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Abstract

We derive Wiman'’s asymptotic formula for the number of generalized zeros of
(nontrivial) solutions of a second order dynamic equation on a time scale. The proof is
based on the asymptotic representation of solutions via exponential functions on a
time scale. By using the Jeffreys et al. approximation we prove Wiman's formula for a
dynamic equation on a time scale. Further we show that using the Hartman-Wintner
approximation one can derive another version of Wiman's formula. We also prove
some new oscillation theorems and discuss the results by means of several examples.
MSC: 34E20; 34N05

Keywords: dynamic equation on a time scale; oscillation theory; number of zeros;
asymptotic representation of solutions; Jeffreys, Wentzel, Kramers and Brillouin
approximation

1 Introduction

Consider the equation

AA u(?) _
u~"(t) + e OWD) 0, t=>to, (1.1)

on [ty, )t = TN [, t), where T is a time scale (a closed nonempty subset of the real num-
bers R). Let N(ty,¢) be the number of generalized zeros of solutions of (1.1) on T¢. The
classical result of Wiman [1] for the continuous time scale case states that if (1.1) is oscil-

latory on [ty, 00), and w?(t) is a differentiable function such that

. 2 I _
Jlim [w*] @) =0, (1.2)
then
1 t
Nto, ) ~ — / @, t— oo, (1.3)
T to w (S)

where the symbol ~ means that the ratio of the two quantities tends to 1 as t — oco.

In this paper under some restrictions on the graininess of the time scale and the asymp-
totic behavior of the coefficient w(t), we obtain an explicit Jeftfreys, Wentzel, Kramers and
Brillouin (JWKB) asymptotic representation of solutions of (1.1). Using this representa-
©2014 Erbe et al,; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-

tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.
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tion we prove the analogue of Wiman’s formula for (1.1) on [t, 00) 1, which is given by

N(to,t) ~ — lim

1 t t -1 —2 A
/ i B @T@As (1.4)
7T Jyy 410 q

First we recall some basic definitions and notation used in time scale analysis (see [2,
3]). A time scale T is an arbitrary nonempty closed subset of the real numbers. Since we
are interested in the asymptotic behavior of solutions of (1.1), we will consider time scales
which are unbounded above, i.e., sup(T) = co. For ¢ € T we define the forward and back-

ward jump operators by
o(t) =inf{s € T,s > t}, o(t) =sup{s € T,s < t}.
The (forward) graininess function p : T — [0, 00) is defined by
u(t)=o(t)-t.
Forf: T — Rand ¢ € T, we define the delta derivative f*(¢) to be the number (provided

it exists) with the property that for any € > 0, there exist a § > 0 and a neighborhood U =
(t-6,t+8)NT of ¢t such that

[Fo(&) =f(s)=f2@)(a(t) =s)| <€|o(®) s

, ST =f (o),

for all s € U (see [2]).

A function f : T — R is said to be rd-continuous provided it is continuous at right-dense
points in T and at each left-dense point ¢ in T the left hand limit at ¢ exists (finite). The set
of functions such that their nth delta derivative exists and is rd-continuous on T is denoted
by C”,. In (1.1) we assume that w=2(+) € C,; and we say () is a solution provided u(-) € C2,
and u®2(8) + (w7 (£)) 2w 2(t)u(t) = O for £ € T. We say that a complex-valued function f(-)
is regressive on T if 1 + u(t)f (¢£) # 0 for all £ € T. The set of regressive functions on C,; will
be denoted by R. The set R along with the addition & defined by

pOq=p+q+upq

forms an Abelian group called the regressive group ([2], p.58). If p € R the (generalized)
exponential function e,(t, fo) is the unique solution of the IVP

2 =p)x, x(t) =1

and is given by the formula

t 1
ey(t, to) = exp |:/ lim - ln(l + qp(s)) As] (1.5)
to a\u(s) g

where In is the principal logarithmic function. The set of regressive functions on C;, will
be denoted by R”.
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A solution u(-) of (1.1) is said to have a zero at a € T if u(a) = 0, and it has a node at ‘””(")

if u(o (a))u(a) < 0. A generalized zero of u(t) is defined as its zero or its node. A solutlon
of (1.1) is said to be oscillatory if it has an infinite sequence of generalized zeros in T, and
nonoscillatory otherwise. Equation (1.1) is said to be oscillatory on T if all of its solutions
are oscillatory, and nonoscillatory otherwise.

Wiman’s result was extended by P. Hartman, Wintner [4], R. Potter [5], Z. Nehari [6],
and H. Gingold [7]. Many different results on the oscillation of solutions of second order
differential equations appear in the book of Swanson [8].

After the introduction of the time scale calculus by Hilger [3], oscillation theorems for
second order dynamic equations on a time scale have been studied by many authors (see

for example [9-11] and the references therein).

2 Main results

Since the basic method of this paper uses the asymptotic representation of solutions of
(1.1) we will introduce some definitions and notation that will be important in what fol-
lows.

The following lemma will be important in the sequel. We will use the following notation:
NR(z] = Rx + iy] :=x, Sz] =[x+ iy] =: .

Lemma 2.1 Assume 1) : [tp,00)T — Rand w: [ty,00) 7 — (0, 00) are rd-continuous func-

tions, w(t) > 0 on [ty,00) T and let

62(2) :=n(t) - = 01(t) (21)

6u(2) == n(e) + == (t)

l
w2(t)’

fort € [ty,00) . Then R[A1], I[61], R[02],3[02] € R, and

eo, (t,to) := K(t, to)ey, (£, 20)e®?, es, (£, 10) := K (¢, to)eg, (¢, to)e ™ ®, (2.2)
where
t 1 qZ
K(t, tg) = ex Iim —In{l+ —— )As|, 2.3
(&:2) p[/to a\uls) 2q ( W4(S)) ] 2
and
L Dy(s) n(t)
o)~ [ tim ¥t mo = —19
to TN) g L+ ik
v (2.4)

- q
cbq(t) =tan 1<w2—(t)>

Proof First note that if J[0;] = W+(t) #0, and

1+ @@ = (1+ n@OR[6:(0)])" + (e@®3[6:)])* >0, k=1,2,
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506 € R, k =1,2 and hence e, (¢, ), k = 1,2 are well defined. Let 7; be as in the statement
of this lemma and consider

i i i
n1@ﬁ=n1+ﬁ+un1ﬁ

Hence

eg, (L, ty) = em@w%(t, to) = ey (t, to)ew%(t, to).
In a similar manner one can show that

e _ =0y,
and hence

eo, (6, to) = €, @_(t to) = e, (t, to)e _5(& to).

Using (1.5) we get
¢ 1
e (tty) =ex Iim —In(1+¢
) pU Sl g ( 2()) ]
=e_ (ttpy) :exp|: lim —{In /1 +td>q(s)
w2 to NS
Hence

t 1 5 @
et =exp [ tim [_1n(1+ a )” q(s)}A
v to N6 [ 29 wh(s) q

= K(t, ty)e"®?

where K(¢,ty) and ®(¢) are given by (2.3) and (2.4). Similarly
e=t (t,to) = K(t, to)e Y,

and consequently the formulas (2.2) hold. O

Example 2.1 Let 6, k =1,2 be as in Lemma 2.1.
(1) If T = [¢y, 00), then

t i [to_ds t — _irt _ds
en(t,to) = 0 MO0 55 gy (11) = 0 MO B o W
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(2) If T =N, then

-1 11
eo,(t,1) = K(t, ey, (£, 1)e =" 2@,

I D
eo, (1) = K(t, D)ey, (£, )e 1" w2,

where

K(tl)—ﬁln 1+L (t)—ﬂ
Y Wik M Tl

Define M : T — R by

p2

w2 —pu+ip

2\ A
, p(t)=—(w) (t). (2.5)

M(t) = 5

P+

Note that the function M(¢) is defined from the JWKB approximation and may be chosen
differently from another approximation (see Theorem 2.6).
Using the JWKB approximation method one can prove the following theorem.

Theorem 2.2 Assume that w € Cfd and the conditions

oo
/ M(s)As < 00, (2.6)
to
tan~' (gw2(¢t
u(t) lim w <m-¢g, tE€ [ty,00), (2.7)
a\pul) q
o] 1 2
/ lim - tan_l( P )As —A<oco (2.8)
o TNHE) wh(s) + g* - p(s)w*(s)q

are satisfied for some € > 0. Then (1.1) is oscillatory if and only if

o0 t -1 —2 A
/ lim B @6)As (2.9)
P A q
Theorem 2.3 Assume that w € C2, and conditions (2.6)-(2.8) are satisfied. Then
1 1t tan"!(gw%(s))A
‘N(to,m 1 _/ lim 2@WTO)As|
2 7 Jyy ) q
Corollary 2.4 Assume that w € C%, and conditions (2.6)-(2.8) are satisfied. Then
1 [t tan~(gw%(s)) A
N(to, t) ~ —/ lim w, t— oo. (2.10)
T Jyy aNls) q

Example 2.2 Consider the difference equation

Un
AUy + ——— =0

n(n+1)

Page 5 of 15
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on the discrete time scale T = Z. We have

12 _ 12
p= __(Wz)A _ __(nl/z)A _ %) M) ~n?, n— oco.

Conditions (2.6)-(2.8) are satisfied for sufficiently large #, and from (2.10) we get

n-1
1 1
N(n)~ — E tan1<—>, n— 00.
= vk

For a continuous time scale (u(¢) = 0) conditions (2.7)-(2.8) are automatically satisfied,

and from Lemma 2.1, Theorem 2.2 we get the following corollary.

Corollary 2.5 Assume that w(t) is twice differentiable on [ty, 00) and the condition
o0
/ |w(t)w”(t)| dt<oo, t>ty, (2.11)
t

is satisfied. Then (1.3) is true, and (1.1) is oscillatory if and only if

*® ds
‘/; W2(s) = 00. (2.12)

0

Note that the necessary part of Corollary 2.5 is due to Leighton [12] under the assump-
tion that w is a monotone function.

For monotonic functions w, Wiman’s condition (1.2) is less restrictive than (2.11) (for
example w?(¢) = tIn"*(¢), £ > 0). His proof is based on the transformation of the time vari-
able which causes problems in the time scale setting. In this paper we give a new proof
of Wiman’s formula that does not require the monotonicity of w, and it is based on an

asymptotic representation of solutions of (1.1).

Example 2.3 From Corollary 2.5 it follows that the equation
W)+ —u)=0, a>0 (213)
t2y - 7 ) .

is oscillatoryifand onlyif y < 1.Indeed from y < 1it follows that both conditions (2.11) and
(2.12) are satisfied. Condition (2.11) is restrictive, but without it Corollary 2.5 is not true
since for the nonoscillatory equation #” + ﬁu = 0 condition (2.12) is satisfied. It is well
known (Kneser [13]) that (2.13) is nonoscillatory if az™* < 1£72, and oscillatory if at~ >
it’z. Our condition y <1 is stronger, but it provides explicit asymptotic representations
of the solutions and their derivatives as well.

Example 2.4 For the example

28 .
u’(t) + (alnt2 ® + Sl?gt))u(t) =0, a>0, (2.14)
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condition (2.11) is satisfied if 8 > 1, and condition (2.12) is satisfied if 8 > —1. For this
example Leighton’s necessary criterion for oscillation [12] does not apply since w™(¢) =
aln® (£)t72 + sin(¢)¢~3 is not monotone.

Using the Hartman-Wintner [4] approximation one can prove the following theorem.

Theorem 2.6 Assume that w € Crzd and for some g1, ¢ € (0,1) the conditions

1-p*(t)=e,  plt):= ‘%(WZ)A(t), t € [to,00) 1, (2.15)
00 A
[r2(s)| As Ht) = p(t) + i — iv/1- p2(), (2.16)

—l G 0N
¢ V/1-1p7()]?

tan”! (qw>(t)\/1 - p2(1))

u(t) lim <m-g, LE [th,00)T, (2.17)
a\pu() q
© 1 qp(s)y/1 - p*(s) )
lim = tan 1< As=A< o0 (2.18)
/t; ) g w2(s)(w(s) — p(s)q) + g*(1 — p*(s))
are satisfied.

Then (1.1) is oscillatory if and only if

(2.19)

/OO lim tan‘l(qw‘z(;) V1-p°()) As = o0.

o NG

Theorem 2.7 Assume thatw € Crzd and conditions (2.15)-(2.18) are satisfied. Then Nehari's

generalization of Wiman'’s formula (see [6]) is true:

1 t -1 —2 ) A
N(to,t)~—/ lim @ TOVI-pEOAs (2.20)
T Jyy N1ls) q

3 Proofs

To get the asymptotic representation of solutions of the equation

(t)
L[u(e)] = w2 () + (WU”WW =0, tel[ty,00)y (3.1)

we will use the following theorem.

Theorem 3.1 ([14], Theorem 2.4) Let uy,u; € Crzd be complex-valued functions such that

Wu, us] := ul(t)uzA(t) - uf(t)uz #0, te€ [ty,00), (3.2)
/mMo(t)At <00, m,n=1,2, (3.3)
where
o (O L[u,(2)]

’ Hmn(t) = .

Mo(®) = max [Hyun(®) (3.4)

we [uli MZ] ’
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L{u(®)] = u®* () + P()u™ () + Q()u(?). (3.5)

Then for arbitrary constants Cy, C, there exists a solution u of (3.1) that can be written in

the form
M(t) = [Cl + 51(t)]u1(t) + [C2 + Sz(t)]MQ(t), (36)
ut(t) = [C1 + 81(t)]u1A(t) + [Cz + 82(t)]u2A(t), (3.7)

where the error vector-function §(t) satisfies

”(S(t) ” < ||C||<—1 +exp{/mM0(s)As}), (3.8)

where My(t) is defined as in (3.4), ||8|| is the Euclidean vector (or matrix) norm: ||5(t)| =
,/Zizl 83(8), and 8k(t), k = 1,2 are the entries of the vector §(t).

Remark 3.1 If we seek asymptotic solutions u, of (3.1) in the Euler form,
un(t) = en(t) = €y, (tr tO)) n= 17 2) (39)

then in view of L{e,(¢)] = R(0,(t))e,;, we see that the formula (3.4) becomes

en(5)R(0,,(s))
Mo(s) = max, e )67 (5) - 05 (5)] | (310)

where the Riccati functions R(6,,(¢)), n = 1,2 are defined by

R(64(2)) = 0,2(6) + 07 (£)0,(2) + =1,2. (3.11)

1
(we (Ow(e)?’
Theorem 3.2 Assume w € C2, and condition (3.3) is satisfied with

P(s) (WZ)A(t).

w2(s) — pua(s) + ipa(s) | pt) =~ ) (3.12)

Mofs) = 2 |p9) +

Then for arbitrary constants Cy, C, there exists a solution u of (3.1) that can be written in
the form (3.6) and (3.7), with error estimate given by (3.8).

Proof In Lemma 2.1, take n(t) = ;ﬁ’—ig, where p(t) will be chosen later in this proof. Then

_i-p(®)

_—i—p(¥)
01(2) = 20

Os(t) = w200

are regressive functions. Note that

W eq, (2, t0), €, (£, 80) ] = (02(2) — 01(2) ) o, (¢, to)ea, (¢ to)

2i
= __2691@92 (t) tO) 7{0’ (3'13)
w

Page 8 of 15
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so condition (3.2) of Theorem 3.1 is satisfied, where u;(£) = ey, (¢, to), i = 1,2.
By the quotient rule

ga _ i=p)tw = (i—p)w)?
! (wow)?
__pt i-p2k
W) (wow)?’
where k = —@. Then
REY) = AW (i-p)2k+(i-p)i-p°)+1

(ww)?

_p* = 2p(k + i) + 2ik — p*(W* + ij — pju)
- (wow)?

where we used p° = p + up”. Using

1+ ub; = (w2 +in —p,u)/w2 and (0, —6,)7 = 2i(w")72

we get
2iR(0 22 ) + 20
RO) o, 02 2plk) 2k 61
(1 + ub)(6h - 62)° w2+ i —pu
Choosing the JWKB approximation:
WA @)
p(t) = k(¢) == - S (3.15)
we get
2iR >
2Mo(s) = max Rl) ‘ '_ s P

mn=12| (L+ pO,()[67 (5) - 05 ]| |~ w2 +ip—pul|

Note that there is another possible choice of p(£) as a solution of the quadratic equation

p? —2p(k + i) + 2ik = 0 (the Hartman-Wintner approximation, see [4]). O

Proof of Theorem 2.2 Let 6; and 6, be defined as in the proof of Theorem 3.2. Then by
Lemma 2.1 with n(¢) = - p(t)

w2(6)

eq (t,t0) = K(t, to)ey, (,20)e® 0, eg, (8, t0) = K(t, to)es;, (, to)e ", (3.16)

where K(¢,ty) and ®(t) are given by (2.3) and (2.4).
Using the Euler formula we have

u1(t) = eg, (¢, £o) = K(t, £o) (cos(P(2)) + isin(D(2)))ey, (£, 20)

us(t) = eg, (t, £o) = K(t, o (cos(P(2)) — isin(D(2)))eq, (¢, to).-
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From Theorem 3.2, a general solution of (3.1) is of the form

u(t) = (Cy + 81(2))eq, (¢, t0) + (Ca + 82(2)) e, (2, o)
=Ni(t) cos(dJ(t)) + Ny () sin(dJ(t)), (3.17)

where

Ni(2) = K(8,20)[ ((C1 + 81(2) ) e, (2) + (C + 82(8)) ez, (1)) ],

(3.18)
Na(8) = iK (8, 20)[ ((C1 + 81.(8)) ey, () = (Ca + 82(8)) ez, (8)) ]-

Assume u(t) is a real-valued solution of (1.1) and C;, C; be arbitrary real constants. We
will prove that Nj(£), N, () are also real-valued functions.
Indeed by solving the system (3.6) and (3.7) for C; + §; we get

usu—uluy ubuy —ulu
Citdi= A A’ G+ = A A’
Urhy — Uy Uy — Uy

which implies C; + 8; = C, + 85, which in turn implies that 8(¢), 8,(£) are complex conju-
gates of each other. Then, since e,,, e, are complex conjugates, from (3.18) it follows that
N, are real-valued functions.

Define A(t) so that

) Ni(2) (C1 + 81(8)ey, (£ t0) + (Co + 82(2))es;, (£, £0)
A = — 3.19
sin(A(0) INOT N2 2len(t ) VIG + 510G, + 50 (319)

then from (3.17) we get

u(t) = \/Nf + N3 sin(®(2) + A(2)). (3.20)

We extend the domain of the function

t

[

(1) = / im A e (1,007
to ) g

for ¢ in the real interval (t;,0(¢1)), when o (¢;) # t; by the formula

(0(t) —)P(H) + (t - 1) P(o (1))
(De(t) = O'(tl) —4 , te (tl,O'(tl)).

Note that ®,(¢) is linear and continuous on (¢, 0 (£1)) and
q)e(tl) = (D(tl)r cDe(a(fl)) = <D(U(tl))'

In the same way one can extend the function ® with domain [ty, 00) 1 to ®, with domain
the real interval [£y, 00). Since () € C}d((to, o0)r) the extended function ®, € C(¢g, 00).

Later we will show that there exist points z,, € (¢, 00) (which may not belong to [£, 00) )
such that

D.(z,)  Aelzn)
—evwnl el
n n

w, n=0,£1,£2,4£3,..., (3.21)
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so the zeros of the extended solution u(t) are located at z,,. Assuming z; > fo from (2.4) we

get

t t -1 —2 A
cp(t):/ im P@VTOAs ),
to

a\p(s) q (3.22)
Ni(¢ '
A - sin‘l($) <7 e ltooo)r.
NE(t) + N3 (¢) 2
Further we have
“In1 A L A
em(t,to)zexp{/ n |1+ w(s)n(s)] s}exp{/ if(s) S}, (3.23)
to M(S) to /'L(S)
where
B(s) ::Arg(l + ;uh(s)). (3.24)
From
n (W —ip)
1+pum=1- 2p - L Y
w2 +in wh+ 3.25)
2\ 2 2 4 3.
LeumpP=(1- 225 ) _PE
wh +,U«2 (WA +M2)2 ’

and so ey, (¢, ) is well defined. Indeed (3.25) is true when p(¢) = 0 and when u(t) # 0.

Further
: pi’
L+ = 1+ pmle, tan(f) = —(——F——. (3.26)
wh+ u? - puw?
From (2.8) and (3.19) we see that the following limits exist:
t 2 A
m em—() = exp/ M _Aly
t—00 ey, () w  1(S)
lim sin(A(£)) = A,.
t—00
Further, since sin~!(x) is a continuous function on its domain, we get
A
lim A% o, (3.27)
Zn—> 00 n
and from (3.21)
1
—(P(z4) +0(1)) = 1. (3.28)
T

Note that from the Leibniz formula (see Theorem 1.117 [2])

t A t
(/ f(t,s)As) (t):/fAt(t,s)As+f(a(t),t)
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we get

t -1 -2
o3y tim @G
(0 (zn)) q

0,

which means that ®.(z,) is continuous and increasing (see Theorem 1.76 [2]), and hence

it is an invertible function on (¢, 00), and z,

€ (tg, 00) exists for each n > ny.

To show that the solution u(t) of (3.1) has infinitely many generalized zeros on the time

scale T we will prove that between two zeros on R of the solution there exists a generalized

zero of u(t) in T.

We will show that for all n > ng, for some 1y > 0, there exists a point t,, € T between

two zeros of u(t) z,,, 2,41 € R:

Zn < Tm = Zpsls n=ng.

(3.29)

We prove this by contradiction assuming that there is no such point 7, € T. That is,

Tin-1 < Zn < Zns1 < Ty T = 0 (Tin-1),
From (3.28) we get
D(zp41) — P(z4) =7 —0(1), n— 00,

or

Zn+l tan~(gw 2
/ im 2@ o),
e ANK q

Further we have the estimate

Tm t -1 —2 Zn+1
/ fim 3@ o / lim
T, Zn

o1 TN q N\

or, since T, = 6 (Ty-1),

tan~ (qw~2(s))

n=ngp.

Z, —> 00.

As=m —o0(1),
q

tan" [ (T W 2 (tna) | = —0(1), Ty > 24 — 00.

The last estimate contradicts (2.7) for sufficiently large #.

Further from (3.29)

217 (1= 0(1)) = ®(221) < D(1n) < (1) = (21 + D (1= 0(1)),

and similarly
(21— 17 (1 - 0(1)) = D(z31-1) < D(Ty1)
S0

sin(®(tn)) > 0, sin(®(1,-1)) <0,

< ®(z0) = 2n7 (1 - 0(1)),

(3.30)
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which means that the point 7,,_; is the generalized zero. So (3.1) is oscillatory if and only
if (2.9) is satisfied. O

Proof of Theorem 2.3 Assuming z; > tp the number N(t, %) = n of generalized zeros of
(3.1) on (¢, zy,) is given by (3.28). From (3.21) and (3.22)

®,(z,) Ac(z,)| 1
T T -2
or
Zn t -1 —2 1 z”+1t -1 —2 A 1
/ fim EC@) L / tan” (uw=)As gl 1
o TNKEG) nq 2 t 7T (s) 2

Since between two zeros z,, z,,; there is a generalized zero ¢ € T, that is, z,, <t < 2,41,
we get

/JW >/: W =n-l+,
’N(t) ¥ % - /t: tan” (1 :ZLV(Z)Z(S))AS <1,
N - [ /tof tan‘l(uj:sl);/s‘;(S))AS ~ %] 11
when [a] is the integral part of @ € R. 5

Proof of Corollary 2.5 To deduce Corollary 2.5 from Lemma 2.1, Theorem 2.2 note that
for the continuous case ¢ = 0 and conditions (2.7) and (2.8) are automatically satisfied.
From (2.5) we get

M) = |w' (O)w(t)

’

so condition (2.6) simplifies to (2.11), and (2.9) becomes (2.12). a

Proofs of Theorem 2.6 and Theorem 2.7 The proofs of Theorem 2.6 and Theorem 2.7 are
similar to the proofs of Theorem 2.2 and Theorem 2.3 correspondingly. The only differ-
ence is a different choice in (2.1) of the functions

Z)A

n:_—g, r=p+i—i\/1—p2,p=—(w—
w

> (3.31)

where r(t) is a solution of quadratic equation 72 — 2r(i + p) + 2ip = 0. By this choice we have

i i-r LJ1-p*-p — p+iy1-p?
h=n+ —S=—F=—"7—", 92=91=—T

w2 w2 w2 ) (3.32)
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and by a few different calculations, using (3.10) and (3.11), we get

2i/1-p? _ T
0y =6 = JTj, RO = W—l;, 3[61] = Tp’

2iR(61) -1 (rA . r?—2r(p+i) + 2ip) ~
A+ uo) O —02)7  /1-(p°)2 w2 +ip—rp

For ¢ € [ty,00) T we have

eg, (t, to) = enfo]+isio,] (E to) = K (& to)ey, (¢, to)e™®,

602 (t; tO) = I((t, to)enz (t, to)efiq/(t)’

where

RO t In(1 + (3[61])?
N = %, K(t, tg) = exp[/ lim MAS}
1+iuS[01] to INA) 2q

t

v

w() = / lim 21 A, W, = tan~ (g3[61]).
to a\u(s) q

In view of (2.15) in the case wu(t) > 0 we have u(£)3I[60,(¢)] = ELORVE 0}

w2(2)
1+ p6cl® = (1+ u9t06]) + (n316:]) > 0,

50 0 € R, k=1,2, and hence ey, (t, to), k = 1,2 are well defined.
In view of the choice (3.32) we have

pp=— P
w2 + i /1- p*
pu pu(wz—ium)
L+ pmy=1- =1- 21-p2)
W2+iM l_pZ W4+//L(1_p)
5 2 2,4 2
puw p s (1-p°)
1+ 2= (1- * 70
11+ una| ( W4+M2(1—P2)) (w* + p2(1-p?))>?

in view of (2.15). So e, is well defined. Also

upy1-p?

wx(w? —pu) + u2(1-p?)’

L+un =1+punle?,  tan(B) =

The rest of the proof is similar to the earlier proof.
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