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Abstract

A detailed structural and chemical analysis of a class of self-organized surface structures, termed 

aggregated nanoparticle spheres (AN-spheres), created using femtosecond laser surface processing 

(FLSP) on silicon, silicon carbide, and aluminum is reported in this paper. AN-spheres are 

spherical microstructures that are 20–100 μm in diameter and are composed entirely of 

nanoparticles produced during femtosecond laser ablation of material. AN-spheres have an onion-

like layered morphology resulting from the build-up of nanoparticle layers over multiple passes of 

the laser beam. The material properties and chemical composition of the AN-spheres are presented 

in this paper based on scanning electron microscopy (SEM), focused ion beam (FIB) milling, 

transmission electron microscopy (TEM), and energy dispersive x-ray spectroscopy (EDX) 

analysis. There is a distinct difference in the density of nanoparticles between concentric rings of 

the onion-like morphology of the AN-sphere. Layers of high-density form when the laser sinters 

nanoparticles together and low-density layers form when nanoparticles redeposit while the laser 

ablates areas surrounding the AN-sphere. The dynamic nature of femtosecond laser ablation 

creates a variety of nanoparticles that make-up the AN-spheres including Si/C core-shell, 

nanoparticles that directly fragmented from the base material, nanoparticles with carbon shells that 

retarded oxidation, and amorphous, fully oxidized nanoparticles.

Keywords
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1. Introduction

Femtosecond laser surface processing (FLSP) is a surface functionalization technique that 

alters the physical, chemical, mechanical, and electrical properties of a material in a single 

highly non-equilibrium processing step. It has been demonstrated that FLSP can be utilized 

to create a variety of unique self-organized surface micro/nanostructures on both metals and 
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semiconductors [1–8]. Due to their exotic surface properties, when compared to untreated 

surfaces, research efforts have been directed into further developing FLSP techniques. FLSP 

can be used to modify a wide range of surface properties, which include producing surfaces 

that exhibit wide-band optical absorption [6,9,10], enhanced heat transfer characteristics 

[11–13], and extreme wetting properties ranging from superhydrophilic [14,15] to 

superhydrophobic [1,16].

In recent years, FLSP research reported in the literature has focused on the formation and 

applications of three distinct surface structures[7,17–19], termed by Zuhlke et al. as 

nanoparticle covered pyramids (NC-pyramids) [20], below surface growth mounds (BSG-

mounds), and above surface growth mounds (ASG-mounds) [21–24]. Every group of 

researchers have termed these structures differently. For example, Ling et al. refers to these 

structures as ellipsoidal cones, columnar structures, and chaotic structures[25] while Kam et 

al. refers to them collectively as cones [26]. NC-pyramids, BSG-mounds, and ASG-mounds 

each form through a unique balance of preferential valley ablation, redeposition of ablated 

material, and hydrodynamic effects of the laser induced surface melt [2,21,23,24,27–29]. 

The morphology of the structures produced through FLSP is dependent on the laser 

processing parameters, for example, the number of laser pulses and the fluence of the pulses. 

Zuhlke et al. demonstrated that using certain FLSP parameters, nanoparticles created from 

femtosecond laser ablation of aluminum (Al) can self-assemble and aggregate into onion-

like structures. The self-assembled, onion-like nanoparticle agglomerates are significantly 

different than the FLSP surface structures previously mentioned and have been thus termed 

aggregated nanoparticle spheres (AN-spheres) [5]. AN-spheres have potential applications in 

energy storage [30,31] and drug delivery [30,32]. Understanding the formation processes, 

and the chemical and physical make-up of AN-spheres allows these structures to be tailored 

for specific applications.

When high intensity ultrashort laser pulses interact with a material, a shockwave caused by 

material expansion ejects constituent particles from the substrate when processing in a 

background gas. The ejected material consist of a mixture of neutral nanoparticles, free 

electrons, and ionized atoms that form a laser-induced plasma plume [33]. The nanoparticles 

in the plasma plume are very reactive due to high surface energy, large surface area, and 

charge causing many to oxidize when processing is carried out in an oxygen-rich 

environment [6,30,34]. Maisterrena-Epstein et al. concluded that metals oxidize, to different 

degrees, with a strong dependence on laser fluence [35]. After the initial shockwave, a 

fraction of the ejected materials aggregate, forming clusters that condense on the sample in 

the form of nanoparticles. The size, composition, and density of the nanoparticles are a 

function of the material, processing parameters (i.e., laser fluence and number of laser 

pulses), and processing environment (i.e., reactant gas/liquid, pressure, etc.) [6,36]. In most 

cases, the nanoparticles blanket the self-organized microstructures created during FLSP 

similar to the nanoparticle films created by pulsed laser deposition [37,38].

Zuhlke et al. suggested that AN-spheres preferentially grow on intrinsic material defects 

within the laser processed area [5]. Defects can include those in the base material, or lattice, 

and surface defects induced through initial laser pulses. AN-spheres that begin the 

nucleation process early will experience more preferential redeposition events. Thus, the 
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earlier an AN-sphere nucleates the larger the final diameter will be. It has also been 

demonstrated in the literature that the number of nanoparticles produced during ablation 

from femtosecond pulses is a function of both pulse fluence and processing environment 

[32,39–43]. Therefore, it is expected that fluence and processing environment will affect the 

thickness of the onion-like layers. In this paper, the formation processes of self-assembled 

AN-spheres on silicon (Si), silicon carbide (SiC), and aluminum (Al) are presented based on 

in-depth compositional analysis using advanced electron microscopy analytical tools not 

previously applied to AN-spheres. This is the first time AN-spheres, developed through 

FLSP, have been reported on any material other than Al.

2. Experiment

The femtosecond laser used in this work was a Spectra Physics, Spitfire system capable of 

producing 1 mJ, 80 fs pulses at a 1 kHz repetition rate with a central wavelength of 800 nm. 

A Frequency Resolved Optical Gating (FROG) instrument from Positive Light (Model 8–02) 

monitors the pulse length and chirp of the pulses. Nanomotion II translation stages (Melles 

Griot) with three axes of motion, control the position of the sample relative to the focal 

volume of the laser beam. Laser pulses were focused using a parabolic mirror with a 

protected silver coating and focal length of 152.4 mm (Thorlabs MPD169-P01). A half-

waveplate and polarizer combination was used to control the pulse energy. The spot size of 

the focused pulses on the sample surface was adjusted by varying the distance between the 

parabolic mirror and the sample surface. A schematic of the experimental setup of the laser 

system is included in Fig. 1. The energy per unit area (fluence) and the number of laser 

pulses per unit area incident on the sample were controlled by adjusting the speed of the 

stages, pitch between raster passes, pulse energy, and spot size. Fig. 1b is a diagram of the 

standard programmed raster path for the stage system used to produce FLSP samples.

The AN-sphere samples were imaged using both a Phillips XL-30 SEM and an FEI Helios 

660 Nanolab DualBeam FIB/SEM. AN-spheres were cross-sectioned and prepared for TEM 

imaging using a standard lift-out procedure with the Helios 660 FIB/SEM. An FEI Tecnai 

Osiris (scanning) transmission electron microscope (S/TEM) operating at 200 kV was used 

to study the internal microstructure and chemical makeup of the AN-spheres with high 

spatial resolution. Energy dispersive x-ray spectroscopic (EDX) analysis of the AN-spheres 

was performed in both the FIB/SEM and the S/TEM in scanning mode. The crystal structure 

of the AN-spheres was investigated using high-resolution (HR) TEM and selected area 

electron diffraction (SAD). Elemental maps were collected using EDX in STEM mode. 

These maps were quantified by a standardless, PhiRhoZ peak-fitting method after 

performing background subtraction in the Esprit software package issued by Bruker Corp. 

Finally, line scan data were extracted from the drift-corrected maps, and the radial 

dependence of the stoichiometry of the AN-spheres was analyzed.

This paper explores the morphology and chemical composition of AN-spheres produced on 

three different materials. AN-spheres were produced on phosphor-doped n-type silicon (111) 

(Monsanto), single crystal n-type 4H-polytype silicon carbide (SiCrystal), and 2024 T3 Al 

(McMaster Carr). The analysis of the AN-spheres is presented from a macroscale analysis of 

the outside of the structures and works inwards towards microscale analysis of the internal 
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structure followed by atomic scale analysis of nanoparticles that make-up the aggregates. 

First, the structure and morphology of the AN-spheres is presented using electron 

microscopy images along with associated SAD patterns to determine the crystal structure. 

Then chemical analysis is presented to provide the overall composition of the AN-spheres 

followed by quantified line scans across the various boundaries within the cross-section. 

Additional STEM elemental maps and quantified line scans are included for unique 

nanoparticles embedded in the SiC AN-sphere. Finally, the formation mechanisms are 

discussed focusing on the results of the cross-sectional analysis.

The AN-spheres studied in this paper were created using the processing parameters outlined 

in Table 1. All samples were processed in open atmosphere. Since each material has 

different material properties, and therefore reacts differently to the incident pulses, the 

fluence and number of laser pulses per unit area necessary to create AN-spheres varies 

between samples.

3. Results and discussion

3.1. Structure and morphology of AN-spheres

3.1.1. Scanning electron microscopy—The AN-sphere structures reported in this 

paper are spherical aggregates of nanoparticles produced during FLSP. The AN-spheres are 

spherical or hemispherical in nature, typically with diameters of a few to tens of microns, 

with nanoscale surface features (Fig. 2).

The internal structure consists of an onion-like morphology of a series of concentric rings. 

Each ring is composed entirely of nanoparticles, with varied density of nanoparticles 

providing contrast between individual rings. The internal structure of an AN-sphere on Si, 

which has been cross-sectioned using FIB milling, is included in Fig. 3. AN-spheres on Al 

and SiC have a similar internal structure, as discussed in further detail below.

The distinct regions, or rings, visible in Fig. 3 form with each raster scan pass of the laser. 

The number of rings within an AN-sphere roughly corresponds to the number of line scans 

that pass over that AN-sphere. After a single pass of the laser, a layer of nanoparticles 

deposits on the sample from the plume of material ejected during ablation. The growth of 

layers on an AN-sphere occurs when the laser beam is rastered across the sample and the 

layers consecutively form on top of one another. Intuitively, the spherical nature results from 

the nanoparticles aggregating to a surface point defect rather than evenly dispersing across 

the rastered area. With each pass, the AN-spheres increase in size as the ablated plume of 

nanoparticles aggregate on the surface. The number of shells is related to the number of 

passes of the laser beam [5].

The rings of the AN-sphere in Fig. 3 are composed of alternating light and dark regions due 

to a variation of nanoparticle density and/or composition. When the laser passes over an AN-

sphere, the outer most layer of nanoparticles sinter together, and areas of high-density form. 

Areas of low material density occur when nanoparticles redeposit on the AN-sphere while 

the laser is ablating adjacent areas of the sample. The number of rings of the AN-sphere in 

Fig. 3 corresponds approximately to the number of line scans of the raster scan pattern used 
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in producing the AN-sphere. The AN-sphere in Fig. 3 has fourteen ring pairs (one light and 

one dark ring). The processing parameters to create this particular AN-sphere include a laser 

spot diameter of 228.7 μm and a pitch of 15 μm. The number of rings corresponds to the 

laser passing over a single point in the raster fifteen times. The one ring discrepancy in the 

number of laser passes and the resulting number of rings is due to the Gaussian shape of the 

beam; there may not be enough energy on the leading and lagging edges of the beam to 

sinter the nanoparticles and create the additional ring. It is also possible that the AN-sphere 

did not nucleate during the first pass of the laser.

As a means to visualize how the AN-spheres are attached to the sample surface, a sample 

covered with AN-spheres was placed in an ultrasonic bath filled with distilled water. During 

the ultrasonic bath, some of the AN-spheres are removed but the ring structure remains on 

the sample surface. An example of this residual ring structure is visible in Fig. 4, which 

includes an SEM image of a Si AN-sphere surface after fifteen minutes in an ultrasonic bath. 

A dome is observed at the core of the AN-sphere in Fig. 4. This dome is the initial 

nucleation site covered by the first, high-density layer of nanoparticles (see Section 3.3).

For each of the materials reported on in this paper, an AN-sphere was cross-sectioned using 

FIB milling and lifted out for TEM analysis. Bright field (BF) TEM images, where contrast 

is primarily due to varying diffraction conditions of the crystals, of the AN-sphere cross-

sections are shown in Fig. 5. The dark regions of Fig. 5 are attributed to a higher density of 

nanoparticles with respect to the bright regions.

Intermittent lattice fringes are visible in the BF-TEM images of nanoparticles for the Si and 

Al samples (Fig. 6). Distinct lattice fringes of the Si surrounded by an amorphous shell can 

be seen in the TEM image included Fig. 6(a). The silicon core-shell nanoparticle is the result 

of surface oxidation during the rapid heating and cooling cycles induced by a femtosecond 

laser pulse. Due to the core-shell structure, this feature suggests that the nanoparticles begin 

as pure silicon but oxidize at the surface while in the ablation plume. Although the included 

BF-TEM image for the SiC AN-sphere is at a lower magnification (Fig. 6(c)), making any 

possible lattice fringes difficult to distinguish, no lattice fringes were observed during TEM 

analysis. The lack of lattice fringes in Fig. 6(c) suggests a lack of crystallinity on the SiC 

AN-sphere. The SAD patterns in Section 3.1.2 provide quantitative data indicating the SiC 

AN-sphere is made of amorphous nanoparticles. The Al nanoparticles were almost 

completely amorphous but a few lattice fringes were intermittently located in the TEM 

image (Fig. 6(d)). Hydrodynamic effects induced by laser sintering caused the irregular 

shape of the SiC and Al nanoparticles.

3.1.2. SAD pattern of AN-spheres—In order to quantify the crystallinity of the Si and 

Al nanoparticles and the amorphous nature of the SiC nanoparticles depicted in Fig. 6, SAD 

patterns for Si, SiC, and Al were collected and are presented in Fig. 7. For Si, the diffraction 

rings indexed well to the { 111}, {220}, {311} and {400} planes of diamond cubic Si with a 

lattice parameter of 5.43 Å [44]. The crystalline phase change of the Si nanoparticles stems 

from the large temperature and pressure gradients caused by the femtosecond pulses [45,46].
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There were no sharp diffraction maxima in the SAD pattern for the SiC, as seen in Fig. 7(b), 

indicating that these nanoparticles are amorphous. The Al nanoparticles have clear rings 

corresponding to the {200} and {220} planes of fcc Al (a = 4.05 Å [47]) as shown in Fig. 

7(c). The {111} is not visible because it is hidden in the bright signal from the incident 

beam. This is consistent with our visual analysis of the HR-TEM images of the nanoparticles 

in Fig. 6.

3.2. Chemical analysis of AN-spheres

3.2.1. Energy dispersive X-ray spectroscopy—EDX point analysis was performed 

on the surface of each AN-sphere at 20 keV. The AN-spheres on both the Si and SiC have an 

overall composition of SiO2. The SiC AN-sphere studied here contains a relatively small 

amount of carbon and a majority of the individual nanoparticles contained no carbon. Based 

on the ratio of Al to O in the 2024 T3 Al sample, the nanoparticles are predominately Al2O3. 

The small percentage of carbon present in each material can be partially attributed to organic 

contaminants in the ambient air [15] that attach to the surface between sample processing 

and analysis. The EDX results are summarized in Table 2.

3.2.2. Scanning transmission electron microscopy elemental mapping—In 

order to gain insight into the elemental make-up at different depths within the AN-spheres, 

quantified EDX line scans were taken across multiple rings of the AN-spheres on Si, SiC, 

and Al. The resulting data are included in Figs. 8–10, respectively. Fig. 8(c) is a high angle 

annular dark field (HAADF) STEM image, which, unlike the bright field technique, collects 

the scattered beam to create an image with atomic number contrast. The green arrow in Fig. 

8c indicates the direction of the line scan and is directly related to the yellow line in Fig. 

8(a). There is a distinct difference in the composition of silicon and oxygen in the different 

layers of Fig. 8. An EDX line scan taken from the center of the sphere out toward the surface 

shows that the composition alternates between successive layers of Si and SiO2 with varying 

degrees of surface oxidation. The Si appears to form in the high-density regions, while the 

SiO2 forms in the low-density regions. One explanation is that the nanoparticles in the low-

density regions are more exposed to atmosphere, which allows an increase in surface 

oxidation.

A quantified EDX line scan of the SiC AN-sphere is included in Fig. 9. Carbon is included 

in this analysis because of its signifi-cant contribution to the base material. Fig. 9(c) is the 

HAADF-STEM image of the SiC AN-sphere. In a study by Harris et al. [48], SiC was 

processed using a KrF laser and resulted in an oxidized surface with little to no base material 

remaining. Our results are consistent with Harris et al. Fig. 9 indicates that little carbon 

remains on the oxidized surface after FLSP. The quantified TEM line scan and EDX results 

are in good agreement that the sample composition is SiO2.

The large variations in composition seen between the rings of the Si sample are not as 

pronounced on the SiC sample. This may be a result of larger fluence used to produce the 

SiC AN-spheres, causing the nanoparticles to oxidize more thoroughly. Vorobyev and Guo 

studied the chemical energy released during oxidation of Al caused by femtosecond laser 

ablation. They concluded that an increase in fluence caused an increase in released chemical 
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energy and an increase in Al oxidation [49]. Another possible explanation is that FLSP 

causes the Si-C bonds to break when the material is ablated. The enthalpy of a SiC (ΔfH° = 

−71.55 kJ/mol) is significantly less negative (less stable) than SiO2 (ΔfH° = −905.49 kJ/mol) 

which makes the formation of SiO2 more favorable than SiC in an oxygen-rich environment.

The Al AN-sphere quantified TEM line scan data are presented in Fig. 10. These AN-

spheres have the least amount of variation between the light and dark rings of the BF image. 

Throughout the cross-section, the maximum fluctuation of aluminum and oxygen is ±6%. 

Similar to the Si AN-spheres, the Al AN-spheres have oxygen peaks located on the low 

density rings of the HAADF image, as seen by comparing Fig. 10(b) and (c). The reduction 

in chemical variation across the rings are suspected to be the result of two factors. First, a 

relatively high fluence (compared to Si) results in more thorough oxidation of the 

nanoparticles. Second, the enthalpy of aluminum oxide (ΔfH° = −1675.69 kJ/mol) is more 

negative than silicon oxide (ΔfH° = −905.49 kJ/mol) which causes aluminum oxides to form 

more readily than silicon oxides.

3.2.3. Chemical analysis of SiC nanoparticles—Results from the EDX analysis and 

quantified EDX line scan data of the SiC samples indicated that there was very little carbon 

present in these AN-spheres. This result is consistent with Harris et al. who concluded in 

their study of SiC that nearly no carbon was present in the oxidized SiC after laser 

processing [48]. The small amount of carbon found in the EDX analysis was initially 

attributed to the interaction of the post-processed sample with ambient air. Upon further 

investigation, particles were found in the AN-sphere that did not coincide with the expected 

SiO2 nanoparticle composition. Fig. 11 is a STEM map of one such particle marked with an 

oval in the figure. The STEM elemental maps clearly show the particle is composed of 

silicon and carbon. The irregularity of the particle shape suggests that it was ejected during 

the ablation process through fragmentation and did not vaporize and condense onto the 

surface.

There are additional smaller spherical nanoparticles dispersed throughout the AN-sphere 

that include carbon (see Fig. 11). Further investigation of the spatial distribution of elements 

within one of these particles is shown in the STEM elemental map included in Fig. 12. This 

particular particle has a carbon shell with an interior composed of silicon and nearly no 

oxygen. Yamaguchi et al. concluded that femtosecond irradiation of crystalline SiC caused 

amorphous silicon and amorphous carbon to form at fluences above the damage threshold 

[45]. The same group also suggested that atomic diffusion occurs [50], which explains the 

carbon shell surrounding the nanoparticle.

A quantified EDX line scan across this particle is included in Fig. 13. The oxygen content 

decreases from the edges to the center of the particle. Although it is unknown if the oxygen 

is located within the particle, it is theorized that the oxygen is located on the surface and the 

curvature of the particle results in a higher level of oxygen on the edges compared to the 

center. Similar curvature effects have been observed in other core-shell nanoparticles [51].
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3.3. AN-sphere formation

Based on analysis of the AN-spheres on Si, SiC, and Al and a review of the literature as 

discussed throughout this paper, we present here a summary of the formation processes for 

AN-spheres. AN-spheres begin the formation process when nanoparticles begin to aggregate 

on a defect in the base material. After successive lines scans of a raster, layers build up from 

the defect causing distinct rings to form. Preferential redeposition and self-assembly into a 

spherical structure are believed to be a product of surface charging and diffraction effects. 

The charged surface attracts charged and neutral particles through electrophoresis and 

dielectrophoresis. At the base of the AN-sphere, an increased intensity due to diffraction 

effects leads to high ablation rates which cause the spherical shells to form [5]. With each 

laser pass, nanoparticles sinter together forming regions of higher density with respect to the 

purely aggregated nanoparticle rings. This repeated process results in distinct concentric 

rings.

The following discussion of the formation mechanisms of AN-spheres focuses mainly on Si 

due to the most distinct high and low density rings. The EDX area scan on the external 

surface of the AN-sphere indicates that the overall composition of is SiO2, while the 

quantified line scans reveal that the composition varies across the rings depending on the 

density of nanoparticles within the ring. Nanoparticles primarily condense out of the 

ablation plume and redeposit onto the surface of the substrate, although, a small fraction of 

the nanoparticles also arise from direct fragmentation of the base material. Fragmentation is 

most apparent in the presence of carbon within some nanoparticles in the SiC AN-spheres. 

When the laser interacts with the nanoparticles (i.e. the laser beam is illuminating the 

particles), they are sintered together into a solid nucleus that becomes the core of these 

multishell structures. The cross-sectional TEM specimens show that the core is composed of 

the sparsely packed SiOx variety, where 2 < x < 4. This suggests that the core of the AN-

sphere is made up of an agglomerate of nanoparticles. Since it is intuitive that the laser melts 

and sinters the nanoparticles into a more solid structure, the dense shells that form must be 

created by the laser passing over these nanoparticles. This causes the dark regions of the BF 

image (Fig. 5) to form, which indicates an area of high density. The overall surface area-to-

volume ratio of the nanoparticles decreases when they are sintered together, causing a net 

decrease in surface oxidation. This is supported by the dark, high-density regions of Fig. 5 

having a composition comparable to Si and the bright, low-density regions being comprised 

of SiO2. In both cases, the nanoparticles have different degrees of surface oxidation causing 

a variation in the silicon-to-oxygen ratio.

The large variations in chemical composition across the light and dark rings of Si is not as 

pronounced on the SiC and Al samples. A major difference between these samples is the 

uniform composition of the nanoparticles observed across the ring boundaries on SiC and Al 

but not on Si. Since the SiC and Al nanoparticles completely oxidized, there is little 

variation in chemical composition. The trivial differences between the light and dark rings of 

the SiC and Al samples are due to the laser processing parameters. Fluences of 2.26 J/cm2 

and 1.39 J/cm2 were used to create the SiC and Al samples, respectively, compared to 0.77 

J/cm2 on Si. The increase in fluence caused an increase in the amount of oxidation and a 

chemically uniform AN-sphere to form. It is also suggested that the enthalpy of SiO2 and 
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Al2O3 is more negative (more stable) than the base materials which causes this reaction to 

be favorable.

One theory for why AN-spheres only form on Si, SiC, and Al while not on other materials 

that have been extensively studied with FLSP (e.g. nickel, stainless steel, titanium) is 

because of the relatively large bandgap of SiO2 and Al2O3 nanoparticles. Zhang et al. 

measured bandgaps of SiO2 and Al2O3 nanoparticles to be 9.1 eV and 8.3 eV, respectively 

[52]. These bandgaps are at least twice as large as the bandgaps of other FLSP studied 

materials requiring additional photons to be absorbed through multiphoton absorption 

processes and a majority of the energy to be transmitted or reflected. The absorbed energy is 

not large enough to ablate the nanoparticles but the absorbed energy can increase the 

temperature of the nanoparticles enough to sinter them together. In this scenario, the 

nanoparticles primarily act as sites to scatter the incident laser light and the original material 

absorbs most of the energy that passes through the oxide layer, thus allowing nanoparticles 

to continuously aggregate and resist ablation from additional pulses.

4. Conclusion

In this paper, the surface morphology and chemical composition of a unique self-organized 

surface structure, termed AN-spheres, formed through FLSP is reported on Si, SiC, and Al. 

The formation mechanisms of AN-spheres is explained based on results from quantified 

EDX line scans on cross-sections of AN-sphere samples. Although it has not been proven or 

disproven, it is expected that AN-spheres originate from defects in the base material that 

nanoparticles aggregate to due to electrostatic forces. Further work to understand the defects 

that cause the initial aggregation to occur is necessary. Oxide variations within the core of Si 

AN-spheres suggest that it is an agglomeration of nanoparticles that sinter together to form a 

more solid, dense region and a resulting concentric ring structure. After the core region 

forms, the aggregation of additional nanoparticles during the rastering process cause the 

AN-sphere to grow larger. Distinct rings form due to sintering of particles when the laser 

beam is directly illuminating the AN-sphere, which results in an onion-like morphology. The 

light and dark rings, similar to the core, are agglomerations of nanoparticles. The low-

density regions are more heavily oxidized due to a larger exposed surface area. The Si AN-

sphere exhibits the largest variation between the high density and low density rings, which is 

attributed to the relatively lower fluence required to create the structures when compared to 

SiC and Al. In addition to the main focus of this paper, unique particles were dispersed 

throughout the SiC AN-sphere. The unique particles were determined to be SiC 

nanoparticles that directly fragmented from the base material and silicon nanoparticles with 

a carbon shell that retarded oxidation.
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Fig. 1. 
(a) Femtosecond laser experimental setup and (b) raster scanning pattern
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Fig. 2. 
Scanning electron micrographs showing the morphologies of aggregated nanoparticle-

spheres on: (a) Si, (b) SiC, and (c) Al.
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Fig. 3. 
Scanning electron micrograph showing the internal structure of a Si AN-sphere. Cross-

sectioning was accomplished using focused ion beam milling.
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Fig. 4. 
Si AN-sphere shell structure viewed at 0° in SEM.
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Fig. 5. 
Bright field TEM images of AN-sphere ring structure on (a) Si, (b) Al, and (c) SiC.
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Fig. 6. 
TEM images of AN-sphere nanoparticles on (a-b) Si, (c) SiC, and (d) Al.
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Fig. 7. 
SAD patterns for AN-spheres on (a) Si, (b) SiC, and (c) Al.
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Fig. 8. 
(a) Elemental map of a Si AN-sphere, (b) quantified EDX line scan, and (c) HAADF-STEM 

image.
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Fig. 9. 
(a) Elemental map of a SiC AN-sphere, (b) quantified EDX line scan, and (c) HAADF-

STEM image.
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Fig. 10. 
(a) Elemental map of an Al AN-sphere, (b) quantified EDX line scan, and (c) HAADF-

STEM image.
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Fig. 11. 
HAADF-STEM elemental maps of a nanoparticle on a Sic AN-sphere.
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Fig. 12. 
Elemental maps of a nanoparticle on a SiC AN-sphere.
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Fig. 13. 
(a) Elemental map of the carbon-shell nanoparticle, (b) quantified EDX line scan, and (c) 

HAADF-STEM image.
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Table 2

EDX analysis of AN-spheres on Si, SiC, and Al.

AN-sphere substrate Atomic Percent (%)

Carbon Oxygen Silicon Aluminum

Silicon 9.86 ± 1.25 59.80 ± 4.04 30.34 ± 0.83 –

Silicon Carbide 4.10 ± 0.62 66.53 ± 5.02 29.36 ± 0.84 –

Aluminum 8.76 ± 1.12 57.02 ± 4.32 – 34.23 ± 1.24
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