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ARTICLE

Estimating densities for sympatric kit foxes (Vulpes macrotis)
and coyotes (Canis latrans) using noninvasive genetic sampling
R.C. Lonsinger, P.M. Lukacs, E.M. Gese, R.N. Knight, and L.P. Waits

Abstract: Kit fox (Vulpes macrotis Merriam, 1888) populations in the Great Basin Desert have declined and are of increasing
concern for managers. Increasing coyote (Canis latrans Say, 1823) abundance and subsequent intraguild interactions may be one
cause for this decline. Concurrent monitoring of carnivores is challenging and therefore rarely conducted. One possible solution
for monitoring elusive carnivores is using noninvasive genetic sampling. We used noninvasive genetic sampling to collect fecal
DNA from kit foxes and coyotes and estimate their densities from 2013–2014 in Utah, USA. We identified individuals based on
microsatellite genotypes and estimated density with multisession spatially explicit capture–recapture models. Mean kit fox
density was 0.02 foxes·km−2, while coyote densities were up to four times greater (0.07–0.08 coyotes·km−2). Kit fox densities were
significantly lower than densities in the 1950s but were comparable with estimates from the late 1990s, suggesting that
populations may be stabilizing after a precipitous decline. Our kit fox density estimates were among the lowest documented for
the species. Our coyote density estimate was the first reported in our region and revealed that despite seemingly high abun-
dance, densities are low compared with other regions. Our results suggested that kit foxes may be able to coexist with coyotes.

Key words: Canis latrans, coyote, density, kit fox, noninvasive genetic sampling, spatial capture–recapture, Vulpes macrotis.

Résumé : Les populations de renards nains (Vulpes macrotis Merriam, 1888) dans le désert du Grand Bassin ont connu un déclin
et préoccupent de plus en plus les aménagistes. L’abondance croissante des coyotes (Canis latrans Say, 1823) et les interactions
intraguildes qui en découlent pourraient constituer une cause de ce déclin. Comme elle n’est pas facile à réaliser, la surveillance
concurrente de carnivores est rarement effectuée. Une approche possible de surveillance de carnivores discrets consiste à utiliser
l’échantillonnage génétique non invasif. Nous avons utilisé cette approche pour prélever de l’ADN de fèces de renards nains et
de coyotes et estimer leurs densités en 2013–2014 en Utah (États-Unis). Nous avons identifié les individus à la lumière de
génotypes de microsatellites et estimé la densité à l’aide de modèles de capture–recapture spatialement explicites multi-sessions.
La densité moyenne de renards nains était de 0,02 renard·km−2, alors que les densités de coyotes étaient jusqu’à quatre fois plus
élevées (0,07–0,08 coyote·km−2). Les densités de renards nains étaient significativement plus faibles que dans les années 1950,
mais semblables aux densités estimées à la fin des années 1990, ce qui indiquerait que les populations pourraient être en train
de se stabiliser après une baisse abrupte. Nos estimations de la densité de renards nains sont parmi les plus faibles documentées
pour l’espèce. Notre estimation des densités de coyotes constitue la première estimation publiée pour cette région et révèle que,
malgré une grande abondance apparente, ces densités sont faibles comparativement à celles d’autres régions. Nos résultats
portent à croire que les renards nains pourraient être en mesure de coexister avec des coyotes. [Traduit par la Rédaction]

Mots-clés : Canis latrans, coyote, densité, renard nain, échantillonnage génétique non invasif, capture–recapture spatiale, Vulpes
macrotis.

Introduction
To evaluate the effectiveness of management strategies in-

tended to maintain harvested populations, control nuisance spe-
cies, or conserve imperiled species, managers require reliable
estimates of population density or abundance (Williams et al.
2002; Solberg et al. 2006; Brøseth et al. 2010; Granjon et al. 2017).
Capture–recapture techniques can provide reliable estimates of
abundance (Williams et al. 2002; Efford and Fewster 2013), but
conventional methods of capture and recapture (e.g., live capture)
are often challenging and cost-prohibitive for long-term monitor-
ing (Pollock et al. 2002; Manning and Goldberg 2010). Capture–

recapture analyses based on noninvasive genetic sampling (NGS)
provide alternative strategies that have seen rapid technological
advancements (Lukacs and Burnham 2005; Miller et al. 2005;
Schwartz et al. 2007; Thompson et al. 2012) and increased use by
practitioners (Brøseth et al. 2010; Stenglein et al. 2010b; Russell
et al. 2012; Granjon et al. 2017). By using biological material (e.g.,
feces, hair) left in the environment to identify individuals (via
unique genotypes), NGS can be coupled with capture–recapture
techniques without the need to handle or observe individuals, an
important consideration when dealing with taxa that are difficult
to capture or sensitive to handling (Waits and Paetkau 2005;
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Schwartz et al. 2007). Consequently, NGS may increase sample
sizes over conventional capture techniques and provide an effi-
cient monitoring strategy that may be employed over extended
spatial and temporal scales (Solberg et al. 2006; Brøseth et al. 2010;
Stansbury et al. 2014).

The kit fox (Vulpes macrotis Merriam, 1888) is a species of conser-
vation concern that is believed to be experiencing range-wide
population declines (Dempsey et al. 2014); one subspecies, the San
Joaquin kit fox (Vulpes macrotis mutica Merriam, 1902) is listed as
federally endangered in the United States (U.S. Fish and Wildlife
Service (USFWS) 1998). In the Great Basin Desert, kit foxes were
the most abundant carnivore through the mid-1900s and were
increasing in abundance during the 1950s (Egoscue 1956, 1962,
1975; Arjo et al. 2007). More recently, population declines have
been documented (Arjo et al. 2007), and it has been suggested that
declines may have been related to increasing coyote (Canis latrans
Say, 1823) abundance (Arjo et al. 2007). No formal population es-
timates, however, have been conducted for coyotes in the Great
Basin Desert over this period. Coyotes are often considered a nui-
sance species, and intraguild predation by coyotes is a major
threat to kit fox persistence across their range (Nelson et al. 2007;
Kozlowski et al. 2012). Coyotes have been documented as the pri-
mary cause of kit fox mortality at multiple sites (Cypher and
Spencer 1998; Kozlowski et al. 2012), and coyote activity has been
positively associated with local extinction of kit foxes (Lonsinger
et al. 2017).

Carnivores tend to be elusive, occur in relatively low densities,
and are wide-ranging, making them particularly challenging to
monitor (Gese 2001). Efforts to monitor kit foxes and coyotes in
the Great Basin Desert have included predator control indices,
scat deposition surveys, live capture, den monitoring, and radio-
telemetry (Arjo et al. 2007; Kozlowski et al. 2012; Kluever et al.
2013; Dempsey et al. 2014, 2015). Scat deposition surveys provide
indices of relative abundance (Gese 2001) but may suffer from
misidentification of sign (Lonsinger et al. 2015b) and often fail to
account for spatiotemporal variation in scat detection (Kluever
et al. 2015; Lonsinger et al. 2016). Live captures and radiotelemetry
are expensive and time-consuming (Gese 2001), limiting the spa-
tial and temporal extent of monitoring, and den monitoring often
requires telemetered animals to locate dens (e.g., Arjo et al. 2003).
Recent live-capture efforts in the Great Basin Desert for kit foxes
experienced insufficient capture and recapture rates (<1 capture
per 100 trap nights) to effectively estimate abundance (Kluever
and Gese 2017). Similarly, despite live capture of coyotes in the
Great Basin Desert via foothold traps and helicopter net-gunning
(Kluever and Gese 2016), researchers relied on indices of relative
abundance from scat deposition surveys to quantify population
response to habitat manipulations (Kluever et al. 2017). Thus,
managers still require cost-efficient and effective methods to
monitor kit foxes and coyotes and would benefit from an ap-
proach that facilitates concurrent, long-term monitoring of these
species over large spatial extents.

Here, we combined NGS and spatially explicit capture–recapture
(SECR) models to monitor kit fox and coyote populations over four
sessions within a 2-year period. For each species, our primary
objectives were to generate likelihood-based estimates of density
from multisession SECR models and derive estimates of abun-
dance. We aimed to compare kit fox and coyote density estimates
with one another and compare kit fox density estimates with
historical estimates at our study site. Coyote density has not been
estimated previously at our study site. Additionally, we aimed to
use SECR models to explore the role of habitat features on spatial
variation in each species’ density. We predicted that the density of
coyotes would be greater than that of kit foxes and that both
species would have higher densities in summer (following annual
reproduction and prior to juvenile dispersal) than in winter. We
hypothesized that coyote densities would be positively associated
with shrub cover (Nelson et al. 2007; Kozlowski et al. 2012; Lonsinger

et al. 2017) and negatively associated with distance to water
(Golightly and Ohmart 1984; Arjo et al. 2007). We hypothesized
that kit fox densities would be negatively related to shrub cover
and positively related to distance to water, owing to avoidance of
coyote activity centers (Kozlowski et al. 2012).

Materials and methods

Study area
The study extent was approximately 3015 km2, encompassing

the eastern portion of the U.S. Army’s Dugway Proving Ground
and surrounding lands (managed primarily by the U.S. Bureau of
Land Management) in Tooele County, Utah, USA (Lonsinger et al.
2015b). The study extent (referred to collectively hereafter as Dug-
way) featured low-lying desert basins demarcated by abrupt range
formations typical of the cold desert systems of the Great Basin
Desert. Elevations ranged from approximately 1200 m to 2100 m
above sea level (Arjo et al. 2007). Land cover at lower elevations
included cold desert playa, cold desert chenopod shrubland, veg-
etated and unvegetated dunes, and non-native invasive grasslands.
At higher elevations, arid shrubland and open woodland land-cover
classes were common. Greasewood (Sarcobatus vermiculatus (Hook.) Torr.)
shrubland was distributed across elevations (Lonsinger et al. 2017).
Winters at Dugway were cold (January mean high temperature =
4 °C) and summers were moderate (July mean high temperature =
36 °C; Lonsinger et al. 2015b). Annual mean precipitation was
�20 cm (Arjo et al. 2007).

Surveys and sample collection
We conducted carnivore scat surveys over four primary sam-

pling sessions, including two winters (January–March) and two
summers (July–August) over 2 years (2013 and 2014). Fifteen 5 km
transects were randomly distributed along dirt and gravel roads
to monitor kit foxes and coyotes as part of another study
(Dempsey et al. 2015), and we retained these transects. We selected
15 additional random transects by dividing the study area into
25 km2 cells (a size similar to the average size of a kit fox home
range at Dugway; Dempsey et al. 2014), randomly selecting 15 cells
without replacement and identifying a 5 km transect along dirt or
gravel roads within each selected cell (Fig. 1; Lonsinger et al.
2015b). These 30 transects (hereafter, multi-occasion transects)
were surveyed three to five times per session. We employed a
sampling interval (the period between sampling occasions within
a session) of 14 days, which has been shown to be an optimal
temporal NGS design for kit foxes and coyotes in our system
(Lonsinger et al. 2015a). As part of a concurrent study investigating
canid occupancy dynamics, 60 sites (each 6.25 km2) were ran-
domly selected from a grid of 576 cells superimposed on our study
area and excluding cells containing portions of our multi-
occasion transects; within each of these sites, four transects (each
500 m; hereafter, single-occasion transects) were established
along roadways and surveyed once per session (Lonsinger et al.
2017). We surveyed all transects for carnivore scats with two ob-
servers. We recorded the location of each scat detected, collected
�0.7 mL of fecal material from the side of the scat (Stenglein et al.
2010a) into 1.4 mL of DETS buffer (20% DMSO, 0.25 mol·L−1 EDTA,
100 �mol·L−1 Tris, pH 7.5, and NaCl to saturation; Seutin et al.
1991), and removed remaining portions of the scat.

Noninvasive fecal DNA can suffer from low DNA amplification
success and genotyping errors (Waits and Paetkau 2005). Consid-
ering these challenges, previous NGS research using fecal DNA for
capture–recapture analyses recommended collecting 2.5–3 times
as many scat samples as the number of individuals expected in the
population (Solberg et al. 2006) to ensure a sufficient number of
captures and recaptures. Rates of scat accumulation were lower in
winter than in summer for both kit foxes and coyotes (Lonsinger
et al. 2015a), and consequently, we conducted four or five surveys
during winter and three or four surveys during summer on each
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of the 5 km multi-occasion transects. We expected these levels of
effort to yield sample sizes for kit foxes that were ≥3 times the
expected population sizes (Solberg et al. 2006). Rates of scat accu-
mulation were greater for coyotes than kit foxes (Lonsinger et al.
2015a); therefore, we expected this level of effort to be sufficient
for coyotes. To reduce costs during the final sampling occasion
(i.e., final occasion of summer 2014), we collected only scats be-
lieved to be from kit foxes based on size (Lonsinger et al. 2015b).

Genetic analysis
We performed DNA extraction and polymerase-chain reaction

(PCR) amplification in a laboratory dedicated to low-quality sam-
ples to minimize contamination risk. We determined species
identification for scats using mitochondrial DNA (mtDNA; De Barba
et al. 2014) and followed DNA storage, extraction, amplification, and
scoring methods detailed in Lonsinger et al. (2015a).

For individual identification of kit fox samples, we amplified
samples with primers for nine nuclear DNA (nDNA) microsatellite
loci: Cxx103 (Holmes et al. 1995); Cxx250 (Ostrander et al. 1993);
Cxx377 (Ostrander et al. 1995); FH2001, FH2010, FH2054, and FH2088
(Francisco et al. 1996); CPH3 (Fredholm and Wintero 1995); and

VVE-M19 (Cullingham et al. 2006). These loci were combined with
two sex identification primers (CF-hprt and VV-sry; Berry et al.
2007) into a single multiplex. The PCR conditions for the 7 �L
(total volume) multiplex for each primer pair were 0.29 �mol·L−1

Cxx103, 0.09 �mol·L−1 VVE-M19, 0.06 �mol·L−1 FH2054, 0.04 �mol·L−1

Cxx250, FH2001, FH2010, and CPH3, 0.03 �mol·L−1 FH2088 and CF-hprt,
and 0.01 �mol·L−1 Cxx377 and VV-sry, combined with 1× concen-
trated Qiagen Master Mix, 0.5× concentrated Q solution, and 1 �L
of DNA extract. The PCR thermal profile had an initial denatur-
ation of 94 °C for 15 min, 15 touchdown cycles at 94 °C for 30 s
(denaturation), 63 °C for 90 s (annealing; decreasing by 0.5 °C per
cycle) and 72 °C for 60 s (elongation), 20 cycles at 94 °C for 30 s
(denaturation), 55 °C for 90 s (annealing) and 72 °C for 60 s (elon-
gation), and a final elongation at 60 °C for 30 min.

For individual identification of coyote samples, we amplified
samples with primers for nine nDNA microsatellite loci: Cxx119
(Holmes et al. 1995); Cxx173 (Ostrander et al. 1993); FH2001, FH2054,
FH2088, and FH2137 (Francisco et al. 1996); FH2611 (Eichmann et al.
2004); and FH2670 and FH3725 (Guyon et al. 2003). These loci were
combined with two sex identification primers (DBX6 and DBY7;

Fig. 1. Trapping grid superimposed on 5 km multi-occasion and 500 m single-occasion scat deposition transects to identify conceptual traps
(grid centers) for spatially explicit capture–recapture analysis of kit foxes (Vulpes macrotis) and coyotes (Canis latrans) in the Great Basin Desert
(2013–2014). Single-occasion and multi-occasion traps represent those grid cells that were surveyed, with the value indicating the total length
of transects within the cell; session-specific effort for cells with multi-occasion traps is the length of transects times the session-specific
number of surveys.
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Seddon 2005) into a single multiplex. The PCR conditions for the 7 �L
(total volume) multiplex for each primer pair were 0.11 �mol·L−1

Cxx119, 0.07 �mol·L−1 FH2670, 0.05 �mol·L−1 FH2611 and DBX6,
0.04 �mol·L−1 FH2001, FH3725, and DBY7, 0.03 �mol·L−1 FH2054,
FH2088, and FH2137, and 0.02 �mol·L−1 Cxx173, combined with 1×
concentrated Qiagen Master Mix, 0.5× concentrated Q solution,
and 2 �L of DNA extract. The PCR thermal profile had an initial
denaturation of 94 °C for 15 min, 13 touchdown cycles at 94 °C for
30 s (denaturation), 62 °C for 90 s (annealing; decreasing by 0.4 °C
per cycle), and 72 °C for 60 s (elongation), 28 cycles at 94 °C for 30 s
(denaturation), 57 °C for 90 s (annealing), and 72 °C for 60 s (elon-
gation), and a final elongation at 60 °C for 30 min.

We conducted all PCR procedures on a BioRad Tetrad thermo-
cycler (Bio-Rad, Hercules, California, USA) with negative and pos-
itive controls included with each reaction. We visualized results
using a 3130xl DNA Analyzer (Applied Biosystems, Inc., Foster
City, California, USA) and scored allele sizes with Genemapper 3.7
(Applied Biosystems, Inc.).

To minimize genotyping errors, we employed multiple meth-
ods. We dropped low-quality samples failing species identifica-
tion (Kohn et al. 1999). For individual identification, we used a
multiple-tube approach (Taberlet et al. 1996) and initially ampli-
fied each sample in two PCR replicates, dropping samples that
failed at >50% of nDNA loci (Paetkau 2003). For those retained, we
performed additional PCR replicates in duplicate until consen-
sus genotypes were achieved across loci or we reached eight
replicates for kit foxes or six replicates for coyotes. We com-
pared replicates and established consensus genotypes with
ConGenR (Lonsinger and Waits 2015), which requires that al-
leles of heterozygous and homozygous genotypes be observed ≥2
and ≥3 times, respectively. For each species, we used samples col-
lected in winter 2013 that achieved consensus genotypes across all
loci and matched ≥1 other sample (kit fox = 24; coyote = 79) to
calculate the probability that two siblings have identical multilo-
cus genotypes (P(ID)sibs; Waits et al. 2001) with GenAlEx 6.5
(Peakall and Smouse 2006). We then identified the number of loci
required to reliably distinguish individuals at P(ID)sibs < 0.01 for
each species (Waits et al. 2001). We culled samples that failed to
achieve consensus genotypes at a sufficient number of loci. We
compared samples with identical or near-identical multilocus ge-
notypes (Creel et al. 2003) with ConGenR (Lonsinger and Waits
2015) and re-evaluated scoring of near matches to check for incon-
sistencies. For matches, we considered consistency in sex identi-
fication and compared intersample distances (Smith et al. 2006),
scrutinizing and re-analyzing potential conflicts. We estimated
genotyping error rates with ConGenR, which quantifies genotyp-
ing error rates by comparing replicated genotypes with their re-
spective consensus genotype (Lonsinger and Waits 2015). We
evaluated the reliability of multilocus genotypes observed only
once (i.e., single-capture individuals) with RELIOTYPE (Miller et al.
2002) and retained samples with a reliability of ≥99%.

Minimum counts and capture–recapture analyses
For each species, we used the number of unique multilocus

genotypes identified within each session to represent a naïve min-
imum count. Individuals of both species have the capacity to em-
igrate from and subsequently return to Dugway. Thus, we did not
include individuals into the minimum count for a session unless
the individual was detected during that session. For example, an
individual detected only in winter 2013 and winter 2014 was not
included in summer 2013, as it could have left the study area.

Covariates used to model spatial variation in density for each
species were obtained from available GIS layers, and we processed
all layers with ArcGIS 10.3 (ESRI, Redlands, California, USA). Soil
was expected to influence kit foxes, which use burrows year-
round (Arjo et al. 2003), and has been documented to influence
local colonization rates (Lonsinger et al. 2017). We obtained a soil
layer from Utah’s Automated Geographic Reference Center (http://

gis.utah.gov/) and reclassified soils into four categories (silt, fine
sand, blocky loam, and gravel; sensu Dempsey et al. 2015). Vege-
tation data were obtained from the 2012 LANDFIRE program
(http://landfire.cr.usgs.gov/) and reclassified into six land-cover
forms (woodland, shrubland, subshrubs, grasslands, sparsely veg-
etated, and developed). From this, the proportion of cover attrib-
utable to shrubland and woodland was calculated, representing
land cover related to coyote and kit fox occupancy (Lonsinger et al.
2017). Areas with greater shrubland and woodland cover were ex-
pected to support greater densities of shared mammalian prey
(Kozlowski et al. 2008, 2012; Byerly et al. 2018). Water was expected
to influence space use of carnivores in this arid environment (Arjo
et al. 2007). We identified water sources based on Dugway Natural
Resource Program GIS layers, satellite imagery, and field surveys
(Lonsinger et al. 2017).

We developed encounter histories for individuals of each spe-
cies within each session. Following the procedures of Thompson
et al. (2012) and Russell et al. (2012), we superimposed a grid over
the study area and used the centroid of each grid cell as a “con-
ceptual” trap (Fig. 1). With this approach, detections of individuals
within a grid cell were assigned to their respective cells centroid,
effectively treating multiple detections of the same individual
within a grid cell during a single survey (i.e., clusters) as a single
detection and reducing the influence of spatial autocorrelation on
density estimates (Thompson et al. 2012). Captures of an individ-
ual across multiple traps within a single occasion can be used to
characterize the spatial point process (Borchers and Efford 2008).

With a goal of monitoring kit foxes and coyotes concurrently,
we selected a grid size of 6.25 km2 (2.5 × 2.5 km) by considering the
home range sizes of kit foxes (2.5–11.6 km2; List and Cypher 2004)
and coyotes (5.5–6.9 km2; Gese et al. 1988; Nelson et al. 2007)
across their ranges. Hall et al. (2013) and Kluever et al. (2017) used
a spacing of 2.6 km between survey sites for canids at Dugway, a
distance that they derived from the home ranges of coyotes in arid
environments (Nelson et al. 2007), as an approximation of the
mean daily movement distances. Thus, we expected that our grid
(for which each conceptual trap was 2.5 km apart) would provide
sufficient spacing to capture individuals in multiple conceptual
traps. The grid aligned with that used to identify single-occasion
sites, and each of these sites represented one trap. Additionally,
the grid intersected longer, multi-occasion transects, demarcat-
ing multiple traps from each transect. Effort varied across tran-
sects and grid cells. To account for variation in effort among
conceptual traps, we represented effort for each conceptual trap
by the total length of transects surveyed within each grid cell
(where repeat surveys on multi-occasion transects were summed;
Fig. 1).

We fit SECR models by maximizing the full likelihood with the
R package “secr” (Efford 2015; R Core Team 2015) and using a
multisession formulation, which allows for improved estimation
of parameters shared across sessions (Efford et al. 2009). In addi-
tion to generating density estimates (D̂), SECR models estimate g0
and �, which jointly describe the change in detectability with
increasing distance from an animal’s activity center (Efford et al.
2009). We used a half-normal detection function (or circular bi-
variate normal home range) in which g0 and � represent the
intercept and scale parameter, respectively (Efford et al. 2009). To
estimate density and derive an estimate of abundance (N̂ = D̂ ×
effective sampling area), the effective sampling area (i.e., the state
space) must be appropriately defined. We evaluated the effect of
buffer width around traps by considering changes in the log-
likelihood, D̂, and the effective sampling area while increasing
widths from 1 to 15 km. We selected the width at which the rate of
change in both the log-likelihood and effective sampling area
stabilized and D̂ stabilized at the fifth decimal place. We applied
this buffer around traps, creating a habitat mask with grid points
evenly distributed every 2.5 km; spatial covariates characterizing
the area around each point (within a 1.25 km radius) — the
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majority soil type and habitat, the proportion of shrubland and
woodland cover, and the mean distance to water — were ex-
tracted for modeling D̂.

We first evaluated capture models in which g0 and � varied
across sessions and were either constant or varied by time, trend,
or sex within sessions. Additionally, we considered both interac-
tion and additive effect models of sex with time and trend. We
then used the best-fit capture model when fitting models for D̂.
Models formulated for D̂ allowed variation among sessions. Addi-
tionally, we fit models of D̂ (overall and by sex) using the afore-
mentioned spatial covariates believed to influence kit fox and (or)
coyote space use and combinations of these predictors. We also
considered models including a linear trend, as we expected that
kit fox and coyote densities may increase and decrease, respec-
tively, from east to west at Dugway. We used Akaike’s information
criterion with small sample size correction (AICc) and Akaike
weights to compare the relative fit of models for each species
(Burnham and Anderson 2002). Single top models of capture and
D̂ could be identified within each species’ model set, with the next
closest model having little to no support based on �AICc. We
calculated N̂ and confidence bounds by multiplying session-
specific D̂ and associated confidence limits by the effective sam-
pling area (Russell et al. 2012).

Results

Surveys, genetic analysis, and minimum counts
Within each session, 570–870 km of transects were surveyed

(Table 1). The mean time between multi-occasion transect surveys
(within a session) was �14 days (mean ± standard deviation (SD) =
13.7 ± 0.93 days, range = 9–18 days), with departures from 14 days
resulting from limited access (e.g., military training activities). We
collected 3752 carnivore scats (Table 2). We observed high mtDNA
amplification rates, with successful species identification for
93.3% of winter and 82.8% of summer samples. We identified 21.6%
and 63.3% of samples as kit fox and coyote, respectively (Table 2).

Only 2.5% of samples were non-target carnivores, 1.1% were mixed
(i.e., contained DNA of >1 species), and 11.5% failed (Table 2).

Six loci were required to achieve a P(ID)sibs < 0.01 for kit foxes,
excluding sex identification markers. Kit fox individual identifi-
cation success rates (i.e., the proportion of samples identified
to species for which a successful individual identification was
achieved) ranged from 59.4% (summer 2013) to 91.4% (winter 2013).
Across sessions, 109 kit foxes were identified (Table 2), among
which 102 individuals had consensus genotypes at ≥8 loci. Sex was
determined for all individuals. We captured 36–50 kit foxes in
each session (Table 2; Fig. 2) and 37 individuals across ≥2 sessions.
We captured more males (60%) than females (Table 2). For samples
in the final dataset, genotyping error rates per multilocus geno-
type were relatively low (overall allelic dropout rate = 17.3%; over-
all false allele rate = 3.4%), suggesting that the probability of a
genotyping error was low when the mean number of replicates (5)
was performed (i.e., (0.1733 + 0.0342)5 = 3.85 × 10−4).

Five loci were required to achieve a P(ID)sibs < 0.01 for coyotes,
excluding sex identification markers. Coyote individual identifi-
cation success rates ranged from 63.1% (summer 2013) to 90.2%
(winter 2013). Across sessions, 302 coyotes were identified (Table 2),
among which we obtained consensus genotypes across ≥ 8 loci for
296 individuals and sex identification for all individuals. We cap-
tured 128–151 coyotes during each session (Table 2; Fig. 2), with
140 individuals being captured in multiple sessions. Overall, 53%
of captured coyotes were male (Table 2). Genotyping error rates
per multilocus genotype were relatively low (overall allelic drop-
out rate = 14.7%; overall false allele rate = 4.2%) for samples in the
final dataset, resulting in a low probability of a genotyping error
(i.e., (0.1472 + 0.0418)5 = 2.41 × 10−4) at the mean number of repli-
cates (5).

Spatial capture–recapture analyses
Transects were distributed within 146 conceptual traps (Fig. 1)

with a mean distance of 2.7 km between traps. Effort remained

Table 1. Survey effort for kit fox (Vulpes macrotis) and coyote (Canis latrans) fecal DNA
samples used to estimate density of each species in western Utah, USA, over winter (W)
and summer (S) sessions from 2013 to 2014.

Multi-occasion
transects (30)a

Single-occasion
transects (60)b

Session Occasions Total (km) Occasion Total (km) Total (km)

W 2013 4 600 1 120 720
S 2013 3 450 1 120 570
W 2014 5 750 1 120 870
S 2014 4 600c 1 120 720

aMulti-occasion transects were 5 km in length.
bSingle-occasion transects each totaled 2 km in length (four 500 m transects).
cSummer 2014 totals reflect effort for kit fox; coyote samples were not collected on the final

sampling occasion of multi-occasion transects (coyote multisession effort = 450 km).

Table 2. Number of scats detected during fecal DNA surveys identified as kit fox (Vulpes macrotis), coyote (Canis
latrans), non-target carnivore (NTC) species, a mixed sample, or a failed sample based on mitochondrial DNA
species identification, minimum counts of individuals (Ind.) based on unique multilocus genotypes, and pro-
portion male (M) in western Utah, USA, over winter (W) and summer (S) sessions from 2013 to 2014.

Kit fox Coyote Other

Session Scats Ind. (M) Scats Ind. (M) NTCa Mixedb Failed Total

W 2013 151 40 (0.68) 378 128 (0.54) 9 3 61 602
S 2013 175 36 (0.56) 626 128 (0.47) 37 10 230 1078
W 2014 301 50 (0.58) 645 141 (0.51) 23 16 28 1013
S 2014 183 38 (0.47) 725 151 (0.52) 23 15 113 1059

Total 810 109 (0.60) 2374 302 (0.53) 92 44 432 3752
aNon-target carnivores (NTC) included domestic dog, red fox, bobcat, and cougar.
bMixed samples contained mitochondrial DNA from >1 species.
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constant across sessions at conceptual traps characterized by
single-occasion transects (2 km) but varied across sessions for
traps associated with grid cells incorporating multi-occasion tran-
sects. Mean effort across sessions and species for multi-occasion
sites was 4.9 km (SD = 4.0 km; range = <1–21 km). For both species,
the change in effective sampling area, log-likelihood, and D̂ stabi-
lized at a buffer width of 7.5 km, resulting in a state space of
3663 km2 (Fig. 1).

Among the 12 capture models for g0 and �, the top kit fox model
included variation among sessions and a trend in capture parame-
ters within sessions (Table 3). The next closest model was >23 �AICc
from the top model, indicating relatively little or no support
(Table 3). Similarly, the top coyote capture model included varia-
tion among sessions and time-varying capture parameters within
sessions, and the next closest model was >68 �AICc from the top
model (Table 3). We attempted to fit 24 models of density for each
species. Models containing the covariate distance to nearest water
failed to converge, so we rescaled this parameter to mean = 0 and
SD = 1 but failed to achieve convergence. Consequently, we fit
14 models for each species (Appendix Table A1). For both species,
the null model of density varying only by sampling session (i.e.,
D � session) received the greatest support, with the next closest
kit fox and coyote models having �AICc values of >136 and >728,
respectively (Appendix Table A1). We used D̂ from these top
models to estimate abundances. Kit fox D̂ was similar across
sessions (0.018–0.022 animals·km−2; Table 4). Coyote D̂ (0.065–
0.079 animals·km−2) was three to four times greater than that
of kit foxes (Table 4).

Kit fox derived N̂ ranged from 66 to 82 across sessions, whereas
coyote N̂ was significantly higher, ranging from 239 to 288 (Fig. 2).
Within each species, the high degree of overlap in 95% confidence
intervals among sessions suggested that populations were rela-
tively stable during the study (Fig. 2). We did not detect significant
differences in seasonal abundance (summer vs. winter) for either

species. For both species, N̂ was significantly higher than the min-
imum counts across sessions (Fig. 2).

Discussion
Noninvasive genetic sampling can increase detection of elusive

species over traditional live capture (Kelly et al. 2012; Mumma
et al. 2015), and SECR modeling can minimize problems associated
with movement of wide-ranging species on the periphery of a
study area (Blanc et al. 2013; Morin et al. 2016). Furthermore, con-
current sampling of sympatric species can reduce costs compared
with monitoring species independently (Williams et al. 2009;
Lonsinger et al. 2015a). Kit foxes are managed at Dugway as a
species at risk and have been the focus of monitoring and research
since the 1950s (Egoscue 1956; Arjo et al. 2007); still, density esti-
mates were rarely generated due to challenges in capturing and
monitoring a sufficient number of individuals (Arjo et al. 2007).
Although coyotes impact kit foxes through intraguild predation
and, therefore, are of management interest (Arjo et al. 2007;
Kozlowski et al. 2012; Lonsinger et al. 2017), managers have relied
primarily on indices of relative abundance for coyotes due to
challenges in capturing a sufficient number of individuals to
quantify population size (Arjo et al. 2007; Kluever et al. 2017). We
demonstrated that NGS could be effectively combined with SECR
modeling in our study area to concurrently generate estimates of
density for sympatric kit foxes and coyotes. In contrast to our
predictions though, we did not detect spatial variation in density,
nor did we have sufficient precision to detect seasonal changes in
density for either species.

Kit fox density
Kit foxes were reportedly the most abundant carnivore at Dugway

in the 1950s and 1960s, with densities from 1955–1958 and 1966–
1969 ranging from 0.15 to 0.22 and from 0.10 to 0.21 foxes·km−2,
respectively (Egoscue 1956, 1962, 1975; Arjo et al. 2007). Between
1997 and 2001, kit fox densities were estimated to have declined to
0.02–0.06 foxes·km−2 (Arjo et al. 2007); our mean density estimate
of 0.02 foxes·km−2 is comparable, supporting the conclusions of
previous researchers that kit fox populations have declined sig-
nificantly. Although comparisons of estimates of kit fox densities
over time should be viewed with prudence because of differences
in methodology and study extent, the study extents used at Dug-
way to estimate density of kit foxes have all been centered on the
same desert basin and therefore likely reflect similar environmental
conditions.

Comparisons of kit fox density estimates between Dugway and
other regions suggest that foxes in Utah’s West Desert may be
at greater risk than previously recognized. White and Garrott
(1999) highlighted the “marked instability” of kit fox popula-
tions, noting that the environmental stochasticity of desert
climates can drive rapid changes in fox densities. Estimates of
endangered San Joaquin kit fox populations demonstrated this
instability, with densities from three sites in California varying
from 0.12 to 0.24 foxes·km−2 (Carrizo Plain Natural Area), 0.2 to
1.7 foxes·km−2 (Naval Petroleum Reserves), and 0.7 to 15.2 foxes·km−2

(Camp Roberts Army National Guard Training Site), respectively,
over relatively short periods (Ralls and White 1995; White and
Garrott 1999). Historical estimates of kit fox density in Utah
(Egoscue 1956, 1962, 1975) were comparable with some estimates
observed in California, as well as estimates from Arizona (0.22–
0.28 foxes·km−2; Zoellick and Smith 1992), but were lower than
estimates in West Texas (0.39 foxes·km−2; McLaughlin 1979). Our
estimates suggest that kit fox population densities at Dugway
have declined markedly and are currently lower than estimates
reported in other regions.

Coyote density
Coyotes were native to the Great Plains of central North America

through the early 1800s, but expanded their distribution in re-

Fig. 2. Derived abundance estimates from multisession spatial
capture–recapture models for kit foxes (Vulpes macrotis; solid circles)
and coyotes (Canis latrans; solid squares) with 95% confidence intervals
in western Utah, USA, over winter (W) and summer (S) sessions from
2013 to 2014. Open symbols indicate the minimum number of kit
foxes (circles) and coyotes (squares) identified within each session
based on unique multilocus genotypes.
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sponse to the removal of apex predators and anthropogenic dis-
turbances (Gompper 2002). Although coyotes were rare at Dugway
in the 1950s (Arjo et al. 2007), indices of coyote abundance (e.g.,
number taken per hour by predator control programs, scat depo-
sition surveys) suggested that coyote abundance increased in the
latter half of the 20th century (Arjo et al. 2007; Kozlowski et al.
2008). Despite an interest in coyote – kit fox interactions at Dug-
way (and elsewhere), coyote density estimates have not been re-
ported for the site. Our coyote density estimates were the first
generated for the area and suggested that the density estimates
of coyotes were three to four times greater than those for kit
foxes, supporting previous conclusions from relative abundance in-
dices that coyotes have usurped kit foxes as the numerically domi-
nant carnivore at Dugway (Arjo et al. 2007). Across their range,
Knowlton et al. (1999) reported coyote densities ranging from 0.2 to
2.3 coyotes·km−2, but lower densities (0.14 coyotes·km−2) have been
reported where coyotes compete with kit foxes (Ralls and White
1995). Our density estimates are lower still (<0.1 coyotes·km−2) and
may reflect relatively limited resources at the site when compared
with other areas within their range.

Species interactions and habitat associations
It has been hypothesized that increased coyote abundance at

Dugway was facilitated by increased water availability (Arjo et al.
2007; Kozlowski et al. 2012). Indeed, coyotes have higher water
demands than kit foxes (Golightly and Ohmart 1984), and at our
study site, coyotes were documented at water sources 231 times
more than kit foxes (Hall et al. 2013). Our models incorporating
distance to nearest water failed to converge, and we were unable

to evaluate the influence of water on spatial variation in canid
densities. Nonetheless, recent research found no relationship be-
tween coyote occupancy and proximity to water (Lonsinger et al.
2017), no response by coyotes to the removal of water sites
(Kluever and Gese 2016), and no difference in detection of coyotes
in areas with and without free water (Hall et al. 2013). Collectively,
these studies provide multiple lines of evidence that water is not
driving the spatial arrangement of coyotes at Dugway.

Kit fox population declines have been attributed to the influ-
ence of intraguild predation by coyotes, as well as habitat change
and associated changes in prey communities (Arjo et al. 2007;
Kozlowski et al. 2008, 2012; Byerly et al. 2018). Previous research
suggested that coyotes selected shrubland habitats to maximize
cover and prey, while kit foxes selected habitats that reduced
predation risk (Nelson et al. 2007; Kozlowski et al. 2012). Our mod-
els incorporating spatial covariates received little to no support.
Both canids are territorial and therefore density may be relatively
similar across the study site. Alternatively, the resolution of our
covariates, scale of study, or sample sizes may have been inade-
quate to model spatial variation in densities. Nevertheless, den-
sity can be estimated reliably with a homogenous density model,
even when true density is heterogeneous (Efford and Fewster
2013).

The occupancy of kit foxes is suppressed by coyote activity at
Dugway (Lonsinger et al. 2017). Equilibrium occupancy analyses
suggested that kit fox occupancy may have stabilized in the pres-
ence of coyotes (Lonsinger et al. 2017). Our kit fox density esti-
mates are comparable with estimates from 1997, suggesting that
while kit fox populations have declined significantly since the
mid-1950s, they may have stabilized over recent years. Kit foxes
are territorial and generally monogamous (McGrew 1979); thus,
stabilizing occupancy would be expected to occur in concert
with stabilizing densities. Intraguild predation theory predicts
that under conditions supporting stable coexistence, both the
intraguild predator (e.g., coyotes) and intraguild prey (e.g., kit
foxes) would occur at densities lower than either would occur
individually (Holt and Polis 1997; Verdy and Amarasekare 2010).
Our results align with these predictions. Despite seemingly dra-
matic increases in coyotes at Dugway, density estimates for coy-
otes are among the lowest reported, as are estimates for kit foxes.

At Dugway, recent home range size estimates for kit foxes
(19.45–20.5 km2; Dempsey et al. 2014; Kluever and Gese 2017) were
significantly larger than estimates reported across their range
(2.5–11.6 km2; List and Cypher 2004). Recent estimates of coyote
home ranges at Dugway (mean = 35.2 km2, standard error (SE) =
2.3; Kluever and Gese 2016) also greatly exceeded estimates from
other sites (5.5–6.9 km2; Gese et al. 1988; Nelson et al. 2007). These
exceptionally large home ranges align with (i) our low density
estimates for both species, (ii) reduced densities predicted by in-
traguild predation theory under patterns of stable coexistence
(Holt and Polis 1997), and (iii) observed patterns in similar systems
involving coexistence of sympatric canids (Kamler et al. 2013). For

Table 3. Top four models and null model for multisession spatial capture–recapture models for g0 and � (which jointly describe capture
probability) fit for kit foxes (Vulpes macrotis) and coyotes (Canis latrans) in western Utah, USA, from 2013 to 2014, ranked based on Akaike’s
information criterion with small sample size correction (AICc) and differences in AICc (�AICc, where �i = AICci – AICcmin) and reported with
number of parameters (K), Akaike weight (wi), and log-likelihood (LL).

Kit fox Coyote

Modela,b,c K AICc �AICc wi LL K AICc �AICc wi LL

g0 � T × session � � T × session 20 3146.569 0 1 −1550.348 20 9468.274 68.924 0 −4713.339
g0 � t × session � � t × session 44 3169.765 23.196 0 −1524.244 44 9399.350 0 1 −4651.731
g0 � t + session � � t + session 20 3178.621 32.052 0 −1566.373 20 9502.588 103.238 0 −4730.496
g0 � T + session � � T + session 14 3215.218 68.649 0 −1592.200 14 9537.492 138.142 0 −4754.351
g0 � session � � session 12 3220.637 74.068 0 −1597.285 12 9592.022 192.672 0 −4783.719

aDensity (D) was modeled as varying only by session.
bAll models employed half-normal detection function.
cT = trend, t = time-varying, and session = primary sampling periods.

Table 4. Estimates (Est.) of density (D̂; animals·km−2), � (km), and g0,
with standard error (SE), of kit foxes (Vulpes macrotis) and coyotes (Canis
latrans) in western Utah, USA, over winter (W) and summer (S) sessions
from 2013 to 2014, based on multisession spatial capture–recapture
models formulated as implemented with the R package “secr”.

D̂ � g0

Session Est. SE Est. SE Est. SE

Kit foxa,c

W 2013 0.018 0.003 1.28 0.137 0.0013 <0.001
S 2013 0.019 0.003 1.56 0.154 0.0008 <0.001
W 2014 0.022 0.003 3.62 0.334 0.0002 <0.001
S 2014 0.020 0.003 0.91 0.164 0.0024 0.002

Coyotesb,c

W 2013 0.072 0.007 2.93 0.223 0.0001 <0.001
S 2013 0.068 0.006 2.01 0.085 0.0005 <0.001
W 2014 0.065 0.006 1.93 0.090 0.0006 <0.001
S 2014 0.079 0.007 1.75 0.073 0.0008 <0.001

aDensity � session; g0 � T × session; � � T × session (T = trend).
bDensity � session; g0 � t × session; � � t × session (t = time-varying).
cBased on half-normal detection function in which g0 and � jointly describe

capture probability.
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example, the density of Cape foxes (Vulpes chama (A. Smith, 1833))
was lower and the mean home range size was significantly larger
(27.7 km2) in areas with dominant black-backed jackals (Canis
mesomelas Schreber, 1775), when compared with densities and
home range sizes (9.2 km2) in areas without jackals (Kamler et al.
2013). Kamler et al. (2013) suggested that the enlarged home range
size may have allowed Cape foxes to employ spatiotemporal
avoidance of jackals, while still using similar habitats and prey
resources. Like Cape foxes, kit foxes at Dugway appear to employ
broad-scale habitat partitioning and fine-scale resource matching
(Lonsinger et al. 2017), while still accessing similar prey resources
(Kozlowski et al. 2008; Byerly et al. 2018).

We failed to detect reproductive pulses (i.e., increases in abun-
dance in the summer), and this likely reflects the precision of our
estimates. Recaptures were less likely along single-occasion tran-
sects, and sampling these transects more than once may improve
precision in future efforts. Alternatively, capture probability of
juveniles may be lower along linear features. If nightly foraging
events by juveniles are shorter in distance than those by adults,
juveniles may have lower probability of encountering transects. If
foraging events are shorter in duration or less frequent, juveniles
may be less likely to deposit scats along a transect, even if one is
encountered. One limitation of scat sampling was the inability to
determine the age of individuals, and we therefore were unable to
assess the potential for such differences.

Management implications
Challenges for many wildlife agencies are meeting their primary

missions, affording adequate protection to natural resources and
conserving sensitive species. Reliable and accurate estimates of pop-
ulation densities are paramount to making informed manage-
ment decisions regarding sensitive species, and management
agencies can benefit significantly from implementing the most
effective and innovative approaches for monitoring populations.
Our results demonstrated that NGS provided a viable and efficient
strategy for concurrent monitoring of sympatric canids. Our con-
clusions, along with those of Lonsinger et al. (2017), suggest that
while kit fox populations at Dugway have declined, populations
have stabilized over recent years and kit foxes may be able to
coexist with coyotes. Our study provided the first estimate of coy-
ote density in this system and revealed that despite being wide-
spread, coyote densities are quite low. Collectively, these findings
clarify for managers the potential impact of coyotes on kit foxes
and provide a framework for future population assessments. Our
findings lacked the precision to detect seasonal changes in abun-
dance. A common benefit to NGS is that an individual may be
captured >1 time in a given capture event. The large estimated
home range size of both species at Dugway, combined with the
dispersed sampling strategy (i.e., not sampling at concentration
points and (or) baiting), though, may have reduced recaptures and
influenced the precision of our estimates. If managers desire im-
proved precision of future estimates, it will likely be necessary to
sample all sites more than once.
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Appendix A

Table A1. Ranking of multisession spatially explicit capture–recapture models fit with the
R package “secr” for kit fox (Vulpes macrotis) and coyote (Canis latrans) densities (D) in
western Utah, USA, 2013–2014.

Modela,b K AICc �AICc wi LL

Kit foxc

D(session) 20 3146.57 0 1 −1550.348
D(session + SW) 21 3283.12 136.56 0 −1617.308
D(session + SW + sex) 22 3283.77 137.20 0 −1616.296
D(session + soil) 24 3285.05 138.48 0 −1614.206
D(session × SW) 24 3291.10 144.53 0 −1617.233
D(session × SW × sex) 32 3310.40 163.83 0 −1615.138
D(session × soil) 36 3322.66 176.10 0 −1614.844
D(session + habitat) 24 3340.95 194.38 0 −1642.157
D(session + x + y) 22 3358.19 211.62 0 −1653.508
D(session × x + y) 25 3362.83 216.26 0 −1651.704
D(Session) 18 3364.84 218.27 0 −1662.060
D(session + sex) 21 3368.19 221.62 0 −1659.841
D(session × habitat) 36 3369.94 223.37 0 −1638.482
D(session × sex) 24 3373.22 226.65 0 −1658.293

Coyoted

D(session) 44 9399.35 0 1 −4651.731
D(session + x + y) 46 10128.05 728.70 0 −5013.702
D(session + habitat) 48 10128.65 729.30 0 −5011.603
D(session × SW) 48 10130.35 731.00 0 −5012.450
D(Session) 42 10131.31 731.96 0 −5020.073
D(session × x + y) 49 10134.78 735.43 0 −5013.461
D(session + SW) 45 10136.34 736.99 0 −5019.038
D(session + sex) 45 10136.71 737.36 0 −5019.222
D(session × habitat) 60 10136.71 737.36 0 −5000.824
D(session + SW + sex) 46 10139.02 739.67 0 −5019.184
D(session + soil) 48 10139.04 739.69 0 −5016.797
D(session × sex) 48 10142.46 743.11 0 −5018.508
D(session × SW × sex) 56 10146.45 747.10 0 −5010.712
D(session × soil) 60 10157.53 758.18 0 −5011.234

Note: session, varying among sessions; Session, trend among sessions; x + y, linear trend surface;
habitat, categorical habitat classifications; SW, proportion of site characterized as shrubland or wood-
land; soil, categorical soil classifications; sex, sex groupings. Model support was evaluated based on
Akaike’s information criterion with small sample size correction (AICc). Each model is ranked based on
�AICc, where K is the number of parameters, wi represents Akaike weight, and LL is log-likelihood.

aModels for g0 and � (which jointly describe capture probability) are described in footnotes c and d.
bAll models employed half-normal detection function.
cCapture probability modeled as g0 � T × session and � � T × session (T = trend).
dCapture probability modeled as g0 � t × session and � � t × session (t = time-varying).
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