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The Food Energy and Water Nexus (FEW Nexus) is the inseparable connection 

linking these resources. The concept of the FEW Nexus within the food industry 

addresses the connection of water and energy as key members of food production. The 

steady increase in population and the increase in food demand are directly related, 

therefore, the need for water and energy.  Immediately taking on this critical challenge 

will lead to tangible impacts on the water and energy crisis facing the food system. To 

reduce the distance between process productivity and resource efficiency it must first be 

determined, within food processing, where water and energy are being consumed.  

Therefore, this research focused on determining opportunities for water-energy 

optimization and wastewater reduction in a medium sized dairy. The partnering plant 

processed pasteurized fluid milk.  

To reach the overarching objective, the first task was to develop a baseline of the 

current consumption of water/energy and wastewater generation. Results from the 

partnering plant indicate that the production of one gallon of pasteurized fluid milk 

demands 0.13 kWh and 0.01 Therms of electricity and natural gas, respectively. In 

addition, every gallon of pasteurized milk produced demands 0.87 gallons of freshwater. 

On average, 53.08% of the water used to produce milk is consumed during the cleaning 

stages. This consumption of resources places a large financial strain on producers. 

Annually, the medium sized fluid milk processing plant spent more than $47,000 on 



  

 

energy and water utilities. The second part of this research explored the efficacy of water 

reuse during cleaning operations. The increase in reuse cycles is directly related in 

increases in COD, Turbidity, TSS, TP, and TN. The reduction in surface tension with 

reuse solution is thought to advance the cleaning ability as hydrolysis of milk 

components have surfactant properties.  Before caustic cleaning solution can be reused, 

the efficacy must be evaluated. To uphold the integrity of plant safety, a 3-log reduction 

in attached bacteria should be achieved. CIP operations, including a sanitizer rinse, as 

noticed in treatment 3 and 5 with solutions 0-50N experimental reuse solutions, showed a 

3-log reduction in bacterial density of P.aeruginosa. Therefore, experimental caustic 

solutions showed the potential for reuse. 
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Chapter 1: INTRODUCTION 

The research foundation, of this thesis, is to simultaneously address Food, Energy, 

and Water Nexus (FEW Nexus) within the boundary of processing, specifically of fluid 

milk processing. The current research takes an alternative and progressive look into food 

production by exploring the interrelationships of process inputs and outputs at a 

processing facility while excluding the consumption of resources on the farm and in the 

home. Research phase one takes place within the walls of a medium sized Nebraska fluid 

milk processing plant. Plant to plant variation in volume and cost of energy and water 

consumption exists. However, the partner plant served as a model and reference for 

recommendations and development of overarching strategies that could affect not just 

one plant, but the entire dairy industry. Research phase two evaluates the potential for 

reuse of spent cleaning solution using a benchtop Center for Disease Control (CDC) 

Bioreactor. Here, the efficacy of reusing spent caustic solutions was evaluated against the 

log10 reduction of Pseudomonas aeruginosa biofilm.  

The overarching goal is to transform our findings into a set of industry wide 

guidelines and standards that will promote a culture of water and energy conservation.  

The expected benefit is to encourage and assist in creating a culture of water and energy 

optimization within food production. It is the hope that these findings will catalyze 

producers to reuse process wastewater with confidence in its’ safety, while also providing 

financial benefits to the production. To reach this goal, the project was divided into two 

phases, each with manageable objectives:  
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Phase 1: The quantification of Energy and Water Requirements of a Milk 

Processing Facility and the Cost Assessment of Resource Consumption 

Objective 1: To quantify the baseline consumption of water and energy usage and 

wastewater generation at a fluid milk processing plant  

Objective 2: To pinpoint locations in milk processing that have the potential for 

resource reduction 

Objective 3: To provide understanding on the economic tie of resource 

consumption at a Midwest dairy compared nationally  

Part 2: Determination of Plausibility of Reuse of Spent Caustic Solution from a Milk 

Processing Facility on the Removal of Pseudomonas aeruginosa 

Objective 1: To determine if milk processing wastewater can be reused through 

efficacy evaluation of spent cleaning solutions 

Objective 2: To evaluate how physcio-chemcial properties of experimental caustic 

solution, as conditions under which spent solutions can be reused, relates to efficacy of 

reuse  
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Chapter 2: LITERATURE REVIEW 

A literary review was conducted to evaluate the current understanding of the Food 

Energy and Water nexus (FEW Nexus) as it relates to food processing. In literature, the 

role of energy and water is viewed on a broad spectrum. Minimal literary references to 

food processing specially were found. This review also explored the roles of cleaning 

solutions in food processing.  

FEW Nexus 

The production of food is unbreakably associated with resource consumption. Water and 

energy are two key resources engrained in food production from the field to the fork. The 

Food, Energy, and Water Nexus (FEW Nexus) refers to the intricate relationship between 

these three commodities (Hanlon et al. 2013). Water and energy for food production 

includes the agricultural, livestock, and processing demands of resources. Food 

production can be broken into two sectors: primary sector (agricultural growth and 

livestock raising) and secondary sector (raw to finished commodities). This paper refers 

to the conversion of raw goods to finished products as it occurs in a food processing 

facility, therefore the secondary sector here be referred to as food processing.  

Food processing, is an essential link in the food chain, and a tangible example of the 

FEW Nexus. Actions that occur in the food processing plant hold significant influence on 

the social, environmental, and economic wellbeing of the public. The role of the FEW 

Nexus should be of great importance to the processors as the demand for food will 

increase as the environment shifts with climate change, dietary habits fluctuate, and both 

population and urbanization increase. Therefore, additional stress will build on the 

complex relationship of resources (energy and water) with food production (Gulati et al. 
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2013).  By 2050, the world will experience increases in demand of energy (80%) and 

water (50%) to help reach the growing needs of the public (IRENA 2015). While the 

need for water and energy will increase so does the variability in available high quality 

water (IRENA 2015). Efforts to optimize water, should directly seek to optimize energy, 

as with one comes the other. The demand for resources in combination of their limited 

supply will cause the price of energy and water to increase.  

The NEW Nexus studied in developing countries (Gulati, Jacobs et al. 2013) sought to 

connect environmental impact of these resources with security of food cost and 

availability. This study concluded the need for further understanding of the direct link of 

these resources and the potential for government intervention.  Additionally previous 

studies of the NEW Nexus do not successfully distinguish resource consumption at 

different stages along the food chain. One study indicates food production accounts for 

90% of the freshwater use and 30% of the energy use (Scanlon et al. 2017).  Further 

evaluation determined these numbers are referencing different parts of the food chain. 

Here they defined food production broadly and refer to the water needed for irrigation 

purposes (Siebert et al. 2010). However, the referenced energy consumption (FAO 2011) 

refers to the entire food chain, as opposed to the primary or secondary production 

explicitly.  

The specific consumption of energy and water must be known for the development of 

effective consumption strategies for the food industry. Research must thoroughly define 

the FEW Nexus in relation to the food chain, as current stepwise consumption is not well 

defined. 
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Energy in food processing 

The entire food industry is energy intensive manufacturing (EIA 2016). Food processing 

accounts for 5% of the U.S. industrial sector energy consumption (EIA 2017).  In 2007, 

developed countries reported more energy consumption needed for processing and 

transport of food, over agricultural growth (Bazilian et al. 2011). Dairy processing 

accounted for 13% of the overall natural gas consumed for food processing (Masanet et 

al. 2014) and is considered to be energy intensive (EIA 2016). One study looked at the 

energy consumed to produce food from farm fuels to resident’s home. They found that 

processing and packaging made up about 19% of the total energy used (Finley and Seiber 

2014). Resource consumption varies by sector and commodity. The energy requirements 

of dairy products, ranked from least to most energy intensive: fluid milk (310 Btu/lb of 

product), powered dry milk (421 Btu/lb of product), butter (552 Btu/lb of product), ice 

cream (814 Btu/lb of product), cheese (1196 Btu/lb of product), and dry whey (5837 

Btu/lb of product) (Masanet et al. 2014). While products may vary in energy demands, 

many dairy commodities require similar processing operations including standardization, 

pasteurization, homogenization, and cooling. Additional processes that may be 

incorporated are clarification, sterilization, evaporation, freezing, or fermentation (Brush 

2011). Another study compared the total energy consumed amongst countries and found 

European milk plants experienced a wider range (0.3-12.6 MJ/kg product) in total energy 

compared to domestic milk plants (0.2-6.0 MJ/kg product) (Xu and Flapper 2009). These 

values, generalized for all milk plants, fail to correlate consumption with commodity type 

or processing volume. This is a common trend in previous research. Evaluation of energy 

for fluid milk showed energy intensities of 1.06mJ/L and 0.17 kWh/L for natural gas and 
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electricity, respectively, for Canadian milk processors (National Dairy Council of Canada 

1997). Natural gas and electricity are the two main forms of energy consumed during 

dairy processing. To optimize energy consumption, food processors must understand 

their baseline energy and water utilization to judge process efficiency and identify 

processes. 

Water in food processing 

Water is a finite resource used throughout everyday life. The majority of water found on 

Earth is not available for use. Only 2.5% of Earth’s water supply is freshwater and a little 

over one percent of the freshwater is surface water (USGS 2016). 

The third largest industrial consumer of water, the food industry (Ölmez and Kretzschmar 

2009) requires high quaintly, potable water, as water is intimately used throughout 

processing. The dairy industry accounts for 12% of the freshwater consumed by the food 

industry (Bustillo-Lecompte and Mehrvar 2015). Water contributes to the conversion of 

raw food commodities through heat treatment, transportation, cleaning, and as an 

ingredient. The water quality needed through the different stages in production may 

require different levels of quality. The Netherlands food industry, in 1997, consumed 

247.46 million m3 of freshwater (Casani et al. 2005). Water consumption for dairy 

processing alone is 1.8 L/kg (Klemes et al. 2008). 

The food industry must join in the worldwide quest for clean and safe water, for now and 

for the future. Without stability in water, the food chain will not stretch to meet the needs 

of a growing population. A 30% reduction in water consumption could result from both 
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alterations to plant cultural and processing (Kirby et al. 2003).  Understanding 

wastewater generation throughout processing identifies areas of possible reduction. 

Wastewater water reuse  

When discussing water conservation a few terms are used and not interchangeable. Water 

regeneration or reconditioning refers to water that has undergone treatment and intended 

for reuse (Codex Alimentarius Commission 1999). In this research water, reuse is 

referring to the continued subsequent use of spent water, without the addition of 

treatment. This water should not negatively reduce product quality (Codex Alimentarius 

Commission 1999).  

The food industry generates wastewater throughout processing, due to cleaning demands 

and product residue and loss through spillage. Generated wastewater not only inflicts 

treatment charges but also contains lost revenue from lost product. Inadequate discharge 

could result in financial harm to processors due to the risk wastewater possess to the 

public and the risk of government fines. These wastewaters must be treated or distributed 

properly. Improper treatment of wastewater can lead to water contamination and 

therefore a reduction in quality of product and public water. The potential for water reuse 

can concern food processors due to the organic load and potential of bacterial 

contamination in used processing water. One study believes that not all processing stages 

require potable water (Kirby et al. 2003), but the use of alternative water should be 

verified to avoid contamination concerns. 

The Environmental Protection Agency regulate discharge of processing wastewater. 

Discharge Effluent limitations are based on Biochemical oxygen demand (BOD5) and 
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Total Suspended Solids (TSS) (e-CFR 2018). Limitations vary based on receiving milk 

equivalents for dairy processing. Effluent limitations for milk processing plant changed 

based on receiving load (Table 1).  Lower limitations were formatted for processing 

plants with higher processing loads.  

Table 1: Effluent Limitations for CFR Subpart B 

Parameter Large fluid milk plant 

(>25,900lb/day of BOD5 input) 

Small fluid milk plant 

(<25,900lb/day of BOD5 input) 

BOD5
a 0.338 0.450 

TSSa 0.551 0.675 

pH 6.0-9.0 6.0-9.0 

a lb/100lb BOD5 input 

(e-CFR  2018) 

The National Pollutant Discharge Elimination System (NPDES) develops industry 

specific permits based on first upholding water quality and second based on accessible 

and plausibly treatment for the direct discharge of industrially generated wastewater. The 

EPA sets Effluent Guidelines by industry (Table 1).  Limitations and types of potential 

pollutants labeled as conventional, set by the EPA, reflect The Clean Water Act.  The 

main factors contributing to the effluent limitations of conventional pollutants (BOD5, 

pH, TSS, fecal coliforms, and oil and grease) consider 1. Cost of treatment ($/lb. 

pollutant removal for BOD5and TSS), 2. Energy demand, 3. Age of treatment and 4. 

Engineering controls of best practicable control technologies (BPT) currently available. It 

is not easy to identify clear definitions of industry wide effluent. However, U.S. EPA 

discharge limits are reported as 26 mg/L BOD5, 30 mg/L TSS, and 8mg/L TN (Bustillo-

Lecompte and Mehrvar 2015). Effluent limits for Nitrogen and Phosphorus are 



9 

 

implemented in 34% of the major municipal sewage treatment facilities across the United 

States (NPDES 2017). 

Wastewater treatment coupled with distribution of water is considered energy intensive 

(1,100-4,600 kWh/mg) (Bauer et al. 2014). Current common wastewater treatments 

include sedimentation, flocculation, coagulation, filtration, chlorination, anaerobic and 

aerobic lagoons, aeration, activated carbon, and ozone. Food processing wastewater, 

generated through spent processing water, undergoes treatment or land application, for 

irrigation needs. Land application as a route for managing wastewater can be beneficial to 

the soil due to the nutrient rich loads. However, its’ distribution can also pose health risks 

to the public (WHO 2011). Wastewater pollutants in dairy processing wastewater vary 

greatly as seen in Table 2.  

Table 2: Literature Comparison of Dairy Wastewater 

Processing pH BOD5 

(mg/L) 

COD 

(mg/L) 

TNa 

(mg/L) 

TPb 

(mg/L) 

TSS 

(mg/L) 

Wastewater 

volume  

Reference 

Dairy 

Processing 

6-9 50 250 10 2 50 1.7-14 

kg/1000L 

(IFC 2007) 

Dairy 

processing 

6.8-

11.3 

709-

2297 

- - 36-78 405-

1082 

11-508 103 

gal/day 

(Danalewich, 

Papagiannis et 

al. 1998) 

Market 

milk 

- 750 

mg/L 

effluent 

2060 

mg/L 

effluent 

29-45 

mg/L 

effluent  

 8.1-11 

mg/L 

effluent 

- 0.86-1.03 l/l 

milk 

(Lampi 2001) 

Dairy 

processing 

7.3 - 24.7 - - - - (Sarkar, 

Chakrabarti et 

al. 2006) 

Fluid milk 5.0-

9.5 

500-

1300 

950-

2400 

- - 90-450 - (Demirel, 

Yenigun et al. 

2005) 

Dairy 1-

13 

1-

50000 

- - 75-125 220-

340 

- (O. Monroy H . 

F. Vhquez M. 

n.d.) 

Milk  8-

11 

15-

4790 

886-

18480 

160-

807 

- 6-8500 - (Klemes, Smith 

et al. 2008) 

a= Total Nitrogen 

b= Total Phosphorus 

“-“ No data 
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The composition of milk processing generated wastewater is variable.  Reported 

wastewater from milk dairy processing showed wide ranges in organic load. The largest 

range in reported BOD5 and COD was 1-50,000 mg/L and 24.7-18,480 mg/L 

respectively.  Nutrient load and pH also showed large ranges (1-13 pH, 10-807mg/L TN, 

and 2-125mg/L TP).  Similarly, the volume of generated wastewater varied. The 

parameters chosen in Table 2 were the most common parameters reported. However, not 

all studies gave values for wastewater load and volume. Optimizing the FEW Nexus 

within food processing, requires a common understanding and transparency when it 

comes to quality and quantity of resources used and wastewater generated. Filling in 

these gaps with volume and type of outgoing fluid milk will help link the reason for 

variable wastewater generated.  Reporting consumption in relation to the volume of milk 

processed, will help processers understand the generation of each process. Additionally, 

defining these parameters would help explain the observed variability in organic load of 

spent processing wastewater.  

Dairy Industry  

The U.S. dairy industry is shifting away from family owned small production to multi- 

farmer corporations. The dairy industry produces various products that require different 

quantities of resource consumption, and in turn produce different wastewater streams 

(both composition and volume) The U.S accounts for 10% of the global milk production 

(IUF n.d.). Successful production of dairy products involves adequate treatment and 

cleaning processes. Together, these operates help maintain the high integrity of 
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productions. Dairy plant cleaning accounts for 21% of the energy consumption (Ramirez 

et al. 2006) and 28% of the water in Australian milk processing (Rad and Lewis 2014).  

Cleaning Operations 

The goal of cleaning operations is to kill bacteria and eliminate the possibility of product 

contamination. Inadequate cleaning risks the possibility of product contamination and 

recalls. Product recalls effect the financial and social aspects of food processors. In 

addition, inadequate cleaning results in expenses of wasted water and cleaning solutions.  

Automated cleaning was designed to assist the dairy industry in developing repeatable 

consistent cleaning. Wastewater from cleaning operation can account for 54% of the total 

wastewater volume (Dresch et al. 1999). 

Cleaning in Place (CIP)  

CIP operations, in dairy processing typically involve four steps. The first step in cleaning 

operations is the freshwater rinse. This step involves flushing heated water throughout the 

piping and holding tanks. Water used to flush lines exits to the floor containing not only 

fresh water but also leftover/lost product. The second step is a caustic rinse, which 

consumes large amounts of caustic soda. A dairy plant processing 260,000 gallons of 

milk a year will consume 120 tonnes (Marie Furic 2015).  The role of caustic solutions is 

removal of soil left from carbohydrate and protein residues (Chisti 1999). The third step 

in CIP operations is an acid rinse.  The role of this step is twofold; neutralize of residue 

caustic solution and removal of mineral deposits (Chisti 1999).  The final step, 

sanitization, should have a bactericidal effect. This step is essential to complete cleaning, 

and ensure the future of product safety.  
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Caustic Reuse 

Some dairy processers may reuse caustic solution, without quantitative data to back up 

their decision. When the decision to reuse water is based on arbitrary data of color and 

odor, the repeatability of automated cleaning could be lost.  Some processors will choose 

to use commercial blends of Sodium Hydroxide (NaOH) and surfactants, while others 

choose to use a low concentration NaOH solution.  Research regarding caustic solution 

reuse have focused on cleaning solutions ability to clean fouled membranes (Dresch et al. 

1999, Bremer et al. 2006, Marie Furic 2015). Studies have observed a reduction in 

surface tension when caustic solutions are reused, increases their efficiency. One study 

observed that reusing caustic solution resulted in a decrease in surface tension from 

74.0mJ/m2 (fresh solution) to 59.0 mJ/m2 and in some cases 27.9 mJ/m2. This surface 

tension correlated to a reused solution with a COD of 300mg/L (Alvarez et al. 2007). 

Other studies have proposed membrane treatment to regenerate caustic solution, for later 

use (Trägårdh and Johansson 1998, Gésan-Guiziou et al. 2002, Fernández et al. 2010). 

With or without treatment of spent solution the cleaning efficiency must be evaluated to 

ensure sanitary standards are held constant, as improper cleaning is the major source of 

milk contamination in food processing (Kumar and Anand 1998). The reuse of solution 

without evailating the micorbial impact can lead to inadepate cleaning operations, and 

therefore the growth of biofilms. 

Biofilms and Pseudomonas aeruginosa 

Overtime, insufficient cleaning can form environments that foster microorganism growth.  

If cleaning continues to fail, than microorganisms can multiply and eventually entrap 

surrounding fragments (Kumar and Anand 1998). This collection of cells is known as a 
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biofilm. First, the surface is conditioned by an increase in nutrients present. Next, 

microorganism adhere to the conditioned surface and continue to grow. The bacteria 

locks into the surface after extracellular polysaccharides forms, which acts as a protecting 

coat for the biofilm. The formation of biofilms in food processing plants can negatively 

affect heat transfer and flow rates (Kumar and Anand 1998). Biofilms negatively affect 

processing as well was pose great risk to the public health.  

Pseudomonas aeruginosa is an aerobic Gram-negative rod that pose a health risk to 

immunocompromised members of the public. Two pigments may be produced as a result 

of P.aeruginosa growth: Pyocyanin (non-fluorescing) and pyoverdin (fluorescing). 

(WHO 2011). P.aeruginosa in biofilm formation produces three types of extracellular 

polysaccharides (Irie et al. 2010). This strong outer layer contributes to the biofilm’s 

resistance to disinfectants. P.aeruginosa can show moderate resistance to Chlorine if 

biofilm formation occurs. 

Further evaluation of the FEW Nexus focused of food processing is needed. A holistic 

approach would include quantifying resource consumption to understand the interrelation 

of food energy and water within food processing. These values must be supported by 

plant operations and processing data. Additionally studies that evaluate the impact of 

resource optimization should explore the microbial significance. As biofilms present 

more resistance to removal than planktonic cells, they are ideal for studying efficacy of 

caustic solution reuse.  Together these parameters can help processing facilities 

understand and optimize their practices, and encourage a sustainable food industry.  
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Chapter 3:  THE QUANTIFICATION OF THE FOOD, ENERGY, AND WATER 

NEXUS AND THE ECONOMIC EVALUATION ASSOCIATED WITH RESOURCE 

CONSUMPTION WITHIN A MILK PROCESSING FACILITY. 

 

1. Introduction: 

Water, the truly essential element of life, is a luxury for most. However, it cannot 

be seen as a right for all. Over 844 million people lack access to clean water daily (WHO 

2017). As the population and occurrence of urbanization continues to surge, so does the 

stress placed on resources like water and energy. By 2050, the world’s demand for food 

and water will grow by more than 50%, while the demand for energy will increase by 

twofold (IRENA 2015).  Water is a finite resource; only 1.2% of the Earth’s fresh water 

is considered surface water and available for use (USGS 2016). The food industry must 

begin to view resource management as the key to unlocking the viable future of the 

industry.  Without taking progressive steps to reduce energy and water consumption, 

feeding the growing world will become problematic. With that in mind, current research 

hopes to assist industrial facilities in creating and enforcing a sustainable food system. 

Innovatiive research must take a frontline approach by establishing process optimization 

and resource reduction within the food processing sector. Efforts to ease resource 

consumption need to simultaneously address reductions in both energy and water. This 

can be accomplished through addressing the Food, Energy, and Water Nexus (FEW 

Nexus). 

The FEW Nexus is the inseparable connection linking water and energy 

consumption with the production of food (Finley and Seiber 2014). Both water and 

energy are engrained in the production of food from farm to fork.  Research addressing 
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the FEW Nexus is conducted on the large-scale basis of the food system. For example, 

water is required to produce biofuels, which are used in irrigation systems that aid 

agricultural production of food commodities (UN Water).  Energy is consumed to heat 

water, which helps ensure the safe production of food (Powell 1997). The food industry is 

faced with a unique opportunity to co-manage resources, as conservation of one is 

directly related to the conservation of its counterpart (Gulati, Jacobs et al. 2013).  The 

entire food production chain is charged with 90% of the global freshwater and 30% of the 

energy consumption (Scanlon, et al. 2017). In fact, the food industry is the fourth largest 

energy user of the U.S. industrial sector (Milmoe n.d.).  The FEW Nexus, as it relates to 

the entire food system, takes considerations into the production of resources, agricultural 

growth, food production, transportation, and consumer habits of food, energy, and water 

(Biggs, et al. 2015). However, large scale consideration fails to address how the FEW 

Nexus relates to food production, within the walls of a food processing facility.  The 

FEW Nexus must be optimized at each stage within the food system. 

It is important to address the FEW Nexus when formulating a sustainability 

focused action plan as consumption of resources cannot just be monitored at one location 

in the food chain. It is an overarching view of the FEW Nexus, that resources of water 

and energy are embedded into finished food. Therefore, as food waste occurs, so does the 

waste of energy and water (Cuéllar and Webber 2010). When addressing resource use, it 

is imperative to understand that food waste transpires on the field, in the processing 

facility, during transportation, and in the consumer’s kitchen. As a food processor, food 

waste can be controlled on the processing floor. Therefore, processors should become 

conscience of the resource demands of their process.  The first step in reducing food 
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waste is to improve process efficiency.  Quantifying the resource demands, inputs, and 

outputs throughout food processing, allows processors to recognize where resource 

consumption can be improved.  In locating these key points of production, wastewater 

generation points and the recovery potential of outputs will be uncovered. In determining 

the plausibility of wastewater reuse or input recovery, the composition of wastewater 

must be determined. Focusing efforts on the recovery of milk processing wastewater is a 

plausible step to reducing food waste, and thus optimizes resources.  As the production of 

cheese and milk require different amounts of water and energy, so will the volume and 

composition of wastewater. Variation also exists amongst processors depending on 

production scale, manufacturing practices, and operational importance placed on 

sustainability. Therefore, energy and water demands of milk producers will vary with the 

volume and composition of the dairy product produced.  A case study in Mexico 

determined that the volume of wastewater generated yearly was 1-3 times the volume of 

milk processed (O. Monroy et al. n.d.). Other studies found the dairy industry effluent 

streams contained 1-3% loss of milk components (Luo et al. 2012) and produced 0.2-10 L 

effluent/ L of processed milk (Vourch, Balannec et al. 2008). It is important to associate 

product lines with their true resource consumption to understand which points in 

production contribute the most to loss of milk components, and therefore effluent 

wastewater lines.     

In 2016, the United States produced over 212,000 million pounds of milk (USDA 

2017). The US dairy industry is the sixth largest milk producer in the world, with the 

Midwest producing 32% of the total pounds of milk produced nationally (IUF  n.d.). 

Dairy processing, not specific to farm or facility is responsible for 15% of the food 
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sectors’ economic output (Masanet, Brush et al. 2014) and consumes $1.5 billion on 

purchased energy (Brush 2011). Water is a large input for all dairy processing facilities 

and is used throughout multiple stages of milk processing. The Environmental, Health, 

and Safety (EHS) guidelines identifies four environmental issues surround dairy 

processing: wastewater, solid waste, emissions, and energy consumption (IFC 2007). 

Research on dairy processing does not separate process requirements nor specify 

variation in product lines. The water consumption of milk production includes the 

amount needed for the processing of milk as well as the cleaning of processing 

equipment. The primary amount of wastewater, 50-95% of the waste stream’s volume, 

occurs during washing, cleaning, and operations conducted during CIP cycles (Daufin, 

Escudier et al. (2001), Kushwaha, Srivastava et al. (2011)). Recovery of desirable 

components in wastewater can lower the cost associated with wastewater disposal as 

surcharges, for wastewater with Biochemical Oxygen Demand (BOD5) levels above 250-

300 mg/L, increase the cost of wastewater treatment. In the European Union, the cost of 

treating dairy industry effluents is great, ranging from 0.62- 2.79 $/m3 (Fernández, Riera 

et al. 2010).   

Due to the large volume of effluent wastewater, determining ways to treat or 

repurpose may be a good start in addressing the FEW Nexus at the processing level. The 

reconditioning of food industry wastewater has been explored as an alternative to reduce 

waste, recover water, and produce energy.  Membrane technology has been used for the 

treatment of food industrial wastewater (Hafez, Khedr et al. 2007), but faces obstacles 

such as cost effective, energy consumption, and the control of water reuse (Pouliot  

2008). Costs are dependent on the scale of production, location of wastewater treatment 
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plant, energy requirements, and type of treatment, e.g., nanofiltration, reverse osmosis 

(Owen, Bandi et al. 1995).  Wetlands, coagulation, and algae cultivation are also used for 

the treatment of wastewater to recycle organic materials (Luo, Cao et al. 2012). As 

wastewater treatment is not one size fits all, other methods should be developed and 

explored first. While some literature may recommend the reuse of process wastewater, 

there is no clear line of requirements for effective reuse. The EHS recommends reuse of 

water in the form of condensation for heating or cooling, as long as they achieve sanitary 

requirements (IFC 2007). However, this point of reuse needs definition. Therefore, this 

project wants to define where that line is, allowing for a more comprehensive 

understanding on how milk processors can optimize resource consumption.   

The recovery and treatment of wastewater must be approached in a way that is 

plausible for all members of the industry. It is thought that a producer’s decision to 

recover wastewater must be validated with stability in product safety and incentivized by 

the potential benefit to their bottom line. The desire of a producer to become a “good 

steward” of resources may not be enough to implement beneficial changes to the FEW 

Nexus within a milk processing facility. Processing inputs of electricity, natural gas, and 

water have associated financial costs.  It is important to explore the utility cost and 

savings opportunities of reducing and reusing resources.  

 Determining the role of water and energy in the food industry has proved to be an 

ideal starting point for reducing the distance between process productivity and resource 

efficiency (Meneses and Flores 2016). The key to resource conservation is to pinpoint 

specific production lines and determine what methods of reduction are specific to that 

product. Together, they will answer the questions, “where can water be conserved?” and 
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“is it able to be recovered?.”  Knowing process specific requirements of energy and water 

will help determine the potential long-term benefits of conservation strategies and help to 

create a secure food system that can hold and supply the nutritional needs of today and 

tomorrows’ world population (Meneses, Stratton et al. 2017).    

It is a challenge to find a process for recovery that simultaneously reduces water 

and energy while also considering the financial implementation and needs of each 

recommended technology or practice (Bazilian, Rogner et al. 2011). The holistic 

approach of addressing the relationship of the FEW Nexus within milk production will 

uncover specific locations, which hold the potential for resource reduction, helping to 

make proper process specific recommendations. This research unlocks the doors of a 

small- medium U.S. fluid milk processing plant to understand the roles of the FEW 

Nexus in the production of fluid milk and looks for opportunities for optimization and 

reuse.  Therefore, the objectives for the project were as followed: 

Objective 1: To quantify the baseline consumption of water and energy usage and 

wastewater generation at a fluid milk processing plant 

Objective 2: To pinpoint locations in milk processing that have the potential for 

resource reduction 

Objective 3: To provide understanding on economic tie of resource consumption 

at a Midwest dairy compared nationally 
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2. Materials and Methods: 

The production of fluid milk occurs at both the milk parlor and the processing facility. 

For the purpose of this research the collection of water, energy, and wastewater data 

occurred within the walls of a small-medium United States fluid milk processing facility 

and does not reflect consumption on the farm or primary production.  In total 22 plant 

visits were made for data collection and process determination.  

2.1. Plant Description  

A Midwest processing facility was chosen for determining the baseline of resource 

consumption within milk processing. This facility produced a variety of fluid milk 

products including unflavored, chocolate, and strawberry varieties of whole, 2%, 1%, 

skim, half & half, and occasionally ice cream base. This processor daily produced 7,218 

gallons of finished fluid milk. The boundaries for FEW Nexus data collection began 

when raw milk was pumped from the receiving tanker and ends after heat treated milk is 

filled and packaged. Figure 1a shows the pathway of milk as it transitions from raw to 

finished commodities. Each morning fresh raw milk is transported from the farm-based 

milk parlor to the processing facility, about 10 miles. Upon arrival, all raw milk is 

unloaded from the refrigerated receiving tanker and undergoes separation via 

centrifugation. Through separation, the raw cream is completely separated from the skim 

milk. Raw milk is stored in glycerol lined storage tanks until ready for standardization 

and heat treatment. The plant operator manually conducted fluid milk standardization. 

The location of standardization fluctuated between the balance tank and the liquefier. 

After standardization, raw milk is pumped to the liquefier if additional flavor additives 

are needed (i.e. chocolate).  If unnecessary, newly standardized raw milk is held in one of 
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the three raw milk holding tanks (Tank 1, 2, &3). All processed milk will undergo High 

Temperature Short Time (HTST) pasteurization and homogenization. After milk is heat 

treated it is sent to one of the five finished milk tanks (Tank 4,5,6,7,&8) as seen in 

Figure 1b. From here, the pasteurized milk goes into either bottles or pouches. After 

packing milk is ready for transportation. The quantification of energy and water ends 

after packaging, and excludes resources consumed during transportation and 

procurement.  The processing facility operated Monday-Thursday, producing finished 

milk four times a week. The remaining days are held for preventative maintenance or 

backup production in case of increased demand for finished milk. To determine areas of 

high resource input, production was broken into two shifts; processing and cleaning. Shift 

1: Processing, takes place between 00:00 and 13:59. Shift two: Cleaning, begins when 

processing is complete and will go until 23:00. Due to varying supply demands, 

processing and cleaning start times experienced fluctuation.
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Figure 1a: Process Flow Diagram of 

Fluid Milk Processing in a Medium 

Sized Dairy Plant 

 

Figure 1b: Plant Diagram of Medium 

Sized Dairy Processing Plant 

Developing a process flow diagram, step 1, allows for determination of the flow of milk 

through the plant. It also identified the process inputs of milk, water, and energy, and 

process outputs (finished milk and wastewater). The fluid milk processor consumed two 

forms of energy, natural gas and electricity. The next step was to quantify these inputs. 

2.2.Electricity  

Electricity was the primary form of energy used throughout production. This energy 

source is used to power motors, machines, and pump milk through the flow of 

processing.  To determine the total electrical baseline consumption of milk processing, 24 

months of electrical bills were consolidated and analyzed. Electrical data sheets provided 
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monthly usage (kWh), days of usage, and monthly utility cost. This location was free of 

demand rate charges, which is not the case for all industrial processors. Therefore, 

fluctuations in electrical charge was due to seasonal changes and production scale 

variation.  The daily electricity consumed for the entire facility was estimated using 

Equation (Eq.) 1. While this number reflects the electrical usage of the entire facility, 

administration/non- processing floor area’s electrical consumption was thought minimum 

in comparison to the processing area.  A dairy processing plant, processing undisclosed 

dairy products, consumes 20% of its energy for non-processing/building operations. (Sun, 

Reindl et al. 2012) and 9% for fluid milk plants (Ramirez, Patel et al. 2006). 

These areas support the processing of fluid milk and therefore were considered.  To 

evaluate which production units had the highest volume of resource consumption 

additional meters were installed. This data provided justification into areas of focus for 

optimization efforts of energy and water. The first meter installed was an Automated 

Metering Infrastructure (AMI) that monitored hourly kWh consumed by the processor. 

This meter was installed to replace the original meter. Unlike the old meter that was read 

at the end of the month, this meter took away any operator recording errors of total 

electrical usage as data was uploaded automatically (Chapman Metering, Iowa). A 

second meter, commercial three-phase electrical amp meter, was connected onto the 

electrical control panel (Ted Pro 400, South Carolina). Certified engineers, from a state 

public power district, installed the second meter. Electrical usage at multiple points 

within the processing room were monitored.  Hourly signals of usage were uploaded to 

the online record keeping device. Additionally, this meter allowed for independent 

monitoring of total kWh used each day. Therefore, electrical use for non proccessing 
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days could be determined and varifed against the AMI meter. This is considered the 

baseline electrical usage for the facility.  The AMI meter allowed for separation of 

electrical usage for processing vs. cleaning. These numbers were calculation by looking 

at average total kWh, over a six month, consumed on a processing day. The kWh 

consumed during processing and cleaning operations were determined by taking the total 

kWh for each hour during the specified time frame.  

𝑨𝒗𝒆𝒓𝒂𝒈𝒆
𝒌𝑾𝒉

𝒅𝒂𝒚
=  

𝑻𝒐𝒕𝒂𝒍  𝒌𝑾𝒉 𝒖𝒔𝒆𝒅 

𝒅𝒂𝒚𝒔 𝒐𝒇 𝒖𝒔𝒆
     (1) 

2.3.Natural gas  

The second form of energy used at the plant, natural gas, was solely consumed by the 

boiler. Reports from 24 months of billed usage were collected to determine how much 

natural gas was consumed each month. Natural gas is used to generate hot water utilized 

throughout cleaning and pasteurization.  

2.4.Water 

Monthly consumption measured in gallons and cost data were obtained from 24 months 

of billed data and analyzed using Eq. 2. To further evaluate volumes and locations of 

water consumption two Multi-Jet Water Meter w/ Pulsed Output inline meters (Dwyer, 

Indiana) were installed. One inline meter was installed into a sliced pipe connected to the 

boiler feed tank. This meter would measure the volume of water utilized through the 

boiler for steam production. The second meter was installed near the main city provided 

water meter. This meter was used to monitor total water consumption of the processing 

facility. Both meters were connected to iMONNIT (Monnit, Corp, Utah), an online data 

collection and display system. A pulse monitor allowed for hourly usage volume readings 
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of both meters. This indicated when the largest volume of fresh water was consumed. 

Inline meters helped determine the difference in water consumption during processing 

versus cleaning operations. The water consumed during cleaning is utilized during 

multistage cleaning in place systems (CIP), cleaning out of place procedures, floor 

cleaning, and the running of the homogenizer. A material balance of the automated CIP 

system was conducted. Two portable ultrasonic flowmeters (Fuji Electric Co., Ltd, Japan) 

were used to measure the flow rate and volume of water in and out during the different 

stages of cleaning. Each meter was calibrated based on pipe dimensions. 

𝑨𝒗𝒆 𝒇𝒓𝒆𝒔𝒉𝒘𝒂𝒕𝒆𝒓 
𝒈𝒂𝒍 

𝒅𝒂𝒚
=  

𝑻𝒐𝒕𝒂𝒍 𝒈𝒂𝒍 𝒖𝒔𝒆𝒅

𝒅𝒂𝒚𝒔 𝒐𝒇 𝒖𝒔𝒆
       (2) 

This plant’s cleaning process operates between two cleaning in place (CIP) operations 

and additional cleaning out of place (COP) operations. The first CIP system was designed 

for automatic cleaning of the processing equipment and the first five tanks (3 raw milk, 2 

pasteurized milk). The second system is the automated cleaning of the last three finished 

milk storage tanks and the pouch filler. CIP stage one involves automated flushing of the 

pasteurizer and homogenizer with fresh cold water. The water balance for this step was 

performed using the two flowmeters. One meter installed on the pipe where water flowed 

into the system. The second meter was installed at the point water was expelled.  

Verification of flow meter accuracy was done by comparing the computed totalizer 

volume with the projected flowrate multiplied by the time. Any variation between the 

volumes of water in and water out was due to residue milk, leftover from processing. If 

the output flow volume exceeded the flowmeter capacity the volume of water out was 

assumed equal to that of water in. This assumption is justified, as operator must have 

cleared lines before continuing onto the next cleaning stage. Cleaning of the inside of the 
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tankers are excluded from the first step of the CIP process and thus a part of COP 

operations. These tankers are cleaned using hot water through an operator controlled 

hose. The volume was quantified using measured hose flow rate and usage time. This 

technique was verified by measuring the total volume of water out, once tanks were 

drained to the floor. As the water out contained any residue amounts of milk left in the 

tanks, the water consumed was determined using Eq. 3.  To determine how much milk 

was left over in the tanks at the start of cleaning Eq. 4 was used.  

𝐖𝐚𝐭𝐞𝐫 𝐨𝐮𝐭𝐩𝐮𝐭 = (𝐀𝐯𝐞. 𝐇𝐨𝐬𝐞 𝐟𝐥𝐨𝐰 𝐫𝐚𝐭𝐞 𝐱 𝐇𝐨𝐬𝐞 𝐮𝐬𝐚𝐠𝐞 𝐭𝐢𝐦𝐞)    (3) 

𝐌𝐢𝐥𝐤 𝐨𝐮𝐭 = (𝐌𝐞𝐚𝐬𝐮𝐫𝐞𝐝 𝐯𝐨𝐥𝐮𝐦𝐞 𝐨𝐟 𝐰𝐚𝐭𝐞𝐫 𝐞𝐱𝐢𝐭𝐢𝐧𝐠 𝐭𝐚𝐧𝐤) −

 (𝐀𝐯𝐞. 𝐇𝐨𝐬𝐞 𝐟𝐥𝐨𝐰 𝐫𝐚𝐭𝐞 𝐱 𝐇𝐨𝐬𝐞 𝐮𝐬𝐚𝐠𝐞 𝐭𝐢𝐦𝐞)                                  (4) 

The second stage of each CIP process is caustic (alkaline) rinse. This step is followed by 

an acidic rinse, and CIP is completed after sanitization. Fresh water from the water-

holding tank is pumped to the balance tank.  For the remaining stages water and specific 

cleaning agents go into the balance tank, flow through the pasteurizer and homogenizer 

and then move to the fifth and final tank of the first CIP process. Once the water has been 

cycling in tank 5, for 11 minuites it returns to the balance tank. Additional water is added 

to the tank and the cycle repeats until all five tanks are cleaned. Each water balance was 

conducted in triplicate. CIP pathways will vary by processor.  

2.5.Wastewater  

Process wastewater was composed of lost product, spent water, and used cleaning 

chemicals. Wastewater was generated for everyday of production.  The processing floor 

contained one main drain in the middle of the facility. All spilled product or spent 
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solutions were pulled to this drain. Drained liquid was pumped outside off the facility and 

into a collection tanker. This tanker remained stationary for two day, or until it reached at 

least half full.  From their , the tanker was either sent off to the fields, to be directly land 

applied or disposed into a designated lagoon. Here the water would stand, and organic 

components would settle out. This water would be used to meet irrigation demands. 

When the truck is sent to the lagoon, it passes over a scale; data collected for the analysis 

of wastewater generation are associated to these recorded weights. However, the days 

where the wastewater is directly land applied, the truck weight was not recorded. 

Therefore, detailed records of wastewater generated were sporadically monitored.   

2.6.Economic Evaluation 

While each dairy processor is unique, high utility processes remain constant for fluid 

milk production. In order to evaluate the role of economics in dairy processing, 

comparisons across the industry were made. Industrial energy costs were determined and 

compared to partnering processor.  The U.S. Department of Energy’s industrial rates for 

natural gas and electricity were compared to the Midwest dairy plant (DOE 2017).  

Determining these cost relationships may help processors when evaluating the 

plausibility of wastewater recovery and reclamation efforts. 

3. Results and Discussion 

The annual resource consumption and their affiliate cost to the partnering processor were 

determined through utility bill data analysis. Each year the processor consumed 230,000 

kWh ($25,805) 25,000 Therms ($16,338), and 1.4 million gallons ($5,038) on electricity, 
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natural gas, and water respectfully. The further analysis of both billed and metered data is 

seen below.  

3.1.Electricity and Natural Gas 

In addition to understanding the yearly impact of resource consumption, consolidation of 

billed data reviewed trends in monthly usage. The average monthly billed energy 

consumption was 16,791 kWh (electricity) and 1,964 Therms (Natural Gas).  Figure 2 

shows the month-to-month variability in energy consumption. This plant saw an increase 

in electrical consumption during months of fall and spring. The monthly electrical usage 

peaked at 24,657 kWh in September. After this peak, the electrical usage fell but 

remained relatively stable until April.  In April, the electrical usage spiked again (21,407 

kWh) but experienced a lower spike than September.  The lowest monthly electrical 

consumption happened right after the second spike. During the month of May, the 

electrical usage was only 12,412 kWh.  The electrical usage for the month of July was 

captured for 2015 and 2016.  The electrical consumption in this comparable month was 

17,151 kWh in 2016 and 21,093 kWh in 2015 (Figure 2a).  This could be a result of 

increases in efficiency from 2015 to 2016, prior to this research’s plant observations.  

During the duration of the experiments, while conducting plant research, no improvement 

measures or changes in processing or cleaning were implimented.  Information on July 

2015 & 2016 for fluid milk production was not assessable. Therefore, changes in 

production volume cannot be used to justify the specific difference in relation to July 

2015 and July 2016.   
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Figure 2a: Monthly Usage and Cost of Electricity  

However, Figure 2b shows the trend in electrical consumption in relation to fluid milk 

production. Monthly variation in electrical consumption followed a similar trend 

alongside milk production.  While the milk production values for July 2015 and 2016 is 

not available, the trend shown in Figure 2b indicate the difference is most likely due to a 

reduction in total finished milk production.   
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Figure 2b: Monthly Electrical Usage and Milk Production  

 

Over the months, the natural gas consumption ranged slightly from 1,340 -2,240 Therms. 

The largest months of natural gas consumption were during winter, colder temperature 

months. The Natural Gas usage for the month of July (Figure 2c) was also captured at 

two points for 2015 (1,340 Therms) and 2016 (1,815 Therms).  

An estimate for daily utility consumption can be interpreted from billed data. The average 

daily energy consumption, found from consolidated bills, was 568.81 kWh /day and 

61.28 Therms/day.  Interpreting the daily energy consumption in this way does not 

address variability between processing days and non-processing days. Billed data also 

fails to detail specific operations energy consumption. Therefore, additional meters to 

pinpointed specific areas of  resource consumption. As the boiler was the sole consumer 

10000

12000

14000

16000

18000

20000

22000

 -

 20,000

 40,000

 60,000

 80,000

 100,000

 120,000

 140,000

 160,000

 180,000

Sep-16 Oct-16 Nov-16 Dec-16 Jan-17 Feb-17

E
le

ct
ri

ca
l 

C
o
n
su

m
p
ti

o
n
 (

k
W

h
)

M
il

k
 P

ro
d
u
ct

io
n
 (

G
al

lo
n
s)

 

Billing Period

Gallons kWh



34 

 

of natural gas the location and purpose of natural gas consumption was known. The 

boiler produced steam used in processing and cleaning.  

 

Figure 2c: Monthly Usage and Cost of Natural Gas 

 

Differences in processing day and operations (cleaning vs. processing) were determined 

by six months of hourly kWh readings by the AMI meter. Evaluating hourly meter data 

revealed that the processing plant had a kWh consumption on days where no processing 

was occurring. The total kWh hour consumed on both processing and non-processing 

days varied. On a processing day, the average electricity for a processing day ranged 

from 505.55-1221.86 kWh. The average non-processing day electrical consumption 

ranged from 36.87-544.47 kWh (Figure 3). The upper level of electrical consumption 

range on non- processing days could be a result of nonscheduled make up production or 

attendance. The overall average amount of electricity consumed on non- processing days 
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account for 24.80% of the total electrical consumption experienced on processing days. 

Non-processing days are Friday, Saturday, and Sunday where the milk demands have 

already been met for the week. However, make up processing runs, along with 

preventative maintenance can explain the large range in non-processing day electrical 

consumption.   

Figure 3: Average kWh Consumption by Processing Day 

 

During processing days, the plant runs on two operation schedules: processing and 

cleaning. Hours of processing operations are 00:00 and 13:59, while cleaning operations 

run from 14:00 to 23:59.  After standardizing, heat-treating, and packaging of finished 

milk, cleaning operations were launched.  Figure 3 shows the total kWh consumption 

broken down by processing and cleaning operations during processing days. The kWh 
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distribution is shown in relation to the amount of finished milk processed. Here the milk 

is reported as gallons of gallons processed. The final weight of finished milk was 

converted from pounds of gallons processed to gallons of gallons processed. Therefore, 

this is gallons of milk processed. As production volume fluctuates (Figure 3), so do the 

total peaks in electrical usage. The average total amount of electricity consumed on a 

processing day was directly related to the amount of milk processed. The percentage of 

electricity consumed during cleaning operations, varied slightly with a minimum of 21.21 

% and a maximum of 28.84% of total electrical use.  On average the cleaning operations 

account for 24.12% of the total kWh consumed during a processing day. This is similar to 

Canadian fluid milk plants where CIP operations accounted for 25% of the total energy 

(Xu and Flapper 2009). However, CIP operations in Dutch dairies accounted for only 

9.5% of the energy demand of fluid milk production in Dutch dairies (Ramirez et al. 

2006).  Variation could be caused by production scale and level of automated cleaning.  

After evaluating the distribution of electrical consumption between operations, circuit 

specific electricity was evaluated. The 3-phase amp meter allowed for automated data 

collection from September 2016 through January 2017. Each day the electricity 

consumption of 55 units was measured and signals were automatically uploaded to an 

online database. The percentage for each unit was determined by taking the daily kWh 

data collected divided by the total kWh of the measured points. To sort through data and 

determine which circuits were essential electrical consumers, 2% electrical consumption 

was used as a marker of a large consumer.. Over the months, data showed that 24% of the 

monitored points (55) contributed to 2% or higher.  



37 

 

The average kWh of each measured unit, consumed on a processing day, followed the 

sample pattern throughout the measured months (Figure 4).   

 

Figure 2: Average Percentage of Energy Consumed Over Six Months 

 

 

The average of these 13 circuits  that reached an average of 2% or higher are seen in 

Figure 5. Together, these 13 circuits accounted for an average of 75.31% of the total 

kWh monitored over the course of the six months. The remaining electricity monitored 

was broken into two categories based off percent consumption. Unit operations that 

showed percent consumption between 1-1.99% accounted for over 15% of the monitored 

electricity. The remaining electrical consumption was from units consuming less than one 

percentage.  
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Figure 3: Overall Percentage of Electrical Energy Consumed during a Processing 

Day 

 

At this plant centrifugation via separator and homogenization account for 21.94% of the 

electrical consumption, lower than the 38% found for fluid milk in Dutch facilities 

(Ramirez et al. 2006). These steps together with pasteurization are referred to in this 

document as milk treatment. The energy requirement on pasteurization is accounted for 

through natural gas consumption.  

The chilling units accounted for 17.58%. This closely compared to the 19% cooling and 

refrigeration account for in Netherlands milk processing, but higher than 2% consumed 

for cooling and refrigeration found in Canadian plants (Xu and Flapper 2009).   One third 

of the energy used in the dairy industry is used for heating and cooling purposes (Brush 
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2011, Sun et al. 2012).  However, this does not distinguish which dairy commodities 

contribute the most to this.  This is important, as the energy requirements for cooling are 

product depended.  One study found cooling energy requirements for fluid milk (19%) 

were less than the energy consumption for butter (66%), yet similar to Cheese (19%) 

(Ramirez et al. 2006). 

 A survey of Canadian milk production facilities showed a combined electrical and 

natural gas consumption by operation. They found that 48% of the total energy was 

consumed during standardization and heat treatment and 8% was consumed during 

packaging (Xu and Flapper 2009).Together the packaging, pouch and bottle filler, 

accounted for 11.63% of the total energy of the processing plant (Figure 5). While For 

fluid milk, the most energy intensive processes have been reported as pasteurization 

followed by cooling (Brush 2011) homogenization and cooling were the most electrical 

energy intensive circuits measured here. 

3.2.Water 

The average monthly consumption of freshwater for the fluid milk processing facility was 

113,446 gallons ($373.86). Similarly to energy analysis an estimate for daily freshwater 

can be taken from billed data, to be 3,682 gal/day. Similar to energy consumption, that of 

water varies, as seen in Figure 6.   
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Figure 4: Fresh Water Consumption and Cost 

 

Similar to the trend seen with electrical billed data, July 2015 consumed more freshwater 

(90,950 gal.) than July 2016 (84,000 gal). The highest freshwater consumption occurred 

in September, followed by March, similar to times electrical consumption spiked,  

To help understand the trends and areas of freshwater consumption, additional meters 

were installed. These meters allowed for distinguishing between water consumption on 

processing vs. non-processing days.  

For processing days, the inline water meters revealed that the boiler, the sole consumer of 

natural gas, consumed an average of 11% of the total fresh water (Figure 7). This water 

was utilized during pasteurization, automated (CIP) and manual (COP) cleaning shifts 
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Figure 5: Freshwater Consumption, Determined by Inline Water Meters 

 

The second inline water meter indicated that 53% of the total water consumed during a 

production day is utilized during cleaning operations. This refers to the water taken up for 

activities during the hours of cleaning operations. This includes, CIP systems (two 

cycles), COP systems, washing floors, and to meet the needs of the homogenizer.   

To further focus these efforts, a material balance assisted in understanding where the 

cleaning operations water was used. The material balance measured both CIP and COP 

operations. The manually (fuji meter data) quantified volume for these cleaning 

operations is 1470.18 gallons. This value represents 52.6% of the total cleaning 

operations water (2794.4 gallons) determined by the inline water meters. These results 

indicate that more gallons of freshwater are consumed than gallons of wastewater 
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produced. The difference in the water monitored by the inline water meters vs. the 

material balance using ultrasonic meters can be attributed to evaporation, leaking seals, or 

operator caused spillage.  The loss due to evaporation is a common trend among dairy 

processors (IFC 2007). The first step in the cleaning operations consisted of using fresh 

hot water rinse. This first rinse consisted of three parts: 1) The inside of the stainless steel 

tanks were manually washed to send away any remaining milk out , 2) The automated 

fresh water used to flush the pasteurization pipe, and 3)The automated fresh water rinse 

for finished milk tanks 6,7,8. Together, this fresh water rinse accounted for 21.30% of the 

spent water during cleaning operations (Figure 8). The second stage in cleaning uses a 

highly alkaline solution. The caustic solution used accounts for 22.75% of the total water 

used during cleaning operations. The third stage, acid rinse, accounted for 4.66%, while 

the fourth stage, sanitization rinse, accounted for 16.78% of the cleaning operations 

water. After the automated cleaning, operators proceed to use hot water to rinse the 

outside tanks and machines. The amount of water used to complete this, as well as water 

to clean floor, and push spent milk and water to the drain was 22.46%. The homogenizer 

remains on during the duration of all operations, including cleaning. During cleaning 

operations alone, the water used to cool the homogenizer’s piston pumps accounted for 

12.05% of the total water consumed during cleaning operations. This does not reflect its 

additional water consumption during hours of processing.    
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Figure 6. Percentage of Water Consumed during Cleaning Operations  

The spent solutions used during cleaning operations are all sent to a central drain for 

discharge. The wastewater from milk processing is a combination of lost milk, spent 

water, and cleaning detergents. Due to the milk lost, wastewater has high organic load 

(20,120mg/L COD and 4,950 mg/L BOD5).  The combined wastewater, taken from the 

collection tanker, less total suspended solids and lower BOD5, compared to the Tanker 

rinse water (25,110 mg/L BOD5, 11,606 mg/L TSS). The generation of wastewater was 

directly related to finished product (Figure 9).  
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Figure 7: Monthly Wastewater Load Volume 

 

Water quality analyses were independently determined, through a third party laboratory. 

These parameters were measured to determine how polluted the wastewater was (Table 

3).  The BOD5 of the partnering plants compiled truck wastewater (4,950 mg/L) was 

greater than the raw wastewater BOD5 (1,120 mg/L) of a large processing plant (Andrade 

et al. 2014). This could be due to more water being used for cleaning, causing their levels 

to be diluted. Another reason could be difference in lost product due to a more efficient 

production. Tank rinse water, the first stage in cleaning, had the highest levels for BOD5, 

COD, Conductivity of the samples tested.  
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reported TSS of 600 mg/L, quite lower than the results seen in Table 1 (Buabeng-Baidoo 

et al. 2017).  Another paper saw that raw wastewater from dairy processing had a COD 

and BOD5 level of 1500-3000 and 350-600. They reported the total suspended solids 

(TSS) as 250-600 mg/L (Hafez et al. 2007) all of which are lower than those found in the 

cleaning operation material balance.  Wastewater quality parameters show great variable 

from plant to plant. Wastewater variability is related to process efficiency, cleaning 

operations, volume of lost product, age of equipment, improvements in key technologies, 

processing and facility size, and plant standard operating procedures. 

Table 3: Water Quality Characteristics of Spent Cleaning Solutions 

Parameters  

Tank 

Rinse 

water  

Tank 

Caustic 

Water  

Tank 

Acidic 

Water 

Tank 

Sanitizer 

Water 

Truck  

Compiled 

Wastewater  

Pasteurizer 

Homogenizer 

Caustic Water  

BOD5 (mg/L)  25,110 1,230 51.0 183 4,950 1,230 

COD (mg/L)  29,610 - 11.0* 829 20,120 4,310 

BOD5/COD  0.85 - - 0.22 0.25 0.29 

Conductivity 

(uS/cm)  
1,170 51.2 46.9 1,020 7.29 45.5 

pH  7.46 13.3 1.25 4.27 12.3 13.6 

TSS (mg/L) 11,606 19.0 *1.00 *1.00 2,088 924 

Total Kjeldahl 

Nitrogen  
28.8 0.48 1.09 0.20 36.6 15.5 

Total Kjeldahl 

Phosphorus 
15.5 1.05 166 11.4 73.6 94.7 

* Below method 

detection limit 
          

 

The compilation of baseline resource consumption resulted in resource consumption rates 

for the partnering facility. The water, energy, and wastewater requirements of dairy 
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plants can show great range in consumption by day and should be evaluated as a rate of 

consumption. For every gallon of finished milk 0.13 kWh, 0.01 Therms, and 0.87 gallons 

freshwater are needed. According to (Masanet et al. 2014) the natural gas requirement of 

pasteurization is 0.0079 Therms/ gal. fluid milk. This finding includes products like 

yogurt and cottage cheese in the same category as fluid milk. This value in combination 

with these research findings, seen in Table 4, of natural gas (0.01 Therms/gal. finished 

milk) projects the energy demands of heat treatment. Therefore, pasteurization accounts 

for 79% of the natural gas requirement. The remaining natural gas is used to heat water 

for cleaning operations.  

Table 4: Fluid milk processing utility consumption for partner facility  

 
Utility Unit Amount used 

Electricity  kWh/ gal. finished milk 0.13 

Natural Gas Therms/gal. finished milk 0.01 

Fresh Water gal. water /gal. finished milk 0.87 

Wastewater Gal. wastewater/gal. finished milk 0.59 

 

Surveyed data of Nordic dairy processors determined that market milk and cultured 

products required higher volumes of water 1.0-1.5 gal. water/gal. milk and electricity 

0.38-0.76 kwh/gal milk for production compared to the processing of fluid milk alone 

(Table 4).  The wastewater generated from market milk and cultured (0.9-1.4 gal. 

wastewater/gal. milk) exceeded the average wastewater generated through the production 

of fluid milk (0.59 gal. wastewater/ gal. finished milk) (Lampi 2001).   
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The partnering plants electric demand (0.13 kWh/ gal. finished milk) fell below the 

reported U.S. national average for dairy processing (1.08-1.62kWh/gal.) (Xu and Flapper 

2009). However it fell within the electrical range, surveyed from 17 U.S. fluid milk-

processing plants, of 0.10 kwh/gal. to 3.46 kwh/gal. (Xu and Flapper 2009). The energy 

consumption at the partnering plant was similar in natural gas consumption but below the 

reported electrical consumption for fluid segment of the Canadian dairy industry (0.6435 

kWh/ gal. and 0.036 Therms/ gal. (National Dairy Council of Canada 1997). 

The production of market milk and cultured products in Swedish dairy plants showed 

higher rates of wastewater production and electrical usage (0.60-4.1 gal. water/ gal. 

processed milk, 0.26-1.28 kWh/ gal. processed milk, and 0.8-2.5 gal. wastewater /gal. 

processed milk) (Lampi 2001). The organic load of the Swedish fluid milk wastewater 

was 600-2200 mg/L wastewater BOD5 and 1600-3200 mg/L wastewater COD. (Lampi 

2001).  This range of BOD5 and COD were below the reported 4,950mg/L BOD5 and 

20,120mg/L COD for the partnering facility. 

The findings of the requirements of a fluid milk processing facility fall within the range 

of freshwater. This is expected, as pasteurization water requirements are high for all milk 

products. The difference could be associated with variation in quantity and variety of 

fluid milk products produced.  

3.3.Economic Evaluation 

The cost assessment of resource consumption is of great interest to producers. It is 

important to understand how much financial resources are being used on inputs of energy 

and water. Second, a producer should know plant’s standing in comparison to other 
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producers. Therefore, energy charges were compared across the nation, Figure 10.  

National evaluation can benefit producers, by understanding where they fall in relation to 

industry wide variation in charges. The U.S. Energy Information Administration (EIA) 

publishes data on natural gas (EIA 2017) and electrical (EIA 2018) charges for industrial 

sectors among others. This is useful in understanding where a plant’s charges fall in 

proximity to other industrial users.  After looking at the range of charges across the 

country, states that represented areas of high cost and low cost of energy were chosen to 

compare to the partnering facility.  Unlike other processors, the Midwest dairy plant was 

charged a rate for energy free of demand charges. The occurrence of demand charges are 

correlated with the use of electrical current during processing times associated during 

peak usage. This may be implemented for larger processing facilities, as their production 

is continuous due to demand for finished product. Additionally, as production of milk 

increases, so will the need for electricity (Xu and Flapper 2009) and the potential for 

demand charges and increased electrical rates. While a medium to small dairy plant may 

not experience demand charges, due to production time and energy needs of processing, 

it may experience seasonal changes in electrical rates. This was observed in the 

partnering plant during winter months (October 16th-June 14th) where they experienced a 

reduction in electrical cost by 2.2 cents/kWh.  
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Figure 8: Cost of Energy for Partner Plant vs. Industrial Facilities across the USA 

 

Three states, a high rate, low rate, and a Nebraska rate, were chosen to compare electrical 

and natural gas rates (Figure 10). The Midwest dairy plant, experienced natural gas 

($4.39/1000 ft3) and electrical (10.2¢/ kWh) charges that fell within the high and low 

representative states. While energy costs may only account for an average of 1-2% of the 

total cost of operation for overall food production , the economic cost of energy showed 

continued increases from 1997-2009 (Masanet et al. 2014).  

Evaluating the cost of water is twofold: freshwater cost and wastewater charges. As for 

freshwater, the partnering plant was charged 0.003 $/gallon freshwater. The partnering 

milk processor did not send their wastewater to a treatment facility. Instead, the processor 

independently held and land applied the generated wastewater. To determine which 

wastewater disposal method is right for a particular food processing plant, the wastewater 
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quality should be assessed and compared with the local regulations of discharge. The 

National Pollutant Discharge Elimination System (NPDES) is a permit program created 

by the EPA for state-to-state discharge regulations into bodies of water (EPA 2018). 

Based on the electronic Code of Federal Regulations for a milk processing plant 

receiving 250,000lb/day or less of milk equivalents, maximum daily effluent limitations 

are set. The pH must be between 6-9 and the BOD5
 and TSS must not exceed 0.450 and 

0.675 lb. per 100lbs of BOD5 input (ElectronicCodeofFederalRegulations(e-CFR) 2018). 

As dairy industry wastewater is highly loaded due to discharge of lost milk and spent 

cleaning solutions, pretreatment of wastewater may be necessary before disposal.  Dairy 

processors that have farm land may choose to use their wastewater for irrigation, by 

lagoon storage, or choose to compost a portion of the wastewater.   

An alternative to land application or disposal into bodies of water is sending the 

effluent to a wastewater treatment facility.  A survey conducted across a variety of 

industrial facilities, found that larger facilities received cheaper rates on wastewater 

treatment. Additionally surcharges will be applied for high strength wastewater. This 

survey reported overall wastewater charges ranging from $0.00123 to $0.0034 per gallon 

of discharged wastewater (Industrial Water World 2011). Another survey conducted in 

the upper Midwest found that the correlating dairy (cheese) processors had a mean 

wastewater of 45,000-550,000 gallons/ day (Danalewich et al. 1998). Based on the 

average wastewater charge for industrial companies, $2.06 (Industrial Water World 2011) 

a cheese processor would pay $92.7-$1,133/day on wastewater treatment charges, 

depending on processing size.  Another case study found that the treatment of dairy 

effluent would cost French processors $0.57 - $2.57/m3 (Fernández et al. 2010). The 
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range in charges will fluctuate base on product type and production volume. The 

partnering dairy plant produced on average 77,590 gallons of wastewater each month. If 

the processor sent wastewater through a treatment plant, they would pay $167-

$755/month, depending on volume of wastewater and organic load. This number is 

reflective of milk processing wastewater with an overall range of dairy processing 

wastewater costs stated above. These numbers does not reflect the cost of transportation.  

To evaluate what treatment practices is best for specific dairy plants first determine the 

organic load of the waste stream and the generated volume. Together, these can be used 

to estimate expected charges for treatment wastewater. The reduction of wastewater 

could correlate with high savings for producers. If the partnering plant reduced their 

wastewater volume by 5%, monthly savings could range from $7.95-$37.9/month.  

The United States produced 23 billion gallons of milk each year (United Dairymen of 

Idaho 2014).  Based on the data for resource consumption per unit of finished milk, found 

in this research Table 2, industry wide consumption rates were estimated. The 2011 milk 

production of 23 billion gallons, had energy demands of 3 billion kWh and 230 million 

Therms. Additionally, it used 20 billion gallons of freshwater and produced 13.5 billion 

gallons of wastewater. These consumption rates can serve as a benchmark for medium 

sized fluid milk processors. Understanding a milk processor’s resource consumption can 

help to improve the efficiency of production. The role of cost assessment will help 

processors make process specific changes that will help plants become better stewards to 

the environment, and may increase the bottom line.  

 Recommendations for conservation include replacing insulation on water lines and trap 

steam leaks (National Dairy Council of Canada 1997). Also proper boiler maintenance 
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can save up to 10% in energy (Brush 2011). A processor should consider installing high 

efficiency lighting as it could save up to 33% in energy (Anantheswaran et al. 2014). 

Continued monitoring of resource consumption could help optimize process, through 

installing permanent monitoring systems for water and energy. Reduce wastewater load 

through redirecting product leftover away from the drain could also save money from lost 

product. Install recycling pump on homogenizer could reclaim lost water, as recycling 

process water can reduce both energy and water consumption. (IFC 2007). 

1. Conclusion 

To optimize resource consumption, fluid milk processors must first understand the 

demands of processing, by assessing the baseline consumption of resources. The usage of 

energy and water should be compared to the utility consumption of 0.13 kWh/ gal. 

finished milk, 0.01 Therms/ gal. finished milk and 0.87 gal. freshwater/ gal. finished 

milk. The findings in Table 2, to help processors understand where their current 

consumption falls. However, before any optimization can be done a culture of 

conservation and awareness must be established. This culture can be implemented 

through transparency between leadership and operational staff about the social, 

environmental, and financial benefits of conscious resource consumption. Additionally 

ongoing training may help with ongoing efforts of operator efficiency and diligence with 

resource consumption.  

Resource consumption of milk production was evaluated based on processing 

(standardization, pasteurization etc.) and for cleaning (CIP and COP) operations. The 

cleaning operations attributed to the majority of water consumption and over 20% 

electricity and. Therefore, the concentration of efforts to optimize resources fell during 
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the cleaning operation. Future research should be conducted on the plausibility of 

resource reduction within cleaning operations, as this is a potential operation for water 

reuse. 
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Chapter 4:  DETERMINATION OF PLAUSIBILITY OF SPENT CAUSTIC 

SOLUTION REUSE GENERATED FROM A MILK PROCESSING FACILITY  
 

Introduction 

Demands for high quality and safe water seen throughout the entire path of food 

production, from farm, through the processing line, and to the consumer. In the food 

processing facility, water is used as an agent for processing and cleaning, and in some 

cases is incorporated into finished products.  The food processing industry is a large 

consumer of water, the Netherlands food industry accounted for 247.46 million m3 total 

water consumption (Casani et al. 2005).  The versatility of water in the food processing 

industry makes this industry a great consumer of water.  Water utilization within the food 

industry varies greatly by more than just sector. Even within the dairy industry, the 

consumption of water showed a wide range of water consumption from 0.2-11.0 L/ L 

milk (Gésan-Guiziou et al. 2002). The reuse of spent water may reduce the amount of 

freshwater consumed and volume of wastewater generated each year. 

Off farm (secondary) processing of fluid milk is broken into two operations: processing 

and cleaning. Processing includes the separation, standardization, homogenization, heat 

treatment, and bottling of milk. Together, these operations demand resource inputs of 

energy and water to ensure product quality and safety. The connection of resources with 

the processing of food commodities is often referred to as the Food Energy and Water 

Nexus. The first phase of this project, Chapter 2, conducted at a medium sized fluid milk 

processing facility, revealed that cleaning operations accounted for 53% of the total water 

consumed during a production day. Percentage of water used for cleaning can reach as 

high as 95% (Gésan-Guiziou et al. 2002). The authors determined that an operation 
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(cleaning vs. processing) consuming the majority of water would prove to be worth 

exploring water reuse. The operation consuming the majority of water was the cleaning 

operation. Literature shows that cleaning not only is a large consumer of water but also 

generates large amount of pollution (Fernández et al. 2010). During these operations, 

plants operate both Cleaning in Place (CIP) and Cleaning out of Place (COP) practices.  

CIP operations, created for dairy processing, is an automated closed system operation. 

These operations eliminates the requirement for disassembly of processing machines and 

reduces the risk of error and cross contamination.  

Throughout the processing of milk, milk deposits are left behind on the surface of the 

holding tanks and production lines. The first step in the CIP process is a preliminary 

rinse. This step removes any loose product residue and rejected milk. Through a water 

mass balance, conducted during preliminary phase of this project, it was determined that 

caustic cleaning, the second step in the CIP process, accounted for 22.75% of the total 

water used during overall cleaning operations. Caustic cleaning is responsible for 

removal of both fat and carbohydrate deposits (Chisti 1999). This alkaline solution is 

composed of Sodium Hydroxide (NaOH) or a propriety commercial cleaning solution. 

Commercial caustic solutions contain added surfactants to assist in the removal of fat 

deposits.  The third step in a CIP process is the acid rinse. This step helps remove milk 

stone and mineral deposits that remain after the caustic rinse. The acid rinse can assist in 

removing any remaining residue from the previous alkaline stage (Chisti 1999). The final 

step in a CIP system calls for a sanitizer to be flushed into the system. This solution 

should have a bactericidal effect, meaning its role in cleaning is to avoid contamination 

by killing bacteria (CDC 2008).   
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As the caustic solution made up the largest portion of cleaning water, it became the focus 

for potential reuse. Unlike the partnering milk processor, some facilities may already 

choose to reuse caustic solution. However, it is without confidence that a static number of 

reuse cycles have been set. Currently, the level of reuse is dependent, not on quantitative 

standards but, on qualitative observations.  The continued use of caustic solution is 

determined by the operator, who base their decision to reuse or discard cleaning solution 

based on color and odor (Alvarez et al. 2007) or until considered too polluted (Gésan-

Guiziou et al. 2002).   

The effluent generated in dairy processing contains high levels of organic material, 1500-

3000 mg/L COD, 250-600 mg/L TSS (Sarkar et al. 2006). These high pollution levels, 

which showed great variability: 405-1082 mg/L SS, 709-2297 mg/L BOD5 ,and 36-78 

mg/L total phosphorus (Danalewich, Papagiannis et al. 1998), are due to loss product as 

well as spent chemicals used in cleaning operations (Özbay and Demirer 2007). These 

pollutant levels categorize this sector as one of the heaviest polluting sectors of the food 

industry (Andrade et al. 2014).  One study (Alvarez et al. 2007) evaluated reuse of 

laboratory composed contaminated caustic solution with or without suspended solids 

against fresh NaOH solution.  Fouled membranes were used to evaluate efficacy and 

cleanliness, regarding hydraulic resistance, of the solutions. They found that both 

contaminated and new NaOH solution resulted in similar efficiency of cleanliness, and 

that the presence of suspended solids did not reduce the efficiency. Research evaluating 

the use of reuse caustic solutions look at their mechanical action, but fail to address their 

microbial effectiveness. Each year 9.4 million illnesses related to major food borne 

pathogenic agents occur (CDC 2016). Dairy commodities account for 18% of the 
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estimated annual bacterial foodborne illnesses and 14% of the deaths associated with 

bacterial foodborne illnesses in the USA (Painter et al. 2013).  Biofilms are the major 

cause for dairy product contamination (Bremer et al. 2006). If cleaning is not proficient, 

microorganisms in the form of biofilms may grow, some of which become permissive to 

sanitizers (Hoa et al. 2015).  Biofilms develop a strong matrix of cells that can protect the 

organism from stress (Bridier et al. 2015). This strengthening of microorganisms makes it 

more difficult to detach from processing equipment. These biofilms tend to be resistant to 

the action of the disinfection (Bridier et al. 2011), one of the stages in automated CIP 

cleaning. The increase in tolerance to sanitizers of biofilms is accredited to the formation 

of a matrix of extracellular polymeric substances (Bridier et al. 2011). Processors must 

find validity in the successful cleaning with the use of reused solutions before they can be 

implemented in a processing facility. Product integrity and safety must be upheld.  

Dresch et al. (1999) stated that benefits of recovering cleaning solution are resource 

savings and maintained cleaning efficiency. Water reuse has the potential to offset some 

of the pressure that a growing population places on the world’s food and water supply. 

Efforts on behalf of the food industry to reuse water may lead to a 20-50% reduction in 

the volume of water consumed (Casani et al. 2005). However, this broad range is not 

specific to one sector of the food industry. The recovery of spent water through treatment, 

either by physical or chemical methods, has been explored (Trägårdh and Johansson 

1998, Gésan-Guiziou et al. 2002, Uzi Merina 2002, Fernández et al. 2010, Marie Furic 

2015). Depending on the level of contamination in process effluent, dairy wastewater 

treatment can be performed by both aerobic and anaerobic methods (Demirel et al. 2005). 

The combined effect of anaerobic lagoons and aeration in lagoons reduced the COD from 
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3436-112 mg/L (O. Monroy H . F. Vhquez M. n.d.).  Membrane filtration has also been 

used to treat waste effluent from dairy processing. Nanofiltration membranes were over 

98% efficient at removing COD (Koyuncu et al. 2000). Similar removal efficiencies were 

seen when membrane bioreactors followed by nanofiltration were implemented (Andrade 

et al. 2014).   Additional studies used a combination of membranes, including 

ultrafiltration and nanofiltration (Luo et al. 2011), to separate nutrients for bioenergy 

processing.  Treatment of dairy wastewater by reverse osmosis (Vourch et al. 2008) could 

be implemented for water purification and recycle. Some researchers even looked at the 

use of aquatic treatment systems to remove organic loads from dairy wastewater 

(Munavalli and Saler 2009). However, this treatment option is not suitable for large scale 

processing.  Mechanical mechanisms, filtration have been explored for the specific reuse 

of cleaning solution (Dresch et al. 1999) (Trägårdh and Johansson 1998, Koyuncu  et al. 

2000, Gésan-Guiziou et al. 2002). Coagulation and flocculation, chemical treatment 

methods, have been employed as pretreatments for dairy wastewater (Luo, Cao et al. 

2012). The regeneration or treatment of cleaning solutions involve both capital and 

operational costs.  These economic and potential hazardous impact of these treatments 

are not incentivizing for producers to implement reuse strategies. While guidelines 

surround water reuse, this topic has been a mostly unexplored area in food production. 

This could be due to concerns with potential consequences on hygiene standards (Casani 

et al. 2005). The safe processing of food requires high-volume high-quality water. It is 

important that the reuse of spent water does not pose a health risk to consumers by 

compromising product safety. This paper looks to see if the microbial impact of water 

reuse can be used as an indicator of reuse efficiency against P.aeruginosa biofilm.  
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Without exploring the effectiveness of reused caustic solution, the reuse of spent cleaning 

solution may be met with confrontation and fear surrounding the safety of its reuse. The 

effectiveness of reused caustic solution and their potential to maintain cleaning efficiency 

without a recovery/treatment step still needs exploration. Therefore, the goal of this 

research is to assess the impact in the microbial reduction of reusing spent caustic 

solutions as part of a CIP operation. The first objective of this research is to explore the 

potential for reusing isolated spent caustic solution at removing P. aeruginosa biofilm. 

The second objective of this project is to evaluate physical-chemical characteristics of 

reuse solutions, to be used as an additional indicator to their effectiveness. It is the hope 

that microbial and physical- chemical analyses of samples can assist plant operators in 

making informed decisions and conclusions to the plausibility and limit of caustic 

solution reuse. 

1. Materials and Methods  

2.1 Biofilm formation in bioreactor  

A standard Center for Disease Control (CDC) bioreactor chosen to grow a reproducible 

Pseudomonas aeruginosa biofilm. The CBR 90 Biofilm Reactor (BioSurface 

Technologies Corp., USA) was designed to hold eight polypropylene rods, each with 

three coupons, totaling 24 coupon samples.  This biofilm, a community of cells, mimics 

one that would develop as a result of high shear stress (International 2007). ASTM 

standard method E2562-17 was followed for culture preparation, reactor assembly, and 

operational procedure (steps 10.1- 10.2.4). An overnight culture was prepared by growing 

P. aeruginosa in 100 mL of Tryptic Soy Broth (TSB) (300 mg/L) for 24 hours at 37 °C.  

Batch mode time started when the bioreactor, containing 350 mL TSB (300mg/L), was 
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inoculated with 1 mL of the overnight culture. After the first 24-hour cycle, the reactor 

was transitioned to continuous mode by connecting tubing to a 20 L carboy containing a 

continuous stream of nutrients, 100 mg/ L TSB. A continuous flow rate of 11.7 mL/min 

was held for a 24 hour run time. To represent shear stress, the reactor stir bar was held at 

120 r/min for the 48-hour growth cycle. The bioreactor was held at 20 °C for the duration 

of the growth cycle. After inoculation of the bioreactor, the viable bacterial density of the 

inoculum was confirmed by serial dilution and spread plating.    

2.2 Experimental Cleaning Solutions          

Caustic cleaning solutions were composed to assess the effect that reuse has on the 

cleaning efficiency of the spent solution. These solutions were created to replicate the 

solutions used in CIP operations that occur at a medium sized fluid milk processing 

facility. The general steps for CIP operation are; initial water rinse, caustic solution rinse, 

acid solution rinse, and sanitization rinse.  Some plants will include an additional water 

rinse before the acid solution rinse. However, this step is not always implemented, as was 

the case at the partner plant. Therefore, rinse step was not included in the standard CIP 

system. Spent caustic solution from the partnering plant had three components; 

concentrated caustic solution, water, and loss milk.  The concentration of caustic solution 

was determined by plant operations and by supplier recommended dilution. Each 

experimental solution was composed of one portion of 2% caustic solution and one 

portion of pasteurized 2% reduced fat milk.  The next step was to determine how much 

milk was present at varying levels of spent caustic solutions. To do this, a water balance 

of the cleaning operations was conducted on the processing floor. The procedure for the 

cleaning operations water balance can be found in Chapter 2. The milk component of 



66 

 

these samples was determined based off the biochemical oxygen demand (BOD5) of 

spent CIP solutions taken during the material balance.  Each pound of BOD5 in spent 

milk processing wastewater correlates to nine pounds of milk lost (Powell 1997). 

Equation 1 was used to quantify product loss in cleaning in place systems. 

𝐶𝐼𝑃 𝑀𝑖𝑙𝑘 𝐿𝑜𝑠𝑠 (𝑙𝑏𝑠. ) = ((𝐵𝑂𝐷5
𝑙𝑏

𝐿
) ∗ (9)) 𝑥 𝑣𝑜𝑙𝑢𝑚𝑒 𝑠𝑝𝑒𝑛𝑡 𝐶𝐼𝑃 𝑤𝑎𝑡𝑒𝑟 (𝐿)   (1) 

Calculations revealed that the partnering milk processor had 1.07% of the spent caustic 

solution was milk loss. Additionally, oral communication with chemical supplier and 

literature reference to 1-2% milk loss (Munavalli and Saler 2009, Marie Furic 2015) 

helped to validate the finding.  Therefore, replicated spent caustic solutions would 

contain 1% milk to denote the component of loss product in the caustic solution rinse and 

to represent the COD that would be found after each CIP operation was conducted. Email 

correspondents with an industrial chemical supplier (Ecolab, personal communication 

October 5, 2017) noted that the reuse of CIP caustic solution experienced a 5% loss in 

spent solution volume per cycle. This percentage of volume lost may be due to 

evaporation, leaks in connection pipes, or operator awareness. Assuming a 5% loss in 

volume, after 20 cycles of recovery and reuse the original spent caustic solution would be 

gone.  The samples used to evaluate the plausibility of water reuse were chosen in 

increments of five reuse cycles from zero reuse cycles (fresh caustic solution) to 20 reuse 

cycles. To create the reused caustic samples, newly prepared 2% NaOH solution was 

heated to 60 °C.  Fluid milk component was aseptically pipetted into solution and held at 

60 °C for a contact time of five minutes. Caustic samples were characterized after this 

contact time. Table 5 summarizes the composition of the different caustic solutions used 
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in this experiment. From here out “N” denotes the number of reuse cycles associated with 

the caustic solution. Sample volume was 100 mL.  

Table 5: Composition of Replicate Reused Caustic Solutions 

N° of cycles Fluid milk :2% NaOH 

Solution (v/v) 

Dry milk :2% NaOH 

Solution   (w/w) 

0 0:100 - 

5 5:95 - 

10 10:90 - 

15 15:85 - 

20 20:80 - 

50 - 19:81  

 

To evaluate an extreme level of potential caustic solution reuse, a 50 N solution was 

developed. This sample was created by extrapolating percentage of dry matter from the 

10 N solution.  Standard Method 2540C (Lab 2009) was followed. After drying samples 

at 105 °C for 16 hours, the percentage dry matter was determined and multiplied five 

times. 

2.3 Physio- chemical analyses  

Samples of the experimental caustic solutions were analyzed for different water quality 

parameters including Chemical Oxygen Demand (COD), Total Phosphate (TP P04
3-), 

Total Nitrogen (TN), pH, and turbidity. Representative samples were taken at room 

temperature (20°C). TNTplus vials (HACH, USA) were used with a DRB200 Digital 

reactor (HACH, USA).  U.S. EPA Reactor Digestion Method 8000 was followed for 
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COD analysis. Each sample was added to TNT 822 plus COD vials and heated for 2 

hours at 150 °C. Persulfate Digestion Method 10208 (Hach Company 2018) with 

TNT826 nitrogen vials were used to determine TN. Total Phosphate was determined 

following Ascorbic Acid method 10209/10210 (HACH Company 2016) using TNT 845 

vials. The HACH DR 3900 Spectrophotometer was used to measure Total Suspended 

Solids (TSS) followed the Photometric Method 8006 (Hach Company 2014). Sample pH 

was measured using a Fisher Science Education pH meter (Thermo Fisher Scientific, 

USA). The turbidity was measured at an absorbance of 600 using a DU 730 UV/Vis 

Scanning Spectrophotometer (Beckman Coulter Inc., USA). The surface tension of each 

sample was determined using a pendant drop method. This method used a drop shape 

analyzer (dsa25e, KRUSS, Germany) to measure the surface tension between each 

solution and the surrounding air over 5 minutes. This time was chosen as to represent the 

experimental contact time. In addition to the experimental caustic solutions 0, 5, 10, 15, 

20, and 50N solutions, two more samples were analyzed.  First, an alternative 2% fresh 

caustic solution (0alt) was made from a commercial caustic solution (Ac-101, Ecolab, 

USA). The second solution was made to compare the potential impacts of treatment on 

physio-chemical characteristics. Therefore, 20 N solution was filtered using Amicon 

Ultra-15, a centrifugal ultrafiltration regenerated cellulose membrane (Milipore Sigma, 

USA). This solution is referred to as 20filt. 

2.4 Cleaning efficacy of reused caustic solutions 

The efficacy of reusing caustic solutions was tested against the removal and reduction of 

Pseudomonas aeruginosa biofilms formed in the stainless steel coupons in the bioreactor. 

At the end of the 48 hours the bioreactor stopped as the biofilm was ready for analysis. 
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The bioreactor was disassembled and each rod was removed and dipped into buffered 

water to remove any planktonic cells. Each coupon was unscrewed and released into a 

sterile 50mL conical tube. Once all coupons were removed three samples were selected at 

random for each treatment. Standard method ASTM E2871-13 steps 9.1-9.7.4 

(International 2013) was followed for sample removal and efficacy evaluation. This 

method is referred to as a single tube method, used to evaluate efficacy in a closed system 

and to eliminate potential for lost cells. For the evaluation of effect of reused caustic 

solutions in the cleaning efficiency, the CIP cycle treatment procedures below were 

followed.  

Treatment Control: 4 mL dilution water 

Treatment 1: 4 mL caustic, neutralize 

Treatment 2: 4 mL caustic, drain, 4 mL acid, neutralize  

Treatment 3: 4 mL caustic, drain, 4 mL acid, drain, 4 mL sanitizer, neutralize 

Treatment 4: 4 mL caustic, drain, 4 mL H2O, drain, 4 mL acid, neutralize 

Treatment 5: 4 mL caustic, drain, 4 mL H2O, drain, 4 mL acid, drain, 4 mL H2O, drain, 4 

mL sanitizer, neutralize 

Each CIP replicated solution came into contact with the exposed biofilm covered coupon 

for a specific contact time (T=5 min.).  After the contact time solutions were neutralized 

or decanted out of the conical tube and the next solution was added.  Control samples, 

Treatment 0, were treated with 60 °C buffered water, to mimic hose cleaning inside 

holding tanks. Treatment 4 & 5 used nanopure water for the intermediate rinsing steps. 
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All the treatments (Trt control -Trt5) were applied to the contaminated coupons using 

reuse caustic solution at the different reuse cycles described in Table 5. The caustic 

solution was the only reused solution, the rest of the cleaning solutions used in the CIP 

were prepared fresh for each run.  A commercial acid solution (ACID 300, Ecolab, USA) 

as well as a commercial sanitizer (Vortexx, Ecolab, USA) were used. The biofilm was 

removed from the coupon through a process of alternating vortex and sonication, as 

indicated in the standard method (International 2013). Each sample was quantified using 

serial dilution and spread plating on BD Difco R2A Agar (Thermo Fisher Scientific, 

USA). Samples were incubated at 37° C for 24 hours.  

2.4.1 Neutralization of cleaning solutions 

The appropriate volume of neutralizer was determined through preliminary studies.  The 

evaluation of Dey Engley Neutralizing Broth as an effective inactivator of antimicrobial 

agents (CIP treatment solutions) was conducted. To determine if this broth neutralized 

the effect of the cleaning solution and to see its’ toxicity 8.1-8.4.7 Test A and B (ASTM 

2004) were evaluated. There was a 5 minute contact time. To confirm proper 

neutralization Test A and B, modified for efficacy volume, were repeated.  The product 

(CIP treatment solution) volume was increased to 4 mL and the neutralizer 36mL L Dey 

Engley Neutralizing broth. Each sample was inoculated with 0.1mL 106 P. aeruginosa. 

Serial dilution and spread plates, BD Difco R2A Agar (Thermo Fisher Scientific, USA), 

was used to see the effect of the neutralization on the growth of P. aeruginosa. The 

neutralizing solution was considered successful if there was colony growth observed in 

neutralized samples and no growth when Test B was done. Dey Engley Neutralizing 

Broth did not successfully stop the caustic solution. Therefore, 4 mL reuse caustic 
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solution were neutralized by reverse titration and inoculated with 0.1 mL 106 P. 

aeruginosa, serial diluted and grown for 24 hours at 37 °C to confirm growth. Each 

sample used to evaluate the reused caustic solution (treatment 1) was neutralized by 

titration with 0.1N HCL, 10 uL phenolphthalein indicator. Samples subject to both 0.2% 

acid solution and 0.6% sanitizer (treatments 2-5) were neutralized using a consistent 

36mL Dey- Engley Neutralizing Broth (Sigma-Aldrich, USA). The pH of each sample 

was measured to confirm proper neutralization of treatment solution.  

           2.5 Statistical Analysis  

To evaluate the efficacy of reused caustic solutions against P. aeruginosa biofilms 

samples were tested in triplicate and the entire experiment was repeated three times. Plate 

counts obtained from spread plating were used to calculate the log10 (cfu/coupon). This 

log10 density is done to indicate the reduction of viable cells (International 2013) by each 

treatment. The experimental design included a split plot analysis with reuse solution as 

whole plot and treatment as split plot. A completely randomized ANOVA was conducted 

to statistically determine significant differences among treatments. Coupons resulting in 

<10^0 cfu/mL (lower than detection level) were assigned 0.5 log10 cfu/coupon as 

recommended in.  Zero log is undefined making it inadequate for efficacy evaluation, and 

should be replaced by 0.5 for log reduction evaluation (Hamilton 2011).   This method of 

replacing the lower than detection limit results has been show before (Hoa et al. 2015). 

Significance level was P < 0.05. 
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3. Results and Discussion 

3.1 Physio-Chemical Analyses 

The characterization of experimental caustic solution with increased reuse cycles is 

represented in Table 6. Visual observations noted that increasing the number of reuse 

cycles of experimental caustic solution resulted in darkening of solutions, caused by 

mailard browning (Marie Furic 2015). The pH remained high for all experimental caustic 

solutions ranging from 12.48-12.96. It is important to maintain alkalinity, as its role in 

cleaning is saponification, or the conversion of fats into soaps (Ryther 2014). An increase 

in reuse cycles was directly related to the increase in Total Nitrogen (301-6490mg/L TN), 

Total Phosphate (142-11727 mg/L PO43-), Chemical Oxygen Demand (33-208600 mg/L 

COD), and Turbidity (0.001-3.135). The amount of pollutants that can be oxidized 

increased with increase in reuse cycles as seen here. The increase in turbidity, correlated 

with increase in organic matter and TSS, was also noted in literature (Marie Furic 2015). 

This increase in wastewater load is important as treatment ability, discharge regulations 

depend on it, and can result in excess surcharges if too polluted. Wastewater heavily 

polluted with nitrogen and phosphorus can result in negative impacts on the environment. 

Adverse impacts of nutrient heavy wastewater are hypoxia, acid rain, and air pollution. 

(EPA 2017). According to the Code of Federal Regulations (CFR) subpart B, the 

maximum effluent limitation for a plant receiving 250,000 lb/day of milk equivalent for a 

given day are pH =6.0 -9.0 , TSS of 0.675 lbs/100 lbs of BOD5 input (e-CFR 2018).  

Each plants effluent limits can be calculated based on product volume and the knowledge 

of whole fluid milk BOD5 of 120,000 mg/L (Bylund 2003).  All experimental caustic 
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reuse solutions exceed the discharge limits for Nitrogen (< 25 mg/L TN) and phosphorus 

(0.3-0.5 mg/L TP) (Bylund 2003).  

The increase in reuse cycles showed to be inversely related to surface tension (Table 6). 

This trend is also seen in caustic solutions reused over the course of one week at a 

processing plant  (Uzi Merina 2002), as well as when caustic solutions were regenerated 

through filtration (Marie Furic 2015).  The results of physcio chemical analysis showed 

the surface tension decreased with reuse cycle from fresh experimental caustic solution, 0 

N (40.37mN/m) to 50 N (30.15mN/m). The result of TSS and COD caused a reduction in 

surface tension as a result of fat and protein hydrolysis by NaOH (Alvarez et al. 2007). 

Other studies showed a stabilizing surface tension around 30mN/m (Gésan-Guiziou et al. 

2002, Uzi Merina 2002).  The stabilization trend was seen when evaluating spent caustic 

solutions from a plant that reused solution up to 400 cycles. They reported the caustic 

solutions used 10 times to have a higher surface tension (47 mN/m), and lower COD (900 

mg/L) and TN (20mg/L) (Gésan-Guiziou et al. 2002) compared to the characteristics of 

10 N solution that had a surface tension of 33.04 mN/m, 18125 mg/L COD, and 557 

mg/L TN.        

Unlike the COD of the experimental caustic solution, which continuously increased 33-

208600mg/L), the cleaning solutions found in literature reused for 280 and 410 cycles 

over one week of reuse had the same COD and did not observe a clear trend. Variation 

between physio chemical analysis of 10N solution used here and the one found in that 

study could be due to the definition of a cleaning cycle and the composition of the caustic 

solution.  Solutions reused over 20 times would ignore the 5% volume loss after each run. 

Additionally, the partnering dairy plant ran cleaning at the end of each processing day (4 
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production days/week) whereas ,that study found that one week correlated to over 400 

cycles of cleaning (Gésan-Guiziou et al. 2002). Another study prepared a model caustic 

solution with a COD of 1650mg/L to mimic a used caustic solution from the dairy 

industry (Trägårdh and Johansson 1998). This value, if extrapolated for 5 reuse solutions, 

8100 mg/l COD was similar to the 5N caustic solution (7538 mg/L COD). The 

experimental caustic solution, fresh 2% NaOH solution had the greatest surface tension 

of the caustic solutions.  Fernandez et al. also found that the surface tension of a 2% fresh 

single-phase detergent was 40mN/m compared to 40.37mN/m for the fresh experimental 

caustic solution (Fernández et al. 2010). The degradation of milk components act in place 

of surfactants, which explains the reduction in observed surface tension (Table 2), 

correlating to more degradation and more surfactant properties of the solution. 
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Table 6 : Composition and Physio-Chemical Properties of Experimental Caustic 

Solutions 

N° of 

cycles 

pH COD 

(mg/L) 

TSS 

(mg/L) 

Turbidity 

@ A 600 

Surface 

Tension 

(mN/m) 

TN 

(mg/L 

) 

TP 

(mg/L 

PO4
3-) 

0  Alt 12.48 305 4 0.002  32.07 0B OC 

0 12.80 33 0 0.001 40.37 0B OC 

5 12.95 7538 2617 1.761 34.42 301 142 

10 12.96 18125 4977 2.168 33.04 557 292 

15 12.96 24381 8917 2.399 31.36 852 978 

20 12.95 31894 11117 2.532 31.21 1290 1115 

20 filt - 13467 20 0.005 65.59 138 145 

50 12.55 208600 3960 3.135 30.15 6490 11727 

Alt commercial caustic solution 

Filt Filtered 20N solution 
B under range (1-16 mg/L N) 
C under range (6-60 mg/L PO4

3-) 

*COD= Chemical Oxygen demand, TSS: Total Suspended Solids, TN: Total Nitrogen, 

TP: Total reactive phosphorus (phosphate) 

 

After filtration all the values of physio-chemical parameters decreased, except surface 

tension, due to the removal of TSS in the permeate. Treatment of the 20N solution (20 filt) 

caused a 57.77% reduction in COD and increased the surface tension by 52.41% (Figure 

11). Lower surface tension is associated with better cleaning action. Alvarez et al. 

compared contaminated caustic solutions with and without suspended solids.  The 

clarification of the contaminated caustic solution showed a 14.33% increase in surface 

tension (Alvarez  et al. 2007). They found that NaOH solutions would result in similar 
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efficiency compared to commercial solutions, if the NaOH solution had both low TSS 

and surface tension. However, efficiency testing was based on membrane fouling, as 

opposed to testing on stainless steel surfaces, as would be found on the processing floor.   

 

Figure 9: Comparison of Potential Filtration on Characterization of 20N Caustic 

Reuse Sample 

 

A survey characterizing the waste stream among eight plants showed great variability not 

only between plants but also at each location (650-2297 mg/L BOD5,  405-1082 mg/l 

TSS) (Danalewich et al. 1998). Therefore, it is important to understand the parameters of 

the waste streams, specifically CIP streams in order to determine their ability for reuse.  

The next step was to evaluate how these parameters related to their role in CIP 

operations. 
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3.2 Cleaning Efficacy of caustic solution 

The efficacy of reusing caustic solution for microbial removal of P.aeruginosa biofilm 

was evaluated both individually and in combination of complete CIP operations (Figure 

12).  Efficacy was evaluated based on the change in bacterial density of P.aeruginosa. 

When Treatment 1 was evaluated, experimental caustic reuse solutions representing 10 

and 50 cycles were significantly different from 5N (Figure 12). The remaining solutions 

0, 15, and 20 were not significantly different from the other caustic solutions used in 

Treatment 1. Treatment 2 evaluated the combined impact of the reuse solution followed 

by the commercial acid solution.  In this treatment the significant difference in efficacy 

was between both fresh (0 N) solution and 5N or 10N solution. Treatment 3, intended to 

evaluate the role of a reused caustic solution as part of a complete CIP system, and 

showed no significant difference between reuse solutions 0-50N. In addition to the CIP 

operations observed at a processing facility, the impact of additional wash steps was 

evaluated. In the samples treated under treatment 4, none of the experimental caustic 

reuse solutions were significantly different from the other. When coupons were exposed 

to treatment 5, with the addition of 2 rinse cycles, 50N was significantly different from 

10N.  
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Figure 10: Biofilm Density of P.aeruginosa Biofilm after Efficacy Treatment 

*Letters denote significance. Shared letters indicate results were not significantly different. Significance level was P < 

0.05 

 

In order to see the impact of incorporating a rinsing step into the CIP operations, the log 

reduction of treatment 2 was compared against 4, as well as treatments 3 against 

treatment 5. No reuse caustic solution showed significant difference when an additional 

rinsing step was incorporated after the caustic rinse (Treatment 4). This trend was also 

observed when a rinsing step was added after both the caustic and acid rinsing steps for 0, 

5, 10, 15, and 20 cycles of reuse solutions (Figure 12). However, with the 50 N solution, 

the current CIP operations (Treatment 3) there was significant difference, 8.52 log 

reductions, compared to the addition of two rinse (Treatment 5) which achieved a log 

reduction of 5.12. For this solution, the water inhibited further reduction in P.aeruginosa.  
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Figure 11: Log10 Reduction of P.aeruginosa Biofilm Density with the Incorporation 

of Rinsing Stages 

*Letters denote significance. Shared letters indicate results were not significantly different. Significance level was P < 

0.05 

 

While the effectiveness of caustic and acid steps on the removal of biofilms has been 

evaluated previously (Bremer et al. 2006), their original cleaning procedure included two 

rinse stages and no final sanitation (caustic rinse, water rinse, acid rinse, water rinse).  

Efficacy evaluation differed from this study, as tubes used for evaluation of different 

regiments were not randomized, a standard method for biofilm growth was not followed, 

controlling for microorganism required 18 vs. 48 hours, and effectiveness was testing 

through swabbing as opposed to the single tube (closed system) method followed. Figure 

12 shows the fresh (0N) 2% NaOH solution experimentally achieved a greater log10 

reduction (6.54 +/- 2.82) compared to the log reduction of 1.8 for the 1% NaOH (Bremer 
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et al. 2006). Additionally, they evaluated the effectiveness of nitric acid rinse and 

sanitizer. They found no significant difference in bacterial numbers when caustic was 

followed by an acid rinse nor when a sanitizer was added. For all solutions, (0-50N) the 

bacterial density log reduction of P.aeruginosa were not significantly different between 

Treatment 1 (caustic) and Treatment 2 (caustic /acid).  Treatment 3, complete CIP, was 

significantly different from Treatment 2 when 0N, 15N, and 50N experimental reuse 

solutions were used. Interestingly, Treatment 3 was only significantly different from 

Treatment 1, caustic alone, when 50N solution was evaluated (Figure 13). Therefore, the 

addition of a sanitizer solution did not significantly affected the log reduction of the 

biofilm compared to caustic alone (treatment 1) except when the caustic solution 

mimicked 50 cycles of reuse. It is important that a food industry CIP operation involve 

removal of biofilm throughout the steps, as they are more susceptible to the bactericidal 

action of sanitizers if they are dislodged from the surface (Carpentier and Cerf 1993).  

One study evaluated natural occurring biofilms at eight processing plants by placing 

stainless steel coupons in a food processing facility, previously showed to harbor biofilm. 

They accessed the surface bacteria, through total viable counts, before cleaning, finding a 

pre-cleaning bacteria mean log of 3.26+/-1.80. Cleaning processes did not show a strong 

impact on eliminating of attached bacteria. Cleaning, without disinfection achieved less 

than one log reduction while disinfection reduced the growth further by 1.21 logs (Gibson 

et al. 1999). All total viable counts showed standard deviations exceeding one log. 

Additionally, their evaluation of laboratory removal of biofilms using pressure washing 

with either caustic, acid, or neither showed no significant difference in removal of 
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P.aeruginosa (Gibson et al. 1999) biofilm, which proved more resistant to solutions 

compared with other biofilms 

According to the EPA’s procedure for evaluating sanitization action of detergents, in 

order for a solution to be considered effective there must at least a mean 5-log reduction 

in planktonic cells after a 30 second contact time on test cultures (EPA 2016). The 

occurrence of bacteria after cleaning operations has been noticed in dairy processing 

(Sharma and Anand 2002). Through swabbing of post CIP surfaces, they notices biofilm 

counts ranging from 6.29-7.97 Log10 cfu/ml.  While implementation of iodophore 

sanitizer post CIP showed log10 reductions ranging from 3.15-5.55, bacterial counts of 

1.23-4.74 log10 cfu/mL were still present on processing surfaces. They classified sanitizer 

efficacy based on a reduction of 3 logs (Sharma and Anand 2002) as the reaction does not 

occur at the same intensity to attached bacteria (Mosteller and Bishop 1993). Treatment 3 

and 5 both involved exposer to an organic acid sanitizer containing a mixture of 

Hydrogen Peroxide, Peroxyacetic Acid, Octanoic Acid, and other inert components. 

Peroxide based disinfectants (0.5%) have been shown to be permeable, to P.aeruginosa 

biofilms, meaning they have been shown to penetrate through the outer layer of the 

biofilm (Wirtanen et al. 2001).   All experimental caustic reuse solutions (0-50) resulted 

in the mean log reduction of at least 5 logs for treatment 3, (6.47-9.07) and for treatment 

5 (5.12-8.67) (Figure 13). However, the standard deviation varied between 1-3 logs for 

these two treatments.  It is the thought of the author that variation in log10 reduction may 

be due to the sanitizers’ ability to reach the entire biofilm. 

Research evaluating cleaning efficacy on biofilms showed Pseudomonas species biofilms 

were superior in survival after cleaning compared to other species biofilms (Hoa et al. 
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2015). These strong biofilms still exhibited 3-log cfu/cm2 of microorganism remain on 

the surface after treatment.  

4. Conclusion: 

In food processing, the occurrence of biofilms can be a result of inadequate cleaning 

measures. On the plant floor, the point of reuse for caustic solution is subjective to visual 

observations by CIP operators. The physico-chemical quantification of organic load was 

defined in this research.  The increase in reuse cycles is directly related in increases in 

COD, Turbidity, TSS, TP, and TN. The reduction in surface tension with reuse solution is 

thought to advance the cleaning ability as hydrolysis of milk components have surfactant 

properties.  Before caustic cleaning solution can be reused, the efficacy must be 

evaluated. To uphold the integrity of plant safety, a 3 log reduction in attached bacteria 

should be achieved. CIP operations, including a sanitizer rinse as noticed in treatment 3 

and 5 with solutions 0-50N experimental reuse solutions, showed a 3 log reduction in 

bacterial density of P.aeruginosa. Therefore, experimental caustic solutions showed the 

potential for reuse. To further determine limit of reuse of experimental caustic solutions 

additional experiments are needed.  The mechanical action of CIP operations was not 

addressed here and should be implemented to observe the efficacy of reuse solutions 

when mechanical action is performed. Additionally, pilot scale should be implemented to 

ensure that the final sanitizer still achieved the 3 log reduction when 0-50N solutions 

were used. Lastly, the microbial efficacy of 0-50N with and without treatment by 

membrane filtration should be explored to compare the direct role changes in organic 

load and surface tension effect the log reduction of cleaning operations.  
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Chapter 5: SUMMARY 

 

Current knowledge on the FEW Nexus during secondary food production is limited. It is 

believed that to optimize the FEW Nexus within food processing, baseline consumption 

must be determined. In addition to the baseline resource, data on milk processing, and 

wastewater must be known. Providing dairy processers with baseline information will 

help individual plants judge their efficiency. From here, processors can work to identify 

where improvements can be made and where or not they fall within their fiscal year.  

This research determined that for every gallon of finished milk 0.13 kWh, 0.01 Therms, 

energy and 0.87 gallons freshwater are needed. A processing plant producing a variety of 

fluid milk products including unflavored, chocolate, and strawberry varieties of whole, 

2%, 1%, skim, half & half, and occasionally ice cream base that daily produced 7,218 

gallons of finished fluid milk can use these findings as a reference for efficiency.  

The recovery and treatment of wastewater must be approached in a way that is plausible 

for all members of the industry. It is thought that a producer’s decision to recover 

wastewater must be validated with stability in product safety and incentivized by the 

potential benefit to their bottom line. The desire of a producer to become a “good 

steward” of resources may not be enough to implement beneficial changes to the FEW 

Nexus within a milk processing facility.  

The cleaning operation accounted for the majority of water and 24% of the electricity 

needed for the processing of fluid milk.  Water reuse, focused on cleaning operations 

need to address both mechanical and microbiota cleaning efficiency. Failure to address 

microbial efficacy in relation to their physio-chemical characterization can lead to 
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insufficient cleaning operations. Water reuse can concern food processors due to the 

organic load and potential of bacterial contamination in used processing water.   The 

reuse of caustic solution showed increase in organic load and a decrease in surface 

tension. Experimental caustic solutions showed no significant difference when 

implemented into a complete CIP system. The definition of efficacy, in relation to reuse 

of cleaning solutions should be further evaluated to better understand the reduction in 

biofilm density as it relates to surface tension and organic load.   

It is the hope that these findings will catalyze producers to reuse process wastewater with 

confidence in its’ safety, while also providing financial and environmental benefits to the 

production.  
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Figure 12: Utility Consumption Based on Consolidated Billed Data 
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Figure 13: Diagram of Installed TED Pro 4003, 3-Phase Amp Meter 
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Table 7: Variation in Electrical Monthly Consumption by Three Methods Chosen 

Month 
Total monthly kWh, 

hourly meter  

Total monthly 

kWh, billed data  

Total monthly 

kWh, TED 

DATA 

Sep-16                    23,028  21,134                 6,238  

Oct-16                    15,790  15,028               18,355  

Nov-16                    16,058  16,585               18,204  

Dec-16                    14,299  14,887               16,333  

Jan-17                    16,267  15,472               17,091  

Feb-17                    17,082  17,174               18,863  

 

 

 

 

Figure 14: Cleaning in Place Operations for Fluid Milk Processing Facility 
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Table 8: Average Electrical Consumption for Processing Days Using the AMI 

Electrical Meter 

 Averages  kWh  

Processing days   Processing Cleaning  Total % cleaning of total 

September 

Monday  867.86 278.02 1145.88 24.67 

Tuesday 708.16 186.47 894.62 21.21 

Wednesday  660.66 243.20 903.86 25.66 

Thursday  931.26 290.60 1221.86 23.53 

October 

Monday  711.73 209.45 921.18 22.13 

Tuesday 600.50 184.30 784.80 23.54 

Wednesday  505.05 164.92 669.97 24.72 

Thursday  618.33 172.09 790.41 21.68 

November 

Monday  693.96 244.02 937.98 25.85 

Tuesday 597.22 171.31 768.53 22.30 

Wednesday  526.09 149.18 675.27 22.08 

Thursday  522.60 149.16 671.76 25.30 

December 

Monday  662.41 199.79 862.20 22.25 

Tuesday 374.71 130.85 505.55 28.35 

Wednesday  498.26 143.00 641.26 24.06 

Thursday  640.79 192.26 833.05 23.08 

January  

Monday  643.00 262.82 905.82 28.84 

Tuesday 543.63 163.39 707.02 23.20 

Wednesday  552.31 176.23 728.53 24.04 

Thursday  670.41 220.43 890.83 24.75 

February  

Monday  674.00 273.21 947.21 28.54 

Tuesday 543.06 163.37 706.42 23.11 

Wednesday  617.29 174.61 791.90 22.45 

Thursday  671.32 205.95 877.27 23.44 
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Table 9: Average Electrical Consumption for Non-Processing Days Using the AMI 

Electrical Meter 

 kWh 

Non Processing days Total 

Friday  544.47 

Saturday 409.22 

Sunday 195.53 

    

Friday  168.90 

Saturday 127.62 

Sunday 128.37 

    

Friday  330.62 

Saturday 37.80 

Sunday 36.87 

    

Friday  154.61 

Saturday 145.54 

Sunday 149.19 

    

Friday  150.12 

Saturday 123.96 

Sunday 125.73 

    

Friday  287.82 

Saturday 460.87 

Sunday 102.68 

    

 

 

 

 

 

\ 
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Table 10: Average Daily Finished Milk Production 

Averages  gallons of gallons 

processed   

Processing days Lbs. of gallons processed  

Monday  72608.00 8406.14 

Tuesday 43079.25 4987.47 

Wednesday  52648.00 6095.28 

Thursday  90777.40 10509.68 

Monday  72613.40 8406.76 

Tuesday 45266.25 5240.67 

Wednesday  39175.25 4535.48 

Thursday  54388.25 6296.76 

Monday  74285.00 8600.29 

Tuesday 48207.60 5581.20 

Wednesday  49000.00 5672.94 

Thursday  60813.67 7040.66 

Monday  70822.75 8199.45 

Tuesday 34854.33 4035.23 

Wednesday  56172.67 6503.35 

Thursday  65182.40 7546.44 

Monday  75994.20 8798.17 

Tuesday 46153.80 5343.42 

Wednesday  56497.12 6540.91 

Thursday  75003.75 8683.50 

Monday  85898.75 9944.86 

Tuesday 48362.00 5599.07 

Wednesday  62994.50 7293.14 

Thursday  73159.25 8469.96 
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Table 11: Daily averages of reported in and out MILK per Day in the Month 
 

August September  October  Novem

ber 

Januar

y  

Februa

ry 

March  

 Lbs. of Raw 

milk 

Received  

74784.7

4 

69199 58313.06 59386.

67 

77095.

22 

73,238

.90 

71202.

35 

 Cream  - 2787.4 2729.29 2990.8

8 

7670.1

7 

6,295.

09 

4866.6

7 

Lbs. of 

Gallons 

produced  

70425.6 64762.05 54022.71 55389.

83 

63152.

42 

66,214

.60 

66004.

12 

 Gallons of 

Gallons 

produced   

8189.02 7530.47 6281.71 6440.6

8 

7343.3

0 

7699.3

7 

7674.9

0 

 Shrink in lb.  1280.52 1473.42 1561.06 1148.7

8 

6272.6

3 

821.94 904.12 

 

Table 12: Daily Average Water Consumption Determined by Inline Water Meters 

 

Boil

er 

Othe

r  Total  

Boiler std 

dev  

Other std 

dev 

total std 

dev 

Monday 

619.

2 

4783.

8 

5403.

0 104.9 421.9 495.0 

Tuesday  

515.

9 

4734.

3 

5250.

2 175.3 1580.8 1740.7 

Wednesday 

589.

6 

4470.

7 

5060.

3 84.7 472.0 479.8 

Thursday 

604.

2 

4724.

2 

5328.

4 65.3 440.1 438.7 

Processing Day 

Average  

582.

2 

4678.

2 

5260.

5 45.8 140.8 147.3 

Friday 71.7 250.1 321.8 18.9 244.5 261.9 

Saturday 61.0 8.6 69.6 9.7 2.2 9.9 

Sunday 45.8 7.1 52.9 6.3 1.5 6.3 

Non-Processing Day 

Average  59.5 88.6 148.1 13.0 139.9 150.6 
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Figure 15: Wastewater Haul Weight Reported 
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Table 13: Inputs of Processing Units 

 

 

 

 

 

 

 

 

 

Unit 
Operation 

raw  skim 
milk 

raw 
cream  

hot 
water  

cold 
water  

stea
m 

glyc
ol 

Freo
n 

Past. 
Milk  

Receiving 
tank + - - - - -   - 

Separator + + + - - -   - 

cream tank - + - - - - - - 

liquefier + + - - - - - - 

balance tank + +   + - - - - 

pasteurizer + + + - - + - - 
homogenize
r + + - + - - - - 

bottle filler  - - - + - - - + 

pouch filler - - - + - - - + 

T1 + + +       + - 

T2 + + +       + - 

T3 + + +       + - 

T4 - - - - - - + + 

T5 - - - - - - + + 

T6 - - - - - - + + 

T7 - - - - - - + + 

T8 - - - - - - + + 

COP tank               - 
hot water 
tank - - - + + - - - 
glycol/chille
r - - - + - + - - 
water 
reservoir - - - + - - - - 
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Table 14: Unit operations consuming greater than 2% 

Unit   Sept
Ave. 

  Oct 
Av
e 

  Nov 
Ave 

  Dec. 
Ave 

  Jan. 
Ave.  

  Feb 
Ave
. 

Ave 

Std
Dvt 

Std 
Dvt 

Std. 
Dev 

Std. 
Dev 

std. 
dev 

Std. 
dev     

Wat
er 
Hea
ter 

0.5
1 

3.83 0.58 4.5
9 

0.01 4.26 0.52 3.92 0.61 4.10 0.04 2.3
7 

3.8
5 

Bott
le/C
ap 
Fille
r 
Con
vey
or & 
Pum
p 

2.4
5 

12.64 1.44 11.
25 

0.01 11.7
0 

0.90 9.91 0.99 11.1
4 

0.00 0.0
1% 

9.4
4 

Sep
arat
or  

1.4
1 

4.19 1.49 5.0
3 

0.01 6.04 1.81 5.74 1.68 5.33 0.18 2.5
2 

4.8
1 

Air 
Con
ditio
ner 
Proc
ess 
Roo
m 

0.2
2 

3.38 0.35 3.9
3 

0.0 4.47 0.23 3.62 0.32 1.88 0.00 0.0
0 

2.8
8 

Truc
k 
Was
h 
Pum
p 

0.1
1 

2.11 0.03 2.6
2 

0.0 2.95 0.28 2.95 0.14 2.77 0.58 7.6
1 

3.5
0 

Chill
er 
Unit 
Insi
de  

0.8
8 

15.36 3.18 18.
35 

0.02 20.0
6 

3.32 17.9
1 

3.33 21.5
5 

0.27 0.1
3 

15.
56 

Tan
k 1 
Com
pres
sor 

0.0 0.0 0.0 0.0 0.0 0.03 0.0 0.00 0.0 0.0 3.27 20.
7 

3.4
6 
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Pou
ch 
filler 
& 
Con
vey
or & 
Pum
p 

0.2
9 

1.61 0.11 1.8
2 

0.0 1.42 0.28 1.24 0.18 1.48 0.46 5.5
7 

2.1
9 

Chill
er 
Unit 
Out
side 
unit 

8.2
8 

10.44 0.27 1.4
1 

0.00 0.07 0.09 0.12 0.05 0.09 0.00 0.0
0 

2.0
2 

Ho
mog
eniz
er 

0.4
9 

21.07 2.94 22.
62 

0.02 20.7
6 

3.33 16.8
0 

3.42 20.7
9 

0.24 0.7
2 

17.
13 

Com
pres
sor 
(rep
orte
d as 
off) 

0.5
0 

5.51 0.44 6.8
1 

0.01 6.92 0.19 5.89 1.37 5.35 0.29 7.6
0 

6.3
5 

Tan
k 1 
Agit
ator 

0.6
1 

2.45 0.55 2.2
1 

0.0 1.40 1.06 2.53 0.60 1.56 0.43 2.0
4 

2.0
3 

Tan
k 
2,3,
4 
Agit
ator 

0.1
7 

1.98 0.43 2.0
2 

0.00 1.37 0.26 1.96 0.47 1.79 0.54 3.4
6 

2.1
0 

pts 
abo
ve 
2.0
% 

su
m 

83.01 Sum 81.
44 

sum 81.3
6 

sum 79.4
8 

sum 73.4
6 

sum 83.
06 

75.
31 
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 Statistical Analysis Model and Assumptions: 

Experimental Design: 

RS – 0X  RS – 5X  RS – 10X  RS – 15X  RS – 20X 

Control Control  Control  Control  Control 

Caustic Caustic  Caustic  Caustic  Caustic 

Caustic/Acid Caustic/Acid  Caustic/Acid  Caustic/Acid  Caustic/Acid 

Caustic/Acid/ 

Sanitizer 

Caustic/Acid/ 

Sanitizer 

 Caustic/Acid/ 

Sanitizer 

 Caustic/Acid/ 

Sanitizer 

 Caustic/Acid/ 

Sanitizer 

Caustic/ 

Rinse/Acid 

Caustic/ 

Rinse/Acid 

 Caustic/ 

Rinse/Acid 

 Caustic/ 

Rinse/Acid 

 Caustic/ 

Rinse/Acid 

Caustic/Rins

e/ 

Acid/Rinse/ 

Sanitizer 

Caustic/Rins

e/ 

Acid/Rinse/ 

Sanitizer 

 Caustic/Rins

e/ 

Acid/Rinse/ 

Sanitizer 

 Caustic/Rins

e/ 

Acid/Rinse/ 

Sanitizer 

 Caustic/Rins

e/ 

Acid/Rinse/ 

Sanitizer 
        Day 1  Day 2          Day 3  Day 4            Day 5 

ANOVA Table: 

Source DF In symbol 

Reuse solution (A) 5-1 = 4 a-1 

Block*A – Whole Plot error (3-1)*5 = 10 (r-1)*a 

Treatment (B) 6-1 = 5 b-1 

A*B 20 (a-b)(b-1) 

Split Plot error A*(rep*B) 5*2*5= 50 a(b-1)(r-1) 

Sampling Error 2*3*30 = 180 (s-1)rab 

Total 270-1 = 269 rabs-1 

 

Where  r is the number of replications (experiment repeated 3 times) 

a is the number of reuse solution (5 reuse solutions – 0X, 5X, 10X, 15X, 20X) 

b is the number of treatments (6 treatments – caustic, control, …) 

s is the number of sampling (3 sample were taken from each experiment in one 

day)  

 

Model: 𝑦𝑖𝑗𝑘 = 𝜇 + 𝛼𝑖 + 𝛿𝑖𝑗 + 𝛽𝑘 + 𝛼𝛽𝑖𝑘 + 𝜖𝑖𝑗𝑘 +  𝜌𝑖𝑗𝑘𝑙 

Where 𝑦𝑖𝑗𝑘is the response of ith reuse solution treatment, jth whole plot unit and kth 

treatment  

𝜇 is the overall mean 

𝛼𝑖 is the number of reuse solution effect 
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𝛿𝑖𝑗 is the whole plot error  

𝛽𝑘 is the treatment effect 

𝛼𝛽𝑖𝑘 is the interaction of reuse solution and treatment 

 𝜖𝑖𝑗𝑘 is the error term  

𝜌𝑖𝑗𝑘𝑙 is the sampling effect. 

Assumptions: 𝛿𝑖𝑗~𝑁(0, 𝜎𝛿
2) , 𝜖𝑖𝑗𝑘~𝑁(0, 𝜎𝜖

2) , 𝜌𝑖𝑗𝑘𝑙~𝑁(0, 𝜎𝛿
2) all independent among 

and within each other.  
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