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Abstract
We derive Wiman’s asymptotic formula for the number of generalized zeros of
(nontrivial) solutions of a second order dynamic equation on a time scale. The proof is
based on the asymptotic representation of solutions via exponential functions on a
time scale. By using the Jeffreys et al. approximation we prove Wiman’s formula for a
dynamic equation on a time scale. Further we show that using the Hartman-Wintner
approximation one can derive another version of Wiman’s formula. We also prove
some new oscillation theorems and discuss the results by means of several examples.
MSC: 34E20; 34N05

Keywords: dynamic equation on a time scale; oscillation theory; number of zeros;
asymptotic representation of solutions; Jeffreys, Wentzel, Kramers and Brillouin
approximation

1 Introduction
Consider the equation

u��(t) +
u(t)

(wσ (t)w(t))
= , t ≥ t, (.)

on [t, t)T = T∩ [t, t), where T is a time scale (a closed nonempty subset of the real num-
bers R). Let N(t, t) be the number of generalized zeros of solutions of (.) on T. The
classical result of Wiman [] for the continuous time scale case states that if (.) is oscil-
latory on [t,∞), and w(t) is a differentiable function such that

lim
t→∞

[
w]′(t) = , (.)

then

N(t, t) ∼ 
π

∫ t

t

ds
w(s)

, t → ∞, (.)

where the symbol ∼ means that the ratio of the two quantities tends to  as t → ∞.
In this paper under some restrictions on the graininess of the time scale and the asymp-

totic behavior of the coefficient w(t), we obtain an explicit Jeffreys, Wentzel, Kramers and
Brillouin (JWKB) asymptotic representation of solutions of (.). Using this representa-

©2014 Erbe et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
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tion we prove the analogue of Wiman’s formula for (.) on [t,∞)T, which is given by

N(t, t) ∼ 
π

∫ t

t
lim

q↘μ(s)

tan–(qw–(s))�s
q

, t → ∞. (.)

First we recall some basic definitions and notation used in time scale analysis (see [,
]). A time scale T is an arbitrary nonempty closed subset of the real numbers. Since we
are interested in the asymptotic behavior of solutions of (.), we will consider time scales
which are unbounded above, i.e., sup(T) = ∞. For t ∈ T we define the forward and back-
ward jump operators by

σ (t) = inf{s ∈ T, s > t}, ρ(t) = sup{s ∈ T, s < t}.

The (forward) graininess function μ : T→ [,∞) is defined by

μ(t) = σ (t) – t.

For f : T→R and t ∈ T, we define the delta derivative f �(t) to be the number (provided
it exists) with the property that for any ε > , there exist a δ >  and a neighborhood U =
(t – δ, t + δ)∩T of t such that

∣∣f σ (t) – f (s) – f �(t)
(
σ (t) – s

)∣∣ ≤ ε
∣∣σ (t) – s

∣∣, f σ (t) := f
(
σ (t)

)
,

for all s ∈U (see []).
A function f : T →R is said to be rd-continuous provided it is continuous at right-dense

points in T and at each left-dense point t in T the left hand limit at t exists (finite). The set
of functions such that their nth delta derivative exists and is rd-continuous onT is denoted
by Cn

rd . In (.) we assume that w–(·) ∈ Crd and we say u(·) is a solution provided u(·) ∈ C
rd

and u��(t) + (wσ (t))–w–(t)u(t) =  for t ∈ T. We say that a complex-valued function f (·)
is regressive on T if  +μ(t)f (t) �=  for all t ∈ T. The set of regressive functions on Crd will
be denoted byR. The setR along with the addition ⊕ defined by

p⊕ q := p + q +μpq

forms an Abelian group called the regressive group ([], p.). If p ∈ R the (generalized)
exponential function ep(t, t) is the unique solution of the IVP

x� = p(t)x, x(t) = 

and is given by the formula

ep(t, t) = exp

[∫ t

t
lim

q↘μ(s)


q
ln

(
 + qp(s)

)
�s

]
(.)

where ln is the principal logarithmic function. The set of regressive functions on Cn
rd will

be denoted byRn.

http://www.advancesindifferenceequations.com/content/2014/1/61
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A solution u(·) of (.) is said to have a zero at a ∈ T if u(a) = , and it has a node at a+σ (a)


if u(σ (a))u(a) < . A generalized zero of u(t) is defined as its zero or its node. A solution
of (.) is said to be oscillatory if it has an infinite sequence of generalized zeros in T, and
nonoscillatory otherwise. Equation (.) is said to be oscillatory on T if all of its solutions
are oscillatory, and nonoscillatory otherwise.
Wiman’s result was extended by P. Hartman, Wintner [], R. Potter [], Z. Nehari [],

and H. Gingold []. Many different results on the oscillation of solutions of second order
differential equations appear in the book of Swanson [].
After the introduction of the time scale calculus by Hilger [], oscillation theorems for

second order dynamic equations on a time scale have been studied by many authors (see
for example [–] and the references therein).

2 Main results
Since the basic method of this paper uses the asymptotic representation of solutions of
(.) we will introduce some definitions and notation that will be important in what fol-
lows.
The following lemmawill be important in the sequel.Wewill use the following notation:


[z] = 
[x + iy] := x, �[z] = �[x + iy] =: y.

Lemma . Assume η : [t,∞)T →R and w : [t,∞)T → (,∞) are rd-continuous func-
tions, w(t) >  on [t,∞)T and let

θ(t) := η(t) +
i

w(t)
, θ(t) := η(t) –

i
w(t)

= θ̄(t) (.)

for t ∈ [t,∞)T. Then 
[θ],�[θ],
[θ],�[θ] ∈R, and

eθ (t, t) := K(t, t)eη (t, t)e
i
(t), eθ (t, t) := K(t, t)eη (t, t)e

–i
(t), (.)

where

K (t, t) = exp

[∫ t

t
lim

q↘μ(s)


q

ln

(
 +

q

w(s)

)
�s

]
, (.)

and


(t) =
∫ t

t
lim

q↘μ(s)


q(s)
q

�s, η(t) =
η(t)

 + i μ(t)
w(t)

,


q(t) = tan–
(

q
w(t)

)
.

(.)

Proof First note that if �[θk] = 
w(t) �= , and

∣∣ +μ(t)θk(t)
∣∣ = (

 +μ(t)
[
θk(t)

]) + (
μ(t)�[

θk(t)
]) > , k = , ,

http://www.advancesindifferenceequations.com/content/2014/1/61
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so θk ∈R, k = ,  and hence eθk (t, t), k = ,  are well defined. Let η be as in the statement
of this lemma and consider

η ⊕ i
w = η +

i
w +μη

i
w

= η

[
 + i

μ

w

]
+

i
w

= η +
i
w

= θ.

Hence

eθ (t, t) = eη⊕ i
w
(t, t) = eη (t, t)e i

w
(t, t).

In a similar manner one can show that

η ⊕ –i
w = θ,

and hence

eθ (t, t) = eη⊕ –i
w
(t, t) = eη (t, t)e –i

w
(t, t).

Using (.) we get

e i
w
(t, t) = exp

[∫ t

t
lim

q↘μ(s)


q
ln

(
 + i

q
w(s)

)
�s

]

= e i
w
(t, t) = exp

[∫ t

t
lim

q↘μ(s)


q

(
ln

√
 +

q

w(s)
+ i
q(s)

)
�s

]
.

Hence

e i
w
(t, t) = exp

∫ t

t
lim

q↘μ(s)

[

q

ln

(
 +

q

w(s)

)
+ i


q(s)
q

]
�s

= K (t, t)ei
(t),

where K (t, t) and 
(t) are given by (.) and (.). Similarly

e –i
w
(t, t) = K (t, t)e–i
(t),

and consequently the formulas (.) hold. �

Example . Let θk , k = ,  be as in Lemma ..
() If T = [t,∞), then

eθ (t, t) = e
∫ t
t

η(s)dsei
∫ t
t

ds
w(s) , eθ (t, t) = e

∫ t
t

η(s)dse–i
∫ t
t

ds
w(s) .

http://www.advancesindifferenceequations.com/content/2014/1/61
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() If T =N, then

eθ (t, ) = K (t, )eη (t, )e
i
∑t–

k= tan
– 

w(k) ,

eθ (t, ) = K (t, )eη (t, )e
–i

∑t–
k= tan

– 
w(k) ,

where

K (t, ) =
t–∏
k=

ln

√
 +


w(k)

, η(t) =
η(t)

 + i 
w(t)

.

DefineM : T→R by

M(t) :=
∣∣∣∣p� +

p

w – pμ + iμ

∣∣∣∣, p(t) = –
(w)�(t)


. (.)

Note that the functionM(t) is defined from the JWKB approximation and may be chosen
differently from another approximation (see Theorem .).
Using the JWKB approximation method one can prove the following theorem.

Theorem . Assume that w ∈ C
rd and the conditions

∫ ∞

t
M(s)�s < ∞, (.)

μ(t) lim
q↘μ(t)

tan–(qw–(t))
q

≤ π – ε, t ∈ [t,∞)T , (.)

∫ ∞

t
lim

q↘μ(s)


q
tan–

(
p(s)q

w(s) + q – p(s)w(s)q

)
�s = A < ∞ (.)

are satisfied for some ε > . Then (.) is oscillatory if and only if

∫ ∞

t
lim

q↘μ(s)

tan–(qw–(s))�s
q

=∞. (.)

Theorem . Assume that w ∈ C
rd and conditions (.)-(.) are satisfied. Then

∣∣∣∣N(t, t) +


–


π

∫ t

t
lim

q↘μ(s)

tan–(qw–(s))�s
q

∣∣∣∣ ≤ .

Corollary . Assume that w ∈ C
rd and conditions (.)-(.) are satisfied. Then

N(t, t) ∼ 
π

∫ t

t
lim

q↘μ(s)

tan–(qw–(s))�s
q

, t → ∞. (.)

Example . Consider the difference equation

�un +
un√

n(n + )
= 

http://www.advancesindifferenceequations.com/content/2014/1/61
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on the discrete time scale T = Z. We have

w(n) = wn = n/,

p = –


(
w)� = –



(
n/

)� =
n/ – (n + )/


, M(n) ∼ n–/, n→ ∞.

Conditions (.)-(.) are satisfied for sufficiently large n, and from (.) we get

N(n)∼ 
π

n–∑
k=

tan–
(

√
k

)
, n→ ∞.

For a continuous time scale (μ(t)≡ ) conditions (.)-(.) are automatically satisfied,
and from Lemma ., Theorem . we get the following corollary.

Corollary . Assume that w(t) is twice differentiable on [t,∞) and the condition

∫ ∞

t

∣∣w(t)w′′(t)
∣∣dt < ∞, t ≥ t, (.)

is satisfied. Then (.) is true, and (.) is oscillatory if and only if

∫ ∞

t

ds
w(s)

=∞. (.)

Note that the necessary part of Corollary . is due to Leighton [] under the assump-
tion that w is a monotone function.
For monotonic functions w, Wiman’s condition (.) is less restrictive than (.) (for

example w(t) = t ln–ε(t), ε > ). His proof is based on the transformation of the time vari-
able which causes problems in the time scale setting. In this paper we give a new proof
of Wiman’s formula that does not require the monotonicity of w, and it is based on an
asymptotic representation of solutions of (.).

Example . From Corollary . it follows that the equation

u′′(t) +
a
tγ

u(t) = , a > , (.)

is oscillatory if and only if γ < . Indeed from γ <  it follows that both conditions (.) and
(.) are satisfied. Condition (.) is restrictive, but without it Corollary . is not true
since for the nonoscillatory equation u′′ + 

t u =  condition (.) is satisfied. It is well
known (Kneser []) that (.) is nonoscillatory if at–γ ≤ 

 t
–, and oscillatory if at–γ >


 t

–. Our condition γ <  is stronger, but it provides explicit asymptotic representations
of the solutions and their derivatives as well.

Example . For the example

u′′(t) +
(
a lnβ (t)

t
+
sin(t)
t

)
u(t) = , a > , (.)

http://www.advancesindifferenceequations.com/content/2014/1/61
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condition (.) is satisfied if β > , and condition (.) is satisfied if β > –. For this
example Leighton’s necessary criterion for oscillation [] does not apply since w–(t) =
a lnβ (t)t– + sin(t)t– is not monotone.

Using the Hartman-Wintner [] approximation one can prove the following theorem.

Theorem . Assume that w ∈ C
rd and for some ε, ε ∈ (, ) the conditions

 – p(t)≥ ε, p(t) := –


(
w)�(t), t ∈ [t,∞)T , (.)

∫ ∞

t

|r�(s)|�s√
 – |pσ (s)| < ∞, r(t) = p(t) + i – i

√
 – p(t), (.)

μ(t) lim
q↘μ(t)

tan–(qw–(t)
√
 – p(t))

q
≤ π – ε, t ∈ [t,∞)T , (.)

∫ ∞

t
lim

q↘μ(s)


q
tan–

(
qp(s)

√
 – p(s)

w(s)(w(s) – p(s)q) + q( – p(s))

)
�s = A <∞ (.)

are satisfied.
Then (.) is oscillatory if and only if

∫ ∞

t
lim

q↘μ(s)

tan–(qw–(s)
√
 – p(s))

q
�s =∞. (.)

Theorem. Assume that w ∈ C
rd and conditions (.)-(.)are satisfied.ThenNehari’s

generalization of Wiman’s formula (see []) is true:

N(t, t) ∼ 
π

∫ t

t
lim

q↘μ(s)

tan–(qw–(s)
√
 – p(s))�s

q
, t → ∞. (.)

3 Proofs
To get the asymptotic representation of solutions of the equation

L
[
u(t)

]
= u��(t) +

u(t)
(wσw(t))

= , t ∈ [t,∞)T (.)

we will use the following theorem.

Theorem . ([], Theorem .) Let u,u ∈ C
rd be complex-valued functions such that

W [u,u] := u(t)u�
 (t) – u�

 (t)u �= , t ∈ [t,∞)T , (.)∫ ∞

t
M(t)�t < ∞, m,n = , , (.)

where

M(t) = max
m,n=,

∣∣Hmn(t)
∣∣, Hmn(t) :=

uσ
m(t)L[un(t)]
W σ [u,u]

, (.)

http://www.advancesindifferenceequations.com/content/2014/1/61
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L
[
u(t)

]
= u��(t) + P(t)u�(t) +Q(t)u(t). (.)

Then for arbitrary constants C, C there exists a solution u of (.) that can be written in
the form

u(t) =
[
C + δ(t)

]
u(t) +

[
C + δ(t)

]
u(t), (.)

u�(t) =
[
C + δ(t)

]
u�
 (t) +

[
C + δ(t)

]
u�
 (t), (.)

where the error vector-function δ(t) satisfies

∥∥δ(t)
∥∥ ≤ ‖C‖

(
– + exp

{∫ ∞

t
M(s)�s

})
, (.)

where M(t) is defined as in (.), ‖δ‖ is the Euclidean vector (or matrix) norm: ‖δ(t)‖ =√∑
k= δ


k (t), and δk(t), k = ,  are the entries of the vector δ(t).

Remark . If we seek asymptotic solutions un of (.) in the Euler form,

un(t) = en(t) = eθn (t, t), n = , , (.)

then in view of L[en(t)] = R(θn(t))en, we see that the formula (.) becomes

M(s) = max
m,n=,

∣∣∣∣ en(s)R(θn(s))
eσ
m(s)[θσ

 (s) – θσ
 (s)]

∣∣∣∣, (.)

where the Riccati functions R(θn(t)), n = ,  are defined by

R
(
θn(t)

)
= θ�

n (t) + θσ
n (t)θn(t) +


(wσ (t)w(t))

, n = , . (.)

Theorem . Assume w ∈ C
rd , and condition (.) is satisfied with

M(s) =



∣∣∣∣p�(s) +
p(s)

w(s) – pμ(s) + iμ(s)

∣∣∣∣, p(t) = –
(w)�(t)


. (.)

Then for arbitrary constants C, C there exists a solution u of (.) that can be written in
the form (.) and (.), with error estimate given by (.).

Proof In Lemma ., take η(t) = –p(t)
w(t) , where p(t) will be chosen later in this proof. Then

θ(t) =
i – p(t)
w(t)

, θ(t) =
–i – p(t)
w(t)

are regressive functions. Note that

W
[
eθ (t, t), eθ (t, t)

]
=

(
θ(t) – θ(t)

)
eθ (t, t)eθ (t, t)

= –
i
w eθ⊕θ (t, t) �= , (.)
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so condition (.) of Theorem . is satisfied, where ui(t) = eθi (t, t), i = , .
By the quotient rule

θ�
 =

(i – p)�w – (i – p)(w)�

(wσw)

= –
p�

(wσ )
+
(i – p)k
(wσw)

,

where k = –(w)�
 . Then

R(θ) =
–p�w + (i – p)k + (i – p)(i – pσ ) + 

(wσw)

=
p – p(k + i) + ik – p�(w + iμ – pμ)

(wσw)

where we used pσ = p +μp�. Using

 +μθ =
(
w + iμ – pμ

)
/w and (θ – θ)σ = i

(
wσ

)–
we get

iR(θ)
( +μθ)(θ – θ)σ

= –p� +
p – p(k + i) + ik

w + iμ – pμ
. (.)

Choosing the JWKB approximation:

p(t) = k(t) := –
(w)�(t)


, (.)

we get

M(s) = max
m,n=,

∣∣∣∣ iRn(s)
( +μθm(s))[θσ

 (s) – θσ
 (s)]

∣∣∣∣ =
∣∣∣∣–p� –

p

w + iμ – pμ

∣∣∣∣.
Note that there is another possible choice of p(t) as a solution of the quadratic equation

p – p(k + i) + ik =  (the Hartman-Wintner approximation, see []). �

Proof of Theorem . Let θ and θ be defined as in the proof of Theorem .. Then by
Lemma . with η(t) = – p(t)

w(t)

eθ (t, t) = K(t, t)eη (t, t)e
i
(t), eθ (t, t) = K(t, t)eη (t, t)e

–i
(t), (.)

where K (t, t) and 
(t) are given by (.) and (.).
Using the Euler formula we have

u(t) = eθ (t, t) = K (t, t)
(
cos

(

(t)

)
+ i sin

(

(t)

))
eη (t, t),

u(t) = eθ (t, t) = K(t, t
(
cos

(

(t)

)
– i sin

(

(t)

))
eη (t, t).
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From Theorem ., a general solution of (.) is of the form

u(t) =
(
C + δ(t)

)
eθ (t, t) +

(
C + δ(t)

)
eθ (t, t)

=N(t) cos
(

(t)

)
+N(t) sin

(

(t)

)
, (.)

where

N(t) = K (t, t)
[((

C + δ(t)
)
eη (t) +

(
C + δ(t)

)
eη (t)

)]
,

N(t) = iK(t, t)
[((

C + δ(t)
)
eη (t) –

(
C + δ(t)

)
eη (t)

)]
.

(.)

Assume u(t) is a real-valued solution of (.) and C, C be arbitrary real constants. We
will prove that N(t), N(t) are also real-valued functions.
Indeed by solving the system (.) and (.) for Cj + δj we get

C + δ =
u�
 u – u�u

uu�
 – uu�


, C + δ =

u�u – u�
 u

uu�
 – uu�


,

which implies C + δ = C + δ, which in turn implies that δ(t), δ(t) are complex conju-
gates of each other. Then, since eη , eη are complex conjugates, from (.) it follows that
N, are real-valued functions.
Define �(t) so that

sin
(
�(t)

)
=

N(t)√
N

 (t) +N
 (t)

=
(C + δ(t))eη (t, t) + (C + δ(t))eη (t, t)

|eη (t, t)|
√
[C + δ(t)][C + δ(t)]

(.)

then from (.) we get

u(t) =
√
N

 +N
 sin

(

(t) +�(t)

)
. (.)

We extend the domain of the function


(t) =
∫ t

t
lim

q↘μ(s)


q(s)
q

�s, t ∈ [t,∞)T

for t in the real interval (t,σ (t)), when σ (t) �= t by the formula


e(t) =
(σ (t) – t)
(t) + (t – t)
(σ (t))

σ (t) – t
, t ∈ (

t,σ (t)
)
.

Note that 
e(t) is linear and continuous on (t,σ (t)) and


e(t) = 
(t), 
e
(
σ (t)

)
=


(
σ (t)

)
.

In the same way one can extend the function 
 with domain [t,∞)T to 
e with domain
the real interval [t,∞). Since 
(t) ∈ C

rd((t,∞)T) the extended function 
e ∈ C(t,∞).
Later wewill show that there exist points zn ∈ (t,∞) (whichmay not belong to [t,∞)T)

such that


e(zn)
n

+
�e(zn)

n
= π , n = ,±,±,±, . . . , (.)
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so the zeros of the extended solution u(t) are located at zn. Assuming z > t from (.) we
get


(t) =
∫ t

t
lim

q↘μ(s)

tan–(qw–(s))�s
q

, t ∈ [t,∞)T ,

�(t) = sin–
(

N(t)√
N

 (t) +N
 (t)

)
≤ π


, t ∈ [t,∞)T .

(.)

Further we have

eη (t, t) = exp

{∫ t

t

ln | +μ(s)η(s)|�s
μ(s)

}
exp

{∫ t

t

iβ(s)�s
μ(s)

}
, (.)

where

β(s) := Arg
(
 +μη(s)

)
. (.)

From

 +μη =  –
pμ

w + iμ
=  –

pμ(w – iμ)
w +μ ,

| +μη| =
(
 –

pμw

w +μ

)

+
pμ

(w +μ)
> ,

(.)

and so eη (t, t) is well defined. Indeed (.) is true when μ(t) =  and when μ(t) �= .
Further

 +μη = | +μη|eiβ , tan(β) =
pμ

w +μ – pμw . (.)

From (.) and (.) we see that the following limits exist:

lim
t→∞

eη (t)
eη (t)

= exp
∫ ∞

t

iβ(s)�s
μ(s)

= A,

lim
t→∞ sin

(
�(t)

)
= A.

Further, since sin–(x) is a continuous function on its domain, we get

lim
zn→∞

�(zn)
n

= , (.)

and from (.)


π

(

(zn) + o()

)
= n. (.)

Note that from the Leibniz formula (see Theorem . [])

(∫ t

t
f (t, s)�s

)�

(t) =
∫ t

t
f �t (t, s)�s + f

(
σ (t), t

)
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we get


�
e (zn) = lim

q↘μ(σ (zn))

tan–(qw–(σ (zn)))
q

> ,

which means that 
e(zn) is continuous and increasing (see Theorem . []), and hence
it is an invertible function on (t,∞), and zn ∈ (t,∞) exists for each n≥ n.
To show that the solution u(t) of (.) has infinitely many generalized zeros on the time

scaleTwewill prove that between two zeros onR of the solution there exists a generalized
zero of u(t) in T.
We will show that for all n ≥ n, for some n > , there exists a point τm ∈ T between

two zeros of u(t) zn, zn+ ∈R:

zn < τm ≤ zn+, n≥ n. (.)

We prove this by contradiction assuming that there is no such point τm ∈ T. That is,

τm– ≤ zn < zn+ < τm, τm = σ (τm–), n≥ n.

From (.) we get


(zn+) –
(zn) = π – o(), n→ ∞,

or
∫ zn+

zn
lim
q↘μ

tan–(qw–(s))
q

�s = π – o(), zn → ∞.

Further we have the estimate
∫ τm

τm–

lim
q↘μ

tan–(qw–(s))
q

�s ≥
∫ zn+

zn
lim
q↘μ

tan–(qw–(s))
q

�s = π – o(),

or, since τm = σ (τm–),

tan–
[
μ(τm–)w–(τm–)

] ≥ π – o(), τm > zn → ∞.

The last estimate contradicts (.) for sufficiently large n.
Further from (.)

nπ
(
 – o()

)
=
(zn) <
(τm) ≤ 
(zn+) = (n + )π

(
 – o()

)
,

and similarly

(n – )π
(
 – o()

)
=
(zn–) < 
(τm–) ≤ 
(zn) = nπ

(
 – o()

)
,

so

sin
(

(τm)

)
> , sin

(

(τm–)

)
< , (.)
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which means that the point τm– is the generalized zero. So (.) is oscillatory if and only
if (.) is satisfied. �

Proof of Theorem . Assuming z > t the number N(t, t) = n of generalized zeros of
(.) on (t, zn) is given by (.). From (.) and (.)

∣∣∣∣
e(zn)
π

– n
∣∣∣∣ =

∣∣∣∣–�e(zn)
π

∣∣∣∣ ≤ 


or

∣∣∣∣
∫ zn

t
lim

q↘μ(s)

tan–(qw–(s))
πq

�s – n
∣∣∣∣ ≤ 


,

∣∣∣∣
∫ zn+

t

tan–(μw–(s))�s
πμ(s)

– n – 
∣∣∣∣ ≤ 


.

Since between two zeros zn, zn+ there is a generalized zero t ∈ T, that is, zn ≤ t < zn+,
we get

∫ t

t

tan–(μw–(s))�s
πμ(s)

≤
∫ zn+

t

tan–(μw–(s))�s
πμ(s)

≤ n +  +


,

∫ t

t

tan–(μw–(s))�s
πμ(s)

≥
∫ zn

t

tan–(μw–(s))�s
πμ(s)

≥ n –  +


,

∣∣∣∣N(t) +


–

∫ t

t

tan–(μ(s)w–(s))�s
πμ(s)

∣∣∣∣ ≤ ,

N(t) =
[∫ t

t

tan–(μ(s)w–(s))�s
πμ(s)

–



]
± 

when [α] is the integral part of α ∈R. �

Proof of Corollary . To deduce Corollary . from Lemma ., Theorem . note that
for the continuous case μ ≡  and conditions (.) and (.) are automatically satisfied.
From (.) we get

M(t) =
∣∣w′′(t)w(t)

∣∣,
so condition (.) simplifies to (.), and (.) becomes (.). �

Proofs of Theorem . and Theorem . The proofs of Theorem . and Theorem . are
similar to the proofs of Theorem . and Theorem . correspondingly. The only differ-
ence is a different choice in (.) of the functions

η =
–r
w , r = p + i – i

√
 – p,p = –

(w)�


, (.)

where r(t) is a solution of quadratic equation r –r(i+p) +ip = . By this choice we have

θ = η +
i
w =

i – r
w =

i
√
 – p – p
w , θ = θ = –

p + i
√
 – p

w , (.)
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and by a few different calculations, using (.) and (.), we get

θ – θ =
i

√
 – p

w , 
[θ] =
–p
w , �[θ] =

√
 – p

w ,

iR(θ)
( +μθ)(θ – θ)σ

=
–√

 – (pσ )

(
r� +

r – r(p + i) + ip
w + iμ – rμ

)
=

–r�√
 – (pσ )

.
(.)

For t ∈ [t,∞)T we have

eθ (t, t) = e
[θ]+i�[θ](t, t) = K(t, t)eη (t, t)e
i�(t),

eθ (t, t) := K(t, t)eη (t, t)e
–i�(t),

(.)

where

η =

[θ]

 + iμ�[θ] , K (t, t) = exp

[∫ t

t
lim

q↘μ(s)

ln( + (�[θ]))
q

�s
]
, (.)

�(t) =
∫ t

t
lim

q↘μ(s)

�q(s)
q

�s, �q = tan–
(
q�[θ]

)
. (.)

In view of (.) in the case μ(t) >  we have μ(t)�[θ(t)] = μ(t)
√

–p(t)
w(t) �= , and

| +μθk| =
(
 +μ
[θk]

) + (
μ�[θk]

) > ,

so θk ∈R, k = , , and hence eθk (t, t), k = ,  are well defined.
In view of the choice (.) we have

η =
–p

w + iμ
√
 – p

,

 +μη =  –
pμ

w + iμ
√
 – p

=  –
pμ(w – iμ

√
 – p)

w +μ( – p)
,

| +μη| =
(
 –

pμw

w +μ( – p)

)

+
pμ( – p)

(w +μ( – p))
> 

in view of (.). So eη is well defined. Also

 +μη = | +μη|eiβ , tan(β) =
μp

√
 – p

w(w – pμ) +μ( – p)
.

The rest of the proof is similar to the earlier proof. �
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