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There is currently great interest in human serine racemase,
the enzyme responsible for producing the NMDA co-agonist
D-serine. Reported correlation of D-serine levels with disorders
including Alzheimer’s disease, ALS, and ischemic brain damage
(elevated D-serine) and schizophrenia (reduced D-serine) has
further piqued this interest. Reported here is a structure/activity
relationship study of position Ser84, the putative re-face base. In
the most extreme case of functional reprogramming, the S84D
mutant displays a dramatic reversal of �-elimination substrate
specificity in favor of L-serine over the normally preferred L-
serine-O-sulfate (�1200-fold change in kcat/Km ratios) and L

(L-THA; �5000-fold change in kcat/Km ratios) alternative sub-
strates. On the other hand, the S84T (which performs L-Ser rac-
emization activity), S84A (good kcat but high Km for L-THA elim-
ination), and S84N mutants (nearly WT efficiency for L-Ser
elimination) displayed intermediate activity, all showing a pref-
erence for the anionic substrates, but generally attenuated com-
pared with the native enzyme. Inhibition studies with L-erythro-
�-hydroxyaspartate follow this trend, with both WT serine
racemase and the S84N mutant being competitively inhibited,
with Ki � 31 � 1.5 �M and 1.5 � 0.1 mM, respectively, and the
S84D being inert to inhibition. Computational modeling
pointed to a key role for residue Arg-135 in binding and prop-
erly positioning the L-THA and L-serine-O-sulfate substrates
and the L-erythro-�-hydroxyaspartate inhibitor. Examina-
tion of available sequence data suggests that Arg-135 may have
originated for L-THA-like �-elimination function in earlier evo-
lutionary variants, and examination of available structural data
suggests that a Ser84-H2O-Lys114 hydrogen-bonding network in
human serine racemase lowers the pKa of the Ser84 re-face base.

The discovery of D-serine in the brain and its importance in
modulating NMDA receptor activity provided the first bona
fide example of a D-amino acid in human biology. The quest to
uncover the source of this D-serine led to the identification of

mammalian serine racemase (1). Wolosker et al. (1) success-
fully cloned human serine racemase (hSR)3 at the turn of the
millennium. The observation that all D-serine apparently orig-
inates in L-serine added another significant branch to the com-
plex metabolic network associated with L-serine and an impor-
tant new signaling function for the amino acid (Fig. 1).

To be sure, L-serine already was known to possess an array of
physiological functions, including serving as both the source of
one-carbon equivalents in N5,N10-methylenetetrahydrofolate
(utilized for DNA synthesis; i.e. installation of the 5-methyl
group in the uracil ring to give the thymine base) and of the
neurotransmitter and NMDAR co-agonist, glycine, through
the action of a single pyridoxal phosphate (PLP) enzyme, serine
hydroxymethyltransferase. L-Serine also serves a central role in
maintaining redox homeostasis, because all glutathione equiv-
alents originate in the L-serine backbone, with the sulfur atom
from dietary methionine being installed at the �-carbon
through the sequential action of two additional PLP-dependent
enzymes, cystathionine �-synthase (CBS) and cystathionine
eliminase (also known as cystathionine �-lyase). L-Serine also
serves as an important constituent of the phospholipidome and
is one of three constituent amino acids of proteins (along with
L-threonine and L-tyrosine) that underpin the phosphopro-
teome, as controlled by the action of protein phosphoserine
kinase phosphatases.

From the point of view of neuronal signaling, both D-serine
and glycine serve as co-agonists of the NMDA receptor (Fig. 2),
binding at the “glycine site” but with the observation that D-ser-
ine is a more potent agonist than glycine itself, showing efficacy
at several orders of magnitude lower concentration in a seminal
study by Ascher and co-workers (2) in a rat hypoglossal
motoneuron system (2– 4). Whereas it had previously been
thought that D-serine is biosynthesized by SR in astroglial cells,
more recent evidence indicates that L-serine produced in the
astroglia from 3-phosphoglycerate is actively shuttled to the
neurons where SR is present and converts the L-serine to D-ser-
ine (5, 6).

As is illustrated in Fig. 2A, D-serine generated in the presyn-
aptic neuron serves as stimulatory co-agonist of the postsynap-

This work was supported by American Heart Association Grant-in-Aid
16GRNT313400012. This work was also supported by the IR/D (Individual
Research and Development) program associated with the appointment of
D. B. B. at the National Science Foundation. The authors declare that they
have no conflicts of interest with the contents of this article. The content is
solely the responsibility of the authors and does not necessarily represent
the official views of the National Institutes of Health.

1 Both authors contributed equally to this work.
2 To whom correspondence should be addressed: Dept. of Chemistry, Univer-

sity of Nebraska, Lincoln, NE 68588-0304. E-mail: dberkowitz1@unl.edu.

3 The abbreviations used are: hSR, human serine racemase; SR, serine race-
mase; TEA, triethanolamine; Wat, water molecule; PLP, pyridoxal phos-
phate; CBS, cystathionine �-synthase; L-SOS, L-serine-O-sulfate; L-THA,
L-threo-�-hydroxyaspartate; MBP, maltose-binding protein; L-ABH, L-aspar-
tate �-hydroxamate; L-EHA, L-erythro-�-hydroxyaspartate; AOAA, amino-
oxyacetate; MD, molecular dynamics.

croARTICLE

13986 J. Biol. Chem. (2017) 292(34) 13986 –14002

© 2017 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A.

 at U
N

IV
 O

F N
E

B
R

A
SK

A
 - L

incoln on N
ovem

ber 30, 2018
http://w

w
w

.jbc.org/
D

ow
nloaded from

 

http://crossmark.crossref.org/dialog/?doi=10.1074/jbc.M117.777904&domain=pdf&date_stamp=2017-7-10
http://www.jbc.org/


tic NMDA receptor, acting in concert with the primary agonist,
L-glutamate. Of particular interest to our laboratory (7–13), the
gaseous neurotransmitter, H2S, produced by another PLP
enzyme (CBS) in the brain also elicits an NMDA excitatory
response (14), potentially via an adenylate cyclase-cAMP-
dependent protein kinase–mediated mechanism (15). Indeed,
both SR and CBS have emerged as potential targets for ischemic
stroke, because there is evidence that both D-serine (16, 17) and
H2S (18) promote neuronal infarction following such a stroke
event. Elevated D-serine levels have also been associated with
Alzheimer’s disease (19) and ALS (20), suggesting that SR
may emerge as a potential target for neurodegenerative dis-
ease. On the other hand, low D-serine levels (i.e. SR hypo-
function) have been correlated with schizophrenia (21–23).
In contrast to these examples of SR dysregulation, in the
healthy brain, basal D-serine signaling is essential for synap-
tic efficiency and long-term potentiation associated with
learning and memory (24).

The hSR enzyme is known to be activated allosterically by
ATP and requires a divalent cation (Mg2�, Mn2�) for activity
(Fig. 2B) (25–27). The enzyme is reported to be post-transla-
tionally modified by phosphorylation (28), palmitoylation (29),
and nitrosylation (30). SR levels can be modulated by ubiquitin
tagging for proteasomal degradation (31). The C-terminal PDZ
domain is important in protein–protein interactions, with
PICK-1 (32, 33), GRIP-1 (34), and PSD-95 (35), for example.
X-ray crystallographic structures of the Schizosaccharomyces
pombe (36), maize (37), mouse (38), and rat and human (39) SR
enzymes are available.

Mammalian SR has a type II �-eliminase fold reminiscent of
the classical PLP-dependent enzyme, tryptophan synthase.
Accordingly, it is perhaps not surprising that the enzyme cata-
lyzes both the �-elimination of L-serine and its racemization to
D-serine (Fig. 3). Mechanistically, a dual-base mechanism has
been proposed, whereby Lys56 serves as the si-face base (40),
�-deprotonating an appropriately oriented external aldimine of
L-serine, giving rise to a common, cofactor-stabilized carban-

ionic intermediate (41). Subsequent re-face protonation by the
putative re-face base, Ser84 (42), leads to the D-serine racemiza-
tion product, whereas expulsion of the (presumably proto-
nated) �-OH leaving group leads to pyruvate, the �-elimination
product. L-Serine-O-sulfate (L-SOS) and L-threo-�-hydroxyas-
partate (L-THA) are known to serve as very efficient alternative
substrates for this latter �-elimination manifold (43). This
overall mechanism is consistent with recent QM/MM calcula-
tions (44).

Results

We set out to examine the mechanism of hSR, with a partic-
ular focus on the influence of the putative re-face base upon
reactivity. The assignment of Ser84 as the re-face base itself
raises a key mechanistic question, namely how can this residue
have an appropriately low pKa to perform this general acid/base
function? Careful examination of available structural infor-
mation suggests that Lys114 may serve to (de)protonate Ser84

through a hydrogen bond network involving an essential
water molecule (Fig. 4A). This putative Ser84-Wat372-Lys114

hydrogen bond network appears to resemble the Ser-cis-Ser-
Lys catalytic triad (Fig. 4B) (45– 48) that is typically seen in
the amidase signature enzyme family that includes peptide
amidases (49 –51) and fatty acid amide hydrolases (52–54) as
well as some �-lactamases (55) and a recently described
hydrazidase enzyme (56). To our knowledge, this model for
serine acidification has not previously been proposed for a
PLP enzyme.

To facilitate experimental studies, it was found that
improved hSR solubility could be achieved by expressing the
protein as an N-terminal maltose-binding protein (MBP)
fusion construct (MBP– hSR). Literature reports of heterolo-
gous SR expression indicate that these efforts have been
plagued with difficulty, leading to low yields of active enzyme,
ranging from 1 to 2 mg/liter of culture, as summarized in Fig. 5
(40, 43, 57) and confirmed in our hands with both the N-termi-
nal His- and GST-tagged constructs. However, the MBP– hSR

Figure 1. L-Serine as a central metabolite. L-Serine plays a central role in biology, from one-carbon metabolism to transsulfuration, phospholipid/phospho-
protein function, and D-serine biosynthesis.

Human serine racemase structure/activity relationship studies
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construct reproducibly gave �15 mg of purified fusion protein.
This is largely attributed to improved solubility. Pixel densito-
metric gel analysis demonstrates that whereas His– hSR
showed only 7% soluble hSR protein, the MBP– hSR fusion is
estimated to give 48% of the protein in the supernatant, a nearly
7-fold increase in solubility. The 15 mg of MBP– hSR translates
to �6.4 mg of hSR versus the 1–2 mg obtained for His– hSR, a
significant improvement. Removal of the tag via factor Xa
digestion followed by ATP column purification resulted in a
doubling of specific activity, as expected.

Native PAGE experiments are indicative of a dimeric struc-
ture for the hSR–MBP fusion protein, consistent with previous
reports and crystal structures for the SR (39). Interestingly, gel
filtration (Sephacryl S-200) shows an apparent molecular mass
of 247 Da for the new construct, suggestive of an oligomeric
composition of 3.1. This may be reflective of an equilibrium
between a dimeric and tetrameric form of MBP– hSR under the
conditions of the gel filtration experiment. This notion would
be consistent with a recent observation by Mozzarelli and co-
workers (58) that hSR is capable of forming an active tetramer

Figure 2. hSR: physiological role and 3D structure. A, biosynthesis of the neuromodulators H2S and D-serine and their postulated roles in stimulation of the
NMDA receptor (schematic); B, homology model for hSR based upon Protein Data Bank entries 3L6B (recombinant modified human; internal aldimine) and
2ZPU (S. pombe; substrate-modified internal aldimine). Blue, C-terminal PDZ domain (interacts with GRIP-1 and PICK-1); lavender, structural dication (Mg2�,
Ca2� or Mn2�; salmon, palmitoylation site (Thr227); red helical region, putative nitrosylation site (Cys113); green, ATP-binding site; red loop region, putative
phosphorylation site (Thr71).
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Figure 3. Mechanism of serine racemase. Shown is the racemization manifold versus the �-elimination manifold. Note that both carbanionic and fully
delocalized quinonoid intermediate pathways can be considered.
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in the presence of ATP and the divalent cation (Ca2� or Mg2�)
normally associated with the protein.

Active site mutants/kinetic evaluation

We next chose to examine the influence of re-face base on
enzyme function. In previous work by Wolosker and co-work-
ers (40), mutagenesis of residues 151–154 led to a reversal of
functional preference with L-serine as the substrate. As noted
(Fig. 6), normally mammalian serine racemase favors L-serine
elimination activity over L-serine racemase activity, in a ratio of
�4:1. Their most notable mutant, Q154D, displayed a dramatic
reversal of these activities to a ratio of 1:3.

Focusing on the active site, previous reports had identified
Ser84 as the re-face base in homologous enzymes belonging to
S. pombe (42) and slime mold (Dictyostelium discoideum) (59).
In both cases, the re-face Ser to Ala mutant was constructed and
resulted in loss of function for racemization. Utilizing the
MBP– hSR platform, we generated the corresponding mamma-
lian SR S84A mutant, in addition to the S84D, S84N, and S84T
variants. There had been one earlier report of the former con-
struct, but the activity of this mutant was only studied with the
natural substrate, L-serine (60). The rationale was to examine

changes in hydrogen bond donor ability, charge, and sterics for
putative re-face base by studying the behavior of these mutants
across four assays: racemization and �-elimination reaction
across a battery of three substrates.

The results are summarized in Table 1. Compared with the
wild-type hSR, the S84D mutant shows the most dramatic dif-
ference in substrate preference as measured by the catalytic
efficiency (i.e. measured kcat/Km value). Whereas the charged
substrates L-SOS and L-THA are highly favored in wild-type SR,
S84D shows a dramatic reversal of this preference. In the most
pronounced case, for L-THA compared with L-serine, this pref-
erence changes from 100:1 in the wild-type to 1:50 (see Table 1).
This represents a 5000-fold change in substrate preference. A
similar �1200-fold change is observed for L-SOS. It is impor-
tant to note that this was not a “mutate-and-kill” effect, because
the catalytic efficiency of L-serine only decreased �6-fold in the
S84D mutant. That PLP enzymes can exhibit significant cata-
lytic promiscuity even with subtle changes has recently been
highlighted by Patrick and co-workers (61) in detailing the pro-
miscuous alanine racemase activity seen with mutant cystathi-
onine-�-lyase, both in Escherichia coli.

The S84N mutant shows intermediate behavior, exhibiting
neither the strong preference for charged substrates seen in the
wild type nor the inverted substrate preference seen in the
S84D mutant. Specifically, the S84N mutant shows a modest
2.5:1 preference in L-SOS over L-serine and a 7:1 preference of
L-THA over L-serine for �-elimination (Table 2). Although
unable to catalyze L-serine racemization, this mutant is also the
most fit mutant in catalyzing L-serine elimination, displaying
�75% of the catalytic efficiency of the native enzyme.

The S84A mutant also loses L-Ser racemization completely
and has attenuated L-Ser elimination activity (�6-fold drop in
catalytic efficiency, almost equally due to kcat and Km effects),
and although this mutant displays quite respectable kcat values
for the charged substrates, it pays a significant penalty in Km for
L-THA (34-fold).

Whereas the alterations in substrate profile seen with the
S84D mutant were dramatic, the S84T mutant displayed a more
nuanced change in substrate preference that is also useful in
considering the hSR mechanism. Thus, S84T-hSR retains the
native hSR preference for charged substrates, but that prefer-
ence is now selective for L-SOS over L-THA. In other words, the
�-elimination of L-THA is now favored only 35-fold versus the
�-elimination of L-serine compared with the original 100-fold,
whereas L-SOS is now eliminated some 350-fold more effi-
ciently than L-serine. Expressed differently, but perhaps more
succinctly, whereas the kcat for L-SOS elimination is unchanged
for the S84T mutant, the corresponding kcat values for L-serine
and L-THA elimination suffer a 4 –5-fold penalty with this sub-
tle mutation in re-face base structure. Thus, the S84T-hSR is
able to discriminate between these two charged substrates,
showing an order of magnitude higher catalytic efficiency for
processing L-SOS versus L-THA, whereas no such preference is
seen in wild-type enzyme.

Molecular dynamics/docking studies

These kinetic results inspired us to employ molecular
dynamics simulation and substrate docking experiments with

Figure 4. Acidity of Ser84: Ser-(OH2)-Lys versus Ser-(cis-Ser)-Lys triad. A,
proposed hydrogen-bonding network involving the re-face base, Ser84, and
the neighboring Wat372 molecule and Lys114 residue. B, comparison with the
Ser155–cis-Ser131–Lys62 catalytic triad in the amidase signature family of
enzymes. Crystal structures 3L6B (hSR; A) and 1OCL (malonamidase; B) are
used in this image; both structures contain a bound malonate as inhibitor (A)
and product (B), respectively.
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the goal of potentially shedding light on the origins of these
observations on substrate preference. See “Experimental pro-
cedures” for details on how the homology model was con-
structed and how the molecular dockings were carried out and
analyzed. All three elimination substrates were docked to both
wild-type hSR and the S84D mutant. Displayed in Fig. 6 is the
structure of L-THA-derived external aldimine docked into the
wild-type hSR active site. The �-carboxylate of the substrate is
engaged in a salt bridge interaction with Arg135. This is some-
what reminiscent of the published crystal structures of SR with
bound malonate inhibitor, wherein one carboxylate of the mal-
onate appears to be similarly engaged (39). However, unlike
L-THA, malonate is, of course, not covalently engaged with the
PLP cofactor at all.

When L-THA is docked into the active site of the S84D-hSR
mutant, the results are much different. What we observe is
Arg135 now interacting with the newly mutated S84D. The new
re-face base, Asp84, has “hijacked” Arg135, forming an intramo-
lecular salt bridge, which effectively renders Arg135 unavailable
to assist with the binding and proper positioning of the charged

substrates, L-SOS and L-THA. As can be seen in Fig. 6, this leads
to a significant distortion of the substrate in the active site. This
is illustrated with an overlaid image of the two structures (WT
in lavender and S84D mutant in green).

The wild-type hSR enzyme is represented by purple residues,
whereas the S84D mutant is shown in green. The external aldi-
mine formed between L-THA and PLP is shown in silver. The
interaction between the substrate and wild-type Arg135 is again
displayed. However, when Ser84 is converted to Asp84 (green), it
becomes quite apparent how far Arg135 has now migrated in the
active site. This key active site residue no longer engages the
substrate; rather, it interacts solely with Asp84.

How might this simple mutation lead to the kinetic differ-
ences that we observe for the three hSR �-elimination sub-
strates? During the course of the docking studies, we noticed a
large change in substrate orientation within the active site.
These orientations were examined closely with an eye toward
how PLP enzymes operate normally, according to the Duna-
than hypothesis (62). Looking more closely at the docking
results for the external aldimine complexes of all three sub-

Figure 5. Use of the MBP– hSR construct for expression and purification. A, purification gel comparison of the MBP– hSR and His6– hSR constructs by
Coomassie Blue staining and Western blotting. B, removal of the MBP tag. C, comparison of kinetic properties of the MBP– hSR with hSR values reported in the
literature (40, 43, 57). D, comparison of MBP– hSR specific activity with that of other reported SR constructs (1, 43, 57, 60, 75).
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strates, a large difference was observed in the behavior of L-ser-
ine compared with that of its charged counterparts.

In Fig. 7 (left column), a typical example of the preferred
docking orientation of each of the three substrates in the wild-
type SR active site is shown. For all three cases, the substrate is
aligned with a proper Dunathan orientation of the �-C–H bond
to be broken. In other words, for all three cases, the �-C–H is
nearly parallel with the �-system of the cofactor imine. In this
case, Arg135 is not only important for substrate binding/recog-
nition; it appears to also be vital to substrate positioning for
catalysis.

For the mutant S84D, we no longer see proper orientation.
Whereas L-serine remains relatively unchanged in position,
L-SOS and L-THA exhibit a substantial rotation about the key
C4�-N-C�-H dihedral angle. This non-Dunathan orientation is
consistent with the dramatic decrease in �-elimination
activity for these substrates with the S84D mutant, in good
agreement with the experimental kinetic results. This appar-
ent importance of Arg135 raises interesting questions about
the evolutionary history of serine racemase, as will be dis-
cussed below.

In an effort to understand the intermediate substrate prefer-
ences of the S84N mutant, molecular docking was also under-

taken here. In nearly all docked structures, the new asparagine
84 residue was seen to interact with aspartate 238, probably
through hydrogen bonding. Perhaps because residue 84 is no
longer able to contribute to the �-carboxylate binding site, one
sees a major cluster of conformers in which Arg135 is now
engaged with the �-carboxylate.

Indeed with the charged substrates, L-SOS and L-THA,
whereas in the WT enzyme these substrates appear to be
“locked” into position for catalysis through electrostatic pairing
with Arg135 (Figs. 6 and 7), in the S84N mutant, molecular
docking identifies two nearly equally populated clusters of con-
formers, the aforementioned Arg135–�-carboxylate cluster
(Fig. 8, left) and a second cluster of conformers in which the
Arg135–side chain interaction is retained (Fig. 8, right). Inspec-
tion of the C4�-N-C�-H dihedral angle for the individual mem-
bers of each of these major clusters gives a dihedral angle range
of 140 –190° for the Arg135–�-carboxylate cluster and of
80 –105° for the Arg135–side chain cluster. The latter dihedral
angle window appears to be in the stereoelectronically allowed
range for Dunathan-compliant �-deprotonation. Representative
examples of members of each cluster for both the bound L-SOS-
external aldimine (top half) and the bound L-THA-external aldi-
mine are depicted in Fig. 8. Overall, this Arg135-toggle model for

Figure 6. Molecular modeling results: WT versus S84D. Relaxation of the hSR homology model from Protein Data Bank entries 3L6B and 2ZPU (Fig. 2) with
GROMACS version 4, followed by molecular docking of the L-THA-PLP-external aldimine (Autodock version 4) leads to the active site structures shown, both
schematically (A) and in 3D (B). Arg135 is projected to have an important role in L-THA substrate positioning in wild-type hSR (lavender). On the other hand,
Arg135 is engaged in a new salt bridge with Asp84 (green) in the S84D mutant, making it unavailable for L-THA or L-SOS substrate positioning.
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substrate binding for the S84N mutant is consistent with the mod-
est preference for these charged substrates displayed.

Overviewing this set of hSR mutants, then, in light of these
docking results, one sees that WT enzyme appears to permit a
sort of three-point binding interaction with Ser83, Ser84 (�-car-
boxylate), and Arg135 (charged side chains). Mutation to S84N
appears to remove residue Asn84 from the binding pocket as it
becomes engaged with Asp238. This appears to drive an Arg135-
toggle in binding both anionic groups in the charged substrates.
Mutation to S84D removes both residue Asp84 and Arg135

because they are predicted to combine to form a salt bridge.
Whereas these in silico models are consistent with the relaxed
preference for L-SOS and L-THA seen in the S84N mutant and
with the dramatic reversal of substrate preference seen in the
S84D mutant, they remain to be tested by structural biology
studies in the future.

Probing the active site with inhibitors

That said, we next set out to undertake complementary
experiments to provide additional data with which to evaluate
this interesting hSR binding model. Namely, given the impor-
tance ascribed to Arg135, particularly in binding and positioning
the charged substrates, L-SOS and L-THA, in this model, it
seemed prudent to challenge this array of hSR active sites with
a battery of inhibitors. A set of four inhibitor candidates was
chosen: (i) malonate, (ii) L-aspartate �-hydroxamate (L-ABH),
(iii) L-erythro-�-hydroxyaspartate (L-EHA), and (iv) aminooxy-
acetate (AOAA). Three of these inhibitors bear anionic side
chains that might be expected to engage Arg135, particularly in
light of the substrate binding model being put forward here.
The �-hydroxamate in L-ABH might also be expected to inter-
act with Arg135, although probably not as strongly. Only for
malonate is crystal structure information available (39), and
indeed such an interaction with Arg135 is seen (Fig. 4).

All experiments were conducted in competition with L-ser-
ine, the native substrate. The first two hSR inhibitors showed
dramatically different behavior with WT-hSR versus the S84N
and S84D mutants (Fig. 9 and Table 3). Malonate displayed
competitive inhibition with Ki � 65 � 3.2 �M (reported Ki �
27–71 �M (38, 43, 57)). L-ABH also inhibited WT-hSR compet-
itively, with Ki � 155 � 11.2 �M (reported Ki of 93 �M (63)) but
showed no inhibition of either the S84N or the S84D mutant. As

Table 1
Kinetic inventory of hSR variants across the major enzymatic reaction
manifolds

Table 2
Relative catalytic efficiencies of substrates as a function of hSR variant
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Figure 8. Molecular modeling suggests two types of bound conformations for L-SOS and L-THA in S84N-hSR. Molecular docking (Autodock version 4)
results show two clusters of bound external aldimine conformers for the L-SOS and L-THA substrates with the S84N mutant. The conformers on the left exhibit
an Arg135–�-carboxylate salt bridge and are non-Dunathan-aligned, whereas in conformers on the right, Arg135 is engaged with the charged side chain, leading
to proper alignment for �-deprotonation.

Figure 7. Molecular modeling to examine stereoelectronics in external aldimines for WT- and S84D-hSR. Molecular docking (Autodock version 4) results
imply that whereas the L-Ser, L-SOS, and L-THA �-elimination substrates show proper Dunathan alignment in their respective external aldimines for WT-hSR,
this alignment is significantly altered in the S84D mutant.
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a positive control, the oxime-forming global PLP-dependent
enzyme inactivator, AOAA (1), was tested and displayed potent
inactivation of WT-hSR as well as the S84N and S84D mutants
(Table 3).

L-EHA exhibited competitive inhibition kinetics with Ki �
31 � 1.5 �M for WT-hSR in our hands (reported Ki of 11– 43 �M

(43, 57)). Upon mutation of the active-site Ser84 to Asn, how-
ever, a pronounced 50-fold decrease in inhibition potency was
observed as Ki increased to 1.5 mM. Even more extreme, the
S84D mutant showed no inhibition with L-EHA at concentra-
tions up to 20 mM. (Fig. 10 and Table 3).

Discussion

The effectiveness of all four inhibitors with native hSR and
the inability of all but the universal PLP inactivator, AOAA, to
inhibit the S84D mutant is a striking contrast and is consistent
with the Arg135-charged side chain binding model that
emerged from the earlier substrate scan/molecular modeling.
Much as in the �-elimination substrate studies, the S84N
mutant again displayed behavior that is intermediate between
WT-hSR and S84D-hSR in the inhibition studies. Namely, in
contrast to the S84D mutant, the S84N mutant is inhibited by
L-EHA (Ki � 1.5 � 0.1 mM) but considerably less well than
WT-hSR (Ki � 31 � 1.5 �M). These results are in line with the
details of the molecular modeling that emerged earlier whereby
it was predicted that Arg135 would be fully available for side
chain carboxylate binding in WT-hSR (Fig. 6), partially avail-
able in the S84N mutant (Fig. 8) and unavailable in the S84D
mutant (Fig. 6). Indeed, molecular modeling of the putative
L-EHA-external aldimine with both WT-hSR and S84N hSR
indicates that these active sites are also capable of engaging the
�-carboxylate of L-EHA in a salt bridge with Arg135 (Fig. 11),
consistent with the ability of this compound to inhibit both
enzymes.

This study also raises interesting questions from the obser-
vation of the S84T mutant, particularly its ability to retain all
hSR functions and yet to discriminate between the L-SOS (pre-
ferred) and L-THA substrates. Recent investigations into the
mechanisms of the related PLP-dependent �-eliminases Dro-
sophila CBS (64) and tryptophan synthase (65) may provide

Figure 9. Competitive inhibition of WT-hSR with malonate and L-ABH. A, Lineweaver–Burk plot for WT-hSR inhibition with malonate; B, secondary plot for
these data. C, Lineweaver–Burk plot for WT-hSR inhibition with L-ABH; D, secondary plot.

Table 3
Inhibitor profile across the hSR mutant array
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guidance here. Both of these enzymes also catalyze the �-elim-
ination of PLP-aldimine– bound L-serine along the normal
reaction coordinate, for LL-cystathionine and L-tryptophan bio-

synthesis, respectively. In the Drosophila CBS study (64), the
authors claim to observe a carbanionic intermediate that is gen-
erated upon L-serine deprotonation. It is argued that this spe-

Figure 10. L-EHA inhibition steady-state kinetic results for WT- and S84N-hSR. A, Lineweaver–Burk plot for WT-hSR inhibition with L-EHA; B, secondary plot
for these data. C, Lineweaver–Burk plot for S84N-hSR inhibition with L-EHA; D, secondary plot.

Figure 11. L-EHA inhibition molecular modeling. Shown are docking results (Autodock version 4) for the inhibitor L-erythro-�-hydroxyasparate (A) in the
wild-type hSR active site and in the S84N-hSR active site (B).
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cies is an incompletely delocalized, PLP-stabilized �-carbanion,
as opposed to a fully delocalized quinonoid intermediate. The
authors argue that both the si-face lysine ammonium ion and a
re-face serine residue are of central importance in stabilizing
this key mechanistic intermediate.

Mueller and Dunn (65) have recently described a similar
carbanionic intermediate for the archetypical �-replacement
enzyme, tryptophan synthase, utilizing a new biophysical
method that combines solid-state NMR, X-ray crystallography,
and computational chemistry. Here too, the active site lysine
ammonium ion is thought to stabilize the negative charge in
this intermediate. It is, of course, possible that a similar car-
banionic intermediate forms along the reaction coordinate
for hSR. It may be that replacement of a �-H with a �-methyl
group (S84T) results in a subtle repositioning of this residue,
rendering it less efficient at stabilizing the developing nega-
tive charge in the enzyme-bound substrate aldimine upon
�-deprotonation.

Indeed, it might well be the case that a stepwise mechanism
involving initial rate-limiting substrate deprotonation takes
place for the L-serine and L-THA hSR substrates, but not for
L-SOS. The latter substrate, by virtue of having a good leaving
group in sulfate, could presumably undergo a concerted
�-elimination without the need to stabilize a discreet �-carban-
ionic PLP-substrate intermediate. This explanation is consis-
tent with the observation that the hSR S84T mutant more
effectively catalyzes the �-elimination of L-SOS as compared
with that of L-THA, in contrast to WT-hSR. However, this is
still quite speculative at this juncture. The nature of the PLP-
centered intermediate in hSR catalysis has remained elusive

heretofore, so future experiments will be needed to evaluate
this notion. It may be possible to shed light on this hypoth-
esis, at least indirectly, through the sort of Mueller/Dunn
solid-state NMR/X-ray studies described above or through
successful co-crystallization of hSR with known inhibitor
L-EHA.

Evolutionary considerations

To examine the potential evolutionary implications of the
favorable L-THA elimination kinetics observed here, we
decided to construct a phylogenetic tree of various type II
�-eliminases acting on L-serine (Fig. 12) (66). The blue dots
represent enzymes known to racemize serine. What we observe
is that only recently do we see serine racemase activity. Further-
more, an apparent ancestor is shared with enzymes that are
annotated as L-THA dehydratases from Saccharomyces cerevi-
siae (67) and Pseudomonas sp. T62 (68). Very recently, such
activity has been observed in a Caenorhabditis elegans enzyme
as well (69). Looking more closely at the sequences of a range of
proteins in this broad �-eliminase family, we observe the fol-
lowing trends. First, Ser84 is conserved in serine racemases and
L-THA dehydratases. Perhaps most striking, Arg135 is also con-
served among these examples while being absent in all other
type II dehydratases (Fig. 13). These results are consistent with
the substrate preferences (i.e. L-SOS and L-THA as preferred
�-elimination substrates over L-Ser (Tables 1 and 2)) observed
for the wild-type serine racemase. This also suggests that per-
haps serine racemase is still early on in its evolution of function
(see Fig. 12).

Figure 12. Phylogenetic tree of various fold type II eliminases. Enzymes annotated as SR are marked with blue dots; enzymes annotated as having CBS
activity are given lavender triangles.
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Conclusions

Since the discovery of D-serine as a potent co-agonist of the
NMDA receptor, there has been growing interest in the enzyme
responsible for its biosynthesis, serine racemase. Its implication
in various disease states has further raised interest in develop-
ing selective inhibitors (ischemic stroke and potentially Alzhei-
mer’s disease and ALS) or stimulators (schizophrenia) of this
enzyme. A new expression construct for hSR is reported here,
namely the MBP– hSR fusion protein, that yields higher titers of
soluble enzyme and serves as an excellent platform to study
active-site mutants. Characterization of these mutants has led
to a new understanding of important residues in the mecha-
nism of serine racemase. Specifically, these complementary
“enzyme/substrate mutation” studies focusing on position 84 in
the enzyme and the three principal hSR �-elimination sub-
strates have raised mechanistic hypotheses for hSR function.
Studies with the hSR S84D and S84N mutants suggest an
important mechanistic role for Arg135 in substrate positioning
for charged �-elimination substrates that is consistent with the
Dunathan hypothesis. Indeed, these observations, along with
sequence alignment studies point to Arg135 as a key residue that
probably was selected for in this �-eliminase family to optimize
the �-elimination of L-THA (conserved in all annotated L-THA
dehydratases).

Phylogenetic analysis supports the notion that Arg135 is his-
torically important for L-THA eliminase activity. But where
would organisms experience evolutionary selection pressure to
evolve L-THA eliminase activity? Recently, Katane et al. (69)
have speculated that C. elegans may have evolved its T01H8.2
protein, an apparent L-THA dehydratase, as an important

defense mechanism. Namely, microorganisms such as Ath-
rinium phaeospermum and Streptomyces are known to produce
L-THA, and this amino acid is known to inhibit L-glutamate
transport. The thinking is that C. elegans might well feed on
such microorganisms and take advantage of this evolved
L-THA dehydratase activity to detoxify ingested L-THA, and
whereas this may be the evolutionary origin of residue Arg135 in
hSR, it may well be possible to leverage this vestigial ligand-
binding ability in future hSR inhibitor design studies.

Experimental procedures

Recombinant His– hSR

Human serine racemase cDNA was purchased from Origene
and amplified using the following primers (IDT): 5�-CCT TCT
TGC TAG CTG TGC TCA GTA TTG CAT C-3� (forward) and
5�-CAC GCG CTC GAG AAT TCC CAC CAT TTC-3�
(reverse) for the NheI and XhoI restriction sites, respectively.
Gene Runner software was used to design the primers, and the
10198-0118 PCR Reagent System (Invitrogen) was utilized. The
cDNA was inserted into the pGEM-T cloning vector (Promega)
and used to transform DH5�-derived E. coli made competent
by the calcium chloride method. Plasmids from overnight cul-
tures were extracted using a plasmid miniprep spin kit (Qiagen)
and verified by 1% agarose gel as well as sequencing with T7 and
T7term primers. After double digestion, the fragment was
inserted into the pET-28c plasmid. BL21(DE3)-pLysS E. coli
was used for expression.

Starter cultures of 3-ml volume, grown overnight, were used
to inoculate 1 liter of Luria–Bertani broth (Difco), supple-
mented with an additional 5 g/liter yeast extract. Cells were
grown at 37 °C and 250 rpm. When the cells reached an A600 of
0.8, the temperature was reduced to 25 °C, and the cells were
induced with 0.1– 0.5 mM isopropyl 1-thio-�-D-galactopyrano-
side for 18 h at 300 rpm. Cells were pelleted by centrifugation
for 15 min at 10,000 � g and stored at 	80 °C.

Purification of His– hSR

Cells were resuspended in assay Buffer A (200 mM TEA, 150
mM KCl, 10 mM DTT, 5 mM MgCl2, 2.5 mM ATP, and 50 �M

PLP, pH 8.0) at a volume of 1 ml/g of wet cell mass. Cells were
disrupted by sonication on ice for 5 cycles (1 min on/1 min off)
and centrifuged for 15 min at 15,000 � g. The supernatant
contained modest levels of hSR and no visible SDS-PAGE band,
whereas the pellet, when solubilized in the same volume of
Buffer B (10 mM Tris, 100 mM sodium phosphate, 8 M urea, pH
7) as the crude supernatant, exhibited a very intense band at
�37 kDa. To verify that this band was insoluble His-tagged hSR
protein, the solubilized pellet fraction was applied to a nickel-
nitrilotriacetic acid column. The protein did bind and was suc-
cessfully eluted, with decreasing pH, yielding a single band on
SDS-PAGE that matched the expected molecular weight
for hSR.

Recombinant GST– hSR

Human serine racemase cDNA was purchased from Origene
(catalog no. TC11289) and amplified using the primers (IDT)
5�-CGT TGC GGA TCC ATG TGT GCT CAG TAT TGC-3�

Figure 13. Alignment of fold type II enzymes. Arg135 is conserved among
enzymes showing L-THA eliminase activity consistent with the functional role
of this residue posited herein. h, human; m, mouse; r, rat; at, Arabidopsis thali-
ana; sp, S. pombe; hv, Hordeum vulgare; pa, Pseudomonas aeruginosa; pi, Pyro-
baculum islandicum; sc, S. cerivisiae; p, Pseudomonas T62; ec, E. coli; s,
Salmonella.
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(forward) and 5�-CAC GCG CTC GAG AAT TCC CAC CAT
TTC-3� (reverse) for restriction sites BamHI and XhoI, respec-
tively. The cDNA was double-digested and inserted into the
pGEX-4T1 expression vector (GE Healthcare) and used to
transform DH5�-derived E. coli made competent by the cal-
cium chloride method. Plasmids from overnight cultures were
extracted using a plasmid miniprep spin kit (Qiagen) and used
to transform BL21(DE3)pLysS E. coli for expression.

Purification of GST– hSR

Cells were resuspended in assay Buffer A at a volume of 1
ml/g of wet cell mass. Cells were disrupted by sonication on ice
for five cycles (1 min on/1 min off) and centrifuged for 15 min at
15,000 � g. The supernatant displayed more units of activity
per liter of culture compared with the His– hSR construct but
did not yield a visible band by SDS-PAGE. When the pellet was
solubilized in Buffer B, there did exist a strong band at the
expected molecular weight of the GST– hSR construct. SDS-
PAGE indicated that most of the expressed protein was rele-
gated to the insoluble pellet, so further purification was not
attempted.

Recombinant MBP– hSR

The protein was designed to bear the N-terminal MBP tag
present in the pMAL-c2X (New England Biolabs) vector. The
following primers were employed in this system (IDT): 5�-CGT
TGC GGA TCC ATG TGT GCT CAG TAT TGC-3� (forward)
and 5�-CAC CTA GTC GAC AAT TCC CAC CAT TTC C-3�
(reverse), for restriction sites BamHI and SalI, respectively. The
respective hSR PCR products were ligated into the respective
vectors and used to transform our DH5�-competent cells. The
amplified plasmids were then analyzed and used to transform
BL21(DE3)pLysS E. coli strain for expression.

Purification of hSR

Cells were resuspended in assay Buffer A at a volume of 1
ml/g of wet cell mass. Cells were disrupted by sonication and
collected by centrifugation (15,000 � g). The supernatant was
mixed with prebalanced amylose resin (New England Biolabs)
and shaken at 4 °C for 1 h. The slurry was centrifuged 15 min at
5000 � g and decanted. The resin was applied to a column of the
same resin, washed with 3 column volumes of Buffer C (50 mM

Tris, 150 mm KCl, 10 mM �-mercaptoethanol, 15 �M PLP, pH
8.0), and eluted with a linear gradient (0 –10 mM) of maltose.
MBP– hSR was observed to elute at 3–5 mM maltose. Fractions
were pooled by activity and UV280 absorbance. Pooled fractions
were then concentrated (Amicon cell, 30-kDa membrane) to a
final concentration of 20 mg/ml further clarified by centrifuga-
tion (15 min, 15,000 � g, 4 °C). Protein was flash-frozen in 50%
(v/v) and stored at 	80 °C.

To obtain tag-free hSR, the MBP tag of pMAL-c2X was
cleaved by factor Xa (New England Biolabs), leaving a 6-mer
(ISEFGS) N-terminal overhang immediately preceding the ini-
tial methionine of hSR. Digestion took place in Buffer D (20 mM

Tris, 50 mM NaCl, 0.2 mM �-mercaptoethanol, and 10 �M PLP).
After overnight digestion, the solution was applied to a 3-ml
column of C-8 –linked ATP-agarose (Sigma), washed with 3

column volumes of Buffer D, and eluted with 2.5 mM ATP in
Buffer D.

�-Elimination activity assay

�-Elimination of L-SOS to form pyruvate was conducted
under the following assay conditions: 200 mM TEA, 150 mM

KCl, 5 mM MgCl2, 2.5 mM ATP, 50 �M PLP, 0.15 units of lactate
dehydrogenase, 0.24 mM NADH, and 10 mM L-serine-O-sulfate.
Activity was monitored by observing the decrease in absor-
bance at 340 nm.

L-Serine-O-sulfate �-elimination

A Shimadzu UV-2101PC spectrophotometer equipped with
a 6-cell changer was used to monitor the decrease in NADH
concentration as pyruvate produced from L-serine-O-sulfate
elimination was reduced by lactate dehydrogenase. Assay con-
ditions were as follows: 37 °C, pH 8, 200 mM TEA, 150 mM KCl,
5 mM MgCl2, 2.5 mM ATP, 50 �M PLP, 0.24 mM NADH, and
0.15 units of lactate dehydrogenase. Each point represents the
average of three experiments. The kinetic parameters for
MBP– hSR (79.5 kDa) were estimated by least squares hyper-
bolic fitting to the Michaelis–Menten equation.

L-Serine elimination

L-Serine elimination activity was evaluated by the same assay
described for L-SOS elimination, because both reactions give
pyruvate as the hSR product.

L-threo-�-Hydroxyaspartate �-elimination

L-THA elimination was monitored by the formation of oxa-
loacetate. Oxaloacetate formation was measured by reduction
with malate dehydrogenase and NADH under the same condi-
tions described for L-SOS.

L-Serine racemization

To obtain racemization data, D-amino acid oxidase from por-
cine kidney (Sigma) was used to oxidize D-serine to 3-hydroxy-
pyruvate and H2O2. The resulting H2O2 was reduced in the
presence of horseradish peroxidase and Amplex Red to gener-
ate resorufin that can be monitored continuously at 570 nm.
Racemization was also monitored via a time point assay by
derivatizing the products with Marfey’s reagent (1-fluoro-2,4-
dinitrophenyl-5-L-alanine) and resolved using reversed-phase
HPLC with glycine as an internal standard.

Inhibition studies

Wild-type hSR and the S84N and S84D mutants were probed
for inhibition by malonate, L-EHA, L-ABH, and AOAA. Utiliz-
ing the L-serine elimination assay at various L-serine concentra-
tions (5, 10, 15, and 20 mM) and a battery of inhibitor concen-
trations, Ki values were determined following standard steady-
state kinetic analysis. Wild-type hSR was examined with all
inhibitors (except AOAA) at inhibitor concentrations of 65,
125, 312, 625, and 1250 �M. For the S84N mutant (aside from
AOAA), inhibition was seen only with L-erythro-�-hydroxyas-
partate upon incubation at 2.5, 5, 7.5, and 10 mM concentra-
tions. The S84D mutant showed no inhibition up to 20 mM

concentration with malonate, L-EHA, and L-ABH. The WT-
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hSR and S84N and S84D mutants were all effectively inhib-
ited by AOAA, which was tested at 1, 2, 3, 4, 5, and 10 �M.
Activity was measured by observing the decrease in absor-
bance at 340 nm associated with the consumption of NADH
in the coupled lactate dehydrogenase reaction converting
pyruvate to L-lactate.

Oligomeric state determination

Native PAGE and gel filtration analysis were used to deter-
mine the oligomeric state of the MBP– hSR construct. For
native gels, molecular weight markers from GE Healthcare
(High MW) were used. Electrophoresis was run using 4% stack-
ing, 9% resolving discontinuous polyacrylamide minigels at
constant current (40 mA) under flow-cooling in a Hoeffer
Mighty Small II apparatus. A calibration curve (Rf versus log Mr)
was constructed for the standards. The primary MBP– hSR
band displayed an Rf value of 0.397, corresponding to an appar-
ent molecular mass of 185 kDa, which corresponds to a dimer
(2.3 monomeric units) based on the calculated monomeric
molecular mass of 79.6 kDa. A similar analysis of the His6– hSR
construct by native PAGE showed an apparent molecular mass
of 81.5 kDa, again corresponding to a dimeric structure (2.1
monomeric units). Gel filtration analysis employing a GE
Healthcare S-200 High-Prep Sephacryl HS column with Bio-
Logic DuoFlow software was utilized. A calibration curve was
constructed using the GE Healthcare high molecular weight gel
filtration calibration kit and revealed an apparent molecular
mass of 247 Da for the new construct, suggestive of an oligo-
meric composition of 3.1 (possible dimer–tetramer equilibra-
tion (58)).

Homology modeling

To construct a hSR homology model, the 340-amino acid
human serine racemase protein sequence (NCBI accession
number NP_068766) was BLASTed against the NCBI struc-
tural database (70). A multiple-sequence alignment was per-
formed on hSR, 3L6B, 1WTC, and 2ZPU, using the ClustalW
algorithm (71). This alignment forms the basis for construction
the hSR model by MODELLER (72).

ATP, PLP, Ca2�, and Mg2� were copied into the homology
model from the template structures. PLP is bound to all tem-
plate structures in a similar orientation. Of these, PLP from
3L6B was chosen for the hSR model. 1WTC contains a bound
ATP/Mg2� analogue that was copied into the hSR model and
energy-minimized so as to represent bound ATP.

Molecular dynamics and docking experiments

All MD simulations were performed using the GROMACS
software package (73). Before each run, the structure was sol-
vated in a water box using the spc216 water model. Box dimen-
sions were set so that the hSR model was no closer than 1 nm to
the edge of the box. Simulations were performed using the
GROMOS96 force field, periodic boundary conditions, stan-
dard temperature-coupling schemes, and the particle-mesh
Ewald method for determining long-range electrostatics. Each
MD run was preceded by a 1000-step steepest descent energy
minimization and a 20-ps position-restrained MD simulation.

Each full MD simulation was performed for 2 ns at 300 K, using
2-fs time steps.

The first simulation contained Ca2�, ATP/Mg2�, and non-
covalently bound PLP. This setup was chosen to allow the
active-site lysine (Lys56) to reorient itself to a position that
would not obstruct external aldimine docking. Following the
initial 2-ns MD simulation, the hSR structure was energy-min-
imized and prepared for docking. Autodock version 4 was used
to dock the external aldimine of L-serine, L-serine-O-sulfate,
L-threo-�-hydroxyaspartate, and L-erythro-�-hydroxyaspartate
into the hSR active site (74).
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