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Abstract   

Ground-based active sensors have been used in the past with success in detecting 

nitrogen (N) variability within maize production systems. The use of unmanned 

aerial vehicles (UAVs) presents an opportunity to evaluate N variability with unique 

advantages compared to ground-based systems. The objectives of this study were 

to: determine if a UAV was a suitable platform for use with an active crop canopy 

sensor to monitor in-season N status of maize, if UAV’s were a suitable platform, 

is the UAV and active sensor platform a suitable substitute for current handheld 

methods, and is there a height effect that may be confounding measurements of 

N status over crop canopies? In a 2013 study comparing aerial and ground-based 

sensor platforms, there was no difference in the ability of aerial and ground-based 

active sensors to detect N rate effects on a maize crop canopy. In a 2014 study, an 

active sensor mounted on a UAV was able to detect differences in crop canopy N 

status similarly to a handheld active sensor. The UAV/active sensor system 

(AerialActive) platform used in this study detected N rate differences in crop 

canopy N status within a range of 0.5–1.5 m above a relatively uniform turfgrass 

canopy. The height effect for an active sensor above a crop canopy is sensor- and 

crop-specific, which needs to be taken into account when implementing such a 

system. Unmanned aerial vehicles equipped with active crop canopy sensors 

provide potential for automated data collection to quantify crop stress in addition 

to passive sensors currently in use.  

Keywords: Unmanned aerial vehicle (UAV), Active sensors, Imagery, Nitrogen 

variability, Maize   
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Introduction  

 

One of the challenges with managing nitrogen (N) fertilizer is the presence 

of in-field spatial variability. The economically optimal fertilizer N rate 

(EONR), a function of yield response to N fertilizer application, can vary 

widely as a result (Scharf et al. 2005). The ability to detect variability in N 

supply within a field has been studied in depth (Kitchen et al. 2010; Roberts 

et al. 2010). Recent research into detecting variability in N supply has 

focused on non-destructive sampling techniques, which allow 

quantification of variability in a timely fashion and more effective in-season 

N management (Shanahan et al. 2008). There is a strong relationship 

between total chlorophyll content in a maize canopy and the N status of 

the crop (Dellinger et al. 2008; Barker and Sawyer 2010; Schmidt et al. 

2011). As a result, non-destructive techniques have focused on remote 

sensing to correlate with and quantify canopy chlorophyll content. Remote 

sensing is used to monitor relative crop response to applied N in order to 

evaluate different in-season N management strategies (Scharf et al. 2011; 

Zillmann et al. 2006; Dellinger et al. 2008; Raun et al. 2008; Holland and 

Schepers 2010; Kitchen et al. 2010; Thompson et al. 2015).  

Different types of sensors have been used and correlated with N stress 

in maize (Li et al. 2010). Remote sensing of crop canopies has 

predominantly used optical reflectance in the visible and NIR bands. 

Passive sensors are a common type of optical reflectance sensor. Passive 

sensors rely on the sun to illuminate the maize canopy, while active sensors 

use an internal light source. Each type of sensor has been documented as 

an appropriate way to correlate canopy reflectance with chlorophyll and N 

status of maize (Samborski et al. 2009; Li et al. 2010). Passive sensors 

require calibration and data handling techniques to account for sun angle, 

illumination, camera optics, rectification of imagery, and require 

specialized software to analyze the imagery (Berni et al. 2009).  

Active sensors were developed in part to avoid the calibration 

requirements with regards to sunlight angle and illumination (Holland et 

al. 2012). Active sensors are calibrated initially in the lab, and operate 

independently of the sun; they may be operated day or night (Lamb et al. 

2009). Currently available active sensors require close proximity to the 

target due to the light source intensity. Passive sensors have been used 

from satellites, manned aircraft and unmanned aerial vehicles (UAVs) 

(Berni et al. 2009). Active sensors have been vehicle-mounted, handheld or 

used on manned aircraft (Lamb et al. 2009). To date, active sensors have 

not been mounted or integrated into unmanned aerial vehicles.  

Unmanned aerial vehicles have potential as a platform for detecting and 

managing crop stress during the growing season, and they provide unique 

advantages compared with other platforms (Colomina and Molina 2014). 

Unmanned aerial vehicles may be automated allowing information to be 

acquired more frequently with fewer resources than manned aircraft and 

can be done independent of field ground conditions.  

A potential issue with mounting an active crop canopy sensor on a UAV 

is the proximity needed to acquire crop canopy reflectance. The close 



K R I E N K E  E T  A L .  I N  P R E C I S I O N  A G R I C U L T U R E  18  (2017 )     3 

proximity needed may be restrictive for UAV flight. The hypothesis is that 

the ranges reported for use of the active crop canopy sensor mentioned 

below will facilitate a range of height that a UAV may operate effectively 

within to accurately collect crop canopy reflectance.  

The objectives of the study were:  

1. To determine if a UAV was a suitable platform for use with an active 

crop canopy sensor to monitor in-season N status of maize.  

2. If objective 1 is true, is the UAV and active sensor platform a suitable 

substitute for current handheld methods?  

3. Is there a height effect that may be confounding measurements of N 

status over crop canopies?  

 

Methods  

 

Three experiments were conducted over the course of 2013 and 2014 

using optical sensors. Studies were conducted at two locations during the 

2013 and 2014 growing seasons to evaluate the use of different sensors 

and platforms for detecting N rate effects on maize. In 2014, a study was 

conducted over turfgrass as the target to quantify the effect of height 

above the canopy on a UAV-mounted active sensor measuring N status.  

 

Equipment  

 

A modified Crop Circle RapidScan™ CS-45 active sensor (Holland Scientific, 

Lincoln, NE, USA) was mounted on a MikroKopter OktoKopter XL 

(MikroKopter, HiSystems GmbH, Moormerland, Germany) UAV platform, 

subsequently referred to as the Aerial Active (AA) sensor platform. The 

RapidScan sensor’s logging method was modified to allow continuous 

data collection at one second intervals, in contrast with the unmodified 

version of the RapidScan that averages data collected between a manually 

triggered start and stop. The RapidScan sensor measures reflectance at 

670, 730, and 780 nm from a modulated, polychromatic LED light source. 

The sensor includes an on-board power supply, data logger and GPS. The 

sensor logged position and reflectance in individual wavebands as well as 

calculated normalized difference red edge (NDRE) reflectance every 

second. The AA platform was flown manually rather than autonomously. 

The only input to autonomously control platform height and position was 

differentially corrected GPS position which, due to normal GPS error in 

positioning, created more variation in position vertically and horizontally 

than was the case with manual control.  

A standard Crop Circle RapidScan™ CS-45 sensor was utilized for hand-

held measurements of crop canopy reflectance in the same wavebands as 

AA. This sensor platform is subsequently referred to as the Handheld 

Active platform (HA).  

Aerial imagery was acquired using a Tetracam Mini-MCA 6 band camera 

(Tetracam Inc., Chatsworth, CA, USA) mounted on a MikroKopter 

OktoKopter XL UAV platform, subsequently referred to as the Aerial 

Passive (AP) platform. Reflectance was collected in 6 bands, with 
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wavelengths centered at 530, 670, 710, 760, 800, and 970 ± 10 nm. Images 

were taken at approximately 100 m above ground from the nadir position 

with a spatial resolution of 50 mm. Each image taken from the AP included 

a calibration panel. Calibration panels were placed at the canopy height 

level in each image to convert digital numbers obtained by the sensor to 

percent reflectance. Calibration panels, made of plywood, consisted of four 

shades of gray paint, tested for reflectance consistency under a calibrated 

halogen light source using a USB-2000 Ocean Optics spectroradiometer 

(Ocean Optics, Dunedin, Florida, USA) in the range from 350 to 1024 nm 

in 0.37 nm increments. Reflectance by waveband for calibration panels is 

shown in Fig. 1.  

Raw images were converted to reflectance and then georectified using 

ArcGIS 10.0 (ESRI, Redlands, CA, USA). Reflectance for each band was 

obtained by first regressing the linear relationship between digital 

numbers obtained from the raw image over the panel target versus the 

known reflectance of the gray shades on the calibration panel. Remaining 

reflectance values for each digital number throughout the image were 

calculated by applying the derived linear regression relationship. 

Vegetation indices were calculated from individual reflectance images 

using the raster calculator in ArcGIS 10.0.  

 

Maize Canopy 2013  

 

In 2013, a subset of plots from two adjacent fertilizer N studies, one 

replication from each, with maize were used to collect data for a 

comparison of sensor platforms (HA, AA and AP). Subsets of each study 

were used due to logistical constraints of the AA platform: battery life and 

area to land and take off in proximity of treatment plots. Collecting data 

with the AA platform required the pilot to walk at a safe distance behind 

the platform while operating the AA over the treatment plots. This method 

decreased the amount of area that could be sensed due to battery life 

restrictions. The site was located at the University of Nebraska-Lincoln’s 

South Central Agricultural Laboratory (SCAL) near Clay Center, Nebraska, 

USA (latitude: 40.568758°, longitude: –98.144594°). Treatments from the 

two replications consisted of several fertilizer N rates: 0, 112, 156 and 201 

kg N ha–1 and N sources (urea ammonium nitrate solution (UAN), 

anhydrous ammonia (NH3) and polymer-coated urea (ESN: Agrium, Inc., 

Calgary, AB, Canada).  

Plots were 13.7 by 3.0 m with four rows on a 0.76 m on-center spacing. 

Canopy reflectance data were collected at V12 and R2 (Abendroth et al. 

2011) growth stages. Growth stages chosen for data collection provided 

opportunity for the maize canopy to reflect differences in N status before 

and after tassel, which may interfere with sensor readings (Shanahan et al. 

2001). Timings also represent potential growth stages for in-season N 

application via high clearance applicator or irrigation equipment.  

The AA sensor collected data between the center two rows of each plot. 

This was done to ensure a linear data collection path since the UAV was 

manually controlled. The target height above the canopy for AA was 1 m. 
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Due to wind gusts and drafts and operator skill, actual height varied from 

0.5 to 1.5 m above the canopy. The HA collected data from a height of 

approximately 1 m above the canopy, directly over each of the center two 

rows of each plot at the V12 growth stage, and between rows at the R2 

growth stage to avoid tassel interference with canopy reflectance. To 

compare data values from each sensor platform, an average plot value for 

the response variable of the center two rows was calculated. The AP sensor 

collected data as noted previously. Vegetation indices were calculated for 

each sensor platform and regressed against N rate by growth stage. 

Vegetation indices were calculated with respect to each sensor’s 

wavebands; active sensor systems (AA, HA) used slightly different 

wavebands than the passive system (AP).  

Vegetation indices were regressed against N rate for each sensor using 

PROC REG (SAS Institute Inc., Cary, NC, USA). Both 2nd order polynomial 

and linear slope were tested for significance. To compare platforms, the 

noise equivalent was calculated for each platform throughout the range of 

applied N rates (Viña et al. 2011). Equation 1 illustrates the calculation of 

noise equivalent (NE) where RMSE is the root mean square error of the 

regression relationship, and the denominator is the slope of the regression 

prediction equation for a given change in N rate. If regression equations 

resulted in nonsensical responses (i.e. negative slope), those equations 

were discarded.  

 

NEΔN rate = RMSE (VI vs N rate) / [∂(VI)/∂(N rate)]                                 (1)  

 

Vegetation indices were chosen based on the best adjusted coefficient 

of determination (adj r2) for each sensor platform. In this way, each sensor 

platform is represented by the most sensitive index that the sensor is 

capable of measuring for the dataset at a given crop growth stage. Indices 

used in the initial comparison to determine the best adjusted r2 are 

included in Table 1. Initial indices used in comparison for each sensor 

platform and growth stage were chosen based on frequent citations in the 

literature for measuring chlorophyll content in plant canopies.  

It is important to note that strong winds damaged plants between the 

V12 and R2 growth stages. The maize plants were lodged but not broken. 

Consequently, lodged plants had reduced yield potential. The canopy 

consisted of a heterogeneous combination of partially lodged and 

unaffected plants. This likely resulted in reduced yield potential and 

differential effects of N uptake.  

A modified plot combine harvested the middle two rows of each plot. 

Moisture content was adjusted to 155 g kg–1. Noise equivalent of yield 

versus N rate was computed using the same criteria detailed above for the 

respective VI versus N rate regression relationship by replacing VI with 

yield.  
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Maize Canopy Study 2014  

 

A subset of plots from a fertilizer N study with maize was used to collect 

data for comparison of sensing platforms in 2014. The site was located 

near Central City, Nebraska, USA on a co-operating producer’s field 

(latitude: 41.243154°, longitude: –98.033071°). The study was a 

randomized complete block design with three replications. Plots were 13.7 

by 3.0 m with four rows on 0.76 m on-center spacing. Five fertilizer N rates 

were applied prior to planting: 0, 90, 179, 224, and 314 kg N ha–1 in the 

form of UAN, and were evaluated in July 2014. The maize canopy at time 

of sensing was at the V11 growth stage. Two sensing platforms were used: 

HA and AA as described previously. Data was analyzed using PROC REG 

and PROC CORR (SAS Enterprise Guide 6.1, Cary, NC, USA).  

 

Distance Sensitivity Study 2014  

 

There were concerns that the fluctuating height of the AA platform used 

in the maize studies was leading to error in measurements. Maize canopies 

have differences in the vertical distribution of chlorophyll concentration 

(Viña et al. 2011). Active sensors, dependent on the specific sensor, do not 

measure reflectance from the entire depth of the maize canopy, (Solari 

2006). Differences in VI versus N for each sensing platform relate to what 

portion of the canopy was in the field of view (FOV). To investigate these 

issues, Kentucky bluegrass was used as a crop canopy to evaluate distance 

sensitivity (height above canopy) of a UAV-mounted active crop canopy 

sensor to detect N stress. Turfgrass provides a relatively uniform and less 

complex canopy architecture compared to maize to measure reflectance 

when changing the distance of a sensor above the canopy. Also, the 

sensor’s light would likely interact with all of the turf canopy, compared to 

only a portion of the maize canopy The experiment was located on the 

Kentucky bluegrass turf plots at the University of Nebraska-Lincoln 

Agricultural Research and Development Center (ARDC), near Mead, NE, 

USA (latitude: 41.170904°, longitude: –96.467731°).  

Urea was applied to turf plots 2 weeks prior to sensing at rates of 0, 25, 

50, 75, and 100 kg N ha–1, to plots of 4.6 × 4.6 m. Three passes of the AA 

system were conducted in June 2014 over each N rate plot at heights of 

0.5, 1.0, 1.5, 2.0, and 2.5 m. Sensor data were processed in ArcMap 10.2 

(ESRI, Redlands, CA, USA). A buffer of 0.76 m was used to eliminate data 

near the plot boundary. Cleaned data were analyzed by analysis of variance 

and regression, using PROC GLM, GLIMMIX and REG (SAS Enterprise Guide 

6.1, Cary, NC, USA).  
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Results and discussion  

 

Maize Canopy Study 2013  

 

Noise equivalent  

 

Table 2 contains the best fit VI for each sensor platform and the 

corresponding parameter estimates used in the calculation of NE. Noise 

equivalent varied significantly among sensor platforms (Fig. 2). Lower 

values of NE indicate a more sensitive relationship of the response variable 

to the explanatory variable. For example, the DATT index for the HA 

platform versus N rate had a significant 2nd order polynomial relationship 

at the V12 growth stage (Table 2). The slope of this relationship is steepest 

at low values of N rate, but as the N rate increases, the slope decreases 

significantly, consistent with a 2nd order polynomial relationship. The 

steeper the slope relative to the error in modeling that relationship, the 

more sensitive or lower the NE. A significant regression relationship may 

be compared directly against other regression relationships because each 

is normalized with respect to the RMSE.  

At the V12 growth stage, the HA platform had the lowest NE, followed 

by AA and AP (Fig. 2). The HA was held over an individual row maintaining 

a nearly constant height FOV of the crop canopy. The AA platform, 

operated manually via a handheld radio controller (RC), was clearly the 

most variable platform for height and field of view control (FOV).The AP 

method integrates soil as well as crop canopy reflectance, while the active 

sensor methods, located directly over plant rows, do not capture soil 

reflectance (Ciganda et al. 2012).  

It is important to note that the relationship between the AP platform 

and N rate, using the DATT VI, resulted in a linear relationship. In 

comparison to the other sensor platforms, the AP was less sensitive to N 

rate at the lower N rates (i.e. less than 105 kg ha–1) (Fig. 2).  

At the V12 growth stage, there is likely a plateau of plant response to 

higher N rates because the maize canopy has taken up and metabolized 

only a fraction of the total supplied N up to that point. In this situation, it 

would be more desirable to accurately model lower N rates for increased 

accuracy in in-season N rate recommendations.  

At the R2 growth stage, the HA and AP platforms had different best fit 

regressions of VI versus N rate (Table 2). The HA platform had a significant 

linear relationship, but the AP and AA platforms both had significant 2nd 

order polynomial relationships to N rate (Table 2). The AP and AA sensor 

platforms were more sensitive (i.e. lower NE) than the HA platform when 

the N rate was roughly below 100 kg ha–1, but at higher rates of N the HA 

platform was more sensitive (Fig. 2). Generally, the relationships between 

all platforms and N rate had higher coefficients of determination at the R2 

versus V12 growth stage (Table 2). This is likely to be the cause of more of 

the applied N being taken up and utilized by the plant. Therefore, later in 

the growing season, it would likely be of benefit to detect with more 

sensitivity higher rates of applied N.  
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The NE of yield to N rate is shown in Fig. 2. This relationship was best 

fit with a linear plateau model (Fig. 3). Yield becomes insensitive at N rates 

above 112 kg ha–1, where there is no relationship between yield and the 

remaining applied N rates. This is the plateau of yield response to applied 

N (Fig. 3). Vegetation indices used to predict N rate would then also 

become infinitely insensitive (slope of 0) to N rate if applied N rate was the 

only factor explaining variation in yield, but it is not. The coefficient of 

determination for yield versus N rate was only 0.76. The regression 

between yield and N rate does not provide a good fit for the relationship 

considering the error in the relationship, but it approximates what 

response there is to applied N rate, be it small in this case. It is worth noting 

that applied N rate and total N available to the plant are not the same. The 

effect of the wind-damaged canopy likely reduced yield potential and as a 

result uptake of N, which further degraded the relationship between yield 

and applied N. Wind damage also likely caused added variation in yield 

response to N application as shown in Fig. 3.  

This study illustrates the capacity for each sensor platform to detect 

canopy differences with fertilizer N rate, but this limited dataset is not 

meant to be a predictive model for other locations. Though there are 

relative differences between the sensitivity of each sensor in detecting 

applied N rate, the relationship of applied N to canopy reflectance 

parameters and yield was reduced due to weather damage.  

 

Maize Canopy Study 2014  

 

Figure 4a illustrates the regression comparison between sensors using 

NDRE. The linear regression relationship was highly significant (Fig. 4a). 

The NDRE from AA and HA was regressed against N rate (Fig. 4b). Both 

relationships were significant, with an adjusted r2 of 0.53 and 0.51 for AA 

and HA respectfully.  

The relationships were similar to that of maize grain yield and fertilizer 

N rate, which was highly significant and had an adjusted r2 of 0.55 (Fig. 4c). 

Though the variation between yield and fertilizer N rate indicates that 

other sources of variability contributed to differences in yield, the 

comparison between NDRE and yield explained 90 and 88 percent of the 

total variability for AA and HA respectively (Fig. 4d).  

The relationship between AA and HA (Fig. 4a) showed that generally AA 

NDRE was lower than HA NDRE. This is likely because of the way data were 

collected with the AA versus the HA. The HA maintained a height of 1.0 m 

above the canopy, and the angle between the sensor and the crop canopy 

was kept constant. This would likely introduce less variation compared to 

the AA, which fluctuated in height from 0.5 to 1.5 m, despite efforts to 

maintain 1.0 m. The AA did not continuously maintain a constant angle 

relative to the crop canopy due to small directional corrections to maintain 

the path of the UAV. The fluctuating height is of concern as noted above 

due to the chlorophyll distribution in a maize canopy. If an active sensor is 

to be mounted to a UAV, height control and a sensor gimbal are needed 

to maintain height and angle relative to the crop canopy.  
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Results from the 2014 Maize Canopy Study showed that using AA to 

collect proximal sensing information is an acceptable option for in-season 

N management due to a high correlation between the HA and AA sensor 

platforms. For the 2014 Maize Canopy study, both platforms proved to be 

good predictors of yield when used at the V11 growth stage. However, 

though there was a significant relationship between yield and applied N 

rate, there was large variation in this relationship. This study was located 

on a coarse-textured soil where significant loss of applied N rate was 

expected, and likely the cause of small scale variability in N supply. The 

relationships modeled for 2014 in this study are not intended to be 

predictive models for other situations, but rather to illustrate the potential 

for AA sensor use for in-season N management.  

For both the 2013 and 2014 maize canopy studies, the relationship 

between N rate and grain yield had significant variation. Other 

measurements to quantify N status were not taken. Comparing vegetation 

indices to applied N rate is appropriate to measure crop response, and the 

potential need for supplemental N during the growing season.   

 

Distance Sensitivity Study 2014  

 

While the 2013 and 2014 maize canopy studies illustrated the potential for 

AA sensor use to assess the N status of a maize canopy, there was 

substantial variation in the relationships between N rate, NDRE and grain 

yield in these studies. While weather and small scale field variation in N 

supply were suspected as primary sources of this variation, there was also 

uncertainty related to the complexity of the maize canopy reflectance, 

especially with unavoidable variance in sensor distance and angle. 

Consequently, a study was conducted in 2014 over a turfgrass canopy to 

better understand effects of sensor distance and angle on NDRE from a 

relatively uniform and flat crop canopy surface. Figure 5a shows the 

relationship between NDRE and N rate at different heights of the AA above 

the canopy. As N rate increased, NDRE increased as expected. As height 

increased, NDRE decreased. When the combined dataset is considered, 

there were no statistically significant interactions between height and N 

rate in their effects on NDRE (Table 3). Visually, there appeared to be 

different slopes for NDRE related to N rate for heights of 0.5, 1.0, and 1.5 

m compared to 2.0 and 2.5 m (Fig. 5a). When individual heights, grouped 

heights and specific wavelength reflectance were considered, regression 

analysis indicated that each N rate at each height was significantly related 

to NDRE, but adjusted r2 values decreased with increasing height (Fig. 5a; 

Table 4).  

Based on visual observation of slope relationships in Fig. 5a, data were 

partitioned by height into two groups: 0.5, 1.0, and 1.5 m (LOW) and 2.0, 

2.5 m (HIGH) for analysis (Fig. 5b). There were no significant differences in 

slope within groupings of LOW or HIGH, but there was a significantly 

different slope between these groups (Table 5). When the groups of LOW 

and HIGH are compared, there is no interaction of height and N rate (Table 

6).  
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Figure 6a shows how the change in reflectance with height differs for 

RE, R, and NIR wavelengths; NIR reflectance decreased significantly as 

height increased, while RE and R reflectance remained relatively constant. 

Results show a relationship of vegetation index with height when the 

whole range of heights tested are considered. However, for a grouped 

range of heights (i.e. 0.5–1.5 m), the response is not statistically different.  

If height is still considered, Fig. 6b illustrates the regression model by 

height using the same slope, but with statistical differences between each 

intercept noted. Other attempts to improve the relationship, i.e. multiple 

regression taking both N rate and height into account, had little to no 

effect on improving the adjusted coefficient of determination (Table 7). 

The difference in response to N rate as height increased is related to the 

NDRE calculation using red edge (730 nm) and NIR (780 nm) wavebands.  

Table 7 illustrates the capacity of various data groupings to detect 

differences in N rate. The LOW dataset had an error of 7.4 kg N ha–1, similar 

to the error from 0.5 m height alone. As height increased, RMSE increased 

to a value of 26 kg N ha–1 for the 2.5 m height dataset. Collectively, for this 

model of the RapidScan sensor (AA), maintaining a height above the crop 

canopy between 0.5 and 1.5 m allowed detection of N rate differences 

within the range of 7–10 kg N ha–1.   

 

 

Conclusions  

 

The 2013 and 2014 maize datasets established the potential for use of an 

AA platform to evaluate in-season crop canopy N status. The 2013 Maize 

Canopy Study provided supportive evidence that each of the three sensor 

platforms tested (HA, AP, and AA) were capable of detecting N rate effects 

on the maize canopy. However, inconsistencies among methods, and noise 

equivalents for the 2013 Maize Canopy Study, prevent a conclusion as to 

which platform is best suited for detecting differences in canopy response 

to N. The 2014 turfgrass study showed that distance effects on vegetation 

indices are real, and the effects are likely to be sensor and crop specific. It 

should be noted that the sensor used in this study was originally not 

intended for use on a UAV. However, the AA platform used in this study, 

operated effectively within a range of 0.5–1.5 m above the canopy. The AA 

platform performed similarly to other sensor platforms, either active or 

passive. However, these studies only establish the potential for an AA 

platform for in-season N management; further research is needed to 

evaluate FOV and height stability issues with an AA platform, and to better 

establish predictive relationships between AA sensor information and the 

need for supplemental N. Other influences on measurement, such as 

interference of the crop canopy from air movement generated by the UAV 

at the lowest heights need to be explored.     
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Fig. 1. Calibrated reflectance values for Tetracam MCA-6 wavebands used for the 

AP platform. Four shades of gray were used to accommodate typical reflectance 

values for a given waveband when imaging a maize canopy.    

 

 

 
 

Fig. 2. Noise equivalent for the response variable versus N rate, Maize Canopy 

Study 2013. The response variable is either the best fit VI versus N rate for each 

platform by each growth stage, or grain yield versus N rate. Grain yield plateau is 

represented by the vertical line going beyond the scale of the y axis.   
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Fig. 3. Grain yield versus applied fertilizer N rate for the Maize Canopy Study in 

2013. A linear plateau regression line is shown with the respective fit parameters.   

 

 

 
 

Fig. 4. a) Regression relationship of NDRE between the AA to HA platforms. A 1:1 

relationship line is shown for comparison. b) Relationship of NDRE acquired by AA 

to fertilizer N rate, Maize Canopy Study 2014. c) Relationship of maize grain yield 

to fertilizer N rate. d) Relationship of NDRE acquired by AA to maize grain yield. 

Maize Canopy Study 2014.   
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Fig. 5. a) Influence of nitrogen fertilizer rate and height above crop canopy on 

NDRE on the turf study. b) Relationships of nitrogen fertilizer rate and height above 

canopy in LOW and HIGH groups to NDRE, Distance Sensitivity Study 2014.   

 

 

 
 

Fig. 6. a) Relationships of wavelength (RE, R, and NIR) and height above turfgrass. 

b) Relationship of LOW sample data and fertilizer N rate to NDRE, Distance 

Sensitivity Study 2014.    
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Table 1. Selected vegetation indices and corresponding citation 

Vegetation index  Index calculation  Source 

SR  SR = NIR/R Birth and McVey (1968) 

NDVI  NDVI = (NIR – R) ÷ (NIR + R) Rouse et al. (1973) 

NDRE  NDRE = (NIR – RE) ÷ (NIR + RE) Buschmann and Nagel (1993) 

GNDVI  GNDVI = (NIR – G) ÷ (NIR + G) Buschmann and Nagel (1993) 

CI  CI = NIR/G  –  1  Gitelson (2003) 

CI RE  CI = NIR/RE  –  1  Gitelson (2003) 

DATT  DATT = (NIR – RE) ÷ (NIR – R) Datt (1999) 

MTCI  MTCI = (NIR – RE) ÷ (RE – R) Dash and Curran (2004) 

WDRVI  WDRVI = (a * NIR – R) ÷ (a * NIR + R) Gitelson (2004) 

The corresponding wavelengths used for AP: 530, 670, 710, and 800 nm, which is G, R, RE, and NIR respectively. Wavelengths used by both active platforms: 630, 760 and 780 nm, which 

is R, RE, and NIR respectively. 
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Table 2. Regression parameters for the Maize Canopy Study 2013 for the best fit VI versus N rate for each sensor platform 

Linear models 

Sensor Growth Model  Parameter estimates   Adj RMSE  P value 

platform stage     r2 

   Intercept  N rate N rate2 

    (kg ha-1) (kg ha-1)2 

HA  V12  DATT = N rate + 0.58601  0.00039468  –0.00000076  0.85  0.00590  <.0001 

      N Rate2 

 

AP  V12  DATT = N rate 0.82282  0.00017439  –  0.46  0.01036  <.0001 

 

AA  V12  DATT = N rate +  0.55821  0.00066553  -0.0000021  0.57  0.01355  <.0001 

     N rate2 

 

HA  R2  NDRE = N rate 0.39455  0.00029682  -  0.72  0.01036  <.0001 

 

AP  R2  NDRE = N rate +  0.75054  0.00070675  -0.0000016  0.72  0.01408  <.0001 

     N rate2 

 

AA  R2  DATT = N rate +  0.58030  0.00063150  -0.0000015  0.74  0.01152  <.0001 

     N rate2 

Non-linear model 

Model   Intercept  N rate N0 Plateau r2  RMSE  P value 

   (kg ha-1) (kg ha-1) (kg ha-1) 

 

Yield = N rate 10,652  20.7  112.4  12,981  0.76  667.42  <.0001 

   if N rate < N0 

 

Plateau = N rate 

   if N ≥ N0 

Grain yield versus N rate regression parameters are also shown under the non-linear portion of the table. The N rate at which yield plateaus is N0. Plateau refers to grain yield. 
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Table 3. Analysis of variance for effects of height above canopy and nitrogen fertilizer rate on normalized difference red edge (NDRE) values, Distance Sensitivity Study 2014 

Effect  Numerator DF  Denominator DF  F value  Pr>F 

Height (m)  4  15  16.94  <.0001 

N rate (kg ha-1)  1  15  181.28  <.0001 

N rate × height  4  15  2.09  0.1334 

 

 

 

 

Table 4. Linear regression models with corresponding parameter estimates, Distance Sensitivity Study 2014 

Regression model  Height(s)  Adj    Parameter estimates   RMSE  P 

 grouped (m) r2     Value 

   Intercept  N rate Height 

    (kg ha-1) (m) 

NDRE versus N rate  0.5  0.96  0.3256  0.0012  –  0.009  0.0019 

NDRE versus N rate  1.0  0.96  0.3054  0.0013  –  0.010  0.0023 

NDRE versus N rate  1.5  0.94  0.2937  0.0012  –  0.012  0.0042 

NDRE versus N rate  2.0  0.92  0.2728  0.0008  –  0.009  0.0059 

NDRE versus N rate  2.5  0.57  0.2132  0.0007  –  0.022  0.0871 

NDRE versus N rate  0.5, 1.0, 1.5,  0.32  0.28  0.001  –  0.052  0.0020 

    2.0, 2.5 

NDRE versus N rate  0.5, 1.0, 1.5,  0.89  0.38  0.001  –0.065  0.021  <.0001 

   + height    2.0, 2.5 

NDRE versus N rate 0.5, 1.0, 1.5  0.96 0.34  0.001  –0.031  0.009  <.0001 

   + height 

NDRE versus height  0.5, 1.0, 1.5,  0.53  0.43  –  –0.065  0.043  <.0001 

    2.0, 2.5 

NDRE versus height  0.5, 1.0, 1.5  0.01  0.40  –  –0.030  0.047  0.3123 

NIR versus height  –  0.46  44.82  –  –3.621  2.749  0.0001 

RE versus height  –  0.56 18.07  –  0.908  0.571  <.0001 

The ‘‘height(s) grouped’’ column refers to the respective height(s) that were combined for the Height parameter. 
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Table 5. Analysis of variance for interactions with fertilizer N rate with either the height above canopy groupings (LOW and HIGH) or the interactions within each height grouping 

(LOW, HIGH) 

Partitioned N rate × height group  Numerator DF  Denominator DF  F value  Pr>F 

N rate × height group (LOW vs HIGH)  1  15  8.00  0.0127 

N rate × height (2.0, 2.5 m)  1  15  0.19  0.6706 

N rate × height (0.5, 1.0, 1.5 m)  2  15  0.08  0.9238 

Distance Sensitivity Study 2014 

 

 

 

Table 6. Analysis of variance for height above turf grass and fertilizer N rate effects on NDRE with LOW and HIGH groupings 

Effect  Numerator DF  Denominator DF  F value  Pr>F 

Height  2  15  4.03  0.0562 

N rate  1  15  251.63  <.0001 

N rate × height  2  15  0.13  0.8761 

 

 

Table 7. Linear regression analysis for effects of height above crop canopy and error in prediction of N rate, Distance Sensitivity Study 2014 

Regression model  Height(s) grouped (m)  Adj r2  Parameter estimates    RMSE (kg ha-1)  P value 

   Intercept  N rate (kg ha-1)  Height (m)  NDRE 

N rate versus NDRE  0.5  0.96  -270.18  –  –  833.92  7.513  0.0019 

N rate versus NDRE  1.0  0.96  -233.75  –  –  770.49  7.978  0.0023 

N rate versus NDRE  1.5  0.94  -233.86  –  –  804.15  9.777  0.0042 

N rate versus NDRE  2.0  0.92  -312.52  –  –  1155.98  10.922  0.0059 

N rate versus NDRE  2.5  0.57  -186.95  –  –  952.56  25.935  0.0871 

N rate versus NDRE  0.5, 1.0, 1.5 (LOW)  0.96  -269.96  –  24.80  801.19  7.451  <.0001 

N rate versus NDRE  2.0 and 2.5 (HIGH)  0.29  -86.94  –  –  487.02  31.33  0.2932 

N rate versus NDRE + height  0.5, 1.0, 1.5, 2.0, 2.5  0.75  -272.07  747.20  48.58  –  18.162  <.0001 
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