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RESEARCH ARTICLE

Response of a Stoichiometrically Imbalanced
Ecosystem to Manipulation of Nutrient
Supplies and Ratios
Zarraz M. Lee1*, Laura Steger1, Jessica R. Corman1, Marc Neveu2, Amisha T. Poret-
Peterson2, Valeria Souza3, James J. Elser1

1 School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America, 2 School of
Earth and Space Exploration, Arizona State University, Tempe, Arizona, United States of America,
3 Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México,
Coyoacán, México D. F., México

* leezarraz@gmail.com

Abstract
Cuatro Ciénegas Basin (CCB) is a desert ecosystem that hosts a large diversity of water

bodies. Many surface waters in this basin have imbalanced nitrogen (N) to phosphorus (P)

stoichiometry (total N:P > 100 by atoms), where P is likely to be a limiting nutrient. To inves-

tigate the effects of nutrient stoichiometry on planktonic and sediment ecosystem compo-

nents and processes, we conducted a replicated in situmesocosm experiment in Lagunita,

a shallow pond located in the southwest region of the basin. Inorganic N and P were peri-

odically added to mesocosms under three different N:P regimes (P only, N:P = 16 and

N:P = 75) while the control mesocosms were left unamended. After three weeks of fertiliza-

tion, more than two thirds of the applied P was immobilized into seston or sediment. The

rapid uptake of P significantly decreased biomass C:P and N:P ratios, supporting the hy-

pothesis that Lagunita is P-limited. Meanwhile, simultaneous N and P enrichment signifi-

cantly enhanced planktonic growth, increasing total planktonic biomass by more than 2-

fold compared to the unenriched control. With up to 76% of added N sequestered into the

seston, it is suspected that the Lagunita microbial community also experienced strong N-

limitation. However, when N and P were applied at N:P = 75, the microbes remained in a

P-limitation state as in the untreated control. Two weeks after the last fertilizer application,

seston C:P and N:P ratios returned to initial levels but chlorophyll a and seston C concen-

trations remained elevated. Additionally, no P release from the sediment was observed in

the fertilized mesocosms. Overall, this study provides evidence that Lagunita is highly sen-

sitive to nutrient perturbation because the biota is primarily P-limited and experiences a

secondary N-limitation despite its high TN:TP ratio. This study serves as a strong basis to

justify the need for protection of CCB ecosystems and other low-nutrient microbe-

dominated systems from anthropogenic inputs of both N and P.
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Introduction
Nutrient limitation is widespread in both aquatic and terrestrial ecosystems [1], playing a
major role in shaping their structure and function. Due to the scarcity of aquatic habitats in the
arid environments, lakes and ponds are also key components of the ecosystem to the local com-
munity [2]. In arid environments, low nutrient lakes and ponds provide a large number of eco-
system services, including the major source of drinking water provision, recreational amenities
and vital processes such as groundwater recharge and nutrient cycling. These freshwater eco-
systems can also serve as sentinels to climate change [3]. However, many natural waters are in-
creasingly vulnerable to nutrient perturbation from non-point source pollution as
anthropogenic activities expand and intensify. Even relatively remote freshwater systems can
experience increased nutrient loading and subsequent eutrophication via atmospheric deposi-
tion [4, 5]. Nutrient perturbation is of particular concern for such ecosystems because of the
threats that eutrophication may impose on their unique biodiversity.

Restoration efforts of eutrophied lakes from diffuse pollution sources can be challenging
and slow [6, 7]. Hence, it is important to understand how nutrient perturbation influences vari-
ous aquatic habitats to better manage eutrophication and to evaluate time scales for recovery.
Elucidation of responses to nutrient perturbation is further complicated by the interacting, and
still intensely debated, roles of nitrogen (N) and phosphorus (P) in driving and maintaining eu-
trophication [8, 9]. P fertilization is often suggested to induce increased N inputs by nitrogen
fixation; hence, decreasing P input is a primary focus to reduce eutrophication [10]. However,
the potential for nitrogen fixation to offset N limitation is dependent on the planktonic com-
munity structure (N-fixers vs. denitrifiers) and energy available for this energy-demanding
process [8, 11]. A meta-analysis of short-term bioassays in freshwater system found that N and
P co-limitation is more widespread than single nutrient limitation and, at broad scales, the ex-
tent of short-term N or P limitation is similar across freshwater ecosystems [1]. Given these
continued uncertainties and ecosystem-specific responses, it is unclear how the N:P ratio of in-
puts affect aquatic ecosystems with highly imbalanced N:P stoichiometry (i.e., where TN:TP ra-
tios are often> 100). It is expected that ecosystems with high TN:TP ratio will be extremely P-
limited and less likely to be affected by any changes in N loading.

Another important factor affecting the impacts of nutrient loading on the eutrophication
process is water depth [12]. In particular, the effects of nutrient perturbation on the water col-
umn of shallow lakes and ponds are strongly influenced by sediment chemistry due to high
sediment surface:water column ratios [13]. The sediment surfaces of shallow ponds in arid re-
gions are often within the photic zone, providing optimal conditions for benthic primary pro-
duction and biological assimilation of nutrients from the water column. The ability of
sediments to buffer external nutrient load varies with the chemical and biological nature of the
sediment [13]. For example, inorganic phosphate can be selectively sequestered via abiotic co-
precipitation and adsorption processes depending on pH and calcium ions concentration [14].
Biotic processes in sediments can disproportionately remove N via denitrification [15]. Finally,
sediment can also be a source of nutrients, delaying recovery from eutrophication [6].

Our study seeks to understand effects of fertilizer N:P ratio, and short-term recovery from
fertilization, in a shallow pond in the species-rich subtropical desert valley of the Cuatro Ciéne-
gas Basin (CCB) in Coahuila, Mexico. Located in the Chihuahuan desert, CCB has been coined
a ‘biodiversity oasis’ and hosts a large number of endemic species, both in the macro- and
microbiota [16]. CCB contains numerous spring-fed pools emptied by outflow streams that
often lead to evaporative ponds and lagunas. These ponds and lagunas are shallow and often
have molar TN:TP ratio of> 100, consistent with evidence of strong P limitation in a previous
study of CCB’s stromatolites [17]. The genomes from microbialites in CCB are also enriched
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with genes encoding phosphorus transporters [18]. P-limitation also reduces horizontal gene
transfer events by decreasing physical contact among cells, interaction with virus and enhanced
scavenging of free DNA. In fact, it is hypothesized that the high microbial biodiversity found in
this basin is driven by P-limitation itself [19]. The near-pristine springs and ponds in this area
are a major tourist attraction for the town of Cuatro Ciénegas but concerns about agricultural
expansion in the region are growing, as this threatens the regional aquifer [20]. Thus, gaining a
better understanding of nutrient impacts on the ecosystems of CCB is particularly important.

This study describes the first effort to characterize the effects of nutrient enrichment in the
Cuatro Ciénegas Basin’s shallow ponds. We determined the allocation of major nutrients be-
tween the sediment and water column and assessed the effects of nutrient stoichiometry on
phytoplankton biomass and C:N:P stoichiometry. The experiment involved mesocosms that
isolated 12.6-m2 sections of the water column and underlying sediment that were periodically
fertilized with P alone or in combination with N at two N:P ratios (16 and 75) for three weeks.
The mesocosms were also monitored for two weeks after fertilization ceased to determine the
resilience of the pond to nutrient perturbation. We predicted that planktonic growth will be
more responsive to nutrient enrichment with lower N:P ratio and that planktonic biomass ele-
mental stoichiometry will change according to the enrichment N:P ratio. With minimal macro-
phytes and shallow water column, we expected the added nutrients to accumulate in the
sediment after fertilization was ceased while the planktonic community returned to its
initial state.

Materials and Methods

Study site
A replicated mesocosm experiment was conducted in situ in Lagunita (latitude: 26° 50’53.19”N,
longitude: 102° 8’29.98”W), a shallow pond adjacent to a larger lagoon (Laguna Intermedia) in
the Churince flow system. The physical and chemical characteristics of Lagunita prior to meso-
cosm installation are described in Table 1. The Churince flow system is located in the western
region of the Cuatro Ciénegas basin in Coahuila, México. Consistent with Churince's hydrolo-
gy, the water in Lagunita is high in conductivity and dominated by Ca2+, SO4

2-, and CO3
2-

(Table 1, [21]). Lagunita experiences strong evaporation, which decreased the water column
depth from an average of 26 cm to 20 cm by day 21. A major rain event between days 21 and
days 42 offset the evaporation effect, leaving a water column depth of 18 cm by the end of the
experiment (Table 1). The N:P stoichiometry of the pond was highly imbalanced, with an aver-
age molar TN:TP ratio of 122 ± 22 observed during the 7-week study.

Experimental design
The mesocosm experiment was conducted in the summer of 2011. Each mesocosm consisted
of a thin round clear plastic tube with a diameter of 40 cm. The tube was pushed into the sedi-
ment to a depth of 20 cm and extended approximately 20 cm above the water surface. The
mesocosms were arranged within the pond in a randomized complete block design with a total
of 5 blocks. Each block consisted of four mesocosms, one from each treatment, with blocks de-
ployed at the center of the pond along an east-to-west transect. Fish and larger aquatic macro-
invertebrates were removed with a dip net prior to fertilization. Light intensity and
temperature in the mesocosms did not differ from the pond (data not shown). In addition to
an unenriched control treatment (“U” hereafter), the enrichment treatments were: P: amended
with KH2PO4 to maintain a soluble reactive phosphorus (SRP) concentration at 1 μmol L-1;
NP16: as for P, but also amended with NH4NO3 at molar N:P ratio = 16; and NP75: as for P,
but also amended with N at molar N:P ratio = 75. The experiment started with application of
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1 μmol L-1 P and the corresponding N into each mesocosm on day 0. The SRP concentration of
each mesocosm was measured every 3–4 days (see Chemical Analysis), followed by the addition
of KH2PO4 required to bring its in situ concentration back up to 1 μmol L-1. The amount of
NH4NO3 added into each mesocosm was calculated based on the predetermined N:P ratio for
that treatment. Fertilizers were added by pipetting nutrient solutions into the mesocosms and
then mixing with a rinsed dip net. Nothing was added to the U mesocosms but these were stir-
red at the time of fertilization to mimic mixing in the enriched mesocosms. Fertilizer applica-
tion was continued for 3 weeks until day 21.

Mesocosm sampling
All sampling was conducted from boardwalks suspended from the shore to minimize distur-
bance to the pond. Physical measurements (pH, temperature, conductivity and water column
depth), salinity and dissolved oxygen were measured prior to water and sediment collection
using a YSI Model 85 meter (Yellow Springs Instruments Inc., Yellow Springs, OH) and Beck-
man Coulter 255 pH/mVmeter (Beckman Coulter Inc., Brea, CA). Water collected prior to fer-
tilizer application and every 3–4 days thereafter for SRP quantification was filtered in the field

Table 1. Physico-chemical characteristics of Lagunita prior to mesocosm installation in May 2011 (day 0), after 3-weeks of fertilizer application
(day 21) and 3-weeks after fertilizer application was ceased (day 42).

Parameters Day 0 Day 21 Day 42

Water column depth (cm)a 20–32 13–27 12–26

Temperature (°C)b 21.5–39.7

pHc 7.96 8.18 8.20

Conductivity (mS cm-1)c 9.17 11.50 9.40

Salinity (ppt)c 5.2 6.9 5.8

Chlorophyll a (μg L-1) 15.3 ± 1.16 6.91 ± 0.98 31.3 ± 3.29

DOC 2177 ± 51.84 3578 ± 54.84 5787 ± 236

Nitrate/Nitrite 1.67 ± 0.34 0.98 ± 0.21 1.70 ± 0.60

Ammonia-N 1.07 ± 0.10 0.76 ± 0.05 0.88 ± 0.38

SRP 0.06 ± 0.02 0.27 ± 0.03 0.25 ± 0.07

TDN 130 ± 5.98 224 ± 6.39 309 ± 4.48

TDP 0.58 ± 0.17 1.16 ± 0.34 1.22 ± 0.26

Seston C 498 ± 34.45 778 ± 37.19 778 ± 42.64

Seston N 57.1 ± 2.81 93.9 ± 4.32 96.5 ± 8.21

Seston P 1.21 ± 0.08 1.77 ± 0.19 2.25 ± 0.13

Total N 187 ± 8.58 318 ± 8.52 405 ± 10.4

Total P 1.79 ± 0.20 2.93 ± 0.34 3.47 ± 0.29

Calcium ions (mmol L-1) 17.9 ± 1.15 17.5 ± 0.37 15.4 ± 0.61

Sulfate ions (mmol L-1) 486 ± 63.44 678 ± 18.76 956 ± 62.29

Sediment C (g C kg-1 sed) 87.5 ± 1.39 99.4 ± 0.33 N.D.

Sediment N (mmol N kg-1 sed) 248 ± 54.3 264 ± 33.5 213 ± 41.1

Sediment P (mmol P kg-1 sed) 1.48 ± 0.20 1.28 ± 0.10 N. D.

Values indicate the average of five measurements along the east-west transect ± 1 standard deviation. All values are in μmol L-1 unless otherwise stated.

DOC: Dissolved organic carbon, SRP: Soluble reactive phosphorus, TDN: Total dissolved nitrogen, TDP: Total dissolved phosphorus. N.D.;

Not determined.
a Range from five location.
b Range obtained from 24 hours continuous temperature loggers.
c No replicate readings were taken.

doi:10.1371/journal.pone.0123949.t001
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through 1.2-μm polyethersulfone membrane filters (Pall Life Sciences, Port Washington, NY)
and transported to the field lab on ice. SRP was then measured using the ascorbic acid colori-
metric assay within 2 hours of sampling [22].

Extensive sampling of water and sediment for chemical and biological parameters was con-
ducted on day 21, which was after 3 weeks of periodic fertilization; and on day 42, which was
after 2.5 weeks the fertilization was ceased. Water samples were also collected on day 6 for
quantitation of chlorophyll a (Chl a). Water was collected in acid-washed 2-L cubitainers while
sediment was sampled by scraping the top 2 mm of sediment with a sample dipper. Sediment
was homogenized and transferred into cryovials. Both water and sediment were transported to
the field lab on ice.

Water samples were filtered through pre-combusted (24 h at 450°C) GF/F filters (0.7μm)
and GF/C filters (1.2 μm, Whatman, Piscataway, NJ) for seston elemental analysis and Chl a
quantitation, respectively, and stored at -20°C. To measure total dissolved nutrients, water
samples were filtered through 0.2-μm polyethersulfone membrane filters. Samples for dis-
solved organic carbon (DOC), and total dissolved nitrogen (TDN) were acidified with 12N
HCl to pH< 2 and stored in the dark at room temperature, while the remaining filtrate was
frozen for SRP, total dissolved P (TDP), total ammonia (NH3/NH4

+), nitrate (NO3
-), and ni-

trite (NO2
-) analyses. Sediment samples for nutrient analyses were stored at -20°C. Sediment

for biomass elemental composition was flash-frozen with liquid nitrogen in 15% glycerol and
stored at -80°C.

Chemical analyses
GF/F filters with seston were thawed, dried at 60°C and then packed into tin discs (Elemental
Microanalysis, U.K.) for C and N analyses with a Perkin Elmer PE 2400 CHN Analyzer at the
Arizona State University Goldwater Environmental Laboratory (ASU GEL). Another set of
dried GF/F filters prepared from the same water samples was used for estimating seston P con-
tent. These filters were digested in persulfate followed by a colorimetric analysis to determine
PO4

3- [23]. Chl a was quantified fluorometrically using a TD-700 fluorometer (Turner Designs,
Sunnyvale, CA) after 16–24 hours of extraction in cold absolute methanol [24].

TDP concentrations were determined using the colorimetric assay after persulfate digestion
as described above; SRP was measured without the persulfate digestion step. DOC and TDN
were analyzed using the Shimadzu TOC-VC/TN analyzer at the ASU GEL. Nitrate was reduced
to nitrite and then quantified using a Lachat QC8000 Flow Injection Analyzer. Total ammo-
nia-N (NH3/NH4

+) was quantified using the orthophthaldialdehyde (OPA)-ammonium based
fluorometric method [25]. Total N (TN) and total P (TP) concentrations were calculated as the
sum of the seston and total dissolved pools.

Sediment samples were thawed and dried at 60°C prior to analyses. For C and N analyses,
the dried sediments were packed into tin capsules for analysis with the PE 2400 CHN Analyzer
as described above. For P quantitation, sediment samples were digested in persulfate followed
by colorimetric assay as described above. To measure elemental composition of sediment mi-
crobes, cells were first extracted from sediment using a combination of chemical treatment
with the non-ionic detergent Tween 20 and sodium pyrophosphate, and physical treatment by
sonication to break cell-sediment bonds [26]. The cells were then purified by Nycodenz (Axis-
Shield, Norway) density gradient centrifugation. Separated cells were dried at 60°C and
weighed prior to analysis by mass spectrometry. A fraction of the recovered biomass was com-
busted to measure C and N from CO2 and N2 using an Isotope Ratio—Mass Spectrometer
(IRMS; Costech, Italy). The rest was digested using concentrated HNO3 at 100 to 150°C over-
night, prior to analysis for P by Inductively Coupled Plasma—Mass Spectrometry (ICP-MS;

Nutrient Stoichiometry in Shallow Pond

PLOSONE | DOI:10.1371/journal.pone.0123949 April 16, 2015 5 / 17



Thermo iCap Q, Thermo Fisher Scientific, USA). A minimum dry mass of approximately 1 mg
was necessary to yield quantitative IRMS measurements (i.e., within the calibration curve).
When a given separation clearly did not yield enough cell material to carry out analyses on sev-
eral biological replicates, we combined the cells of replicate separations. Thus, two combined
replicates were analysed for treatments U, P, and NP75; while 3 combined replicates were ana-
lysed for treatment NP16.

Blanks were carried through the digestion and analysed along with the samples. To ensure
that microbial elemental content was not altered during the procedure, wild-type E. coli of
known elemental composition [26] was separated and analysed along with each sample. Dur-
ing elemental analyses, a calibration curve was built using standards of known elemental com-
position. The accuracy of analyses was verified using check standards analysed along with the
samples. Elemental composition of the control E. coli culture and validation of the method was
described in detail by Neveu et al., 2014 [26]. Analysis of elemental composition of the separat-
ed cells assumes that sediment contamination was negligible. Considering a worst-case scenar-
io, where the separated cells were contaminated with calcite (12% C by mass) the separated
material will consist of 50% calcite and 50% cells. However, the Ca2+ to CO3

- ratio in the Chur-
ince system is much higher than 1:1 [21]. In addition to that, other compounds such as Mg2+

and SO4
2- are also present in high concentrations in Churince sediment. Hence, it was inferred

that sediment contamination in the separated material was insignificant. The contamination
will also not affect changes in C:N:P ratio among the different treatments since the sediment
characteristics across all treatments were the same.

Data analyses
All elemental ratios are presented as atomic ratios. Randomized-block ANOVA was performed
for data collected on days 6, 21 and 42 separately to determine the statistical significance of fer-
tilization effects. Pairwise comparisons for significant treatment differences were evaluated
using the post hoc Tukey’s test (p� 0.05). Resilience of the pond to the fertilization was deter-
mined using repeated measures ANOVA on data collected from both days 21 and 42. If a sig-
nificant time effect was detected, a Student’s t-test was conducted for each treatment pair. All
statistical analyses were performed using the multcomp package in R [27]. Outliers beyond
three standard deviations from the mean were omitted from statistical analyses, specifically for
nitrate and ammonia data. Removal of outliers did not affect the statistical outcome.

Results

Fertilizer application
All fertilized treatments received soluble inorganic P in the form of KH2PO4 repeatedly for 21
days. By day 21, a total of 154–161 μmoles of P had been added to each fertilized mesocosm.
Based on this level of addition, P fertilization was expected to increase the water column total
phosphorus (TP) in fertilized treatments by more than 3.5-fold (from 1.8 to 6.7 μmol L-1).
NP16 and NP75 treatments also received a total of 2.5 mmoles and 12.1 mmoles of N, respec-
tively. Assuming all N was retained in the water column, the NP16 treatment was expected to
have 40% more nitrogen in the water column than the U treatment (an increase from 236 to
336 μmol L-1) while NP75 treatment should experienced a 3-fold increase in water column
total nitrogen (TN, an increase from 236 to 726 μmol L-1). Fertilizer application had no effect
on physical characteristics except pH. The NP75 treatment had significantly higher pH at
8.1 ± 0.18 compared to the U treatment (7.9 ± 0.17) on day 21 but decreased back to the U
treatment level when fertilizer application was ceased.
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Initial response period (3 weeks after periodic fertilization)
Phosphorus concentrations. Soluble reactive phosphorus (SRP) concentrations in all fer-

tilized treatments (P, NP16, NP75) after 3 weeks of periodic fertilization were either lower or
similar to the SRP concentration in the unenriched treatment (F3,12 = 5.58, p-value = 0.012;
Table 2). The low SRP concentrations in enriched treatments indicated that phosphate was
rapidly removed from the water column, with P most efficiently removed in the NP75 treat-
ment. Consequently, the TDP in enriched treatments was also similar to or lower than TDP in
the unenriched treatment (F3,12 = 8.67, p-value = 0.002, Table 2). Using seston as a proxy for
planktonic biomass, approximately one third of the applied P (154–161 μmoles) in all fertilized
treatments was immobilized into the seston pool. Seston P in all fertilized treatments more
than doubled (F3,12 = 28.35, p-value< 0.001) and TP significantly increased (F3,12 = 15.86, p-
value< 0.001; Table 2). In addition, a significant increase in sediment P was also observed for
the enriched treatments (F3,9 = 10.32, p-value = 0.003, Table 2). The increase in surface sedi-
ment P content suggests that 36% of the added phosphate was sequestered into the top 2 mm
of surface sediment.

Nitrogen concentrations. Dissolved N concentrations in the fertilized treatments de-
pended on the N:P ratio of the added nutrients. NO3

-/NO2
- concentrations in P and NP16 treat-

ments were as low as concentrations in the unenriched treatment, but the NP75 treatment had
a significantly higher concentration (F3,11 = 4.98, p-value = 0.02, Table 3). Notably, ammonia-N
in the unenriched mesocosms accumulated to concentrations of approximately 2-fold higher
than in the pond, which remained at 1 μM or less throughout the experiment (Tables 1 and 3).
Phosphorus enrichment in the P and NP16 treatments alleviated this accumulation, decreasing
ammonia levels to lower than in the pond (F3,10 = 14.85, p-value< 0.001; Table 3). Total am-
monia concentration in the NP75 treatment was intermediate at half the concentration in unen-
riched treatment (Table 3). The differential response of dissolved N species to N:P ratio of
applied fertilizer was also evidenced by the significantly increased TDN concentration in the
NP75 treatment only (F3,12 = 10.73, p-value< 0.001, Table 3). Furthermore, residual dissolved
nutrients in NP75 had significantly higher N:P ratio (F3,12 = 12.74, p-value< 0.001; Fig 1).

Table 2. Phosphorus pools in the mesocosms on day 21 and 42 for the four treatments.

SRP TDP Seston P Total P Sediment P

(μmol L-1) (μmol L-1) (μmol L-1) (μmol L-1) (mmol kg-1)

Treatment D21 D42 D21 D42 D21 D42 D21 D42 D21 D42

U 0.31 a 0.30 1.39 a 1.40 1.09 a 1.06 a 2.47 a 2.46 a 1.16 a 1.23 a

(0.09) (0.05) (0.25) (0.10) (0.11) (0.22) (0.24) (0.32) (0.20) (0.28)

P 0.33 a 0.36 1.24 a 1.56 2.71 b 1.77 *bc 3.95 b 3.34 bc 1.44 b 1.71 b

(0.10) (0.14) (0.28) (0.15) (0.33) (0.23) (0.59) (0.27) (0.30) (0.18)

NP16 0.27 ab 0.33 1.15 ab 1.38 3.03 b 1.64 *b 4.17 b 3.03 *b 1.47 b 1.54 b

(0.12) (0.05) (0.40) (0.09) (0.26) (0.12) (0.62) (0.13) (0.16) (0.20)

NP75 0.19 b 0.35 * 0.86 b 1.49 * 3.29 b 2.16 *c 4.15 b 3.64 c 1.65 b 1.61 b

(0.08) (0.08) (0.25) (0.25) (0.68) (0.49) (0.71) (0.34) (0.15) (0.08)

Each value represents the average and one standard deviation in parentheses. Different bolded letters indicate significant differences between the

treatments within day, based on randomized block ANOVA.

* on day 42 denotes a significant change from day 21 based on Student’s t-test.

doi:10.1371/journal.pone.0123949.t002
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As expected, P only application had a limited effect on seston N while simultaneous N and
P application in the NP16 and NP75 treatments resulted in more than a two-fold increase in
seston N (F3,11 = 14.61, p-value< 0.001). Consequently, a significant increase in total N (F3,11
= 24.93, p-value< 0.001) concentrations in the water column was also observed in NP16 and
NP75 treatments (Table 3). In the NP16 treatment, an average of 76% of the applied N was
found in the water column with 57% of the applied N immobilized into seston. While seston N
and TN concentrations in the NP75 treatment were not significantly different from those in
NP16, only 13% of the applied N in the NP75 treatment could be accounted for in the water
column. Sediment N content was slightly elevated in the NP75 treatment when compared to
the U treatment (Table 3). However, it could not be determined if the difference was statistical-
ly significant because of incomplete data due to insufficient sediment samples for N analysis.

Carbon and plankton response. Increased concentrations of dissolved organic C (DOC)
and seston C were observed in the simultaneous N and P enriched treatments (F3,12 = 7.24,
p-value = 0.005, Fig 2). Nutrient enrichment also increased Chl a concentration, which was ap-
parent as early as 6 days after fertilizer application (F3,10 = 21.87, p-value< 0.001, Fig 3). How-
ever, on day 21, elevated Chl a was only observed for the NP16 and NP75 treatments (F3,12 =
53.78, p-value< 0.001, Fig 3). Increased C in seston was consistent with increased phytoplank-
ton biomass as indexed by Chl a concentration (F3,11 = 21.09, p-value< 0.001, Figs 2a and 3).
Nevertheless, no correlation between Chl a concentration or seston C concentration and N:P
ratio was observed.

While P enrichment alone had only marginal effects on seston C concentration, it did signif-
icantly decrease seston C:P ratio (F3,11 = 16.57, p-value< 0.001) and N:P ratio (F3,11 = 11.03,
p-value = 0.001; Table 4). Similar decreases in seston C:P and N:P ratios were also observed for
the NP16 and NP75 treatments (Table 4). Nutrient enrichment did not change the seston C:
N ratio.

Sediment microbes. The atomic C:N, C:P, and N:P ratios of sediment microbes for each
of the four treatments on day 21 are shown in Fig 4. Sediment microbes in Lagunita had ex-
tremely high C:P and N:P ratios (Fig 4b and 4c). P enrichment in the P and NP16 treatments
resulted in a four-fold decrease for both C:P and N:P in microbial biomass. However, microbial

Table 3. Nitrogen pools in the mesocosms on day 21 and 42 for the four treatments.

NO3
-/NO2

- NH3/NH4
+ TDN Seston N Total N Sediment Na

(μmol L-1) (μmol L-1) (μmol L-1) (μmol L-1) (μmol L-1) (mmol kg-1)

Treatment D21 D42 D21 D42 D21 D42 D21 D42 D21 D42 D21 D42

U 0.96 ab 1.40 2.33 a 16.33 183 a 185 ab 53.0 a 49.8 a 236 a 235 a 182 242

(0.20) (0.47) (0.64) (12.51) (9.51) (32.81) (3.73) (21.44) (9.60) (42.32) (17)

P 0.65 a 1.15 0.16 b 4.13 192 a 184 a 76.5 a 76.3 ab 269 a 260 a 212 243

(0.24) (0.77) (0.15) (3.75) (17.88) (20.81) (14.05) (12.77) (31.49) (32.81) (74)

NP16 0.89 ab 1.01 0.37 b 3.41 * 202 a 192 ab 110 b 84.2 ab 312 b 276 ab 186 257

(0.18) (0.39) (0.10) (2.44) (12.11) (16.08) (23.78) (20.07) (34.04) (33.67) (27)

NP75 2.89 b 1.38 1.21 ab 3.59 226 b 212 b 117 b 103 b 340 b 315 b 247 ND

(2.04) (0.52) (0.73) (2.14) (25.63) (23.87) (14.91) (37.57) (16.27) (53.90)

Each value represents the average and one standard deviation in parentheses. Different bolded letters indicate significant differences between the

treatments within day, based on randomized block ANOVA. ND: Not determined.

* on day 42 denotes a significant change from day 21 based on Student’s t-test.
a No replication was made for this analysis due to insufficient sediment samples.

doi:10.1371/journal.pone.0123949.t003
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C:P and N:P ratios in the NP75 treatment were similar to those in the control (U). C:N ratios
of microbe cells were unchanged across treatments.

Recovery period (2.5 weeks after last fertilizer application)
Phosphorus concentrations. After 2.5 weeks of recovery, SRP and TDP concentrations in

the NP75 treatment returned to levels observed in the U treatment (Table 2). Seston P concen-
trations in the three fertilized treatments decreased significantly from day 21 but remained ele-
vated compared to the U treatment (F3,11 = 15.30, p-value< 0.001; Table 2). A similar
observation was made for water column TP (F3,11 = 16.81, p-value< 0.001, Table 2). As ob-
served on day 21, sediment P concentrations remained elevated in all the fertilized treatments
(F3,11 = 9.58, p-value = 0.002, Table 2).

Fig 1. N:P ratio of residual dissolved nutrients in the water column on days 21 and 42. Each bar represents average of 5 measurements ± 1 standard
deviation. Different letters indicate significant differences between treatments for a given date while ‘*’ represents a significant change from day 21.

doi:10.1371/journal.pone.0123949.g001
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Nitrogen concentrations. Nitrate concentration in the NP75 treatment decreased from
day 21 to levels seen in the other treatments (Table 3). Total ammonia concentration in the U
treatment continued to increase, reaching values 2- to 11-fold higher than values on day 21
(Table 3). Total ammonia also increased in the fertilized treatments when compared to day 21,

Fig 2. Effects of fertilizer application on a) seston C and b) dissolved organic carbon, and their
recovery. Each bar represents average of 5 measurements ± 1 standard deviation. Different letters indicate
significant difference between treatments for a given date while ‘*’ represents a significant change from day 21.

doi:10.1371/journal.pone.0123949.g002
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albeit at a much slower rate than in the U treatment (Table 3). The amount of NH3/NH4
+ accu-

mulated in all treatments was highly variable, resulting in large standard deviations (Table 3).
The difference in TDN concentration between the four treatments had also decreased when
compared to day 21 (Table 3). Consequently, the TDN:TDP ratio of residual nutrients in the
NP75 treatment significantly decreased down to values in the range of the U treatment (Fig 1).
Seston N (F3,12 = 5.71, p-value = 0.011) and TN (F3,12 = 7.79, p-value = 0.004) concentrations

Fig 3. Water column chlorophyll a concentrations during fertilizer application (days 6 and 21) and
after cessation of fertilizer application (day 42). Each bar represents average of 5 measurements ± 1
standard deviation. Different letters indicate a significant difference between treatments for a given date.
Symbol ‘#’ represents a significant change from day 6 while ‘*’ represents a significant change from day 21.

doi:10.1371/journal.pone.0123949.g003

Table 4. Elemental stoichiometry of seston on days 21 and 42 in the mesocosms.

C:N C:P N:P

Treatment D21 D42 D21 D42 D21 D42

U 8.55 7.96 419.9 a 366.9 49.12 a 46.29

(0.64) (0.32) (56.8) (106.9) (6.04) (14.25)

P 8.51 8.77 240.1 b 390.8 * 28.26 b 44.98 *

(0.39) (0.99) (29.5) (23.9) (3.75) (4.40)

NP16 8.46 8.42 305.2 b 427.2 * 36.39 b 51.07 *

(0.63) (0.74) (36.2) (74.1) (6.34) (10.52)

NP75 8.47 8.20 306.8 b 381.7 36.25 b 46.64

(0.44) (0.82) (53.1) (82.0) (6.20) (8.91)

Each value represents the average and one standard deviation in parentheses. Different bolded letters indicate significant different between the

treatments within the same day.

* denotes significant change from day 21.

doi:10.1371/journal.pone.0123949.t004
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in the NP16 treatment decreased slightly towards values similar to those in the U treatment
(Table 3). However, the NP75 treatment continued to have elevated TN and seston N
(Table 3).

Carbon and phytoplankton response. All fertilized treatments continued to have Chl a
concentrations significantly higher than the U treatment after fertilizer application was ceased
(F3,12 = 11.90, p-value = 0.001, Fig 3). Carbon concentration in the seston pool for NP16 de-
creased slightly, but all fertilized treatments maintained elevated C concentrations in seston
when compared to the U treatment (F3,12 = 8.17, p-value = 0.003, Fig 2a). A similar observation
was made for water column DOC concentrations (F3,12 = 11.06, p-value = 0.001, Fig 2b). In-
deed, the difference in DOC between the U and fertilized treatments was enhanced by a signifi-
cant decrease in DOC concentration in the U treatment from day 21 to day 42 (Fig 2b). On the
other hand, seston C:P and N:P ratios in fertilized treatments increased to values similar to
those observed in the U treatment after fertilizer application was ceased (Table 4).

Discussion
In this study, the effect of nutrient loading and fertilizer N:P ratio on a shallow pond ecosystem
in the remote CCB was assessed through a replicated in situmesocosm experiment. As ex-
pected due to its relatively low nutrient concentrations and highly imbalanced stoichiometry
(high N:P ratio), Lagunita was highly sensitive to P enrichment. Enrichment effects were ap-
parent within days of initial fertilization (Fig 3). Added PO4 was actively immobilized into ses-
ton (Table 2), supporting the expectation that Lagunita is P-limited due to its high TN:TP
ratios. However, addition of P alone only had significant impacts on Chl a concentrations and
seston elemental ratios (Fig 3, Table 4) and simultaneous N and P enrichment resulted in a
considerably larger response of planktonic biomass (Fig 2a). Furthermore, the elevated Chl a
concentration observed on day 6 in the P-only treatment could not be sustained by further ad-
dition of P, suggesting that P was not the only limiting nutrient (Fig 3). While combined N and
P enrichments have often been found to produce a larger phytoplankton growth response than
P-only enrichment [1, 28], this observation was unexpected in Lagunita given its pronounced
N:P imbalance (TN:TP = 122 ± 21, TDN:TDP = 254 ± 90; by atoms). Furthermore, the amount
of N added in the NP16 treatment represented only a 40% increase in TN while P addition in-
creased TP by 3-fold and thus was expected to yield a larger effect.

Fig 4. Effects of fertilizer application on sediment microbe biomass (separated cells) a) C:N, b) C:P, and c) N:Pmolar ratios for samples collected
on day 21. Each bar represents the average of two measurements (three for NP16 treatment) ± 1 standard deviation.

doi:10.1371/journal.pone.0123949.g004
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Nitrogen limitation of at least some of the microbial biota in Lagunita is also suggested by
the depletion of NH3/NH4

+ in the water column. A notable accumulation of NH3/NH4
+ was

observed for the unenriched treatment (relative to the pond itself) while the P and NP16 treat-
ments had concentrations lower than the pond's NH3/NH4

+ concentration (Table 3). In fact, a
majority of the added N was sequestered into the seston pool, accounting for 76% of the added
N in the NP16 treatment. We note that a large fraction of dissolved N in Lagunita was in the
dissolved organic form (DON), calculated as the difference between total dissolved N and dis-
solved inorganic N pools (Table 1). Although DON can be a source of N to bacterioplankton,
some forms of DON can be recalcitrant and require more energy to assimilate than NO3

- or
the highly reduced NH4

+ [29]. The potential unavailability of DON has led to the suggestion
that dissolved inorganic nitrogen (DIN):TP or DIN:TDP ratios can serve as a better predictor
for nutrient limitation in oligotrophic lakes [8]. Indeed, the DIN:TP (~1 by atoms) and DIN:
TDP (3.07 ± 1.5, by atoms) ratios in Lagunita are consistent with strong N limitation according
to the regression analysis approach of Bergstrom [30]. Therefore, it is still very likely that at
least some microbiota in Lagunita experience N limitation along with others experiencing P
limitation, despite the pond's high TN:TP ratio [8]. These observations for Lagunita stress the
need to consider both nitrogen and phosphorus dynamics when studying nutrient limitation in
freshwater ecosystems [1, 11, 28] and provide further caution against relying on TN:TP ratios
to infer nutrient limitation in the absence of experimental data.

The response to P enrichment was more apparent in the stoichiometric composition of the
seston than it was in the biomass of seston. This result is similar to that seen in mesocosm stud-
ies performed in P-limited Lake 239 at the Experimental Lakes Area, where P addition margin-
ally increased seston C concentration but produced strong decreases in seston C:P and N:P
ratios [31]. The change in biomass stoichiometry was mainly driven by P because both NP16
and NP75 treatments had seston with similar elemental ratios (Table 4). In the NP75 treat-
ment, the high fertilizer N:P ratio retained a primarily P-limited condition. The excess N may
have been denitrified rather than assimilated as biomass. In fact, only 20% of the added N in
the NP75 treatment can be accounted for, with most of it in the seston pool. Denitrification
genes have been found in a nearby ecosystem [32] and their abundance is currently being ex-
plored in metagenomes generated from the pond.

Lagunita's responses are also consistent with previous observations of strong decreases in C:
P ratios of stromatolitic biomass in Rio Mesquites, another aquatic ecosystem in CCB, in re-
sponse to P enrichment [17]. Nonetheless, both seston and sediment biomass C:P and N:P ra-
tios are still very much higher than the more commonly reported Redfield proportions of 106
(C:P) and 16 (N:P) and still exceed a threshold value thought to be generally indicative of a
transition between N and P limitation (N:P ~31:1 by atoms) [33]. Overall, these observations
are consistent with studies that show considerable variation of seston C:P and N:P ratios in
freshwater ecosystems due to environmental conditions of nutrient supply and other factors
[34, 35]. The dependence of seston C:N:P ratio on the fertilizer application suggests that the
planktonic community has adapted to the high N:P ratio of available nutrients at the Cuatro
Ciénegas aquatic ecosystems.

Effects of nutrient amendment in shallow water bodies can be dampened due to sequestra-
tion of added nutrients into sediments [13]. This sequestration can involve biological uptake as
well as chemical processes. Biological uptake plays a significant role for shallow lakes where the
benthic surface layers are dominated by macrophytes and photoautotrophic microorganisms.
In fact, nutrient additions may be completely assimilated by the benthic community and have a
minimal effect on planktonic community [36]. Lagunita largely lacks macrophytes and thus
chemical sequestration may have been more important. The sediment pore waters in Lagunita
have relatively high pH (>7), and high concentrations of calcium (15–17 mmol/L) and
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carbonates [21]. High concentrations of calcium and carbonate ions may favour potential co-
precipitation and trapping of nutrients into calcite precipitates or microbialites [14, 18]. Based
on the sediment dry weight and P content, we estimated that approximately 36% of the added
P was adsorbed to the top 2 mm of the sediment surface, indicating considerable capacity for
sediment P adsorption to buffer against the increased external nutrient loading. Nevertheless,
there was still a positive response of planktonic biomass to fertilization, especially for the NP16
and NP75 treatments (Fig 2a). This rapid uptake of added nutrients by the plankton before po-
tential sequestration in sediments is consistent with strong nutrient limitation in Lagunita. Bio-
logical nutrient uptake is not surprising given that the entire water column is well aerated and
within the photic zone, providing abundant carbon and energy sources for photoautotrophic
production. With another 30% of the P immobilized into the seston pool, the remaining one
third of the added P could not be accounted for in the fertilized treatments. It is hypothesized
that the remaining P added into the mesocosms found its way into the deeper sediments,
which are relatively unconsolidated up to at least 90 cm depth. The large amount of pore water
and high ion concentrations can promote calcite precipitation and interaction of P with other
metals such as Fe and Mg2+ [14].

Although the added nutrients were mostly consumed by the planktonic community, a sig-
nificant change in the elemental stoichiometry of sediment microbes was nevertheless apparent
(Fig 4). The P-only and NP treatment biomass C:P and N:P ratios drastically decreased to levels
similar to the planktonic biomass (Fig 4). Unlike the planktonic biomass, sediment microbes in
the NP75 treatment still had high C:P and N:P ratios (Fig 4) comparable to the unenriched
treatment. This observation is consistent with the hypothesis that the NP75 mesocosm re-
mained P-limited. Like the planktonic biomass, the sediment microbes still had highly skewed
elemental ratios, indicating nutrient limitation. While it is common to find benthic microor-
ganisms with elevated C:P ratios (higher than 106 but generally<1000:1, [37, 38]), sediment
biomass in Lagunita had some of the highest C:P ratios reported for aquatic microorganisms
(> 1500:1).

In some freshwater systems, the capacity of sediments to buffer against P inputs decreases
over time as nutrients are increased [13]. Eventually, the sediments can become a source of P
rather than a sink, especially after the external loading is removed [13]. To address this possi-
bility, we monitored the recovery of Lagunita for two weeks after the last fertilizer application.
Net internal loading of P was not observed since TP decreased for all fertilized treatments after
enrichment was stopped (Table 2). Seston P in all the fertilized treatments also decreased sig-
nificantly from day 21 (Table 2). Most importantly, sediment P in fertilized treatments re-
mained elevated when compared to the unenriched sediment and did not change from day 21
(Table 2). Hence, the sediments of CCB appear to be important for buffering some of the exter-
nal nutrient loading.

Recovery after cessation of fertilizer application was not as obvious for N as it was for P in
the mesocosms. Seston N and TN in the NP16 and NP75 treatments slightly decreased, al-
though not quite as low as concentrations in the unenriched mesocosms (Table 3). Unexpect-
edly, total ammonia concentrations developed to remarkably high concentrations by the end
of the experiment (>16 μmol L-1) in the unenriched treatment compared to the pond itself.
Ammonia-N concentrations in the fertilized treatments accumulated at a slower rate, suggest-
ing that fertilization initially kept ammonium concentrations low due to increased biological
demand from the P enrichment, at least until the P supply ceased. Accumulation of ammonia-
N concentration could be due to two reasons—the breakdown of DON into NH4

+ or release of
NH4

+ from cell death. As previously mentioned, a large fraction of TDN in Lagunita is in the
organic form. DON can undergo photochemical oxidation producing ammonium as the
major product. This reaction occurs most efficiently at ultraviolet wavelengths [39], a
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condition highly likely in CCB where there is extensive exposure to solar radiation in the sum-
mer. DON can also be converted to NH4

+ by ammonifying bacteria. Alternatively, cell lysis or
decomposition of zooplankton can lead to NH4

+ production. In the presence of the limiting
nutrient, P, any NH4

+ produced can be assimilated (P and NP16 treatment, Table 3). When
the fertilizer application was ceased, the plankton slowly returned to the P-limitation state, al-
lowing NH4

+ to start accumulating. Since these ammonification processes are also occurring
in the pond itself, the accumulation of NH4

+ in the unenriched mesocosms relative to the
pond requires additional explanation. We suspect that this accumulation may reflect differ-
ences in volatilization of ammonia (NH3), which becomes increasingly prevalent at high pH
values such as those in Lagunita. That is, the walls of the enclosures, which extended at least
20 cm above the water surface, may have protected the water column in the enclosures from
prevailing strong winds, decreasing rates of atmospheric transfer of NH3. This possibility
awaits further investigation.

Increasing sources of nutrient loading from local and regional expansions of agriculture, at-
mospheric deposition, and human habitation are placing many seemingly pristine and remote
water bodies at risk for eutrophication [4, 5], including those in the CCB. Increased nutrient in-
puts to CCB are of great concern because the valley hosts a large number of aquatic ecosystems
where the organisms have adapted to low TP concentrations and imbalanced TN:TP ratios
[40]. For example, microbial biomass of stromatolites in Rio Mesquites at CCB has C:P ratios
of 750–2000 [17]. This study found that Lagunita, a shallow pond in the western arm of CCB,
is highly sensitive and relatively unresilient to nutrient perturbation, despite the potentially
strong capacity of its sediments to sequester nutrient inputs. While P enrichment stimulated
short-term chlorophyll a production, its main impacts were in affecting the elemental compo-
sition of the microbial biomass, both in the water column and sediment surface. Thus, plank-
tonic biomass responded relatively modestly to P-enrichment when added alone. Surprisingly
given the very high TN:TP ratios in Lagunita, both the planktonic and sediment community
nevertheless exhibit secondary nutrient limitation for N when P was supplied. While the main
concern for CCB is focused on extensive water extraction for agriculture purposes [41], this
study confirms that aquatic ecosystems at CCB are highly nutrient-limited and supports a view
that their effective conservation will depend, at least in part, on protecting them from anthro-
pogenic nutrient inputs, including both phosphorus and nitrogen.
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