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Abstract 
A four-decade dataset (1974–2013) of 107,823 nitrate samples in 25,993 wells from 
western and eastern parts of Nebraska was used to assess long-term trends of 
groundwater nitrate concentration and decadal changes in the extent of ground-
water nitrate-contaminated areas (NO3-N≥10 mg N/L) over the entire state. Spa-
tial statistics and regressions were used to investigate the relationships between 
groundwater nitrate concentrations and several potential natural and anthropo-
genic factors, including soil drainage capacities, vadose zone characteristics, crop 
production areas, and irrigation systems. The results of this study show that there 
is no statistically significant trend in groundwater nitrate concentrations in west-
ern Nebraska, in contrast with the increasing trend (p < .05) to the east. The spatial 
extent and nitrate concentrations in contaminated groundwater in center pivot-ir-
rigated areas was less than in gravity-irrigated areas. Areas with a thicker vadose 
zone and larger saturated thickness of the aquifer have relatively lower nitrate 
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concentrations. The results of a classification and regression tree (CART) model 
indicate the difference in the influence of physical factors on groundwater nitrate 
concentrations between western and eastern Nebraska, namely that groundwater 
nitrate concentrations correspond with vadose zone thickness, effective hydraulic 
conductivity, and saturated thickness in the west, while in eastern Nebraska, con-
centrations are correlated with average percent sand in the topsoil (0–150 cm), well 
depth, and effective hydraulic conductivity. 

Keywords: Groundwater nitrate contamination, agricultural, vadose zone and cli-
matic factors, CART method, Nebraska 

1. Introduction 

Nebraska, an agriculturally intensive state in the mid-western United States 
(U.S.), has a large number of wells with nitrate concentrations above the 
drinking water standard of 10 mg NO3-N/L (NDEQ, 2015). The High Plains/
Ogallala Aquifer (HPOA) is a major alluvial aquifer that extends from 
South Dakota in the north to Texas in the south, and supplies tremendous 
amounts of water for agricultural, municipal, and industrial uses. About two 
thirds of the water in the HPOA is in Nebraska, which also contains a num-
ber of large rivers with dams and canal diversions. Groundwater irrigation 
in Nebraska has increased significantly over the past six decades with the 
adoption of center pivots, which replaced traditional flood irrigation meth-
ods. Now, more than 3.4 million hectares of land rely on groundwater from 
the HPOA to irrigate crops in Nebraska (USDA, 2014). While nitrate may 
occur naturally in groundwater, a major cause of high nitrate occurrence in 
Nebraska’s wells is the extensive fertilizer application across the state (Stan-
ton and Lynne, 2006; Gurdak and Qi, 2006; Gurdak et al., 2009; Exner et al., 
2014), particularly in irrigated fields. 

Consumption of water with elevated nitrate concentrations can cause 
health problems, primarily for infants; its effects are called “blue baby syn-
drome” or methemoglobinemia, which is caused by the inability of the 
blood to deliver enough oxygen to the infant’s body, as described by Comly 
(1945). In 1962, the U.S. Public Health Service officially recommended a ni-
trate standard of 10 mg NO3-N/L for drinking water (U.S. Public Health Ser-
vice, 1962). Though other countries have tighter standards, the U.S. has re-
tained this 10 mg NO3-N/L to the present day (Sattelmacher, 1962; Simon 
et al., 1964; Kross et al., 1995; NAS, 1995; U.S. EPA, 2004, 2007, 2017; Tie-
mann, 2017). 

Generally, large amounts of nitrogen fertilizers and irrigation are applied 
annually in agricultural areas of Nebraska to increase and maintain agricul-
tural production and crop yields (Spalding, 1975; Exner and Spalding, 1976; 
Adelman et al., 1985; Grassini et al., 2012; Ferguson, 2015). Consequently, 
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nitrate contamination in Nebraska’s groundwater occurs primarily from ni-
trate leaching in agricultural areas. Although these practices and risks are 
distributed widely across the state, some parts of the HPOA are more vul-
nerable than others, for example due to soil drainage characteristics at 
the land surface (Spalding and Exner, 1993; Nolan et al., 1997; Exner et al., 
2010, 2014). 

Rising nitrate concentrations in groundwater has prompted Nebras-
ka’s Natural Resources Districts (NRDs) to begin implementing ground-
water management plans for quality and quantity in the mid- 1980s (NRD, 
2017). The Central Platte NRD (CPNRD) plan is representative of those ad-
opted throughout the state of Nebraska for groundwater quality manage-
ment, although each of the 23 NRDs is free to enact regulations tailored 
to local conditions. The CPNRD Groundwater Quality Management Pro-
gram (GWQMP) was initiated in 1988, and involves a phased approach to 
nitrogen management (CPNRD, 2016). The CPNRD defined four classes of 
nitrate contamination: Phase I, II, III, and IV. These classes correspond to 
nitrate concentrations of<7.5 mg/L (Phase I), 7.6–15 mg/L (Phase II),>15 
mg/L (Phase III), and areas where the rate of decline in NO3-N concentra-
tions have not been satisfactory (Phase IV) (CPNRD, 2016). Within these ar-
eas, the timing and application rates of nitrogen fertilizer on irrigated agri-
culture are regulated differently as presented in supplemental information 
(Table S1). 

Although Nebraska NRDs have intensively monitored the extent of ni-
trate contamination in groundwater, as published in the Nebraska Ground-
water Quality Monitoring Report (NDEQ, 2015), and many researchers and 
managers have made efforts to minimize the impact of irrigated crop pro-
duction on the occurrence of nitrate in Nebraska’s groundwater, it contin-
ues to be challenging to control nitrate contamination (Table S2). This is 
likely due to the complexity of the aquifer system and difficulty in measur-
ing the effectiveness of the best management practices (BMPs) from the 
GWQMP in reducing areas of nitrate contamination in groundwater. Previ-
ous studies by Exner et al. (2010, 2014) have analyzed long-term ground-
water nitrate concentration trends in several regions of eastern Nebraska, 
but their analysis did not include the more rural, semi-arid west, which is 
also extensively cultivated (Dappen et al., 2007). Additionally, the agricul-
tural areas are expanding in western Nebraska (Dappen et al., 2007; Hiller 
et al., 2009), potentially impacting the groundwater quality due to signifi-
cant N fertilizer application (Exner and Spalding, 1994). USGS reports have 
indicated widespread nitrate contamination in both eastern and western 
Nebraska (Verstraeten and Ellis, 1994; Verstraeten et al., 1994, 1998). 

There is a significant difference in climate, precipitation and irrigation 
practices across the state. Western Nebraska is drier, with greater temper-
ature extremes. The predominant bedrock is older (Gutentag et al., 1984), 
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which means the landscape is less flat, soil texture is coarser than in many 
of the easternmost parts of the state, and hydraulic conductivity is lower 
in the aquifer. One purpose of this study is the analysis of the long-term 
groundwater nitrate concentration trends in western Nebraska, which will 
help increase understanding the occurrence of nitrate contamination in 
groundwater. Examining the commonalities and distinctions between the 
eastern and western parts of the state will help in planning the policy for 
the protection of groundwater from nitrate contamination. Furthermore, 
we employ a statistical classification method to establish the correlations 
among interrelated factors which may be important to nitrate concentra-
tions in the east and west, which have not been considered in previous 
studies such as Exner et al. (2014), whose landmark study of eastern Ne-
braska demonstrated the increasing trends in nitrate over the course of 
three decades. This assessment goes beyond Nolan et al. (1997) and Nolan 
and Hitt (2006), who demonstrated that many states, including Nebraska, 
are threatened with nitrate contamination in groundwater. Several studies 
have attempted to identify sources of groundwater nitrate contamination 
based on the local analysis in various parts of the United States (Van der 
Schans et al., 2009; Lockhart et al., 2013; Murgulet and Tick, 2013) as a sup-
plement to these nationwide surveys. The research presented here shows 
the spatial-temporal changes of nitrate contamination in groundwater on 
a local to regional scale for the entire state of Nebraska. 

Nitrate may be influenced by many factors, some continuous (e.g., va-
dose zone thickness, thickness of the aquifer, depth to groundwater, etc.), 
and others categorical (e.g., type of well – domestic, irrigation, or monitor-
ing; presence of barnyard within the property, older or newer wells, etc.). 
For the analysis of large data sets, the Classification and Regression Tree 
(CART) is one of the most commonly used decision tree tools. CART can 
be used to analyze complex interactions among predictors based on re-
gression equations, particularly when there is a large amount of data with 
many variables (Zhang et al., 2003; Qi et al., 2010). For example, Burow et 
al. (2010) used CART to identify the relative significance of N inputs, bio-
geochemical processes, and physical aquifer properties in explaining ni-
trate concentrations in groundwater. In this study, we evaluate additional 
influential factors which were not considered in Burow et al. (2010), such as 
soil drainage classes, percent sand and organic matter in the topsoil, and 
weather data. In addition, we develop CART models to predict ground-
water nitrate concentrations based on the presence or degree of these 
factors. 

As mentioned above, Nebraska has clear differences in hydrogeology 
and spatial characterizations between western and eastern parts (e.g., rain-
fall amounts, soil texture, population growth, and crop varieties). Thus, 
studies of groundwater nitrate contamination should be considered in each 
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region of Nebraska in order to identify the local causes of leaching and so-
lutions to nitrate occurrence in Nebraska’s groundwater. 

The objectives of this study include: (i) to estimate the long-term trends 
of groundwater nitrate concentrations in western and eastern Nebraska; (ii) 
to examine four decades (1974–2013) of change in the spatial distribution 
of groundwater nitrate concentrations; and (iii) to evaluate relationships be-
tween high groundwater nitrate concentrations (≥ 10 mg NO3-N/L), and po-
tential natural (e.g., weather, and soil drainage) and anthropogenic (e.g., crop 
production and price, well type, and irrigation system) factors using CART. 

This complements the work by Exner et al. (2014) for the years 1981–
2010 in eastern Nebraska, in part by considering a time series that is 33% 
longer (40 years rather than 30 years) as well as including the western part 
of the state. This also complements the national-scale analysis of Nolan and 
Hitt (2006), which contextualizes the local risk of nitrate contamination in 
groundwater occurring in the High Plains. 

Shallower wells are likely to have higher contamination levels than 
deeper wells. Older wells typically have higher contamination than newer 
wells and could be linked to construction techniques (Spalding and Exner, 
1993). The higher the number of screen zones and the longer the total 
screen length, the higher the chance for the well to capture the groundwa-
ter from the aquifer from all depths. High organic matter tends to preserve 
soil structure. A higher percentage of sand and organics allows greater in-
filtration water to the underlying aquifer. Thick vadose zones attenuate the 
movement of chemicals. A deeper aquifer may have some dilution effect 
on contaminants reaching the water table. Precipitation prior to planting 
and during the growing season affects recharge. Temperature is likely to 
affect plant evapotranspiration. If the land-applied nitrogen load is high at 
land surface, there will likely be more nitrate available to leach to ground-
water as a portion may not be utilized by plants. Many of these factors are 
not independent: for example, a shallow well is more likely to be installed 
where the water table is close to the land surface, which may also co-occur 
with sandier soils that permit more recharge. Monitoring wells may have 
higher nitrate concentrations by virtue of purposeful installation in loca-
tions known to be contaminated. This study highlights the use of CART to 
identify the relative importance of these interdependent factors, suggesting 
possible causal mechanisms for nitrate contamination in eastern and west-
ern Nebraska that can be further investigated using process-based model-
ing to get specific causal information for smaller areas. 

The goal of this paper is to use three statistical techniques – spatial in-
terpolation, pairwise regression, and CART – to identify patterns of nitrate 
contamination in Nebraska. Each of these techniques can help to demon-
strate the factors that are associated with nitrate contamination in both 
space and time. 
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2. Materials and methods 

2.1. The study area in western and eastern Nebraska 

The study area is the state of Nebraska, representing a geographic area 
of ~200,000 km2

 between latitude 40°N to 43°N and longitude 95° 19′W 
to 104° 03′W. Nebraska has two major climatic zones: a humid continen-
tal climate (average annual precipitation ~750 mm) in the eastern part of 
the state and a semi-arid climate (average annual precipitation ~350 mm) 
in the western area of the state (HPRCC, 2016). 

In this comparative analysis, the state of Nebraska is divided into west 
and east regions. The western region includes 8 Natural Resource Districts 
(NRDs), and the eastern region includes 15 NRDs (Fig. 1). There are 48 
weather stations in Nebraska in the network of the High Plains Regional 
Climate Center (HPRCC) and 201 in the National Oceanic and Atmospheric 
Administration (NOAA), also shown in Fig. 1. 

Fig. 1. The location of the study area and associated NRDs in western and eastern 
Nebraska with weather stations.  
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2.2. Data collection and analysis 

2.2.1. Groundwater nitrate data 

A total of 107,823 nitrate concentration measurements were obtained from 
25,993 wells, distributed across 6282 wells in the western part and 19,711 
wells in the eastern part of Nebraska for the time period from 1974 until 
2013, from the Quality-Assessed Agrichemical Contaminant Database for 
Nebraska Groundwater (http://dnrdata.dnr. ne.gov/clearinghouse) (UNL, 
2000). Most of the samples were taken in eastern Nebraska (76% of total 
samples during 1974 to 2013), which has a higher population and greater 
density of agricultural land. Well types are shown in Table 1. 

Irrigation wells in the dataset have the longest screened intervals, with 
an average of 24m, compared with 7m for domestic wells and 5m for mon-
itoring wells. Most irrigation wells are screened for their entire length, in 
contrast with other well types which are not screened near the surface. 
Monitoring wells are commonly shallow, with an average well depth of 
24m. The average well depths of domestic and irrigation wells are 43m 
and 69m, respectively. More comparative descriptions of these well types 
between western and eastern Nebraska such as well depths, screen zones, 
pumping capacities, construction details, etc. are in Table 2. 

For groundwater nitrate assessment, the NRDs and NDEQ collect sam-
ples during July and August every year (NDEQ, 2015). Samples are usually 
taken from a tap near the well head. Wells which are not in continuous op-
eration are pumped for at least 2h before water is sampled (Schepers et 

Table 1. The number of samples and well types including D=domestic, I=irrigation, Q=monitoring, C=commercial and 
industrial, and S=livestock wells that have been recorded in four decades (1974–1983; 1984–1993; 1994–2003; 2004–2013). 
Not all of these data were used in each part of this analysis.

 		  West — No. of wells			   East — No. of wells

Time periods 	 No. of samples	 D	 I	 Q	 C	 S	 D	 I	 Q	 C	 S

1974–1983	 4748	 426	 654	 1	 2	 335	 1763	 1255	 134	 3	 226
		  1418					     3381
1984–1993	 15,986	 857	 402	 81	 6	 6	 2048	 3308	 907	 21	 52
		  1352					     6336
1994–2003	 42,597	 669	 2045	 811	 2	 7	 1821	 7053	 1030	 19	 47
		  3534					     9970
2004–2013	 44,492	 127	 1906	 849	 5	 26	 923	 7406	 562	 44	 49
		  2913					     8984
1974–2013	 107,823	 1518	 3397	 982	 14	 371	 4499	 13,208	 1607	 67	 330
		  6282					     19,711
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Table 2. General descriptions of well types including domestic, irrigation, and monitoring wells, followed by number of wells 
and number of samples collected. Not all of these measurements were used in every part of this analysis.

West / (East)

Characteristics 	 Well types 	 No. of data 	 Max 	 Min 	 Mean 	 SD 	 Source

Well depths (m) 	 Domestic 	 2583 	 265 	 2 	 48 	 32 	 UNL and
		  (10,645) 	 (296) 	 (0.3) 	 (39) 	 (25) 	 NDNR
	 Irrigation 	 12,475	  188	  6	  79	  35
		  (52,072) 	 (373)	  (4)	  (58) 	 (30)
	 Monitoring	  13,570	  248	  3 	 26 	 19
		  (20,763)	  (160) 	 (0.6) 	 (23)	  (22)
Screen zones (m) 	 Domestic 	 299 	 43 	 3	  8 	 5	  UNL and
		  (1510) 	 (74)	  (1.2) 	 (5.5)	  (4.5)	  NDNR
	 Irrigation 	 6889	  134 	 0.6 	 38	  22
		  (42,900)	  (146)	  (0.3) 	 (25.6)	  (20)
	 Monitoring	  12,590	 129.5	  0.6	  7 	 8
		  (12,339)	  (30)	  (0.01)	  (3.6)	  (3.3)	
Number of screen	 Domestic 	 299 	 2/3%	  1/97%	 – 	 – 	 UNL and
   intervals (−)		  (1510) 	 (3/0.07%)	 (1/96%)	 – 	 –	 NDNR
	 Irrigation 	 6889 	 4/0.16%	 1/95%	 – 	 –
		  (42,900) 	 (3/1.03%)	 (1/96%)	 – 	 –
	 Monitoring 	 12,590	 3/0.43%	 1/99%	 – 	 –
		  (12,339) 	 (2/1%)	 (1/99%)	
Pumping capacities	 Domestic 	 2583 	 2000 	 1 	 20 	 37.2 	 NDNR
   (gallons/min)		  (10,645) 	 (2000) 	 (1) 	 (19.5) 	 (28.4)
	 Irrigation	  12,475	  5000	  2	  1028	  607.7
		  (52,072) 	 (9020)	  (3)	  (876) 	 (331)
	 Monitoring 	 13,570	  1334 	 1	  19 	 74
		  (20,763)	 (1100)	  (1) 	 (8.4) 	 (45)
Construction details 	 All types: Under state regulations of Title 178, Chapter 12, “Water Well Standards” 	 UNL
	 for a variety of intended uses (drinking water, irrigation, livestock watering, geo-	 (IANR)
	 thermal energy, or others), the NDHHS recommends that after drilling, a casing 	 and
	 of either plastic (PVC), fiberglass, teflon or steel pipe will be placed in the bore 	 NDHHS
	 hole. The casing must be extended at least 12 in. (~30 cm) above the surrounding 
	 land and is capped with a watertight seal on the top. The space between the bore 
	 hole and the well casing should be maintained a minimum of 2 in. (~5 cm) and 
	 must be grouted to protect surface water from running down the casing. A well 
	 screen is joined to the casing at one or more intervals in the aquifer’s water-
	 bearing zone. Clean sand or gravel that stabilizes the aquifer material, must be 
	 placed in the space between the bore hole and the screen while allowing water 	
	 to move into the well.

NDEQ is the Nebraska Department of Environmental Quality: http://dnrdata.dnr.ne.gov/clearinghouse ).
NDNR is the Nebraska Department of Natural Resources: http://www.dnr.ne.gov/groundwater-data 
UNL (IANR) is the University of Nebraska-Lincoln, Institute of Agriculture and Natural Resources: http://water.unl.edu/wells/

design-construct 
NDHHS is the Nebraska Department of Health and Human Services: http://dhhs.ne.gov/Pages/default.aspx

http://dnrdata.dnr.ne.gov/clearinghouse
http://www.dnr.ne.gov/groundwater-data
http://water.unl.edu/wells/design-construct
http://water.unl.edu/wells/design-construct
http://dhhs.ne.gov/Pages/default.aspx
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al., 1991; Exner et al., 2014). All samples are collected in polyethylene bot-
tles and immediately put on ice until delivered for laboratory analysis. Sam-
ples are analyzed using the EPA-approved cadmium reduction method or 
HACH EPA equivalent/compliant methods (Exner et al., 2005; NDEQ, 2015). 

To evaluate groundwater nitrate trends, if more than one concentration 
was reported in a well in a year, the maximum concentration was selected, 
because the maximum concentration is important for health. The dataset 
of maximum concentrations for all individual wells was divided into two 
groups, one for the western half of Nebraska and the other for the eastern 
part. The concentrations within western and eastern Nebraska were then 
averaged for each year. 

2.2.2. Spatial characterization data 

The distribution of irrigated and non-irrigated row crops was available from 
the MIRAD-US project under the USGS Early Warning and Environmental 
Monitoring Program (USGS, 2015) and the 2005 Nebraska Land Use Map 
(University of Nebraska–Lincoln, 2010). The data for irrigation systems in 
Nebraska were obtained from the University of Nebraska–Lincoln Conser-
vation and Survey Division (School of Natural Resources, 2015) and the 
Center for Advanced Land Management Information Technologies 2005 
Nebraska Land Use map (University of Nebraska–Lincoln, 2010). The spa-
tial map of soil drainage capacities was made in accordance with Exner et 
al. (2014) by consolidating the seven drainage classifications of the Soil 
Survey Geographic Database (USDA, 2015) into three groups: excessively 
well drained, well drained and poorly drained. The spatial maps of corn and 
soybean production years were created by stacking raster layers of annual 
data from the National Agricultural Statistics Service (NASS) Cropland Data 
Layer (USDA-NASS, 2015). 

2.2.3. Weather and crop price data 

Weather data were collected from 48 stations of the HPRCC (http://hprcc6.
unl.edu/cgi-hpcc/home.cgi ) automated weather data network (AWDN) and 
201 NOAA stations (http://www.ncdc.noaa.gov/cdoweb/datatools/findsta-
tion). Daily data included precipitation; wind speed; solar radiation; rela-
tive humidity; maximum, average and minimum temperatures; and poten-
tial evapotranspiration (ETp) across the study area during 2004 and 2013. 

Soil nitrate, which can be derived from most nitrogen materials in com-
mercial fertilizers, biomass, and animal wastes, is highly soluble in water 
and can easily be transported through soil to groundwater with recharge 
from agricultural land. Evapotranspiration (ET) is a highly variable and yet 
significant driving force (USGS, 2000) that is a primary determinant of the 

http://hprcc6.unl.edu/cgi-hpcc/home.cgi
http://hprcc6.unl.edu/cgi-hpcc/home.cgi
http://www.ncdc.noaa.gov/cdoweb/datatools/findstation
http://www.ncdc.noaa.gov/cdoweb/datatools/findstation
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amount and timing of recharge. ET affects nitrate concentrations in ground-
water through changes to the water balance, especially by decreasing re-
charge. Because most of the area where groundwater is exposed to nitrate 
contamination is fully irrigated, and therefore unlikely to experience any 
long-term moisture deficit, the potential evapotranspiration (ETp) is a good 
approximation for the actual ET. In this study, ETp is calculated on a daily 
time step using the Penman-Monteith (PM) equation with a fixed surface 
resistance of 45 sm−1

 and fixed plant height of 0.5m for a reference surface 
of grass and alfalfa (Monteith, 1965). 

Assuming that N applied per acre is independent of the number of acres 
in production, increasing crop land areas leads to more total N fertilizer ap-
plication. Typical N application rates for corn and soybeans in Nebraska are 
~180 kg/ha (based on an anticipated yield of 150 bu/ac) and ~100 kg/ha 
(in a case of nitrogen deficiency in soil), respectively (Shapiro et al., 2008; 
Ferguson et al., 2006). A higher corn price shifts the corn-soybean rota-
tion in favor of continuous corn and encourages more fertilizer use. Thus, 
trends in total N fertilizer should be considered in the context of trends in 
corn price. Historical corn prices were obtained from the Department of 
Agricultural and Consumer Economics of the College of Agricultural, Con-
sumer and Environmental Sciences at the University of Illinois (http://farm-
doc.illinois.edu/manage/pricehistory/price:history.html). 

2.3. Groundwater nitrate-contaminated areas 

To differentiate factors controlling leaching and vulnerability to contamina-
tion, areas with high groundwater nitrate concentration were first identified 
and delineated. Outlined areas of nitrate concentrations (≥10 mg NO3-N/L) 
were created using ArcGIS 10.3.1. The nitrate concentration in each well 
during each decade (1974–1983; 1984–1993; 1994–2003; 2004–2013) was 
computed across 2 km by 2 km grid cells using the point-to-raster conver-
sion tool. Spatial analysis tools (interpolation, reclassify and contour) were 
used on grid cells with average concentration ≥10 mg NO3-N/L. If more 
than one concentration was reported in a well in a year, the concentrations 
were averaged, in contrast with the trend analysis (Section 2.2.1), in which 
the greatest measured concentration was used in a year. The average con-
centration was more representative for spatial comparison among wells, 
because spatial interpolations are sensitive to outliers. 

Four methods of interpolation in ArcGIS 10.3.1 (inverse distance weight-
ing, ordinary kriging, interpolation from contours, and natural neighbor) 
were compared for spatially estimating averaged values of nitrate con-
centrations from wells in Table 1. This includes data from some multi-
level monitoring wells, including from studies involving nitrates from point 
sources, which are not representative of nitrates from agricultural drainage. 

http://farmdoc.illinois.edu/manage/pricehistory/price:history.html
http://farmdoc.illinois.edu/manage/pricehistory/price:history.html
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Monitoring wells represented up to 30% of wells in the west (2004–2014) 
and up to 14% of wells in the east (1984–1993). Nitrate levels from multi-
level monitoring wells were averaged across depths before interpolation, 
since only one value can be used for a given location in any of the above 
interpolation methods. The selected interpolation methods were cross val-
idated by reserving 10% of known data points from the database for error 
assessment. The results indicated that the natural neighbor method had 
the smallest error as calculated by the root mean square error (Fig. S1) 
and the percent of error (Table S3), and so this method was used to delin-
eate areas of high nitrate concentrations (≥10 mg NO3-N/L). Our method-
ology is different from the previous study by Exner et al. (2014) which used 
the “topo to raster” contour interpolation tool for determining the areas 
of high nitrate concentrations (≥10 mg NO3-N/L) and excluded multi-level 
monitoring wells. 

2.4. CART model for estimating groundwater nitrate concentrations 

2.4.1. Methodology for the CART analysis 

CART is a useful and popular tool in the field of data science. In this study, 
the program language “R” was selected to estimate the indicators for split-
ting nodes, using the package “rpart” (Loh, 2011). According to the descrip-
tion of Breiman et al. (1984), a CART model is principally built for classify-
ing and predicting responses to covariates based on three steps including 
“tree” growing, pruning, and optimizing (Fig. 2). 

Fig. 2. The CART model for estimating groundwater nitrate concentrations.  
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“Tree” growing requires two steps, as described in the name of the tool: 
classification, and regression. The first step uses a classification tree – a re-
cursive partitioning technique – to run several variables against the or de-
pendent variable, to find the most robust and consistent method of sorting 
the observations into groups based on their similarity. The program checks 
the greatest improvement of the “purity” score of the resultant nodes (cate-
gories), to identify the best splitter in the case of the categorical variable, as 
well as alternative splitters (“surrogates”) that would create similar groups. 
Thus CART splits the samples into populations with similar attributes, en-
suring that the resulting populations are as similar to each other, and as dif-
ferent from other groupings, as possible. For discrete inputs, such as well 
type in this analysis, the classification is evaluated using a metric known as 
a Gini coefficient (Breiman et al., 1984). The regression tree, which is gen-
erated for continuous input variables such as screen depth and sand con-
tent, has the same procedure with the classification tree, except it uses the 
variance between groups as the indicator instead of the Gini coefficient. 
CART automatically splits the observations into a large number of small 
subgroups with very similar characteristics, but only the first several splits 
are likely to be statistically significant; therefore it is necessary to get rid of 
the smallest “branches” in the decision tree. 

After generating a detailed decision tree from the combination of clas-
sification (group membership) and regression (group values) (Fig. S2), the 
second step of the CART methodology is “tree pruning.” Pruning cuts the 
“branches” of the tree to reduce over-fitting, thereby increasing the ability 
of new data prediction in the decision tree (Mingers, 1989). In CART, the 
“minimum cost complexity” pruning method is used to optimize the deci-
sion tree. Typically, the cost-complexity pruning threshold of the decision 
tree is considered equivalent to the decision tree error. 

The final step in CART involves evaluating the pruned trees using the 
split test method, which is one method of examining the optimal tree (Dob-
bin and Simon, 2011). The observed data are divided into two groups, 
one for training and the other for testing. The groundwater nitrate con-
centration dataset within the contaminated area (NO3-N≥10 mg N/L) dur-
ing 2004–2013 was randomly separated into two subsets, 80% of the data 
(12,880 samples) as the model training observations and 20% of the data 
(2000 samples) as the testing observations. In this study, the groundwa-
ter nitrate concentration was the target value, whereas weather conditions, 
well and soil characteristics, and surface nitrate-nitrogen loading for each 
well were chosen as the potential contributing factors based on a litera-
ture review (Tables 4 and 5). Groundwater nitrate concentrations were esti-
mated and evaluated by a CART model through the procedure of growing, 
pruning, and optimizing based on the optimal tree. An overview of CART 
methodology is presented in Fig. 2 and the principal equations of the CART 
model are described in Table 3. 
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Table 3. Principal equations of the CART model (Breiman et al., 1984; Yohannes and Webb, 1999).

Parameter                                                           Equation  		  Definition

Gini coefficient  		  Gini(t) is an indication of the purity 
at node t, k is the number of 
categorical predictor variables, p 
( j | t )  is the probability of a record 
output being in class j for the 
node t. When the Gini(t) equals 
zero, it means all the observations 
in the node belong to a single 
group (the most purity). 

The reduction of Gini coefficient		  ΔGini(t) is the reduction of 
Gini coefficient at node t (the 
greatest value means the best 
splitter), Gini(t) is the Gini 
coefficient of output variables 
before reducing at node t, Gini(tL) 
and pL are respectively the Gini 
coefficient and the proportions of 
observations at the left child node 
tL, Gini (tR) and pR are respectively 
the Gini coefficient and the 
proportions of observations at the 
right child node tR.

The variance of the regression tree		  R(t) is an indicator of the variance 
at node t, N is the number of 
observations for the node t, k 
is the number of categorical 
predictor variables, xi(t) is the 
output variables in class j for the 
node t, and x (t) is the mean of the 
output variables in class j for the 
node t.

The reduction of the variance 		  ΔR(t) is the reduction of variance 
at node t (the greatest value 
means the best splitter), R(t) is the 
variance of output variables before 
reducing at node t, R(tL) and pL are 
respectively the variance and the 
proportions of observations at the 
left child node tL, R(tR) and pR are 
respectively the variance and the 
proportions of observations at the 
right child node tR.

The cost-complexity pruning 		  R∝(T) is the cost-complexity 
pruning of the decision tree, T, 
R(T) is the error of classification 
in the decision tree, T, α is the 
complexity parameter, which will 
range from 0 to 1 and increase 
during the pruning process to 
represent how much additional 
accuracy is in the tree. When α is 
increased, the tree will be pruned. 
| T̃ | is the number of child nodes.

Gini (t) = 1 – ∑k
j=1 p2 ( j| t ) 

ΔGini(t) = Gini(t) − pLGini(tL) − pRGini(tR)

R(t) =    
1    ∑k

j=1
 (xi (t) – ‾x (t))2

         N – 1

ΔR(t) = R(t) − pLR(tL) − pRR(tR)

R∝(T) = R(T) + α|T̃ |
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2.4.2. Factors for CART modeling 

A CART model was created to identify the most significant factors affecting 
nitrate concentrations in Nebraska’s groundwater, beginning with 13 po-
tentially influential factors divided into four groups. These included well at-
tributes, soil and vadose zone characteristics, weather conditions, and sur-
face nitrate-nitrogen load around each well (see Table 4). Selection of these 
factors was also influenced by the availability of data. 

Figs. 3 and 4 present box plots and trend lines of vadose zone character-
istics (well depth, saturated thickness, and vadose zone thickness) with ni-
trate sample data for three major well types, domestic, irrigation, and mon-
itoring, within the contaminated area (2004–2013) in western and eastern 

Fig. 3. Vadose zone characteristics (well depth, saturated and vadose zone thick-
ness) with groundwater nitrate concentrations (1974–2013) within the 2004–2013 
contaminated area in eastern Nebraska. 1 ft (ft)=0.3048 m (m). The 2004–2013 
contaminated area encompasses most of the contaminated area from previous 
decades.  
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Nebraska. The monitoring well data used in these regressions includes 
data from multi-level monitoring wells for studies in eastern Nebraska, 
which were not used for CART analysis, although they were used for spa-
tial interpolation. 

Wells in a large part of eastern Nebraska exhibited shallower average 
well depth, less saturated thickness of the aquifer, and smaller vadose zone 
thickness along with a correlation of increasing nitrate concentrations with 
depths in wells of all types (domestic, irrigation and monitoring wells) as 
shown in Figs. 3 and 4. The contrasting shape of the regression in nitrate 
concentrations in domestic, irrigation, and monitoring wells probably oc-
curs from differences in well attributes such as screen depths, well diam-
eters, etc. The fitted correlation of median well depth, saturated thick-
ness of aquifer, and vadose zone thickness with nitrate concentrations in 

Fig. 4. Vadose zone characteristics (well depth, saturated and vadose zone thick-
ness) with groundwater nitrate concentrations (1974–2013) within the 2004–2013 
contaminated area in western Nebraska. 1 ft (ft) = 0.3048 m (m).  
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monitoring wells presents an exponential relationship with R2
 of 0.98, 0.99, 

and 0.97, respectively. Comparatively, a linear relationship is found only in 
irrigation wells with R2

 of 0.77 (well depth), 0.66 (saturated thickness), and 
0.94 (vadose zone thickness). Deeper well depths and larger thicknesses 
of saturated and vadose zones are associated with lower nitrate concen-
trations in groundwater. The shallow well depth and smaller thicknesses 
of the saturated and vadose zones in the 0–50 ft (i.e., 0–15 m) range of 
monitoring wells have definitively higher nitrate concentrations than in 
domestic and irrigation wells. The well attributes, e.g. screen depths and 
well diameters, likely impact groundwater nitrate concentrations by af-
fecting the part of the aquifer that the well draws from, particularly in the 
vertical profile of nitrate. 

Based on these regressions, it is a valid concern that data from monitor-
ing, irrigation, and domestic wells might not be comparable. In particular, 
monitoring wells are often put into place in areas of known nitrate contam-
ination. However, CART analysis explicitly shows that in western Nebraska, 
monitoring wells in areas with a thin vadose zone and high hydraulic con-
ductivity have more in common (in terms of nitrate concentrations) with 
irrigation and domestic wells in areas with a thin vadose zone and high 
hydraulic conductivity than with other monitoring wells that do not share 
these physical and geographical characteristics. No monitoring wells were 
included in the CART analysis for eastern Nebraska. 

In the western part of Nebraska, domestic and monitoring wells have 
lower nitrate concentrations where the vadose zone is thicker. Except for 
irrigation wells, there are no obvious correlations of nitrate concentration 
with well depth and saturated thickness of the aquifer. Eastern Nebraska 
has higher nitrate concentrations in groundwater than in the west. Interest-
ingly, at the same depth to water table or vadose zone thickness, ground-
water nitrate concentrations in the east are higher than in the west. The 
difference in soil properties and other conditions between western and 
eastern Nebraska, as well as higher rainfall, recharge, and N inputs in the 
east, likely plays a significant role in predicting nitrate concentrations in 
groundwater. 

Note that, while trends in groundwater concentrations over time were 
different between domestic, irrigation, and monitoring wells, the type of 
well was not a significant factor in absolute nitrate concentrations accord-
ing to the CART model. The type of well was included as an input fac-
tor when creating the CART model, and if the mean groundwater nitrate 
concentration were significantly different among the types of wells, CART 
would have identified this factor as part of the classification tree. Instead, 
well type was identified in the west as a surrogate split in node 22, whereas 
everything beyond node 5 was considered statistically insignificant. In east-
ern Nebraska, no monitoring well data was used for CART analysis. 
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The depth from the land surface to the water table, referred to as vadose 
zone thickness, was estimated from a map of the depth to water. This was 
combined with the groundwater nitrate sample database of the University 
of Nebraska–Lincoln (UNL) between 1974 and 2013 using the extract val-
ues to points tool in ArcGIS 10.3.1. The depth to water map was created 
using the kriging interpolation tool using water depth data from 206,061 
registered wells collected by the Department of Natural Resources (DNR) 
in Nebraska (http://www.dnr.ne.gov/groundwater-data). Saturated thick-
ness was estimated from the difference between the well depth and the 
estimated depth to water table. From the estimation of the thickness of 
saturated zone, we found that many wells do not extend to the bottom of 
the aquifer in Nebraska. While the HPOA is known for its rapid depletion 
due to unsustainable use (Scanlon et al., 2012; McGuire, 2017; Haacker, et 
al., 2016), the depth to water in Nebraska has remained much more stable 
than the depth to water in other areas that rely on the aquifer for irriga-
tion, such as the Kansas and Texas High Plains. 

Average percent of sand and organic matter (OM) in the top soil (0–150 
cm) were estimated from a map of a soil layer with the Soil Survey Geog-
raphy (SSURGO) Mapunit Key (mukey). Each mukey is associated with spe-
cific soil characteristics (sand, silt, clay, organic matter, etc.). The soil layer 
was downloaded from SSURGO using the Web Soil Survey (WSS) operated 
by the USDA Natural Resources Conservation Service (NRCS) (WSS, 2017). 
Effective hydraulic conductivity (Keff) was calculated from soil texture layers 
in the test hole, collected by the School of Natural Resources (SNR) at the 
University of Nebraska–Lincoln (UNL) (SNR-UNL, 2017). The Keff was esti-
mated based on vertical flow through soil layers. The saturated hydraulic 
conductivity (Ks) in each soil layer was predicted by the pedotransfer func-
tion in the ROSETTA database in HYDRUS-1D based on soil textures, which 
were obtained from the UNL-CSD test hole database. 

Weather data, including monthly precipitation and maximum and mini-
mum air temperature, were collected from the Parameter Elevation Regres-
sion on Independent Slopes Model (PRISM) Climate Group provided by the 
Oregon State University (PRISM, 2017). Land-use nitrate export coefficients 
were used for determining the annual average nitrate loading around each 
well under each year during 2004–2013. The land use data layers (2004–
2013) were collected from the U.S. Department of Agriculture (USDA-NASS, 
2016). The nitrate export coefficient for each land cover, which can indi-
cate the amount of nitrates available for leaching from the surface due to 
inputs of fertilizers, crop residues, and atmospheric deposition (Reckhow 
and Simpson, 1980), were found using literature sources such as Parn et al. 
(2012) and Keeler and Polasky (2014). In this study, we used the nitrate ex-
port coefficients from Keeler and Polasky (2014) as shown in Table 5. 

http://www.dnr.ne.gov/groundwater-data
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3. Results and discussion 

3.1. Long-term trends of groundwater nitrate concentration 

Fig. 5 presents long-term trends of groundwater nitrate concentration 
(1974–2013) in western and eastern Nebraska. Average annual groundwater 
nitrate concentrations in eastern Nebraska are increasing (p < .05), proba-
bly due to an increase in the intensity of crop production and the adoption 
of center pivots. Nitrate concentrations remain stable in the west, despite 
increasing irrigation intensity. Many of Nebraska’s groundwater manage-
ment programs implemented since 1988 may have reduced the loading 
contributing to increasing nitrate concentrations. Interestingly, it is only af-
ter the programs started that a clear upward trend begins in eastern wells, 
possibly a result of legacy nitrates reaching the water table. 

3.2. Spatial distribution of groundwater nitrate contamination 

Fig. 6 shows the contaminated areas of groundwater nitrate concentrations 
≥10 mg NO3-N/L during each of the previous four decades in Nebraska. 

Table 5. Nitrate export coefficients assigned to land use codes based on 2004 to 2013 
cropland data layer and Keeler and Polasky (2014).

Land use 	 Land use 	 Nitrate-N loading
codes	 description	 (kg/ha/yr)

1 	 Corn 	 50.95
4 	 Sorghum 	 7.56
5 	 Soybeans 	 22.25
6 	 Sunflowers 	 7.56
12 	 Sweet corn 	 50.95
13 	 Popcorn 	 50.95
24 	 Winter wheat 	 7.56
26 	 Double crop winter wheat/soybeans 	 22.25
27 	 Rye 	 7.56
28 	 Oats 	 7.56
29 	 Millet 	 7.56
36 	 Alfalfa 	 10.16
42 	 Dry beans 	 7.56
44 	 Other crops 	 10.16
141 	 Deciduous forest 	 3.72
176 	 Pasture 	 3.2
190 	 Wetlands 	 1.44
225 	 Double crop winter wheat/corn 	 50.95
241 	 Double crop corn/soybeans 	 50.95
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Well depth, screen depth, and sampling date were obtained from the well 
database of the University of Nebraska–Lincoln (UNL, 2000). Within the 
groundwater nitrate contaminated areas during 2004–2013 (outlined in Fig. 
6), there are a total of 40,758 available nitrate samples: 36,835 samples in 
the eastern part and 3923 samples in the western part of Nebraska. These 
data are based on nitrate samples in the 40-year database from 1974 to 
2013, which covers only part of the state. Another 67,065 nitrate samples 
were excluded from this study because their highest nitrate concentrations 
were under the MCL of 10 mg NO3-N/L. Based on the evaluation of average 
nitrate concentrations across the state, the groundwater nitrate-contami-
nated area in the west seems to be much smaller and more stable than in 
eastern Nebraska. On the other hand, the contaminated area (2004–2013) 
in the east part of Nebraska was more expansive than the previous de-
cades, which makes sense given the long-term trends of groundwater ni-
trate concentration in Fig. 5. 

3.3. The relationships between groundwater nitrate concentrations 
and potential natural and anthropogenic factors 

3.3.1. Characterization of nitrate-contaminated areas 

As shown in Fig. 7a and b, extensive production of corn and soybean coin-
cides with groundwater nitrate-contaminated areas. Currently, the total area 
of corn production is growing both in western and eastern Nebraska. Lim-
ited production of corn and the absence of soybean in western Nebraska 

Fig. 5. Long-term trends of groundwater nitrate concentration (1974–2013) in 
western and eastern Nebraska.  
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Fig. 6. The distribution of groundwater nitrate concentrations within the blue out-
lined areas of ≥10 mg NO3-N/L during 1974–1983, 1984–1993, 1994–2003, and 
2004–2013. NRD boundaries, which represent districts for nitrate management 
policies and which were used to delineate eastern and western Nebraska, are out-
lined in white. 
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Fig. 7. Anthropogenic factors: (a) years of corn production between 2002 
and 2014, (b) years of soybean production between 2002 and 2014, (c) ir-
rigation systems, and (d) irrigated and non-irrigated (dryland) crops, with 
groundwater nitrate concentrations within the red outlined areas of ≥10 
mg NO3-N/L during 2004–2013. (continued)
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resulted in limited groundwater nitrate-contaminated areas in western Ne-
braska compared to eastern Nebraska. Groundwater nitrate-contaminated 
areas are primarily irrigated with gravity irrigation systems in the eastern 
central part of Nebraska. This contamination is likely due to more water 
ponding in this type of irrigation, both within furrows and as tailwater. Con-
taminated areas tend not to occur in non-irrigated (dryland) agricultural 

Fig. 7. (continued) The original map is of sufficient resolution (30 m) to show in-
dividual fields planted to corn or soybeans. Natural factors: (e) Soil drainage ca-
pacities, (f) depth to water table, and (g) saturated thickness with groundwater 
nitrate concentrations within the red outlined areas of ≥10 mg NO3-N/L during 
2004–2013. 
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areas, where less water recharges than in the irrigated areas, particularly in 
southeastern Nebraska. In the west, smaller groundwater nitrate-contami-
nated areas were found in areas of dryland production and larger saturated 
thickness of the aquifer, as shown in Fig. 7c and d. 

The soil drainage capacity can be an important factor in system re-
sponse to nitrate applications. In the north-eastern part of the state, es-
pecially around the boundary between the Upper Elkhorn and Lower Elk-
horn NRDs (Fig. 7e), groundwater under well-drained and excessively 
well-drained soils frequently exceeds the maximum contaminant level 
(MCL) of 10 mg NO3-N/L. This is in accordance with Spalding and Hirsh 
(2012), who mention that the north-eastern area of the state has faced 
groundwater nitrate contamination beneath intensively spray-irrigated 
areas with coarse-textured soils. In fact, high levels of nitrate concentra-
tion occur in some areas where there is poor soil drainage, particularly in 
riparian areas in the central-eastern part of the state, such as the Platte 
River Valley in the Central Platte NRD (Fig. 7e). In the past, gravity irriga-
tion dominated these areas. Although soil drainage is low compared to 
sand, extended ponding time within furrows could have caused greater 
leaching (Spalding et al., 1978). Extensive groundwater-surface water con-
nectivity may also influence nitrate concentrations, and tributaries feeding 
the Platte River may also contribute nitrate to groundwater. The applica-
tion rates of anhydrous ammonia fertilizer declined during the 1980’s in 
the central area of the state due to lower crop prices (Exner et al., 2010). 
In comparison with the edges of the state, more of central Nebraska is 
well drained to excessively well-drained, to the extent that row crop pro-
duction is not economically feasible. This part of the state is known as 
the Sand Hills and is visible as the large area of low crop production in 
Fig. 7. Except for a few intensively farmed areas near Alliance, Nebraska, 
the north central part of the state has not been threatened as intensively 
from high groundwater nitrate contamination, despite the vulnerability 
of the aquifer in areas with sandy soils. 

The depth to the water table plays a significant role in predicting 
groundwater nitrate concentration. A deeper depth to water table reduces 
the probability for nitrate contamination compared with a shallower wa-
ter table (i.e. thin vadose zone). This was found in both western and east-
ern Nebraska (Fig. 7f) and is consistent with the previous studies such as 
Spalding and Hirsh (2012) and Exner et al. (2014). In addition, the saturated 
thickness of the aquifer also influences groundwater nitrate concentrations, 
likely due to dilution and mixing. Areas with greater saturated thickness in 
both western and eastern Nebraska have lower nitrate concentrations in 
groundwater (Fig. 7g). 
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3.3.2. Assumptions of the validity of the extent of nitrate contamination in 
groundwater 

After outlining the area of high nitrate concentrations (≥10 mg NO3-N/L) in 
the last decade (2004–2013), factors controlling groundwater nitrate con-
centrations within the contaminated area were considered and compared 
between western and eastern Nebraska. These factors include depth to wa-
ter table, saturated thickness of the aquifer (the distance from the top to 
the bottom of the water-bearing sediment), precipitation, evapotranspira-
tion, cropland areas and prices of corn and soybeans. 

Fig. 8 presents precipitation and potential evapotranspiration (ETp) with 
groundwater nitrate data in the nitrate-contaminated (≥10 mg NO3-N/L) 
area during 2004 to 2013 by considering weekly trends in western and 

Fig. 8. Precipitation and ETp with groundwater nitrate data in the high nitrate ar-
eas (≥10 mg NO3-N/L) during 2004 and 2013 considering weekly trends in west-
ern and eastern Nebraska (top) and the Pearson’s correlation coefficient (bottom).  
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eastern Nebraska. Precipitation has a statistically significant correlation (p 
< .05) with nitrate concentrations in both western and eastern Nebraska 
(Fig. S3). Total annual precipitation in the eastern part of Nebraska is higher 
than in the western region (Fig. 8). The ETp differs slightly between western 
and eastern Nebraska when considering irrigated cropland. ETp is not sig-
nificantly related with groundwater nitrate concentrations (p > .05) (Fig. 
S3). However, precipitation and ETp each show a small Pearson’s correlation 
coefficient (~0.27 between precipitation and nitrate concentrations in both 
west and east, and −0.03 and 0.06 between ETp and nitrate concentrations 
in west and east, respectively) (Fig. 8). 

Fig. 9 presents high nitrate (≥10 mg NO3-N/L) and lower nitrate (< 10 
mg NO3-N/L) areas under different irrigation systems in western and east-
ern Nebraska. Based on this study, center pivot irrigated areas have less 
risk of groundwater nitrate contamination than gravity irrigation systems. 
In eastern Nebraska (2,590,005 ha of irrigated area), there is about three 
times more irrigated area than in the west (806,898 ha of irrigated area), 
and the increased density of irrigated crops is directly related to high ni-
trate in groundwater. These graphs were created by overlaying a map of 
center pivot and gravity irrigated land with the map of nitrate-contam-
inated areas in 2004–2013. The total amount of land for each irrigation 
technology was then compared with the irrigated land from 2012 from MO-
DIS-MIrAD falling within an identified nitrate-contamination zone (Fig. 6). 
Irrigation technology was obtained from USGS (http://earlywarning.usgs.
gov/USirrigation). 

Commodity prices are a strong driver of crop and nutrient manage-
ment, and very likely play a leading role in increasing groundwater nitrate 

Fig. 9. Areas of high (or at the maximum contaminant level, MCL) nitrate concen-
trations (≥ exceeding 10 mg NO3-N/L) and low (below the MCL) nitrate concen-
trations (< 10 mg NO3-N/L) under different irrigation systems in western and east-
ern Nebraska.  

http://earlywarning.usgs.gov/USirrigation
http://earlywarning.usgs.gov/USirrigation


Juntakut   e t  al .  in  Journal  of  Contaminant  Hydrology  ( 2018 )        27

concentrations. Fig. 10 compares corn prices, area of production and 
groundwater nitrate concentrations in western and eastern Nebraska during 
2002 to 2014. Corn price and production area have a correlation coefficient 
of 0.84. Application of nitrogen fertilizer is higher when corn production ar-
eas increase, but the trend of groundwater nitrate concentrations shows a 
smaller correlation coefficient (0.48 for eastern Nebraska and 0.59 for west-
ern Nebraska) with corn production areas, as compared to corn prices (0.61 
for both east and west). This implies that nitrogen is applied more inten-
sively (less crop rotation) when corn prices are high, which may lead to in-
creases in nitrate leaching to groundwater. 

3.4. Estimation of groundwater nitrate concentrations based on CART 
model 

Groundwater nitrate concentrations were forecast in western and eastern 
Nebraska through the optimized CART model. We found that vadose zone 
thickness, effective hydraulic conductivity, and saturated thickness were the 
most significant factors influencing groundwater nitrate concentrations in 
western Nebraska with an explanatory power of 30%, 16% and 12%, re-
spectively, i.e. vadose zone thickness accounted for 30% of the total vari-
ability in nitrate concentrations. In eastern Nebraska, the most influential 
factors were average percent of sand in the top 0–150 cm of soil (21%), 
well depth (18%), and effective hydraulic conductivity (14%) (Fig. 11). The 
explanatory power is a measure of how much of the nitrate concentration 

Fig. 10. The comparison of corn prices, production area and groundwater nitrate 
concentrations in western and eastern Nebraska, 2002 to 2014.  
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can be attributed to each of these factors. The results of the model show 
the mean absolute error in predicting nitrate concentrations are 4.87 mg 
NO3-N/L (west) and 3.51 mg NO3-N/L (east). The relative errors are 32% 
(west) and 19% (east) as presented in Table 6. This indicates that the CART 
model can be used to predict groundwater nitrate concentrations most ac-
curately in eastern Nebraska, which is unsurprising given the larger quan-
tity of data available in the east. 

Fig. 11. The output of CART pruning tree for groundwater nitrate concentration 
prediction in western and eastern Nebraska.  
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4. Conclusions 

This study confirms that nitrate contaminated areas are expanding and new 
areas continue to emerge beneath irrigated cropland in Nebraska, particu-
larly in the east. It is possible that some wells within the identified high-ni-
trate areas are still below MCL as all existing wells were not included in the 
database. However, nitrate concentrations in additional wells can be pre-
dicted using the optimal CART model of this study, with an expected accu-
racy of about 70–80%. The trends of increasing groundwater nitrate con-
centrations have occurred only in eastern Nebraska following an increase 
in the intensity of crop production and irrigation. While the rate of increase 
of average nitrate groundwater concentration has slowed in some areas un-
der the Nebraska’s GWQMP, intense irrigation increases the rate of nitrate 
leaching to groundwater. 

This study additionally shows that the areal extent and growth of con-
taminated groundwater in predominately center pivot-irrigated areas is 
lower than beneath gravity-irrigated areas. Converting from gravity irri-
gation to center pivot may help to protect against the expansion of ni-
trate-contaminated groundwater. Based on this study, the spatial differ-
ences in climate, soil, cropping, irrigation and vadose zone characteristics 

Table 6. The error of the CART model after the validation.

Data 	 WEST 				    EAST

	 No. of  	 NO3-N	 Absolute  	 Relative  	 No. of  	 NO3-N	 Absolute  	 Relative 
	 observations  	 conc. 	 error (mg N/L)  	error (%) 	 observations	 conc. 	 error (mg N/L)  	error (%) 

Node # 1 					     Node # 1
   Training	 421	 5.41	 2.44	 31.08	 3,941	 11.33	 3.93	 25.75
   Testing	 10	 7.85	 564	 15.26
Node # 2 					     Node # 2
   Training	 1,274	 8.65	 5.07	 37.08	 1,796	 12.73	 5.18	 28.92
   Testing	 136	 13.67	 266	 17.91
Node # 3 					     Node # 3
   Training	 812	 11.59	 5.83	 33.46	 3,548	 16.44	 2.09	 11.28
   Testing	 83	 17.42	 685	 18.53
Node # 4 					     Node # 4
   Training	 44	 23.13	 0.67	 2.98	 1,025	 24.14	 2.85	 10.56
   Testing	 13	 22.46	 199	 26.99
Node # 5
   Training	 19	 28.85	 10.33	 55.77
   Testing	 44	 18.52
Min	 10	 5.41	 0.67	 2.98	 29	 11.33	 2.09	 10.56
Max	 1,274	 28.85	 10.33	 55.77	 3,941	 40.09	 5.18	 28.92
Mean	 286	 15.75	 4.87	 32.08	 1,202	 21.57	 3.51	 19.13
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(e.g. precipitation, ET, soil drainage capacities, depth to water table) signif-
icantly predict groundwater nitrate concentrations in western and eastern 
Nebraska. Thus, the investigation of soil nitrogen processes and nitrate flux 
through soil into groundwater under climate variability and the complexi-
ties of aquifer and vadose zone characteristics are key for analyzing the oc-
currence of nitrate contamination in Nebraska’s groundwater. 

The CART model was used to identify the relative importance of well 
attributes, soil and vadose zone characteristics, weather conditions, and 
nonpoint-source N inputs for each well with groundwater nitrate concen-
trations. Physical characteristics – geography and well construction – were 
found to be significant, irrespective of well type (irrigation, monitoring, or 
domestic). This supports Burow et al.’s (2010) use of monitoring wells for 
predicting groundwater nitrate concentrations in CART modeling. Vadose 
zone thickness and well depth were found to be the most significant fac-
tors affecting groundwater nitrate concentrations in western Nebraska, with 
an explanatory power of 30%, 16%, and 12%, respectively. The most influ-
ential factors included average percent of sand in the 0–150 cm topsoil 
(21%), well depth (18%), and effective hydraulic conductivity (14%) in east-
ern Nebraska. After testing the model, we conclude that the CART model 
can be applied to predict groundwater nitrate concentrations from those 
influential factors. The CART model proved to be useful for both prediction 
of groundwater nitrate concentrations, and for identifying potential fac-
tors that could place areas at greater risk for groundwater contamination.   
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Introduction 

Elevated nitrate concentration in groundwater prompted Nebraska’s Natural Resources 

Districts (NRDs) in the 1988 crop season to institute a groundwater quality management program 

(GWQMP) using a phased approach. The NRDs and the State of Nebraska defined four classes of 

nitrate contamination, labeled Phase I, II, III, and IV. These correspond to nitrate concentrations 

of less than 7.5 mg/L (Phase I), 7.6-15 mg/L (Phase II), greater than 15 mg/L (Phase III), and areas 

where rates of decline in NO3 concentration have not been satisfactory (Phase IV). Within these 

areas, the timing and application rates of nitrogen fertilizer on irrigated agriculture are regulated 

differently as presented in supplemental information (Table S1), below. 

To control and monitor nitrate contaminations in groundwater, Nebraska state agencies and 

NRDs have continuously collected a large number of samples from wells since 1974. These data 

are housed at a digitized warehouse at the University of Nebraska. There are 107,823 nitrate 

sample measurements in the database during 1974-2013. Several studies have utilized this nitrate 

database for the analysis of the long-term nitrate trends in groundwater, the investigation of factors 

affecting occurrence of nitrate in groundwater, and the efforts of the reduction of groundwater 

nitrate concentrations (< 10 mg N/L) in Nebraska. Table S2 contains summary results of analysis 

on 12 references of the investigation of the occurrence of nitrate in Nebraska’s groundwater. 
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Table S1. Phased approach under the Central Platte NRD’s Groundwater Management Quality 

Program (Hard, 2013; Exner et al., 2014; CPNRD, 2016). 

 

Phase 

Nitrate-N 

concentration (mg 

N/L) 

 

Management 

 

I 

 

≤ 7.5 

The application of nitrogen fertilizer is banned on sandy soils in Fall and 

Winter seasons. After November 1st, this application is allowed only on 

heavier-textured soil. 

 

 

 

 

II 

 

 

 

 

7.6 - 15 

There are many significant regulations in agricultural areas. The application of 

nitrogen fertilizer is not allowed until March 1st. Annual soil and irrigation 

water tests are required and if manure is to be applied, laboratory analysis and 

nutrient accounting is also required. Then, a certification will be created by 

NRDs every four years. In terms of irrigation, the measurement of irrigation 

water applied to each crop field is required. Annual reporting of crop growth, 

nitrogen credits, recommended nitrogen rate, nitrification inhibitor use, soil 

and water analyses, nitrogen fertilizer and water applied, and crop yield will be 

recorded and presented in public. 

 

III 

 

≥ 15 

All requirements of Phase II need to be completed and the application of 

nitrogen fertilizer or a nitrification inhibitor has to be regulated strictly. 

 

 

IV 

NO3-N levels in 

groundwater is not 

declining at 

acceptable rate. 

All requirements of Phase III need to be completed. Additionally, the rate of 

nitrogen fertilizer application must not exceed the NRD recommendation. 

Expected yield will be set by the NRD and NRD staff will closely work with 

the University of Nebraska for the best management practices (BMPs). 

 

Table S2. References involving the investigation of the occurrence of nitrate in Nebraska’s 

groundwater. 

Author(s) (year) Study sites Results of analysis 

Gormly and Spalding 

(1979) 

Central Nebraska 

(Buffalo, Hall, 

and Merrick 

counties)  

The nitrate-nitrogen (NO3-N) concentrations were examined from 

256 ground-water samples during 1976-1977. They investigated the 

potential nitrate sources with the isotopic values. They found that 

fertilizer was the primary source of contamination in most wells and 

only a small percentage of the wells derived from animal wastes. 

Adelman et al. (1985) Central Nebraska 

(Holt county and 

the Central Platte 

region) 

They presented an overview of nitrate in Nebraska’s groundwater 

showing that most nitrate contamination in groundwater was related 

to excessive application of commercial fertilizer on irrigated 

cropland with sandy topsoil and a shallow groundwater table. Excess 

irrigation water resulted more highly soluble nitrate moving down to 

the groundwater table. Moreover, they indicated that some rural 

people with contaminated wells were using small home distillation 

units to provide nitrate-free water.  

Schepers et al. (1991) Central Nebraska 

(The Central 

Platte Natural 

Resource District: 

CPNRD) 

Their work reported results of a nitrogen and water management 

program in the CPNRD in Nebraska. They found that NO3-N 

contamination of groundwater was directly influenced by yield goals 

and N fertilizer application rates. In 1988, yield goals were 42% 

higher from the application of excess N fertilizer rate of 148 kg ha-1 

which was more than the recommended rates of 100 kg N ha-1 based 

on the University of Nebraska recommendations. 

Spalding (1991) Nebraska 

(93 counties) 

NO3-N concentrations in 2,195 rural domestic wells from 93 

counties in Nebraska between 1985 and 1989 averaged 6.6 mg N/L 
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and exceeded the MCL in 17.4% of the sampled wells. In addition, 

his study indicated that the weighted mean exposure level of NO3-N 

concentrations for the rural population using private drinking water 

wells was 7.5 mg N/L and the weighted frequency of exposure to 

NO3-N levels exceeding the MCL was 20.4%.  

Spalding and Exner 

(1993) 

USA and 

Nebraska 

More than 200,000 NO3-N data points were estimated to show nitrate 

levels in groundwater in the USA. There was a high probability of 

exceeding the MCL of 10 mg N/L on irrigated cropland with well-

drained soils. Higher NO3-N concentrations in groundwater occurred 

in shallow wells (< 8 m). A significant increase in NO3-N was found 

in older wells and in wells with poor construction. High NO3-N 

concentrations were widespread in the northeast of Nebraska due to 

the poorly constructed wells. The poorly constructed wells were dug 

and lined with cement blocks, bricks, tile, or open-jointed materials. 

NO3-N concentrations in 60% of the 87 open-jointed wells exceeded 

the MCL; however, concentrations in only 18% of the 221 

continuously cased wells exceeded the MCL. 

Gosselin et al. (1997) Nebraska NO3-N, pesticides, and coliform bacteria from 1,808 rural domestic 

wells in Nebraska were examined for the 1994-1995 statewide 

assessment of groundwater quality. An average of 19% of domestic 

wells in Nebraska were contaminated by nitrates. They suggested 

that the application of best management practices and the sanitary 

surveys of existing wells will be required to improve the drinking 

water quality in rural domestic wells. 

U.S. Department of 

the Interior (1999) 

Nebraska The U.S. Department of the Interior reported that many small city 

and village community water systems in Nebraska faced nitrate 

concentration in groundwater above the MCL of 10 mg N/L. The 

DRASTIC tool was used for statewide analysis of factors affecting 

the potential for groundwater nitrate contamination in Nebraska’s 

small communities. The result of DRASTIC showed that the regions 

which have two or more of these conditions: intensive agricultural 

practices, permeable soils, or shallow water tables; were likely to 

cause elevated levels of groundwater nitrate concentrations above 

the MCL of 10 mg N/L. 

McGinnis and Davis 

(2001) 

Eastern Nebraska 

(The Omaha and 

the Santee Sioux 

Reservations) 

42 wells in the Omaha Reservation between 27 July and 4 August 

1994 and 40 wells in the Santee Sioux Reservation during June, July, 

and August of 1996 were sampled and analyzed for chemical 

parameters such as sulfate, chloride, sodium, calcium, magnesium, 

pH, iron, manganese, NO3-N, total dissolved solids, conductivity, 

hardness, fluoride, alkalinity, and total coliform bacteria. The results 

of this study reported that both reservations (Omaha and Santee 

Sioux) had a high percentage of domestic wells containing coliform 

bacteria and exceeding the MCL of nitrate-nitrogen (> 10 mg N/L). 

Furthermore, they indicated that the occurrence of the 

contaminations was linked to factors such as well construction, 

maintenance, and land use. 

Exner et al. (2010) Central Nebraska The long-term groundwater nitrate concentration trend during 1988-

2003 (16 years) was estimated and shown to have a significant 

decrease at the slow rate of 0.26 mg N/L/year (p < 0.0001) on the 

terrace of Nebraska’s Central Platte River valley under the GWQMP. 

However, average groundwater nitrate concentrations on the 

bottomland did not change over the same time period, while N 

fertilizer application rates on the terrace remained unchanged during 

the study. The management practices under the GWQMP in the 

Central Platte Natural Resources District can reduce groundwater 
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nitrate concentrations. The conversion from furrow irrigation to 

sprinkler irrigation can reduce groundwater nitrate concentration 

about 50%. 

Meals et al. (2012) Central Nebraska 

(The Central 

Platte Natural 

Resource District: 

CPNRD) 

The Nebraska National Institute of Food and Agriculture-

Conservation Effects Assessment Project (NIFA-CEAP) on a Phase 

III management area in the CPNRD for the period of 1988 to 2006 

(19 years) was described to evaluate the effectiveness of farm 

management practices in lowering groundwater nitrate 

concentrations underneath irrigated-corn production. Management 

practices commonly included the conversion from furrow to 

sprinkler irrigation and the improvement of nutrient management. 

They concluded that N fertilizer applications, crop canopy sensors, 

and more sprinkler irrigation were required for achieving further 

reduction in N leaching into groundwater.    

Exner et al. (2014) Eastern and 

central Nebraska 

They analysed 17 management areas with a 31 year record (1981-

2010) of approximately 44,000 nitrate samples from about 11,500 

irrigation wells across the eastern and central Nebraska. They 

reported that average annual groundwater nitrate concentrations in 

10 of the management areas have been significantly increasing (p < 

0.05) without yet reaching a steady state, unless the application of 

nitrogen fertilizer has been controlled by the GWQMP program. In 

addition, they illustrated the decadal expansion of groundwater 

nitrate contamination considering areal characteristics, such as 

irrigation application methods, soil drainage capacities, distribution 

of irrigated and non-irrigated row crops, and years of corn 

production.    

Ferguson (2015) Central Nebraska 

(Central Platte 

River Valley) 

The study attempted to reduce the groundwater nitrate contamination 

in the Platte River Valley of Nebraska by improving nitrogen use 

efficiency (NUE) in crops. According to the researcher’s study, the 

requirement of N management practices, such as N timing use, 

fertigation, controlled-release N formulation, and use of crop sensors 

for N application should be considered to increase NUE for the 

reduction of nitrate in groundwater. Additionally, this study 

suggested that the change from furrow to sprinkler irrigation can also 

decrease nitrate concentration in groundwater. 
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Figure S1. Root mean square error (RMSE) calculation results for selected interpolation methods in 

ArcGIS.  

 

 

Table S3. Percent of wells in areas of nitrate contamination (NO3-N > 10 mg/L) and non-

contamination (NO3-N ≤ 10 mg/L) in groundwater from interpolating by selected interpolation 

methods in ArcGIS. 

 

2004-2013 

Interpolation 

methods 

Number of wells Percent (%) 

NO3-N 

≤ 10 mg/L 

NO3-N 

> 10 mg/L 

Sum NO3-N 

≤ 10 mg/L 

NO3-N 

> 10 mg/L 

Contaminated 

area 

IDW 312 2,354 2,666 12 88 

Ordinary Kriging 560 2,034 2,594 22 78 

Topo to Raster 220 2,315 2,535 9 91 

Natural Neighbor 177 2,334 2,511 7 93 

Non-

contaminated 

area 

IDW 6,583 68 6,651 99 1 

Ordinary Kriging 6,335 388 6,723 94 6 

Topo to Raster 6,675 107 6,782 98 2 

Natural Neighbor 6,718 88 6,806 99 1 
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Figure S2. The CART tree before pruning presented 18 resultant nodes in the western part and 7 

resultant nodes in the eastern part of Nebraska. Note the data uses US unit of the foot, which is 

approximately 30 cm. 
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Figure S3. Correlation of precipitation and evapotranspiration with nitrate concentration in 

groundwater. 
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