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ABSTRACT
High-frequency testing (HFT) is useful for accelerated fatigue testing of conventional materials
that typically serve under low-frequency loading conditions, as well as for the assessment of the
robustness of microelectromechanical systems which typically experience high-frequency service
conditions. Using discrete dislocation dynamics, we attempt to elucidate the effect of loading fre-
quency on the reversibility of cyclic deformation. We demonstrate that the HFT induces a higher
fraction of reversible cyclic deformation because of a larger portion of elastic/anelastic deformation
due to limited dislocationmobility, and a higher degree of reversibility in plastic deformation owing
to the less occurrence of cross-slip.

IMPACT STATEMENT
Dislocation-based frequency effects on high-cycle deformation reversibility in metals are eluci-
dated. Hysteresis energy is shown to dissipate even under ideal, damage-free conditions, contrary
to popular assumptions of energy-based fatigue models.
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1. Introduction

High-frequency testing (HFT)—including ultrasonic
fatigue testing (UFT, with a frequency as high as 20 kHz)
andmegahertz frequency testing (MFT, with a frequency
of several, tens, or hundreds of MHz) [1–6]—are among
the accelerated testing techniques currently being applied
to evaluate fatigue lives/strength beyond the Giga-cycle
regime. MFT, in particular, routinely provides a means
to assess the robustness ofmicroelectromechanical struc-
tures (MEMS).However, research shows that, due to vari-
ation in the imposed cyclic strain rate, the effect of load-
ing frequency on the deformation behavior of materials,
as observed in the UFT, is strongly material dependent
[5,7,8], owing to the distinct dislocation core structures
in different crystal structures.

In principle, the motion of dislocations, regardless
of the crystal structures, is always thermally activated

CONTACT Shuai Shao sshao@lsu.edu Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70820, USA;
Michael M. Khonsari khonsari@lsu.edu Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70820, USA

[9]. The dislocations in BCC exhibit strong non-planar
core structure. Therefore, their motion—which is asso-
ciated with high lattice friction and high activation
energy—exhibit strong rate dependence. Under UFT, the
time allowed for dislocation relaxation in BCC materi-
als is limited, and a large portion of the total strain is
accommodated by elastic or anelastic [10] deformation
[11]. As a result, the effect of frequency on the fatigue
behavior of BCCmaterials observed fromUFT is notice-
ably higher than that of the FCC materials [5]. Since the
plastic strain rate (ε̇p) is related to the velocity (vi) and
density (ρi) of the mobile dislocations on slip system i
[12,13], i.e.

ε̇p =
N∑
i=1

1
2
ρivi(ni ⊗ bi + bi ⊗ ni) (1)
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Limited by the mobility of dislocations, if the density
of the mobile dislocations is low, more time is required
for dislocation structure to fully relax (i.e. to achieve the
same amount of plastic deformation), and the frequency
dependence is expected to be more pronounced. There-
fore, the frequency dependence of fatigue strength and
cyclic life is expected to manifest even in FCC materials
with low mobile dislocation densities.

In addition, the rate dependent cross-slip does not
have sufficient time to occur during UFT (∼20 kHz)
and MFT (∼100MHz). As a result, plastic deformation
at these frequencies is more ‘reversible’1 [14,15] than
in lower frequency (<20Hz) testing. In other words,
the to-and-fro motions of screw dislocations between
walls, loop patches, or within cells [16] are less likely
to be affected by cross-slip frequencies, so that much
less debris/traces are left behind in the form of immo-
bile dislocations. Therefore, the damage induced by the
HFT is expected to be considerably smaller than the
one from the conventional low-frequency testing, even
though the hysteresis energy might be the same. Energy-
based fatigue damage models typically assume that a
given material, under a specific load level, can only sus-
tain a critical amount of cumulative plastic deformation
energy before it fails [17–19]. Hence, plastic deforma-
tion energy in each cycle (hysteresis energy, �wp) is
often used as the damage parameter to establish the criti-
cal total hysteresis energy (

∑
�wp). Such models, with

appropriate modifications [17,20], perform reasonably
well for specimens under variable loading amplitudes.
However, their accuracy maybe debatable when signif-
icantly higher frequencies are introduced, due to the
aforementioned rate-dependent damage mechanics.

In this work, using interface dislocation dynamics
(IDD) [21], we attempt to elucidate the two issues men-
tioned above: (1) the effect of loading frequency (and the
imposed cyclic strain rate) as well as the mobile disloca-
tion density on the hysteresis response; (2) the effect of
loading frequency (and the imposed cyclic strain rate) on
the accumulation of immobile dislocation density. Both
issues pertain to the reversibility [14,15] of deformation
during cyclic loading as impacted by potentially high-
/ultrahigh- loading frequency, which, in principle, should
be independent of the material system utilized. Higher
fractions of reversible cyclic deformation can potentially
be achieved during HFT via an increased percentage
of elastic/anelastic [10] deformation or reversible plastic
deformation [14,15] per loading cycle.

2. Methods

The IDD model used in this work is developed from the
parametric dislocation dynamics (PDD) code described

Figure 1. Initial dislocation structure for cases of high
(a: 1.75× 1013 m−2) and low (b: 0.35× 1013 m−2) initial
dislocation densities. The crystallographic orientations are given
in the figure. The dislocation walls are represented using blue
shades. The dashed lines with green arrows denote the direction
on which the shear strain is applied. The dash-dot lines show the
directions on which the dislocations propagate.

in Ref. [22]. We use Al as a model system (Figure 1), with
isotropic elastic assumption with the following materials
constants: lattice parameter a = 4.05Å, Young’s mod-
ulus E = 70.74GPa, shear modulus μ = 26.2GPa, and
Poisson’s ratio ν = 0.35. Due to the high stacking fault
energy in Al, Shockley partial dislocations and stacking
faults are not explicitly treated. Limited by the time scale
of the dislocation dynamics simulations [21,23], strain
rates of ε̇ = 8 × 105/s and ε̇ = 4 × 106/s (a difference of
only a factor of 5) are used to study the effect of loading
frequency.

When the cyclic deformation is saturated, a regularly
spaced dislocation wall structure, known as persistent
slip band (PSB), forms and dominates the cyclic plastic
deformation by localized shear deformation [16,24–26].
Therefore, we consider the localized deformation behav-
ior of a well-developed dislocation wall structure dur-
ing tension-compression cyclic loading by subjecting the
simulation cell to a fully reversed pure shear loading con-
dition (Figure 1) with a triangle wave loading profile.
Typical dislocation wall structure comprises pure-edge
dislocation dipole walls bounding the gliding screw dis-
locations (known as runner dislocations, or runners) in
between [16,24–26]. The theoretical treatment of the sat-
uration stress associated with the dipole wall typically
ignore the discrete dislocation structure within the walls
and only consider the bowing and passing stress of screw
dislocations [25,27]. The long-range stress posed by the
walls, in the case of strong external constraint as spec-
ified by Ref. [26], can be treated by the superposition
of a piece-wise uniform stress field inside the channels.
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As shown by Ref. [26], the long-range stress only acts to
moderately reduce the resolved shear stress on the pri-
mary slip planes (their traces on the PSB wall are marked
by dash-dotted lines in Figure 1) in the channels. As a
result, the net forces acting on the runner dislocations
along the primary slip planes may be reduced overall,
slightly decreasing the velocities of dislocations. How-
ever, since the long-range stress do not produce an out-
of-plane force components, the rate of cross-slip events is
not affected.

In this work, we model the walls as featureless plane
entities that are impenetrable to gliding dislocations
(Figure 1, cyan and orange planes) [21]. Runner disloca-
tions move within the channels in a threading fashion,
akin to multilayered composites [28]. The size of the
computational cell is 1.10μm× 1.04μm× 0.07μm. The
resulting spacing between the walls is 35 nm, this being
approximately an order of magnitude smaller than the
typical wall spacing [5,16], which is applied to reduce
computational cost. This discrepancy in the wall spac-
ing between IDD and experiment, although results in an
increase in flow stress, is not expected to impact effect
of loading frequency on the cyclic behavior. In effect, the
behavior of dislocations is very much similar to those
propagating within thin coatings on a substrate [29,30]
or within a multilayered metal composites [21,31]. The
applied pure shear strain amplitude in the simulations is
�εshear/2 = 1.3%, which translates to a strain amplitude
of �ε/2 = 2.6% in a tension-compression test (assum-
ing that the walls are 45° with the loading axis). This
relatively large strain is applied to simulate the localized
shear deformation in the PSB or dislocation wall struc-
ture. As is well known that the local shear strain ampli-
tude in PSBs is around 1%, regardless of the imposed
plastic strain amplitude [26,32,33]. The loading frequen-
cies are 312.5MHz and 62.5MHz which falls within the
megahertz frequency range of fatigue experiments [4]. In
addition, it is important to note that the simulations per-
formed in this work do not explicitly consider the effect
of temperature and we assume that the temperature of
the samples is well controlled during the high-/ultrahigh-
frequency fatigue experiments.

The effects of cross-slip are considered phenomeno-
logically, assuming that the primary slip planes (dash-
dotted lines in Figure 1) in a PSB are perfectly aligned
with a maximum shear plane and that the Burgers vec-
tor is aligned with the maximum shear direction. The
cross-slip events are modeled only to avoid obstacles (i.e.
like-signed dislocations considered in this work) or facil-
itate annihilation. Once an obstacle is avoided, the net
force acting on a screw segment is expected to be mostly
parallel to the slip plane again. Therefore, another cross-
slip event, shifting the screw runner back to its original

slip plane immediately follows. When two ‘runner dis-
locations’ approach each other, force components per-
pendicular to the primary slip plane arise due to their
mutual interaction, which is apparently a function of
their proximity. The probability of the cross-slip events
is dependent on the effective force act on the disloca-
tion segment pointing on a secondary slip plane. The
following probabilistic equation is typically followed in
the numerical implementation of cross-slip in dislocation
dynamics [34–37]:

P = A0exp
(

−τ ∗ − τ

kT
V

)
andV = αD2

0b (2)

whereA0 is a normalization factor, τ* is the critical ather-
mal resolved shear stress for cross-slip, τ is the actual
resolved shear stress on a particular slip system, V is the
activation volume and D0 is the length of a screw dislo-
cation segment. Note that τb gives the force acting on the
dislocation segment resolved onto a specific plane. In our
simulations, all dislocation segments propagating in the
channels are of the same length and of the same Burg-
ers vector. Therefore, the only factor that determines the
probability of cross slip is the force component point-
ing away from the current slip plane. For simplicity, in
the current work the cross-slip is modeled by periodi-
cally picking a runner dislocation with the largest Peach-
Koehler (PK) force component acting perpendicular to
the current slip planes. This process is modeled in this
work following the procedure below:

(1) At every 0.4 ns,2 the components of Peach-Koehler
(PK) force acting on each screw runner dislocations
normal to their current slip planes are evaluated,
i.e. FnPK = [(σ

sum
· ⇀

b) × ⇀

ξ ] × n̂, where σ
sum

is the

total stress summed at the dislocation segment,
⇀

b is
the Burgers vector of the dislocation,

⇀

ξ is the line
sense of the dislocation and n̂ is the normal of the
dislocation’s slip plane;

(2) The screw dislocation with the largest PK force act-
ing normal to its slip plane is picked;

(3) The picked dislocation is then shifted normal to its
slip plane along the PK force by a small distance
(17.5 nm is used in this work); and

(4) Classical dislocation dynamics is performed for the
next 0.4 ns interval.

Referring to Table 1, five cases of IDD simulations are
performed considering different frequencies, an initial
dislocation density, and cross-slip abilities. The initial
dislocation configurations corresponding to the low and
high dislocation densities are shown in Figure 1.
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Table 1. Details of the five IDD simulations performed.

Simulation Number #1 #2 #3 #4 #5

Initial total dislocation
density (ρtotal, m−2)

1.75× 1013 1.75× 1013 1.75× 1013 0.35× 1013 1.75× 1013

Initial density of mobile
dislocaitons (ρmobile, m−2)

0.88× 1013 0.88× 1013 0.88× 1013 0.18× 1013 0.88× 1013

Frequency (f, kHz) 312.5× 103 312.5× 103 62.5× 103 62.5× 103 62.5× 103

Strain rate (ε̇) 4× 106 4× 106 8× 105 8× 105 8× 105

Cross-slip Disabled Enabled Disabled Disabled Enabled

Figure 2. Hysteresis responses of the IDD simulations shown by the normalized shear stress (τ /μ) vs. normalized shear strain
(εshear/�εshear) curves: (a) demonstrates the effect of loading frequency as well as mobile dislocation density, and (b) demonstrates
the effect of the loading frequency as well as the effect of cross-slip events.

3. Results and discussions

The effect of the strain rate as well as mobile disloca-
tion density is clearly demonstrated by the hysteresis
loops shown in Figure 2(a). Under the lower frequency
of 62.5MHz (Simulation #3), the dislocations have more
time to propagate, resulting in a higher cyclic plastic
strain as well as amore ‘relaxed’ dislocation structure (see
supplementary videos). The change in the density of the
wall dislocations (�ρwall) induced by the runner screw
dislocations can be as high as 1.70× 1015 /m2 (Figure 3,
red dash double dot curve). Note that the IDD simula-
tions consider plastic deformation within well-developed
wall structures so that the dislocation density generated
in these simulations should be considered as the ‘change’
in the overall density of the wall structures. On the other
hand, under a higher frequency of 312.5MHz (Simula-
tion #1), dislocations have less time to propagate (see sup-
plementary videos). The change in the wall dislocation

Figure 3. The change in the density of wall dislocations (�ρwall)
as a function of the number of reversals. The loading profile is
overlaid on the top of the figure.
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density is significantly smaller than for Simulation #3
(solid blue curve in Figure 3). As a result, a higher fraction
of the total strain is accommodated by elastic or anelas-
tic deformation, which, in turn, leads to hardening (solid
blue loop in Figure 2(a)). The hysteresis energy associated
with the higher frequency simulations is significantly
smaller than the one for lower frequency ones (com-
pare the areas enclosed by the hysteresis loops). In this
sense, the reversibility of the cyclic deformation, asso-
ciated with the reversible elastic deformation, increases
with increasing loading frequency, leading to less fatigue
damage.

The same reduction in hysteresis energy can also be
observed even without changing the loading frequency
and only by varying the mobile dislocation density.
Consider two dislocation configurations with different
mobile dislocation densities (Simulation #3 vs. Simu-
lation #4). According to Equation 1, in order for the
two structures to achieve the same plastic strain rate
(ε̇p), the ‘mean velocity’ for dislocations in the structure
with lower mobile dislocation density (Simulation #4)
would need to be significantly higher than for the case
with higher mobile dislocation density (Simulation #3),
i.e. vi

#4 > vi
#3. Since dislocations’ motion is limited by

phonon drag (i.e. F/L = Bv, where B is the drag coef-
ficient [9]), the dislocation structure in Simulation #4
cannot sustain the same amount of plastic strain as Sim-
ulation #3. Therefore, a stiffer stress–strain response and
a higher fraction of elastic strain is witness in Simulation
#4. This results in a significantly smaller hysteresis energy
associated with the black dashed loops compared to the
red dash-dot loops in Figure 2(a). Supplementary videos
show, due to the lower mobile dislocation density, Simu-
lation #4 develops significantly less plastic deformation
(evidenced by the dislocation deposited in the ‘walls’)
than Simulation #3.

The occurrence of cross-slip events may either be pro-
moted or suppressed, depending on the different amount
of time allowed during the cyclic deformation, which
is affected by loading frequency (i.e. cyclic strain rate).
As a result of such events, the trajectory of the screw
runner dislocations is altered. Although during reverse
loading the plastic strain stored during the forward load-
ing is reverted, the backward motion of the disloca-
tions leaves debris on the dislocations wall, which indi-
cates the cyclic plastic strain is not reversible. Such an
irreversible cyclic plastic strain leads to accumulated
fatigue damage, and, since it is related to rate-dependent
events, is not well correlated with the cumulated hystere-
sis energy. To investigate this phenomenon, the cross-
slip events are treated phenomenologically as a constant
rate event, which occurs every 0.4 ns. The cross-slip has
been applied to both Simulations #2 and #5. As shown

in Figure 2(b), within the 2 cycles or so simulated by
IDD, the impact of the cross-slip events on the hysteresis
behavior is insignificant. Over a large number of cycles,
however, the following can be expected. (1) Through
the cross-slip events, the screw dislocations may annihi-
late which reduces the population of mobile dislocations
and leads to cyclic hardening. The cyclic hardening, in
turn, may stimulate the bow-out of dislocations from the
wall forming new runner dislocations, which may bal-
ance the overallmobile dislocation density. (2) The debris
left behind by the runner dislocations may increase local
Burgers content of the wall, which generates local rises of
back stress, increase in the wall dislocation density, and
overall cyclic hardening.

The cross-slip can lead to a significant change in the
evolution of wall dislocation densities (in Figure 3, com-
pare magenta dash-dot curve with the red dash-double-
dot curve, also compare green dashed curve with the blue
solid curve). Under the higher frequency, the total occur-
rences of the rate dependent cross-slip events are consid-
erably less than under the lower frequency. As a result,
the increase in the dislocation wall density is much more
pronounced in the lower frequency simulation. The pro-
vided supplemental videos offer a direct comparison of
the evolution of dislocation structures with and without
the cross slip enabled.

An interesting observation can be made on the asym-
metry in the evolution of wall dislocation density during
the odd and even number of load reversals that exists
in Simulations #1 and #3 (Figure 3), although it is less
pronounced for Simulation #1. For instance, the peak
�ρwall for Simulation 3 reaches up to 1.7× 1015 /m2

during the odd reversals, but only 1.0× 1015 /m2. This
alternation is inherent to the initial conditions of our sim-
ulations. In this work, we only considered the change in
dislocation density in the walls (�ρwall) using the ini-
tial configurations (as shown in Figure 1) as references.
During the first load reversal (and the subsequent odd
number of reversals) and above certain critical strains the
dislocations first propagate extensively and deposit onto
the walls, which accounts for the initial increases in the
dislocation density. However, during the even number of
reversals, the wall dislocations that have been extensively
deposited in the odd reversals need to retract before they
can be deposited in the opposite directions. This accounts
for the asymmetry in the evolution in the dislocation
densities shown in Figure 3 for both Simulation #1 and
Simulation #3, although the asymmetry for the former
is less pronounced. Note that Simulation #1 and Simula-
tion #3 have the same initial conditions. The difference in
the extent of this asymmetry is ascribed to two reasons:
(1) the shorter time scale in Simulation #1 allowed for
less distances for ‘runner’ dislocations to travel and less
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chance for their mutual short range interactions; (2) the
higher stress levels in Simulation #1 enabled dislocations
to easily overcome relatively weak mutual interactions.
Therefore, for Simulation #1, the diminished effect of
mutual interactions among the runner dislocations leads
to a higher degree of symmetry in the evolution of dis-
location density during the odd and even reversals. The
inverse is true for Simulation #3, where the more pro-
nounced mutual interaction among runner dislocations
dictates that the retraction of wall dislocations (during
the even cycles) are hindered, which gives rise to a higher
degree of asymmetry in the evolution of dislocation den-
sity. On the other hand, due to the effect of cross-slip, the
asymmetry is much less pronounced in Simulations #2
and #5.

4. Concluding remarks

Although this work only probed five total reversals,
important observations and conclusions can be made
from the IDD simulations. Indeed, the fact that a mate-
rial exhibits substantial hysteresis energy without accu-
mulating damage and that the cross-slip events do not
lead to an apparent change in the hysteresis behavior but
lead to substantial damage (evidenced by the change in
the wall dislocation density) is remarkable. Conventional
energy based fatigue damage theories associate fatigue
damage with hysteresis energy and tend to ignore the
explicit treatment of damage accumulation mechanism.
As a result, the fatigue life of amaterial that is less suscep-
tible to fatigue damages due to materials design and/or
due to high loading frequencies, such as the ones demon-
strated by Simulations #1, #2 and #5, may be significantly
underestimated. In fact, a hypothetical scenario as shown
by Simulation #5, where the associated theoretical fatigue
life is infinite, would be predicted to possess a finite life
by the energy-based fatigue damage theories.

Finally, it needs to be emphasized that although the
simulations are carried out in the frequency regimeMFT,
our results are very relevant to the high-/ultrahigh- fre-
quency tests. The phenomenon observed in Figure 2(a)
on the frequency’s effect on the hysteresis energy is essen-
tially dependent on the mobility and the density of the
mobile dislocations with respect to the strain rate (fre-
quency and strain amplitude dependent) of the cyclic
loading. In the experiments, this phenomenon is less sig-
nificant for FCC materials exposed to UFT due to the
higher dislocationmobility in suchmaterials. Conversely,
the rate sensitively for BCC materials in the UFT is sig-
nificant. We further argue that in higher frequency cyclic
loading conditions, such as those applied toMEMSmate-
rials [4], even the FCCmay show a significant amount of
frequency sensitivity.

5. Conclusion

In this work, using the discrete interface dislocation
dynamics, we offer insight into two very relevant issues
regarding the high- and ultrahigh- frequency fatigue test-
ing pertaining to the reversibility of cyclic deformations.
We conclude that under high-/ultrahigh- frequency test-
ing, the deformations are more likely to be reversible.
The increased reversibility is ascribed to two reasons: (1)
high-frequency testing typically yields higher fractions of
elastic and anelastic deformations because of the limited
mobility of dislocations; (2) hence, higher frequency test-
ing may inhibit the occurrence of cross-slip events and
lead to a substantially higher fraction of reversible plastic
deformations.

Notes

1. Quotation marks are used here to signify the reversible
nature of plastic deformation during high-frequency cyclic
loading. Inmonotonic loading, plastic deformation is com-
monly perceived to be irreversible after unloading. In cylic
loading under low frequencies, as will be demonstrated in
this paper, are not truly reversible since wall dislocations
are left behind.

2. In reality, the time scale of the cross-slip event is sensitive to
temperature but generally varies from a fraction to several
nanoseconds, which agrees with the cross-slip time scale
considered in our simulations. For instance, it has been
demonstrated that the time scale for annihilation of two
screw dipoles in Cu due to cross-slip is from ∼ 0.005 ns to
∼ 5 ns, over a temperature range of 225K to 375K [37].
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