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ABSTRACT

As biotechnology advances rapidly, a tremendous
amount of cancer genetic data has become avail-
able, providing an unprecedented opportunity for
understanding the genetic mechanisms of cancer.
To understand the effects of duplications and dele-
tions on cancer progression, two genomes (normal
and tumor) were sequenced from each of five
stomach cancer patients in different stages (I, II, III
and IV). We developed a phylogenetic model for
analyzing stomach cancer data. The model
assumes that duplication and deletion occur in ac-
cordance with a continuous time Markov Chain
along the branches of a phylogenetic tree attached
with five extended branches leading to the tumor
genomes. Moreover, coalescence times of the
phylogenetic tree follow a coalescence process.
The simulation study suggests that the maximum
likelihood approach can accurately estimate param-
eters in the phylogenetic model. The phylogenetic
model was applied to the stomach cancer data.
We found that the expected number of changes
(duplication and deletion) per gene for the tumor
genomes is significantly higher than that for
the normal genomes. The goodness-of-fit test
suggests that the phylogenetic model with
constant duplication and deletion rates can
adequately fit the duplication data for the normal
genomes. The analysis found nine duplicated
genes that are significantly associated with
stomach cancer.

INTRODUCTION

Cancer is one of the leading causes of death in Americans
(1). Cancer research has led to a variety of effective
treatments and diagnostic techniques for cancers. Yet,
the fundamental genetic mechanisms that turn normal
cells into tumors remain mysterious. Advances in the bio-
technology field have provided an unprecedented oppor-
tunity for understanding the origin and progression of
cancer (2–4). The availability of genetic data ignites the
hope that we may discover the genetic mechanisms of
cancer by examining the genetic differences between
normal and cancer genomes (5). It is, however, a
challenging task to effectively analyze such genetic data
by modeling the genetic variation observed within and
between the normal and cancer groups (6). Previous
studies have demonstrated that cancer progression is an
evolutionary process in which mutation and natural selec-
tion are two key factors (7,8). Mutation causes genetic
variation among normal cells that can trigger cancer (9).
On the other hand, selection plays an important role in
therapeutic resistance (10–12) and in the birth and death
process of cancer cells, as cancer cells vary and the fittest
ones survive after competition (13).

In the last few decades, theory from evolution and
ecology has been adapted in cancer studies to investigate
the genetic mechanisms of cancer (14–18). Muto et al. (19)
studied colon cancers and found that most colon cancers
have evolved from adenomatous polyps known as polyp-
cancer sequences. Evolutionary ideas have been explored
in many cancer analyses (20–22). Nowell (23) proposed a
landmark colonial evolution model for tumor progression,
which assumes that most neoplasms originate from a
single cell. Gillies et al. (24) proposed an evolutionary
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model for malignant cancers, in which the micro-environ-
mental forces such as hypoxia can stimulate genetic in-
stability and impose selection pressures on cancer cells.
Recently, Wu (25) investigated the evolution of cancer
cells after the primary tumor had spread to secondary
sites (26). Ultimately, cancer evolution within an individ-
ual can be viewed genetically as adaptation to a new life-
style and ecologically in the context of the other cell types
and resources available in an individual.

Heterogeneity of cancer caused by genetic instability is
the main challenge in the process of understanding cancer
evolution and in the process of identifying driver genes (8).
Due to this challenge, cancer data sets often lack signal
regarding the evolutionary process of cancer. It is difficult
to find genomic mutations/events that trigger cancer, espe-
cially those that trigger the early-stage cancer. High
throughput technologies, particularly next generation
sequences (NGS) provide researchers with new
opportunities to understand the evolutionary process of
cancer development at a single cell nucleotide level
(16,27–29). NGS technology is able to identify alterations
in the genome, e.g. chromosomal rearrangement and copy
number variation, rather than point mutations; and can
sequence genetic material from lower-frequency samples
(30). Because of the advantages of NGS data, the NGS
technology has been extensively used in cancer studies to
examine genetic mechanisms that cause cancer
progression.

Gene duplication is believed to play an important role
in tumor progression (31). Duplicated genes have been
frequently observed in the genomes of cancer patients.
Waris and Ahsan (32) suggested that gene duplication
and other changes in DNA may be involved in the initi-
ation of various cancers. Previous studies found that there
is a strong correlation between gene duplication and large
tumor size, indicating that gene duplication may play a
critical role in tumor progression (33). However, the
information at early stages of cancer is usually unavailable
and little is known about the relationship between gene
duplication and early-stage cancer.

The primary goal of the study is to investigate the effects
of gene duplication and deletion on the incidence and pro-
gression of cancers. Specifically, this study aims to estimate
the duplication and deletion rates on normal and tumor
genomes, and to identify duplicated genes that are highly
associated with stomach cancer. We have developed a
probabilistic model in the context of coalescent trees of
normal genomes attached with five tumor genomes for
understanding how gene duplication and deletion are
related to different stages of cancer as cancer progresses.
A maximum likelihood approach is adopted to estimate
model parameters, including duplication and deletion
rates. This approach can identify duplicated genes that
are significantly associated with stomach cancer.

MATERIALS AND METHODS

Genome annotation and duplication data

The genomic data was obtained from five stomach cancer
patients (34). Two samples (tumor and normal) were

taken from each patient; tumor tissues were surgically
removed from part of the patients’ stomachs, while
blood samples were extracted as normal tissues from the
same patients (34). Determination of pathologic stages of
tumor tissues is based on the standards recommended by
World Health Organization (WHO). Pathological exam-
ination suggested that two patients were in stage II of
stomach cancer, while remaining three patients were in
stages I, III and IV (Table 1). Stomach cancer has two
subtypes in terms of the genome instability—micro satel-
lite instability (35) and chromosome instability (36).
However, the subtypes of the stomach cancer for five
patients in this study are not available in (34). The
genomes were sequenced for each of the two samples
(normal and tumor). Both the normal and tumor
genomes were compared with the human reference
genome to identify duplicated genes. As the human refer-
ence genome is a haploid sequence, it may result in
underestimation of duplication events. High-confidence
duplication events were identified if a junction in the
genomic data satisfied all of the following criteria: (i) at
least 10 mate-pairs in cluster for its junction, (ii) successful
de novo assembly of the junction, (iii) high mapping diver-
sity with both left length and right length no less than 70
and (iv) absence of specific repeat sequences on left and
right side of junction. As it is assumed that duplication
events occur independently among genes, the junctions
that covered more than two genes were excluded. With
these criteria, we identified 210 genes on which duplication
occurred for at least one of the 10 genomes (5 normal and
5 tumors). We use ‘1’ to denote duplication and ‘0’ to
denote no duplication. Cui et al. (34) did not estimate
the total number of genes in the genomes of five
patients. We used the estimate from ENCODE (37) that
the total number of genes in the human genome is 21 000.
Because the most significant inferences are based on the
relative duplication and deletion rates, uncertainty in the
total number of human genes does not affect the major
conclusions of the data analysis. In summary, the data
matrix D has 21 000 rows and 10 columns; each row rep-
resents a gene and each column represents a genome
(normal or tumor). The entries in the matrix D are
either 0 (no duplication) or 1 (duplication).

A phylogenetic model for gene duplication

The stochastic process of gene duplication and deletion
The process of gene duplication and deletion is a continu-
ous time Markov process with two states 1 (duplication)

Table 1. The number of duplicated genes on the

genomes of five stomach cancer patients

Subject Stage No of duplicated genes
in tumor genomes

S1 I 64
S2 II 84
S3 II 57
S4 III 75
S5 IV 72
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and 0 (no duplication). Let d(t) denote the Markov
process on states 0 and 1. We assume that transition
probabilities Pij(t) are stationary and the infinitesimal
duplication and deletion rates are a and b, respectively.
The probability of a duplication event (and a deletion
event) during a time period of duration �t, as �t ! 0,
is (38,39)

Pðdðt+�tÞ ¼ 1jdðtÞ ¼ 0Þ ¼ a�t+oð�tÞ and

Pðdðt+�tÞ ¼ 0jdðtÞ ¼ 1Þ ¼ b�t+oð�tÞ
ð1Þ

The notation o(�t) indicates lim�t!0 oð�tÞ=�t ¼ 0.
The probability distribution P(t) of d(t) can be derived
from theory of Markov process. Let T=(a+b)t and
m=a/(a+b). The transition probabilities Pij(t) are given
as follows:

Pd1, d2ðTÞ ¼ d1+d2 � 1j j+ð1� 2d1Þð2d2 � 1Þm1�x1

� ð1�mÞx1 ð1� e�TÞ, for d1, d2 ¼ f0,1g:

ð2Þ

As T!1,

P0, 0ðTÞ ! 1�m,P0, 1ðTÞ ! m,P1, 0ðTÞ ! 1�m, and

P1, 1ðTÞ ! m

ð3Þ

Thus the limiting distribution as T!1 is P(d(T)=0)=
1�m and P(d(T)=1)=m. This model is time reversible,
in the sense that P(d(t)=0, d(t +T)=1)=P(d(t)=1,
d(t+T)=0).

The likelihood function under the phylogenetic model
A phylogenetic tree with five extended branches describes
the history of 10 genomes of five cancer patients. The
five normal genomes are at the tips of the tree, which
are attached with five extended branches leading to
the tumor genomes (Figure 1). The tree without the
extended branches represents the history of five normal
genomes, while the extended branches represent the
duplication/deletion process that leads to the tumor
genomes. Each tumor progression was treated as an
independent process, even though the tumors progressed
through the same stages phenotypically. As described
above, the normal and tumor sequences are coded as
binary data (0: no duplication or 1: duplication). Each
site of the sequences contains duplication status of a gene
across five patients. Parameters of the phylogenetic
model include the topology of the tree, branch lengths
Ti, and parameter m= a/(a+b). Let M be the number of
branches in the tree and W be the number of
extended branches. We assume that m is constant on
the main branches of the tree, but the extended
branches have variable (relative) duplication rates {me

k,
k=1, . . . , W}. Given a phylogenetic tree S (topology,
branch lengths T and parameter m) and the extended
branches (branch lengths Te and me), the probability
distribution of data matrix D can be derived from
the transition probability function in (2). Let dij and
d*ij be the duplication status of gene j at the two ends
of branch i (with length Ti) in tree S with topology t.

It follows from (2) that the probability of dij and d �ij ,
given branch length Ti, parameter m, and tree topology
t, is

Pðdij, d
�
ij jTi,m, �Þ ¼ dij+d �ij � 1

��� ���
+ð1� 2dijÞð2d

�
ij � 1Þm1�dij ð1�mÞdijð1� e�TiÞ:

ð4Þ

Given the states of the internal nodes, the Markov
processes on different branches of the phylogenetic tree
are independent of one another. The probability distribu-
tion function of duplication events on gene j (denoted
by Dj) is the product of the probabilities for individual
branches in (4), i.e.,

PðDj, IjT,m, �,Te,meÞ ¼
YM
i¼1

Pðdij, d
�
ij jTi,m, �Þ

( )

�
YW
k¼1

Pðckj, c
�
kjjT

e
k,m

e
kÞ

( )
:

ð5Þ

In (5), I denotes the duplication status at the internodes
of the tree. The first term in (5) is the probability of
duplication events in normal genomes, given the phylo-
genetic tree without the extended branches. The second
term is the probability of duplication events in tumor
genomes, given the extended branches, in which ckj
and c�kj are the duplication status of gene j at the
two ends of the extended branch k. The probability
function P(Dj, I j T, m, t, Te, me

k) in (5) assumes that
the duplication status at the internodes of the tree are
given. Because in reality I is often not given, we calculate

Figure 1. The tree in the phylogenetic model. The normal genomes (N)
at the tips of the tree are attached with five extended branches leading
to the tumor genomes (T). Ni and Ti are the normal and tumor
genomes of patient i. The tree (above normal genomes) represents the
history of five normal genomes, while the extended branches represent
the process leading to the five tumor genomes. The normal genomes are
the ancestral genomes of the tumor genomes.
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P(Dj jT, m, t, Te, me), which is the sum over all possible
realizations of I, i.e.,

PðDjjT,m, �,Te,meÞ ¼
X
I

PðDj, IjT,m, �,Te,meÞ: ð6Þ

The probability distribution P(Dj j T, m, t, Te, me) in (6)
can be efficiently calculated by a peeling technique
described by Felsenstein (40).

In the context of population genetics, the phylogenetic
tree of n individuals varies over different loci due to the
coalescent. Let t={tj, j=2, . . . , n} be the waiting times
until the next coalescence event. Let �=4uNe be the
population size parameter, in which Ne is the effective
population size and u is the change (duplication and
deletion) rate per gene. According to the coalescent
theory, the waiting times tj’s are independently distributed
with the exponential density

f tjj�
� �

¼
j j� 1ð Þ

�
e�

j j�1ð Þtj
� : ð7Þ

The expected coalescent time for a haploid genome from
two individuals chosen at random from the human popu-
lation is E(t2)= �/2, which indicates that if the sequences
of a gene are sampled from one of the genomes of two
individuals chosen at random from the human population,
the expected duplication probability E(P0,1(T)) is equal to
the probability P0,1(T), averaging over coalescence time T,
which has an exponential density described in (7), i.e.,

EðP0,1ðTÞÞ ¼

Z1
0

mð1� e�2TÞ
2

�
e�2T=� dt ¼

m�

�+1
: ð8Þ

Similarly, the expected deletion probability is EðP1, 0ðTÞÞ ¼
ð1�mÞ�
�+1 . The expected number of changes per gene

between two genomes chosen at random from the
human population is

EðPðx1 ¼ 0, x2 ¼ 1jTÞÞ ¼Z1
0

ð1�mÞmð1� e�2TÞ
2

�
e�2T=�dT ¼

ð1�mÞm�

�+1
,
ð9Þ

in which x1 represents the duplication status of a gene in
one of the two genomes, and x2 represents the duplication
status of the same gene in the other genome.

The parameters � and m are estimated by averaging
over gene trees, in which branch lengths T are the sum
of a set of coalescence waiting times t with a density
function described in (7). The probability of observing
certain duplication states (D for current individuals
and I for their ancestors) of a gene is then equal to the
likelihood in (5) (without the extended branches)
averaging over coalescence waiting times t i.e.,

PðDj, Ijm, �Þ ¼

Z
t

YM
i¼1

Pðdij, d
�
ijjTi,m, �Þ f ðtj�Þdt:

The probability P(Dj j m, �) for a single locus is equal
to the probability in (5) summing over all possible

duplication states at the internal nodes of the
phylogenetic tree,

p Djjm, �
� �

¼
X
I

P Dj, Ijm, �
� �

Since probability P(Dj j m, �) under the coalescent
model is invariant to the order of the duplication
states of individuals, the relevant random variable here
is the number of duplications across individuals.
When there are n individuals, the number of individuals
who have duplication for a particular gene could be 0
up to n. Let {xi, i=0, . . . , n} be the number of genes
for which i individuals have duplications. The sum of
xi’s (N) is the total number (21 000) of genes considered
in this study. We use {pi, i=0, . . . , n} to denote the
probability of observing i individuals with duplication.
Thus {xi, i=0, . . . , n} follows a multinomial distribu-
tion, i.e.,

P x jm, �ð Þ ¼
N!

x0! . . . xn !

Yn
i�0

Pxi
i ,

Because the multinomial coefficient does not involve
model parameters, we delete this term and write the log-
likelihood function as

l m, �ð Þ ¼
Xn
i�0

xi log pi ð10Þ

In this equation, pi is a function of m and �, which will
be derived as follows under the coalescent theory.
Considering a simple case of two individuals, the coales-
cence time t has an exponential distribution with density
2e�2t/�/�. Let y be the duplication state at the root, and z1
and z2 be the duplicate states of two individuals at the
tips of the tree. As there are only two states for y, z1
and z2, the domain of y, z1 and z2 has only two values,
0 and 1. The goal is to derive the probabilities of (z1=0,
z2=0), (z1=0, z2=1), (z1=1, z2=0) and (z1=1,
z2=1). We assume that the states at the root have the
equilibrium distribution with probability mass function
P(y=0)=1�m and P(y=1)=m. The probability of
(z1=0, z2=0) is

Pðz1 ¼ 0, z2 ¼ 0Þ ¼ Pðz1 ¼ 0, z2 ¼ 0jy ¼ 0Þ

� Pðy ¼ 0Þ+Pðz1 ¼ 0, z2 ¼ 0jy ¼ 1Þ � Pðy ¼ 1Þ

¼ ð1�mÞ

Z1
t¼0

2ð1�m+me�tÞ2e�2t=�=�dt

+m

Z1
t¼0

2ð1�mÞ2ð1� e�tÞ2e�2t=�=�dt

¼ ð1�mÞ2+mð1�mÞ=ð�+1Þ:

Similarly, P(z1=0, z2=1)=P(z1=1, z2=0)=
�m(1�m)/(�+1), and P(z1=1, z2=1)=m2+m(1�m)/
(�+1). Thus we have p0=(1�m)2+m(1�m)/(�+1),
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p1=2�m(1�m)/(�+1), and p2=m2+m(1�m)/(�+1).
The log-likelihood function becomes

lðm, �Þ ¼ x0log ð1�mÞ2+mð1�mÞ=ð�+1Þ
� �

+ x1logf2�mð1�mÞ=ð�+1Þg

+ x2logfm
2+mð1�mÞ=ð�+1Þg:

ð11Þ

For an arbitrary number of individuals, we use an iterative
algorithm (Supplementary Material S1) to calculate prob-
ability pi. The maximum likelihood estimates of � and
m are obtained by using the L-BFGS-B algorithm (41)
implemented in an R optimization function optim. In
addition to the estimates of model parameters, function
optim outputs the hessian matrix (also called observed
Fisher information matrix) that can be used to calculate
the variances of the estimates.
Additionally, equation (5) implies that duplication

processes occurring on the extended branches are condi-
tionally independent of those occurring on the other
branches of the tree. Thus, parameters on the extended
branches can be estimated separately. Let {ak; k=1, . . . ,
W} and {bk; k=1, . . . ,W} be the duplication and deletion
rates on the W extended branches. The ratio parameter is
mk= ak/(ak+bk) and the branch length is Te

k = (ak+bk)tk.
Parameters {mk, Te

k; k=1, . . . , W} on the extended
branches can be estimated from the empirical frequencies
of observations 00, 01, 10 and 11 on the normal and tumor
genomes of each patient. The two digits are the duplica-
tion status of the genes on the normal and tumor genomes,
respectively, from the same patient. Let n00, n01, n10, n11
be the count of the genes with pattern 00, 01, 10 and 11,
respectively. The count n01 has binomial distribution with
p01 ¼ með1� e�T

e

Þ and n0=n00+n01, in which Te is the
length of the extended branch. Similarly, the count n10
has binomial distribution with probability p10 ¼ ð1�meÞ

ð1� e�T
e

Þ and n1=n10+n11. The maximum likelihood
estimate of p01 is n01/n0, i.e., p01 ¼ með1� e�T

e

Þ � n01=n0
and p10 ¼ ð1�meÞð1� e�T

e

Þ � n10=n1. Thus, the esti-
mates of me and Te are given by m̂e ¼ n01n1

n01n1+n10n0
and

T̂e ¼ �log 1� n01
m̂en0

n o
.

Simulation study
To evaluate the performance of the phylogenetic model
developed in the previous section, duplication and
deletion events were simulated from the phylogenetic
model. The values of parameters (m, �) were set to (0.01,
0.01), (0.01, 0.1), (0.3, 0.01), (0.3, 0.1), respectively. For
each parameter setting, we simulated duplication and
deletion events for 1000, 5000 and 10 000 genes. The
simulated data were then used to estimate parameters
(m, �) in the phylogenetic model. Each simulation was
repeated 10 times, and the square root of mean square
error (RMSE) between the estimate and the true value

of the model parameter was calculated. Let �̂ be the

estimate of parameter �. The RMSE is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
g

Pg
i¼1 ð�̂i � �Þ

2
q

,

where g is the number of simulations and �̂i is the estimate
of � for the i-th simulation. Overall, the results show that
the RMSEs of parameters m and � decrease as the number

of genes increases for all parameter settings (Figure 2).
The RMSE of m depends on not only the value of m,
but also the value of � and the number of genes. It
appears that m has a smaller RMSE when � is large
(�=0.1) at 1000 genes (Figure 2a). But this pattern is
reversed for m=0.3 at 5000 and 10 000 genes. In
contrast, � consistently has a smaller RMSE when m is
large (Figure 2b). This may be caused by the fact that a
large m tends to generate more duplications in the
simulated data. Thus it is relatively straightforward to
estimate � when m is large. For all parameter settings,
the RMSEs of m and � decrease to a reasonable level
(<0.008), when the number of genes reaches 10 000.

RESULTS

In the stomach cancer data set, there are 210 genes onwhich
duplication has occurred for at least one of the 10 genomes.
The remaining 20 790 genes have the pattern of (0,0,0,0,
0,0,0,0,0,0), given that the total number of genes on the
human genomes is 21 000 (37). The number of duplicated
genes in the tumor genomes varies across the stages of
stomach cancer (Table 1). There is a high degree of individ-
ual variation in this data, although this might suggest that
duplication and deletion rates may vary across different
stages of stomach cancer.

Figure 2. Simulation results. The square root of the mean square error
for (a) estimating parameter m, and for (b) estimating parameter �.
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We use the phylogenetic model to estimate and compare
the overall changes (duplications and deletions) on the
normal genomes and tumor genomes. We expect that
the overall changes in the tumor genome are significantly
higher than those in the normal genomes. We also inves-
tigate the pattern (increasing or decreasing) of the dupli-
cation and deletion rates across cancer stages. Finally,
we identify significant duplication and deletion events
associated with tumor genomes. As duplication and
deletion rates depend on the total number of genes in
the human genomes, the duplication and deletion rates
estimated from the stomach cancer data set are relative
rates. Moreover, the strategies of identifying duplication
events on the genomes of five patients may underestimate
the number of duplications. Because underestimation
occurs for both normal and tumor genomes, it will not
affect the gross conclusions based on the comparison of
the relative duplication and deletion rates on normal and
tumor genomes, or among the tumor genomes in different
cancer stages.

We first assumed a fix tree for all genes (described in
Figure 1), and used a Bayesian approach (Supplementary
Material S2) to estimate the phylogenetic tree and the du-
plication and deletion rates. The Bayesian estimate of the
phylogenetic tree is poorly supported with all posterior
probabilities <0.4 (Supplementary Figure S3c). The low
posterior probabilities for the nodes in the Bayesian tree,
despite such a large number of observations, suggest that
there is not a single tree generating the empirical data.
Thus, we modeled the gene trees in the context of popu-
lation genetics using the coalescent theory as described
above, and calculated the maximum likelihood estimates
of model parameters m and �.

The maximum likelihood estimates of model parameters

The model parameters m and � were estimated by
maximizing the log-likelihood function described in
equation (10). We used the L-BFGS-B algorithm (41)
implemented in the R optimization function optim to
maximize the log-likelihood function in equation (10).
The estimate of � for tumor genomes is twice as high as
that for normal genomes (Table 2). The expected number
of changes per gene for the tumor genomes is
mð1�mÞ�=ð1+�Þ ¼ 0:0022 (see equation (9)), which is
significantly higher than that (0.0012) for the normal
genomes. This result suggests that the number of
changes (duplications and deletions) in the tumor
genomes is significantly greater than the number of
changes in the normal genomes.

The goodness of fit of the phylogenetic model was
evaluated by the chi-square goodness-of-fit test

implemented in an R function chisq.test. The observed
counts of genes for which 0 up to 5 individuals have
duplication were calculated for the normal and tumor
genomes (Table 3). Moreover, the expected count of
genes for which i individuals have duplication equals
21 000� pi, in which the probability pi of observing i
individuals with duplication was obtained from the
L-BFGS-B algorithm described in the previous section.
The probabilities {p0, p1, p2, p3, p4, p5} for the normal
genomes are 0.9942, 0.0021, 0.0011, 0.0008, 0.0007,
0.0008, respectively. The chi-square test cannot reject the
phylogenetic model for the normal genomes, with
P-value=0.828 (Table 3). In contrast, the probabilities
{p0, p1, p2, p3, p4, p5} for the tumor genomes are 0.9903,
0.0049 0.0022, 0.0012, 0.0007, 0.0004, respectively. The
phylogenetic model for tumor genomes is strongly
rejected by the chi-square test, with P-value< 10�6

(Table 3). The phylogenetic model assumes constant
duplication and deletion rates across branches of the
tree. However, duplication and deletion rates may be
highly variable in different stages of stomach cancer,
and thus the assumption of constant duplication and
deletion rates may be seriously violated when modeling
tumor genomes in different stages of cancer. To take
into account variable duplication and deletion rates, we
separately fit the two-states duplication and deletion
model to each of the external branches. As we expected,
duplication and deletion rates vary across external
branches (Table 4). Overall, the deletion rates are much
higher than the duplication rates on the extended branches
(Table 4), suggesting that deletion occurred more often
than duplication in tumor genomes. The duplication and

Table 3. The chi-square goodness-of-fit test for the phylogenetic

model

No of
patients with
duplication

Normal Tumor

Observed
counts

Expected
counts

Observed
counts

Expected
counts

0 20 885 20 880 20 803 20 798
1 46 44.6 129 103.2
2 23 24.1 26 46.4
3 18 17.8 16 26.9
4 10 15.6 7 16.4
5 18 17.6 19 8.9

P-value=0.8283 P-value=7.3e-07

Table 4. The estimates of relative duplication and deletion rates on

the extended branches

Duplication rate Deletion rate

T1 0.0013 0.2626
T2 0.0024 0.2079
T3 0.0007 0.2412
T4 0.0009 0.1443
T5 0.0017 0.2817

Table 2. The maximum likelihood estimates of m and � for normal

and tumor genomes

m (SE) � (SE)

Normal 0.0028 (0.0002) 0.7134 (0.1024)
Tumor 0.0037 (0.0003) 1.4750 (0.1881)

The values within parentheses are standard errors of the estimates.

Nucleic Acids Research, 2014, Vol. 42, No. 5 2875

5
-
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt1320/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt1320/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt1320/-/DC1
-
2


deletion rates appear not to have either an increasing or
decreasing pattern associated with cancer stages.

Identifying cancer-related duplicated genes

Let x denote the duplication status of a gene, with x=1
referring to the cases where the gene collected from the
tumor tissue is duplicated, while the gene collected from
the normal tissue of the same patient is not duplicated. If
duplication of the same gene is observed on a large
number of tumor genomes, it is strong evidence that the
duplicated gene is associated with tumor. We call this type
of duplication ‘cancer-related duplication’ (occurring on
the tumor genome, but not on the normal genome). Let
y be the number of cancer-related duplications for a par-
ticular gene observed in the genomes of five patients. For
the stomach cancer data, the value of y can be 0 up to 5.
Under the null hypothesis that the duplication of a par-
ticular gene in the tumor genome is normal, we expect that
the observed cancer-related duplication probability of a
gene will be similar to the duplication probability in
normal genomes. Thus, a duplicated gene is associated
with cancer if the observed probability is significantly
higher than the duplication probability in normal
genomes. Given that m=0.0028 and �=0.7134, the
average duplication probability in normal genomes is
p=m�/(1+�)=0.0012 (see equation (8)). Under the
null hypothesis, the random variable y (number of dupli-
cations) has a binomial distribution with P=0.0012 and
n=5. The null hypothesis was rejected for nine duplicated
genes (CDH4, CLPS, CLSTN2, EML5, NPEPL1,
SENP5, SPTB, VAMP7, XAGE-4), with the overall
P-value< 0.05 adjusted by Bonferroni correction for
multiple comparisons (Table 5). The same list of genes
was identified when the duplication probability p was
calculated from the two ends of the 95% confidence
interval (mean±2SE) of m and �. Similarly, the
frequencies of deleted genes on the tumor genomes are
compared with the deletion probability in normal
genomes. If the observed frequency of deletions is signifi-
cantly higher than the deletion probability in the normal
genomes, we conclude that the deletion is significantly
associated with cancer. We did not find any deletion
that is significantly associate with cancer.
The functional annotation of nine significantly

duplicated genes (Supplementary Table S1) was conducted
by the DAVID web server (42). The analyses generated

two significant annotation clusters (Supplementary
Table S2). The first annotation cluster includes three
genes (CDH4, CLSTN2 and NPEPL1), which are
related to ion binding, specifically metal ion binding.
Metal ion binding has been found to play an important
role in the anticancer activity of UK-1 analogs (43). The
four genes (CDH4, VAMP7, CLSTN2 and SPTB) in the
second annotation cluster are mainly related to membrane
or transmembrane proteins, which function as gateways
to link inside and outside of a cell. Previous cancer
studies suggest that membrane proteins are related to
cancer progression (44), and transmembrane genes are
usually quite important in drug design (45).

DISCUSSION

Genomic data have become one of the most valuable re-
sources of information for understanding the genetic
mechanisms of cancer (22). Due to the complexity of the
genomic data, it is challenging to develop a probabilistic
model that can effectively extract useful information
from genomic data. The genome-wide association study
(GWAS) is a powerful approach for identifying cancer-
related genes, based on comparison of single-nucleotide
polymorphisms (SNP) in the normal and cancer
genomes (46–48). The phylogenetic model developed in
this article is based on the same principle to identify
cancer-related duplications by comparing the normal
and tumor genomes. Additionally, the phylogenetic
model adds a layer of biological realism to the analysis
that was otherwise not present in the GWAS analysis.

The phylogenetic model developed in this article is
designed for genome-wide duplication data analysis. It
has been shown through simulation that the phylogenetic
method can accurately estimate the model parameters,
including duplication and deletion rates. Previous studies
suggest that the mechanism of cancer is complex and
may involve multiple biological processes (49). For those
cases, the analysis based on the phylogenetic model in
which only duplication and deletion events are considered
may produce biased results. In the future, we will extend
the current phylogenetic model by including more biolo-
gical factors (see for example, 50 in an evolutionary
context). In the phylogenetic model, we assume that
genes are independent of each other. This assumption
may not hold, because several genes might be in the
same linkage block or under selection for functional
purposes. Treating genes as independent samples, while
they are not, may increase the effective sample size and
thus produce an estimator with an artificially smaller
variance. In addition, non-independent gene trees may
bias the estimates of model parameters, especially when
the recombination events are highly correlated with dupli-
cation and deletion events. The effect of non-independent
gene trees depends on the recombination rate of human
genomes. Non-independent gene trees have been modeled
for a three-taxon case (51), but it is generally quite difficult
to deal with non-independent gene trees due to link-
age disequilibrium. Although we do not deal with non-
independent gene trees in this article, this issue clearly
needs more attention.

Table 5. Identification of duplicated genes associated with cancer

Number of
duplications

Number
of genes

P-value Cumulative
P-value

Significance

0 20 853 1.0 1.0
1 109 0.006 >0.5
2 7 1.4e-05 1e-04 *
3 1 1.7e-8 1.7e-08 *
4 0 1e-11 2.4e-15 *
5 1 2.4e-15 2.4e-15 *

The significant genes are indicated by *. The cumulative P-value was
adjusted with Bonferroni correction for multiple comparisons.
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Despite the fact that genomic data from cancer patients
will become increasingly available, the high cost of
sequencing whole genomes significantly limits the size of
such genomic data. The data set analyzed in this article
contains genomes from only five patients, one or two
patients for each stage of stomach cancer. We expect
that the availability of multiple genomes from more
patients (along with the actual number of gene copies
for each gene) will significantly improve the estimation
of model parameters and increase the power for testing
relevant biological hypotheses about the mechanisms of
cancer under the phylogenetic model.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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