N2, white = light and black = dark. Wild type (WT), pch1 and PCH1ox3 in phyB-9 were controls for

immunoblots. (D) Normalized gcRMA values of PCH1 orthologs from Arabidopsis thaliana (At2g16365), Brachypodium distachyon (Bradi2g46850), Oryza

sativa (Rice, LOC_Os01g49310), and Populus trichocarpa (Poplar, POPTR_0004s16430.1) under 12L:12D conditions from Diurnal database, http://diurnal.

mocklerlab.org/, Mockler et al., 2007). Expression is normalized to min and max value.

DOI: 10.7554/eLife.13292.003

The following figure supplements are available for figure 1:

Figure supplement 1. At2g16365.2 is the predominant transcript of PCH1.

DOI: 10.7554/eLife.13292.004

Figure supplement 2. Peptides identified by ELF3/4 AP-MS only mapped to the protein encoded by At2g16365.2.

DOI: 10.7554/eLife.13292.005

Figure supplement 3. Available RNAseq data suggest only At2g16365.2 is expressed.

DOI: 10.7554/eLife.13292.006

Figure supplement 4. PCH1 levels peak at dusk under 12L:12D or long day conditions.

DOI: 10.7554/eLife.13292.007

Figure supplement 5. Multiple sequence alignments of PCH1 orthologs at the C-terminus.

DOI: 10.7554/eLife.13292.008
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under all photoperiods tested, pch1 shows a day-length-specific defect (Figure 2A). Under long

days, hypocotyls of pch1 are not longer than wild type (Figure 2A). As the dark period extended to

12 hr, pch1 exhibited a slightly but significantly longer hypocotyl than wild type (p<0.01)

(Figure 2A). Under short days, pch1 mutants elongated hypocotyls even further (p<0.0001)

(Figure 2A). Constitutive expression of PCH1 resulted in the opposite phenotype: PCH1ox3 mutants

have shorter hypocotyls than wild type under all photoperiods (p<0.0001) (Figure 2A). PCH1p::

PCH1 rescued the hypocotyl length phenotype of pch1 mutants in two independent lines (Figure 2—

figure supplement 1), showing that the level and/or timing of PCH1 expression is critical for proper

regulation of hypocotyl elongation.

The evening-phased expression of PCH1 suggested it may function to regulate growth rhythms

at a specific time of day. Therefore, hypocotyl growth rates of wild type, pch1, PCH1ox3 and

PCH1p::PCH1 were measured in short days by time-lapse imaging. Wild type plants showed rhyth-

mic hypocotyl growth under short days, with a maximal growth rate at dawn, as described

(Nozue et al., 2007) (Figure 2B). On the third night post-germination (from ZT56 to ZT72), pch1

seedlings had higher hypocotyl growth rates than wild type during the night, especially during the

3rd to the 5th night (Figure 2B). Supporting the hypothesis that PCH1 is a suppressor of hypocotyl

elongation, constitutive expression of PCH1 in PCH1ox3 inhibited hypocotyl elongation throughout

the night, while PCH1p::PCH1 restored the growth rate to wild type levels (Figure 2B).

PCH1 is not required for circadian rhythms or sensitivity of flowering to
photoperiod
Light signaling and the EC are critical for circadian rhythmicity and flowering pathways (Nagel and

Kay, 2012; Shim and Imaizumi, 2015), therefore the role of PCH1 in circadian rhythms and time to

flowering was investigated. To determine if PCH1 regulates the circadian oscillator, a CCA1-pro-

moter driven LUCIFERASE (CCA1::LUC) was used to monitor endogenous rhythms (Pruneda-

Paz et al., 2009). The luciferase activity of CCA1::LUC in wild type, pch1 and PCH1ox3 oscillates

with a period of ~24 hr (23.20 ± 0.45, 23.13 ± 0.37, and 22.97 ± 0.32 hr, respectively, mean ± SD, n

= 8) (Figure 3A,B and Figure 3—figure supplement 1), showing that PCH1 levels do not affect the

circadian period of the reporter. However, the pch1 mutation results in an early flowering phenotype

under long days, while PCH1ox3 flowers later than wild type (Figure 3C). Unlike elf4-2 plants, which

flower early under both long days and short days (Doyle et al., 2002), the flowering time of pch1 or

PCH1ox3 is not different from wild type under short days (Figure 3D). Together, the results show

that PCH1 is an output rather than a component of the circadian clock and that the pch1 mutant is

still sensitive to photoperiod in respect to flowering control.

AP-MS using PCH1-His6-FLAG3 co-purified clock and light signaling
components
Previous AP-MS studies with the EC components ELF3 and ELF4 identified PCH1 as a co-precipitat-

ing protein (Huang et al., 2015). PCH1-associated proteins were identified by AP-MS from PCH1ox3

plants expressing PCH1-His6-FLAG3, which are harvested at dusk (ZT12). After excluding non-spe-

cific binding proteins from negative control GFP-His6-FLAG3 AP-MS and non-specific structural, met-

abolic, and photosynthetic proteins (Huang et al., 2015; Mellacheruvu et al., 2013), PCH1 AP-MS

identified 17 proteins from three biological replicate purifications (Table 1, for all co-purified pro-

teins, see Table 1—source data 1). 15 of the 17 proteins that co-precipitated with PCH1 overlap

with the ELF3 AP-MS (Huang et al., 2015), including the EC components ELF3, ELF4, and LUX, all

five phytochromes (A to E), TANDEM ZINC KNUCKLE/PLUS3 (TZP), DAYSLEEPER, MUT9-LIKE

KINASE 2 (MLK2), CHLOROPLAST RNA BINDING (CRB), the protease RD21a, and the COP1-SPA1

complex (Table 1). COP1-SPA1 is part of a complex that mediates the light-dependent turnover of

light signaling components (Saijo et al., 2003). TZP positively regulates morning-specific plant

growth and flowering responses through associating with phyB (Kaiserli et al., 2015; Loudet et al.,

2008). DAYSLEEPER is a hAT transposase that is required for proper embryonic development

(Bundock and Hooykaas, 2005). MLK2 is a nuclear kinase that regulates circadian rhythms and

osmotic stress responses (Huang et al., 2015; Wang et al., 2015). CRB is a RNA binding protein

that regulates circadian rhythms (Hassidim et al., 2007). RD21a is a drought-inducible cysteine pro-

tease (Koizumi et al., 1993). FAR-RED ELONGATED HYPOCOTYL 1 (FHY1) and TOPLESS (TPL)
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were proteins co-purified with PCH1 that were not identified in ELF3 AP-MS. FHY1 interacts with

phyA and is required for phyA nuclear import upon light treatment (Hiltbrunner et al., 2005). TPL is

a Groucho/Tup1-type transcriptional co-repressor that interacts with proteins from circadian and

development pathways (Liu and Karmarkar, 2008; Wang et al., 2012). In summary, our PCH1 AP-

MS results confirm that PCH1 is a component of a reported protein-protein interaction network con-

sisting of the EC, phytochromes and the COP1-SPA1 complex.

Figure 2. PCH1 regulates the photoperiodic response of hypocotyl elongation in the evening. (A) Hypocotyl lengths of 4-day-old WT, pch1, PCH1ox3,

elf3-2, elf4-2 and phyB-9 seedlings grown under long day, 12L:12D and short day conditions. Mean ± 95% confidence interval (CI) (n=20). (B) pch1

grows faster than WT during night. Time-lapse images were taken every hour for each seedling of WT, pch1, PCH1ox3 and PCH1p::PCH1 grown under

short day conditions. Growth rate was calculated as the hypocotyl increase per hour and plotted against time. Solid lines are the regression analyses of

data. Mean ± SEM (n � 14). Grey shading indicates dark period. Also see Figure 2—source data 1 and 2.

DOI: 10.7554/eLife.13292.009

The following source data and figure supplement are available for figure 2:

Source data 1. Raw measurements of hypocotyl lengths for Figure 2A.

DOI: 10.7554/eLife.13292.010

Source data 2. ANOVA analyses and Bonferroni’s multiple comparison tests for Figure 2A.

DOI: 10.7554/eLife.13292.011

Figure supplement 1. PCH1 levels regulate hypocotyl length under short day conditions.

DOI: 10.7554/eLife.13292.012
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phyB recruits PCH1 to the EC-phytochrome-COP1 interactome
ELF3, phyB, and COP1 interact with each other to form a ’triangle core’ of the EC-phytochrome-

COP1 interactome (Jang et al., 2010; Liu et al., 2001; Yu et al., 2008), recruiting other proteins

into the interaction network (Huang et al., 2015). To determine if the association between PCH1

and other co-purified proteins depended on the EC or phyB, PCH1 AP-MS analysis in wild type

(PCH1ox3) was compared to those in elf4-2, elf3-2 or phyB-9 backgrounds. Although PCH1 was orig-

inally found co-precipitating with ELF4 and ELF3, both are dispensable for PCH1 to associate with

the light signaling components in the network (Table 2). In comparison, phyB is critical for recruiting

PCH1 to the EC-phytochrome-COP1 interactome. In phyB-9, PCH1AP-MS did not co-precipitate the

EC, the COP1-SPA1 complex, TZP, MLK2, RD21a, TPL, or phyC (Table 1). However, the association

with DAYSLEEPER, CRB, phyD, phyE, phyA, and FHY1 was retained in phyB-9. Therefore, our PCH1

AP-MS analysis in phyB-9 suggests that the association of PCH1 with the EC, the COP1-SPA1 com-

plex, MLK2, and TZP is bridged by phyB, while loss of phyC could be due to a reduction in phyC

caused by the phyB mutation (Clack et al., 2009). Together, our PCH1 AP-MS analyses in different

Figure 3. Phenotypic characterization of pch1 and PCH1ox3 in circadian and flowering pathways. (A) Seedlings of WT, pch1, or PCH1ox3 carrying the

CCA1:LUC luciferase reporter were grown under 12L:12D conditions for five days before transferring to continuous white light. Bioluminescence were

plotted against ZT hours. Mean ± SD (n = 8). Experiments were repeated at least three times. (B) Relative amplitude error (RAE) versus period of WT,

pch1, and PCH1ox3 rhythms was plotted. RAE = 0.5 was used as a cutoff (dotted line), above which a seedling is not considered rhythmic (n = 8).

Experiments were repeated at least three times. (C) and (D) Flowering assays under either long day (C) or short day (D) conditions were conducted.

Number of rosette leaves from WT, pch1, PCH1ox3 and PCH1p::PCH1 plants with 1 cm inflorescence stem was counted. Mean ± 95% CI (n � 20). One-

way ANOVA and multiple comparisons were done, with star symbols indicating if it is significantly different from WT (*p=0.012, ****p<0.0001, ns = not

significantly different). Experiments were repeated twice.

DOI: 10.7554/eLife.13292.013

The following figure supplement is available for figure 3:

Figure supplement 1. Modulating PCH1 levels does not affect the circadian period.

DOI: 10.7554/eLife.13292.014
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genetic backgrounds demonstrate that PCH1 is integrated into the EC-phytochrome-COP1 interac-

tome in vivo through the association with phyB.

PCH1 directly interacts with phyB, and preferentially binds the Pfr form
Next, yeast two-hybrid assays were used to determine if interactions between PCH1 and selected

PCH1-associated proteins were direct. Consistent with the AP-MS data, direct interactions between

PCH1 and ELF3, ELF4, LUX, COP1 or TZP were not observed (Figure 4A). However, PCH1 inter-

acted with the C-terminus of phyB (Figure 4A). PCH1 also interacted with the C-terminal tail of

phyD and phyE, but not with either phyA or phyC in yeast (Figure 4B). To validate the PCH1-phyB

interaction in planta, PCH1-His6-FLAG3 was transiently co-expressed with a phyB-GFP fusion protein

in tobacco (Nicotiana benthamiana) leaves. phyB-GFP specifically co-precipitated with PCH1-His6-

FLAG3 in an anti-FLAG immunoprecipitation, while PCH1 and GFP alone did not interact

(Figure 4C).

Light absorption by phytochromes alters their confirmation, subcellular localization, and binding

to signaling partners (Burgie et al., 2014; Kikis et al., 2009; Kircher et al., 2002). We therefore

examined the light sensitivity of the PCH1-phyB interaction. PCH1ox3 seedlings were used for phyB

co-precipitation reactions after 12L:12D entrainment under white light conditions (WL). Endogenous

phyB co-precipitated with PCH1 at the end of the light treatment (ZT12), confirming the AP-MS

results (Figure 4D, lane 3). Less phyB was co-precipitated with PCH1-His6-FLAG3 under extended

dark periods (24 or 48 hr in dark, lane 4 and 5), although the levels of phyB in the input were

increased in these conditions, indicating that light promotes the PCH1-phyB interaction. The red-

light sensitivity of the PCH1-phyB interaction was tested and found that 12 hr of red light treatment

on the last day was sufficient to maintain the PCH1-phyB interaction (Figure 4D, lane 6), suggesting

that PCH1 bound to the active Pfr form of phyB. Conversely, a ten-minute pulse of far-red light at

the end of day (EOD-FRp) that converted phyB to the inactive Pr form reduced the PCH1-phyB inter-

action (Figure 4D, lane 7).

To test directly if PCH1 preferentially binds the active Pfr form of phyB, a reconstituted light-

induced in vitro binding assay was assembled with recombinant PCH1-His6-FLAG3 purified from E.

coli as bait. phyB-HA was expressed and translated in rabbit reticulocyte lysate and either the apo-

protein, or the phyB holoprotein (mixed with the chromophore phytochromobilin, PFB) were then

mixed with PCH1-His6-FLAG3 under dark or red/far-red light, respectively. PCH1 weakly interacts

with either the apoprotein or the Pr form of phyB but preferentially binds the active Pfr form of

phyB, compared to the YPet (a YFP variant) control (Figure 4E). In summary, PCH1 directly interacts

with phyB, and the interaction is light- and wavelength-sensitive in vivo and in vitro. Combined with

our PCH1 AP-MS analyses in different genetic backgrounds, our protein-protein interaction/associa-

tion data demonstrate that PCH1 is a new phyB-interacting protein and is integrated into the EC-

phytochrome-COP1 interactome in vivo through the association with phyB (Figure 4—figure supple-

ment 1).

PCH1 localizes in the nucleus and stabilizes phyB photobodies in the
early evening
A subcellular localization tool (Kosugi et al., 2009) identified a bipartite nuclear localization signal in

PCH1 (highlighted in Figure 1—figure supplement 5). Transient expression of a PCH1-YPet fusion

in tobacco showed that PCH1 was exclusively localized in the nucleus, while the YPet control was

localized to both nucleus and cytoplasm (Figure 5A). Furthermore, PCH1-YPet was localized to sub-

nuclear foci (Figure 5A) similar to the photobodies that phytochromes form after light exposure

(Kircher et al., 2002). Indeed, when PCH1-YPet and phyB-CFP were co-expressed, they co-localized

into nuclear photobodies (Figure 5A).

Photobodies containing phyB are necessary to suppress hypocotyl elongation in the early even-

ing, and phyB lacking C-terminal tails can neither form photobodies nor properly regulate growth

after transfer to dark conditions (Van Buskirk et al., 2014). Since PCH1 accumulates towards the

early evening to suppress hypocotyl elongation, interacts with the C-terminus of phyB, and localizes

with phyB to photobodies, we hypothesized that PCH1 regulates phyB photobody assembly/disas-

sembly. A phyB-GFP fusion protein (PBG) was introduced into phyB-9 and crossed into pch1 and

PCH1ox3 plants. Photobody formation was examined in short day-entrained (under 10 mmol�m-2
�s-1
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red light) seedlings at and after the transition to dark (0, 4, 8 and 16 hr in dark or ZT56, 60, 64, and

72, respectively). In wild type (phyB-9/PBG), phyB-GFP formed large (>1 mm3) photobodies (PB) after

8 hr of light treatment that gradually dissembled into smaller photobodies (<1 mm3) and a diffuse

nuclear GFP signal after 8 hr in dark (Figure 5B to D). PCH1ox3 lines showed more large phyB pho-

tobodies at the end of the day and throughout the night compared to wild type (Figure 5B and C).

In contrast, pch1 mutants exhibited a significant decrease in large photobodies (p<0.0001) and a sig-

nificant increase in small photobodies (p<0.0001) at the dusk transition and during the first four

hours of night compared to the wild type (Figure 5C and D). In higher red light (40 mmol�m-2
�s-1),

formation of large phyB photobodies in pch1 was significantly less (p<0.0001) at the dusk transition

compared to wild type, and significantly more small photobodies was observed throughout the night

(ZT56, p=0.024 and 72, p=0.0125, ZT60 and 64, p<0.0001) (Figure 5—figure supplement 1). How-

ever, PCH1ox3 lines showed significantly more large phyB photobodies (p�0.0002) for all time

Table 1. Proteins Co-Purified by PCH1 AP-MS in WT and phyB-9. Proteins co-purified with PCH1 were identified from affinity purifica-

tion coupled with mass spectrometry (AP-MS) analyses using 12L:12D grown, 10-day-old PCH1ox3 plants (in either WT or phyB-9

mutant backgrounds) harvested at ZT12.

AGI number Protein name ELF3 AP-MSb

Exclusive unique peptide count/Percent coveragea

PCH1ox3 in WT PCH1ox3 in phyB-9

rep1 rep2 rep3 rep1 rep2

At2g16365 PCH1c Y 30/73% 41/85% 37/79% 40/85% 32/77%

At2g18790 phyB Y 46/69% 47/65% 41/60% — —

At5g35840 phyC Y 31/44% 23/28% 25/29% — —

At4g16250 phyD Y 22/47% 19/34% 20/38% 22/38% 6/11%

At4g18130 phyE Y 41/55% 40/52% 45/60% 49/60% 31/41%

At1g09570 phyA Y 31/46% 36/49% 35/45% 36/48% 29/39%

At2g37678 FHY1 N 2/22% 2/21% 4/28% 4/28% 2/21%

At3g42170 DAYSLEEPER Y 5/13% — 4/11% 3/8% 2/6%

At1g09340 CRB Y —d —d 4/17% 6/24% 3/13%

At5g43630 TZP Y 9/15% 6/12% 12/23% — —

At2g32950 COP1 Y 7/15% 8/16% 8/18% — —

At2g46340 SPA1 Y 8/14% 5/7% 8/12% — —

At2g25930 ELF3 Y 6/12% 11/25% 12/26% — —

At2g40080 ELF4 Y —d 4/60% 3/42% — —

At3g46640 LUX Y 2/6% —d 4/15% — —

At3g03940 MLK2 Y —d 2/6% 2/6% — —

At1g15750 TPL N —d 3/3% 4/5% 2/2% —

At1g47128 RD21a Y —d 3/8% 2/4% —d —d

Also see Table 1—source data 1

a All listed proteins match 99% protein threshold, minimum number peptides of 2 and peptide threshold as 95%. Proteins not matching the criteria

were marked with "—".
b ELF3 AP-MS (Huang et al., 2015) was used for comparison.
c Percent coverage for PCH1 is calculated using protein encoded by At2g16365.2.
d Only one exclusive unique peptide was detected.

DOI: 10.7554/eLife.13292.015

Source data 1. The full list of proteins identified by AP-MS, listing unique peptides and the percent coverage. The full list is generated and exported

by Scaffold (Proteome Software Inc., Portland, Oregon; v.4.4.3) showing all co-purified proteins from all replicates of PCH1ox3 AP-MS and the GFP Con-

trol. The file contains reports on exclusive unique peptide counts and percent coverage for each co-purified proteins, with their names, accession num-

bers and molecular weight.

DOI: 10.7554/eLife.13292.016
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points (Figure 5—figure supplement 1). These observations demonstrate that PCH1 levels regulate

the fluence-dependent formation and maintenance of large phyB photobodies after illumination.

pch1 causes defects in red light and up-regulates expression of
downstream transcription factors
The PCH1-phyB interaction prompted us to test if pch1 results in red-light specific growth defects.

The hypocotyls of wild type, pch1, PCH1ox3, PCH1p::PCH1, and phyB-9 seedlings were measured

under constant red light of various intensities. Compared with wild type, pch1 seedlings have longer

hypocotyls and are hyposensitive to red-light-mediated suppression of hypocotyl elongation. This

phenotype was rescued in PCH1p::PCH1 transgenic plants (Figure 6A). Conversely, PCH1ox3 plants

showed hypersensitivity to red light under all light fluences (Figure 6A). In either constant far-red or

blue light, hypocotyl lengths of pch1 and PCHox3 seedlings resembled those of wild type plants

(Figure 6—figure supplement 1). These data suggest that PCH1 specifically modulates hypocotyl

elongation in response to red light.

To better understand the mechanism underlying PCH1-mediated suppression of hypocotyl

growth, the effect of altered PCH1 levels on the expression of transcription factors downstream of

phytochrome signaling was measured. LONG HYPOCOTYL IN FAR RED 1 (HFR1) and the homeobox

transcription factor ATHB-2 are two transcription factors that are regulated by phytochromes in

Table 2. Proteins Co-Purified by PCH1 AP-MS in elf4-2 and elf3-2, compared to WT. Proteins co-purified with PCH1 were identified

from affinity purification coupled with mass spectrometry (AP-MS) analyses using 12L:12D grown, 10-day-old PCH1ox3 plants in either

elf4-2 or elf3-2 mutant backgrounds harvested at ZT12.

AGI number Protein name ELF3 AP-MSb

Exclusive unique peptide count/Percent coveragea

PCH1ox3 in WTc PCH1ox3 in elf4-2 PCH1ox3 in elf3-2

rep1 rep2 rep3 rep1 rep2 rep1 rep2

At2g16365 PCH1d Y 30/73% 41/85% 37/79% 29/77% 34/78% 42/82% 36/82%

At2g18790 phyB Y 46/69% 47/65% 41/60% 47/70% 31/46% 42/63% 40/56%

At5g35840 phyC Y 31/44% 23/28% 25/29% 30/43% 13/16% 20/28% 15/18%

At4g16250 phyD Y 22/47% 19/34% 20/38% 20/42% 12/25% 20/37% 16/30%

At4g18130 phyE Y 41/55% 40/52% 45/60% 42/57% 37/50% 43/55% 40/53%

At1g09570 phyA Y 31/46% 36/49% 35/45% 32/47% 24/34% 34/49% 27/38%

At2g37678 FHY1 N 2/22% 2/21% 4/28% —e 3/21% —e 3/21%

At3g42170 DAYSLEEPER Y 5/13% — 4/11% 3/7% 5/11% 2/5% —e

At1g09340 CRB Y —e —e 4/17% 2/9% 5/22% 3/13% 3/13%

At5g43630 TZP Y 9/15% 6/12% 12/23% 4/7% —e 12/21% 2/3%

At2g32950 COP1 Y 7/15% 8/16% 8/18% 3/7% —e 12/25% 7/11%

At2g46340 SPA1 Y 8/14% 5/7% 8/12% 5/10% 2/4% 17/26% 7/11%

At2g25930 ELF3 Y 6/12% 11/25% 12/26% 4/9% 3/6% — —

At2g40080 ELF4 Y —e 4/60% 3/42% — — — —e

At3g46640 LUX Y 2/6% —e 4/15% —e — — —

At3g03940 MLK2 Y —e 2/6% 2/6% — — 2/4% —

At1g15750 TPL N —e 3/3% 4/5% 2/3% 3/3% 4/5% 4/5%

At1g47128 RD21a Y —e 3/8% 2/4% —e 2/8% 3/8% —e

Also see Table 1—source data 1

a All listed proteins match 99% protein threshold, minimum number peptides of 2 and peptide threshold as 95%. Proteins not matching the criteria

were marked with "—".
b ELF3 AP-MS (Huang et al., 2015) was used for comparison.
c PCH1ox3 in WT is as shown in Table 1, for comparison with PCH1ox3 in elf4-2 and elf3-2.
d percent coverage for PCH1 is calculated using protein encoded by At2g16365.2
e only one exclusive unique peptide was detected.

DOI: 10.7554/eLife.13292.017
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response to shade and short days, and are positively correlated with hypocotyl elongation

(Kunihiro et al., 2011; Lorrain et al., 2008; Steindler et al., 1999). qPCR analyses were done using

time-course cDNA samples of short-day grown wild type, pch1 and PCH1ox3 seedlings. In wild type,

transcripts of HFR1 and ATHB-2 are suppressed by daylight and accumulate in the evening, with a

peak at dawn (Figure 6B). pch1 mutants up-regulated HFR1 and ATHB-2 during the dark period, in

agreement with our growth rate data showing the acceleration of hypocotyl growth in pch1 during

night (Figure 6B). Conversely, overexpression of PCH1 suppresses HFR1 and ATHB-2 transcript lev-

els throughout the light/dark cycle (Figure 6B). These data demonstrate that phytochrome photo-

perception and downstream gene expression is regulated by PCH1.

Figure 4. PCH1 directly interacts with phyB in a light-dependent manner. (A) and (B) yeast two-hybrid between PCH1 (fused to GAL4 DNA binding

domain, DBD) and preys (ELF3, ELF4, N-/C- termini (Nt or Ct) and full length (FL) LUX, COP1, TZP and the Ct of phyA, B, C, D, and E fused to GAL4

activating domain, AD). –LW select (minus Leu and Trp) for presence of both DBD and AD constructs and–LWH+3AT plates (minus Leu, Trp and His,

with 2 mM 3AT added) tested interactions. (C) Transient tobacco co-immunoprecipitation (IP) assay with PCH1-His6-FLAG3 and phyB-GFP or GFP. IPs

were done against FLAG followed by westerns using either anti-FLAG, phyB or GFP antibodies. (D) The in-vivo PCH1-phyB interaction is light-sensitive.

A schematic of the light treatment is above western. PCH1ox3 seedlings entrained in 12L:12D white light (WL) were either exposed to WL for 12 hr (WL

ZT12, lane 1 to 3), subjected to extended dark (WL to DD) for 24 or 48 hr (lane 4 and 5), red light for 12 hr (WL to Rc ZT12, lane 6), or an end-of-day far-

red pulse for 10 min after 12 hr of WL (WL EOD-FRp ZT12, lane 7). WT and PCH1ox3 in phyB-9 plants are western controls. IPs were done against FLAG

followed by westerns using either anti-FLAG or phyB antibodies. Anti-RPT5 was used as a loading control. The asterisk at the FLAG-IP / anti-phyB notes

an unspecific band that migrates faster than phyB that is present in every lane. (E) PCH1 preferentially binds the Pfr form of phyB in in vitro.

Recombinant His6-PCH1-His6-FLAG3 or His6-YPet-His6-FLAG3 was incubated with phyB-HA transcribed and translated by rabbit-reticulate lysate. PFB

absent (apo) phyB precipitations were incubated in the dark, while red (Pfr) or far red light (Pr) were incubated with 20 mM PFB. His-affinity capture was

followed by immunoblotting for anti-HA or anti-FLAG.

DOI: 10.7554/eLife.13292.018

The following figure supplement is available for figure 4:

Figure supplement 1. Interaction map of PCH1-associated proteins.

DOI: 10.7554/eLife.13292.019
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pch1 affects PIF4 levels and PIFs are required for PCH1-mediated
hypocotyl suppression
As PCH1 modulates phyB photobodies (Figure 5) and red light perception (Figure 6A), we sought

to determine if altered regulation of the PIFs underlies the gene expression and growth defects

observed in pch1. Since PIF4 directly interacts with phyB and regulates HFR1 and ATHB-2 expression

under shade or short day conditions, PIF4 expression and PIF4 levels were analyzed in pch1 mutants

(Lorrain et al., 2008; Lorrain et al., 2009; Soy et al., 2012). PIF4 mRNA levels were upregulated in

pch1 compared to wild type in a qPCR assay (Figure 7A). Using a pif4/PIF4p::PIF4-HA line to detect

PIF4 protein levels, we observed higher PIF4 levels in the evening in pch1 compared to wild type

(Figure 7B), suggesting that PCH1 can modulate PIF4 levels in the early evening. To elucidate if

PCH1 regulates hypocotyl elongation also through other PIFs, genetic interactions between pch1

Figure 5. PCH1 is localized in the nucleus to stabilize phyB-containing photobodies. (A) PCH1-YPet is nuclear localized when transiently expressed in

tobacco and co-localizes with phyB-CFP to photobodies. YPet alone was used as control. Scale bars = 25 mm. (B) Representative confocal images

showing phyB-GFP-containing photobodies in phyB-9, pch1 phyB-9 and PCH1ox3 phyB-9 plants at indicated time points during light-to-dark transition.

Plants were entrained in short days with 10 mmol�m-2
�s-1 of red light for two days before transferring to extended dark (ZT 56 to 72). The representative

images were picked based on the photobody morphology of the majority of the nuclei (>50%). The percentage of nuclei showing the corresponding

photobody patterns (with or without photobodies) were calculated based on three independent experiments. N represents the total number of nuclei

analyzed for each time point. Scale bars equal to 5 mm. No PB = photobodies not detected. (C) and (D) compare quantitative measurements of large

(>1 mm3, C) or small (<1 mm3 , D) phyB photobodies in all backgrounds. Mean ± 95% CI (n � 29). ND = no PB of according size were detected. * symbol

indicates significantly different (p<0.05, see text for more details about each p value).

DOI: 10.7554/eLife.13292.020

The following figure supplement is available for figure 5:

Figure supplement 1. Fewer large photobodies were detected in pch1 with higher intensity of red light treatment.

DOI: 10.7554/eLife.13292.021
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and pifs (pif3 and pif4 pif5) were tested by measuring hypocotyls of seedlings grown in short days

(Figure 7C). Single and higher order pif mutants reduced hypocotyl length in the wild type back-

ground, as previously reported (Soy et al., 2012). Introducing pif mutant alleles into the pch1

mutant background progressively ameliorated the elongated hypocotyl phenotype of the pch1

mutant. Taken together, these results show that altered PIF levels underlie the growth defects seen

in pch1, and that PIF3, 4, and 5 are required for the hypocotyl growth defects in pch1.

Discussion

PCH1 regulates phyB signaling by stabilizing phyB-photobody
formation
Here we show that PCH1 is a new phytochrome interacting protein that functions to increase sensi-

tivity to red light and prolongs phyB activity by maintaining photobody formation. PCH1 binding to

the C-terminus of phyB likely stabilizes the Pfr conformer (Chen et al., 2005), thereby providing a

molecular memory of light exposure to prevent inappropriate elongation in response to long nights.

Recent models of phyB signaling and photoconversion postulated that specific binding of a yet

identified factor to phyB in the Pfr state might prevent dark-reversion and maintain phyB to photo-

bodies to sustain an active pool of phyB in the dark in vivo (Klose et al., 2015). We found that loss

of PCH1 severely attenuated formation of large photobodies, particularly at low fluence red light

(Figure 5B). In both low and high red-light conditions, pch1 mutants had more small photobodies,

suggesting that PCH1 regulates either the transition from small to large photobody or the mainte-

nance of large photobodies. The phenotypes of pch1 mutants are distinct from mutations in HEM-

ERA, which is necessary for photobody initiation (Chen et al., 2010). Conversely, constitutive

overexpression of PCH1 resulted in an increase in the number and prolonged maintenance of large

photobodies during the night at both high and low light intensity compared to wild type (Figure 5

and Figure 5—figure supplement 1). Altering PCH1 levels, however, does not induce a constitu-

tively photomorphogenic phenotype (Figure 6A and Figure 6—figure supplement 1). We favor a

model wherein binding of PCH1 to phyB after light exposure traps phyB in an active conformation

and prolongs phyB localization to large photobodies by either slowing dark reversion rates or

through maintaining the superstructure of the photobody once formed.

PCH1 prolongs red light-mediated hypocotyl suppression in the
evening
Our data demonstrate that PCH1 is a new component that suppresses the photoperiodic response

of hypocotyl elongation. Although PCH1 accumulates at dusk, similar to the EC, pch1 mutants are

hypersensitive to the extended night, while the EC mutants are insensitive to changing photoper-

iods, displaying long hypocotyls regardless of day length (Figure 2A). This difference is likely due to

the strong transcriptional effects on PIF4 and PIF5 expression when the EC is absent

(Nusinow et al., 2011). We propose that the short day-specific phenotype of pch1 results from the

coincidence of the internal clock-controlled oscillation of PCH1 and PIF4, and external photoperiodic

cues. In short days, PCH1 peaks at dusk, binds photoactivated phyB and prolongs phyB photobody

formation to maintain phyB in the Pfr state, which then suppresses PIF4 levels in the early evening,

reducing PIF4 activities and hypocotyl growth (Figure 8). As the daytime increases in long days, the

peak of PIF4 (at ZT8) is no longer at dusk but in the middle of the day (Yamashino et al., 2014 and

Figure 8—figure supplement 1), when light perception by the phytochromes would act as the

major suppressor of elongation through post-translation regulation of PIF protein levels, masking

the requirement of PCH1 (Figure 8). PCH1 overexpression lines would constantly suppress hypocotyl

elongation due to maintaining phyB photobodies throughout the night (Figure 5B), leading to short-

ened hypocotyls as observed (Figure 2A). It is likely other PIFs (e.g. PIF3 and PIF5) also contribute

to the hypocotyl phenotype of pch1, as suggested by genetic analysis showing that higher order pif

mutations progressively suppresses the long hypocotyl phenotype of pch1 (Figure 7C).

In summary, we have identified a new factor that binds to active phyB to extend its activity in the

dark, and can maintain photomorphogenesis programs even in the long nights of short days. We

anticipate that modulating PCH1 levels or its expression pattern could potentially alter light percep-

tion and lead to improved growth responses at latitudes where photoperiod changes during the
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agricultural season or in species whose yield is highly sensitive to photoperiod (Sadras and Slafer,

2012).

Materials and methods

Plant materials and growth conditions
All plants used in this study are in the Columbia (Col) ecotype of A. thaliana unless noted. pch1

(SALK_024229), pif3 (SALK_081927C), phyB-9 and phyA-211 were obtained from the ABRC and

described previously (Alonso et al., 2003; Reed et al., 1993; Ruckle et al., 2012; Sung et al.,

2007; Zhong et al., 2012). elf3-2, elf4-2, and pif4 pif5 (pif4-101 pif5-1) lines were described previ-

ously (Nusinow et al., 2011). WS and cry1 cry2 seeds were kindly provided by Takato Imaizumi (Uni-

versity of Washington, Seattle) and are in the Wassilewskija (WS) ecotype. pif4/PIF4p::PIF4-HA

transgenic plants were kindly provided by Christian Fankhauser (University of Lausanne Center for

Integrative Genomics, Switzerland) and crossed with pch1. Homozygous mutant plants were vali-

dated by testing luciferase bioluminescence, drug resistance, and by PCR or dCAPS-based

genotyping.

Seeds were surface sterilized and plated on 1/2X Murashige and Skoog medium supplemented

with 0.8% agar and 3% sucrose (w/v). Sterilized seeds on plates were then stratified for 2 to 4 days

in darkness at 4˚C. After stratification, plates were placed horizontally in chambers for 4 days, sup-

plied with white light (WL, 80 mmol�m-2
�s-1) and set to 22˚C, under various photoperiodic conditions,

including long day, 12L:12D and short day (Light: Dark= 16: 8, 12: 12 and 8: 16 hr, respectively). For

measuring hypocotyl lengths of pch1 and pifs mutants, 7-day-old seedlings grown under short day

conditions were compared. For monochromatic wavelength treatments, stratified seedlings were

first exposed to white light (80 mmol�m-2
�s-1) for 5 hr to synchronize germination and then were

grown under constant red light (Rc, 40 mmol�m-2
�s-1), far-red light (24 mmol�m-2

�s-1), blue light (20

mmol�m-2
�s-1) conditions (CLF Plant Climatics, Wertingen, Germany) or in the dark for 4 days, before

hypocotyl measurements were taken.

Phenotypic characterization and statistical analysis
For hypocotyl elongation assays, 4 to 7-day-old seedlings (as specified in each figure legend) grown

under different photoperiod or light conditions were arrayed, photographed with a ruler for measur-

ing hypocotyl length using the Image J software (NIH, Bethesda, Maryland). For measuring growth

Figure 6. pch1 exhibits defects in red light responsive hypocotyl growth and expression of downstream transcription factors. (A) Hypocotyl lengths of

4-day-old WT, pch1, PCH1ox3, PCH1p::PCH1 and phyB-9 seedlings grown under either dark or constant red light of various intensities (25, 40 and 100

mmol�m-2
�s-1). Mean ± 95% CI (n = 20). Hypocotyl lengths of light-grown seedlings were normalized to dark-grown (etiolated) seedlings, and were

plotted against light intensities to generate the responsive curve. Etiolated hypocotyl lengths (mean ± SD) of WT, pch1, PCH1ox3, PCH1p::PCH1 and

phyB-9 are 9.02 ± 0.90, 8.47 ± 0.66, 8.04 ± 0.70, 8.71 ± 0.71 and 7.63 ± 0.79, respectively. (B) qPCR of HFR1, ATHB-2 using time-course cDNA samples of

short-day grown, 4-day-old WT, pch1 and PCH1ox3 seedlings. Expression was normalized to IPP2 and APA1. Mean ± SD (n=3 biological reps). Grey

shading indicates dark period.

DOI: 10.7554/eLife.13292.022

The following figure supplement is available for figure 6:

Figure supplement 1. pch1 does not affect far-red or blue light mediated hypocotyl elongation.

DOI: 10.7554/eLife.13292.023
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rate, a total of 96 time-lapse images were taken every hour for each seedling (grown under short

day conditions) using an infrared-sensitive camera (Pi-NoIR, Amazon.com, Seattle, Washington) with

a visible light cut-out filter (87, Lee Filters, Burbank, CA) and hand assembled 880 nm LED array con-

trolled by a custom script running on a Raspberry Pi (Amazon.com, Seattle, Washington) from ZT30

to ZT125. Hypocotyl lengths were then measured by Image J (NIH, Bethesda, Maryland) to calculate

growth rates using PRISM software (version 6.0, Graphpad.com, La Jolla, California). For flowering

assay, number of rosette leaves from plants with 1cm inflorescence stem was counted. For character-

izing clock phenotype, a luciferase-based assay using the CCA1::LUC reporter was monitored as

described previously (Huang et al., 2015). Statistical analyses (one-way or two-way ANOVA analysis

with Bonferroni’s multiple comparisons test) for all experiments were performed using PRISM soft-

ware (Graphpad, La Jolla, California, version 6.0, Graphpad.com).

Vectors construction
pB7HFC vector was used for constitutively expressing C-terminal His6-FLAG3 fusion proteins

(Huang et al., 2015). To generate the pB7SHHc and pB7YSHHc vectors (for generating PCH1-YPet

fusion protein used in a transient expression assay), we first modified the pB7WG2 vector by intro-

ducing an AvrII restriction site. The pB7WG2 vector (Karimi et al., 2002) was used as the template

for amplifying two pieces of overlapping DNA fragments with an AvrII site added. These two frag-

ments of AvrIIA (using primers pDAN0193 and pDAN0202) and AvrIIB (using primers pDAN201 and

pDAN0223) were diluted, mixed to serve as template and were re-amplified with pDAN0193 and

pDAN0223 to generate a longer fragment AvrIIC with the AvrII site in the middle. The pB7WG2

plasmid was then linearized by digestion with EcoRI and XbaI and recombined with AvrIIC fragment

using In-Fusion HD cloning (Clontech, Mountain View, California) to generate the pB7AVRII vector,

which was verified by sequencing and served as the backbone of pB7SHHc and pB7YSHHc vectors.

DNA synthesis (gBlocks Gene Fragments, IDT, Coralville, Iowa) was used to generate a template

sequence of 2xStrepII-HA-His6-TEV-FLAG3-TEV-His6-HA-2xStrepII, which contains 2xStrepII, HA,

His6, Tobacco Etch Virus protease cleavage sites, and FLAG3 epitopes for making all combinations

of tags we need to put into the pB7AVRII vector. The sequence of this template is as follows: 5’-

GGAAGCTGGAGCCACCCTCAATTTGAAAAGGGAGGAGGATCTGGAGGTGGTTCTGGTGGTGG

TTCTTGGTCTCACCCACAATTCGAAAAGGGTTCTTACCCATACGATGTTCCAGATTACGCTCA

TCACCATCACCATCACGATATTCCAACTACTGCTAGCGAGAATTTGTATTTTCAGGGTGAGC

TCGACTACAAAGACCATGACGGTGATTATAAAGATCATGACATCGACTACAAGGATGACGATGA-

CAAGGATATACCTACTACTGCTTCTGAAAATCTGTACTTTCAGGGAGAACTGCACCATCATCATCA

TCACTACCCTTACGATGTGCCAGACTACGCTGGATCTTGGTCTCATCCACAG

Figure 7. pch1 affects PIF4 levels and PIFs are required for the hypocotyl phenotype in pch1. (A) qPCR of PIF4 using time-course cDNA samples of

short-day grown, 4-day-old WT and pch1 seedlings. Expression was normalized to IPP2 and APA1. Mean ± SD (n=3 biological reps). Grey shading

indicates dark period. (B) Anti-HA immunoblots for testing PIF4-HA levels in WT (pif4/PIF4p::PIF4-HA) and pch1 (pch1 pif4/PIF4p::PIF4-HA) genetic

backgrounds. Time-course protein extracts (from ZT 0 to 24, with 3 hr intervals, plus ZT 8) were made from short-day-grown, 4-day-old seedlings.

Rectangles above blots represent light/dark conditions under which samples were flash frozen in liquid N2, white = light and black = dark. Anti-RPT5

used as a loading control. pif4 extracts were used as a negative western control. (C) Hypocotyl lengths of 7-day-old, short-day-grown WT, pch1, pif3,

pif4/5, pif3/4/5, pch1 pif3, pch1 pif4/5 and pch1 pif3/4/5 seedlings were measured. Mean ± 95% CI (n = 20). Inset shows representative phenotypes with

the scale bar = 5 mm.

DOI: 10.7554/eLife.13292.024
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TTTGAAAAGGGAGGAGGATCTGGAGGAGGATCTGGAGGAGGATCTTGGAGTCATCCTCAG

TTCGAGAAG–3’. Primer set of pDAN0242 and pDAN0241 was used to amplify 2xSrepII-HA-His6.

The tandem tag was then recombined with pB7AVRII, which was linearized by AvrII digestion, to

generate pB7SHHc using In-Fusion HD cloning (Clontech, Mountain View, California).

To generate the pB7YSHHc vector, YPet sequence was amplified from pBJ36 containing a YPet-

3xHA tag (pBJ36-YPet-3xHA) as reported previously (Krogan et al., 2012) (a generous gift from Dr.

Jeff A. Long) using primers pDAN0249 and pDAN0250 and recombined with pB7SHHc digested

with AvrII using In-Fusion HD cloning (Clontech, Mountain View, California) to generate pB7YSHHc.

See Table 3 for primer sequences.

Plasmid constructs and generation of transgenic plants
The pB7HFC vector was described previously (Huang et al., 2015). All cDNAs encoding either full-

length or fragments of tested genes (with or without stop codons, as listed in Table 3) were first

cloned into the pENTR/D-TOPO vector (Thermo Scientific, Waltham, Massachusetts) and were veri-

fied by sequencing. Transgenes were introduced into various genetic backgrounds by crossing.

To generate PCH1 overexpression lines (Col [35S::PCH1-His6-FLAG3][CCA1::LUC]), cDNA of

PCH1 (without the stop codon) was Gateway cloned (LR reaction, Invitrogen) into the pB7HFC vec-

tor. The pB7HFC-PCH1 construct was then transformed into Col [CCA1::LUC] plants by the floral dip

method (Clough and Bent, 1998). Two homozygous lines PCH1ox3 and 4 were identified and used

in this paper. elf4-2, elf3-2 and phyB-9 (all carrying the CCA1::LUC reporter) were crossed with

PCH1ox3.

To generate the pch1 [PCH1pro::PCH1-His6-FLAG3][CCA1::LUC] complementation line (PCH1p::

PCH1-7 and -8), a fragment from ~1.5 kb sequence upstream of the transcription start site plus

5’UTR to exon 1 of PCH1 was cloned, using primers that introduced a HindIII restriction enzyme cut-

ting site to its 5’ end (listed in Table 3). The amplified fragment was then swapped into the

pB7HFC-PCH1 construct to replace the 35S promoter by restriction enzyme digestion with HindIII

and XhoI and ligation. The pB7HFC-PCH1p::PCH1 construct was then transformed into pch1

[CCA1::LUC] plants. PCH1p::PCH1-7 plants was used in time-course western blottings as well as

physiological assays.

cDNA of PCH1 without the stop codon was gateway cloned into the pB7YSHHc vector to make

the pB7YSHHc-PCH1 construct (35S::PCH1-YPet-2xStrepII-HA-His6). Coding sequence of YPet was

Figure 8. A model of PCH1-regulated day-length specific growth. A proposed model illustrates the role of PCH1 in controlling the photoperiodic

hypocotyl elongation response. In short days, PCH1 peaks at dusk (ZT 8), maintains phyB photobody formation to suppress PIF4 levels and activities

(downstream gene expression) to suppress hypocotyl elongation in the early evening. In long days, PIF4 peaks in the middle of the day and is

repressed by active phyB. PIF4 protein decreases to basal level prior to dusk (Figure 8—figure supplement 1 and Yamashino et al., 2014), therefore

no longer requiring the additional suppression mediated by PCH1-regulated phyB photobodies in the evening.

DOI: 10.7554/eLife.13292.025

The following figure supplement is available for figure 8:

Figure supplement 1. Expression of PIF3, PIF4 and PIF5 under multiple photoperiods.

DOI: 10.7554/eLife.13292.026
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gateway cloned into the pB7SHHc vector to serve as a control (35S::YPet-2xStrepII-HA-His6,

pB7SHHc-YPet). The GFP construct has been described previously (35S::GFP, pB7GFP)

(Huang et al., 2015). The phyB-GFP construct is a generous gift from Dr. A. Nagatani (Kyoto Univer-

sity, Japan) that was described previously (Yamaguchi et al., 1999) and was transformed into phyB-

9 plants to generate phyB-9 [35S::phyB-GFP] plants (PBG). PBG plants were then crossed with pch1

phyB-9 and PCH1ox3 phyB-9 to make pch1/PBG and PCH1ox3/PBG lines (without the CCA1:LUC

reporter).

The pif4/PIF4p::PIF4-HA transgenic line was generated by Séverine Lorrain in Christian Fankhaus-

er’s lab (University of Lausanne Center for Integrative Genomics, Switzerland), which expresses a

C-terminal PIF4-3xHA fusion protein driven by the PIF4 native promoter (~2.1 kb upstream of the

start codon).

qPCR and semi-quantitative qPCR
Time course RNA samples (with 3 hr interval) were made from 4-day-old seedlings of Col, pch1, and

PCH1ox3 (all carrying the CCA1::LUC reporter) grown under short day conditions, using the RNeasy

Plant Mini Kit (Qiagen, Hilden, Germany). 1 mg of total RNA was reverse transcribed to make cDNA

using the iScript cDNA synthesis kit (Bio-Rad, Carlsbad, CA), which was quantified by quantitative

real-time PCR (qPCR) using a CFX 384 Real-Time System (C1000 Touch Thermal Cycler, Bio-Rad,

Hercules, California). PCR was set up as follows: 3 min at 95˚C, followed by 40 cycles of 10 s at 95˚C,
10 s at 55˚C and 20 s at 72˚C. A melting curve analysis was conducted right after all PCR cycles are

done. Both IPP2 (At3g02780) and APA1 (At1g11910), expression of which remain stable during the

diurnal cycle, were used as the normalization controls (Hazen et al., 2005; Michael et al., 2008a;

Nusinow et al., 2011). PCR efficiencies for each target/reference genes were assessed and qPCR

analyses were carried out by applying actual PCR efficiencies to calculate the relative expression of

each sample, as described previously (Hellemans et al., 2007; Remans et al., 2014). All qPCR were

done using 3 biological replicates.

For semi-quantitative qPCR, all cDNA samples of Col [CCA1::LUC] or pch1 [CCA1::LUC] time

course (from ZT0 to ZT24, with 3 hr intervals) were pooled and 200 ng of pooled cDNA was used.

30 ng of genomic DNA was used as comparison. PCR conditions are as follows: 5 min at 95˚C, fol-
lowed by 30 cycles of 30 s at 95˚C, 30 s at 55˚C and 20 s at 72˚C for cDNA template or 30 s at 72˚C
for genomic DNA template). See Table 3 for primer sequences.

Yeast two-hybrid analysis
We used the Matchmaker GAL4 Two-Hybrid systems (Clontech, Mountain View, California) to ana-

lyze protein-protein interactions in yeast. Verified cDNA sequences (primers listed below) were

cloned into either the pAS2-GW or pACT2-GW vector, which are derived from the pAS2-1 and

pACT2 plasmids of Clontech (Nusinow et al., 2011), through Gateway LR recombination reactions

(Thermo Scientific, Waltham, Massachusetts). Both the DNA binding domain (DBD) or activating

domain (AD)-fused constructs were transformed into Saccharomyces cerevisiae strain Y187 (MATa)

and the AH109 (MATa), respectively, by the Li-Ac transformation protocol according to the yeast

handbook (Clontech, Mountain View, California). Two yeast strains of the same optical density

(OD600) were mixed and incubated in low pH YCM media (1% yeast extract, 1% bactopeptone, 2%

dextrose, pH 4.5) for 4.5 hr at 30˚C. Afterwards, cells were transferred to regular YPDA media and

incubated overnight at 30˚C. Diploid yeast were then grown on CSM –Leu –Trp plates (Sunrise Sci-

ence, San Diego, California) supplemented with extra Adenine (30 mg/L final concentration) for

selection of bait and prey vectors and were tested for protein-protein interaction by plate replicating

on CSM –Leu –Trp –His media supplemented with extra Adenine and 2 mM 3-Amino-1,2,4-triazole

(3AT). Pictures were taken after 4-day incubation at 30˚C. Empty pAS2-GW and pACT2-GW plas-

mids were used as negative controls. See Table 3 for primer sequences.

N. benthamiana transient expression
Overnight saturated cultures of Agrobacterium tumefaciens strain GV3101 carrying pB7YSHHc-

PCH1, pB7SHHc-YPet, phyB-CFP (35S::phyB-CFP) (Nito et al., 2013), pB7HFC-PCH1, phyB-GFP

(35S::phyB-GFP, PBG) and GFP (35S::GFP, pB7GFP) were diluted in 10 mM MgCl2 (OD600 = 0.8)

and kept at room temperature for 1~2 hr. An Agrobacterium culture of 35S:P19-HA was also diluted
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Table 3. Primers used in this study.

Primers used for cloning PCH1 and PCH1 promoter a

Amplified Fragments Forward primer (5’->3’) Reverse primer (5’->3’)

PCH1-stop CACCATGTCTGAACATGTTATGGTTTTGG CTACCTCAAATCCCTTGCATTCCA

PCH1-nonstop CACCATGTCTGAACATGTTATGGTTTTGG CCTCAAATCCCTTGCATTCCAAAC

PCH1-promoter b AAGCTTAGTTTCCTCATCATTTGCTATTG GCGTAAATCCTCACCGGTCTT

Primers used to generate yeast two-hybrid constructs, all with a stop codon a

Amplified fragments Forward primer (5’->3’) Reverse primer (5’->3’)

PCH1 CACCATGTCTGAACATGTTATGGTTTTGG CTACCTCAAATCCCTTGCATTCCA

ELF3 CACCATGAAGAGAGGGAAAGATGAG CTAAGGCTTAGAGGAGTCATAGCGTTT

ELF4 CACCATGAAGAGGAACGGCGAGACGA TTAAGCTCTAGTTCCGGCAGCACC

LUX (full length) CACCATGGGAGAGGAAGTACAAA TTAATTCTCATTTGCGCTTCCACCT

LUX-Nt (amino acids 1-
143)

CACCATGGGAGAGGAAGTACAAA CTATTTAAGTGTTTTCCCAGATAG

LUX-Ct (amino acids
144-324)

CACCATGCGACCGCGTTTAGTGTGGACA TTAATTCTCATTTGCGCTTCCACCT

phyA-Ct (amino acids
606-1123)

CACCATGGATCTCAAAATTGATGGTATACAA CTACTTGTTTGCTGCAGCGAGTTC

phyB-Ct (amino acids
640-1173)

CACCATGGCGGGGGAACAGGGGATTGATGAG CTAATATGGCATCATCAGCATCATGTCA

phyC-Ct (amino acids
592-1112)

CACCATGGATAATAGGGTTCAGAAGGTAGAT TCAAATCAAGGGAAATTCTGTGAGGATCAC

phyD-Ct (amino acids
645-1165)

CACCATGGTACAGCAAGGGATGCAG TCATGAAGAGGGCATCATCATCA

phyE-Ct (amino acids
583-1113)

CACCATGAATGGCGTAGCAAGAGATGC CTACTTTATGCTTGAACTACCCTCTGT

COP1 CACCATGGAAGAGATTTCGACGGA TCACGCAGCGAGTACCAGAACTTTG

TZP CACCATGGGAGATGGAGATGAGCAA CTAAAAGCCTAACATTTTTCTCTGCTGA

Primers used for qPCR

Gene Forward primer (5’->3’) Reverse primer (5’->3’)

PCH1 set A CCGGCTCCATTTCTTCGTCA TCCGGAACAAGAGGTGGTTCT

PCH1 set B GAAGTTATTGTTGTCGCCCT GGGAAATCCAAAGCGGTATT

IPP2 CTCCCTTGGGACGTATGCTG TTGAACCTTCACGTCTCGCA

APA1 (At1g11910) c CTCCAGAAGAGTATGTTCTGAAAG TCCCAAGATCCAGAGAGGTC

HFR1 TAAATTGGCCATTACCACCGTTTA ACCGTGAAGAGACTGAGGAGAAGA

ATHB-2 GAAGCAGAAGCAAGCATTGG CGACGGTTCTCTTCCGTTAG

PIF4 GTTGTTGACTTTGCTGTCCCGC CCAGATCATCTCCGACCGGTTT

Primers for genotyping

Mutant for wild type PCR (5’->3’) for mutant PCR (5’->3’)

pch1 (SALK_024229) TGTCAGGTATTTCGGTCCTTG (LP) and
CACTTGCTTGATGCTCATGAG (RP)

AAGAACCGGCAAAGATACCAC (RP) and
ATTTTGCCGATTTCGGAAC (LBb 1.3)

pif3 (SALK_081927C) AGTCTGTTGCTTCTGCTACGC (LP) and
AAGAACCGGCAAAGATACCAC (RP)

ACATACAGATCTTTACGGTGG (RP)and ATTTTGCCGATTTCGGAAC
(LBb 1.3)

pif4 (pif4-101) d CTCGATTTCCGGTTATGG (SL42) and
CAGACGGTTGATCATCTG (SL43)

GCATCTGAATTTCATAACCAATC (PD14) and
CAGACGGTTGATCATCTG (SL43)

pif5 (pif5-1) d TCGCTCACTCGCTTACTTAC (SL46) and
TCTCTACGAGCTTGGCTTTG (SL47)

TCGCTCACTCGCTTACTTAC (SL46) and
GGCAATCAGCTGTTGCCCGTCTCACTGGTG (JMLB1)

Table 3 continued on next page
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into the same concentration and mixed (at a ratio of 1:1) with each culture to suppress gene silenc-

ing (Chapman, 2004). The cultures were then spot-infiltrated into 4 to 5-week-old Nicotiana ben-

thamiana from the abaxial side of leaves. After 48 hr, infected leaves were flash frozen for protein

extraction and co-IP experiments or were cut into small square pieces, mounted in water and used

for confocal microscopy.

Confocal microscopy and quantitative measurement of phyB
photobodies
For PCH1-YPet and phyB-CFP co-localization assay, confocal microscopy was performed with a Leica

TCS SP8 confocal laser scanning microscope and an HC PL APO CS2 63x/1.20 WATER objective lens

(Leica Microsystems, Mannheim, Germany). Light source is provided by the UV Diode laser (for CFP)

or the White Light Laser (WLL, for YPet), while all emission fluorescence signals were detected by

the HyD detector. CFP fluorescence was monitored by a 460–505 nm band emission and a 405 nm

excitation line of the UV Diode laser, with 2% transmission value. YPet fluorescence was sequentially

monitored by a 525–600 nm band emission and a 514 nm excitation line of an Ar laser, with 5%

transmission value. Line average was set as 16 to reduce noise and frame accumulation was set as 1.

For measuring phyB photobodies in phyB-9, pch1 phyB-9 and PCH1ox3 phyB-9 plants expressing

phyB-GFP (PBG), seedlings were sampled at ZT 56 (under light), 60 (dark), 64 (dark), and 72 (dark)

for short-day-entrained (by 10 or 40 mmol�m-2
�s-1red light) seedlings. Fixation was carried out as fol-

low steps: seedlings were first immersed in 2% paraformaldehyde in 1x PBS on ice with 15 min vac-

uum followed by incubation in 50 mM NH4Cl in 1xPBS for 5 min 3 times, and washed by 1xPBS with

0.2% TritonX-100 for 5 min one time and 1xPBS for 5 min 2 times. Fixed seedlings were mounted on

Superfrost slides using 1x PBS. Nuclei from hypocotyl were imaged using a Zeiss LSM 510 inverted

confocal microscope. GFP signal was detected using a 100� Plan-Apochromat oil-immersion objec-

tive, 488-nm excitation from argon laser and 505 to 550 nm bandpass detector setting. The propor-

tion of nuclei with or without photobodies was manually scored. To quantify the number and size of

photobodies, confocal images were analyzed by Huygens Essential software. The object analyzer

Table 3 continued

Primers used for cloning PCH1 and PCH1 promoter a

elf3-2 c TGAGTATTTGTTTCTTCTCGAGC and
CATATGGAGGGAAGTAGCCATTAC

TGGTTATTTATTCTCCGCTCTTTC and
TTGTTCCATTAGCTGTTCAACCTA

elf4-2 c ATGGGTTTGCTCCCACGGATTA and CAGGTTCCGGGAACCAAATTCT, cut with HpyCH4V. WT has 5 cuts while elf4-2 has 4
cuts to give a unique 689 bp band.

phyB-9 GTGGAAGAAGCTCGACCAGGCTTTG and GTGTCTGCGTTCTCAAAACG, cut with MnlI, phyB-9 gives 167+18 bp bands, WT
gives a 185 bp band.

Primers for making pB7SHHc and pB7YSHHc

Primer Name Sequence (5’->3’)

pDAN0193 TGCCCGCCTGATGAATGCTC

pDAN0202 GCGGGATATCACCACCCTAGGCACCACTTTGTACAAGAAAGCTGA

pDAN201 TCAGCTTTCTTGTACAAAGTGGTGCCTAGGGTGGTGATATCCCGC

pDAN0223 ATTCTCATGTATGATAATTCGAGG

pDAN0242 TACAAAGTGGTGCCTAGGGGTGGAAGCTGGAGCCACCCTC

pDAN0241 GCGGGATATCACCACCCTAGTGATGGTGATGGTGATGAGCG

pDAN0249 GCTTTCTTGTACAAAGTGGTGCCTGCTGCTGCTGCC

pDAN0250 GGTGGCTCCAGCTTCCACCCCCCTTATAGAGCTCGTTC

a CACC (underscored) were added to forward primers for cloning into the pENTR/D-TOPO vector.
b a Hind III restriction site (in bold) was added to the forward primer.
c (Nusinow et al., 2011).
d (de Lucas et al., 2008).

DOI: 10.7554/eLife.13292.027
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http://dx.doi.org/10.7554/eLife.13292.027Table%203.Primers%20used%20in%20this%20study.%2010.7554/eLife.13292.027Primers%20used%20for%20cloning%20PCH1%20and%20PCH1%20promoter%20aAmplified%20FragmentsForward%20primer%20(5&x0027;-%3E3&x0027;)Reverse%20primer%20(5&x0027;-%3E3&x0027;)PCH1-stopCACCATGTCTGAACATGTTATGGTTTTGGCTACCTCAAATCCCTTGCATTCCAPCH1-nonstopCACCATGTCTGAACATGTTATGGTTTTGGCCTCAAATCCCTTGCATTCCAAACPCH1-promoter%20bAAGCTTAGTTTCCTCATCATTTGCTATTGGCGTAAATCCTCACCGGTCTTPrimers%20used%20to%20generate%20yeast%20two-hybrid%20constructs,%20all%20with%20a%20stop%20codon%20aAmplified%20fragmentsForward%20primer%20(5&x0027;-%3E3&x0027;)Reverse%20primer%20(5&x0027;-%3E3&x0027;)PCH1CACCATGTCTGAACATGTTATGGTTTTGGCTACCTCAAATCCCTTGCATTCCAELF3CACCATGAAGAGAGGGAAAGATGAGCTAAGGCTTAGAGGAGTCATAGCGTTTELF4CACCATGAAGAGGAACGGCGAGACGATTAAGCTCTAGTTCCGGCAGCACCLUX%20(full%20length)CACCATGGGAGAGGAAGTACAAATTAATTCTCATTTGCGCTTCCACCTLUX-Nt%20(amino%20acids%201-143)CACCATGGGAGAGGAAGTACAAACTATTTAAGTGTTTTCCCAGATAGLUX-Ct%20(amino%20acids%20144-324)CACCATGCGACCGCGTTTAGTGTGGACATTAATTCTCATTTGCGCTTCCACCTphyA-Ct%20(amino%20acids%20606-1123)CACCATGGATCTCAAAATTGATGGTATACAACTACTTGTTTGCTGCAGCGAGTTCphyB-Ct%20(amino%20acids%20640-1173)CACCATGGCGGGGGAACAGGGGATTGATGAGCTAATATGGCATCATCAGCATCATGTCAphyC-Ct%20(amino%20acids%20592-1112)CACCATGGATAATAGGGTTCAGAAGGTAGATTCAAATCAAGGGAAATTCTGTGAGGATCACphyD-Ct%20(amino%20acids%20645-1165)CACCATGGTACAGCAAGGGATGCAGTCATGAAGAGGGCATCATCATCAphyE-Ct%20(amino%20acids%20583-1113)CACCATGAATGGCGTAGCAAGAGATGCCTACTTTATGCTTGAACTACCCTCTGTCOP1CACCATGGAAGAGATTTCGACGGATCACGCAGCGAGTACCAGAACTTTGTZPCACCATGGGAGATGGAGATGAGCAACTAAAAGCCTAACATTTTTCTCTGCTGAPrimers%20used%20for%20qPCRGeneForward%20primer%20(5&x0027;-%3E3&x0027;)Reverse%20primer%20(5&x0027;-%3E3&x0027;)PCH1%20set%20ACCGGCTCCATTTCTTCGTCATCCGGAACAAGAGGTGGTTCTPCH1%20set%20BGAAGTTATTGTTGTCGCCCTGGGAAATCCAAAGCGGTATTIPP2CTCCCTTGGGACGTATGCTGTTGAACCTTCACGTCTCGCAAPA1%20(At1g11910)%20cCTCCAGAAGAGTATGTTCTGAAAGTCCCAAGATCCAGAGAGGTCHFR1TAAATTGGCCATTACCACCGTTTAACCGTGAAGAGACTGAGGAGAAGAATHB-2GAAGCAGAAGCAAGCATTGGCGACGGTTCTCTTCCGTTAGPIF4GTTGTTGACTTTGCTGTCCCGCCCAGATCATCTCCGACCGGTTTPrimers%20for%20genotypingMutantfor%20wild%20type%20PCR%20(5&x0027;-%3E3&x0027;)for%20mutant%20PCR%20(5&x0027;-%3E3&x0027;)pch1%20(SALK_024229)TGTCAGGTATTTCGGTCCTTG%20(LP)%20and%20CACTTGCTTGATGCTCATGAG%20(RP)AAGAACCGGCAAAGATACCAC%20(RP)%20and%20ATTTTGCCGATTTCGGAAC%20(LBb%201.3)pif3%20(SALK_081927C)AGTCTGTTGCTTCTGCTACGC%20(LP)%20and%20AAGAACCGGCAAAGATACCAC%20(RP)ACATACAGATCTTTACGGTGG%20(RP)and%20ATTTTGCCGATTTCGGAAC%20(LBb%201.3)pif4%20(pif4-101)%20dCTCGATTTCCGGTTATGG%20(SL42)%20and%20CAGACGGTTGATCATCTG%20(SL43)GCATCTGAATTTCATAACCAATC%20(PD14)%20and%20CAGACGGTTGATCATCTG%20(SL43)pif5%20(pif5-1)%20dTCGCTCACTCGCTTACTTAC%20(SL46)%20and%20TCTCTACGAGCTTGGCTTTG%20(SL47)TCGCTCACTCGCTTACTTAC%20(SL46)%20and%20GGCAATCAGCTGTTGCCCGTCTCACTGGTG%20(JMLB1)elf3-2%20cTGAGTATTTGTTTCTTCTCGAGC%20and%20CATATGGAGGGAAGTAGCCATTACTGGTTATTTATTCTCCGCTCTTTC%20and%20TTGTTCCATTAGCTGTTCAACCTAelf4-2%20cATGGGTTTGCTCCCACGGATTA%20and%20CAGGTTCCGGGAACCAAATTCT,%20cut%20with%20HpyCH4V.%20WT%20has%205%20cuts%20while%20elf4-2%20has%204%20cuts%20to%20give%20a%20unique%20689%20bp%20band.phyB-9GTGGAAGAAGCTCGACCAGGCTTTG%20and%20GTGTCTGCGTTCTCAAAACG,%20cut%20with%20MnlI,%20phyB-9%20gives%20167+18%20bp%20bands,%20WT%20gives%20a%20185%20bp%20band.Primers%20for%20making%20pB7SHHc%20and%20pB7YSHHcPrimer%20NameSequence%20(5&x0027;-%3E3&x0027;)pDAN0193TGCCCGCCTGATGAATGCTCpDAN0202GCGGGATATCACCACCCTAGGCACCACTTTGTACAAGAAAGCTGApDAN201TCAGCTTTCTTGTACAAAGTGGTGCCTAGGGTGGTGATATCCCGCpDAN0223ATTCTCATGTATGATAATTCGAGGpDAN0242TACAAAGTGGTGCCTAGGGGTGGAAGCTGGAGCCACCCTCpDAN0241GCGGGATATCACCACCCTAGTGATGGTGATGGTGATGAGCGpDAN0249GCTTTCTTGTACAAAGTGGTGCCTGCTGCTGCTGCCpDAN0250GGTGGCTCCAGCTTCCACCCCCCTTATAGAGCTCGTTCa%20CACC%20(underscored)%20were%20added%20to%20forward%20primers%20for%20cloning%20into%20the%20pENTR/D-TOPO%20vector.b%20a%20Hind%20III%20restriction%20site%20(in%20bold)%20was%20added%20to%20the%20forward%20primer.c%20(Nusinow%20et�al.,%202011).d%20(de%20Lucas%20et�al.,%202008).
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tool was used to threshold the image and to calculate the volume of each photobody in the image.

Total number of large photobodies (>1.0 mm3) or small photobodies (< 1.0 mm3) was presented.

Protein extraction, immunoprecipitation and western blot analysis
For time-course sampling, seedlings were grown on sterilized qualitative filter paper (Whatman, Maid-

stone, United Kingdom) for 4 days, at 22˚C under various photoperiods (long day, 12L:12D and short

day). 0.5 g of PCH1p::PCH1-7 or PCH1ox3 whole seedlings was collected every 3 hr from ZT0 to ZT24

and flash frozen in liquid N2. For PIF4p::PIF4-HA transgenic plants in pif4 (WT) and in pch1pif4, 4-day-

old seedlings grown under short day conditions at 22˚C were samples from ZT0 to ZT 24, with 3 hr

interval and with addition of ZT8. Each time-course sample was put in a 2 mL tube that contained three

3.2-mm stainless steel beads (Biospec Bartlesville, Oklahoma). It is noted that samples undergoing

dark to light transitions (e.g. ZT0 and ZT24) were collected in the dark before the transition to light,

while ZT8 samples were harvested in light. For co-IP experiments testing phyB-PCH1 interaction under

different light treatments (light, dark, red light and end-of-day far red light treatments), seedlings

were grown under 12L:12D conditions at 22˚C, on sterilized qualitative filter paper (Whatman, Maid-

stone, United Kingdom) for four days and sampled at specific ZT timepoints.

Frozen plant tissues of either Arabidopsis seedlings or tobacco leaves were homogenized in a

reciprocal mixer mill (Retsch Mixer Mill MM 400, Newtown, Pennsylvania). Homogenized tissue of

about 0.5 g was gently resuspended in 0.5 ml of SII buffer [100 mM sodium phosphate, pH 8.0, 150

mM NaCl, 5 mM EDTA, 5 mM EGTA, 0.1% Triton X-100, 1 mM PMSF, 1x protease inhibitor cocktail

(Roche, Pleasanton, California), 1x Phosphatase Inhibitors II & III (Sigma), and 5 mM MG132 (Peptides

International, Louisville, Kentucky)] and sonicated twice at 40% power, 1 s on/off cycles for a total of

10 s on ice (Fisher Scientific model FB505, with microtip probe, ThermoFisher Scientific, Waltham,

Massachusetts). For PIF4p::PIF4-HA samples, about 100 ml homogenized tissue powder was mixed

with 100 ml denature sample buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 0.1% Triton X-100, 4%

SDS) and denatured in dark by incubation at 95˚C for 10 min. Extracts were then clarified by centrifu-

gation twice at 4˚C for 10 min at �20,000 g. For tobacco extracts, a 10% (w/v) of polyvinylpolypyrro-

lidone (PVPP) was added to resuspended extracts for 5 min incubation and was discarded after

centrifugation. Concentration of total proteins from each sample was measured by using the DC Pro-

tein Assay kit (BIO-RAD). 40 ~ 50 mg total proteins were denatured and loaded to a 8% or 10% SDS-

PAGE gel, followed by transferred to a nitrocellulose membrane.

For western blots, all of the following primary antibodies were diluted into PBS + 0.1% Tween +

2% BSA and incubated overnight at 4˚C: Anti-GFP-rabbit (1:5000, Abcam, Cambridge, United King-

dom), anti-phyB-mouse (mAB2, at 1:3000, a generous gift from Dr. Akira Nagatani at Univeristy of

Kyoto), and anti-ACTIN-mouse mAB1501 (1:2500, EMD-Millipore, Darmstadt, Germany). Anti-HA-

HRP (Roche, Pleasanton, California) was used as 1:2000 and incubated for 1 hr. Anti-FLAGM2-HRP

(Sigma Aldrich, St Louis, Missouri) and anti-RPT5-rabbit (ENZO Life Science, Farmingdale, New York)

was incubated for 1 hr at room temperature and diluted into PBS + 0.1% Tween at 1:10,000 and

1:5000, respectively. Anti-Rabbit-HRP and anti-Mouse-HRP secondary antibodies (Sigma Aldrich, St

Louis, Missouri) were diluted 1:20,000 into PBS + 0.1% Tween and incubated at room temperature

for 1 hr.

Co-immunoprecipitations (co-IPs) and in-vitro binding assay
For in vivo co-IP experiment, 2 mg of protein extract of PCH1ox3 plants (in 1 ml SII buffer with sup-

plements of inhibitors) was used. Dynabeads (ThermoFisher Scientific, Waltham, Massachusetts) had

been conjugated with the Anti-FLAGM2 monoclonal antibody (Sigma Aldrich, St Louis, Missouri)

(Nusinow et al., 2011) to precipitate PCH1-His6-FLAG3 and its interacting proteins. 5 mg antibodies

conjugated to 30 ul of Dynabeads were used for each FLAG-IP and were incubated with protein

extracts on a rotor at 4˚C for 1 hr, followed by being washed in SII buffer thrice. IP beads were

added with 30 ml 2X SDS sample buffer and incubated at 75˚C for 10 min to denature and elute

bound proteins. SDS-PAGE and western detections were done as instructed above. It is noted that

for co-IPs under different light treatments, all steps were carried out in a cold room supplemented

with dim green safety light.

For in-vitro co-IP/binding assay, cDNAs of PCH1-His6-Flag3 or YPet-His6-Flag3 was gateway

cloned into the pDEST17 vector (ThermoFisher Scientific, Waltham, Massachusetts). The fusion
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proteins were expressed in BL21 (DE3) pLysS cells (Promega, Madison, Wisconsin) (1 mM IPTG

induction for 3 hr at 30˚C) and purified by Ni-NTA agarose beads (Qiagen, Hilden, Germany) follow-

ing standard procedures. The phyB-HA prey was synthesized using plasmid pCMX-PL2-phyB-HA

(Qiu et al., 2015) and the TNT T7 Quick Coupled Transcription/Translation System (Promega, Madi-

son, Wisconsin) as instructed by manual. phyB-HA prey was first resuspended in 500 ml Tris-buffered

saline (TBS) supplemented with 20 mM phytochromobilin (PFB) and incubated for 45 min at 12˚C
under constant red (for Pfr phyB, 50 mmol�m-2

�s-1), far red (for Pr phyB, 25 mmol�m-2
�s-1) or dark (with-

out PFB, for phyB apoprotein) conditions. 4.9 ug purified PCH1-His6-Flag3 protein was then mixed

with prey and incubated under the same light treatment for another 45 min at 12˚C. 30 ul TALON

beads (incubated for 30 min at 12˚C) were used for immunoprecipitating each sample, followed by

being washed with PBS+T buffer thrice.

FLAG-His tandem affinity purification
Tandem affinity purifications using PCH1ox3 plants (in all genetic backgrounds) were carried out as

previously described (Huang et al., 2015). In brief, 10-day-old seedlings of PCH1ox3 in Col, elf4-2,

elf3-2 and phyB-9 genetic backgrounds were grown on sterilized qualitative filter paper, under the

12L:12D conditions. 5 g of whole seedlings were harvested at ZT12 and immediately frozen in liquid

N2. Tandem FLAG and His immunoprecipitations were carried out to co-purify proteins associated

with PCH1-His6-FLAG3 as described in detail at Bio-protocol (Huang and Nusinow, 2016). At least

two independent biological replications were performed.

Protein digestion and identification using mass spectrometry
The proteins were cleaved to peptides with trypsin before analyzed on an LTQ-Orbitrap Velos Pro

(ThermoFisher Scientific, Waltham, MA) coupled with a U3000 RSLCnano HPLC (Promega, Madison,

Wisconsin) operated in positive ESI mode using collision induced dissociation (CID) to fragment the

HPLC separated peptides as previously described (Huang et al., 2015).

AP-MS data analysis
MS data were extracted by Proteome Discoverer (ThermoFisher Scientific; v.1.4) and database

searches were done using Mascot (Matrix Science, London, UK; v.2.5.0) assuming the digestion

enzyme trypsin, two missed cleavages, and using the TAIR10 database (20101214, 35,386 entries)

and the cRAP database (http://www.thegpm.org/cRAP/). Deamidation of asparagine and glutamine,

oxidation of methionine and carbamidomethyl of cysteine were specified as variable modifications,

while a fragment ion mass tolerance of 0.80 Da, a parent ion tolerance of 15 ppm was used in the

Mascot search. Scaffold (Proteome Software Inc., Portland, Oregon; v.4.4.3) was used to validate

MS/MS based peptide and protein identifications. Peptide identifications were accepted if they

could be established at greater than 95.0% probability and the Scaffold Local FDR was <1%. Protein

identifications were accepted if they could be established at greater than 99.0% probability as

assigned by the Protein Prophet algorithm (Keller et al., 2002; Nesvizhskii et al., 2003). Proteins

that contained similar peptides and could not be differentiated based on MS/MS analysis alone were

grouped to satisfy the principles of parsimony and proteins sharing significant peptide evidence

were grouped into clusters. Only the proteins identified by PCH1ox3 AP-MS in Col with �2 unique

peptides were presented in tables, except when proteins with only one peptide were identified in

more than one replicate. A full list of all proteins co-purified by PCH1 AP-MS is in Table 1—source

data 1. The mass spectrometry proteomics data have been deposited to the ProteomeXchange

Consortium (Vizcaino et al., 2014) via the PRIDE partner repository with the dataset identifier

PXD003352 and 10.6019/PXD003352.
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Al-Sady B, Ni W, Kircher S, Schäfer E, Quail PH. 2006. Photoactivated phytochrome induces rapid PIF3
phosphorylation prior to proteasome-mediated degradation. Molecular Cell 23:439–446. doi: 10.1016/j.molcel.
2006.06.011, PMID: 16885032

Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk
R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, et al.
2003. Genome-wide insertional mutagenesis of arabidopsis thaliana. Science 301:653–657. doi: 10.1126/
science.1086391, PMID: 12893945

Bauer D, Viczián A, Kircher S, Nobis T, Nitschke R, Kunkel T, Panigrahi KC, Adám E, Fejes E, Schäfer E, Nagy F.
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