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Abstract

This paper documents the first U-Pb zircon ages for Ashfall Fossil Beds (Nebraska, USA), a

terrestrial Konservat-Lagerstätte mass-death assemblage that is arguably the most diverse

of its type and age. The Ashfall tephra was correlated with ignimbrites from the Bruneau-Jar-

bidge volcanic field (12.7–10.5 Ma) in southwest Idaho based on geochemical analysis. The

methods and geochemical data supporting the original age assessment of the ash bed,

however, were never published, and there has been a persistent misconception that date-

able heavy minerals (e.g., zircon) are absent. Notwithstanding, we recovered abundant zir-

cons from Ashfall Fossil Beds, and from an ash bed ~6 km to the southeast at Grove Lake,

Nebraska, and analyzed them through LA-ICP-MS. Our new zircon U-Pb age of 11.86 ±
0.13 Ma substantiates correlation of the Ashfall Fossil Beds deposit to tuffs originating from

the Bruneau-Jarbidge caldera (~12.7–10.5 Ma). Our U-Pb zircon age of 6.42 ± 0.06 Ma for

the Grove Lake ash bed coincides with supervolcanic activity in the Heise volcanic field

(6.6–4.3 Ma) in eastern Idaho. These new dates improve age constraints of strata compris-

ing the Ogallala Group and the important paleontological site. Moreover, we find that detrital

and airfall zircons are unevenly distributed in the stratified ash beds we describe herein and

presumably in similar deposits worldwide. Therefore, a higher-resolution sampling scheme

is necessary in such cases.

Introduction

Ashfall Fossil Beds State Historical Park (Fig 1), a U.S. National Natural Landmark, is a terres-

trial Konservat-Lagerstätte mass-death assemblage composed of Miocene amphibians, reptiles,

birds, and mammals within an ~3-m-thick vitric ash deposit [1, 2]. The area encompassing

Ashfall Fossil Beds has been the focus of nearly continuous paleontological research since its

discovery in the early 1950’s (e.g. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]). In recent decades, Ashfall is

frequently associated in the popular press (e.g. [12]) with the concerns regarding the scale and

potential impacts of Yellowstone supervolcanic eruptions (ejecta volumes >100 km3) [13].
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Ash beds, and K-bentonites as their weathered equivalents, are critical geochronological

marker horizons because tephrochronologic correlations or the radiometric dating of volcanic

minerals of airfall tephra constrain the depositional ages of host strata and are significant for

the development of a regional chronostratigraphy (e.g. [14]). Tephrochronology is a geochemi-

cal technique that correlates distal ashfall deposits to well-dated proximal volcanic tuffs

through the electron probe microprobe analysis of glass shards (e.g. [15, 16, 17]). Conventional

wisdom maintains that preferred phenocrysts for the direct radiometric dating of ash beds,

such as zircon and sanidine, are often rare or absent in distal airfall deposits [17].

Until the present paper, there have been no absolute ages published from Ashfall Fossil

Beds. The bulk-glass chemistry of the ash correlates with ignimbrites of the Bruneau-Jarbidge

volcanic field of the Snake River Plain in southeastern Idaho [18, 19, 20, 21]. This attribution is

plausible because the Lagerstätte has been assigned to the Clarendonian North American Land

Fig 1. Location of study areas of Ashfall Fossil Beds State Historical Park and Grove Lake, Nebraska. Base map is

DEM hillshade downloaded from the from USGS National Map Viewer (open access) at https://viewer.nationalmap.

gov/viewer/.

https://doi.org/10.1371/journal.pone.0207103.g001
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Mammal Age, which spans 13.6 to 10.3 Ma [2, 22], and which overlaps the span of active volca-

nism (12.7−10.5 Ma) in the Bruneau-Jarbidge field [16]. Information regarding the tephro-

chronologic correlation of the Ashfall tephra to tuffs from the Bruneau-Jarbidge caldera,

however, was disseminated primarily through personal communications (see [2]), conference

presentations and abstracts [18, 19, 21], and popular media reporting (e.g. [12, 20, 23, 24, 25]).

In no way do we criticize past researchers in underscoring these points. Rather, we amplify

their work through a different approach to dating, for which we describe rigorous specific

methods and data supporting tephrochronologic correlations, thereby certifying the age of the

ash and its Lagerstätte with the first directly measured absolute age at the site.

We conducted a direct test of the age of the Ashfall Lagerstätte by collecting samples from

four superposed stratigraphic intervals at Ashfall and another four from an ash bed cropping

out ~6 km to the southeast at Grove Lake (Fig 1). Zircon, sanidine, and other minerals used

for dating volcanoclastic sediments were hitherto assumed to be absent from the fine-grained

vitric ash deposit [2]. Processing our samples with standard mineral separation techniques,

however, yielded abundant zircon crystals in the lowermost sampled intervals at both loca-

tions. We dated these zircon crystals through laser ablation inductively coupled mass spec-

trometry (LA-ICP-MS) and obtained U-Pb ages of eruption. Ages of eruption are identical to

deposition within the limits of reproducibility of the technique (1–2%) [26]. Our new U-Pb

ages are a significant step in the development of a chronostratigraphic framework of Cenozoic

deposits in the Great Plains of North America. Furthermore, our research indicates that detri-

tal and airfall zircons are not distributed evenly in stratified ash beds, particularly in reworked

deposits, and that finding such grains may require a higher-resolution sampling scheme than

is typically used.

Geologic background

The ash deposits exposed at Ashfall Fossil Beds State Historical Park and Grove Lake are both

within the Miocene Ash Hollow Formation of the Ogallala Group (Fig 2) [2, 27, 28]. The Ogal-

lala Group (Ogallala Formation outside of Nebraska) underlies much of the North American

High Plains and consists chiefly of fluvial sand, sandstone, silt, and siltstone, with minor eolian

sediments and local lenses of volcanic ash, and lacustrine limestones and diatomites [29, 30].

The Ogallala Group is composed of several formations in Nebraska [31, 32], but only the Val-

entine and Ash Hollow Formations, which comprise most of it, are recognized in the immedi-

ate vicinity of Ashfall Fossil Beds [23, 31, 33, 34, 35]. The Ashfall Konservat-Lagerstätte, is in

the Cap Rock Member of the Ash Hollow Formation. The ash bed exposed at the nearby

Grove Lake lies within the overlying Merritt Dam Member of the same formation (Fig 2).

The ash bed at Ashfall Fossil Beds is interpreted as the fill of a small depression on the basis

of its lenticular geometry and the taphonomy and paleoecology of the Lagerstätte. Indeed,

many volcanic ash beds in continental successions are swale-filling deposits having limited lat-

eral extents [17, 28]. The remains of fossil diatoms and such small aquatic vertebrates as sala-

manders, frogs, and turtles [2, 9], in addition to the high concentration of mammalian fossils,

suggests that the Ashfall site was a transient watering hole at the time of ash deposition. Sea-

sonally dry subtropical savannas extended across Nebraska in the Miocene with year-round

above freezing temperatures, as indicated by the presence of large tortoises [36, 37]. We inter-

pret the younger Grove Lake ash as a depression fill as well.

Paleontology

The Ashfall Fossil Beds contains an extraordinary terrestrial Konservat-Lagerstätte of Miocene

vertebrates in a mass death assemblage (Fig 3) [6]. The Lagerstätte is composed of 21 fossil taxa

U-Pb zircon ages for Ashfall fossil beds
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Fig 2. Stratigraphy of northern Antelope County, Nebraska. (A) Distribution of Cretaceous and Cenozoic strata in northeastern Nebraska. (B)

Composite stratigraphic section of units exposed at the Ashfall site and Grove Lake. Modified from Voorhies [1] and Tucker et al. [2].

https://doi.org/10.1371/journal.pone.0207103.g002
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representing amphibians, reptiles, birds, and mammals of the Clarendonian NALMA (13.6–

10.3 Ma) in north-central Nebraska [2, 23]. The most numerous and well-known fossil

remains are those of the barrel-bodied rhinoceros, Teleoceras major (Perissodactyla, Rhinocer-

otidae). Over 100 specimens of T. major have been uncovered in the tephra deposit, and it is

hypothesized that most or all were members of a single social group [8]. Many of the medium-

to large-sized mammal skeletons are fully articulated and preserved in their original three-

dimensional death poses.

The mass mortality Lagerstätte was the direct result of volcanic ash deposition, though sev-

eral taphonomic lines of evidence suggest that medium- to large-sized ungulates succumbed to

long-term ash exposure, as opposed to a single catastrophic burial event [2]. The first line of

evidence is that the fossil taxa within the Lagerstätte are distributed vertically into three distinct

and superposed assemblages separated by ~10–15 cm of unfossiliferous ash (Fig 3A). The base

of the ash bed contains the mostly fragmentary remains of such relatively small animals as

Fig 3. Outcrop photographs of the Ashfall Fossil Beds and Grove Lake ash localities. (A) Ashfall Konservat-Lagerstätte from inside the Hubbard Rhino Barn showing

ash pillars supporting (1) fully articulated fossils of Teleoceras major and (2) underlying medium-sized equid. (B) Ash bed in the Cap Rock Member exposed in the

Hubbard Rhino Barn at Ashfall Fossil Beds showing sample locations for this study. (C) Ash bed in the Merritt Dam Member just west of Grove Lake and sample locations

for this study. (D) Photograph of the dark colored basal horizon at Ashfall that contains dateable volcanogenic zircons (immediately above dotted line).

https://doi.org/10.1371/journal.pone.0207103.g003
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turtles and wading birds. The second fossiliferous horizon contains medium-sized taxa,

including several species of camelids and equids. The third assemblage, ~25 cm from the base

of the ash bed, is composed mostly of fully articulated Teleoceras major skeletons. The vertical

distribution of the fossil taxa suggests successive die-offs according to different body sizes and

abilities to withstand exposure to the ash. The second line of evidence suggesting that the

larger vertebrates survived the initial airfall event, at least in the short-term, is abnormal

growths on the bones of equids, camelids, and rhinos that resemble hypertrophic osteopathy

or Marie’s disease [7]. Hypertrophic osteopathy is a bone pathology in mammals secondary to

severe pulmonary diseases and inhalation of foreign objects [38]. These growths indicate that

the larger ungulates succumbed only after several weeks or months of exposure to the ash after

the initial airfall event.

Airfall tephra and tephrochronologic correlations

The Snake River Plain is an ~770 km long, northeast-southwest trending linear depression

that extends primarily across southern Idaho (Fig 4A) and contains seven major volcanic prov-

inces that are progressively younger toward the northeast [39, 40, 41]. These include, from

west to east, the McDermitt, Owyhee-Humboldt, Bruneau-Jarbidge, Twin Falls, Picabo, Heise,

and Yellowstone Plateau volcanic fields [16]. Volcanism in this region began ca. 16.6 Ma near

the Nevada-Oregon border with an outpouring of flood basalts on the Columbia Plateau and

the formation of rhyolitic eruptive centers further south [16]. In Neogene strata of the Great

Plains, volcanic ashes from the Snake River Plain volcanic province are preserved as airfall

tephra composed primarily of fine-grained micron-scale rhyolitic glass bubble-wall shards

sorted by long-distance atmospheric transport [42].

Proximal tuffs within the Bruneau-Jarbidge volcanic field range in age from ~12.7–10.5 Ma

and are correlated regionally to distal airfall deposits in Idaho, Nevada, California, Colorado,

New Mexico and throughout the Great Plains (Fig 4B) [16, 17, 43, 44, 45, 46, 47]. Total cumu-

lative eruptive volume from Bruneau-Jarbidge is estimated to be 104–144 km3 [16, 48]. If an

estimated 30% of this mass was dispersed as airfall ash [49], the largest individual eruption

events at Bruneau-Jarbidge were potentially capable of producing over 1000 km3 of distal air-

fall deposits [48].

In a published abstract, Perkins [19] tentatively correlated the Ashfall Fossil Beds tephra

with a tuff within the Bruneau-Jarbidge volcanic field, the Ibex Hollow Tuff (11.93 Ma).

According to Perkins and Nash (see fig 5 in [16])], at least 22 Miocene-age tuffs of the Snake

River Plain can be tephrochronologically correlated to ashes on the Great Plains, though the

authors did not report the locations and stratigraphic positions of these distal ashes. Dobbins

[50] made a tentative geochemical correlation of the Ashfall deposit to a Bruneau-Jarbidge

eruption, the 10.45 ± 0.10 Ma Cougar Point Tuff XV, and concluded that the Ashfall deposit

likely resulted from a single eruption event.

Materials and methods

We collected eight bulk sediment samples from ash beds located at Ashfall Fossil Beds (42.420,

-98.156) and nearby Grove Lake (42.375, -98.119) for analysis. We obtained permission to

access and sample study co-author, Rick E. Otto, park superintendent of Ashfall Fossil Beds

State Historical Park. Four volcanic ash samples were collected inside the Hubbard Rhino

Barn at Ashfall Fossil Beds State Historical Park (Fig 3B). A second set of four ash samples was

collected approximately 6 km southeast of Ashfall Fossil Beds from an ash bed near Grove

Lake (Fig 3C). At both locations, approximately 4-liters of ash were collected from four dis-

crete stratigraphic intervals (Fig 5A and 5B). The outermost 5–8 cm of the outcrop was scraped

U-Pb zircon ages for Ashfall fossil beds
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away prior to sample collection in order to maximize sample quality and avoid contamination

with younger material washed down on the exposed face of the outcrop. At both locations, the

first samples were taken from the bottom ~1–2 cm of the ash above the basal contact, which

contained coarser-grained material and was darker gray than the overlying ash (Fig 3D). We

moved up-section for the three remaining samples at each site, taking one sample approxi-

mately every 50–80 cm (Fig 5).

We isolated zircons from the ash samples using standard mineral separation techniques at

the University of Kansas Isotope Geochemistry Laboratories (IGL). Each 1-liter sample was

processed with an ultrasonic clay separator (UCS), using the methods described by Hoke et al.

Fig 4. (A) The Snake River Plain Volcanic Province and its constituent volcanic fields and their age ranges of magmatic

activity; modified from Perkins and Nash [16]. (B) Apparent accumulation rates (cm/m.y.) of ash beds from Bruneau-

Jarbidge and Heise volcanic fields; modified from Perkins [43]. Note approximate locations of source calderas (white

triangles), recognized airfall tuff deposits (black dots), and the Ashfall Fossil Beds and Grove Lake study area (white star).

Base maps downloaded and modified from the USGS National Map Viewer (open access) at https://viewer.nationalmap.gov/

viewer/.

https://doi.org/10.1371/journal.pone.0207103.g004
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Fig 5. Measured sections of ash bed deposits in this study. (A) Ashfall Fossil Beds and (B) Grove Lake sections

showing stratigraphic location of samples (AFB and GL, respectively). Some details of Ashfall Fossil Beds measured

section (A) after Scheel and Rogers [10].

https://doi.org/10.1371/journal.pone.0207103.g005
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[51], to separate high-density minerals. After drying, 150g of the high-density split of each

sample was slowly added to a polytetrafluoroethylene (Teflon) container containing 12 N HF

to dissolve the SiO2-rich volcanic glass component of the ash. Finally, the remaining sample

was again subjected to density separation, this time using heavy liquids (methylene iodide).

Using a binocular microscope, zircon grains were handpicked from the high-density heavy liq-

uid separates and mounted on double-sided adhesive tape on 1-inch diameter epoxy-resin

discs. The grains were not polished to expose their interiors, in order to date the latest phase of

zircon crystallization just prior to, or during, volcanic eruption [52].

Zircon U–Pb ages were obtained by laser ablation inductively coupled mass spectrometry

(LA-ICP-MS) using a Thermo Scientific Element2 ICP-MS, attached to a Photon Machines

Analyte.G2 193 nm ArF excimer laser ablation system. 20 μm circular spots were ablated with

the laser at 2.0 J cm-2 fluence and 10 Hz repetition rate, resulting in pits of ~15 μm in depth

from the surface towards the interior of each grain. Where feasible, the ablation targeted the

tips of grains to avoid potentially older interiors an approach used in other studies (e.g. [53]).

The ablated material was carried to the ICP-MS in He gas with a flow rate of 1.1 l/min, tied in

with Ar gas of 1.1 l/min flow rate ca. 25 cm before entry into the plasma torch. Laser-induced

fractionation, including elemental fractionation and downhole fractionation, and calibration

drift were corrected by bracketing measurements of unknowns with the 608.5 ± 0.4 Ma GJ1

zircon reference material [54] and data reduction using the VizualAge data reduction scheme

[55] for the IOLITE software package [56, 57]. Uncertainty (±2σ) in 206Pb/238U dates from

individual GJ-1 ablations is approximately 8 Ma, uncertainties on larger data populations are

at 1–2%. Calibration accuracy was monitored by measurement of zircon reference materials of

known age during the same sessions, the Plešovice zircon [58] and Fish Canyon Tuff zircon

[59], which were reproduced to within 1% of their published ages.

Our analytical results are presented using Isoplot 4.15 [60]. Kernel density estimates

(KDEs) were produced using DensityPlotter 7.3 [61]. Eruption and maximum deposition ages

(MDAs) of the volcanic ash deposits were derived from the youngest and most consistent

grouping of concordant grains with overlapping U-Pb ages at 2σ. Because the Ashfall and

Grove Lake samples contain large numbers of dates overlapping within 2 standard error (SE)

uncertainties, we calculated the ages from analyses with a MSWD of 1 on the weighted average
206Pb/238U age (i.e. the scatter between analyses is equal to that expected for this number of

analyses within a normal distribution). This is different from the approach to use the youngest

three dates with overlapping uncertainties of Dickinson and Gehrels [62] proposed specifically

for detrital populations that may contain only very few zircons close to the MDA. The ratio-

nale for our approach follows three main arguments. First, the measured dates represent zir-

con crystallization during the eruption event, or more likely, within the magma chamber

before eruption. Crystallization within the magma chamber may have occurred over a time

span longer than the uncertainty of the age determination, so including more analyses than

expected from a normal distribution. Second, the calculated zircon age must be compared to

Ar-Ar dates for these eruptions from the literature, which likely represent minimum (cooling)

ages and are not influenced by "magma chamber inheritance". Including older zircons

(MSWD >1) that may represent antecrystic zircon—crystals forming in the magma chamber

significantly prior to the eruption (for a discussion of this term see e.g. [63, 64])—that will

skew the calculated ages towards magma chamber process ages or even inherited earlier events.

Third, extracting the age from only the youngest single analysis or very small group of analyses

may bias the age determination towards a "tail" of the uncertainty distribution that is younger

than the geological event and just represents statistical scatter. Hence the exclusion of a single

concordant analysis from the interpretation of the Grove lake dataset. Analytical results are

shown in S1 Table in Supporting Information.

U-Pb zircon ages for Ashfall fossil beds
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Results

Ashfall Fossil Beds

At Ashfall Fossil Beds, two samples yielded zircons during mineral separation: AFB-00 and

AFB-01 (Fig 5A). AFB-00 was collected from a ~2 cm-thick horizon at the base of the ash that

is relatively coarse grained and darker gray than to the rest of the deposit (Fig 3D). AFB-01

was collected ~160 cm up section from the base were the deposit is light gray and a nearly pure

vitric ash (Fig 3B). Only 5 zircon grains were recovered from AFB-01 and proved to be older,

detrital grains that were therefore not used in the interpretation of the depositional age for the

ash. AFB-00 yielded 136 zircon grains and the youngest concordant grouping of zircons with

overlapping ages at 2σ is composed of 34 grains yielding a concordia age of 11.86 ± 0.13 Ma

with a MSWD of 1.3 (Fig 6A and 6B). This is interpreted as a crystallization age and the maxi-

mum depositional age (MDA) of subsequent volcaniclastic deposition. A Kernel density plot

Fig 6. Zircon U-Pb results for the AFB-00 sample from Ashfall Fossil Beds. (A) U-Pb age ranges with 2σ error bars of the 61 youngest zircon grains plotted on a time

axis showing 34 concordant analyses with an MSWD of ~1 (in red), used to calculate the MDA. (B) Tera-Wasserburg concordia diagram with MDA result of 11.86±0.13

Ma from 34 concordant analyses shown in 6A. (C) Kernel density estimate plot of AFB-00 showing 206Pb/238U (< 900 Ma) and 207Pb/206Pb (> 900 Ma) ages.

MSWD = mean square weighted deviation; n = number of grains analyzed.

https://doi.org/10.1371/journal.pone.0207103.g006
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of U-Pb ages from AFB-00 (Fig 6C) shows that while the largest and youngest age population

is middle Miocene, there are smaller, yet significant, age populations dating back to ~1980 Ma;

suggesting detrital input from extrabasinal detrital-source areas, rather than mineral fractions

contributed by tephra.

Grove Lake

At Grove Lake, GL-00 was the only sample that yielded zircons during mineral separation (Fig

5B). As in AFB-00, sample GL-00 was collected from a ~2 cm-thick horizon at the base of the

ash that is relatively coarse grained and darker gray than the rest of the overlying deposit (Fig

3C). In total, 102 grains from GL-00 were analyzed. Fifty-seven of the youngest concordant

grains yield a weighted average 206Pb/238U age of 6.36 ± 0.06 with a MSWD of 1.0, and were

used to calculate a concordia age of 6.42 ± 0.06 with a MSWD of 1.18 and interpreted as the

crystallization age (Fig 7A and 7B). A Kernel density plot of U-Pb ages from GL-00 shows that

Fig 7. Zircon U-Pb results for the GL-00 sample from Grove Lake. (A) U-Pb ages ranges with 2σ error bars of the 65 youngest zircon grains plotted on a time axis

showing 57 concordant analyses with an MSWD of 1 (in red), used to calculate the MDA. (B) Tera-Wasserburg concordia diagram with MDA result of 6.42±0.06 Ma from

the 57 analyses with an MSWD of ~1 from 7A. (C) Kernel density plot of all GL-00 concordant results showing 206Pb/238U (< 900 Ma) and 207Pb/206Pb (> 900 Ma) ages.

MSWD = mean square weighted deviation; n = number of grains analyzed.

https://doi.org/10.1371/journal.pone.0207103.g007
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the largest age population is Late Miocene in age (Fig 7C). Smaller grain populations as old as

~1150 Ma suggest some detrital input, though less so than in the Ashfall Fossil beds deposit.

Discussion

Ash sources

The zircon U-Pb age of 11.86 ± 0.13 Ma for the Ashfall Fossil Beds ash sample (AFB-00) is too

old to support correlation with the 10.45 ± 0.10 Ma age interpolated for the Cougar Point Tuff

XV [15], as suggested by Dobbins [50] on the basis of major and trace element compositions.

Our results do corroborate the age correlation of the Ashfall ash to supervolcanic eruptions

originating from the Bruneau-Jarbidge caldera from ~12.7–10.5 Ma in southwestern Idaho

(Fig 4) [16]. Specifically, the Ashfall U-Pb age chronologically overlaps with the 40Ar/39Ar ages

of the Ibex Hollow and Cougar Point VII ignimbrites at Bruneau-Jarbidge (Fig 8).

The Ibex Hollow Tuff is an ~4 m thick, rhyolitic, nonwelded tuffs first described from the

Trapper Creek area in south-central Idaho and initially referred to as the Tuff of Ibex Peak

(tuff 30 in [65]). It was originally reported to have an 40Ar/39Ar age of 11.81 ± 0.03 Ma on sani-

dine (>0.5 mm), obtained by laser fusion [65]. After recalibration to the Fish Canyon Tuff

standard, this age was later adjusted to 11.93 ± 0.03 Ma [15, 16]. The Cougar Point Tuff (CPT)

VII is one of nine densely welded ignimbrites originating from the Bruneau-Jarbidge caldera

that are best exposed in canyons along the Bruneau and Jarbidge rivers in southwestern Idaho

[66]. Bonnichsen et al. [48] reported an 40Ar/39Ar age of 11.81 ± 0.03 Ma from sanidine pheno-

crysts. Perkins et al. [15] identified two additional ash fall tuffs from southwest Idaho that are

within the AFB-00 age range; the Ibex Peak-8 (11.80 ± 0.04 Ma) and Logan Ranch (40Ar/39Ar

age of 11.79 ± 0.10 Ma) tuffs. Due to similarities in geochemical composition, stratigraphic

position, and overlapping ages, however, Nash and Perkins [67] suspect that these ash beds are

likely airfall equivalents of the CPT VII eruption event. Tephrochronologically correlated air-

fall equivalents of the Ibex Hollow and CPT VII tuffs are reported in multiple outcrops and

cores from the Basin and Range province (Nevada and California), and the central Great Plains

[16].

The U-Pb age of 6.42 ± 0.06 Ma for the Grove Lake ash (GL-00) coincides with supervolca-

nic activity in the Heise volcanic field (6.6–4.3 Ma) of the Snake River Plain in eastern Idaho

(Fig 4). Our zircon-age is chronologically between, but does not overlap, with the 40Ar/39Ar

ages of two well-documented ignimbrites of the Heise caldera; the Blacktail Creek and the

Walcott tuffs (Fig 8). The Blacktail Creek Tuff is the most extensive (>124 km2) welded ignim-

brites of the Heise volcanic field [68] and has a mean 40Ar/39Ar age of 6.62 ± 0.03 Ma obtained

from sanidine phenocrysts [69]. Morgan and McIntosh [69] geochemically correlate an airfall

tuff with a younger 40Ar/39Ar age of 6.54 ± 0.06 Ma in the Palisades Reservoir area of Idaho.

The smaller Walcott Tuff is a rhyolitic, welded ignimbrite that has a mean 40Ar/39Ar age of

6.27 ± 0.04 Ma also obtained from sanidine [69]. Blacktail Creek and Walcott tuffs have been

tephrochronologically correlated to airfall ash beds in Idaho, Montana, Utah and the Great

Plains region [16].

We consider our results as confirmation of the previously reported tephrochronologic cor-

relations of the Ashfall Fossil Beds ash and Grove Lake ash to the Bruneau-Jarbidge and Heise

volcanic fields, respectively. Correlating the Nebraskan ashes with specific 40Ar/39Ar-dated

Snake River Plain ignimbrites and airfall tuffs, however, is complicated by several factors. The
40Ar/39Ar ages of the various proximal ignimbrites near Bruneau-Jarbidge are statistically

indistinguishable from our 206Pb/238U zircon crystallization ages at the 2σ level. In the case of

the Grove Lake ash, our U-Pb age is outside the uncertainty ranges of Heise ignimbrites,

though the Grove Lake age does overlap with 40Ar/39Ar ages of airfall tuffs near the Heise
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caldera [69]. Perceived age discrepancies could be the result of different crystallization histo-

ries of the different dated phenocrysts prior to or during the eruption phase and the lack of

congruence between 206Pb/238U and 40Ar/39Ar geochronometers (see [70]). Geochronological

studies on independently dated volcanic eruptions have shown that zircon crystallization ages

may predate eruption by several thousands of years [e.g. 71]. Although it is beyond the scope

of this paper, recent efforts inter-calibrate the U-Pb and 40Ar/39Ar dating series are reported

for different systems in Sageman et al. [70], and Trujillo and Kowallis [72].

Fig 8. Ages and estimated volumes of known supervolcanic eruptions (ejecta volumes> 100 km3) from the Snake River Plain hotspot and reportedly correlated

with ash beds on the Great Plains. Eruption ages and ejecta volumes (estimated with large uncertainties; [49]) were derived from tuffs proximal to source calderas [15, 16,

48]. Colors indicate individual volcanic fields of origin, letters denote dated tuffs discussed in the text that fall within or are close in age with the U-Pb age ranges for

sample AFB-00 and GL-00. See S2 Table in Supporting Information for the list of supervolcanic eruptions constituting this figure, modified and updated from Smith et al.

[78].

https://doi.org/10.1371/journal.pone.0207103.g008
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Implications of stratigraphic sampling of ash beds

Previous attempts to isolate zircons from the tephra at Ashfall were reportedly unsuccessful

and it was assumed that radiogenic volcanoclastic material needed to date directly the Konser-
vat-Lagerstätte was absent [2]. Given the lack of zircons throughout most of the 3 m-thick ash,

it is evident that sampling from the ~1–2 cm horizon at the base of the ash was necessary in

order to yield enough zircons for LA-ICP-MS analysis. If any previous sampling strategies

overlooked this thin basal interval, it is indeed unlikely that such sampling would have yielded

zircons indicative of the time of ash deposition. Rather, such hypothetical sampling would

have yielded a low number of older detrital zircons, if any.

There are several a priori explanations for the concentration of zircons at the base of the ash

bed, which include: 1) sorting during air transport, 2) heavier components of the ash cloud

(e.g. zircons) precipitating to the ground before lighter components (e.g. glass, sanidine), and

3) internal stratification resulting from post-depositional reworking. Because of the lenticular

morphology of the Ashfall ash (relatively thick in the immediate vicinity of the Lagerstätte and

substantially thinner away from the Lagerstätte), it is interpreted to have infilled a paleodepres-

sion with ephemeral standing water [2]. Sedimentary structures such as asymmetrical ripples,

planar laminae and flame structures suggest the presence of water in the paleodepression dur-

ing ash accumulation. These structures in superposed ash intervals, as well as to multiple inter-

vals of sediment bioturbation, suggest that the Ashfall ash bed is the product of a series of

episodic depositional events likely separated by brief periods of subaerial exposure [10]. Fur-

thermore, the presence of rounded, relatively old and large (up to ~100μm) detrital zircons

indicates that the primary airfall deposit was mixed with sediment grains of other origins prior

to final deposition at the site (Fig 6C). These pre-Neogene detrital zircons were likely derived

from older deposits of the Ogallala Group. These lines of evidence indicate that the ash was

reworked by water to some degree before infilling the topographic low at the Ashfall site.

Pyroclastic-fall deposits in submarine environments display a form of graded bedding char-

acterized by an upward decrease in pyroclast density (e.g. [73, 74, 75, 76, 77]). If the ancient

watering hole at all resembled a submarine environment in terms of depositional energy, this

observation could explain the internal stratification seen in the Ashfall ash. The abundance of

zircons in the lowest interval suggests that high density and/or coarser particles concentrated

there via particle settling while the paleodepression was filled with a mixture of ash and water.

Nevertheless, this pattern does not preclude sorting during air transport or prior, upwind pre-

cipitation of heavy minerals from the ash; these factors may also explain the observed upward

decrease in density. In comparison, the ash bed at Grove Lake exhibits a similar style of inter-

nal stratification, but the dearth of information on the sedimentology of this ash hampers addi-

tional interpretation.

Conclusions

Studies using the direct radiometric dating and tephrochronology of airfall tephra constraint

depositional ages of host strata and are vital for the development of a regional chronostrati-

graphic framework on the Great Plains. We report new U-Pb zircon ages for the Ashfall Fossil

Beds and Grove Lake ashes of 11.86 ± 0.13 Ma and 6.42 ± 0.06, respectively. These analyses

provide the first absolute age constraint for the Ashfall Konservat-Lagerstätte and are a direct

test of reported, though not well- substantiated tephrochronologic studies correlating Ashfall

with tephra of the Bruneau-Jarbidge volcanic field in the Snake River Plain Volcanic Province.

However, age correlating the Ashfall and Grove Lake ashes with specific proximal ignimbrites

and airfall tuffs for which 40Ar/39Ar ages are known is complicated by several factors. These

factors include the range of uncertainty within the U-Pb results themselves, and the lack of
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congruence between the 206Pb/238U and 40Ar/39Ar geochronometers. We plan to reduce the

uncertainty and refine U-Pb zircon ages from Ashfall and Grove Lake using chemical abrasion

isotope dilution thermal ionization mass spectrometry (CA-ID-TIMS), which uses dissolution

of whole grains or parts of grains to obtain high-precision dates.

Our results also provide an admonition that applies to similar ash deposits of any age else-

where. We opine that there should be no a priori expectation of uniform stratigraphic distribu-

tion of detrital and airfall zircons within ash bed deposits, particularly those showing evidence

of being reworked. Only the lowermost ash layers in such a deposit can be expected to yield

significant numbers of volcanic zircon. Thus, a closer examination of the distribution of zir-

cons and other radiogenic mineral grains within airfall tephra deposits will likely determine

the efficacy of different sampling strategies.
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Sample ID Grain #a Ub [ppm] Thb [ppm] Th/U eUc [ppm] 207Pb/235Ud ±2se 206Pb/238Ud ±2se Rhof 207Pb/206Pbg ±2se 207Pb/235U ±2s 206Pb/238U ±2s 207Pb/206Pb ±2s Disc. %k Wtd. Disc.l

AFB-00 AFB_49 106.3 60.5 0.57 120.52 0.01 0.005 0.0017 0.0001 -0.24 0.057 0.024 11.9 5.0 10.8 0.7 40.0 690.0 -10.6 0.2
AFB-00 AFB_112 48.9 27.4 0.56 55.33 0.02 0.010 0.0017 0.0002 -0.11 0.107 0.050 18.2 9.9 10.9 1.0 -500.0 1000.0 -67.0 0.7
AFB-00 AFB_140 166.5 91.0 0.55 187.89 0.02 0.005 0.0017 0.0001 0.18 0.074 0.018 18.7 4.4 11.1 0.5 710.0 470.0 -68.5 1.7
AFB-00 AFB_133 94.8 40.8 0.43 104.39 0.02 0.007 0.0017 0.0001 -0.10 0.075 0.034 16.7 6.8 11.1 0.9 240.0 730.0 -50.0 0.8
AFB-00 AFB_77 125.7 65.0 0.52 140.98 0.02 0.005 0.0017 0.0002 -0.20 0.072 0.025 15.6 5.2 11.2 0.9 270.0 630.0 -39.8 0.9
AFB-00 AFB_42 156.3 107.3 0.69 181.52 0.01 0.003 0.0017 0.0001 -0.16 0.058 0.013 13.7 2.7 11.2 0.6 280.0 360.0 -22.2 0.9
AFB-00 AFB_128 98.6 60.1 0.61 112.72 0.01 0.005 0.0018 0.0001 -0.15 0.050 0.028 9.1 5.3 11.3 0.8 -540.0 680.0 19.3 -0.4
AFB-00 AFB_129 126.2 89.8 0.71 147.30 0.01 0.004 0.0018 0.0001 -0.10 0.045 0.018 10.3 3.9 11.3 0.7 -180.0 510.0 8.9 -0.3
AFB-00 AFB_105 103.3 61.2 0.59 117.68 0.02 0.006 0.0018 0.0001 0.00 0.070 0.028 16.8 6.4 11.4 0.8 350.0 700.0 -47.9 0.9
AFB-00 AFB_73 160.2 98.2 0.61 183.28 0.02 0.003 0.0018 0.0001 0.18 0.068 0.015 16.5 3.4 11.4 0.7 510.0 410.0 -44.4 1.5
AFB-00 AFB_99 76.6 36.2 0.47 85.11 0.01 0.008 0.0018 0.0002 -0.09 0.038 0.030 10.5 7.5 11.4 0.9 -290.0 720.0 8.2 -0.1
AFB-00 AFB_94 191.2 116.8 0.61 218.65 0.02 0.005 0.0018 0.0001 -0.03 0.107 0.023 24.2 5.0 11.5 0.7 1470.0 460.0 -111.4 2.6
AFB-00 AFB_143 226.7 134.6 0.59 258.33 0.01 0.003 0.0018 0.0001 0.04 0.059 0.014 13.9 3.3 11.5 0.7 270.0 410.0 -21.1 0.7
AFB-00 AFB_30 121.6 69.0 0.57 137.82 0.01 0.005 0.0018 0.0001 0.11 0.057 0.020 14.2 4.8 11.5 0.7 350.0 540.0 -23.1 0.6
AFB-00 AFB_127 142.1 73.7 0.52 159.42 0.01 0.003 0.0018 0.0001 -0.13 0.043 0.012 10.6 3.0 11.6 0.6 -240.0 400.0 8.2 -0.3
AFB-00 AFB_102 154.1 93.3 0.61 176.03 0.02 0.004 0.0018 0.0001 -0.02 0.081 0.017 20.9 4.1 11.6 0.6 960.0 410.0 -80.6 2.3
AFB-00 AFB_27 155.9 92.9 0.60 177.73 0.01 0.003 0.0018 0.0001 0.07 0.050 0.013 12.5 3.3 11.6 0.5 20.0 420.0 -7.7 0.3
AFB-00 AFB_114 114.4 68.7 0.60 130.54 0.01 0.004 0.0018 0.0001 -0.08 0.041 0.017 9.2 3.9 11.6 0.7 -370.0 480.0 20.9 -0.6
AFB-00 AFB_144 177.5 126.7 0.71 207.27 0.01 0.004 0.0018 0.0001 0.06 0.059 0.015 14.4 3.5 11.7 0.5 190.0 420.0 -23.4 0.8
AFB-00 AFB_139 213.0 157.0 0.74 249.90 0.02 0.008 0.0018 0.0001 -0.02 0.108 0.080 18.6 8.0 11.8 0.9 800.0 940.0 -57.8 0.9
AFB-00 AFB_55 91.4 39.8 0.44 100.75 0.01 0.006 0.0018 0.0001 0.14 0.056 0.028 13.0 6.2 11.8 0.8 -400.0 640.0 -10.2 0.2
AFB-00 AFB_56 129.7 73.3 0.57 146.93 0.02 0.006 0.0018 0.0001 -0.02 0.084 0.024 21.8 5.8 11.8 0.7 1030.0 530.0 -84.7 1.7
AFB-00 AFB_122 103.9 49.9 0.48 115.63 0.02 0.006 0.0018 0.0001 -0.35 0.075 0.028 17.0 6.2 11.8 0.7 80.0 660.0 -44.1 0.8
AFB-00 AFB_93 164.8 101.6 0.62 188.68 0.01 0.003 0.0018 0.0001 -0.10 0.053 0.012 12.4 2.9 11.8 0.5 330.0 370.0 -4.9 0.2
AFB-00 AFB_98 183.8 120.9 0.66 212.21 0.02 0.004 0.0018 0.0001 0.03 0.087 0.015 21.3 3.5 11.8 0.6 1070.0 340.0 -80.2 2.7
AFB-00 AFB_84 167.0 114.4 0.69 193.88 0.01 0.003 0.0018 0.0001 0.01 0.053 0.013 13.0 2.9 11.8 0.6 190.0 380.0 -9.9 0.4
AFB-00 AFB_67 158.0 99.6 0.63 181.41 0.02 0.004 0.0018 0.0001 0.12 0.067 0.016 15.1 3.9 11.9 0.6 390.0 440.0 -27.4 0.8
AFB-00 AFB_52 177.2 127.0 0.72 207.05 0.01 0.003 0.0018 0.0001 0.14 0.055 0.011 14.0 2.9 11.9 0.6 240.0 360.0 -18.0 0.7
AFB-00 AFB_8 87.4 67.2 0.77 103.19 0.02 0.007 0.0018 0.0002 -0.16 0.102 0.035 21.6 6.7 11.9 1.3 730.0 670.0 -81.5 1.4
AFB-00 AFB_80 91.0 47.7 0.52 102.21 0.02 0.007 0.0019 0.0002 0.07 0.074 0.031 16.7 6.9 11.9 1.0 -30.0 760.0 -40.2 0.7
AFB-00 AFB_92 141.7 79.8 0.56 160.45 0.01 0.004 0.0019 0.0001 -0.14 0.065 0.019 14.9 4.0 12.0 0.7 260.0 500.0 -24.7 0.7
AFB-00 AFB_14 104.1 65.9 0.63 119.59 0.02 0.006 0.0019 0.0002 -0.12 0.069 0.030 18.1 6.4 12.0 1.0 200.0 700.0 -50.8 1.0
AFB-00 AFB_104 175.2 111.3 0.64 201.36 0.01 0.003 0.0019 0.0001 0.04 0.052 0.012 13.6 3.2 12.0 0.6 -30.0 380.0 -13.3 0.5
AFB-00 AFB_32 150.0 79.9 0.53 168.78 0.01 0.004 0.0019 0.0001 0.27 0.058 0.014 14.6 3.8 12.0 0.6 120.0 420.0 -21.4 0.7
AFB-00 AFB_37 181.1 130.6 0.72 211.79 0.01 0.003 0.0019 0.0001 0.02 0.049 0.012 12.6 3.1 12.0 0.5 -10.0 390.0 -4.7 0.2
AFB-00 AFB_86 164.0 110.2 0.67 189.90 0.02 0.003 0.0019 0.0001 0.10 0.078 0.014 19.5 3.2 12.1 0.6 910.0 350.0 -61.4 2.3
AFB-00 AFB_70 201.0 136.0 0.68 232.96 0.02 0.005 0.0019 0.0001 -0.03 0.071 0.026 16.1 4.7 12.1 0.9 480.0 530.0 -32.7 0.8
AFB-00 AFB_107 161.0 96.1 0.60 183.58 0.01 0.004 0.0019 0.0001 0.11 0.057 0.017 14.1 3.6 12.1 0.9 110.0 470.0 -16.2 0.5
AFB-00 AFB_88 820.0 501.0 0.61 937.74 0.03 0.004 0.0019 0.0001 0.46 0.094 0.013 25.1 3.2 12.2 0.7 1430.0 260.0 -105.9 4.0
AFB-00 AFB_57 188.9 116.1 0.61 216.18 0.01 0.004 0.0019 0.0001 0.19 0.060 0.014 14.5 3.6 12.2 0.6 350.0 410.0 -18.7 0.6
AFB-00 AFB_53 171.3 103.9 0.61 195.72 0.01 0.004 0.0019 0.0001 -0.03 0.058 0.014 13.6 3.5 12.2 0.6 270.0 390.0 -11.2 0.4
AFB-00 AFB_111 89.4 37.9 0.42 98.31 0.02 0.006 0.0019 0.0001 0.05 0.060 0.022 15.3 5.5 12.3 0.8 100.0 560.0 -24.9 0.6
AFB-00 AFB_28 131.2 70.9 0.54 147.86 0.01 0.003 0.0019 0.0001 0.10 0.039 0.012 10.5 3.1 12.3 0.7 -160.0 400.0 14.4 -0.6
AFB-00 AFB_147 114.3 69.1 0.60 130.54 0.01 0.004 0.0019 0.0002 -0.02 0.051 0.017 12.6 4.0 12.3 1.0 350.0 490.0 -2.4 0.1
AFB-00 AFB_76 179.0 119.0 0.66 206.97 0.01 0.003 0.0019 0.0001 0.12 0.055 0.013 14.1 3.3 12.3 0.5 480.0 370.0 -14.5 0.5

AFB-00 AFB_71 155.8 94.5 0.61 178.01 0.02 0.005 0.0019 0.0001 0.19 0.062 0.020 16.7 5.0 12.3 0.6 380.0 540.0 -35.3 0.9
AFB-00 AFB_110 240.1 216.8 0.90 291.05 0.01 0.002 0.0019 0.0001 0.21 0.049 0.008 12.0 1.9 12.4 0.5 120.0 280.0 3.0 -0.2
AFB-00 AFB_17 90.6 54.8 0.60 103.48 0.01 0.005 0.0019 0.0001 0.06 0.053 0.019 14.0 4.7 12.4 0.8 -40.0 510.0 -12.7 0.3
AFB-00 AFB_108 134.2 92.7 0.69 155.98 0.01 0.003 0.0019 0.0001 0.07 0.057 0.014 13.8 3.4 12.4 0.7 250.0 420.0 -11.1 0.4
AFB-00 AFB_142 242.0 159.5 0.66 279.48 0.01 0.003 0.0019 0.0001 0.07 0.059 0.012 14.7 3.0 12.4 0.6 460.0 350.0 -18.4 0.8
AFB-00 AFB_6 114.0 73.1 0.64 131.18 0.03 0.006 0.0019 0.0001 0.16 0.101 0.023 24.8 5.5 12.4 0.7 1140.0 440.0 -99.4 2.2
AFB-00 AFB_85 107.0 55.0 0.51 119.93 0.01 0.005 0.0019 0.0001 0.02 0.048 0.021 9.2 5.1 12.5 0.8 -180.0 590.0 26.2 -0.6
AFB-00 AFB_12 119.5 76.2 0.64 137.41 0.01 0.004 0.0019 0.0001 -0.32 0.058 0.017 13.7 4.1 12.5 0.7 130.0 470.0 -9.9 0.3

Corrected Isotopic Ratios Ages (Ma)h
S1 Table. Zircon LA-ICP-MS U-Pb Isotopic Data and Ages for Smith et al., First U-Pb Zircon Ages from Ashfall Fossil Beds (AFB-00) and Grove Lake (GL-00), Nebraska, USA 
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Sample ID Grain #a Ub [ppm] Thb [ppm] Th/U eUc [ppm] 207Pb/235Ud ±2se 206Pb/238Ud ±2se Rhof 207Pb/206Pbg ±2se 207Pb/235U ±2s 206Pb/238U ±2s 207Pb/206Pb ±2s Disc. %k Wtd. Disc.l

Corrected Isotopic Ratios Ages (Ma)h
S1 Table. Zircon LA-ICP-MS U-Pb Isotopic Data and Ages for Smith et al., First U-Pb Zircon Ages from Ashfall Fossil Beds (AFB-00) and Grove Lake (GL-00), Nebraska, USA 

AFB-00 AFB_148 112.0 63.2 0.56 126.85 0.01 0.005 0.0019 0.0001 -0.13 0.061 0.022 12.8 5.0 12.5 0.7 -50.0 520.0 -2.6 0.1
AFB-00 AFB_82 135.1 59.3 0.44 149.04 0.02 0.005 0.0019 0.0001 0.25 0.064 0.021 15.8 4.8 12.5 0.7 110.0 540.0 -26.6 0.7
AFB-00 AFB_5 98.1 49.5 0.50 109.73 0.04 0.008 0.0020 0.0001 0.45 0.145 0.031 34.4 8.0 12.6 0.8 1600.0 490.0 -172.6 2.7
AFB-00 AFB_43 69.1 35.5 0.51 77.44 0.02 0.008 0.0020 0.0001 0.17 0.065 0.031 18.2 7.9 12.6 0.8 -370.0 770.0 -44.1 0.7
AFB-00 AFB_123 93.3 55.8 0.60 106.41 0.01 0.006 0.0020 0.0002 -0.11 0.042 0.024 11.1 5.8 12.6 0.9 -480.0 660.0 12.2 -0.3
AFB-00 AFB_101 150.3 67.8 0.45 166.23 0.02 0.004 0.0020 0.0001 0.01 0.059 0.016 15.9 4.2 12.7 0.8 400.0 450.0 -25.0 0.8
AFB-00 AFB_33 51.7 39.5 0.76 60.98 0.08 0.015 0.0020 0.0002 0.41 0.304 0.056 80.0 13.0 12.8 1.4 3280.0 410.0 -525.0 5.2
AFB-00 AFB_1 114.2 69.8 0.61 130.60 0.04 0.005 0.0020 0.0001 -0.21 0.140 0.025 36.0 5.2 12.9 0.7 2030.0 320.0 -179.7 4.4
AFB-00 AFB_134 112.0 57.9 0.52 125.61 0.02 0.006 0.0020 0.0001 0.37 0.068 0.022 18.2 5.5 12.9 0.8 470.0 550.0 -40.6 1.0
AFB-00 AFB_62 121.5 78.6 0.65 139.97 0.02 0.007 0.0020 0.0001 0.04 0.053 0.022 15.3 6.8 13.0 0.9 100.0 630.0 -17.9 0.3
AFB-00 AFB_150 79.3 37.1 0.47 88.02 0.02 0.011 0.0020 0.0002 -0.20 0.093 0.043 23.0 11.0 13.0 1.0 880.0 870.0 -76.9 0.9
AFB-00 AFB_44 95.4 52.0 0.55 107.62 0.02 0.006 0.0020 0.0001 0.04 0.064 0.026 15.5 5.5 13.1 0.8 150.0 550.0 -18.4 0.4
AFB-00 AFB_130 124.0 71.5 0.58 140.80 0.02 0.005 0.0020 0.0001 0.06 0.066 0.021 15.2 5.0 13.1 0.8 -20.0 490.0 -15.9 0.4
AFB-00 AFB_60 166.0 90.9 0.55 187.36 0.03 0.005 0.0020 0.0001 0.23 0.093 0.018 25.2 4.8 13.1 0.8 1030.0 420.0 -91.9 2.5
AFB-00 AFB_46 101.3 53.0 0.52 113.76 0.04 0.007 0.0021 0.0001 0.29 0.155 0.025 38.5 6.4 13.3 0.8 2090.0 340.0 -190.1 3.9
AFB-00 AFB_78 761.0 143.5 0.19 794.72 0.01 0.001 0.0021 0.0001 -0.12 0.052 0.006 14.3 1.3 13.4 0.5 180.0 180.0 -7.0 0.7
AFB-00 AFB_63 137.8 65.6 0.48 153.22 0.05 0.009 0.0022 0.0002 0.55 0.153 0.031 44.3 9.0 13.9 1.0 2220.0 390.0 -219.6 3.4
AFB-00 AFB_69 94.2 40.6 0.43 103.74 0.05 0.007 0.0022 0.0002 0.06 0.191 0.028 53.1 7.3 14.0 1.0 2610.0 260.0 -278.5 5.4
AFB-00 AFB_103 157.0 101.7 0.65 180.90 0.06 0.015 0.0022 0.0002 0.40 0.199 0.049 56.0 15.0 14.1 1.1 2300.0 590.0 -297.2 2.8
AFB-00 AFB_74 148.7 95.2 0.64 171.07 0.02 0.007 0.0022 0.0001 0.21 0.074 0.025 18.6 6.7 14.2 0.8 440.0 570.0 -31.3 0.7
AFB-00 AFB_141 205.0 102.0 0.50 228.97 0.03 0.005 0.0022 0.0001 0.27 0.094 0.013 30.3 4.4 14.3 0.5 1480.0 280.0 -111.6 3.6
AFB-00 AFB_68 120.6 60.5 0.50 134.82 0.09 0.026 0.0025 0.0002 0.24 0.240 0.051 82.0 20.0 15.9 1.3 2520.0 460.0 -415.7 3.3
AFB-00 AFB_34 592.0 315.0 0.53 666.03 0.02 0.001 0.0025 0.0001 0.07 0.049 0.004 17.2 1.4 16.1 0.4 170.0 160.0 -7.0 0.8
AFB-00 AFB_81 183.7 129.7 0.71 214.18 0.09 0.011 0.0025 0.0001 0.40 0.270 0.028 89.8 9.9 16.3 0.8 3250.0 170.0 -450.9 7.4
AFB-00 AFB_106 90.8 35.7 0.39 99.19 0.10 0.019 0.0029 0.0002 0.33 0.272 0.046 98.0 17.0 18.8 1.3 3090.0 280.0 -421.3 4.7
AFB-00 AFB_138 153.5 92.2 0.60 175.17 0.16 0.016 0.0030 0.0002 0.56 0.402 0.030 152.0 13.0 19.1 1.1 3840.0 120.0 -695.8 10.2
AFB-00 AFB_39 100.8 57.9 0.57 114.41 0.21 0.029 0.0033 0.0002 0.67 0.415 0.047 186.0 25.0 21.1 1.5 3790.0 240.0 -781.5 6.6
AFB-00 AFB_41 430.0 148.1 0.34 464.80 0.03 0.002 0.0039 0.0001 0.03 0.048 0.004 26.4 2.1 25.2 0.6 120.0 140.0 -4.7 0.6
AFB-00 AFB_16 518.0 353.0 0.68 600.96 0.03 0.002 0.0043 0.0001 0.01 0.048 0.003 29.1 1.6 27.8 0.5 110.0 120.0 -4.6 0.8
AFB-00 AFB_31 227.0 151.0 0.67 262.49 0.03 0.003 0.0043 0.0001 0.06 0.052 0.006 30.6 3.1 27.9 0.8 240.0 200.0 -9.6 0.9
AFB-00 AFB_118 384.0 256.0 0.67 444.16 0.03 0.002 0.0053 0.0001 -0.03 0.045 0.003 32.5 2.1 34.3 0.8 -40.0 130.0 5.1 -0.8
AFB-00 AFB_90 216.0 155.0 0.72 252.43 0.04 0.005 0.0055 0.0002 0.23 0.057 0.006 42.4 4.7 35.0 1.2 470.0 210.0 -21.1 1.6
AFB-00 AFB_58 1210.0 1770.0 1.46 1625.95 0.04 0.002 0.0054 0.0001 0.30 0.051 0.002 37.2 1.7 35.0 0.7 207.0 92.0 -6.3 1.3
AFB-00 AFB_83 220.0 152.0 0.69 255.72 0.04 0.004 0.0055 0.0002 0.06 0.054 0.006 40.4 4.3 35.4 0.9 340.0 220.0 -14.2 1.2
AFB-00 AFB_7 178.1 203.9 1.14 226.02 0.04 0.004 0.0057 0.0002 0.03 0.046 0.005 35.4 3.5 36.9 0.9 20.0 180.0 4.0 -0.4
AFB-00 AFB_36 1528.0 390.0 0.26 1619.65 0.04 0.002 0.0060 0.0001 0.35 0.048 0.002 39.6 1.4 38.5 0.7 121.0 68.0 -3.0 0.8
AFB-00 AFB_87 515.0 142.0 0.28 548.37 0.04 0.002 0.0062 0.0001 0.10 0.047 0.002 40.0 2.0 39.9 0.7 67.0 99.0 -0.2 0.0
AFB-00 AFB_20 283.0 53.7 0.19 295.62 0.04 0.003 0.0064 0.0001 -0.23 0.046 0.004 40.4 3.2 41.4 0.8 30.0 160.0 2.3 -0.3
AFB-00 AFB_65 168.0 73.4 0.44 185.25 0.08 0.008 0.0117 0.0005 0.40 0.051 0.005 79.4 7.6 74.9 3.3 240.0 170.0 -6.0 0.6
AFB-00 AFB_125 235.7 94.4 0.40 257.88 0.08 0.004 0.0121 0.0003 -0.14 0.049 0.003 78.0 4.0 77.5 1.6 120.0 110.0 -0.6 0.1
AFB-00 AFB_54 169.0 55.2 0.33 181.97 0.10 0.006 0.0123 0.0005 0.15 0.059 0.004 94.2 5.7 78.6 2.8 520.0 150.0 -19.8 2.7
AFB-00 AFB_119 468.0 217.0 0.46 519.00 0.11 0.003 0.0168 0.0003 0.43 0.049 0.001 109.0 2.9 107.1 1.6 155.0 64.0 -1.8 0.7
AFB-00 AFB_51 221.7 123.9 0.56 250.82 1.03 0.110 0.0245 0.0009 0.82 0.295 0.026 691.0 58.0 156.1 5.6 3330.0 160.0 -342.7 9.2
AFB-00 AFB_145 245.0 382.0 1.56 334.77 0.18 0.009 0.0257 0.0004 0.06 0.052 0.003 169.6 7.6 163.6 2.7 233.0 97.0 -3.7 0.8
AFB-00 AFB_24 165.3 136.0 0.82 197.26 0.19 0.008 0.0273 0.0005 0.22 0.050 0.002 175.8 6.6 173.5 2.8 198.0 89.0 -1.3 0.3
AFB-00 AFB_126 218.0 173.9 0.80 258.87 0.22 0.008 0.0304 0.0006 0.43 0.051 0.002 199.0 6.4 192.9 4.0 234.0 71.0 -3.2 1.0
AFB-00 AFB_13 585.0 270.0 0.46 648.45 0.27 0.010 0.0367 0.0005 0.47 0.054 0.002 244.7 7.4 232.5 3.1 331.0 66.0 -5.2 1.6
AFB-00 AFB_136 436.0 248.0 0.57 494.28 6.17 0.530 0.0671 0.0048 0.99 0.674 0.018 1970.0 70.0 418.0 29.0 4677.0 42.0 -371.3 22.2
AFB-00 AFB_96 191.0 102.9 0.54 215.18 0.51 0.013 0.0678 0.0010 0.26 0.053 0.001 417.1 8.3 422.6 6.1 341.0 57.0 1.3 -0.7
AFB-00 AFB_48 165.0 123.1 0.75 193.93 0.57 0.018 0.0719 0.0016 0.18 0.059 0.002 460.0 12.0 447.4 9.5 551.0 83.0 -2.8 1.1
AFB-00 AFB_35 245.0 34.0 0.14 252.99 0.56 0.010 0.0727 0.0012 0.47 0.056 0.001 449.7 6.4 452.1 7.1 444.0 44.0 0.5 -0.4
AFB-00 AFB_124 146.0 50.0 0.34 157.75 0.79 0.036 0.0922 0.0033 0.71 0.061 0.002 587.0 20.0 568.0 20.0 621.0 56.0 -3.3 1.0
AFB-00 AFB_61 376.0 197.0 0.52 422.30 1.47 0.120 0.1091 0.0078 0.98 0.097 0.002 902.0 46.0 664.0 45.0 1549.0 37.0 -35.8 5.2
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Corrected Isotopic Ratios Ages (Ma)h
S1 Table. Zircon LA-ICP-MS U-Pb Isotopic Data and Ages for Smith et al., First U-Pb Zircon Ages from Ashfall Fossil Beds (AFB-00) and Grove Lake (GL-00), Nebraska, USA 

AFB-00 AFB_23 116.7 41.8 0.36 126.52 1.66 0.034 0.1650 0.0025 0.36 0.074 0.002 995.0 13.0 984.0 14.0 1033.0 47.0 -1.1 3.5
AFB-00 AFB_22 83.2 81.8 0.98 102.42 1.82 0.058 0.1739 0.0034 0.29 0.076 0.002 1052.0 21.0 1033.0 19.0 1087.0 57.0 -1.8 2.8
AFB-00 AFB_10 232.0 2.1 0.01 232.49 1.79 0.040 0.1770 0.0026 0.47 0.074 0.002 1042.0 15.0 1050.0 14.0 1029.0 43.0 0.8 -1.5
AFB-00 AFB_79 672.0 17.4 0.03 676.09 2.48 0.075 0.1780 0.0058 0.91 0.101 0.002 1265.0 22.0 1054.0 32.0 1635.0 31.0 -20.0 18.2
AFB-00 AFB_11 87.7 61.0 0.70 102.04 1.86 0.038 0.1779 0.0027 0.35 0.075 0.002 1064.0 13.0 1055.0 15.0 1079.0 42.0 -0.9 1.6
AFB-00 AFB_59 319.0 154.1 0.48 355.21 1.96 0.040 0.1831 0.0031 0.68 0.078 0.001 1103.0 14.0 1085.0 17.0 1139.0 35.0 -1.7 3.2
AFB-00 AFB_115 106.3 129.2 1.22 136.66 2.00 0.040 0.1857 0.0026 0.56 0.078 0.002 1114.0 14.0 1098.0 14.0 1153.0 39.0 -1.5 3.9
AFB-00 AFB_121 32.9 18.7 0.57 37.29 1.98 0.085 0.1906 0.0036 0.19 0.078 0.003 1117.0 29.0 1124.0 19.0 1150.0 82.0 0.6 1.4
AFB-00 AFB_64 667.0 186.5 0.28 710.83 3.31 0.140 0.2043 0.0096 0.98 0.118 0.002 1480.0 34.0 1195.0 51.0 1922.0 26.0 -23.8 14.3
AFB-00 AFB_95 34.3 9.7 0.28 36.59 3.16 0.085 0.2332 0.0045 0.37 0.099 0.003 1450.0 21.0 1351.0 24.0 1587.0 53.0 -7.3 9.8
AFB-00 AFB_66 31.4 22.3 0.71 36.64 2.86 0.088 0.2381 0.0047 0.48 0.089 0.003 1384.0 23.0 1376.0 24.0 1404.0 56.0 -0.6 1.2
AFB-00 AFB_151 103.6 40.9 0.39 113.21 3.04 0.078 0.2446 0.0040 0.35 0.091 0.002 1416.0 20.0 1410.0 21.0 1444.0 49.0 -0.4 1.6
AFB-00 AFB_45 163.0 51.6 0.32 175.13 3.49 0.081 0.2693 0.0059 0.79 0.095 0.002 1525.0 18.0 1540.0 29.0 1527.0 34.0 1.0 -0.4
AFB-00 AFB_19 101.3 36.7 0.36 109.92 3.46 0.091 0.2740 0.0048 0.66 0.092 0.002 1516.0 21.0 1561.0 24.0 1466.0 40.0 2.9 -4.0
AFB-00 AFB_25 54.5 21.3 0.39 59.50 3.74 0.079 0.2759 0.0043 0.50 0.099 0.002 1579.0 17.0 1570.0 22.0 1596.0 41.0 -0.6 1.2
AFB-00 AFB_9 420.0 54.3 0.13 432.76 4.20 0.076 0.2933 0.0048 0.72 0.103 0.002 1671.0 15.0 1657.0 24.0 1682.0 28.0 -0.8 1.0
AFB-00 AFB_137 129.0 35.7 0.28 137.39 4.22 0.086 0.2948 0.0061 0.80 0.104 0.002 1675.0 17.0 1664.0 30.0 1699.0 31.0 -0.7 1.2
AFB-00 AFB_146 292.0 41.7 0.14 301.80 4.36 0.110 0.2952 0.0094 0.78 0.107 0.002 1704.0 21.0 1666.0 47.0 1748.0 37.0 -2.3 1.7
AFB-00 AFB_3 311.0 58.4 0.19 324.72 4.22 0.059 0.2966 0.0042 0.80 0.103 0.002 1680.0 12.0 1674.0 21.0 1677.0 26.0 -0.4 0.1
AFB-00 AFB_149 223.9 43.9 0.20 234.22 4.31 0.062 0.3001 0.0040 0.77 0.104 0.001 1694.0 12.0 1691.0 20.0 1705.0 26.0 -0.2 0.7
AFB-00 AFB_120 401.0 341.0 0.85 481.14 4.31 0.066 0.3002 0.0050 0.79 0.105 0.002 1696.0 13.0 1692.0 25.0 1713.0 27.0 -0.2 0.8
AFB-00 AFB_29 417.0 243.0 0.58 474.11 4.43 0.086 0.3012 0.0051 0.82 0.106 0.002 1718.0 16.0 1697.0 25.0 1725.0 27.0 -1.2 1.1
AFB-00 AFB_91 181.0 83.0 0.46 200.51 4.41 0.095 0.3023 0.0056 0.69 0.107 0.002 1713.0 18.0 1705.0 27.0 1741.0 36.0 -0.5 1.3
AFB-00 AFB_2 9.5 4.0 0.42 10.40 11.25 0.640 0.3081 0.0090 0.72 0.266 0.012 2538.0 51.0 1730.0 44.0 3295.0 70.0 -46.7 35.6
AFB-00 AFB_72 269.0 96.5 0.36 291.68 4.62 0.099 0.3101 0.0069 0.89 0.107 0.002 1752.0 18.0 1740.0 34.0 1753.0 28.0 -0.7 0.4
AFB-00 AFB_117 145.3 39.8 0.27 154.65 4.60 0.083 0.3106 0.0062 0.85 0.108 0.002 1749.0 15.0 1743.0 30.0 1757.0 28.0 -0.3 0.5
AFB-00 AFB_50 200.0 61.3 0.31 214.41 4.61 0.110 0.3120 0.0069 0.82 0.108 0.002 1758.0 19.0 1749.0 34.0 1759.0 32.0 -0.5 0.3
AFB-00 AFB_113 152.0 52.0 0.34 164.22 4.58 0.120 0.3137 0.0068 0.79 0.106 0.002 1745.0 21.0 1758.0 33.0 1726.0 40.0 0.7 -1.0
AFB-00 AFB_100 187.0 77.8 0.42 205.28 4.65 0.160 0.3130 0.0110 0.93 0.106 0.002 1760.0 30.0 1765.0 53.0 1733.0 33.0 0.3 -0.6
AFB-00 AFB_97 202.0 56.6 0.28 215.30 4.66 0.100 0.3182 0.0067 0.78 0.106 0.002 1759.0 18.0 1780.0 33.0 1726.0 35.0 1.2 -1.6
AFB-00 AFB_116 144.0 28.3 0.20 150.65 4.77 0.110 0.3217 0.0072 0.76 0.106 0.002 1780.0 19.0 1797.0 35.0 1734.0 34.0 0.9 -1.8
AFB-00 AFB_135 308.0 77.2 0.25 326.14 4.96 0.120 0.3264 0.0060 0.50 0.109 0.002 1811.0 21.0 1823.0 29.0 1776.0 34.0 0.7 -1.6
AFB-00 AFB_15 23.2 15.7 0.68 26.89 5.76 0.120 0.3479 0.0056 0.45 0.121 0.003 1939.0 18.0 1924.0 27.0 1965.0 39.0 -0.8 1.5
AFB-00 AFB_40 98.3 27.9 0.28 104.86 5.70 0.091 0.3556 0.0048 0.70 0.117 0.002 1930.0 14.0 1961.0 23.0 1907.0 27.0 1.6 -2.3

GL-00 GL_79 3,400.0 2,330.0 0.69 3947.55 0.01 0.000 0.0009 0.0000 0.19 0.047 0.003 5.5 0.4 5.5 0.2 110.0 120.0 0.0 0.0
GL-00 GL_27 236.0 140.7 0.60 269.06 0.01 0.003 0.0009 0.0001 0.21 0.071 0.023 9.3 2.5 5.8 0.5 280.0 510.0 -60.3 1.4
GL-00 GL_76 188.5 114.5 0.61 215.41 0.01 0.003 0.0009 0.0001 0.21 0.050 0.025 6.3 2.7 5.9 0.7 -130.0 640.0 -7.5 0.2
GL-00 GL_39 370.0 280.2 0.76 435.85 0.01 0.002 0.0009 0.0001 0.09 0.044 0.012 6.5 1.6 5.9 0.3 70.0 370.0 -10.4 0.4
GL-00 GL_50 452.0 313.1 0.69 525.58 0.01 0.002 0.0009 0.0001 0.03 0.058 0.015 7.2 1.9 5.9 0.4 290.0 460.0 -21.6 0.7
GL-00 GL_8 125.2 75.1 0.60 142.85 0.02 0.004 0.0009 0.0001 0.14 0.199 0.061 19.8 4.4 6.0 0.6 1250.0 710.0 -232.2 3.1
GL-00 GL_40 256.0 162.0 0.63 294.07 0.01 0.003 0.0009 0.0001 0.08 0.067 0.025 7.5 2.6 6.1 0.5 110.0 470.0 -23.6 0.6
GL-00 GL_28 357.0 243.8 0.68 414.29 0.01 0.002 0.0009 0.0001 0.01 0.067 0.014 9.3 1.9 6.1 0.4 580.0 380.0 -53.0 1.7
GL-00 GL_4 227.7 129.3 0.57 258.09 0.01 0.003 0.0009 0.0001 0.07 0.059 0.025 7.3 2.6 6.1 0.5 -120.0 520.0 -19.7 0.5
GL-00 GL_31 393.0 265.0 0.67 455.28 0.01 0.002 0.0009 0.0001 0.03 0.049 0.013 5.6 1.5 6.1 0.4 -80.0 370.0 8.2 -0.3
GL-00 GL_98 217.0 134.0 0.62 248.49 0.01 0.003 0.0009 0.0001 -0.12 0.063 0.035 6.2 3.0 6.1 0.6 -320.0 710.0 -1.6 0.0
GL-00 GL_55 292.9 174.9 0.60 334.00 0.02 0.003 0.0009 0.0001 0.20 0.116 0.021 15.3 2.5 6.1 0.4 1630.0 340.0 -150.4 3.7
GL-00 GL_9 198.6 123.2 0.62 227.55 0.01 0.003 0.0010 0.0001 0.16 0.110 0.039 10.6 3.3 6.1 0.5 160.0 610.0 -72.9 1.4
GL-00 GL_61 463.0 324.0 0.70 539.14 0.01 0.002 0.0010 0.0001 0.08 0.056 0.015 7.0 1.9 6.1 0.4 280.0 420.0 -14.2 0.5
GL-00 GL_49 448.0 250.0 0.56 506.75 0.01 0.002 0.0010 0.0001 0.15 0.054 0.013 6.4 1.7 6.1 0.4 50.0 410.0 -4.2 0.2
GL-00 GL_6 910.0 730.0 0.80 1081.55 0.01 0.002 0.0010 0.0001 -0.02 0.059 0.013 7.5 1.5 6.2 0.4 340.0 340.0 -22.0 0.9
GL-00 GL_84 457.0 309.0 0.68 529.62 0.01 0.002 0.0010 0.0001 0.03 0.061 0.016 7.3 1.9 6.2 0.5 280.0 420.0 -18.7 0.6
GL-00 GL_48 286.0 199.0 0.70 332.77 0.01 0.002 0.0010 0.0001 -0.01 0.060 0.018 7.4 2.2 6.2 0.5 250.0 460.0 -20.1 0.6
GL-00 GL_51 215.2 123.5 0.57 244.22 0.01 0.003 0.0010 0.0001 0.24 0.056 0.025 6.5 3.0 6.2 0.6 110.0 690.0 -5.5 0.1
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GL-00 GL_20 201.0 123.1 0.61 229.93 0.01 0.002 0.0010 0.0001 0.00 0.065 0.019 8.5 2.4 6.2 0.5 500.0 460.0 -37.8 1.0
GL-00 GL_53 202.0 115.0 0.57 229.03 0.01 0.003 0.0010 0.0001 -0.19 0.073 0.034 7.1 3.2 6.2 0.5 -10.0 630.0 -14.7 0.3
GL-00 GL_81 1,133.0 672.0 0.59 1290.92 0.01 0.001 0.0010 0.0000 0.09 0.050 0.006 6.7 0.8 6.2 0.3 230.0 210.0 -8.2 0.6
GL-00 GL_82 394.0 272.0 0.69 457.92 0.01 0.002 0.0010 0.0001 -0.12 0.052 0.012 6.6 1.5 6.2 0.4 30.0 370.0 -6.3 0.3
GL-00 GL_83 493.0 300.0 0.61 563.50 0.01 0.002 0.0010 0.0001 -0.24 0.058 0.015 6.3 1.6 6.2 0.4 40.0 400.0 -1.3 0.1
GL-00 GL_35 175.0 92.0 0.53 196.62 0.01 0.004 0.0010 0.0001 0.10 0.060 0.043 7.0 4.4 6.2 0.6 -1020.0 870.0 -12.4 0.2
GL-00 GL_65 293.0 193.0 0.66 338.36 0.01 0.003 0.0010 0.0001 -0.12 0.059 0.022 8.5 2.8 6.3 0.5 270.0 580.0 -35.8 0.8
GL-00 GL_102 1,080.0 800.0 0.74 1268.00 0.01 0.001 0.0010 0.0001 0.07 0.047 0.010 6.3 1.2 6.3 0.3 160.0 300.0 -0.6 0.0
GL-00 GL_57 131.3 61.9 0.47 145.85 0.01 0.004 0.0010 0.0001 0.07 0.047 0.044 6.8 3.9 6.3 0.7 -1500.0 1200.0 -8.5 0.1
GL-00 GL_67 324.0 220.0 0.68 375.70 0.01 0.002 0.0010 0.0001 -0.08 0.062 0.017 7.7 2.0 6.3 0.5 270.0 440.0 -22.4 0.7
GL-00 GL_75 252.0 157.4 0.62 288.99 0.01 0.002 0.0010 0.0001 -0.04 0.041 0.018 5.3 2.0 6.3 0.5 -170.0 500.0 16.0 -0.5
GL-00 GL_5 456.0 259.0 0.57 516.87 0.01 0.003 0.0010 0.0001 0.36 0.051 0.020 7.1 2.8 6.4 0.5 170.0 590.0 -11.6 0.3
GL-00 GL_22 335.0 215.0 0.64 385.53 0.01 0.002 0.0010 0.0001 -0.01 0.075 0.019 9.7 2.0 6.4 0.5 510.0 380.0 -52.3 1.7
GL-00 GL_77 328.0 221.9 0.68 380.15 0.01 0.002 0.0010 0.0001 0.07 0.043 0.015 6.3 2.0 6.4 0.4 -110.0 440.0 1.3 0.0
GL-00 GL_96 288.0 178.1 0.62 329.85 0.01 0.003 0.0010 0.0001 -0.04 0.069 0.021 9.7 2.7 6.4 0.5 630.0 500.0 -51.8 1.2
GL-00 GL_13 90.9 59.1 0.65 104.79 0.01 0.008 0.0010 0.0002 0.02 0.140 0.170 8.3 7.9 6.4 0.9 -1500.0 1700.0 -29.7 0.2
GL-00 GL_10 395.0 259.0 0.66 455.87 0.01 0.001 0.0010 0.0001 0.15 0.050 0.011 6.7 1.4 6.4 0.4 20.0 350.0 -4.5 0.2
GL-00 GL_42 272.0 188.0 0.69 316.18 0.01 0.002 0.0010 0.0001 0.18 0.067 0.020 7.7 2.4 6.4 0.4 300.0 480.0 -20.1 0.5
GL-00 GL_100 342.0 251.0 0.73 400.99 0.01 0.002 0.0010 0.0001 0.04 0.048 0.017 7.2 1.9 6.4 0.4 100.0 450.0 -12.3 0.4
GL-00 GL_47 1,550.0 1,024.0 0.66 1790.64 0.01 0.001 0.0010 0.0000 0.18 0.044 0.005 6.2 0.7 6.4 0.3 -20.0 180.0 3.4 -0.3
GL-00 GL_92 375.0 239.0 0.64 431.17 0.01 0.002 0.0010 0.0001 0.07 0.055 0.012 7.4 1.6 6.4 0.4 280.0 360.0 -15.3 0.6
GL-00 GL_15 173.0 99.0 0.57 196.27 0.01 0.003 0.0010 0.0001 0.00 0.081 0.031 9.2 3.2 6.4 0.6 290.0 680.0 -43.1 0.9
GL-00 GL_62 177.0 88.5 0.50 197.80 0.01 0.003 0.0010 0.0001 -0.16 0.096 0.036 10.2 3.3 6.4 0.6 500.0 600.0 -58.6 1.1
GL-00 GL_2 262.0 156.0 0.60 298.66 0.01 0.003 0.0010 0.0001 -0.14 0.073 0.026 8.5 3.0 6.4 0.4 340.0 590.0 -32.0 0.7
GL-00 GL_32 397.0 285.2 0.72 464.02 0.01 0.003 0.0010 0.0001 0.01 0.061 0.021 8.1 2.6 6.4 0.4 -80.0 400.0 -25.8 0.6
GL-00 GL_89 264.0 148.0 0.56 298.78 0.01 0.002 0.0010 0.0001 0.16 0.063 0.023 8.1 2.4 6.4 0.5 -120.0 530.0 -25.8 0.7
GL-00 GL_33 294.5 186.7 0.63 338.37 0.01 0.002 0.0010 0.0001 0.20 0.094 0.017 11.6 2.1 6.5 0.4 940.0 380.0 -79.8 2.5
GL-00 GL_44 316.0 196.0 0.62 362.06 0.01 0.002 0.0010 0.0001 -0.10 0.062 0.021 8.4 2.3 6.5 0.6 600.0 540.0 -30.2 0.8
GL-00 GL_78 352.0 221.0 0.63 403.94 0.01 0.002 0.0010 0.0001 -0.06 0.044 0.017 5.7 2.0 6.5 0.5 -180.0 420.0 11.6 -0.4
GL-00 GL_11 282.0 209.0 0.74 331.12 0.01 0.002 0.0010 0.0001 -0.19 0.065 0.020 8.0 2.2 6.5 0.5 190.0 470.0 -23.8 0.7
GL-00 GL_24 177.0 92.0 0.52 198.62 0.01 0.003 0.0010 0.0001 -0.15 0.079 0.047 7.0 3.1 6.5 0.7 0.0 730.0 -7.9 0.2
GL-00 GL_85 1,256.0 1,200.0 0.96 1538.00 0.01 0.001 0.0010 0.0000 0.11 0.051 0.006 7.1 0.8 6.5 0.3 170.0 180.0 -9.2 0.8
GL-00 GL_21 84.4 51.9 0.61 96.60 0.00 0.006 0.0010 0.0001 0.06 0.075 0.072 4.0 6.5 6.5 0.8 -2100.0 1700.0 38.6 -0.4
GL-00 GL_29 265.0 156.0 0.59 301.66 0.01 0.003 0.0010 0.0001 0.09 0.081 0.025 10.0 2.8 6.5 0.6 490.0 540.0 -53.4 1.2
GL-00 GL_64 88.4 48.0 0.54 99.68 0.01 0.006 0.0010 0.0001 0.08 0.160 0.110 13.7 5.8 6.5 0.9 -700.0 1900.0 -109.5 1.2
GL-00 GL_34 312.3 209.6 0.67 361.56 0.01 0.002 0.0010 0.0001 0.19 0.053 0.013 7.0 1.7 6.6 0.4 140.0 370.0 -6.9 0.3
GL-00 GL_45 237.0 144.0 0.61 270.84 0.01 0.002 0.0010 0.0001 0.16 0.055 0.017 7.2 2.3 6.6 0.5 10.0 460.0 -9.9 0.3
GL-00 GL_71 321.0 170.5 0.53 361.07 0.01 0.003 0.0010 0.0001 -0.10 0.050 0.022 5.8 2.5 6.6 0.6 -340.0 590.0 11.7 -0.3
GL-00 GL_43 226.0 140.0 0.62 258.90 0.01 0.003 0.0010 0.0001 0.13 0.051 0.021 6.9 2.7 6.6 0.5 10.0 570.0 -4.7 0.1
GL-00 GL_59 317.0 206.0 0.65 365.41 0.01 0.003 0.0010 0.0001 0.11 0.067 0.026 8.5 3.2 6.6 0.6 -10.0 620.0 -28.8 0.6
GL-00 GL_66 329.0 212.0 0.64 378.82 0.01 0.002 0.0010 0.0001 0.07 0.078 0.015 10.4 1.9 6.6 0.4 780.0 380.0 -57.6 2.0
GL-00 GL_60 324.9 226.6 0.70 378.15 0.01 0.002 0.0010 0.0001 -0.28 0.063 0.016 7.2 1.8 6.6 0.5 330.0 420.0 -8.8 0.3
GL-00 GL_52 336.0 262.6 0.78 397.71 0.01 0.002 0.0010 0.0001 0.10 0.053 0.013 7.5 1.8 6.7 0.5 190.0 390.0 -12.8 0.5
GL-00 GL_26 305.0 195.0 0.64 350.83 0.01 0.003 0.0010 0.0001 -0.01 0.058 0.026 8.5 2.5 6.7 0.5 -40.0 460.0 -26.9 0.7
GL-00 GL_73 221.8 128.3 0.58 251.95 0.01 0.003 0.0010 0.0001 -0.08 0.057 0.022 6.1 2.7 6.7 0.5 140.0 570.0 9.2 -0.2
GL-00 GL_86 267.0 161.0 0.60 304.84 0.01 0.002 0.0010 0.0001 0.08 0.063 0.021 8.9 2.5 6.7 0.5 -120.0 550.0 -32.0 0.9
GL-00 GL_54 267.0 174.8 0.65 308.08 0.01 0.005 0.0010 0.0001 0.14 0.057 0.032 8.7 4.6 6.8 0.6 -110.0 580.0 -28.7 0.4
GL-00 GL_99 274.0 236.0 0.86 329.46 0.01 0.004 0.0011 0.0001 0.02 0.073 0.026 9.6 3.7 6.8 0.6 420.0 720.0 -41.8 0.8
GL-00 GL_69 280.0 185.0 0.66 323.48 0.01 0.003 0.0011 0.0001 0.19 0.066 0.022 9.0 2.7 6.8 0.6 230.0 590.0 -32.7 0.8
GL-00 GL_18 283.0 199.5 0.70 329.88 0.01 0.002 0.0011 0.0001 -0.07 0.051 0.016 6.6 1.8 6.8 0.4 -50.0 420.0 2.8 -0.1
GL-00 GL_12 274.0 160.8 0.59 311.79 0.01 0.003 0.0011 0.0001 -0.03 0.066 0.029 8.2 2.8 6.8 0.5 -300.0 560.0 -20.1 0.5
GL-00 GL_93 310.0 262.0 0.85 371.57 0.02 0.003 0.0011 0.0001 0.13 0.137 0.022 19.4 3.2 6.8 0.5 2010.0 310.0 -184.0 3.9
GL-00 GL_70 175.6 85.7 0.49 195.74 0.01 0.005 0.0011 0.0001 0.23 0.081 0.037 10.7 4.6 6.9 0.8 600.0 830.0 -56.0 0.8
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Sample ID Grain #a Ub [ppm] Thb [ppm] Th/U eUc [ppm] 207Pb/235Ud ±2se 206Pb/238Ud ±2se Rhof 207Pb/206Pbg ±2se 207Pb/235U ±2s 206Pb/238U ±2s 207Pb/206Pb ±2s Disc. %k Wtd. Disc.l

Corrected Isotopic Ratios Ages (Ma)h
S1 Table. Zircon LA-ICP-MS U-Pb Isotopic Data and Ages for Smith et al., First U-Pb Zircon Ages from Ashfall Fossil Beds (AFB-00) and Grove Lake (GL-00), Nebraska, USA 

GL-00 GL_1 129.8 44.1 0.34 140.16 0.01 0.005 0.0011 0.0001 0.02 0.100 0.044 10.0 5.3 6.9 0.6 60.0 860.0 -45.6 0.6
GL-00 GL_90 202.0 102.7 0.51 226.13 0.02 0.004 0.0011 0.0001 0.13 0.139 0.031 18.1 4.0 7.0 0.7 1600.0 470.0 -160.1 2.8
GL-00 GL_72 226.0 118.0 0.52 253.73 0.01 0.002 0.0011 0.0001 -0.06 0.064 0.018 7.6 1.9 7.0 0.5 280.0 450.0 -8.6 0.3
GL-00 GL_95 421.0 283.6 0.67 487.65 0.02 0.004 0.0011 0.0001 0.02 0.146 0.029 20.7 4.0 7.1 0.6 1890.0 490.0 -192.4 3.4
GL-00 GL_17 142.0 77.3 0.54 160.17 0.01 0.004 0.0011 0.0001 -0.02 0.120 0.130 12.3 3.9 7.2 0.8 -150.0 970.0 -71.5 1.3
GL-00 GL_91 387.0 269.0 0.70 450.22 0.01 0.003 0.0011 0.0001 0.13 0.069 0.020 9.7 3.0 7.2 0.4 670.0 500.0 -35.3 0.8
GL-00 GL_56 11.8 3.8 0.32 12.70 0.03 0.043 0.0011 0.0006 0.14 -0.270 0.300 32.0 43.0 7.2 3.9 -9300.0 5300.0 -344.4 0.6
GL-00 GL_103 185.0 119.0 0.64 212.97 0.01 0.004 0.0011 0.0001 -0.25 0.058 0.034 7.0 4.1 7.3 0.8 0.0 770.0 4.0 -0.1
GL-00 GL_97 115.4 47.6 0.41 126.59 0.01 0.005 0.0012 0.0001 0.03 0.066 0.046 9.5 4.8 7.5 0.8 -540.0 880.0 -27.5 0.4
GL-00 GL_38 945.0 706.0 0.75 1110.91 0.03 0.004 0.0012 0.0001 0.47 0.173 0.018 27.8 3.4 7.6 0.4 2500.0 180.0 -266.3 5.9
GL-00 GL_88 130.9 65.8 0.50 146.36 0.02 0.005 0.0012 0.0001 0.17 0.139 0.033 22.7 5.1 7.7 0.7 1540.0 530.0 -193.3 2.9
GL-00 GL_63 134.8 95.3 0.71 157.20 0.02 0.006 0.0012 0.0001 0.27 0.161 0.045 23.8 6.2 7.8 0.8 1530.0 640.0 -206.7 2.6
GL-00 GL_94 103.0 50.6 0.49 114.89 0.02 0.009 0.0013 0.0002 0.15 0.153 0.098 16.4 8.7 8.6 1.0 400.0 1100.0 -90.9 0.9
GL-00 GL_46 158.0 103.2 0.65 182.25 0.04 0.006 0.0014 0.0001 -0.08 0.222 0.061 41.8 6.2 8.7 0.8 2480.0 390.0 -380.5 5.3
GL-00 GL_101 191.1 107.0 0.56 216.25 0.06 0.009 0.0014 0.0001 0.58 0.274 0.040 57.4 8.9 8.8 0.8 2930.0 360.0 -551.5 5.5
GL-00 GL_68 759.0 601.0 0.79 900.24 0.04 0.003 0.0014 0.0001 0.16 0.196 0.015 35.3 2.6 8.8 0.4 2750.0 140.0 -299.3 10.2
GL-00 GL_36 111.2 64.6 0.58 126.38 0.04 0.011 0.0014 0.0002 0.05 0.190 0.130 40.0 10.0 9.1 1.1 1760.0 960.0 -339.6 3.1
GL-00 GL_80 132.8 82.8 0.62 152.26 0.05 0.007 0.0015 0.0001 0.24 0.234 0.039 46.1 6.8 9.6 0.8 2690.0 350.0 -379.7 5.4
GL-00 GL_74 166.0 100.9 0.61 189.71 0.06 0.008 0.0015 0.0001 -0.13 0.328 0.048 61.3 7.1 9.7 0.7 3160.0 360.0 -532.0 7.3
GL-00 GL_14 147.8 87.1 0.59 168.27 0.09 0.010 0.0017 0.0001 0.06 0.432 0.053 88.4 8.8 11.1 0.9 3790.0 200.0 -695.0 8.8
GL-00 GL_87 151.2 59.1 0.39 165.09 0.12 0.013 0.0021 0.0002 0.13 0.446 0.063 112.0 12.0 13.2 1.3 3960.0 210.0 -748.5 8.2
GL-00 GL_16 8.1 2.5 0.31 8.65 0.13 0.069 0.0029 0.0012 0.12 -0.050 0.320 114.0 65.0 18.5 7.5 -10200.0 7700.0 -516.2 1.5
GL-00 GL_37 11.2 2.9 0.26 11.86 0.31 0.078 0.0031 0.0009 0.12 0.900 0.430 264.0 55.0 20.0 5.8 1100.0 4500.0 -1220.0 4.4
GL-00 GL_19 235.0 137.6 0.59 267.34 0.03 0.004 0.0041 0.0002 0.12 0.049 0.007 27.0 3.6 26.3 1.1 240.0 250.0 -2.5 0.2
GL-00 GL_30 2.9 0.6 0.19 3.05 0.02 0.220 0.0067 0.0038 -0.12 0.110 0.200 90.0 200.0 42.0 24.0 -7700.0 4200.0 -114.3 0.2
GL-00 GL_23 19.5 13.4 0.69 22.65 2.79 0.310 0.0242 0.0028 0.82 0.822 0.057 1316.0 93.0 153.0 18.0 5000.0 140.0 -760.1 12.5
GL-00 GL_7 23.1 16.0 0.69 26.86 2.71 0.680 0.0287 0.0073 0.90 0.784 0.064 1200.0 160.0 170.0 41.0 4920.0 150.0 -605.9 6.4
GL-00 GL_41 129.8 51.7 0.40 141.95 1.75 0.067 0.1707 0.0052 0.56 0.074 0.002 1026.0 24.0 1015.0 28.0 1035.0 50.0 -1.1 0.7
GL-00 GL_58 77.0 35.9 0.47 85.44 1.92 0.082 0.1812 0.0060 0.52 0.077 0.002 1086.0 29.0 1073.0 33.0 1143.0 57.0 -1.2 2.1
GL-00 GL_25 69.9 34.4 0.49 77.98 2.06 0.077 0.1943 0.0060 0.33 0.077 0.002 1134.0 25.0 1144.0 33.0 1116.0 57.0 0.9 -0.8



a Samples are sorted from youngest 206Pb/238U-age to oldest; Highlighted rows indicate youngest concordant analyses used to calculate depositional ages 
b U and Th concentrations and Th/U ratios calculated relative to the GJ-1 zircon standard ID-TIMS values using 287 ± 76 ppm for U and 8.4 ± 2.6 ppm for Th (Jackson et al., 2004) 
c Equivalent U defined by the equation: eU = U ppm + 0.235*Th ppm 
d Corrected for U-Pb fractionation and background and normalized to the GJ-1 zircon standard ID-TIMS values: 207Pb/235U = 0.8093 ± 0.0009 and 206Pb/238U = 0.09761 ± 0.00011 (Jackson et al., 

2004) 
ePropagated uncertainty of internal uncertainties (2 SE) and within run reproducibility of GJ-1 (2 SE) 
f Uncertainty correlation between 206Pb/238U and 207Pb/235U uncertainties 
g Corrected for background and Pb isotopic fractionation using the GJ-1 zircon standard ID-TIMS value: 207Pb/206Pb = 0.06014 ± 0.00001 (Jackson et al., 2004) 
h U-Pb ages calculated relative to the weighted mean 206Pb/238U age of 600.4 ±0.65 Ma for the GJ-1 zircon reference material (Jackson et al., 2004) 
i Percent Discordance defined as (1-(207Pb/235Uage / 206Pb/238Uage))*100 
j Uncertainty weighted age difference defined as (207Pb/235Uage - 206Pb/238Uage)/(207Pb/235U2σ age uncertainty) for grains with 206Pb/238U ages <900 Ma and  

(207Pb/206Pbage - 206Pb/238Uage)/(206Pb/238U2σ age uncertainty) for grains with 206Pb/238U ages ≥900 Ma 
 
 
Jackson, S.E., Pearson, N.J., Griffin, W.L., and Belousova, E.A., 2004, The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology: 
Chemical Geology, v. 211, p. 47-69. 
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Age (Ma) Unita State Volcanic Field

Estimated 
Volume (km3)b Reference

4.45 Kilgore Tuff Idaho Heise 1800 Morgan and McIntosh (2005)
5.51 Conant Creek Tuff Idaho Heise 300 Morgan and McIntosh (2005)
6.27 Walcott Tuff Idaho Heise 750 Morgan and McIntosh (2005)
6.62 Blacktail Creek Tuff Idaho Heise 1500 Morgan and McIntosh (2005)
7.02 Cub River Tuff Idaho Picabo 1000 Perkins and Nash (2002)
7.49 Faust Tuff Idaho Picabo 1000 Perkins and Nash (2002)
7.90 Rush Valley Tuff Idaho Picabo 1000 Perkins and Nash (2002)
8.30 Inkom Tuff Idaho Picabo 1000 Perkins and Nash (2002)
9.16 McMullen Creek Tuff Idaho Twin Falls 500 Perkins and Nash (2002)
9.41 Lonergan Creek Tuff Idaho Twin Falls 500 Perkins and Nash (2002)
9.52 Opal Canyon 6 Tuff Idaho Twin Falls 500 Perkins and Nash (2002)
10.25 Rawlins Tuff Idaho Twin Falls 500 Perkins and Nash (2002)
10.45 Cougar Point Tuff XV Idaho Bruneau-Jarbidge 500 Bonnichsen et al. (2008)
10.75 Cougar Point Tuff XIII Idaho Bruneau-Jarbidge 1000 Bonnichsen et al. (2008)
11.22 Cougar Point Tuff XI Idaho Bruneau-Jarbidge 1000 Bonnichsen et al. (2008)
11.59 Cougar Point Tuff IX Idaho Bruneau-Jarbidge 500 Bonnichsen et al. (2008)
11.81 Cougar Point Tuff VII Idaho Bruneau-Jarbidge 750 Bonnichsen et al. (2008)
11.93 Ibex Hollow Tuff Idaho Bruneau-Jarbidge 500 Perkins and Nash (2002)
12.67 Cougar Point Tuff III Idaho Bruneau-Jarbidge 500 Bonnichsen et al. (2008)
13.5 Hurlbut Tuff Idaho Owyhee-Humboldt 950 Perkins and Nash (2002)
13.80 Swisher Mountain Tuff Idaho Owyhee-Humboldt 1430 Ekren et al. (1984)

      a Ash-flow tuffs geochemically correlated with airfall deposits on the Great Plains (from Figure 5 in Perkins and Nash, 2002).
      b When possible,  eruption volumes are from estimated ashfall volumes reported in cited references.

     Bonnichsen B, Leeman WP, Honjo N, McIntosh WC, Godchaux MM (2008) Miocene silicic volcanism in southwestern Idaho: 
              Geochronology, geochemistry, and evolution of the central Snake River Plain. Bulletin of Volcanology 70: 315–342.
     Ekren EB, McIntyre DH, Bennett EH (1984) High-temperature, large-volume, lavalike ash-flow tuffs without calderas in southwestern 
              Idaho. U.S. Geological Survey Professional Paper 1272: 76 p.
     Morgan L A, McIntosh W C (2005) Timing and development of the Heise volcanic field, Snake River Plain, Idaho, western USA. 
              Geological Society of America, Bulletin 117: 288-306.
     Perkins, M.E., and Nash, B.P., 2002, Explosive silicic volcanism of the Yellowstone Hotspot: the ash fall tuff record: Geological Society of 
              America, Bulletin, v. 114, p. 367–381.

S2 Table. Supervolcano Eruption Data; Smith et al. The first U-Pb zircon ages for the Ashfall Fossil Beds 
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