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RESEARCH

Switchgrass (Panicum virgatum L.) is a warm-season native grass, 

used for livestock feed and biofeedstock production, soil and 

wildlife conservation, and prairie restoration in a large portion of 

the USA. Switchgrass produces a high yield of biomass across a wide 

geographic range; it is suitable for use on marginal, highly erodable, 

and droughty soils; it has the potential of sequestering large amounts 

of atmospheric C in permanent grasslands; and it provides excellent 

nesting habitat for migratory birds (Vogel, 2004; Paine et al., 1996; 

Sanderson et al., 1996). Heat, cold, and drought tolerance within 

the species has allowed adapted ecotypes to inhabit much of North 

America, ranging west to the front range of the Rocky Mountains, 

north to Hudson Bay, and south to the Texas Coastal Plain.

Evolutionary processes including gene migration, random 

genetic drift, mutation, and natural selection combined with envi-

ronmental variation due to latitude, altitude, soil type, and precipi-

tation have resulted in signifi cant genetic and phenotypic variation 

Latitudinal and Longitudinal Adaptation 
of Switchgrass Populations

M. D. Casler,* K. P. Vogel, C. M. Taliaferro, N. J. Ehlke, J. D. Berdahl, 

E. C. Brummer, R. L. Kallenbach, C. P. West, and R. B. Mitchell

ABSTRACT

Switchgrass (Panicum virgatum L.) is a warm-
season native grass, used for livestock feed, 
bioenergy, soil and wildlife conservation, and 
prairie restoration in a large portion of the USA. 
The objective of this research was to quantify 
the relative importance of latitude and longitude 
for adaptation and agronomic performance of 
a diverse group of switchgrass populations. Six 
populations, chosen to represent remnant prai-
rie populations on two north–south transects, 
were evaluated for agronomic traits at 12 loca-
tions ranging from 36 to 47°N latitude and 88 
to 101°W longitude. Although the population × 
location interactions accounted for only 10 to 
31% of the variance among population means, 
many signifi cant changes in ranking and adap-
tive responses were observed. Ground cover 
was greater for northern-origin populations 
evaluated in hardiness zones 3 and 4 and for 
southern-origin populations evaluated in har-
diness zones 5 and 6. There were no adaptive 
responses related to longitude (ecoregion). 
Switchgrass populations for use in biomass 
production, conservation, or restoration should 
not be moved more than one hardiness zone 
north or south from their origin, but some can 
be moved east or west of their original ecore-
gion, if results from fi eld tests support broad 
longitudinal adaptation.
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in switchgrass. Latitude of origin has a signifi cant impact 

on productivity, survival, and adaptation traits of switch-

grass (Sanderson et al., 1999; Casler et al., 2004). Two 

distinct cytotypes exist in switchgrass, upland and low-

land (Hultquist et al., 1996). Upland cytotypes are more 

adapted to northern latitudes and lowland cytotypes are 

more adapted to southern latitudes. Furthermore, there 

is genetic variability for adaptation within each cytotype, 

both of which have northern and southern types within 

their geographic range (Casler et al., 2004). Growth rate, 

photoperiodism, heat tolerance, and cold or freezing toler-

ance regulate adaptation of switchgrass populations.

Adaptation of switchgrass populations has important 

implications for both agronomic production and prairie 

conservation and restoration. Agronomically, it is impor-

tant to utilize germplasm that has photoperiod traits, mor-

phological plasticity, and stress tolerances that match the 

environmental characteristics of a particular region (Casler 

et al., 2004; Boe and Casler, 2005). Photoperiod, mor-

phological, and adaptation traits are all important in prai-

rie restoration and conservation endeavors, to ensure that 

populations are phenotypically similar and well adapted to 

local environmental conditions. For this reason, many res-

toration ecologists recommend that populations be drawn 

only from collections made locally, although “local” is 

often diffi  cult to defi ne. USDA hardiness zones, defi ned in 

5.5°C increments of mean annual minimum temperature, 

provide an excellent framework for choosing germplasm 

for use in agronomic breeding programs and for defi ning 

“local” conditions for restoration purposes (Casler et al., 

2004). However, little is known about genetic variation 

that conditions the response of switchgrass populations to 

longitude and its environmental basis. The objective of this 

research was to quantify the relative importance of latitude 

and longitude in regulating the adaptation and agronomic 

performance of a diverse group of switchgrass populations.

MATERIALS AND METHODS
Six switchgrass populations were chosen to represent two latitu-

dinal transects based on their site of origin (Table 1; Fig. 1). Each 

population was derived from one or more remnant prairie popu-

lations. Pathfi nder and Sunburst have a short selection history 

for vigor (Boe and Ross, 1998, Newell, 1968b), but are closely 

representative of their original prairie remnant collections. Seeds 

from each population were germinated in a greenhouse in Janu-

ary 1999. Seeds of the cultivars Blackwell, Cave-in-Rock, Path-

fi nder, and Sunburst were obtained from commercial sources. 

Seeds of WS98-IP and WS98-SB were collected from their 

respective site of origin in September 1998.

One thousand seedlings of each population were trans-

planted into isolated crossing blocks at Arlington, WI, in May 

1999. Plants were spaced 0.9 m apart in perpendicular direc-

tions. Crossing blocks were isolated from other switchgrass by a 

minimum of 100 m. Weeds were controlled using a combina-

tion of tillage, hand weeding, and application of 1.12 kg ha 1 

alachlor [2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)

acetamide] with 0.07 kg ha 1 imazethapyr {2-[4,5-dihydro-4-

methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl]-5-ethyl-

3-pyridinecarboxylic acid}. Each crossing block was fertilized 

with 112 kg N ha 1 in May 2000. Bulk seed was harvested 

from each crossing block with a combine in September 2000. 

Seed was cleaned and stored at 21°C for 5 mo, then 3°C for 2 

wk. Two 0.5-g seed samples of each population were tested for 

germination using a standard protocol (AOSA, 1998) and used 

to determine mean seed mass.

Populations were planted at 12 locations representing four 

of the USDA hardiness zones (Table 2; Fig. 1). A Latin square 

design was used at all locations. Eleven locations were planted in 

spring 2001 and Mandan was planted in spring 2002. Plot size 

and soil type for each location are listed in Table 2. Plots were 

seeded with a drill, rows were spaced 15 to 20 cm apart, and 

the seeding rate was 930 PLS m 2. Weeds were controlled by 

use of pre- and postemergence herbicides, which varied among 

locations due to local conditions, needs, and restrictions. Forage 

growth was harvested, but no data were collected at the end of 

the fi rst growing season.

Plots were fertilized with 112 kg N ha 1 in spring of 2002–

2004 (2003–2005 for Mandan). Heading date was scored for 

each plot when approximately 10 panicles were fully emerged. 

When most plots had reached anthesis, each plot was scored for 

maturity using the numerical version of the Nebraska maturity 

rating scale (Moore et al., 1991). A random sample of tillers was 

hand-clipped from each plot at a 9-cm cutting height. Sam-

ples were weighed, dried at approximately 60°C for 5 to 6 d, 

and weighed again for dry matter determination. To determine 

biomass yield, plots were harvested once per year with a fl ail 

harvester (0.9-m width) or a sickle-bar mower (1.2-m width), 

depending on location. Harvest dates ranged from late July at 

Table 1. Passport information for six switchgrass populations derived from remnant tallgrass prairies.

Population Site of origin Latitude† Longitude† Ecoregion‡ Hardiness zone§

Sunburst (S) Union County, SD 42°30  N 95°30  W 251 (PPT) 4b

Pathfi nder (P) Southeastern Nebraska 41°00  N 96°00  W 251 (PPT) 5b

Blackwell (B) Blackwell, OK 36°49  N 97°17  W 332 (GPS) 6b

WS98-SB (W) Sterling Barrens State Natural Area, WI 45°05  N 92°50  W 212 (LMF) 3b

WS98-IP (I) Ipswitch Prairie State Natural Area, WI 42°34  N 90°24  W 222 (EBFC) 4b

Cave-in-Rock (C) Cave-in-Rock, IL 37°29  N 88°10  W 222 (EBFC) 6b

†Latitude and longitude are approximate for Pathfi nder and Sunburst, both of which were derived from several remnant prairies in the vicinity.

‡Ecoregions defi ned by Bailey (1998): PPT, Prairie Parkland (Temperate); GPS, Great Plains Steppe; EBFC, Eastern Broadleaf Forest (Continental); LMF = Laurentian 

Mixed Forest.

§Hardiness zones defi ned by Cathey (1990).
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general linear models analysis of variance, treating populations 

as a fi xed eff ect and all other factors as random eff ects.

The population × evaluation-location interaction was par-

titioned into contrasts to test specifi c diff erences among popu-

lations using specifi c combinations of locations. First, the six 

populations were partitioned into fi ve single degree of freedom 

contrasts: ecoregion of origin (Prairie Parkland vs. Eastern For-

est), Prairie Parkland-transect linear and nonlinear, and Eastern 

Forest-transect linear and nonlinear. The ecoregion contrast 

was computed from four of the six populations, eliminating 

some confounding eff ects between ecoregion and hardiness 

zone (Fig. 1), using Sunburst and WS98-IP from hardiness zone 

4 and Blackwell and Cave-in-Rock from hardiness zone 6. Each 

of these fi ve contrasts was computed for six combinations of the 

evaluation locations (Table 2; Fig. 1): Prairie Parkland locations 

(Mandan, ND; Ames, IA; DeKalb, IL; Mead, NE; Columbia, 

MO; Stillwater, OK), Eastern Forest locations (Spooner, WI; 

Rosemount, MN; Marshfi eld, WI; Arlington, WI; Lancaster, 

WI; Fayetteville, AR), and locations within USDA hardiness 

zones 3, 4, 5, and 6. Second, population means at each location 

the southernmost locations to mid-September at the northern-

most locations and were timed for late anthesis or postanthesis. 

Plot biomass yields were adjusted to a dry matter basis. Ground 

cover was determined with two random placements of a 25-cell 

grid with a cell size of 15 by 15 cm (Vogel and Masters, 2001), 

once after initial spring growth and once after harvest in each 

year. Data were collected for 3 yr at all locations, except Fay-

etteville (two years only).

Biomass yield data were analyzed by nearest neighbor anal-

ysis using separate row and column covariates and ignoring all 

population and block eff ects for each location-year combina-

tion (Casler, 1999). The residuals, representing all variation due 

to populations and blocks, were saved for each location-year 

combination. The appropriate location-year mean was added 

to each residual to rescale the residuals to represent the raw 

data adjusted for spatial variation. Adjusted biomass yield values 

were analyzed by general linear models analysis of variance, 

subtracting 2 df from error for each location-year combination 

(Smith and Casler, 2004). All other variables were analyzed by 

Figure 1. Plant Adaptation Region map for the central USA, showing the location of 12 test sites and the origin of six switchgrass 

populations. Plant Adaptation Regions (Vogel et al., 2005) are defi ned by a combination of Ecoregion provinces (Bailey, 1997; 1998) 

and USDA plant hardiness zones, HZ (Cathey, 1990). Ecoregion province names are as follows: 212 = Laurentian Mixed Forest; 222 = 

Eastern Broadleaf Forest (Continental); 231 = Southern Mixed Forest; 234 = Lower Mississippi Riverine Forest; M222 = Ozark Broadleaf 

Forest-Meadow; M231 = Ouachita Mixed Forest-Meadow; M234 = Black Hills Coniferous Forest; 251 = Prairie Parkland (Temperate); 255 

= Prairie Parkland (Subtropical); 311 = Great Plains Steppe and Shrub; 315 = Southwest Plateau and Plains Dry Steppe and Shrub; 331 

= Great Plains and Palouse Dry Steppe; and 332 = Great Plains Steppe. Lines connecting Sunburst, Pathfi nder, and Blackwell indicate 

the north–south transect in the Prairie Parkland ecoregion. Lines connecting WS-SB, WS-IP, and Cave-in-Rock indicate the north–south 

transect in the Eastern Forest ecoregion. Lines connecting Sunburst with WS-IP and Blackwell with Cave-in-Rock indicate the east–west 

comparison of Prairie Parkland vs. Eastern Forest ecoregions.
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were scaled to eliminate the main eff ect of location by subtract-

ing the location mean from each value (Casler et al., 2004). 

Scaled means for each population were separately regressed on 

latitude and longitude of each evaluation location (n = 12). All 

regressions were formulated as linear contrasts using coeffi  cients 

computed (Carmer and Seif, 1963) and tested in the general lin-

ear models ANOVAs (Steel et al., 1996).

RESULTS
As expected, based on their diverse origins, populations dem-

onstrated signifi cant diff erences for all variables measured (P < 

0.01). Because all population × year interactions were nonsig-

nifi cant, all results were presented as means over years, with 

the exception of ground cover, which was presented as means 

approximately 40 mo after planting (late summer of the third 

harvest year). Conversely, the population × location interac-

tion was signifi cant (P < 0.01) for all variables, accounting for 

10.5 to 13.0% of the variance of a population mean for heading 

date, dry matter concentration, and biomass yield, but 31.0% of 

the variance of a population mean for ground cover.

The mean growth stage at harvest was mid-anthesis 

for Blackwell and Pathfi nder, late anthesis for Cave-in-

Rock, and postanthesis for the other three populations, 

corresponding to a range in heading date of 9 d. Matu-

rity at harvest was highly and consistently correlated with 

heading date at all 12 locations (mean r = −0.83 ± 0.06), 

so the maturity rating was excluded from all further data 

analyses and presentations.

Ground cover measurements, taken twice per year for 3 

yr, had an autoregressive correlation structure in which mea-

surements made following shorter time intervals were more 

highly correlated than measurements made following longer 

time intervals. Averaged over locations, the mean phenotypic 

correlations of ground cover at 40 mo postplanting with the 

other ground cover measurements were: r = 0.61 ± 0.11 for 

12 mo, r = 0.72 ± 0.06 for 16 mo, r = 0.63 ± 0.12 for 24 mo, 

r = 0.81 ± 0.06 for 28 mo, and r = 0.95 ± 0.02 for 36 mo. 

Based on these results and their consistency across locations, 

ground cover at approximately 40 mo was used in all further 

analyses and presentations.

The three populations originating in the Prairie 

Parkland ecoregion were later in heading than the three 

populations originating in the Eastern Forest ecoregion 

(Table 3). This diff erence was similar for trials at Prairie 

Parkland and Eastern Forest locations, and there were no 

consistent trends for variation in this eff ect measured on 

a north-south transect across hardiness zones 3 to 6. The 

ecoregion eff ect accounted for an average of 24% of the 

variation among the six populations.

Populations originating from more southern sites 

were later in heading, regardless of the evaluation location 

(Table 3). Regressions of heading date on latitude of ori-

gin were negative and signifi cant (P < 0.01) for all ecore-

gions and hardiness zones. On average, populations were 

0.8 d earlier in heading for each degree of latitude change 

toward the north. This eff ect was similar in magnitude 

between Prairie Parkland and Eastern Forest locations and 

across hardiness zones 3 to 6. The linear portions of this 

relationship accounted for an average of 49% of the varia-

tion among the six populations.

The Prairie Parkland populations had greater dry 

matter concentration than the Eastern Forest populations 

for all but one of the location groups (Table 4). This eff ect 

accounted for an average of 19% of the variation among 

Table 2. Soil types, latitude, longitude, Bailey’s ecoregion, USDA hardiness zone, and plot sizes for 12 locations used to evalu-
ate six switchgrass populations.

Location Soil type Latitude Longitude Ecoregion† Hardiness 
zone‡

Plot
size

m

Mandan, ND Parshall fi ne sandy loam (coarse-loamy, mixed, superactive, frigid 

Pachic Haplustoll)
46°49  N 100°56  W 331 (GP-PDS) 4a 1.8 by 6.1

Spooner, WI Omega loamy sand (sandy, mixed, frigid Typic Haplorthod) 45°49  N 91°54  W 212 (LMF) 3b 1.7 by 1.8

Rosemount, MN Waukegan silt loam (fi ne-silty over sandy-skeletal, mixed mesic 

Typic Hapludoll)
44°45  N 93°08  W 222 (EBFC) 4a 1.2 by 7.6

Marshfi eld, WI Withee silt loam (fine-loamy, mixed, superactive frigid Aquic 

Glossudalf )
44°39  N 90°08  W 212 (LMF) 4a 1.7 by 1.8

Arlington, WI Plano silt loam (fi ne-silty, mixed, mesic Typic Argiudoll) 43°20  N 89°23  W 222 (EBFC) 4b 1.7 by 1.8

Lancaster, WI Fayette silt loam (fi ne-silty, mixed, mesic Typic Hapludalf) 42°50  N 90°47  W 222 (EBFC) 4b 1.7 by 1.8

Ames, IA Nicollet loam (fi ne-loamy, mixed, mesic Aquic Hapludoll) 42°01  N 93°42  W 251 (PPT) 5a 1.7 by 3.7

DeKalb, IL Drummer silty clay loam (fi ne-silty, mixed, mesic Typic Endoaquoll) 41°53  N 88°44  W 251 (PPT) 5a 1.7 by 1.8

Mead, NE Sharpsburg silt loam (fi ne, smectitic, mesic Typic Argiudoll) 41°13  N 96°29  W 251 (PPT) 4b 1.2 by 4.6

Columbia, MO Mexico silt loam (fi ne, smectitic, mesic Vertic Epiaqualf) 38°57  N 92°19  W 251 (PPT) 5b 1.5 by 4.6

Stillwater, OK Kirkland silt loam (fi ne, mixed, thermic Udertic Paleustoll) or Teller loam 

(fi ne-loamy, mixed, thermic Udic Argiustoll)
36°07  N 96°05  W 251 (PPT) 6b 1.5 by 4.6

Fayetteville, AR Captina silt loam (fi ne, silty, siliceous, active, mesic Typic Fragiudult) 36°04  N 94°11  W 222 (EBFC) 6b 1.7 by 1.8

†Ecoregions defi ned by Bailey (1997, 1998): PPT, Prairie Parkland (Temperate); EBFC, Eastern Broadleaf Forest (Continental); GP-PPS, Great Plains-Palouse Dry Steppe; 

LMF, Laurentian Mixed Forest.

‡Hardiness zones defi ned by Cathey (1990).
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the six populations. There were distinct trends toward a 

greater eff ect measured at Prairie Parkland locations and 

at the more southern locations.

There was a strong positive eff ect of latitude of origin 

on dry matter concentration, but only when measured 

at the Eastern Forest locations and in hardiness zones 3 

and 4 (Table 4). Heading date and dry matter concentra-

tion were negatively correlated with each other at the six 

Eastern Forest locations (mean r = −0.72 ± 0.14), but this 

correlation was not signifi cant for the six Prairie Parkland 

locations (mean r = −0.42 ± 0.21). The linear eff ects of 

latitude of origin accounted for 62 to 82% of the varia-

tion among the six populations at the most eastern and 

northern locations.

The Prairie Parkland populations produced 3.4 to 7.2% 

greater biomass yield for all six of the evaluation-location 

groups (Table 5). Each of these diff erences was signifi -

cant, except for HZ3 (P = 0.09), but this was only due to 

the low precision associated with one location within this 

hardiness zone. These eff ects were highly uniform across 

the range of location groups and accounted for an average 

of 13% of the variation among the six populations.

Although most of the variation among populations 

in biomass yield could be attributed to hardiness zones 

or latitude, it was generally nonlinear in nature, indicat-

ing the presence of unknown factors that contributed to 

the variation in biomass yield. Despite this, there were 

some small linear eff ects of latitude (Table 5). Biomass 

yield decreased with increasing latitude of origin for both 

transects measured at the Prairie Parkland locations and 

in hardiness zone 5 (i.e., northern populations tended to 

have lesser biomass yields than southern populations). 

These linear eff ects accounted for 25 to 39% of the varia-

tion among populations.

Populations originating in the Prairie Parkland were 

signifi cantly greater (P < 0.01) in ground cover than pop-

ulations originating in the Eastern Forest for all six loca-

tion groups (Table 6). This eff ect accounted for 17 to 56% 

of the variation among populations and was generally uni-

form across location groups.

Ground cover increased signifi cantly (P < 0.01) as a 

function of latitude of origin for both transects measured in 

hardiness zone 3 and for the Prairie Parkland transect mea-

sured in hardiness zone 4 (Fig. 2). Ground cover decreased 

signifi cantly (P < 0.01) as a function of latitude of origin 

for both transects measured in hardiness zone 5 and for 

the Eastern Forest transect measured in hardiness zone 6. 

The linear components of these transects accounted for 11 

Table 3. Population × location analysis for heading date of six switchgrass populations evaluated at 12 locations, grouped by 
ecoregions and hardiness zones.

Population, group, and
source of variation

Evaluation location group†

Prairie 
Parkland

Eastern 
Forest

Hardiness 
zone 3

Hardiness 
zone 4

Hardiness 
zone 5

Hardiness 
zone 6

Mean

—————————————————————————— Day of year (d) ——————————————————————————

Sunburst 204 198 202 207 204 178 201

Pathfi nder 212 203 207 215 206 187 208

Blackwell 213 203 207 215 206 190 208

WS-SB 206 197 200 208 205 180 202

WS-IP 202 197 198 206 205 174 199

Cave-in-Rock 209 202 204 212 208 183 206

Ecoregion means

Prairie Parkland 208** 201** 205** 211** 205 184** 204**

Eastern Forest 206 199 201 209 206 178 202

Hardiness zone transect slopes‡ ————————————————————————————— d degree-1 —————————————————————————————

Prairie Parkland −1.2** −0.8** −0.7** −1.1** −0.3** −1.8** −1.0**

Eastern Forest −0.5** −0.7** −0.7** −0.7** −0.4** −0.5** −0.6**

Source of variation —————————————————————————— Sum of squares (%)§ ——————————————————————————

Ecoregion 14 6 35 10 18 26 11

Prairie Parkland transect, linear 35 33 16 34 19 38 35

Prairie Parkland transect, nonlinear 22 15 11 23 15 11 19

Eastern Forest transect, linear 14 39 25 25 42 7 23

Eastern Forest transect, nonlinear 17 6 13 9 5 18 12

**Ecoregion means signifi cantly different from each other or slope signifi cantly different from zero at P < 0.01.

†Prairie Parkland (Columbia, Ames, DeKalb, Mandan, Mead, and Stillwater), Eastern Forest (Rosemount, Spooner, Marshfi eld, Lancaster, Arlington, and Fayetteville), Hardi-

ness zone 3 (Spooner), Hardiness zone 4 (Mandan, Rosemount, Marshfi eld, Lancaster, and Arlington), Hardiness zone 5 (Mead, Ames, Columbia, and DeKalb), Hardiness 

zone 6 (Stillwater and Fayetteville), Mean (all 12 locations).

‡Linear regressions of population means on latitude of population origin.

§Each sum of squares has 1 df, so comparisons among SS within columns provide a direct measure of the amount of variance explained by each source of variation.
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to 31% of the variation among the six populations (Table 

6). Ground cover of both transects was negatively related 

to latitude of origin at Prairie Parkland locations, but was 

positively related to latitude of origin at Eastern Forest loca-

tions. Ground cover was uniformly correlated with biomass 

yield across all locations (mean r = 0.72 ± 0.08).

Six of 24 linear regressions for scaled population 

means on longitude of evaluation location were sig-

nifi cant (P < 0.05; Fig. 3). Relative to the other popu-

lations, Blackwell and Pathfi nder headed later at the 

more western locations, while Pathfi nder also had 

greater dry matter concentration at the more western 

locations. Blackwell and Pathfi nder are both Prairie 

Parkland populations (Table 1). Conversely, Cave-in-

Rock and WS98-IP were earlier heading at the more 

western locations, relative to the other populations, 

while WS98-SB was lower in dry matter concentration 

at the more western locations. Cave-in-Rock, WS98-

IP, and WS98-SB are the three Eastern Forest popula-

tions (Table 1).

Blackwell, originating from hardiness zone 6 (Fig. 

1), decreased in dry matter concentration and ground 

cover at the more northern locations relative to the 

other populations (Fig. 4). Cave-in-Rock, also orig-

inating from hardiness zone 6, decreased in ground 

cover at the more northern locations relative to the 

other populations. Conversely, WS98-IP, originating 

from hardiness zone 4 (Fig. 1), increased in ground 

cover at the more northern locations relative to the 

other populations.

DISCUSSION
The lack of importance and statistical signifi cance of 

population × year interactions relative to population × 

location interactions was consistent with results from 

previous switchgrass experiments that spanned a wide 

geographic region (Sanderson and Wolf, 1995; Casler et 

al., 2004). For smaller geographic regions, population 

× year and population × location interactions tend to 

be of similar magnitude across a range of traits (Casler 

and Boe, 2003), particularly when there is considerable 

variation in weather conditions across years (Hopkins 

et al., 1995a, 1995b). The importance of population × 

location interactions across a wide geographic region 

implicates a number of environmental variables as fac-

Table 4. Population × location analysis for dry matter concentration of six switchgrass populations evaluated at 12 locations, 
grouped by ecoregions and hardiness zones.

Population, group, 
and source of variation

Evaluation location group†

Prairie 
Parkland

Eastern 
Forest

Hardiness 
zone 3

Hardiness 
zone 4

Hardiness 
zone 5

Hardiness 
zone 6

Mean

————————————————————————————— g kg 1 —————————————————————————————

Sunburst 459 447 403 433 435 565 453

Pathfi nder 432 406 368 394 400 549 419

Blackwell 445 411 372 395 422 563 428

WS-SB 446 443 426 418 425 562 444

WS-IP 435 431 402 421 393 547 433

Cave-in-Rock 440 411 367 393 424 554 426

Ecoregion means

Prairie Parkland 452** 429** 388 414* 428** 564* 440**

Eastern Forest 438 421 385 407 409 550 429

Hardiness zone transect slopes‡
—————————————————————————— g kg 1 degree 1 ——————————————————————————

Prairie Parkland 1.3 4.8** 4.1* 5.2** 0.7 −0.5 3.0**

Eastern Forest 0.5 4.2** 7.6** 3.5** −0.9 0.7 2.3**

Source of variation ———————————————————————— Sum of squares (%)§ ————————————————————————

Ecoregion 42 6 0 5 32 51 19

Prairie Parkland transect, linear 6 30 14 36 1 0 21

Prairie Parkland transect, nonlinear 43 32 15 28 32 27 42

Eastern Forest transect, linear 1 32 68 27 3 2 16

Eastern Forest transect, nonlinear 7 1 2 3 33 20 3

*Ecoregion means signifi cantly different from each other or slope signifi cantly different from zero at P < 0.05.

**Ecoregion means signifi cantly different from each other or slope signifi cantly different from zero at P < 0.01.

†Prairie Parkland (Columbia, Ames, DeKalb, Mandan, Mead, and Stillwater), Eastern Forest (Rosemount, Spooner, Marshfi eld, Lancaster, Arlington, and Fayetteville), Hardi-

ness zone 3 (Spooner), Hardiness zone 4 (Mandan, Rosemount, Marshfi eld, Lancaster, and Arlington), Hardiness zone 5 (Mead, Ames, Columbia, and DeKalb), Hardiness 

zone 6 (Stillwater and Fayetteville), Mean (all 12 locations).

‡Linear regressions of population means on latitude of population origin.

§Each sum of squares has 1 df, so comparisons among SS within columns provide a direct measure of the amount of variance explained by each source of variation.
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tors controlling the relative performance, stability, and 

plasticity of switchgrass populations.

Latitude and Hardiness Zones
The populations chosen for this study represented two 

latitudinal transects, one encompassing hardiness zones 

4, 5, and 6 through the Prairie Parkland region (Bailey’s 

ecoregions 332, Great Plains Steppe, and 252, Prairie 

Parkland), and the other encompassing hardiness zones 

3, 4, and 6 through the Eastern Forest region (Bailey’s 

ecoregions 221, Laurentian Mixed Forest, and 222, East-

ern Broadleaf Forest Continental; Bailey, 1997, 1998). 

Both transects were characterized by signifi cant levels of 

phenotypic variability associated with linear responses to 

latitude of origin. These responses were simple and gener-

ally uniform for heading date, dry matter concentration, 

and biomass yield, but were complex for ground cover, 

suggesting diff erential adaptation of populations.

Populations originating from southern latitudes were 

later in heading than populations originating from north-

ern latitudes, a result that was consistent with previous 

studies (McMillan, 1959, 1965; Casler, 2005). Similarly, 

populations originating from southern latitudes tended 

to have lower dry matter concentration at harvest than 

populations originating from northern latitudes, also con-

sistent with previous observations (McMillan, 1965). The 

relationship between heading date and dry matter concen-

tration was consistent for the Eastern Forest locations, but 

did not exist for the Prairie Parkland locations. Switch-

grass populations from the Prairie Parkland ecoregion 

are more heterogeneous than other populations (McMil-

lan and Weiler, 1959) and this region appears to be an 

important center of diversity for this species (McMillan, 

1959). Reduced genetic variability or historical genetic 

bottlenecks (changes in the population due to reduced 

population size) in Eastern Forest populations may have 

resulted in a fi xed relationship between heading date and 

dry matter concentration. Larger populations and greater 

genetic diversity in the Prairie Parkland may support a 

greater diversity in physiological responses to environ-

mental factors such as photoperiod and temperature, 

resulting in populations that may be later in heading, but 

not necessarily lower in dry matter concentration. The 

overall mean for dry matter concentration was highest at 

the Prairie Parkland locations and relatively little varia-

tion was observed among populations (Table 4). Hot, dry, 

Table 5. Population × location analysis for biomass yield of six switchgrass populations evaluated at 12 locations, grouped by 
ecoregions and hardiness zones.

Population, group, 
andsource of variation

Evaluation location group†

Prairie 
Parkland

Eastern 
Forest

Hardiness 
zone 3

Hardiness 
zone 4

Hardiness 
zone 5

Hardiness 
zone 6

Mean

———————————————————————— Mg ha-1 ————————————————————————

Sunburst 7.30 10.21 10.44 8.72 6.93 10.75 8.75

Pathfi nder 7.32 9.32 9.52 8.44 7.05 9.25 8.32

Blackwell 8.37 9.84 10.00 8.89 8.55 10.13 9.11

WS-SB 8.20 10.50 10.82 9.17 8.26 10.78 9.35

WS-IP 6.26 9.34 9.62 7.72 5.94 9.94 7.80

Cave-in-Rock 8.36 10.04 9.67 8.95 8.91 10.14 9.20

Ecoregion means

Prairie Parkland 7.83** 10.03** 10.22 8.81** 7.74* 10.44* 8.93**

Eastern Forest 7.31 9.69 9.64 8.33 7.42 10.04 8.50

 Hardiness zone transect slopes‡ ———————————————————————— Mg ha-1 degree-1 ————————————————————————

Prairie Parkland −0.20** 0.02 0.04 −0.05 −0.30** 0.04 −0.09**

Eastern Forest −0.08** 0.03 0.13 −0.01 −0.16** 0.07 −0.02*

Source of variation ———————————————————————— Sum of squares (%)§ ————————————————————————

Ecoregion 11 13 27 20 2 14 13

Prairie Parkland transect, linear 17 2 2 2 23 4 6

Prairie Parkland transect, nonlinear 2 30 20 5 2 61 10

Eastern Forest transect, linear 8 1 22 1 16 6 3

Eastern Forest transect, nonlinear 62 54 28 72 57 16 68

*Ecoregion means signifi cantly different from each other or slope signifi cantly different from zero at P < 0.05.

**Ecoregion means signifi cantly different from each other or slope signifi cantly different from zero at P <  0.01.

†Prairie Parkland (Columbia, Ames, DeKalb, Mandan, Mead, and Stillwater), Eastern Forest (Rosemount, Spooner, Marshfi eld, Lancaster, Arlington, and Fayetteville), Hardi-

ness zone 3 (Spooner), Hardiness zone 4 (Mandan, Rosemount, Marshfi eld, Lancaster, and Arlington), Hardiness zone 5 (Mead, Ames, Columbia, and DeKalb), Hardiness 

zone 6 (Stillwater and Fayetteville), Mean (all 12 locations).

‡Linear regressions of population means on latitude of population origin.

§Each sum of squares has 1 df, so comparisons among SS within columns provide a direct measure of the amount of variance explained by each source of variation.
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windy weather during late summer or early autumn may 

have conditioned this response.

Populations originating from southern latitudes 

tended to have greater biomass yields than populations 

originating from northern latitudes. Although this eff ect 

was not observed uniformly across all evaluation loca-

tions, it was observed for both the Eastern Forest and the 

Prairie Parkland population transects and it is similar to 

results from two previous studies (Sanderson et al., 1999; 

Casler et al., 2004). In the Southern Great Plains of the 

USA, biomass yield is largely a function of plant height 

(Redfearn et al., 1997; Casler et al., 2004). The longer 

growing season favors plants with later heading dates and 

an ability to retain photosynthetically active leaf area lon-

ger through the growing season (as indicated by lower 

dry matter concentration), resulting in more phytomers 

(more leaves) and taller plants compared to northern 

genotypes (McMillan, 1964; 1965; Casler et al., 2004; 

Boe and Casler, 2005). Northern populations grown at 

southern latitudes tend to fl ower early and mature more 

rapidly, reducing their ability to take advantage of the 

longer growing season. Conversely, southern populations 

grown at northern latitudes remain vegetative for a lon-

ger period of time, fl owering later and allowing them to 

take advantage of longer days and produce higher biomass 

yields (Newell, 1968a). The linear decline in dry matter 

concentration of Blackwell (origin in hardiness zone 6) 

with increasing latitude, relative to the other populations, 

was consistent with these observations.

McMillan (1959) hypothesized that three gene pools, 

or primary gene distribution centers, were responsible 

for repopulation of the tall-grass prairies after the retreat 

of the Pleiostocene glaciers. A western montane popu-

lation, originating at southern latitudes, but higher alti-

tudes would have rapidly migrated north, fi lling the 

northern ecological zones with early-heading plants 

capable of sexual reproduction under long-day condi-

tions in a short growing season. A southern population, 

originating in Texas and Oklahoma, would have pos-

sessed considerable genetic variability for photoperiod 

response, rapidly migrating north throughout the Great 

Plains and evolving a range of photoperiod and tem-

perature responses as it migrated to higher latitudes and 

colder climates. A southeastern population would have 

been responsible for fi lling ecological niches within 

the various Eastern Forest ecosystems. Hybridization 

Table 6. Population × location analysis for ground cover of six switchgrass populations evaluated at 11 locations, grouped by 
ecoregions and hardiness zones.

Population, group, 
and source of variation

Evaluation location group†

Prairie 
Parkland

Eastern 
Forest

Hardiness 
zone 3

Hardiness 
zone 4

Hardiness 
zone 5

Hardiness 
zone 6

Mean

—————————————————————————————— % ——————————————————————————————

Sunburst 85 91 84 94 74 95 88

Pathfi nder 84 77 44 89 74 91 81

Blackwell 93 83 65 91 89 97 88

WS-SB 85 89 85 91 80 83 87

WS-IP 73 83 63 88 63 74 77

Cave-in-Rock 88 84 61 91 82 92 86

Ecoregion means

Prairie Parkland 89** 87** 74** 93** 81** 96** 88**

Eastern Forest 80 83 62 89 73 83 82

Hardiness zone transect slopes‡
——————————————————————————— % degree 1 ———————————————————————————

Prairie Parkland −0.3** 0.8** 1.5** 0.4** −2.7** −0.5 −0.4*

Eastern Forest −0.4** 0.6** 2.7** 0.0 −0.8** −1.6** −0.1*

Source of variation ———————————————————————— Sum of squares (%)§ ————————————————————————

Ecoregion 39 16 17 41 24 56 41

Prairie Parkland transect, linear 13 12 5 11 25 1 1

Prairie Parkland transect, nonlinear 3 55 52 27 4 4 22

Eastern Forest transect, linear 9 6 14 0 6 21 1

Eastern Forest transect, nonlinear 36 10 12 20 40 18 35

*Ecoregion means signifi cantly different from each other or slope signifi cantly different from zero at P < 0.05.

**Ecoregion means signifi cantly different from each other or slope signifi cantly different from zero at P < 0.01.

†Prairie Parkland (Columbia, Ames, DeKalb, Mandan, Mead, and Stillwater), Eastern Forest (Rosemount, Spooner, Marshfi eld, Lancaster, Arlington, and Fayetteville), Hardi-

ness zone 3 (Spooner), Hardiness zone 4 (Mandan, Rosemount, Marshfi eld, Lancaster, and Arlington), Hardiness zone 5 (Mead, Ames, Columbia, and DeKalb), Hardiness 

zone 6 (Stillwater and Fayetteville), Mean (all 12 locations).

‡Linear regressions of population means on latitude of population origin.

§Each sum of squares has 1 df, so comparisons among SS within columns provide a direct measure of the amount of variance explained by each source of variation.
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and mixing along contact lines would have occurred 

frequently and may be partly responsible for much of 

the genetic variability observed in both chromosome 

number and morphological traits within many prairie-

remnant switchgrass populations. McMillan’s theory 

suffi  ciently explains the existence of latitudinal vari-

ability for relatively simple traits such as heading date, 

dry matter concentration, and biomass yield, that are 

largely photoperiodic and consistent along latitudinal 

transects through two distinct ecoregions, the Prairie 

Parkland and the Eastern Forest.

This was not the case for ground cover. Both latitudi-

nal transects showed distinct adaptive responses for ground 

cover, suggesting that natural selection is an important 

factor regulating survival of switchgrass plants and popu-

lations. Populations originating from northern latitudes 

were higher in ground cover, measured in hardiness zones 

3 and 4, compared to populations originating from south-

ern latitudes. Similarly, WS98-IP, originating in hardi-

ness zone 4, increased linearly in ground cover relative 

to the other populations as latitude of evaluation location 

increased. Blackwell and Cave-in-Rock, originating in 

hardiness zone 6, both decreased linearly in ground cover 

relative to the other populations as latitude of evaluation 

location increased, consistent with results of Berdahl et al. 

(2005). Conversely, populations originat-

ing from northern latitudes were lower 

in ground cover, measured in hardiness 

zones 5 and 6, compared to populations 

originating from southern latitudes.

A previous study, based on 5 of the 

12 locations utilized in the current study, 

demonstrated southern adaptation of low-

land populations vs. northern adaptation of 

upland populations, and that northern- and 

southern-adapted populations can be dis-

tinguished within both lowland and upland 

cytotypes (Casler et al., 2004). The results 

of this previous study were confi rmed by 

the current study for upland populations of 

switchgrass, confi rming that prairie-rem-

nant populations from hardiness zones 5 

and 6 are better adapted to more southern 

latitudes, while populations from hardiness 

zones 3 and 4 are better adapted to more 

northern latitudes, as measured by ground 

cover 40 mo after planting. Natural selec-

tion for survivorship within switchgrass 

populations is most likely controlled largely 

by photoperiod and perhaps disease resis-

tance at southern locations, favoring plants 

that can respond to shorter days with later 

heading, delayed moisture loss, and an 

extended  photosynthetically active period. 

Figure 3. Mean heading date or dry matter concentration of individual populations at 12 

evaluation locations, regressed on location longitude. Population means were scaled 

by subtraction of the location mean to eliminate the main effect of evaluation locations. 

All displayed regressions were signifi cant at P < 0.05; the remaining 18 regressions 

were not signifi cant (out of 24 total regressions for six populations × four variables).

Figure 2. Ground cover, approximately 40 mo after establishment, 

of six switchgrass populations that form two north–south transects, 

one through the historical Prairie Parkland ecoregion and one 

through the historical Eastern Forest ecoregion of the USA. Origins 

and transects of the six populations are shown in Fig. 1 and Table 1. 

Linear regression coeffi cients are shown in Table 6.
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It is likely that southern populations also have greater heat 

tolerance than northern populations. At northern locations, 

natural selection for survivorship is likely controlled by cold 

or freezing tolerance. Most switchgrass mortality occurs dur-

ing winter months (Casler et al., 2002; unreported data from 

the current study).

Longitude and Ecoregions
This is the fi rst study of switchgrass populations specifi cally 

designed to test populations for diff erential adaptation to 

longitude or ecoregions as defi ned by Bailey (1998). Other 

studies have evaluated switchgrass populations across a 

more limited longitudinal gradient of evaluation locations 

and found strong (Hopkins et al., 1995a) or weak (Hop-

kins et al., 1995b) population × location interactions. In 

the current study, all four variables were characterized by 

relatively simple plastic responses, indicating that longi-

tude or ecoregion is not a major factor in regulating adap-

tive responses of switchgrass.

Prairie Parkland populations were consistently later head-

ing than Eastern Forest populations, a result that is inconsis-

tent with observations made by McMillan (1959), perhaps 

owing to diff erent germplasm samples. However, four of the 

six populations had signifi cant linear responses to longitude 

of the 12 evaluation locations. Two Eastern Forest popula-

tions became earlier in heading, relative to the other popula-

tions, as they were moved west, while two Prairie Parkland 

populations became later in heading as they were moved 

west. These responses resulted in a wide range of heading 

dates at Prairie Parkland locations, compared to eastern loca-

tions. Responses for dry matter concentration were similar 

in nature to those for heading date, but not 

as uniform, frequent, or extreme. For both 

of these traits, it is not possible to diff erenti-

ate whether these responses resulted from 

Prairie Parkland populations adapting to 

the eastern environments, Eastern Forest 

populations adapting to the western envi-

ronments, or a combination of the two. 

Nevertheless, the plasticity of these two 

traits indicated a clear lack of stability across 

ecoregions.

Prairie Parkland populations had 

greater biomass yield and ground cover 

regardless of the evaluation locations. 

In contrast, a previous study, which 

included fi ve Prairie Parkland cultivars 

and one Eastern Forest cultivar (Cave-

in-Rock), demonstrated a population × 

location interaction that could be consi-

dered adaptive in nature (Casler and Boe, 

2003). Cave-in-Rock ranked highest in 

biomass yield and ground cover in south-

ern Wisconsin, but fi fth in biomass yield 

and sixth in ground cover in eastern South Dakota. 

Furthermore, the correlation between the two locations 

was r = 0.67 for biomass yield of all six populations, a 

value that increased to r = 0.97 when Cave-in-Rock was 

removed from the data set. Cave-in-Rock consistently 

ranks highest in biomass yield relative to cultivars from 

the Prairie Parkland ecoregion when evaluated in eastern 

Canada (Madakadze et al., 1998, 1999).

However, the majority of literature supports a lack of 

adaptive responses associated with longitude or ecoregion. 

Numerous soil and edaphic factors that diff er between the 

Prairie Parkland and Eastern Forest ecoregions have been 

investigated as environmental factors that might explain 

population × location interactions of switchgrass. Soil tex-

ture, soil pH, soil cation exchange capacity, soil N avail-

ability, populations of arbuscular mycorrhizal fungi, and 

precipitation or moisture availability during the growing 

season were all important factors discriminating among 

locations in one or more switchgrass studies (Nixon and 

McMillan, 1964; Hopkins and Taliaferro, 1997; Brejda et 

al., 1998; Cassida et al., 2005; Lee and Boe, 2005). In each 

case there was no evidence for genotype × environment 

interaction or interactions could not be described by any 

of the soil or edaphic factors discriminating the diff er-

ent environmental conditions. Because there is genetic 

variation for transpiration effi  ciency in switchgrass (Byrd 

and May, 2000), there may also be genetic variation for 

drought tolerance, which would likely have an impact 

on population × location interactions of fi eld studies over 

a larger geographic area, such as westward into the rain 

shadow of the Rocky Mountains.

Figure 4. Mean dry matter concentration or ground cover of individual populations at 12 

evaluation locations, regressed on location latitude. Population means were scaled by 

subtraction of the location mean to eliminate the main effect of evaluation locations. All 

displayed regressions were signifi cant at P < 0.05; the remaining 20 regressions were 

not signifi cant (out of 24 total regressions for six populations × four variables).
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The lack of diff erential adaptation of eastern- vs. west-

ern-origin switchgrass populations suggests that McMil-

lan’s theory of three gene pools or centers of deployment 

following retreat of the Pleistocene glaciers must have 

been followed by extensive homogenization among the 

three gene pools (McMillan, 1959, 1964). The principal 

forces promoting homogenization would be hybridization 

at population boundaries and gene migration, the latter 

occurring by wind-borne pollen transport or seed trans-

port by birds, mammals, and humans. The forces promot-

ing homogenization appear to be considerably stronger 

than any forces promoting adaptive responses to longitude 

or ecoregions.

Synthesis: Regional Gene Pools
Switchgrass breeding programs and the seed industry have 

combined to create a seed marketing and distribution sys-

tem that encourages and facilitates movement of switch-

grass seeds across large regional areas. Due to low profi t 

margins, the seed industry favors high-volume cultivars, 

which are more likely to result from germplasm that is 

broadly adapted across multiple ecological zones. Further-

more, there are very few cultivars developed from germ-

plasm that originates east of the Mississippi River, leading 

to a heavy reliance on a small number of eastern cultivars 

and a broad distribution of cultivars from the Great Plains 

(historical Prairie Parkland ecoregion).

Our research has validated the Plant Adaptation Region 

proposal of Vogel et al. (2005) as fully compatible with 

empirical agronomic, adaptation, and stability of switchgrass 

populations. Plant Adaptation Regions, combining hardiness 

zones (Cathey, 1990) with ecoregions (Bailey, 1997, 1998), 

are the functional units that defi ne adaptation of switchgrass 

populations, incorporating photoperiod, average minimum 

temperature, historic vegetation, and regional soil type into 

an eff ective germplasm classifi cation system for both culti-

vated and natural germplasm.

Some populations are broadly adapted beyond their 

Plant Adaptation Region of origin, such as Cave-in-Rock, 

which is adapted to hardiness zones 5, 6, and 7 throughout 

ecoregion Province 251 and east through most ecoregions 

to the Atlantic Ocean (Madakadze et al., 1998, 1999; Vogel, 

2004). This broad adaptation indicates that cultivars such as 

Cave-in-Rock have a genetic composition that provides for a 

robust responsiveness to environmental variables, a valuable 

characteristic for use in both livestock and feedstock produc-

tion systems. Germplasm with broad adaptation potential 

also will be very valuable for long-term conservation plant-

ings if predicted climatic changes occur.

As fossil fuel reserves become more depleted and 

their eff ects on Earth’s atmosphere become more promi-

nent, the need for renewable and cleaner energy sources 

increases. Switchgrass will be an essential component of a 

new paradigm in sustainable energy production systems in 

North America. In the USA alone, 16 million ha of pro-

ductive farmland is set aside every year for conservation 

purposes (Perlack et al., 2005). This land, combined with 

many more hectares of marginal cropland, could support 

bioenergy production from switchgrass, providing many 

additional socioeconomic benefi ts derived from perma-

nent grassland (Paine et al., 1996; Vogel, 1996, 2004). Our 

research indicates that a comprehensive program of devel-

oping switchgrass cultivars for use in bioenergy produc-

tion will require some level of regional breeding in North 

America (Sanderson et al., 2006). Eff orts should continue 

to focus on large-scale regional testing of new candidate 

cultivars as the only means of identifying broadly adapted 

cultivars such as Cave-in-Rock and the limits to their 

adaptation range. Breeding eff orts should continue to 

focus on regional gene pools, defi ned by hardiness zones, 

gathering germplasm from throughout the region, con-

ducting selection in representative environments, and 

developing large networks of collaborators to support fi eld 

trials throughout the target hardiness zones.
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