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Abstract

Oxygen is a fundamental element for the life of a large num-

ber of living organisms allowing an efficient energetic utiliza-

tion of substrates. Organisms relying on oxygen evolved

complex structures for oxygen delivery and biochemical

machineries dealing with its safe utilization and the ability to

overcome the potentially harmful consequences of changes in

oxygen availability. On fact, cells composing complex Eukary-

otic organisms are set to live within an optimum narrow range

of oxygen, quite specific for each cell type. Minute

modifications of oxygen availability, either positive or nega-

tive, induce the expression of specific genes, the major actors

of this responses being the transcription factors HIF and Nrf2

that control the attempt to cope with low oxygen (hypoxia) or

to either high oxygen or to an oxygen “overflow,” respec-

tively. This review describes the interaction between these two

transcription factors and their interaction with the transcription

factor NF-jB acting as a pivotal determinant of final cell

response. VC 2018 BioFactors, 44(3):207–218, 2018

Keywords: hyperoxia; hypoxia; Nrf2; HIF; NF-jB

1. The raise of oxygen raiders
Roughly, 2.5 billion years ago, for the first time, oxygen reached
a significant part as component of Earth’s atmosphere [1]. The
most credited hypothesis for this event is in the progressive out-
break of Cyanobacteria (or blue–green algae), the first microbes
producing oxygen at the end of photosynthesis [2].

The progressive rise of atmospheric O2 levels severely
challenged living organisms that had to face the presence of a
novel massive abundance of a “peculiar” chemical element. In
fact, O2 is a relatively stable but highly reactive free radical,
capable of combining with most other elements. The presence
of two unpaired electrons with parallel spin partially quenches
the reactivity of molecular oxygen, as only one electron at a
time can be accepted from a donor molecule. In spite of this
spin restriction, O2 is still a very reactive element and in face
of this novel challenge, existing living organisms had few
options: either die, or shelter in anoxic environment [3] or
evolve to adapt [2].

As a result of evolution, living organisms not only learnt
how to cope with oxygen high reactivity, but also to utilize this
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specific feature. O2 is now needed by all higher eukaryotes as
the terminal electron recipient within the process of ATP syn-
thesis. The “invention” of an electron transport chain and the
rise of an authentic endosymbiosis leading to its permanent
localization of cellular “breathing” into separate intracellular
organelles, the mitochondria, tremendously boosted the ener-
getic capability of living organisms, creating in turn novel evo-
lutionary opportunities. In fact, at this point of the evolutionary
history of life, primitive metazoan had dimensions small
enough to allow the diffusion of O2 to the few thousand cells
composing the ancestral organism, but cells equipped with
mitochondria had the bioenergetics features to realize eukary-
otic cell complexity [3,4]. The evolutionary discovery of sys-
tems able to supply air and deliver O2 to all the cells within
the body opened the avenue to the development of bigger,
more complex organisms. The evolution of a complex respira-
tory, circulatory, and nervous systems able to modulate effi-
ciently the take of O2 and its distribution throughout large
bodies, composed of several billions of cells eventually com-
pleted the path to the utilization of O2 in vertebrates [5].

In order to get to this goal, cells had evolved to equip
themselves not only with complex devices aimed to the deliv-
ery oxygen throughout the body, but also with machineries
able to overcame the consequences of a severe “oxidative
challenge,” potentially able to threaten life by scavenging reac-
tive species, or quench their reactivity or repair oxidative
damage as, some of the negative consequences due to oxygen
reactivity, mentioned above, have not been completely
subdued.

Mitochondria are one of the most important source of
reactive oxygen. Even though mitochondrial electron transport
is very efficient, electrons can escape from their path and form
partially reduced reactive O2 species such as superoxide (O2•

2 )
eventually leading to hydrogen peroxide (H2O2) generation [6].
In the presence of a heavy bout of exercise, usually associated
with high mitochondrial activity, this leakage is likely to
increase and potentially induce specific responses aimed to
cope with oxygen-induced challenge [7]. It is generally
accepted that real culprit for most of the oxidative damage to
cellular macromolecules is due to a further reaction of these
molecules with transitional metals (Fe and Cu) generating
hydroxyl radicals (HO•), a three electron reduction of O2 [8].
Similarly, a distinct electron transport system, nitric oxide syn-
thase (NOS) uses NADPH to synthesize nitric oxide (NO), a
mildly reactive free radical playing specific roles in several tis-
sues, including the regulation of vascular tone, the immune
response and neuronal cells communication and, like many of
these types of oxido-reductases, can also produce O2•

2 [9]. A
further reaction between NO and O2•

2 generates peroxynitrite
(ONOO2) [10], another highly reactive oxidizing and nitrating
molecule, potentially able capable of damaging all cellular
macromolecules [11].

Oxidative damage exerted by reactive oxygen and nitrogen
species (frequently referred as RONS) to biological structures
is well known and has been the target of a very rich and

fortunate vein of research: in fact, not only the normal physiol-
ogy, but also the majority of pathologies (if not all) share an
oxidative component within their biochemistry. A detailed
description of both the oxidative damage and antioxidant
defenses is out of the scope of this review. Hereby, the major
cellular oxygen sensing mechanisms and their interplay in
composing the response (and possibly the repair of damages)
associated to positive or negative fluctuations of oxygen avail-
ability will be discussed.

2. Which oxygen concentration is

“good”? and how much is either

“not enough” or “too much”?
Considering that mammalian skin cells are protected by the
epidermis, a barrier composed an outermost layer of differen-
tiated, not vascularized keratinocytes enveloped by the protein
keratin [12], the only cells “normally” exposed to atmospheric
O2 pressure and concentrations are those composing the lens
of the eyes, and cells of the upper airways, including mouth
and nose and upper regions of the lungs.

Complex organisms like mammals developed a first defense
against oxygen toxicity by maintaining a gradient of oxygen ten-
sion, from the environmental level of 20% to a tissue concentra-
tion of about 3–4% (or less). Starting from atmospheric air to
individual cells, pO2 decreases from approximatively 150 mm
Hg in the upper airway to about 30 mm Hg in most tissues and
finally to as low as 5 mm Hg in peripheral tissues, and these
values are quite well maintained [13].

Atmospheric oxygen passively diffuses across the alveolar-
capillary membrane in the blood, according to concentration
gradients. In normal conditions, arterial pO2 is 75–100 mm Hg
with an oxygen percentage of about 13% while venous pO2 is
obviously lower, being between 30 and 40 mm Hg and about
5% [14].

Data obtained in rats indicate that oxygen tension is high-
est in the bladder (�60 mm Hg), followed by muscle (�40 mm
Hg), liver (�20 mm Hg), and renal cortex (�15 mm Hg) [15].
Furthermore, oxygen gradients exist within each tissue
depending on the distance of cells from the closest oxygen-
supplying blood vessel and the cellular metabolic demand [16].

Independently of the total amount of oxygen that reaches
specific tissues and the amount actually utilized to implement
different cell functions, the optimal oxygen concentration
seems to be restricted to a narrow range quite specific for
each cell type. Accordingly, cells efficiently respond to minute
modifications of oxygen availability by specifically expressing
genes in the attempt to cope with oxygen deficiency (hypoxia),
a circumstance occurring when oxygen demand exceeds its
availability in (para-)physiological conditions or, more dramat-
ically, in the presence of a severe impairment of blood deliv-
ery, eventually resulting in ischemia. Human tissues undergo
hypoxia during sepsis, sleep apnea, chronic obstructive
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pulmonary disease (COPD), diabetic kidney disease, wound
healing and in the context of the solid tumor microenviron-
ment [17].

Conversely, in the presence of high blood flow, such as
that occurring in the skeletal muscle that during heavy exer-
cise [7,18], while breathing high partial pressures of oxygen or
normoxic high pressure breathing associated to hyperbaric
therapy but also to recreational scuba diving [19–21], cells and
organs are exposed to oxygen “overflow.” These events are
likely to induce a condition frequently referred as “oxidative
stress” [22]. This term, probably one of the vaguest and often
abused terms in science, is intended to describe “an imbalance
between oxidants production and antioxidant and repair
defenses, resulting in the increased steady-state levels of oxi-
dized cellular macromolecules” [23].

3. Sensing variations: A delicate
balance between harsh extremes
The survival of an organism integrated in a relatively variable
environment is strictly bound to the ability to cope with vari-
able and potentially stressful conditions, and overcome them
by the ability to trigger cellular adaptive compensatory
changes and complex “system” responses [24].

As mentioned above, environmental conditions, and spe-
cific events, including high workout bouts, can affect oxygen
availability, and lead to variations that drive its concentration
far from the tight “optimum.” Therefore, cells and conse-
quently tissues, organs and whole organisms must temporarily
set themselves to respond to these emerging situations.
According to specific events, cells react in opposite directions
either to a reduced availability of oxygen (hypoxia) or to an
excess of oxygen availability. Definite, relatively rapid and effi-
cient cellular mechanisms exist to adapt to emerging environ-
mental conditions involving oxygen partial pressure and in
general oxygen availability.

3.1. HIF: Not enough oxygen. . .
Humans display specific adaptations to chronic hypobaric
hypoxia. Adaptable characters have been found in
“Highlanders” (Quechuas and Sherpas) and “lowlanders,”
independently on their common ancestry. These characters
are expressed both at the whole body levels of organization
and at the biochemical level (e.g., differential reliance on gly-
colysis or ATP yield per mole of oxygen consumed) [25]. Simi-
larly, Tibetans show a stable adaption to the chronic hypoxia
associated to high altitude as a genetic signature in prolyl
hydroxylase domain-containing protein 2 (PHD2) gene encod-
ing for a prolyl hydroxylase controlling the most important cel-
lular response to hypoxia [26].

The major factor controlling the response to lower levels
of oxygen is the hypoxia-inducible factor (HIF). This name
identifies the members of a family of DNA-binding transcrip-
tion factors that associates with specific nuclear cofactors
under hypoxia to transactivate a large spectrum of genes,

triggering different adaptive and developmental responses
associated to lower oxygen availability [27].

Hypoxia-inducible factor family is composed of three mem-
bers, HIF-1 and HIF-2 being the best characterized. To date,
hundreds target genes are known to be transactivated by bind-
ing of HIFs to a cis-acting hypoxia response element (HRE)
located either within the target gene or at its flanking sequen-
ces [28]. These genes are involved in a wide spectrum of
responses associated with the control cellular process includ-
ing angiogenesis, erythropoiesis, glycolysis, iron transport, cell
proliferation and survival, and vascular remodeling. HIF-3 is
the more distant, still scarcely known related member of the
family. Its protein structure and role in regulating gene
expression differ from those of HIF-1 and HIF-2. HIF-3a is con-
sidered a negative modulator of the expression of HIF-
regulated genes by competing with HIF-1a and HIF-2a in bind-
ing to transcriptional elements in target genes during hypoxia,
probably playing a role in fine-tuning the cellular response
[29]. This review will be mainly focused on HIF-1 activity and
functions. However, it is important to mention that HIF-1 and
HIF-2 share similar domain structure, heterodimerize with
HIF-1b, and bind to DNA at the same responsive element [30]
but their effect on gene expression, in particular related to the
regulation of angiogenic response, is significantly different. In
fact, although both isoforms upregulate the expression of pro-
angiogenic vascular endothelial growth factor (VEGF), HIF-1
activity associates with a decrease of the expression of
interleukin-8 (IL-8) by inhibiting the activity of Nrf2 transcrip-
tion factor (see Chapter 3.3 of this review). Conversely, the
upregulation of IL-8 expression by HIF-2 is associated to the
activity of SP-1 transcription factor and independent of Nrf2
activation [31].

HIF-1 and HIF-2 have also an opposite effect on the onco-
protein c-Myc activity. HIF-1a induces an increase of c-Myc
activity by stabilizing its interaction with the myc-associated
factor X (Max) promoting cell cycle progression. On the other
hand, HIF-1 inhibits c-Myc, probably by competing to the bind-
ing to Max and induces the arrest of cell cycle at G1/S phase
[30].

The effects exerted by both HIF isoforms and their com-
plex interaction with other transcription factors are presently
undergoing to intensive research addressing in particular their
role in angiogenesis [32].

At the molecular level, HIF-1 is composed of two subunits:
HIF-1a and HIF-1b, each containing basic helix-loop-helix-PAS
(bHLH-PAS) domains that mediate heterodimerization and
DNA binding. HIF-1b is constitutively expressed regardless of
oxygen availability [33] whereas HIF-1a protein has a short
half-life (t1=2 � 5 min) and is highly regulated by oxygen [34].
Even though transcription and synthesis of HIF-1a are consti-
tutive and seem not to be affected by oxygen availability
[33,35], in normoxic conditions it is rapidly degraded, follow-
ing a mechanism described below and no HIF-1a protein is
essentially detectable. The b subunit, present in excess, heter-
odimerizes with other bHLH-PAS proteins making HIF-1a
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protein levels the decisive factor in activating the transcrip-
tional activity [36].

HIF-1 is expressed by all multicellular eukaryotic organ-
isms and, in normoxic conditions specific for each tissue, the a
subunit is bound to the von Hippel-Lindau (VHL) protein that
recruits an ubiquitin ligase, tagging HIF-1a for degradation by
the 26S proteasome [37] (see Fig. 1). VHL binding follows the
hydroxylation of a specific proline residue in HIF-1a by PHD2
that utilizes molecular oxygen to oxidize a prolyl residue at
564 position of HIF-1a. The absolute requirement of oxygen as
a co-substrate suggests PHDs as the oxygen sensor in cells
[38,39]. Under hypoxia, less oxygen is available and PHDs cat-
alytic activity is hindered and prolyl hydroxylation of HIF-1a
abrogated. This event allows its escape from recognition by
the pVHL ubiquitin–ligase complex and the transfer to the
nucleus, where eventually HIF can exert its transactivating
activity [27]. Other cellular factors, including miRNA-155 [40]

and mRNA-destabilizing proteins [41] contribute to the stabili-
zation of HIFa and to its activation.

The level of several cellular cofactors available in the cel-
lular environment such as Ferric Iron, 2-oxoglutarate, and
ascorbate positively contributes to modulate the catalytic activ-
ity of PHDs [27,42]. Conversely, metabolic intermediates of the
tricarboxylic acid cycle (e.g., succinate and fumarate), O2•

2 ,
H2O2, and HO• have been reported to inhibit HIF activity
[42,43]. Beside the modulation by metabolic intermediates,
intracellular reduction of oxygen give rise to superoxide anions
and eventually to H2O2 and hydroxyl radicals levels and affect
HIF pathway. H2O2 has been proposed to directly inhibit PHD
enzymes by oxidizing the essential non-heme-bound iron [44].
At cellular level, it has been proposed that chronic hypoxia is
associated with high intracellular H2O2, generated by mito-
chondria at the Q0 site of complex III of electron transport
chain [45], by NADPH oxidase, xanthine oxidase and by the

Prolylhydroxylase–hypoxia-inducible factor (PHD–HIF) pathway under hypoxia is described in the upper part of the figure: HIF-a
is constitutively transcribed and translated. Its level is primarily regulated by its rate of degradation controlled by oxygen avail-

ability through its enzymatic hydroxylation by PHDs. Hydroxylated HIF-a is recognized by Hippel–Lindau protein (pVHL) and

rapidly degraded. Non-hydroxylated HIF-a does not undergo proteolysis and binds to its heterodimeric partner HIF-b and trans-

activates genes involved in the adaptation to hypoxic–ischemic stress. PHD activity is inhibited under hypoxia or by nitric

oxide, oxidative stress, transition metal chelators, 2-oxoglutarate analogs, and other intermediates of metabolism. Keap1–Nrf2

pathway is described in the lower part of the figure: Nrf2 is constitutively expressed. The major proportion of Nrf2 bounds to

Keap1 and is subjected to proteasome degradation. Under conditions of chemical/oxidative stress, specific sensing thiol groups

of keap1 react with nucleophilic molecules, inducing its dissociation from Nrf2 allowing the escape from proteolysis and its

accumulation within the nucleus where it heterodimerizes with a small Maf protein and binds to the antioxidant/electrophile-

responsive element (ARE/EpRE). Other regulatory mechanisms involve the phosphorylation of Nrf2 mediated by protein kinase

C/mitogen-activated protein kinase (MAPK), leading to an enhanced stability and/or release of Nrf2 from Keap1 and histone

acetyl transferase (HAT)/histone deacetylase (HDAC)-mediated acetylation. NF-jB is the third actor playing downstream as a

fine modulator of HIF and Nrf2 mediated responses, driving cells toward a pro-inflammatory-proliferative response eventually

leading to apoptosis or toward an antioxidant response accompanied by injury repair, respectively.

FIG 1
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endothelial form of NOS [46]. Increased levels of H2O2 inhibits
PHD and stabilizes HIF-1a and thereby activates its down-
stream pathways [28,47]. This evidences contribute to explain
the HIF-activating effect of “pulsed hyperoxia” that has been
reported in different experimental models [48–50].

However, the role of reactive oxygen species generated
under hypoxia in inhibiting PHD activity is controversial. The
dramatic inhibition of HIF-1a prolyl hydroxylation in hypoxia
does not correlate with the modest effects of H2O2 on prolyl
hydroxylation. Moreover, in general, there is no consensus as
to whether hypoxia actually causes an increase or a decrease
in mitochondrial release of O2•

2 [51].
Accordingly, Finley and coworkers [52] reported that the

mitochondrial deacetylase sirtuin-3 (SIRT3) destabilizes HIF-
thereby promoting maximal prolyl-hydroxylase activity of
PHDs 1a by inhibiting reactive oxygen species production, as
detected by a low specificity probe, the cell-permeant 20,70-
dichlorodihydrofluorescein diacetate (H2DCFDA). In fact,
SIRT3-knockout mouse embryonic fibroblasts display a gene
expression profile describing a hypoxic phenotype, associated
to the increase of glucose uptake, lactate production, and
glucose-dependent proliferation rates relative to wild-type
cells. These observations link SIRT3 function to O2•

2 and H2O2

intracellular production in modulating HIF activity. In fact, sta-
ble knockdown or knockout of SIRT3 resulted in an intracellu-
lar increase in H2DCFDA signal suggesting an increased gener-
ation of reactive oxygen species, which as mentioned, have
been reported to stabilize HIF-1a protein levels under nor-
moxia and during intermittent hyperoxia.

Another hydroxylase-domain protein, the factor inhibiting
HIF (FIH), also operates a negative regulation of HIF-1a. In the
presence of oxygen, FIH catalyzes the hydroxylation of the
asparagine-803 residue within the C-terminal transactivation
domain (CTAD) sterically inhibiting the interactions between
HIFa and the transcriptional coactivators, CREB binding pro-
tein (CBP) and p300 coactivator protein, both needed to DNA
binding [53].

Different NO donors have been reported to inhibit in vitro
2-oxoglutarate-dependent oxygenases, including PHD, and HIF
transcriptional activity. This inhibition has been explained by
the competition of NO with O2 for the iron binding at the 2-
oxoglutarate-dependent oxygenases active site [54].

Hypoxia-inducible factor HIF-1 has been shown to be man-
datory for the cellular adaptation to low oxygen levels. Inter-
estingly, as mentioned above, “pulsed hyperoxia” has been
observed to induce HIF activation and the expression of genes
involved in the response to low oxygen [48–50]. These observa-
tions clearly indicate that relative changes of oxygen availabil-
ity, rather than steady-state hypoxic (or hyperoxic) conditions,
coordinate HIF transcriptional effects. According to this
hypothesis describing the “normobaric oxygen paradox,” nor-
moxia following a hyperoxic event is sensed by tissues as an
oxygen shortage, upregulating HIF-1 activity. However, the
HIF system therefore seems to be set differently in different

cells, in order to allow a tissue-specific control of oxygen
homeostasis [55].

Following HIF activation, genes involved in adaptation to
low glucose levels like the glucose transporter Glut-1, carboan-
hydrase IX (CAIX) that regulates pH, and VEGF and erythro-
poietin (EPO), insulin-like factor-2 (IGF2) and transforming
growth factor-a (TGFa) which are key factors in angiogenesis
are expressed. The binding of these growth factors to their
cognate receptors activates signal transduction pathways that
lead to cell proliferation/survival and stimulates expression of
HIF-1a itself.

HIF also plays a central role in both embryonic develop-
ment and postnatal physiology [56]. According to the concept
that, in mammalians, regulatory elements sensitive to oxygen
availability such as HIF-1 play important roles in circulatory
system development [57,58]. O2 functions as a morphogen
(through HIFs) in many developmental systems. In fact, mis-
carriage with cardiac malformations, vascular defects, and
impaired erythropoiesis occurs in mice embryos rendered
homozygous for a null allele at the locus encoding HIF-1a [57].
Overall, the activation of HIF-1 leads to the upregulation of the
expression of more than 70 target genes involved in angiogen-
esis, cell survival and anaerobic glucose metabolism, but also
in many aspects of cancer progression and invasion [59]. A
detailed description of the several responses elicited by HIF
and of the target genes is provided elsewhere [27].

The association between the presence of allelic variants of
the gene encoding for HIF have and the risk of several dis-
eases, including cancer, highlights the importance and the
pleiotropic effect of HIF [60].

3.2. Nrf2: When too much oxygen is “too much”
Environmental conditions associated with high levels of oxygen
can induce an oxidative challenge to biological systems eventu-
ally resulting in cell dysfunction/loss of function and death
[61]. In the presence of these conditions, cells respond in the
attempt to cope with, dispose and possibly repair damages
possibly induced by the increased concentration of reactive
oxygen and nitrogen molecular species inducing cytoprotective
and detoxifying enzymes consisting of phase I (cytochrome
P450s) and phase II (detoxifying and antioxidant proteins)
enzymes. The activation of this redox-sensitive gene regulatory
network mediated by the activation of nuclear factor (ery-
throid-derived 2)-like 2 (NFEL2L2/Nrf2) is probably one of the
most important responses. Interestingly, largely before the dis-
covery and characterization of this transcription factor, it was
demonstrated the exposure of lungs to high oxygen does not
immediately results in tissue injury but induces an increase of
H2O2, eventually resulting in a subsequent damage and induc-
ing the expression of antioxidant enzymatic defences [62].

Nrf2 belongs to a subset of basic leucine-zipper (bZip)
genes sharing a conserved structural domain, termed cap n’
collar (CNC) domain [63]. Nrf2 encoded protein is composed of
605 amino acids owing seven functional domains named
Neh1–7 (Nrf2–ECH homology), responsible for different specific
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molecular features, including DNA binding, heterodimerization
with regulatory proteins and co-activators [64].

The key signaling protein of this adaptive mechanism is
Nrf2. This transcription factor has been shown to heterodimer-
ize with c-Jun and small Maf proteins (MafG and MafK) to
bind to the electrophile/antioxidant responsive element (EpRE/
ARE) in the regulatory regions of target genes, and Kelch ECH
associating protein 1 (Keap1) [65].

This latter acts as a repressor protein by binding to Nrf2
and promoting its degradation by the ubiquitin proteasome
pathway (Fig. 1). Also known as inhibitor of Nrf2 (INrf2) [66],
Keap1 is normally associated with Nrf2 in the cytoplasm, and
interacts with Cul3 [67], thus stimulating its ubiquitination and
consequent proteasomal degradation [68]. Keap1 is a cysteine-
rich protein, most of which has been demonstrated to be modi-
fied by different oxidants and electrophiles [69]. Under oxida-
tive stress conditions, or through the activity of Nrf2 inducers,
these modifications can result in a conformational change
resulting in the release of Nrf2 from the low affinity binding
site, finally disturbing its ubiquitination. Keap1 molecules are
then saturated with Nrf2, allowing de novo synthesized Nrf2 to
translocate and accumulate into the nucleus [70] where it
binds to the ARE. The coordinated activity of these proteins is
pivotal to the cellular response to oxidative challenges and
attempts to restore the cell to an adaptive homeostatic state by
conferring a resistance to stress (hormesis) [71].

Nrf2 is regarded as a ubiquitously expressed transcription
factor but the levels of its mRNA vary substantially in different
organs [72]. The presence of hypermethylated CpG sequences
observed during prostate tumorigenesis associated with
decreased Nrf2 expression supports the hypothesis that tissue
specific differences are determined by epigenetic mechanism
[73].

Complex regulatory mechanisms regulate Nrf2 activity at
both the transcriptional and the post-translational levels. The
gene encoding Nrf2, NFE2L2, contains a xenobiotic response
element (XRE) and two XRE-like sequences, which can recruit
the arylhydrocarbon receptor AhR, enabling NFE2L2 to be
transcriptionally activated by polycyclic aromatic hydrocar-
bons [68].

The promoter region of NFE2L2 also contains EpRE/ARE
DNA binding sites. This suggests the ability of Nrf2 to regulate
its own transcription. The ARE activator D3T (3H-1,2-dithiole-
3-thione) has been shown to increase Nrf2 protein and mRNA
levels and that these increases were inhibited by co-treatment
with the protein synthesis inhibitor cycloheximide [74]. Nrf2
expression is in part modulated by autoregulation. In fact, two
electrophile/antioxidant response element-like sequences
(EpRE/ARE-L1 and -L2), located at 492 and 754 bp from the
transcription start site, have been reported in the promoter of
the mouse orthologue of the NFE2L2 gene. Under stress condi-
tions newly translated Nrf2 protein escapes Keap1-mediated
degradation and binds to the EpRE/ARE-L1 and -L2 sequences
to induce NFE2L2 gene transcription in a feed-forward man-
ner [74,75].

The cross talk between Nrf2 and the nuclear factor k-
light-chain-enhancer of activated B cells (NF-jB) will be dis-
cussed in the detail in another part of this article. However, it
interesting to consider that several molecules considered as
“chemopreventive agents” have been reported to activate Nrf2
while repressing NF-jB activity and that NF-jB negatively
modulates the transcription of RE-dependent genes [76].

Interestingly, Keap1 has been shown to bind to IKKb, a
member of the IKK complex, promoting its ubiquitination and
degradation such that Keap1 plays a role in the negative regu-
lation of the NF-jB pathway [77].

Moreover, the mouse NFE2L2 gene contains a 12-O-
tetradecanoylphorbol-13-acetate-response element down-
stream from the transcription start site that allows it to be
transcriptionally activated by oncogenic KrasG12D via c-Jun
and c-Fos [78,79].

Finally, the presence of an NF-jB binding site downstream
from the transcription start site of NFE2L2 gene, allows it to
be induced by inflammatory stimuli [39].

Nrf2 mRNA levels have been reported to be affected by the
levels of peroxisome proliferator-activated receptor a (PPARa)
[80]. A dynamic reciprocal cross talk between Nrf2 and PPARa
has therefore been proposed to contribute to cellular response
[68].

Data obtained following forced overexpression of specific
microRNA (miR) suggest that Nrf2 activity can be suppressed
by targeting the 30-untranslated region of its mRNA. In fact,
the ectopic expression of miR-28 in MCF-7 and the overexpres-
sion of miR-93 in MCF-10A and T47D human breast cancer
cells, respectively, decreases and suppresses Nrf2 mRNA and
protein levels [81,82]. Similarly, human SH-SY5Y neuroblas-
toma cells display reduced Nrf2 mRNA and protein levels
when miR-27a, miR-142-5p, miR-144, and miR-153 are over-
expressed [83].

At the post-transcriptional level, similarly to HIF, under
basal conditions, in the absence of cellular stress, the nuclear
content of Nrf2 is rather small and its major proportion is in
the cytoplasm bound to Keap1 and subjected to proteasome
degradation [84] (see Fig. 1). Under conditions of chemical/oxi-
dative stress, specific sensing thiol groups of keap1 react with
nucleophilic molecules, inducing its dissociation from Nrf2
allowing its accumulation within the nucleus. Other regulatory
mechanisms involve the phosphorylation of Nrf2 mediated by
protein kinase C/mitogen-activated protein kinase (MAPK),
leading to an enhanced stability and/or release of Nrf2 from
Keap1 [75] and histone acetyl transferase (HAT)/histone deace-
tylase (HDAC)-mediated acetylation. Nrf2 acetylation has been
reported to enhance its transcription capacity and downstream
target expression and has been shown to protect animals from
diseases characterized by oxidative stress and inflammation
[85,86].

As mentioned above, cells exhibit some Nrf2 activity under
unstressed conditions [84]. This residual activity probably
occurs because a portion of Keap1 is inhibited by endogenous
electrophiles.
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Once set free from Keap1, the activation of Nrf2 transcrip-
tional activity requires its translocation to the nucleus, the for-
mation of a transcriptionally active complex through dimeriza-
tion with partner proteins (such as sMaf or c-Jun) and binding
to EpRE/ARE enhancer motifs [69,87–90].

Bach-1, a protein that belongs to the CNC family of tran-
scription factors, also forms heterodimers with sMaf proteins
and binds to Maf recognition elements, such as EpRE/ARE
[91,92]. Bach-1 acts as a transcriptional repressor by binding
to EpRE/ARE-like enhancers and antagonizes Nrf2 binding
until it becomes inactivated by oxidants/electrophiles [93].

Nrf2 and Bach1 bind to two distal EpRE/ARE sites
upstream of the antioxidant gene allowing a reciprocal equilib-
rium inside the nucleus influences EpRE/ARE-mediated gene
expression. Under basal conditions, Bach-1 binds to EpRE/ARE
within the promoter of target genes. In response to stress stim-
uli, Bach-1 is removed from the promoter, and facilitates the
dissociation of Nrf2 from Keap1, its nuclear traslocation and
binding to EpRE/ARE. Thus, the interplay between Bach-1 and
Nfr2 appears to be crucial for the regulation of inducible heme
oxygenase 1 (HO-1) gene expression [93].

Once bound to EpRE/ARE region of target genes, Nrf2
modulates the expression of a large series of genes involved in
the cellular antioxidant and detoxification response [94]. These
genes include detoxifying enzyme (e.g., NAD(P)H: quinone oxi-
doreductase 1 [NQO-1] and glutathione-S transferases),
enzyme participating to the antioxidant system such as HO-1
and ferritin that contribute to maintain a redox homeostasis in
the occurrence of redox perturbation, such as in inflammation,
growth factor stimulation, and nutrient/energy fluxes.

Overall, Nrf2 coordinate adaptive responses to diverse
forms of stress associated with the high oxygen flux, and upre-
gulates the repair and degradation of damaged macromole-
cules. Beside this role, Nrf2 but also contributes to cellular
adaptation through the regulation of the intermediary metabo-
lism by inhibiting lipogenesis, enhancing b-oxidation of fatty
acids, and facilitating the pentose phosphate pathway war-
ranting NADPH regeneration and purine biosynthesis. For a
more detailed listing of Nrf2 target genes see Hayes and
Dinkova-Kostova review [95].

A change in expression and activation of Nrf2 has pro-
found effects on the physiological response to oxygen levels
change. A hallmark of both hyperoxia and hypoxia is an
incomplete mitochondrial oxygen reduction and the generation
of O2•

2 which eventually leads to increased H2O2 levels [96,97].
Both H2O2 and O2•

2 are known to affect various cellular oxida-
tive processes, and, in addition, they can serve as signaling
molecules [98]. However, although Nrf2 represents a redox
sensitive sensor, many reports demonstrated that this tran-
scription factor is not upregulated in hypoxic condition.

Nrf2 activation is regulated by both high and low oxygen
in hyperoxic environment. In fact, hyperoxic conditions trigger
excess production of H2O2 and induce expression of numerous
antioxidant proteins in the lung [99]. SODs, catalase, GPx1,
and GSH reductase are the most widely examined classical

enzymatic antioxidants in hyperoxia models. Many observa-
tions suggest an important role for the Nrf2-driven transcrip-
tional response in mitigating cellular stress induced by pro-
oxidants such as higher oxygen levels.

Exposure of murine alveolar type II-like epithelial cells
(C10 line) to hyperoxia (95% O2) induces Nrf2 nuclear translo-
cation. This effect is modulated by H2O2-dependent mechanism
involving PI3K/Akt pathway in Nrf2 activation [100,101]. Fur-
thermore, exposure of human lung microvascular endothelial
cells to hyperoxia (95% O2) stimulates Nrf2 translocation from
the cytoplasm to the nucleus and increases Nox4 expression
[102].

Potteti and coworkers demonstrated the recruitment of
nuclear Nrf2 to the promoters of antioxidant genes (e.g., HO-1
and NQO1) in human normal small airway epithelial cells
exposed to acute (up to 12 h) and chronic hyperoxia (up to
36 h) [103]. However, even if the extent of the Nrf2 binding at
the HO-1 promoter was similar under acute (3 h) and chronic
(more than 24 h) hyperoxic conditions. ChIP assays revealed
that the enrichment of Nrf2 at the NQO1 promoter appeared
to be variable and biphasic in response to hyperoxia [103].

However, although a large amount of data has been gener-
ated using 95% oxygen as hyperoxia, the effect of lesser con-
centrations of oxygen has not been clearly elucidated. It is crit-
ically important to determine the threshold of hyperoxic
exposure that would allow cells to activate the adaptive
response, driven by Nrf2, that is vital for repair of the cell
damage due to high oxygen concentration. Further, the degree
of hyperoxia and the duration of exposure that would allow
cells to recover; and conversely, the level and duration that
would inhibit recovery of cells has not been clearly
established.

Cimino and coworkers investigated the alterations induced
in HUVECs by exposure to mild hyperoxia (O2 32%) [104].
Interestingly, these authors demonstrated a significant
decrease in the nuclear levels of the transcription factor Nrf2,
and a decrease in the expression of HO-1 and NQO-1 genes.
Furthermore, pharmacological activation of Nrf2 was able to
protect endothelial cells from hyperoxia-induced cytotoxicity.

Thus, it appears that Nrf2-mediated gene expression is
induced to mount a cytoprotective response to preserve redox
homeostasis, thereby helping to maintain cell survival or pre-
venting lung epithelial cell death during hyperoxia. In fact,
mice lacking the Nrf2 gene are more susceptible to hyperoxia-
induced lung injury and death than are wild-type mice [105].

Conversely, the exposure of Rhabdomyosarcoma cells mus-
cle cell line to hypoxia has been reported to prevent Nrf2
nuclear translocation and to result in reduced cellular antioxi-
dant defense, further aggravated by hypoxia-induced oxidative
damage [106]. Additionally, human adult cardiomyocytes
exposed to hypoxic environment showed reduced nuclear
translocation of Nrf2 that is actively retained in the cytoplasm
by Keap1 [107]. Another study revealed reduced levels of Nrf2
in human normal renal proximal tubular epithelial cells (HK-
2) and primary murine kidney epithelial (pMKE) cells exposed
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to hypoxia [108]. In addition, this decrease correlates with a
reduced activation or a lack of activation of expressions of sev-
eral target gene [108]. In fact, a number of putative transcrip-
tional targets of Nrf2, such as NQO1, GCLC, and GCLM, are not
induced by either acute or chronic hypoxia in both human and
murine kidney epithelia. Interestingly, HO-1 is induced in
response to acute or chronic hypoxia in kidney epithelium,
suggesting that other transcription factors are required in
addition to Nrf2, in order to achieve a significant antioxidant
gene expression in hypoxia. HO-1 has a functional HIF binding
site so that its expression is affected by HIF signaling [36].

3.3. Cross talk between HIF-1 and Nrf2
Evidences support that Nrf2 signaling plays a role in activating
and sustaining the HIF-1 response. Although HIF-1 and Nrf2
signaling are both regulated by reactive oxygen species, there
are evidences that these two signaling pathways can directly
and indirectly regulate one another. Evidences have shown
that knockdown of Nrf2 is sufficient to decrease HIF-1 at the
post-translational level, suggesting that Nrf2 or probably indi-
rectly via its downstream targets play a role in the regulation
of PHDs [109]. Oh et al. recently reported that NQO1 expres-
sion increases the half-life of HIF-1 protein. NQO1 overexpres-
sion is sufficient to stabilize HIF-1 levels in normoxia [110].
Furthermore, it has been recently suggested that Nrf2 may be
indirectly responsible for the increased transcription of HIF-1
via activation of thioredoxin pathway [111]. However, these
two signaling pathways do not always work in concert or rein-
force each other. Loboda et al. found that HIF-1 stabilization
repressed Nrf2 signaling through a Bach1-dependent mecha-
nism, in endothelial cells [31]. In a separate study, treatment
with the natural product andrographolide, an Nrf2 inducer,
decreased HIF-1 expression [112]. Andrographolide pretreated
cells showed increased levels of PHDs. This effect was coun-
tered by knockdown of Nrf2, suggesting that this molecule
activates Nrf2 signaling to actively block HIF-1 signaling [113].
Taken together, these studies indicate that the HIF-1 and Nrf2
stress response pathways exist in a complex, interactive sig-
naling network.

4. NF-jB: A third actor
4.1. Cross talk between HIF and NF-jB
Transcription factors are among the oxygen and targets of
reactive oxygen and nitrogen species which can positively or
negatively respond to nutrients by a modulation of gene
expression.

Both HIF and Nrf2 have been reported to interplay with a
key transcription factor in inflammation and cellular response
and, in particular, with NF-jB. NF-jB is a homo or hetero-
dimer composed of different subunits RelA (p65), RelB, c-Rel,
NF-jB1 (p50/p105), and NF-jB2 (p52/p100). Its transcriptional
activity can be triggered by many different stimuli, including
bacterial lipopolysaccharide (LPS), viral pathogens, cytokines,
or growth factors [114]. NF-jB activation follows the

phosphorylation and subsequent proteasomal degradation of a
family of inhibitory proteins (IjBs) by specific kinases: the IjB
kinases (IKKa and/or IKK beta) and NEMO that is a regulatory
subunit of IKK, which respond to diverse stimuli. Once freed
from the inhibitory complex, NF-jB dimers are enabled to
translocate to the nucleus and bind to a jB binding site in the
enhancer/promoter of a very large number (more than 150 in
humans) of NF-jB-specific target genes [115].

In addition, NF-jB activation can result from a non-
canonical pathway mediated through the activation of a
NEMO-independent kinase complex involving IKK1 and the
NF-jB-inducing kinase [116]. In the non-canonical pathway,
new synthesis of p100 and RelB allows the generation of NF-
jB which is not under IjB control and thus localized to the
nucleus.

Other transcription factors for which synergistic crosstalk
with NF-jB has been reported are Sp1, AP-1, STAT3, and
CEBP/b. In particular, Activator Protein transcription factors
(AP-1), such as c-Jun and c-Fos, can stimulate p65 transacti-
vation through jB sites even in the absence of AP-1 sites [117].
Moreover, NF-jB has been reported to directly interact with c-
Jun and c-Fos and stimulate the AP-1 binding to DNA and its
activation through AP-1 sites [118].

The protection conferred by NF-jB activation is most likely
mediated by NF-jB-induced expression of Bcl-2 and other
cytoprotective enzymes, such as MnSOD and GSH peroxidase—
each of which are regulated by NF-jB [119,120]. In lung epi-
thelial cells, NF-jB activation prevents hyperoxia induced apo-
ptosis. In addition, the NF-jB function in reducing tissue dam-
age in hyperoxic lung injury may also be attributed to its
protective role against either O2•

2 or other reactive species
[120]. However, a therapeutic approach targeting NF-jB medi-
ated hyperoxic signaling in the lung needs to be further inves-
tigated. In fact, while NF-jB has been demonstrated to have a
critical role in protecting lung cells against hyperoxia-induced
cell death, many of the NF-jB modulated genes encode for
pro-inflammatory cytokines such as interleukin 8 (IL-8) and
TNF-a. This results in the recruitment of monocytes that, in
turn, enhance inflammation [121].

According to its importance in several important functions
such as inflammation, the regulation of cell differentiation,
proliferation, and survival following a large spectrum of physi-
cal, physiological and oxidative stresses [122,123], NF-jB
activity is strictly controlled by both positive and negative reg-
ulatory factors working at many levels [124].

In addition to its adaptive role to low oxygen availability,
HIF-1 has been demonstrated to mediate a wide spectrum of
cellular responses in particular those sharing a pro-
inflammatory stimulus, also independently of hypoxia [28]. In
fact, a complex interplay exists between HIF-1 and NF-jB.
This interaction, obviously results in the immune response
occurring in different diseases such as rheumatoid arthritis
(RA) asthma and COPD, and cancer [125]. Interestingly, all
these pathological conditions have been associated to a dysre-
gulated redox status [126–128].
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According to above, targeting the HIF pathway will affect
NF-jB function. In fact, a number of studies using both genetic
and chemical inhibition of the PHD proteins have demon-
strated therapeutic effects in several disease models [129,130]
and even in response to infection where inflammation where
NF-jB play an important role [131].

4.2. Nrf2-NF-jB cross talk
Many studies reported that a variety of phytochemicals supress
NF-jB and activates Nrf2 pathway clearly suggesting a cross-
talk between these two transcription factors [69] although it is
not clear yet if the suppression of NF-jB signaling and the
activation of Nrf2 pathway are independent or regulated by an
upstream controllers. In general, with few exceprions, NF-jB
and Nrf2 apparently play opposite roles in the pathological
processes of inflammation and cancer, and a large number of
pathological stimuli, such as cigarette smoke, lipopolysaccha-
ride (LPS) [132].

However, whether NF-jB p65 subunit suppresses the
EpRE/ARE-driven gene transcription remain still in doubt. It
has been hypothesized [132] that p65 subunit undirectionally
antagonizes EpRE/ARE-mediated gene trascription though two
distinct but interconnected mechanisms. A first one is due to
the competitive interaction with the CH1-KIX domain of CBP
p65 that selectively deprives CBP, a well-established coactiva-
tor of Nrf2. A second mechanism would be due to the recruit-
ment, of histone deacetylase 3 (HDAC3), promoted by p65,
leading to local histone hypoacetylation. Speciale and
coworkers demonstrated the inhibitory effect of Nrf2 pathway
on NF-jB transcription machinery in human endothelial cells
exposed to TNF-a [133]. Interestingly, the pharmacological
inhibition of Nrf2 nuclear accumulation induced by an antho-
cyanin was able to increase TNF-a-activated p65 nuclear
translocation. Furthermore, another paper from the same
group reported that knockdown of the endogenous Nrf2 by
siRNA, increased IKK phosphorylation induced by palmitic
acid in endothelial cells [134]. According to the evidence of
reciprocal cross-talk with NF-jB, Nrf2 signaling counters NF-
jB signaling with few exceptions such as in acute myeloid leu-
kemia where Nrf2 is upregulated by NF-jB-mediated transac-
tivation of the NFE2L2 gene by direct binding of NF-jB to
NFE2L2 promoter [39].

Finally, Under physiological conditions, the interference of
p65 with Nrf2 transactivation may serve as a negative regula-
tory mechanism for fine tuning of Nrf2-ARE signaling. If it is
true, the antioxidant activity of many natural phytochemicals
might be attributed not only to their direct stimulatory effect
on Nrf2 signaling but also to their ability in preventing p65-
mediated repression of EpRE/ARE transactivity [135].

5. Conclusions
Hypoxia-inducible factor and Nrf2 play an interactive role in
cellular “adaptive homeostasis” contributing to the inducing
the transient increase in protective homeostatic capacity that

occurs in response to stressful conditions such as those associ-
ated to fluctuations of oxygen availability.

A third actor, NF-jB plays a central role in determining the
result of the response to oxygen fluctuation and to cellular injury.
The role of each transcription factor in human health and disease
does not seem to be independent from the activation of the other
two. This is particularly evident in the case of cancer prevention
and progression where constitutive Nrf2 activation is observed in
a variety of human cancers and it is highly correlated with tumor
progression and aggressiveness [136]. It is possible that both NF-
jB activity, and its relationship with HIF, hold the balance of the
result determining the “direction” of the cellular response to
stressful stimuli toward either repair or death [137].

It interesting to note that a large number of phytochemi-
cals have been proposed to beneficially act on human health
by modulating the activity of these transcription factors, there-
fore determining the final result of the response [138].

Within this frame, a system biology approach, based on
“problem driven” design, supported by high throughput meth-
odologies, are likely to represent an expedient strategy for a
better understanding of the role of molecules of nutritional
interest in the modulation of transcriptional activation and, in
general, for a better characterization of the cellular response
to different stimuli associated to human health and disease.
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