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Abstract
We derive Wiman’s asymptotic formula for the number of generalized zeros of
(nontrivial) solutions of a second order dynamic equation on a time scale. The proof is
based on the asymptotic representation of solutions via exponential functions on a
time scale. By using the Jeffreys et al. approximation we prove Wiman’s formula for a
dynamic equation on a time scale. Further we show that using the Hartman-Wintner
approximation one can derive another version of Wiman’s formula. We also prove
some new oscillation theorems and discuss the results by means of several examples.
MSC: 34E20; 34N05

Keywords: dynamic equation on a time scale; oscillation theory; number of zeros;
asymptotic representation of solutions; Jeffreys, Wentzel, Kramers and Brillouin
approximation

1 Introduction
Consider the equation

u��(t) +
u(t)

(wσ (t)w(t))
= , t ≥ t, (.)

on [t, t)T = T∩ [t, t), where T is a time scale (a closed nonempty subset of the real num-
bers R). Let N(t, t) be the number of generalized zeros of solutions of (.) on T. The
classical result of Wiman [] for the continuous time scale case states that if (.) is oscil-
latory on [t,∞), and w(t) is a differentiable function such that

lim
t→∞

[
w]′(t) = , (.)

then

N(t, t) ∼ 
π

∫ t

t

ds
w(s)

, t → ∞, (.)

where the symbol ∼ means that the ratio of the two quantities tends to  as t → ∞.
In this paper under some restrictions on the graininess of the time scale and the asymp-

totic behavior of the coefficient w(t), we obtain an explicit Jeffreys, Wentzel, Kramers and
Brillouin (JWKB) asymptotic representation of solutions of (.). Using this representa-
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tion we prove the analogue of Wiman’s formula for (.) on [t,∞)T, which is given by

N(t, t) ∼ 
π

∫ t

t
lim

q↘μ(s)

tan–(qw–(s))�s
q

, t → ∞. (.)

First we recall some basic definitions and notation used in time scale analysis (see [,
]). A time scale T is an arbitrary nonempty closed subset of the real numbers. Since we
are interested in the asymptotic behavior of solutions of (.), we will consider time scales
which are unbounded above, i.e., sup(T) = ∞. For t ∈ T we define the forward and back-
ward jump operators by

σ (t) = inf{s ∈ T, s > t}, ρ(t) = sup{s ∈ T, s < t}.

The (forward) graininess function μ : T→ [,∞) is defined by

μ(t) = σ (t) – t.

For f : T→R and t ∈ T, we define the delta derivative f �(t) to be the number (provided
it exists) with the property that for any ε > , there exist a δ >  and a neighborhood U =
(t – δ, t + δ)∩T of t such that

∣∣f σ (t) – f (s) – f �(t)
(
σ (t) – s

)∣∣ ≤ ε
∣∣σ (t) – s

∣∣, f σ (t) := f
(
σ (t)

)
,

for all s ∈U (see []).
A function f : T →R is said to be rd-continuous provided it is continuous at right-dense

points in T and at each left-dense point t in T the left hand limit at t exists (finite). The set
of functions such that their nth delta derivative exists and is rd-continuous onT is denoted
by Cn

rd . In (.) we assume that w–(·) ∈ Crd and we say u(·) is a solution provided u(·) ∈ C
rd

and u��(t) + (wσ (t))–w–(t)u(t) =  for t ∈ T. We say that a complex-valued function f (·)
is regressive on T if  +μ(t)f (t) �=  for all t ∈ T. The set of regressive functions on Crd will
be denoted byR. The setR along with the addition ⊕ defined by

p⊕ q := p + q +μpq

forms an Abelian group called the regressive group ([], p.). If p ∈ R the (generalized)
exponential function ep(t, t) is the unique solution of the IVP

x� = p(t)x, x(t) = 

and is given by the formula

ep(t, t) = exp

[∫ t

t
lim

q↘μ(s)


q
ln

(
 + qp(s)

)
�s

]
(.)

where ln is the principal logarithmic function. The set of regressive functions on Cn
rd will

be denoted byRn.

http://www.advancesindifferenceequations.com/content/2014/1/61
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A solution u(·) of (.) is said to have a zero at a ∈ T if u(a) = , and it has a node at a+σ (a)


if u(σ (a))u(a) < . A generalized zero of u(t) is defined as its zero or its node. A solution
of (.) is said to be oscillatory if it has an infinite sequence of generalized zeros in T, and
nonoscillatory otherwise. Equation (.) is said to be oscillatory on T if all of its solutions
are oscillatory, and nonoscillatory otherwise.
Wiman’s result was extended by P. Hartman, Wintner [], R. Potter [], Z. Nehari [],

and H. Gingold []. Many different results on the oscillation of solutions of second order
differential equations appear in the book of Swanson [].
After the introduction of the time scale calculus by Hilger [], oscillation theorems for

second order dynamic equations on a time scale have been studied by many authors (see
for example [–] and the references therein).

2 Main results
Since the basic method of this paper uses the asymptotic representation of solutions of
(.) we will introduce some definitions and notation that will be important in what fol-
lows.
The following lemmawill be important in the sequel.Wewill use the following notation:

[z] = [x + iy] := x, �[z] = �[x + iy] =: y.

Lemma . Assume η : [t,∞)T →R and w : [t,∞)T → (,∞) are rd-continuous func-
tions, w(t) >  on [t,∞)T and let

θ(t) := η(t) +
i

w(t)
, θ(t) := η(t) –

i
w(t)

= θ̄(t) (.)

for t ∈ [t,∞)T. Then [θ],�[θ],[θ],�[θ] ∈R, and

eθ (t, t) := K(t, t)eη (t, t)e
i
(t), eθ (t, t) := K(t, t)eη (t, t)e

–i
(t), (.)

where

K (t, t) = exp

[∫ t

t
lim

q↘μ(s)


q

ln

(
 +

q

w(s)

)
�s

]
, (.)

and


(t) =
∫ t

t
lim

q↘μ(s)


q(s)
q

�s, η(t) =
η(t)

 + i μ(t)
w(t)

,


q(t) = tan–
(

q
w(t)

)
.

(.)

Proof First note that if �[θk] = 
w(t) �= , and

∣∣ +μ(t)θk(t)
∣∣ = (

 +μ(t)[
θk(t)

]) + (
μ(t)�[

θk(t)
]) > , k = , ,

http://www.advancesindifferenceequations.com/content/2014/1/61
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so θk ∈R, k = ,  and hence eθk (t, t), k = ,  are well defined. Let η be as in the statement
of this lemma and consider

η ⊕ i
w = η +

i
w +μη

i
w

= η

[
 + i

μ

w

]
+

i
w

= η +
i
w

= θ.

Hence

eθ (t, t) = eη⊕ i
w
(t, t) = eη (t, t)e i

w
(t, t).

In a similar manner one can show that

η ⊕ –i
w = θ,

and hence

eθ (t, t) = eη⊕ –i
w
(t, t) = eη (t, t)e –i

w
(t, t).

Using (.) we get

e i
w
(t, t) = exp

[∫ t

t
lim

q↘μ(s)


q
ln

(
 + i

q
w(s)

)
�s

]

= e i
w
(t, t) = exp

[∫ t

t
lim

q↘μ(s)


q

(
ln

√
 +

q

w(s)
+ i
q(s)

)
�s

]
.

Hence

e i
w
(t, t) = exp

∫ t

t
lim

q↘μ(s)

[

q

ln

(
 +

q

w(s)

)
+ i


q(s)
q

]
�s

= K (t, t)ei
(t),

where K (t, t) and 
(t) are given by (.) and (.). Similarly

e –i
w
(t, t) = K (t, t)e–i
(t),

and consequently the formulas (.) hold. �

Example . Let θk , k = ,  be as in Lemma ..
() If T = [t,∞), then

eθ (t, t) = e
∫ t
t

η(s)dsei
∫ t
t

ds
w(s) , eθ (t, t) = e

∫ t
t

η(s)dse–i
∫ t
t

ds
w(s) .

http://www.advancesindifferenceequations.com/content/2014/1/61
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() If T =N, then

eθ (t, ) = K (t, )eη (t, )e
i
∑t–

k= tan
– 

w(k) ,

eθ (t, ) = K (t, )eη (t, )e
–i

∑t–
k= tan

– 
w(k) ,

where

K (t, ) =
t–∏
k=

ln

√
 +


w(k)

, η(t) =
η(t)

 + i 
w(t)

.

DefineM : T→R by

M(t) :=
∣∣∣∣p� +

p

w – pμ + iμ

∣∣∣∣, p(t) = –
(w)�(t)


. (.)

Note that the functionM(t) is defined from the JWKB approximation and may be chosen
differently from another approximation (see Theorem .).
Using the JWKB approximation method one can prove the following theorem.

Theorem . Assume that w ∈ C
rd and the conditions

∫ ∞

t
M(s)�s < ∞, (.)

μ(t) lim
q↘μ(t)

tan–(qw–(t))
q

≤ π – ε, t ∈ [t,∞)T , (.)

∫ ∞

t
lim

q↘μ(s)


q
tan–

(
p(s)q

w(s) + q – p(s)w(s)q

)
�s = A < ∞ (.)

are satisfied for some ε > . Then (.) is oscillatory if and only if

∫ ∞

t
lim

q↘μ(s)

tan–(qw–(s))�s
q

=∞. (.)

Theorem . Assume that w ∈ C
rd and conditions (.)-(.) are satisfied. Then

∣∣∣∣N(t, t) +


–


π

∫ t

t
lim

q↘μ(s)

tan–(qw–(s))�s
q

∣∣∣∣ ≤ .

Corollary . Assume that w ∈ C
rd and conditions (.)-(.) are satisfied. Then

N(t, t) ∼ 
π

∫ t

t
lim

q↘μ(s)

tan–(qw–(s))�s
q

, t → ∞. (.)

Example . Consider the difference equation

�un +
un√

n(n + )
= 

http://www.advancesindifferenceequations.com/content/2014/1/61


Erbe et al. Advances in Difference Equations 2014, 2014:61 Page 6 of 15
http://www.advancesindifferenceequations.com/content/2014/1/61

on the discrete time scale T = Z. We have

w(n) = wn = n/,

p = –


(
w)� = –



(
n/

)� =
n/ – (n + )/


, M(n) ∼ n–/, n→ ∞.

Conditions (.)-(.) are satisfied for sufficiently large n, and from (.) we get

N(n)∼ 
π

n–∑
k=

tan–
(

√
k

)
, n→ ∞.

For a continuous time scale (μ(t)≡ ) conditions (.)-(.) are automatically satisfied,
and from Lemma ., Theorem . we get the following corollary.

Corollary . Assume that w(t) is twice differentiable on [t,∞) and the condition

∫ ∞

t

∣∣w(t)w′′(t)
∣∣dt < ∞, t ≥ t, (.)

is satisfied. Then (.) is true, and (.) is oscillatory if and only if

∫ ∞

t

ds
w(s)

=∞. (.)

Note that the necessary part of Corollary . is due to Leighton [] under the assump-
tion that w is a monotone function.
For monotonic functions w, Wiman’s condition (.) is less restrictive than (.) (for

example w(t) = t ln–ε(t), ε > ). His proof is based on the transformation of the time vari-
able which causes problems in the time scale setting. In this paper we give a new proof
of Wiman’s formula that does not require the monotonicity of w, and it is based on an
asymptotic representation of solutions of (.).

Example . From Corollary . it follows that the equation

u′′(t) +
a
tγ

u(t) = , a > , (.)

is oscillatory if and only if γ < . Indeed from γ <  it follows that both conditions (.) and
(.) are satisfied. Condition (.) is restrictive, but without it Corollary . is not true
since for the nonoscillatory equation u′′ + 

t u =  condition (.) is satisfied. It is well
known (Kneser []) that (.) is nonoscillatory if at–γ ≤ 

 t
–, and oscillatory if at–γ >


 t

–. Our condition γ <  is stronger, but it provides explicit asymptotic representations
of the solutions and their derivatives as well.

Example . For the example

u′′(t) +
(
a lnβ (t)

t
+
sin(t)
t

)
u(t) = , a > , (.)

http://www.advancesindifferenceequations.com/content/2014/1/61
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condition (.) is satisfied if β > , and condition (.) is satisfied if β > –. For this
example Leighton’s necessary criterion for oscillation [] does not apply since w–(t) =
a lnβ (t)t– + sin(t)t– is not monotone.

Using the Hartman-Wintner [] approximation one can prove the following theorem.

Theorem . Assume that w ∈ C
rd and for some ε, ε ∈ (, ) the conditions

 – p(t)≥ ε, p(t) := –


(
w)�(t), t ∈ [t,∞)T , (.)

∫ ∞

t

|r�(s)|�s√
 – |pσ (s)| < ∞, r(t) = p(t) + i – i

√
 – p(t), (.)

μ(t) lim
q↘μ(t)

tan–(qw–(t)
√
 – p(t))

q
≤ π – ε, t ∈ [t,∞)T , (.)

∫ ∞

t
lim

q↘μ(s)


q
tan–

(
qp(s)

√
 – p(s)

w(s)(w(s) – p(s)q) + q( – p(s))

)
�s = A <∞ (.)

are satisfied.
Then (.) is oscillatory if and only if

∫ ∞

t
lim

q↘μ(s)

tan–(qw–(s)
√
 – p(s))

q
�s =∞. (.)

Theorem. Assume that w ∈ C
rd and conditions (.)-(.)are satisfied.ThenNehari’s

generalization of Wiman’s formula (see []) is true:

N(t, t) ∼ 
π

∫ t

t
lim

q↘μ(s)

tan–(qw–(s)
√
 – p(s))�s

q
, t → ∞. (.)

3 Proofs
To get the asymptotic representation of solutions of the equation

L
[
u(t)

]
= u��(t) +

u(t)
(wσw(t))

= , t ∈ [t,∞)T (.)

we will use the following theorem.

Theorem . ([], Theorem .) Let u,u ∈ C
rd be complex-valued functions such that

W [u,u] := u(t)u�
 (t) – u�

 (t)u �= , t ∈ [t,∞)T , (.)∫ ∞

t
M(t)�t < ∞, m,n = , , (.)

where

M(t) = max
m,n=,

∣∣Hmn(t)
∣∣, Hmn(t) :=

uσ
m(t)L[un(t)]
W σ [u,u]

, (.)

http://www.advancesindifferenceequations.com/content/2014/1/61
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L
[
u(t)

]
= u��(t) + P(t)u�(t) +Q(t)u(t). (.)

Then for arbitrary constants C, C there exists a solution u of (.) that can be written in
the form

u(t) =
[
C + δ(t)

]
u(t) +

[
C + δ(t)

]
u(t), (.)

u�(t) =
[
C + δ(t)

]
u�
 (t) +

[
C + δ(t)

]
u�
 (t), (.)

where the error vector-function δ(t) satisfies

∥∥δ(t)
∥∥ ≤ ‖C‖

(
– + exp

{∫ ∞

t
M(s)�s

})
, (.)

where M(t) is defined as in (.), ‖δ‖ is the Euclidean vector (or matrix) norm: ‖δ(t)‖ =√∑
k= δ


k (t), and δk(t), k = ,  are the entries of the vector δ(t).

Remark . If we seek asymptotic solutions un of (.) in the Euler form,

un(t) = en(t) = eθn (t, t), n = , , (.)

then in view of L[en(t)] = R(θn(t))en, we see that the formula (.) becomes

M(s) = max
m,n=,

∣∣∣∣ en(s)R(θn(s))
eσ
m(s)[θσ

 (s) – θσ
 (s)]

∣∣∣∣, (.)

where the Riccati functions R(θn(t)), n = ,  are defined by

R
(
θn(t)

)
= θ�

n (t) + θσ
n (t)θn(t) +


(wσ (t)w(t))

, n = , . (.)

Theorem . Assume w ∈ C
rd , and condition (.) is satisfied with

M(s) =



∣∣∣∣p�(s) +
p(s)

w(s) – pμ(s) + iμ(s)

∣∣∣∣, p(t) = –
(w)�(t)


. (.)

Then for arbitrary constants C, C there exists a solution u of (.) that can be written in
the form (.) and (.), with error estimate given by (.).

Proof In Lemma ., take η(t) = –p(t)
w(t) , where p(t) will be chosen later in this proof. Then

θ(t) =
i – p(t)
w(t)

, θ(t) =
–i – p(t)
w(t)

are regressive functions. Note that

W
[
eθ (t, t), eθ (t, t)

]
=

(
θ(t) – θ(t)

)
eθ (t, t)eθ (t, t)

= –
i
w eθ⊕θ (t, t) �= , (.)

http://www.advancesindifferenceequations.com/content/2014/1/61
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so condition (.) of Theorem . is satisfied, where ui(t) = eθi (t, t), i = , .
By the quotient rule

θ�
 =

(i – p)�w – (i – p)(w)�

(wσw)

= –
p�

(wσ )
+
(i – p)k
(wσw)

,

where k = –(w)�
 . Then

R(θ) =
–p�w + (i – p)k + (i – p)(i – pσ ) + 

(wσw)

=
p – p(k + i) + ik – p�(w + iμ – pμ)

(wσw)

where we used pσ = p +μp�. Using

 +μθ =
(
w + iμ – pμ

)
/w and (θ – θ)σ = i

(
wσ

)–
we get

iR(θ)
( +μθ)(θ – θ)σ

= –p� +
p – p(k + i) + ik

w + iμ – pμ
. (.)

Choosing the JWKB approximation:

p(t) = k(t) := –
(w)�(t)


, (.)

we get

M(s) = max
m,n=,

∣∣∣∣ iRn(s)
( +μθm(s))[θσ

 (s) – θσ
 (s)]

∣∣∣∣ =
∣∣∣∣–p� –

p

w + iμ – pμ

∣∣∣∣.
Note that there is another possible choice of p(t) as a solution of the quadratic equation

p – p(k + i) + ik =  (the Hartman-Wintner approximation, see []). �

Proof of Theorem . Let θ and θ be defined as in the proof of Theorem .. Then by
Lemma . with η(t) = – p(t)

w(t)

eθ (t, t) = K(t, t)eη (t, t)e
i
(t), eθ (t, t) = K(t, t)eη (t, t)e

–i
(t), (.)

where K (t, t) and 
(t) are given by (.) and (.).
Using the Euler formula we have

u(t) = eθ (t, t) = K (t, t)
(
cos

(

(t)

)
+ i sin

(

(t)

))
eη (t, t),

u(t) = eθ (t, t) = K(t, t
(
cos

(

(t)

)
– i sin

(

(t)

))
eη (t, t).

http://www.advancesindifferenceequations.com/content/2014/1/61
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From Theorem ., a general solution of (.) is of the form

u(t) =
(
C + δ(t)

)
eθ (t, t) +

(
C + δ(t)

)
eθ (t, t)

=N(t) cos
(

(t)

)
+N(t) sin

(

(t)

)
, (.)

where

N(t) = K (t, t)
[((

C + δ(t)
)
eη (t) +

(
C + δ(t)

)
eη (t)

)]
,

N(t) = iK(t, t)
[((

C + δ(t)
)
eη (t) –

(
C + δ(t)

)
eη (t)

)]
.

(.)

Assume u(t) is a real-valued solution of (.) and C, C be arbitrary real constants. We
will prove that N(t), N(t) are also real-valued functions.
Indeed by solving the system (.) and (.) for Cj + δj we get

C + δ =
u�
 u – u�u

uu�
 – uu�


, C + δ =

u�u – u�
 u

uu�
 – uu�


,

which implies C + δ = C + δ, which in turn implies that δ(t), δ(t) are complex conju-
gates of each other. Then, since eη , eη are complex conjugates, from (.) it follows that
N, are real-valued functions.
Define �(t) so that

sin
(
�(t)

)
=

N(t)√
N

 (t) +N
 (t)

=
(C + δ(t))eη (t, t) + (C + δ(t))eη (t, t)

|eη (t, t)|
√
[C + δ(t)][C + δ(t)]

(.)

then from (.) we get

u(t) =
√
N

 +N
 sin

(

(t) +�(t)

)
. (.)

We extend the domain of the function


(t) =
∫ t

t
lim

q↘μ(s)


q(s)
q

�s, t ∈ [t,∞)T

for t in the real interval (t,σ (t)), when σ (t) �= t by the formula


e(t) =
(σ (t) – t)
(t) + (t – t)
(σ (t))

σ (t) – t
, t ∈ (

t,σ (t)
)
.

Note that 
e(t) is linear and continuous on (t,σ (t)) and


e(t) = 
(t), 
e
(
σ (t)

)
=


(
σ (t)

)
.

In the same way one can extend the function 
 with domain [t,∞)T to 
e with domain
the real interval [t,∞). Since 
(t) ∈ C

rd((t,∞)T) the extended function 
e ∈ C(t,∞).
Later wewill show that there exist points zn ∈ (t,∞) (whichmay not belong to [t,∞)T)

such that


e(zn)
n

+
�e(zn)

n
= π , n = ,±,±,±, . . . , (.)
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so the zeros of the extended solution u(t) are located at zn. Assuming z > t from (.) we
get


(t) =
∫ t

t
lim

q↘μ(s)

tan–(qw–(s))�s
q

, t ∈ [t,∞)T ,

�(t) = sin–
(

N(t)√
N

 (t) +N
 (t)

)
≤ π


, t ∈ [t,∞)T .

(.)

Further we have

eη (t, t) = exp

{∫ t

t

ln | +μ(s)η(s)|�s
μ(s)

}
exp

{∫ t

t

iβ(s)�s
μ(s)

}
, (.)

where

β(s) := Arg
(
 +μη(s)

)
. (.)

From

 +μη =  –
pμ

w + iμ
=  –

pμ(w – iμ)
w +μ ,

| +μη| =
(
 –

pμw

w +μ

)

+
pμ

(w +μ)
> ,

(.)

and so eη (t, t) is well defined. Indeed (.) is true when μ(t) =  and when μ(t) �= .
Further

 +μη = | +μη|eiβ , tan(β) =
pμ

w +μ – pμw . (.)

From (.) and (.) we see that the following limits exist:

lim
t→∞

eη (t)
eη (t)

= exp
∫ ∞

t

iβ(s)�s
μ(s)

= A,

lim
t→∞ sin

(
�(t)

)
= A.

Further, since sin–(x) is a continuous function on its domain, we get

lim
zn→∞

�(zn)
n

= , (.)

and from (.)


π

(

(zn) + o()

)
= n. (.)

Note that from the Leibniz formula (see Theorem . [])

(∫ t

t
f (t, s)�s

)�

(t) =
∫ t

t
f �t (t, s)�s + f

(
σ (t), t

)
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we get


�
e (zn) = lim

q↘μ(σ (zn))

tan–(qw–(σ (zn)))
q

> ,

which means that 
e(zn) is continuous and increasing (see Theorem . []), and hence
it is an invertible function on (t,∞), and zn ∈ (t,∞) exists for each n≥ n.
To show that the solution u(t) of (.) has infinitely many generalized zeros on the time

scaleTwewill prove that between two zeros onR of the solution there exists a generalized
zero of u(t) in T.
We will show that for all n ≥ n, for some n > , there exists a point τm ∈ T between

two zeros of u(t) zn, zn+ ∈R:

zn < τm ≤ zn+, n≥ n. (.)

We prove this by contradiction assuming that there is no such point τm ∈ T. That is,

τm– ≤ zn < zn+ < τm, τm = σ (τm–), n≥ n.

From (.) we get


(zn+) –
(zn) = π – o(), n→ ∞,

or
∫ zn+

zn
lim
q↘μ

tan–(qw–(s))
q

�s = π – o(), zn → ∞.

Further we have the estimate
∫ τm

τm–

lim
q↘μ

tan–(qw–(s))
q

�s ≥
∫ zn+

zn
lim
q↘μ

tan–(qw–(s))
q

�s = π – o(),

or, since τm = σ (τm–),

tan–
[
μ(τm–)w–(τm–)

] ≥ π – o(), τm > zn → ∞.

The last estimate contradicts (.) for sufficiently large n.
Further from (.)

nπ
(
 – o()

)
=
(zn) <
(τm) ≤ 
(zn+) = (n + )π

(
 – o()

)
,

and similarly

(n – )π
(
 – o()

)
=
(zn–) < 
(τm–) ≤ 
(zn) = nπ

(
 – o()

)
,

so

sin
(

(τm)

)
> , sin

(

(τm–)

)
< , (.)
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which means that the point τm– is the generalized zero. So (.) is oscillatory if and only
if (.) is satisfied. �

Proof of Theorem . Assuming z > t the number N(t, t) = n of generalized zeros of
(.) on (t, zn) is given by (.). From (.) and (.)

∣∣∣∣
e(zn)
π

– n
∣∣∣∣ =

∣∣∣∣–�e(zn)
π

∣∣∣∣ ≤ 


or

∣∣∣∣
∫ zn

t
lim

q↘μ(s)

tan–(qw–(s))
πq

�s – n
∣∣∣∣ ≤ 


,

∣∣∣∣
∫ zn+

t

tan–(μw–(s))�s
πμ(s)

– n – 
∣∣∣∣ ≤ 


.

Since between two zeros zn, zn+ there is a generalized zero t ∈ T, that is, zn ≤ t < zn+,
we get

∫ t

t

tan–(μw–(s))�s
πμ(s)

≤
∫ zn+

t

tan–(μw–(s))�s
πμ(s)

≤ n +  +


,

∫ t

t

tan–(μw–(s))�s
πμ(s)

≥
∫ zn

t

tan–(μw–(s))�s
πμ(s)

≥ n –  +


,

∣∣∣∣N(t) +


–

∫ t

t

tan–(μ(s)w–(s))�s
πμ(s)

∣∣∣∣ ≤ ,

N(t) =
[∫ t

t

tan–(μ(s)w–(s))�s
πμ(s)

–



]
± 

when [α] is the integral part of α ∈R. �

Proof of Corollary . To deduce Corollary . from Lemma ., Theorem . note that
for the continuous case μ ≡  and conditions (.) and (.) are automatically satisfied.
From (.) we get

M(t) =
∣∣w′′(t)w(t)

∣∣,
so condition (.) simplifies to (.), and (.) becomes (.). �

Proofs of Theorem . and Theorem . The proofs of Theorem . and Theorem . are
similar to the proofs of Theorem . and Theorem . correspondingly. The only differ-
ence is a different choice in (.) of the functions

η =
–r
w , r = p + i – i

√
 – p,p = –

(w)�


, (.)

where r(t) is a solution of quadratic equation r –r(i+p) +ip = . By this choice we have

θ = η +
i
w =

i – r
w =

i
√
 – p – p
w , θ = θ = –

p + i
√
 – p

w , (.)
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and by a few different calculations, using (.) and (.), we get

θ – θ =
i

√
 – p

w , [θ] =
–p
w , �[θ] =

√
 – p

w ,

iR(θ)
( +μθ)(θ – θ)σ

=
–√

 – (pσ )

(
r� +

r – r(p + i) + ip
w + iμ – rμ

)
=

–r�√
 – (pσ )

.
(.)

For t ∈ [t,∞)T we have

eθ (t, t) = e[θ]+i�[θ](t, t) = K(t, t)eη (t, t)e
i�(t),

eθ (t, t) := K(t, t)eη (t, t)e
–i�(t),

(.)

where

η =
[θ]

 + iμ�[θ] , K (t, t) = exp

[∫ t

t
lim

q↘μ(s)

ln( + (�[θ]))
q

�s
]
, (.)

�(t) =
∫ t

t
lim

q↘μ(s)

�q(s)
q

�s, �q = tan–
(
q�[θ]

)
. (.)

In view of (.) in the case μ(t) >  we have μ(t)�[θ(t)] = μ(t)
√

–p(t)
w(t) �= , and

| +μθk| =
(
 +μ[θk]

) + (
μ�[θk]

) > ,

so θk ∈R, k = , , and hence eθk (t, t), k = ,  are well defined.
In view of the choice (.) we have

η =
–p

w + iμ
√
 – p

,

 +μη =  –
pμ

w + iμ
√
 – p

=  –
pμ(w – iμ

√
 – p)

w +μ( – p)
,

| +μη| =
(
 –

pμw

w +μ( – p)

)

+
pμ( – p)

(w +μ( – p))
> 

in view of (.). So eη is well defined. Also

 +μη = | +μη|eiβ , tan(β) =
μp

√
 – p

w(w – pμ) +μ( – p)
.

The rest of the proof is similar to the earlier proof. �
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