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Synthetic hexaploid wheat (SHW; 2n=6x=42, AABBDD, Triticum aestivum L.) is 

produced from an interspecific cross between durum wheat (2n=4x=28, AABB, T. turgidum L.) 

and goat grass (2n=2x=14, DD, Aegilops tauschii Coss.). It is reported to have a considerable 

amount of genetic diversity and is a potential source of novel alleles controlling abiotic and 

biotic stresses resistance and improving wheat quality. Therefore, the first study was to 

understand the genetic diversity and population structure of SHWs and compare the genetic 

diversity of SHWs with elite bread wheat (BW) cultivars. The result of this study identified a 

wide range of genetic diversity within the SHWs. The genetic diversity of the ABD and D-

genome of SHWs were 50% and 88.2%, respectively, higher than that found on the respective 

genome in a sample of elite BW cultivars. The second study was to identify novel genomic 

regions and underlying genes associated with grain yield and yield-related traits under two 

drought-stressed environments. This study identified 90 novel genomic regions and haplotype 

blocks associated with improving grain yield and yield-related traits with phenotypic variance 

explained of up to 32.3%. The third study was to identify common bunt resistance genotypes, 

genomic regions and underlying genes conferring resistance to common bunt. This study 

identified 29 resistant SHWs and 15 genomic regions (five were novel) 



 
 
conferring resistance to common bunt. The fourth study to explore the genetic variation of 10-

grain minerals (Ca, Cd, Co, Cu, Fe, Li, Mg, Mn, Ni, and Zn) and grain protein concentration 

(GPC); identify marker-trait associations and candidate genes associated with grain minerals 

using a genome-wide association study (GWAS). A wide range of genetic variation identified 

within SHWs for GPC and grain mineral concentrations. A GWAS identified 92 genomic 

regions (60 were novel and 40 were within genes) associated with increasing beneficial grain 

mineral concentration and decreasing concentration of toxic compound such as Cd. The results 

from this research will be valuable for broadening the genetic base of wheat and could assist in 

further understanding of the genetic architecture of traits under biotic and abiotic stresses.  
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PREFACE 

Synthetic hexaploid wheat is made by crossing modern durum wheat and wild goat grass. 

It has been reported to be an efficient and beneficial resource for broadening the genetic base of 

bread wheat. This dissertation was focused on understanding the genetic diversity of unique sets 

of winter synthetic wheat germplasm and unlocking their genomic regions for controlling the 

biotic and abiotic stress resistance and for improving wheat nutritional quality.  
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CHAPTER 1. LITERATURE REVIEW 

 

Introduction  

Wheat is one of the most widely grown cereal crops with the production of more than 756 

million tons in 2017-18 [1] and it feeds more than one-third of the world’s population [2]. Wheat 

grain is a good source of carbohydrate, protein, antioxidants, fiber, and minerals and it supplies 

nearly 20% of the food calories in our diet [2]. Wheat per capita consumption was estimated at 

60.4 and 94.9 kg in 2012-2014 in developing and developed countries, respectively, with an 

average of 67.2 Kg in the world [3]. The world consumption rate of wheat will increase with an 

increase in the world population and prosperity. It is estimated that wheat production should be 

increased by 1.34 and 0.65% in developing and developed countries, respectively, with an 

average increase by 1.09% to feed the world by 2024 [3]. However, wheat yields have plateaued 

over the last 15 years [4] and the wheat productivity is projected to decline up to 8% (up to 25% 

in some tropical regions) due to climate change [5]. To meet the global food demand of 9.6 

billion (estimated) population by 2050 [6], wheat breeders have tremendous challenges to 

increase grain yield and yield stability, improve end-use and nutritional quality characteristics, 

increase resistance to multiple biotic and abiotic stresses, and ultimately increase the rate of 

genetic gain under rapidly changing climate [7].    

 

Evolution of common bread wheat  

Modern bread wheat (Triticum aestivum L.) evolved from a natural hybridization 

between the tetraploid cultivated emmer wheat [T. turgidum L. spp. diccocum (Schrank) Thell.; a 
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progenitor of durum wheat] and the wild diploid goat grass (Ae. taushchii Coss.) about 8,000 

years ago in the Fertile Crescent [8-10] (Figure 1). The cultivated emmer wheat was produced 

during the process of domestication and selection of wild emmer wheat (T. dicoccoides) [11]. 

The wild emmer wheat was evolved from a natural cross between an unknown diploid grass 

species with the closest relative being Ae. speltoides (BB; 2n=2x=14) and a diploid wild grass 

species, T. urartu (AA; 2n=2x=14) [8,11] (Figure 1).  

 

Production of synthetic hexaploid wheat  

Synthetic hexaploid wheat is made by crossing modern durum wheat (T. turgidum L.) 

and wild goat grass (Ae. tauschii Coss.) (Figure 2) [12]. Embryo rescue is performed following 

crossing to save the embryos which have the genomic constitution of ABD genomes [13]. As this 

form is amphiploid, sterile, and unstable, the chromosomes are doubled using colchicine to form 

a stable hexaploid wheat, commonly referred as synthetic hexaploid wheat (Figure 2) [14]. 

Synthetic hexaploid wheat is easily crossable with elite bread wheat cultivars because they have 

similar floral attributes and the same genomic constitution [14]. 

 

Synthetic hexaploid wheat for improving the genetic diversity of bread wheat  

Genetic diversity is the foundation of any crop improvements. Several studies have found 

the genetic diversity of wheat is lower compared to their progenitors [15-17]. The bottleneck for 

wheat genetic diversity relates to the recent origin of bread wheat, around 8,000 years ago [18], 

where few crosses between tetraploid and diploid progenitors were assumed to be involved in the 

production of bread wheat.  Also, most breeding programs rely on a small number of parents in 
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developing germplasm pools which ultimately results in even narrower genetic diversity [19]. 

Such narrow genetic diversity of elite wheat germplasm is a challenge for sustainable wheat 

production with the changing climate and rapidly growing world population.  

However, and while unintended, recurrent selection in wheat improvement also resulted 

in the loss of potentially valuable genetic diversity in creating elite cultivars.  A large amount of 

genetic diversity or favorable alleles for biotic and abiotic stresses resistance, yield and yield-

related traits, and quality traits have been preserved in crop wild relatives [20]. Many plant 

breeders have recovered or improved genetic diversity by crossing their elite lines with landraces 

or wild relatives or through the production of synthetic hexaploid wheat [12,20,21].  

Over the past few decades, synthetic hexaploid wheat has given priority in many breeding 

programs especially in the International Maize and Wheat Improvement Center (CIMMYT) for 

broadening the genetic base of bread wheat [12,15,18,21]. The CIMMYT has developed more 

than 1000 SHWs from crosses of more than 600 Ae. tauschii accessions [12]. The SHWs were 

found to a have a novel source of genetic diversity especially in the D-genome [16,17,21]. 

Several studies have identified the higher genetic diversity of SHWs compared to bread wheat 

cultivars. For example, a study on 101 SHWs using ~36,000 genotyping-by sequencing (GBS)-

derived SNP markers had identified that the genetic diversity of SHW was twice the genetic 

diversity of elite bread wheat cultivars [21]. Similarly, higher genetic diversity in SHWs have 

been reported in past using different markers systems such as amplified fragment length 

polymorphism (AFLP) [16] and short sequence repeat (SSR) markers [17].  Hence, the wide 

range of genetic diversity exists in SHWs that could potentially be utilized in a wheat breeding 

program for bringing both novel alleles that have never been exploited, as well as alleles that 

have been lost during the process of recurrent selection or domestication for mitigating the crop 
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production challenges such as biotic and abiotic stresses under rapidly changing climatic 

conditions. 

 

Synthetic hexaploid wheat as a potential source of biotic and abiotic stresses resistance 

Global climate has been changing rapidly with an estimated global temperature increase 

up to 6.4 oC [22] and it will impose a wide range of constraints on agricultural production and 

productivity especially by increasing several biotic and abiotic stresses. Drought is the most 

important abiotic stress that reduces agricultural production and productivity worldwide [23]. 

Therefore, breeding for drought tolerance is important for wheat improvement. However, bread 

wheat has limited genetic and phenotypic diversity available for breeding for drought tolerance 

[24]. The SHWs are potential sources of new genetic variation for drought tolerance in wheat 

improvement. Several studies on synthetic derived lines (SDLs) indicated that the SDLs 

provided up to 45% yield increase compared to their wheat parents under drought stressed 

conditions [24, 25]. Similarly, SDLs produced up to 30% yield increase compared with parent 

lines and local checks under rainfed conditions [26]. The synthetic derived cultivar named 

Chuanmai-42 developed in China was found to have 35% higher grain yield than the commercial 

check cultivar [27]. Therefore, exploiting SHWs for drought tolerance is needed for the global 

food security.  

Biotic stresses such as diseases and insect-pest infestation are a major constraint to wheat 

production. Therefore, genetic resistance against biotic stress is a major goal in wheat breeding 

program. However, modern wheat cultivars have a limited genetic variation for diseases and 

insect-pest resistance [12] and there is always the possibility of the evolution of new 
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diseases/insect-pest or races to overcome previously identified resistance genes. Therefore, a 

wide range of genetic variation is prerequisite for protecting crop productivity and genetic gain.  

Identification of genetic resistance to multiple diseases and pests is a prerequisite for any 

breeding programs for the sustainable agricultural productivity and production. Therefore, it is 

important to study new genetic resources that have the potential to add genetic variation for 

several biotic and abiotic stresses resistance. This need may be helped by increasing the genetic 

variation of wheat through the utilization of SHWs [12]. The D-genome from wild goat grass 

used in the SHWs have shown have many desirable genes for wheat improvement including 

disease and insect pest resistance [12]. Several studies identified that SHWs are resistance to 

biotic stresses. For example, SHWs were found to have resistance to leaf rust (incited by 

Puccinia triticina) [28, 29,30], stem rust (incited by P. graminis) [29,30], stripe rust (incited by 

P. striiformis) [29,30,31], Fusarium head blight (incited by Fusarium graminearum) [28], yellow 

spot (incited by Pyrenophora tritici-repentis) [29,30], Septoria nodorum (incited by 

Parastagonospora nodorum) [29,30], Septoria tritici blotch (incited by Mycosphaerella 

graminicola) [28,29], cereal cyst nematode (incited by Heterodera avenae) [29], crown rot 

(incited by F. pseudograminearum) [30], root-lesion nematode (incited by Pratylenchus thornei 

and P. neglectus) [29], and Karnal bunt (Tilletia indica) [32]. Additionally, SHWs had multiple 

insect-pest resistance [13,28,30]. Therefore, exploiting genetic variation of SHWs is needed for 

the genetic improvement of wheat under biotic stress. 
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Synthetic hexaploid wheat as a potential source for improving grain protein and mineral 

concentrations  

Grain minerals are required in the human diet for their wellbeing and can be supplied 

through the consumption of a diversified diet. However, people in the developing countries 

mostly depend on wheat and rice (Oryza sativa L.) as a staple crop and suffer from grain mineral 

deficiencies [33]. It has been estimated that over 30 and 60% of the world’s population suffer 

from Zn and Fe deficiencies, respectively [33]. Other minerals deficiencies such as Ca, Cu, and 

Mg have been reported in many developed and developing countries [33,34]. Wheat is one of the 

most consumed cereal crops and the improvement of grain minerals is essential for food and 

nutritional security. However, the modern wheat cultivars have a low concentration of grain 

minerals [35] and found to have a narrow genetic variation compared to its wild relatives [36]. 

The SHW is a potential source of high grain protein [37] and mineral concentrations [38]. 

However, very limited studies have been conducted to evaluate the genetic variation for grain 

protein and mineral concentration in SHWs.   

 

Goals and objectives  

The importance of biotic and abiotic stress resistance of wheat to ensuring food security 

in future climate scenarios is not disputed, and the potential of wide-scale use of genetic 

resources from SHW to accelerate and better focus breeding outcomes is well known. Examples 

include the presence of SHW in the pedigrees of up to 50% of lines in the CIMMYT 

international nurseries and the use of physiological trait-based hybridization strategies to 

incorporate useful genetic variation from genetic resources into elite backgrounds [12,13]. 
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However, the success of SHW utilization in a breeding program could have been much higher if 

they were guided by the knowledge of genes/genomic regions controlling resistance to biotic and 

abiotic stresses and increasing grain quality. Therefore, the main goal of this study was to use 

this rich genetic resource to identify superior primary synthetics possessing resistances to 

diseases and drought and identify the respective genes/genomic regions that can be used for 

marker-assisted transfer of the genes into high-yielding modern elite wheat germplasm. 

Additionally, the second goal was to evaluate the variation within this synthetic wheat 

germplasm for improved grain quality (especially grain protein concentration) and mineral 

concentrations and identify the genes/genomic regions contributing to better end-use and 

nutritional quality. Finally, our goal was to select and utilize the top-ranking genotypes identified 

as an excellent source for multiple traits of interests into an elite winter wheat breeding program 

and incorporate novel genomic regions for multiple-traits in a marker-assisted selection method 

upon validation in an independent population.  

Specific objectives of this study were as follows: 

1. To investigate genetic diversity in unique sets of diverse SHW accessions using GBS-

derived SNPs, decipher the presence of population structure in SHW collection, and 

compare genetic diversity among SHWs and elite wheat cultivars to determine the 

prospects of broadening the genetic base of bread wheat using SHW. 

2. To identify novel genomic regions associated with grain yield and yield-related traits and 

identify the underlying genes for the significant genomic regions identified under drought 

stressed condition and investigate their potential role for drought tolerance using 

functional annotations. 
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3. To identify common bunt resistance genotypes and genomic regions associated with 

common bunt resistance and further investigate the significant SNPs present within genes 

using the functional annotations of the underlying genes. 

4. To explore the genetic variation for grain protein and mineral concentrations, identify 

marker-trait associations for increasing grain mineral concentrations and investigate 

potential candidate genes associated with grain mineral concentration using functional 

annotation.   
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FIGURES 

 

Figure 1. Bread wheat evolution 
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Figure 2. Production of synthetic hexaploid wheat  
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CHAPTER 2. UNLOCKING THE NOVEL GENETIC DIVERSITY AND POPULATION 

STRUCTURE OF SYNTHETIC HEXAPLOID WHEAT 

This chapter is published: Bhatta M., Morgounov A., Belamkar V., Poland J., Baenziger P.S., BMC Genomics 
19:591 (2018). https://doi.org/10.1186/s12864-018-4969-2 

ABSTRACT 

Background: Synthetic hexaploid wheat (SHW) is a reconstitution of hexaploid wheat from its 

progenitors (Triticum turgidum ssp. durum L.; AABB x Aegilops tauschii Coss.; DD) and has novel 

sources of genetic diversity for broadening the genetic base of elite bread wheat (BW) germplasm (T. 

aestivum L). Understanding the diversity and population structure of SHWs will facilitate their use in 

wheat breeding programs. Our objectives were to understand the genetic diversity and population 

structure of SHWs and compare the genetic diversity of SHWs with elite BW cultivars and demonstrate 

the potential of SHWs to broaden the genetic base of modern wheat germplasm.  

Results: The genotyping-by-sequencing of SHW provided 35,939 high-quality single nucleotide 

polymorphisms (SNPs) that were distributed across the A (33%), B (36%), and D (31%) genomes. The 

percentage of SNPs on the D genome was nearly same as the other two genomes, unlike in BW cultivars 

where the D genome polymorphism is generally much lower than the A and B genomes. This indicates 

the presence of high variation in the D genome in the SHWs. The D genome gene diversity of SHWs was 

88.2% higher than that found in a sample of elite BW cultivars. Population structure analysis revealed that 

SHWs could be separated into two subgroups, mainly differentiated by geographical location of durum 

parents and growth habit of the crop (spring and winter type). Further population structure analysis of 

durum and Ae. parents separately identified two subgroups, mainly based on type of parents used. 

Although Ae. tauschii parents were divided into two sub-species: Ae. tauschii ssp. tauschii and ssp. 

strangulate, they were not clearly distinguished in the diversity analysis outcome. Population 

differentiation between SHWs (Spring_SHW and Winter_SHW) samples using analysis of molecular 

variance indicated 17.43% of genetic variance between populations and the remainder within populations. 
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Conclusions: SHWs were diverse and had a clearly distinguished population structure identified 

through GBS-derived SNPs. The results of this study will provide valuable information for wheat genetic 

improvement through inclusion of novel genetic variation and is a prerequisite for association mapping 

and genomic selection to unravel economically important marker-trait associations and for cultivar 

development. 

Keywords: Aegilops tauschii, D-genome diversity, genotype-by-sequencing, single nucleotide 

polymorphism, Triticum turgidum, bread wheat 

 

INTRODUCTION 

Hexaploid (bread) wheat (Triticum aestivum L.) feeds more than one third of the world’s 

population and is one of the most important staple crops in the world [1]. Bread wheat (BW) evolved 

from a natural hybridization of the tetraploid cultivated emmer wheat T. turgidum L. ssp. dicoccon 

(Schrank) Thell. (2n=28; AABB, a progenitor of modern durum wheat) with the wild diploid Aegilops 

tauschii Coss. (2n=14; DD, goat grass) about 8,000 years ago in the Fertile Crescent [2,3]. Generation of 

hexaploid wheat from a few accessions of Ae. tauschii followed by limited gene flow from Ae. tauschii to 

hexaploid wheat led to limited D-genome diversity [4]. Intercrosses of existing elite wheat germplasm in 

each breeding cycle and selection has further narrowed the genetic diversity by the depletion of a few 

alleles from a more diverse gene pool [4]. Such narrow genetic diversity of elite wheat germplasm is a 

challenge for sustainable wheat production, which is needed for a rapidly growing world population with 

the predicted dramatic climate changes and other emerging abiotic and biotic stresses.  

One approach for broadening the genetic base of BW is utilizing genes from cultivated tetraploid 

wheat (T. turgidum) and from wild relatives (Ae. tauschii) through synthetic hexaploid wheat (SHW) 

production [5–8]. The SHW, often designated as primary synthetic wheat, is a recreation of wheat by 

crossing between modern durum wheat and wild goat grass. The SHWs provide a rich source of novel 
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genetic diversity [5–8] and often confer resistance to biotic [9] and abiotic stresses [8,10,11]. The D-

genome from SHW is reported to have higher nucleotide sequence diversity than the D-genome from BW 

[12]. The lack of sequence diversity in the D-genome of BW can be noted from the number of SNPs 

identified in the A or B genome which usually ranges from two [13,14] to five- [15,16] times higher than 

SNPs identified in the D genome. Furthermore, Ae. tauschii has many desirable genes/alleles for biotic 

and abiotic stress resistance for wheat improvement [8]. Hence, wheat genome diversity, especially the D-

genome diversity, in BW could be improved by crossing to SHW [7]. Introgression of desirable alleles for 

biotic/abiotic stress resistance and improved end-use quality from wild relatives into elite wheat 

germplasm is a major objective in many pre-breeding and germplasm development programs [8,10].  

Genetic diversity analysis using amplified fragment length polymorphism (AFLP) [5,10] and 

short sequence repeat (SSR) [5,6,10] have been reported in SHW, however, genetic diversity and 

population structure analysis of SHWs using single nucleotide polymorphisms (SNPs) are largely 

unknown. Also, the SHWs used in this study have not been used previously for genetic studies [11]. 

Therefore, the objectives of this study were to (i) investigate genetic diversity in unique sets of diverse 

SHW accessions (101) using SNPs derived from genotyping-by-sequencing (GBS) platform, (ii) decipher 

the presence of population structure in SHW collection, and (iii) compare genetic diversity among SHWs 

and 12 elite wheat cultivars (comprising 10 cultivars from Lincoln, Nebraska and two from Turkey) to 

determine the prospects of broadening the genetic base of BW using SHW. Understanding the genetic 

diversity and population structure of SHWs will help in effectively using these novel genetic resources in 

breeding programs to broaden the genetic base of wheat, identify novel genes/genomic regions associated 

with multiple stresses and useful traits, and utilizing such regions/genes in marker assisted breeding.  
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METHODS 

Plant Material  

Initially, 139 SHWs were analyzed for genetic diversity and population structure (APPENDIX I). 

However, we found 38 of the entries showed misclassification of durum and Ae. parents. Therefore, 38 

lines were removed from the analysis and remaining 101 entries were used for the genetic diversity and 

population structure analysis. Out of 101 SHWs, 15 of them (spring type) originated from one spring 

durum (Langdon) parent crossed with 15 different Ae. tauschii accessions from China, Iran, Kyrgyzstan, 

Jammu and Kashmir, and Turkmenistan developed by Kyoto University, Japan. The remaining (86) SHW 

(winter type) originated from the six winter durum parents from Ukraine and Romania (AISBERG, 

LEUC 84693, PANDUR, UKR-OD 1530.94, UKR-OD 761.93, and UKR-OD 952.92) crossed with 10 

different Ae. tauschii accessions from Azerbaijan, Iran, Russia, and Unknown; and they were developed 

by International Maize and Wheat Improvement Center (CIMMYT) from 2004-2013 [11]. Originally, 12 

crosses among six durums and 11 Ae. tauschii accessions were involved in the creation of 12-winter type 

SHWs (APPENDIX II). In the early generation of these crosses, due to the segregation, partial sterility 

and outcrossing, and continuous selection [11], 79 entries were selected as unique lines as they differed 

phenotypically [11] and on their kinship relationship values.  Furthermore, we found seven entries (F8 

generation) still segregating (possibly due to outcrossing) for spike color and awn characters in the field 

experiment conducted in 2016 in Konya, Turkey (APPENDIX I), which were selected as new lines and 

finally resulted in 86 winter SHWs. The SHWs under study have not been well characterized for genetic 

studies [11] as might be expected with the continued segregation in the lines. The previously known 

information of these SHWs were provided in Morgounov et al. [11], who documented that the lines had 

useful genetic variation for multiple diseases resistance including rust resistance (leaf [incited by Puccinia 

triticina] , stripe [incited by P. striiformis], and stem rust [incited by P. graminis]), common bunt (Tilletia 

tritici and T. laevis) resistance, barley yellow dwarf virus resistance and resistance to soil-borne 

pathogens (cereal cyst nematode [incited by Heterodera avenae] and crown rot [incited by Fusarium 
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pseudograminearum]), and pest resistance including Hessian fly (Mayetiola destructor), sunny pest 

(Eurygaster integriceps), and Russian wheat aphid (Diuraphi noxia) resistance. Therefore, these SHWs 

under study are highly valuable lines for breeding purpose. These SHWs are maintained by the 

International Winter Wheat Improvement Program (IWWIP) at CIMMYT, Turkey [11]. For genetic 

diversity comparisons between SHWs and wheat cultivars, 10 elite BW cultivars (‘Camelot’, ‘Cheyenne’, 

‘Freeman’, ‘Goodstreak’, ‘Harry’, ‘Overland’, ‘Panhandle’, ‘Robidoux’, ‘Ruth’, and ‘Wesley’) from 

Lincoln, Nebraska, USA and two BW cultivars (‘Gerek’ and ‘Karahan’) from Turkey were used.  

 

Genotyping and SNP Discovery  

Genomic DNA was extracted from fresh young leaves (approx. 14 days after sowing) using 

BioSprint® 96 Plant Kit (QIAGEN). The GBS libraries were constructed in 96-plex following digestion 

with the restriction enzymes PstI and MspI [17] at Wheat Genetics Resource Center at Kansas State 

University (Manhattan, KS). SNP calling was performed using TASSEL v. 5.2.40 GBS v2 Pipeline [18] 

with physical alignment to wheat reference genome sequence made available by the International Wheat 

Genome Sequencing Consortium (IWGSC, RefSeq V1.0) in 2017. The SNPs with MAF less than 5% and 

missing data more than 20% were removed from the analysis. All lines had more than 80 % SNPs called 

and none were excluded from the analysis. Similarly, for comparing the genetic diversity between SHWs 

and BW cultivars and analyses specific to the AB or D genomes, GBS derived SNPs were filtered with 

the same criteria as SHW for genetic diversity analysis. 

 

Genetic Diversity and Population Structure Analysis  

Basic genetic diversity summary statistics including: effective number of alleles, observed 

heterozygosity, heterozygosity within population (gene diversity), standardized measure of population 

differentiation (F’ST) using AMOVA [19], Nei’s standard genetic distance [20], and Jost’s index of 

population differentiation (Jost’s D) [21], were calculated for SHWs using GenoDive v 2.0b27 program 
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[22]. The details of genetic diversity parameters are provided in GenodDive [22].  Average pairwise 

divergence or observed nucleotide diversity (π), expected nucleotide diversity or estimated mutation rate 

(θ) [23], and Tajima’s D [24] were calculated in TASSEL v. 5.2.40 [25]. Evolutionary relationship among 

SHWs were determined by neighbor joining hierarchical cluster analysis based on genetic similarity in 

TASSEL [25] and a dendogram was constructed in FigTree V1.4.3 [26].  Analysis of molecular variance 

was calculated for estimating components of genetic variance among and within population using 

Arlequin v. 3.5.2.2 [27].  

Population structure was inferred using Bayesian clustering algorithm in the program 

STRUCTURE v 2.3.4 [28] from the command line python program StrAuto [29] and principal coordinate 

analysis (PCoA) calculated using distance matrix  from TASSEL [25]. For identifying the optimal 

numbers of subpopulations in STRUCTURE and fixation index (FST) of subpopulation, the genotypes 

were treated as an admixture population with the allele frequencies correlated model with a total of 

100,000 burn-in periods followed by 100,000 Markov chain-Monte Carlo iterations for (hypothetical 

subpopulations) K = 1 to 10 with five independent runs for each K. The structure output was visualized 

using StructureHarvester [30] and the number of subpopulations were determined from delta K model 

[31]. Kinship relationship matrix was calculated from centered identity by descent method [32] 

implemented in TASSEL v. 5.2.40 [25]. 

 

RESULTS 

To put these results in perspective, there were seven durum wheat parents and 25 different Ae. 

parents for a total of 101 SWHs. Once the cross is made and the chromosomes are doubled, it would be 

expected that the SWH should be homozygous. However, our phenotypic data and marker data suggested 

that heterozygous parents, outcrossing, mechanical mixtures, or misclassification occurred (APPENDIX 

I). This prompted exclusion of 38 lines and the remaining 101 lines were used subsequently in this study. 
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The GBS derived SNPs were well distributed across the 21 chromosomes in 101 SHWs (Figure 

1). The total number of putative SNPs called from 101 SHWs were 129,115. After filtering, 35,939 SNP 

markers were used for genetic diversity and population structure analysis. The B genome had the highest 

number of SNPs (12,705, ~36%), followed by the A genome (11,325, ~33%), and the D genome (10,913, 

~31%). There were 996 SNPs located in scaffolds that are not anchored to any of the chromosomes. The 

number of SNPs per chromosome ranged from 733 (4D) to 2,288 (2B) with an average of 1,664 (Figure 

1). The ratio of number of B to A genome SNPs was 1.12, the B to D genome was 1.16, and the A to D 

genome was 1.04. These ratios indicate the number of SNPs on the D genome were nearly equal to SNPs 

on the A genome and only slightly lower than SNPs on the B genome.  

Summary statistics of various genetic diversity estimates for each genome of SHWs had similar 

values (Table 1). The average effective number of alleles per locus was 1.54. Observed nucleotide 

diversity or average pairwise divergence (π bp-1) and gene diversity (Hs) of the SHW genomes were 

similar and ranged from 0.31 (D genome) to 0.34 (B genome) with an average of 0.33. Expected 

nucleotide diversity or expected number of polymorphic sites (θ bp-1) and observed heterozygosity (Ho) in 

SHWs were similar with an average observed heterozygosity of 0.19. Tajima’s D ranged from 2.04 (D 

genome) to 2.40 (B genome) with an average of 2.26. Tajima’s D [24] test for selection showed D =2.26, 

that means these genotypes showed significant deviation from the neutral expectation (D=0) and rare 

alleles were present at low frequencies.  

 

Population Structure  

The population structure of 101 SHW was first analyzed on the basis of the ABD genome to 

study them using all of their genetic diversity. Then the 101 SHWs were analyzed on the basis of the AB 

and the D genome separately to study genetic diversity of durum and Ae. parents, respectively. 
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Population structure of the ABD genome (synthetic hexaploid wheat) 
The 101 SHWs showed clear evidence of population structure. Delta K values obtained from the 

STRUCTURE (Bayesian clustering algorithm) output were used to classify subpopulation. The largest 

delta K was observed at K=2 (Figure 2A), suggesting the presence of two subpopulations (Figure 2B). 

The first group contains 15 spring SHWs (syn. SHW developed from Japan), designated as 

‘Spring_SHW’ and second group contains 86 winter SHWs (syn. SHWs developed by CIMMYT), 

designated as ‘Winter_SHW’. In Spring_SHW, all SHWs (15) had the same durum parent ‘Langdon’ 

developed in North Dakota, USA. In Winter_SHW, 23 out of 86 SHWs have a durum parent PANDUR 

developed at Fundulea, Romania and remaining 63 SHWs had durum parents (AISBERG, 

LECUC.84693, UKR-OD.761.93, UKR-OD.952.92, and UKR-OD.1530.94) developed from Odessa, 

Ukraine. The growth habit of lines in Spring_SHW were spring type, whereas lines Winter_SHW were 

winter types. 

When comparing the grouping obtained from Bayesian clustering in the neighbor joining cluster 

(Figure 2C) and principal coordinate analysis (PCoA) (Figure 2D), SHWs were again divided into two 

subgroups (Spring_SHW and Winter_SHW) similar to that of Bayesian clustering (Figure 2B).  

The population structure of SHWs were mainly grouped based on the geographical location of 

durum parents and growth habit of the crop. Therefore, the population structure using durum and Ae. 

tauschii were studied separately to further understand how durum or Aegilops parents were grouped.  

 

Population structure using the AB genome (Durum parents) 
When looking at grouping based on the AB genome (durum parent) of SHWs, two groups were 

obtained from Bayesian clustering (Figures 3A and 3B). The first group contains 15 entries designated as 

‘Spring_Durum’ and second group contains 86 entries, designated as ‘Winter_Durum’. In Spring_Durum, 

all entries (15) have a Langdon durum from North Dakota, USA as a parent. In Winter_Durum, 23 out of 

86 entries have a durum parent from Romania called PANDUR and remaining 63 entries have a parent 
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from Odessa, Ukraine (AISBERG, LECUC.84693, UKR-OD.761.93, UKR-OD.952.92, and UKR-

OD.1530.94). Two subgroups were also classified from the neighbor joining cluster analysis (Figure 3C) 

and PCoA (Figure 3D), and matched the results obtained from Bayesian clustering algorithm (Figure 2B). 

 

Population structure using the D genome (Aegilops parents) 
When looking at grouping based on the D genome (diploid parent, Ae. tauschii) of SHWs, two 

groups were obtained from Bayesian clustering (Figures 4A and 4B). The first group contains 15 entries 

designated as ‘Aegilops1’ and second group contains 86 entries, designated as ‘Aegilops2’. In Aegilops1, 

8 out of 15 entries were Ae. tauschii ssp. strangulata and remaining were Ae. tauschii ssp. tauschii (2) 

and unknown (5). In Aegilops2, 65 out of 86 entries were Ae. tauschii ssp. tauschii and remaining were 

Ae. tauschii ssp. strangulata (9) and unknown (12). Two subgroups were also classified from the 

neighbor joining cluster analysis (Figure 4C) and PCoA (Figure 4D), and matched the results obtained 

from Bayesian clustering algorithm (Figure 2B).  

 

Genetic Diversity between the Two Synthetic Hexaploid Wheat Groups 

The effective number of alleles across SHW groups ranged from 1.31 to 1.51 (Table 2). Observed 

heterozygosity (Ho) for the two subgroups identified in Bayesian clustering were similar whereas gene 

diversity (HS) was lower for Spring_SHW (0.18) group compared to Winter_SHW (0.31) group. The FST 

(F statistic) obtained from Bayesian clustering measures the divergence and heterogeneity within 

predefined subgroups and is obtained by estimating the correlation of alleles within the same subgroup 

[33]. Mean FST values were about 66% in Spring_SHW and 13 % in Winter_SHW, which indicates 

population differentiation among genotypes in Winter_SHW was lower than Spring_SHW (Table 2). The 

population differentiation being lower in Winter_SHW indicates the lines are more similar in this 

subgroup as compared to lines within Spring_SHW.  
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The effective number of alleles across durum subgroups ranged from 1.22 to 1.54 and Ae. 

subgroups ranged from 1.47 to 1.49 (Table 2). Observed heterozygosity within two subgroups of durum 

and within two subgroups of Ae. were similar. Gene diversity of durum subgroups ranged from 0.13 

(Spring_Durum) to 0.32 (Winter_Durum) and Ae. subgroups (Aegilops1 and Aegilops2) was 0.30. 

Pairwise population differentiation was obtained from [34] standardized measure of population 

differentiation (F'ST) estimated using an analysis of molecular variance (AMOVA) [19] and this is used 

for comparison between organisms with different effective population sizes [34], Jost’s D [21] as an index 

of population differentiation that is independent of the amount of within population diversity (Hs) 

computed, and Nei’s D [20] as the standard genetic distance was computed from GenoDive (Table 3). 

Standardized population differentiation (F'ST) between Spring_SHW and Winter_SHW was 0.34, 

Spring_Durum and Winter_Durum was 0.39, and Aegilops1 and Aegilops2 was 0.22 (Table 3). Similarly, 

Jost’s D (index of population differentiation) between Spring_SHW and Winter_SHW was 0.17, 

Spring_Durum and Witner_Durum was 0.20, and Aegilops1 and Aegilops2 was 0.11 (Table 3). The Nei’s 

D (standard genetic distance) between Spring_SHW and Winter_SHW was 0.19, Spring_Durum and 

Winter_Durum was 0.22, and Aegilops1 and Aegilops2 was 0.12 (Table 3).  

Population differentiation between SHWs (Spring_SHW and Winter_SHW) subgroups using analysis of 

molecular variance (AMOVA) found that 17.43% of the total genetic variance was explained by the 

differences between subgroups and 82.57% due to the variation within subgroups (Table 4).  

 

Genetic Diversity of Synthetic Hexaploid Wheat and Bread Wheat Cultivars 

For comparing the genetic diversity between SHW and BW, 34,887 high quality SNPs available 

after quality filtering were used for genetic diversity analysis. The effective number of alleles (Eff-num) 

was slightly lower for BW (1.26 to 1.38) compared to SHW (1.51 to 1.55) for all genomes (Table 5). The 

observed heterozygosity of BW (HO= 0.17 to 0.18) was slightly lower compared to SHW (HO= 0.19 to 

0.20) for all genomes. The gene diversity was significantly lower for the BW cultivars (HS= 0.17 to 0.25) 
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compared to SHWs (HS= 0.32 to 0.33) for all genomes. Percentage of SHW gene diversity was larger 

than BW and ranged from 32.0% (B genome) to 88.2% (D genome) higher than that found in BW 

cultivars. The overall three-genome and the unanchored scaffold (ABD+unmapped) gene diversity of 

SHW (0.33) was 50.0% larger than that found in the BW cultivars (0.22).  

 

DISCUSSION 

Population Structure 

The potential use of SHWs in genetic improvement of wheat for biotic and abiotic stresses 

resistance has been given a priority in many wheat breeding programs [7,8,10,11,35]. This study was 

designed to provide useful information regarding genetic diversity and population structure of SHWs that 

could potentially broaden the genetic base of BW germplasm as well help in GWAS to unravel unknown 

genomic regions or genes associated with economically important multiple traits.  

In the present study, ~36,000 GBS derived high quality SNPs obtained from 101 SHWs were 

used. This study also demonstrates the usefulness of GBS derived SNPs markers for assessing the genetic 

diversity and population structure. The number of SNPs located on the A, B, and D genome in this study 

was in agreement with previous studies, where the B genome had the highest number of SNPs, followed 

by the A and D genome [13,17]. Interestingly, in the present study, the number of SNPs on the D genome 

was similar to the number of SNPs on the A and B genomes. Generally, in previous studies, the number 

of SNPs in A or B genome is two [13,14] to five [15,16] times higher than in the D genome.  This 

indicates that the SHWs have higher D genome sequence diversity than other sources. Greater sequence 

diversity (SNPs) of the D genome in SHWs may support the concept that the D genome has novel genetic 

variations and desirable genes [8] that can be utilized in elite wheat breeding program for broadening the 

genetic base. Broadening the genetic base may increase the rate of genetic gain, reduce the D-genome 
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bottleneck, and help protect wheat from adverse effects of climate change due to currently limited genetic 

variation for key traits.   

Two subgroups obtained from Bayesian clustering algorithm, neighbor joining cluster analysis, 

and PCoA were mainly divided based on the geographical location of the tetraploid (durum) parents 

(Romanian and Ukrainian durum in Winter_SHW group and USA durum in Spring_SHW group) rather 

than Ae. (diploid) parents. This result agreed with the results of Lage et al. [5], where SHW grouped 

together based on the geographical origin and presumed similar pedigrees of tetraploid parents. In SHW, 

two-thirds of the SHWs genome comes from tetraploid wheat (AABB) and one-third of the SHW genome 

comes from diploid parent (DD).  Also, there were fewer durum parents (less diversity compared to Ae. 

tauschii) used in the SHW production which is the likely reason that SHW grouped together based on 

geographical location of tetraploid parent and growth habit of the crop.  

Further population structure analysis was performed using Bayesian clustering algorithm for 

durum and Ae. parents separately to understand how they clustered. Durum parents were divided into two 

subgroups mainly based on the type/pedigree of durum parents used and its origin. When comparing two 

subgroups of durum parents to two subgroups of SHWs, all entries of Spring_Durum were in 

Spring_SHW and all entries of Winter_Durum were in Winter_SHW. Similarly, the Ae. parents also 

clustered into two subgroups. When comparing two subgroups of Aegilops parents to two subgroups of 

SHWs, all entries of Aegilops1 were in Spring_SHW and all entries of Aegilops2 were in Winter_SHW. 

Most of the entries of Aegilops1 were Ae. tauschii ssp. strangulata and most of the entries of Aegilops2 

were Ae. tauschii ssp. tauschii. However, there was no distinct clustering based on the area of origin and 

type of the Ae. taushii ssp. Similar results were obtained in the past [28,30]. For instance, in the study of a 

diversity panel of 322 Ae. taushii, Ae. tauschii were divided into four subgroups and the same Ae. tauschii 

ssp. or from the same area of origin were not clustered together (i.e., Ae. tauschii ssp. tauschii and ssp. 

strangulata did not separate entirely into separate clusters) [36]. This result may be potentially attributed 

to the event of migration leading to a decrease in genetic differentiation among subspecies [37] or wrong 
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pedigree/classification information at the time of Ae. tauschii collections.  However, in a different study 

of 477 Ae. tauschii accessions, Ae. tauschii were divided into two lineages (Ae. tauschii ssp. tauschii and 

ssp. strangulata) having little genetic overlap in the clusters [37].  

 

Genetic Diversity  

Analysis of molecular variation suggested that the population differentiation exists in two 

subgroups obtained from Bayesian clustering algorithm, where most of the variation was accounted by 

within population variance. Gene diversity (HS) for each subgroup showed that genetic variation in SHWs 

ranged from 0.18 (Spring_SHW) to 0.31 (Winter_SHW) with an overall gene diversity of 101 SHWs was 

0.33. In Spring_SHW group, only one durum parent was used with different accessions of Ae. tauschii 

parents indicating that genetic variation observed within Spring_SHW was largely due to Ae. tauschii 

parents (D-genome diversity). Furthermore, the D genome gene diversity within 101 SHWs was 0.31 and 

genetic diversity of diploid parents (Ae. tauschii) from SHWs would expected to be very diverse and 

novel. The SHWs had a significantly higher level of gene diversity (HS= 0.32 to 0.33) compared to elite 

BW cultivars (HS= 0.17 to 0.25) in the present study. Similarly, higher gene diversity in SHWs have been 

reported in the past using AFLP [5] and SSR markers [6,10,38], indicating the usefulness of SHWs in 

introducing novel sources of genetic diversity into elite BW germplasm. For instance, gene diversity in 54 

SHWs using AFLP marker was 0.39 [5]. Mean genetic diversity in SHWs using SSR markers reported in 

past were 0.5 [6], 0.61 [38], and 0.69 [10]. In general, the gene diversity of SNP makers is low due to its 

bi-allelic nature whereas SSR markers are high due to its multi-allelic nature. The gene diversity of SHWs 

using SNP makers in the past were lower than the present study. For instance, lower genetic diversity in 

SHWs compared to the present study was reported by Zegeye et al. [9], who evaluated 181 SHWs using 

2,590 SNP markers and found the genetic diversity ranged from 0.24 (B genome) to 0.26 (D genome). 

The gene diversity of BW cultivars (10 cultivars from Nebraska, USA and two cultivars from 

Turkey) in our study ranged from 0.17 to 0.25. Similar results were obtained in a study of a diversity 
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panel of 369 Iranian hexaploid wheat accessions. The gene diversity using SNP markers in Iranian wheat 

landraces and cultivars ranged from 0.14 to 0.20 [13]. The genetic diversity using GBS derived 20,526 

SNPs in 8,416 Mexican wheat landraces ranged from 0.06 to 0.26 [39]. The set of SHWs in our study had 

greater genetic diversity and was reported to have a multiple resistance to biotic and abiotic stresses [11]. 

This result suggests that the SHWs under study may provide a novel source of genetic diversity (novel 

alleles for a trait of interest) to the elite wheat breeding program.   

 

CONCLUSIONS  

The present study provided a detailed understanding of genetic diversity and population structure 

of 101 SHWs and revealed high genetic diversity in the SHW compared to elite BW cultivars. Population 

structure analysis revealed that SHWs developed from diverse accessions of durum wheat and Ae. 

tauschii originated from different countries were divided into two (Spring_SHW and Winter_SHW) 

distinct groups based mainly on geographical location of durum parents and growth habit of the crop. 

Further population structure analysis of durum and Ae. parents separately identified two subgroups, 

mainly based on type/pedigree or origin of parents used. Although Ae. tauschii parents were divided into 

two groups mainly based on type of parent used, Ae. tauschii ssp. tauschii and ssp. strangulata did not 

separate entirely in each subgroup. The GBS derived SNPs were able to identify the inaccurate pedigree 

of synthetic hexaploid wheats based on misclassifications of some of the durum or Ae. parents from 

analyzing 139 SHWs and such misclassifications may have resulted due to heterozygous or 

heterogeneous parent lines, partial sterility and outcrossing, or seed handling error/mechanical mixing.  

This study found that the percentage of SNPs on the D genome was nearly equal to that of other two 

genomes (A and B), which is unique to the SHWs as compared to previous studies on BW that reported 

that the D genome had less than 50% of the SNPs compared to A and B genomes. This result indicated 

the presence of high variation in the D genome in the SHWs. Furthermore, the gene diversity of SHWs 
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under study was higher in all three genomes compared to elite BW cultivars and the greatest increase in 

gene diversity (88.2%) was observed in the D genome of SHWs compared to BW cultivars. Such higher 

genetic diversity in SHWs suggests that the diversity could be utilized in the elite wheat-breeding 

program to broaden the genetic diversity and increase genetic gain. The markers with high genome 

coverage such as GBS derived SNP markers are helpful for elucidating the population structure and 

genetic diversity. The results of this study will provide valuable information for wheat genetic 

improvement through inclusion of novel genetic variation and facilitate the discovery of novel source of 

genes/genomic regions conferring resistance to multiple biotic and abiotic stresses from association 

mapping study to unravel economically important marker-trait associations.  
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TABLES 

Table 1. Distribution of SNP markers and genetic diversity summary statistics of 101 synthetic hexaploid 

wheats including observed nucleotide diversity (π bp-1), expected nucleotide diversity (θ bp-1), Tajima’s 

D, effective number of alleles (Eff-num), observed heterozygosity (HO), and gene diversity (HS). 

Genome No. of SNPs π bp-1 θ bp-1 Tajima's D Eff_Num Ho HS 

A 11325 0.33 0.20 2.34 1.55 0.19 0.33 

B 12705 0.34 0.20 2.40 1.56 0.18 0.34 

D  10913 0.32 0.20 2.04 1.51 0.19 0.31 

AB 24030 0.33 0.20 2.38 1.55 0.19 0.33 

ABD+Unmapped 35939 0.33 0.20 2.27 1.54 0.19 0.33 
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Table 2. Population genetic diversity summary statistics of two subgroups in 101 synthetic hexaploid 

wheats (SHWs), Durum wheat, and Aegilops tauschii (Aegilops) obtained from GenoDive including 

effective number of alleles (Eff-num), observed heterozygosity (HO), and gene diversity (HS), and Mean 

FST obtained from STRUCTURE. 

Group 
Subgroup Number of genotypes Eff_num HO HS 

Mean 
FST 

Synthetic Hexaploid Wheat (ABD)     

 Spring_SHW 15 1.31 0.18 0.18 0.66 

 Winter_SHW 86 1.51 0.19 0.31 0.13 

Durum wheat (AB)      

 Spring_Durum 15 1.22 0.17 0.13 0.79 

 Winter_Durum 86 1.54 0.19 0.32 0.10 

Aegilops tauschii (D)      

 Aegilops1 15 1.49 0.20 0.30 0.30 

 Aegilops2 86 1.47 0.19 0.30 0.27 
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Table 3. A standardized measure of population differentiation (F'ST), Jost’s D as an index of population 

differentiation, and Nei’s D as the standard genetic distance in two subgroups in 101 synthetic hexaploid 

wheats (SHWs) was computed in GenoDive. 

Population F'ST Jost's D Nei's D 

Spring_SHW and Winter_SHW 0.34 0.17 0.19 

Spring_Durum and Winter_Durum 0.39 0.20 0.22 

Aegilops1 and Aegilops2 0.22 0.11 0.12 
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Table 4. Analysis of molecular variance (AMOVA) within and between the two subgroups of 101 

synthetic hexaploid wheats identified by the Bayesian clustering.   

Source d.f. Sum of squares Mean squares 
Estimated 
variation 

Percentage of 
variation (%) 

Between 
Populations 1 60448.12 60448.12 560.03 17.43 

Within 
populations 99 319345.46 3225.71 2652.08 82.57 

Total 100 379793.58 -  3212.11   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



40  

Table 5. Population genetic diversity summary statistics of 101 synthetic hexaploid wheats (SHWs) and 12 

bread wheat cultivars obtained from GenoDive.  

Genome Population 
No. of. 
Genotypes 

SNPs 
used Eff_numa Hob Hsc 

Gene diversity of SHW increased 
compared to BW (%) 

A 
  

11297 
    

 

Synthetic 
Hexaploid wheat 101 

 
1.54 0.19 0.33 37.5 

 
Bread Wheat 12 

 
1.38 0.17 0.24 

 
B 

  
11297 

    

 

Synthetic 
Hexaploid wheat 101 

 
1.54 0.19 0.33 32.0 

 
Bread Wheat 12 

 
1.38 0.18 0.25 

 
D 

  
10008 

    

 

Synthetic 
Hexaploid wheat 101 

 
1.51 0.20 0.32 88.2 

 
Bread Wheat 12 

 
1.26 0.17 0.17 

 
AB 

  
23930 

    

 

Synthetic 
Hexaploid wheat 101 

 
1.55 0.19 0.33 32.0 

 
Bread Wheat 12 

 
1.38 0.17 0.25 

 
ABD 

  
33938 

    

 

Synthetic 
Hexaploid wheat 101 

 
1.54 0.19 0.33 50.0 

 
Bread Wheat 12 

 
1.35 0.17 0.22 

 
ABD+unmapped 

  
34887 

    

 

Synthetic 
Hexaploid wheat 101 

 
1.54 0.19 0.33 50.0 

  Bread Wheat 12   1.35 0.17 0.22   

aEff-num: effective number of alleles, bHO: observed heterozygosity, and cHS: gene diversity  

 

 

 

 

 

 

 

 



41  

FIGURES 

 

Figure 1. Distribution of 35,939 single nucleotide polymorphisms (SNPs) across 21 chromosomes and 

unanchored scaffolds in 101 synthetic hexaploid wheats. 
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Figure 2. Population structure of the 101 synthetic hexaploid wheat germplasm. A: Line graph of  delta K over K 

from 1 to 10, and the highest peak was observed at Delta K=2, suggesting the synthetic hexaploid wheat (SHW) 

germplasm has two subgroups. B: The two subgroups identified from the STRUCTURE and grouped based on the 

geographical location of the durum parents and growth habit of the crop. C: Cluster analysis (neighbor joining) and 

D: Principal coordinate analysis (PCoA). Color reflects grouping derived from STRUCTURE. 
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Figure 3. Popualtion structure of the durum parents used in the production of synthetic hexaploid wheat (SHW) 

germplasm. A: Line graph of delta K over K from 1 to 10, and the highest peak was observed at Delta K=2, 

suggesting the durum wheat used in this study has two subgroups. B: The two subgroups were identified from the 

STRUCTURE and grouped based on the geographical location of the durum parents and growth habit of the crop. C: 

Cluster analysis (neighbor joining) and D: Principal coordinate analysis (PCoA). Color reflects grouping derived 

from STRUCTURE. 
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Figure 4. Population structure of the Aegilops parents used in the production of synthetic hexaploid wheat. A: Line 

graph of delta K over K from 1 to 10, and the highest peak was observed at Delta K=2, suggesting the Aegilops used 

in this study has two subgroups. B: The two subgroups were identified from the STRUCTURE and grouped based 

on the type of Aegilops parents used. C: Cluster analysis (neighbor joining) and D: Principal coordinate analysis 

(PCoA). Color reflects grouping derived from STRUCTURE. 
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CHAPTER 3. GENOME-WIDE ASSOCIATION STUDY REVEALS NOVEL GENOMIC 

REGIONS FOR GRAIN YIELD AND YIELD-RELATED TRAITS IN DROUGHT-STRESSED 

SYNTHETIC HEXAPLOID WHEAT 

This chapter is published: Bhatta M., Morgounov A., Belamkar V., Baenziger P.S. International Journal of 
Molecular Sciences 19:3011 (2018). https://doi.org/10.3390/ijms19103011 

 

ABSTRACT 

Synthetic hexaploid wheat (SHW; 2n=6x=42, AABBDD, Triticum aestivum L.) is 

produced from an interspecific cross between durum wheat (2n=4x=28, AABB, T. turgidum L.) 

and goat grass (2n=2x=14, DD, Aegilops tauschii Coss.) and is reported to have significant novel 

alleles controlling biotic and abiotic stresses resistance. A genome-wide association study 

(GWAS) was conducted to unravel these loci [marker-trait associations: MTAs] using 35,648 

genotyping-by-sequencing derived single nucleotide polymorphisms in 123 SHWs. We 

identified 90 novel MTAs (45, 11, and 34 on the A, B, and D genome, respectively) and 

haplotype blocks associated with grain yield and yield-related traits including root-traits under 

drought stress. The phenotypic variance explained by the MTAs ranged from 1.1 to 32.3%. Most 

of the MTAs (120 out of 194) identified were found within genes, and of these 45 MTAs were in 

genes annotated as having a potential role in drought stress. This result provides further evidence 

for the reliability of MTAs identified. The large number of MTAs (53) identified especially on 

the D genome demonstrate the potential of SHWs for elucidating the genetic architecture of 

complex traits and provide an opportunity for further improvement of wheat under rapidly 

changing climatic conditions. 

Keywords: marker-trait association; haplotype block; genes; root traits; D-genome; GBS; single 

nucleotide polymorphisms; durum wheat; bread wheat; complex traits 
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Introduction 

Drought is one of the most important abiotic stress that reduces crop productivity and is 

expected to increase with the change in climate [1]. Erratic rainfall patterns caused by climate 

change may aggravate drought stress and that will have a major impact on agriculture [2,3]. The 

most prominent example of the impact of drought stress on agriculture was the 2012 drought 

stress in the United States, where moderate to extreme drought stress occurred across the central 

agricultural states that resulted in crop harvest failure for corn (Zea mays L.), sorghum (Sorghum 

bicolor L.), and soybean (Glycine max L.), and the agriculture loss due to drought was estimated 

to be $30 billion [4]. To cope up with the challenges of drought stress, plant breeders have been 

focusing on improving drought tolerance since several decades [2,3,5]. However, the drought 

tolerance is a complex phenomenon as most of the traits associated with drought tolerance are 

polygenic in nature and understating the genetic architecture of drought tolerance is still 

underway [3] including in wheat (Triticum sps.) [2]. Wheat is one of the most important staple 

cereal crops mainly grown under rainfed conditions [3,6] and is expected to suffer from drought 

stress [3]. Therefore, breeding for drought tolerance and identifying genomic regions and 

underlying candidate genes associated with drought tolerance is important for wheat 

improvement.  

Bread wheat (T. aestivum L.) has limited genetic and phenotypic diversity available for 

breeding for drought tolerance [2]. This is mainly due to the genetic bottleneck experienced 

during its origin and subsequent domestication [7,8]. Diversity can be increased through the 

production of synthetic hexaploid wheat (SHW) and its utilization in breeding programs [9–11]. 

Synthetic hexaploid wheat (2n=6x=42, AABBDD) is produced from an interspecific cross 

between durum wheat (2n=4x=28, AABB, T. turgidum L.) and goat grass (2n=2x=14, DD, 



47  

Aegilops tauschii Coss.). The SHWs are reported to have significant genetic variation for biotic 

[12,13] and abiotic stress resistance [10,14,15]. However, previous studies mostly focused 

mainly on biotic stresses including leaf rust (incited by Puccinia triticina) [13,16,17], stem rust 

(incited by P. graminis) [16,17], stripe rust (incited by P. striiformis) [12,16,17], Fusarium head 

blight (incited by Fusarium graminearum) [13], yellow spot (incited by Pyrenophora tritici-

repentis) [16,17], Septoria nodorum (incited by Parastagonospora nodorum) [16,17], Septoria 

tritici blotch (incited by Mycosphaerella graminicola) [13,16], cereal cyst nematode (incited by 

Heterodera avenae) [16], crown rot (incited by F. pseudograminearum) [17], and root-lesion 

nematode (incited by Pratylenchus thornei and P. neglectus) [16]. Therefore, exploiting genetic 

variation under abiotic stress such as drought is timely and needed to further utilize the potential 

of SHWs.  

About 800 quantitative trait loci (QTLs) and marker trait associations (MTAs) have been 

reported for drought tolerant traits (agronomic, physiological, root, and yield-related traits) using 

bi-parental mapping (~691 QTLs) and genome wide association studies (GWAS; ~109 MTAs) in 

wheat [3]. Only 68 QTLs are major QTLs that explain more than 19% of phenotypic variation 

[3]. This study was conducted to identify novel genomic regions associated with grain yield and 

yield-related traits using GWAS performed using 35,648 GBS-derived SNPs in 123 SHWs 

grown under two drought stressed growing seasons (2016 and 2017) in Konya, Turkey. 

Subsequently, the underlying genes for the MTAs identified were investigated for their potential 

role in drought stress using the functional annotations. To the best of our knowledge, this is the 

first report on GWAS on grain yield and yield-related traits under drought stress in SHWs. The 

results from this study will be a valuable resource for the genetic improvement of grain yield and 
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yield-related traits in drought stress, introgression of desirable genes from SHWs into elite wheat 

germplasm, genomic selection, and marker-assisted selection in the breeding program. 

 

Materials and Methods 

Site Description  

A field experiment was conducted during two growing seasons (2016 and 2017) under 

drought stressed conditions (rainfed) at the research farm located at Bahri Dagdas International 

Agricultural Research Institute in Konya, Turkey (37°51'15.894" N, 32°34'3.936" E; Elevation = 

1,021 m). This site was characterized by a low precipitation (below 300 mm), low humidity, and 

slightly alkaline clay loam soil [18]. 

 

Plant Materials and Experimental Design 

One hundred twenty-three SHWs developed from two introgression programs were used 

(APPENDIX I). The first group was developed by Kyoto University, Japan from one spring 

durum (‘Langdon’) parent crossed with 14 different Ae. tauschii accessions resulting in 14 

different lines (Table S2). The remaining 109 lines were the second group of synthetics that were 

developed by CIMMYT from the six-durum parents crossed with 11 different Ae. tauschii 

accessions mainly from the Caspian Sea basin area. Initially, 13 crosses among six winter durum 

wheats were involved in the creation of 13 different winter type synthetics. However, due to the 

partial sterility, segregation, and continuous selection in the early generation, 109 lines were 

selected as unique lines because of their difference in phenotype [14] and their kinship values 

[11]. The synthetic genotypes used in this study are unique and have been developed recently 
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and tested for their agronomic traits [14], genetic diversity, and population structure [11]. The 

detailed information of these SHWs were provided in Bhatta et al. [11].  

The experimental design was an augmented design (plot size: 1.2 m x 5 m) with 

replicated checks (‘Gerek’ and ‘Karahan’) in the 2016 growing season and modified alpha-lattice 

design (plot size: 1.2 m x 5 m) including 123 SHWs and replicated checks (Gerek and Karahan) 

with two replications in the 2017 growing season. SHWs were planted on 20 September in 2015 

and harvested on 18 July 2016 for the 2016 growing season, whereas SHWs were planted on 15 

September in 2016 and harvested on 21 July 2017 for the 2017 growing season.  

  

Trait Measurements 

Grain yield (GY) was obtained by harvesting four middle rows of 1.008 m2 (i.e., 84 x 

120) and reported in g m-2.  Harvest index (HI), dry biomass weight (BMWT), thousand kernel 

weight (TKW), grain volume weight (GVWT), awn length (AWNLN), Flag leaf length (FLLN), 

flag leaf width (FLW), flag leaf area (FLA=0.8 x FLLN x FLW) were measured using previously 

reported protocols [19–22]. Stem diameter (STMDIA) was measured from five randomly 

selected plants per plot using digital Vernier caliper at second internode from the soil surface at 

physiological maturity. Root length (RTLN) was measured from randomly selected three plants 

per plot after 3-4 days of flowering (Zadoks 60 growth stage) using WinRhizo software 

(WinRhizo reg. 2009c, Regent Instruments Inc., Quebec City, Quebec, Canada).  

 

Phenotypic Data Analysis 

Combined analysis of variance (ANOVA) was performed using the following model: 
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yijklmn = µ + Yri + R(Yr)ji + B(R(Yr))kji + Cl + Gm(kji) + GXYrmi + eijklmn 
(

1) 

Where, yijklmn is the grain yield-related trait; μ is overall mean; Yri is the effect of ith year; 

R(Yr)ji is the effect of jth replication within ith year; B(R(Yr))kji is the effect of kth incomplete 

block within jth replication of ith environment; Cl is the lth checks; Gm(kji) is the effect of mth 

genotypes (new variable, where check is coded as 0 and entry is coded is 1 and genotype was 

taken as new variable x entry) within kth incomplete block of jth replication in ith year; GxYrmi is 

the interaction effect of mth genotype and ith year; eijklmn is the residual. In combined ANOVA, 

year and check were assumed as fixed effects whereas genotype, genotype x year interaction, 

replication nested within a year, and incomplete block nested within replications were assumed 

as random effects.  

Individual analyses of variance were performed because most of the traits had highly 

significant genotype by year interaction and therefore will be discussed hereafter. In the year 

2016, an augmented design was analyzed using the following model for the estimation of best 

linear unbiased predictors (BLUPs): 

yijkl = µ + Bi + Cj + Gk(i) + eijkl 
(

2) 

Where yijkl is the trait, μ is overall mean; Bi is the effect of ith incomplete block; Cj is the 

jth checks; Gk(i) (new variable, where check is coded as 0 and entry is coded as 1 and genotype 

was taken as new variable x entry) is the effect of kth genotypes within ith block; eijkl is the 

residual. In ANOVA calculated for the 2016 datasets, the check was assumed as fixed effect 

whereas genotype and incomplete block were assumed as random effects.  
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In the year 2017, alpha (α) lattice design with two replications was analyzed using the 

following model for the estimation of BLUPs: 

yijklm = µ + Ri + B(R)ji + Ck + Gl(ji) + eijklm 
(

3) 

Where, yijklm is the trait, μ is overall mean; Ri is the effect of ith replication; B(R)ji is the 

effect of jth block within ith replication; Ck is the kth checks; Gl(ji) (new variable, where check is 

coded as 0 and entry is coded as 1 and genotype was taken as new variable x entry) is the effect 

of kth genotypes within jth incomplete block of ith replication; eijklm is the residual. In ANOVA 

calculated for the 2017 datasets, the check was assumed as fixed effect whereas genotype, 

replication, and incomplete block nested within replication were assumed as random effects. 

All phenotypic data were analyzed using PROC MIXED in SAS 9.4 (SAS Institute Inc., 

Cary, NC) [23] using restricted maximum likelihood (REML) approach unless mentioned 

otherwise.  

Broad-sense heritability for each trait in each year was calculated based on entry mean 

basis using the following formula for 2016, 2017, and combined experiments, respectively: 

'( = )(*
)(* + )(+ 

(

4) 

'( = )(*
)(* + )

(+
,

 
(

5) 

'( = )(*
)(* + )

(*-.,
/ + )

(+
/,

 
(

6) 



52  

Where, σ2
g, σ2

gxyr, and σ2
e are the variance components for genotype, genotype x year, 

and error, respectively, whereas n and r are the number of years and replications, respectively.   

Pearson’s correlation of grain yield and related traits was calculated based on BLUPs for 

each trait in each year using PROC CORR in SAS. The principal component biplot analysis 

(PCA-biplot) was performed based on the correlation matrix to avoid any variation due to the 

different scales of the measured variables using ‘factoextra’ package in R software [24]. 

  

Genotyping and SNP Discovery  

Genomic DNA was extracted from two to three fresh young leaves of 14 day old 

seedlings using BioSprint 96 Plant Kits (Qiagen, Hombrechtikon, Switzerland), as described in 

Bhatta et al. [11]. The GBS libraries were constructed in 96-plex following digestion with two 

restriction enzymes, PstI and MspI [25] and pooled libraries were sequenced using Illumina, Inc. 

(San Diego, CA) next generation sequencing platforms at the Wheat Genetics Resource Center at 

Kansas State University (Manhattan, KS). SNP call was performed using TASSEL v. 5.2.40 

GBS v2 Pipeline [26] with physical alignment to Chinese Spring genome sequence (RefSeq 

v1.0) made available by the International Wheat Genome Sequencing Consortium (IWGSC) in 

2017 using default settings with the one exception that the number of times a GBS tag to be 

present and included for SNP calling was changed from the default value of 1 to 5 to increase the 

stringency in SNP calling. The identified SNPs with minor allele frequency (MAF) less than 5% 

and missing data more than 20% were removed from the analysis. All lines had missing data less 

than 20% and none of them were dropped due to missing percentage-filtering criterion.  
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Population Structure and Genome-Wide Association Study Analysis 

Population structure of 123 genotypes was assessed using Bayesian clustering algorithm 

in the program STRUCTURE v 2.3.4 [28] and principal component (PC) analysis using 

TASSEL [29] as described in Bhatta et al. [11].  

Many GWAS studies were previously performed using mixed linear model (MLM), 

where population structure (Q) or PC was set as fixed effect and kinship (K) as a random effect 

to control false positives [29,30]. However, MLM may lead to confounding between population 

structure, kinship, and quantitative trait nucleotides (QTNs) that results in false negatives due to 

model overfitting [31]. Recently, the multi-locus mixed model (MLMM), which tests multiple 

markers simultaneously by fitting pseudo QTNs, in addition to testing markers in stepwise 

MLM, has been proposed, which is advantageous over conventional GLM and MLM testing one 

marker at a time [31]. One of the examples of recently popular GWAS analysis algorithm that is 

based on MLMM is FarmCPU (Fixed and random model Circulating Probability Unification) 

[31,32]. The FarmCPU uses a fixed effect model (FEM) and a random effect model (REM) 

iteratively to remove the confounding between testing markers and kinship that results in false 

negatives, prevents model over-fitting, and control false positives simultaneously [31]. 

Therefore, GWAS was performed on the adjusted BLUPs for each trait in each year to identify 

SNPs associated with grain yield and yield-related traits in SHWs using FarmCPU with 

population structure (Q1 and Q2) or first three principal components (PC1, PC2, and PC3) as 

covariates by looking at the model fit using Quantile-Quantile (Q-Q) plots and FarmCPU 

calculated kinship [31] implemented in MVP R software package 

(https://github.com/XiaoleiLiuBio/MVP). A uniform suggestive genome wide significance 

threshold level of p-value = 9.99E-05 (-log10p=4.00) was selected for MTAs considering the 
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deviation of the observed test statistics values from the expected test statistics values in the Q-Q 

plots [33,34] from the two-year results of this study.  

 

Haplotype Block Analysis 

Haplotype blocks with linkage disequilibrium (LD) values (squared correlation 

coefficient between locus allele frequency; R2 > 0.2) in adjacent regions (< 500 Kb) of 

significant MTAs were visualized and plotted using default parameters (Hardy-Weinberg P-

value cut off at 1% and MAF > 0.001) of Haploview software [35]. Phenotypic variance 

explained by each haplotype block on the trait of interest was calculated using multiple 

regression analysis that accounted for the population structure by removing the haplo-allele of 

less than 5% in SAS using PROC REG. 

 

Putative Candidate Gene Analysis 

The genes underlying the MTAs and subsequently their annotations were retrieved using 

a Perl script and the IWGSC RefSeq v1.0 annotations provided for the Chinese Spring. The 

underlying genes were further examined for their association with grain yield and yield-related 

traits under drought stress using previously published literature. Additionally, the SnpEff 

program was used for SNP annotation and predicting the effects of SNPs on the protein function. 

The MTAs present within genes or are flanked (5K bases) by genes were investigated 

(http://snpeff.sourceforge.net/) [36]. 
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Results and Discussion 

Weather Conditions 

The mean monthly air temperature was similar at Konya in both growing seasons with 13 

°C in 2015-2016 and 12 °C in 2016-2017 compared to 25-year mean monthly air temperature (11 

°C) in Turkey (Table 1). The total rainfall during 2016-2017 (243 mm) was slightly higher than 

2015-2016 (222.4 mm) growing season. Total rainfall during the wheat-growing season (Sep-

July) was 48.9% lower in 2015-16 and 44.2% lower in 2016-17 compared to 25-year mean total 

rainfall (435.1 mm) in Turkey. Although winter wheat water requirements are higher from mid-

March to mid-June (from spring tillering period to mid-grain filling period), rainfall was very 

low in both years compared to 25-year mean rainfall. The plants were exposed to drought stress 

from tillering through grain-filling.  Hence, results from this study can be used to understand the 

effects and genetics of drought in SHW. 

 

Phenotypic Variation for Yield and Yield-Related Traits 

A combined analysis of variance (ANOVA) across years identified significant cross-over 

genotype x year interaction for all traits except for FLW and STMDIA (APPENDIX III). 

Therefore, ANOVA was computed for both years separately and the results indicated that the 

SHWs showed significant variation for grain yield and yield-related traits in each year (Table 2). 

For instance, grain yield ranged from 200 to 341 g m-2 with an average yield of 259 g m-2 in 

2016 and 241 to 392 g m-2 with an average yield of 290 g m-2 in 2017 (Table 2). The large 

variation among the traits in each year can be attributed to the collection of diverse accessions of 

SHWs from different countries and different genetic backgrounds [11,14]. 
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Broad-sense heritability (H2) ranged from low to high heritability (Table 2). Low to 

moderate H2 was observed for GY (0.32—0.56), BMWT (0.39 —0.63), FLW (0.49 —0.67), and 

RTLN (0.31 —0.60), moderate H2 was observed for HI (0.63 —0.64) and STMDIA (0.57 —

0.63), moderate to high H2 was observed for FLLN (0.53 —0.91) and FLA (0.52 —0.85), and 

high H2 was observed for TKW (0.75 —0.90) and GVWT (0.76 —0.91), indicating the genetic 

instability of these traits across years under drought stress. Similar H2 for most of these traits 

have been observed in previous studies [23,26,28,30,31,33,44–47]. 

 

Principal Component Analysis and Phenotypic Correlation 

Principal component (PC) bi-plot analysis showed the association between grain yield 

and yield-related traits based on correlation matrix (Figure 1). The first two PCs that explained 

43.4% (2016) to 44.9% (2017) of variation better explained the relationship between traits in 

two-dimensional space. In the PC-biplot, we observed two distinct groupings. The first one 

comprised of GY, HI, BMWT, TKW, GVWT, AWNLN, and RTLN whereas the second one had 

FLLN, FLW, and FLA (Figure 1). The traits grouping with GY are the more important traits for 

improving grain yield in drought-stressed conditions. The association observed in the PCA was 

supported by the significant correlation of grain yield with BMWT, HI, TKW, and GVW in both 

years (APPENDIX IV). Similar correlations for these traits were observed in the previous studies 

[21,22,34,37,40,42,43]. 
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Population Structure and Genome-Wide Association Study  

Population structure analysis of 123 SHW was performed using 35,648 SNPs 

(MAF>0.05 and missing data <20%) using Bayesian clustering algorithm implemented in 

Structure software and the results showed that these lines were divided into three subgroups 

(APPENDIX V). The details of the population structure and genetic diversity of these SHWs has 

been previously reported in a detailed manner in Bhatta et al. [11]. 

The GWAS identified novel genomic regions for grain yield and yield-related traits and 

the MTA explained the high phenotypic variance. FarmCPU algorithm, with kinship, population 

structure (Q) or PC, BLUPs for each trait, and 35,648 GBS derived SNPs, was used to identify 

MTAs. The GBS derived SNPs were well distributed across each of the chromosome 

(APPENDIX VI). We identified 194 MTAs distributed across 21 chromosomes for grain yield 

and yield-related traits with phenotypic variance explained (PVE) ranging from 1.1 to 32.3% 

(Figures 2 and APPENDIX VII). The highest number of MTAs were observed for GY (29), 

followed by STMDIA (23), FLA (20), and TKW (20) while the lowest MTAs were observed for 

HI (10) (Figure 2). Of the 194 MTAs, 75 MTAs were detected on the A genome, 66 MTAs on 

the B genome, and 53 MTAs on the D genome. The highest the MTAs were present on 

chromosome 7A (26 MTAs) and the lowest MTAs on chromosome 3D (four MTAs) (Figure 2). 

Most of the MTAs identified in this study were year specific, suggesting the influence of 

genotype by environment interaction on the phenotype of the traits measured in the two years. 

However, 120 of the 194 significant SNPs were in 83 genes and 45 of these MTAs were present 

within genes, and their annotations suggested their potential role in drought stress. This result 

further provided confidence that the MTAs identified in the study are likely reliable MTAs 

(APPENDIX VII). 
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Grain Yield  
The 29 MTAs for GY were observed in 29 different genomic regions on seven 

chromosomes including 1B, 2B, 3A, 3D, 5B, 7A, and 7B with PVE ranging from 7.6 to 17.9% 

(Figure 2 and APPENDIX VII). Earlier studies have reported QTLs/MTAs for grain yield on 

wheat chromosomes 1B [5,38,41,44], 2B [38–41,44], 3A [38,39,41,42], 3D [38], 5B 

[5,34,38,42,43,45], 7A [37,38,42,46], and 7B [38,41,42]. However, it is difficult to align our 

findings with previous studies due to the use of different marker systems [90K SNP, short 

sequence repeat (SSR), diversity arrays technology (DART) marker vs. GBS derived SNP 

marker), absence of precise location information in published studies, or the use of a different 

version of the reference wheat genome in previous studies than the latest IWGSC RefSeq v1.0. 

However, identification of several MTAs on same chromosome as earlier studies provided 

increased confidence on these associations.  

The present study identified four major haplotype blocks (19 bp to 433 kbp) on 

chromosome 7A with two to six SNPs associated with grain yield in 2016 (Figure 3). First 

haplotype block consisted of six MTAs within 433 kbp range, second haplotype block consisted 

of four MTAs within 81 bp range, third haplotype block consisted of two MTAs within 19 bp 

range, and fourth haplotype block consisted of three MTAs within 314 kbp range. The PVE on 

grain yield by the first, second, third, and fourth haplotype blocks were 17.2%, 24.6%, 21.9%, 

and 8.2%, respectively.   

One MTA (S7A_112977027; 112977027 bp) present in between second (537 kb away) 

and third (837 kb) haplotype block was within the gene, TraesCS7A01G158200.1, and PVE on 

grain yield was 12.8% (APPENDIX VII). This gene was annotated as a member of sentrin-
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specific protease of Ulp1 (Ubiquitin-like Protease 1) gene family (Table 3). The Ulp1 is a small 

ubiquitin related modifier (SUMO) specific protease that affects several important biological 

processes in plants including response to abiotic stress [47]. It has been shown to have a role in 

drought tolerance in Arabidopsis (Arabidopsis thaliana) [48] and rice (Oryza sativa) [49,50]. 

This makes this MTA interesting and a stronger candidate for future functional validation 

studies. 

Another major haplotype block (18 kbp) of three MTAs was observed on chromosome 

3A in 2017 (Figure 3) with PVE on grain yield by this haplotype block was 13.1% (Figure 3). 

The chromosome 3A is known to be an important chromosome that contains useful QTLs for 

grain yield and yield-related traits [38,39,41,42,51] and the haplotype block identified will have 

a significance in the crop improvement program. All three MTAs present in this haplotype block 

of chromosome 3A were found in the gene, TraesCS3A01G047300 (APPENDIX VII), which 

was annotated as a member of the F-box gene family (Table 4). These three SNPs were 

indicated as having a moderate impact on the protein as they resulted into a missense mutation 

and caused an amino acid change. Such changes may alter the function of of the protein [36], 

which makes this F-box gene a strong candidate for future functional characterization studies 

under drought tolerance in wheat. The F-box proteins is known to regulate many important 

biological processes such as embryogenesis, floral development, plant growth and development, 

biotic and abiotic stress, hormonal responses, and senescence [52]. Two other MTAs observed 

on chromosome 3A and 3D were present within genes (F-box family protein: 

TraesCS3A01G445100 and disease resistance protein RPM1: TraesCS3D01G002700) that had 

been previously reported be involved in drought tolerance [52,53] (Table 4).  
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The grain yield haplotype blocks and other MTAs identified in this study have not been 

mapped to date and four MTAs were in the genes whose functional annotations suggest that they 

are likely involved in drought tolerance. This result implied that haplotype blocks observed on 

chromosome 3A (3 MTAs) and 7A (16 MTAs), and one MTA on chromosome 3D (1) for grain 

yield are novel and may potentially be used in a marker-assisted breeding program focusing on 

improving drought tolerance in wheat after validating them in different populations and 

environments. 

 

Harvest Index  
A total of 10 SNPs significantly associated with HI were identified on chromosomes 1D, 

2A, 2D, 3A, 3D, 5B, 6B, 6D, and 7B (Figure 2) with PVE ranging from 2.2 to 18.7% 

(APPENDIX VII). Previous studies have reported QTLs/MTAs responsible for HI on 

chromosomes 2D [37], 3A [37,42], 6B [54], and 7B [42]. The six MTAs identified for HI on 

chromosomes 1D, 2A, 3D, 5B, and 6D have not been reported, to the best of our knowledge, and 

they are potentially novel MTAs responsible for HI.  

Six MTAs for HI detected on chromosomes 2A, 3A, 6B, 6D, and 7B were found within 

genes and two of these genes have annotations suggesting their involvement in drought stress 

(Tables 3 and S5). The two genes are WRKY transcription factor (TraesCS3A01G343700) 

found on chromosome 3A and cytochrome P450 (TraesCS6D01G170900.1) found on 

chromosome 6D. The role of WRKY transcription factor is well known in abiotic stress 

including drought tolerance [55,56]. The cytochrome P450 genes are a large superfamily of 

enzymes and are involved in many metabolic pathways including drought tolerance in rice [57] 
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and Arabidopsis [58,59]. The multi-trait marker associated with GY and HI was located on 

chromosome 5B (S5B_598463062) with PVE ranging from 15.9% to 18.7% (APPENDIX VII) 

 

Biomass Weight  
The 15 MTAs responsible for BMWT were identified on chromosomes 1D, 2B, 3A, 4A, 

6D, and 7B (Figure 2) with PVE ranging from 4.9 to 14.4% (APPENDIX VII). Previous studies 

had reported QTLs/MTAs responsible for BMWT on chromosomes 1D [42,54], 2B [37], 6D  

[37], and 7B [42]. The four MTAs identified for BMWT on chromosome 3A and 4A have not 

been reported and they are potentially novel MTAs responsible for BMWT.  

A novel haplotype block (38 kbp) of three SNPs on chromosome 3A associated with 

BMWT was identified in 2017 (Figure 3) with PVE by the haplotype block was 11.7%. This 

MTA (S3A_25012018) was also associated with grain yield and PVE ranged from 12.7% (GY) 

to 14. 4% (BMWT).  

All three MTAs present in this haplotype block were  within genes (APPENDIX VII) and 

one of the genes had annotations suggesting its involvement in drought tolerance was an F-box 

family protein (TraesCS3A01G047300) (Table 4) [52]. Excluding MTAs on haplotype block, 

eight MTAs for BMWT detected on chromosomes 1D, 2B, 6D, and 7B were found within genes 

(APPENDIX VII) and two of the genes had annotations suggesting its involvement in drought 

stress (Tables 3 and 4). The genes associated with two MTAs are F-box family protein 

(TraesCS7B01G242600) [52] and protein DETOXIFICATION containing multi-antimicrobial 

extrusion protein (MatE) (TraesCS1D01G357500) [60].  
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Thousand Kernel Weight  
A total of 20 MTAs responsible for TKW were detected in 19 different genomic regions 

on chromosomes 1A, 2A, 2B, 2D, 3A, 3B, 4A, 4B, 4D, 5B, 6D, 7B, and 7D (Figure 2) with 

PVE ranging from 1.6 to 22.2% (APPENDIX VII). Earlier studies have reported QTLs/MTAs 

for TKW on chromosomes 1A [40,42,44,61], 2A  [46], 2B [40,42,46], 2D [44], 3A [40,61,62], 

3B [46,63], 4B [5], 5B [61], 7B [42], and 7D [46]. In the present study, only one MTA 

(S2D_7309581) for TKW was detected on chromosome 2D in both years and assumed to be a 

stable MTA because this MTA was detected despite significant genotype x year interaction. The 

five MTAs identified for TKW on chromosomes 4A, 4D, and 6D have not been previously 

reported and they are potentially novel MTAs responsible for TKW. 

Twelve MTAs for TKW detected on chromosomes 2A, 2B, 3A, 3B, 4A, 4B, 5B, and 6D 

were found within genes (APPENDIX VII) and five of these genes have annotations suggesting 

their involvement in drought stress (Tables 3 and 4). The genes associated with MTAs involved 

in drought tolerance are F-box family protein (chromosome 3A; TraesCS3A01G047300) [52], 

protein kinase family protein (chromosome 4A; TraesCS4A01G347600 and chromosome 6D; 

TraesCS6D01G360800) [64], cytochrome P450 family protein (chromosome 4D; 

TraesCS4D01G364700) [57–59], and zinc finger (C3HC4-type RING finger) family protein 

(chromosome 4B; TraesCS4B01G344200.1) [65–67]. The SNPs S4D_509427923 was annotated 

as a missense variant and thus may have a moderate impact on the protein function (APPENDIX 

VII). 

 
Grain Volume Weight  

The 13 MTAs responsible for GVWT were identified on chromosomes 1A, 2A, 2B, 2D, 

3A, 4A, 5A, 6A, and 7A (Figure 2) with PVE ranging from 1.3 to 16.2% (APPENDIX VII). 
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Earlier studies have reported QTLs/MTAs for GVWT on chromosomes 1A [38], 2A [38,68], 2B 

[38,68], 2D [38,68], 5A [38] and 7A [38,68]. The four MTAs identified for GVWT on 

chromosomes 3A, 4A, and 6A have not been previously reported and they are potentially novel 

MTAs responsible for GVWT. 

Eight MTAs responsible for GVWT detected on chromosomes 1A, 2A, 2B, 4A, 6A, and 

7A were found in the gene regions (APPENDIX VII) and two of these genes have annotations 

suggesting their involvement in drought stress (Table 4). The genes associated with two MTAs 

involved in drought tolerance are cytochrome P450 (TraesCS1A01G334800) [57–59] on 

chromosome 1A and microtubule associated protein family protein (TraesCS4A01G074200.2)  

[69] on chromosome 4A.  

 

Awn Length  
The 20 MTAs responsible for AWNLN were observed on chromosomes 1D, 2A, 2B, 3B, 

4A, 4B, 4D, 5A, 5B, 5D, 6B, and 7A (Figure 2) with PVE ranging from 1.1 to 20.1% 

(APPENDIX VII). Earlier studies have reported QTLs/MTAs for AWNLN on chromosomes 2A 

[70,71], 4A [71], 4B  [71], 5A  [71], and 6B [70,71]. The nine MTAs identified for AWNLN on 

chromosomes 2B, 3B, 4D, 5B, 5D, and 7A have not been previously reported and they are 

potentially novel MTAs responsible for AWNLN. 

Eleven MTAs for AWNLN detected on chromosomes 1D, 2A, 4D, 5A, 5B, 6B, and 7A 

were found in the gene regions (APPENDIX VII) and four of these genes have annotations 

suggesting their involvement in drought stress (Tables 3 and 4). The genes associated with four 

MTAs involved in drought tolerance are 60S ribosomal protein L18a (chromosome 4D; 

TraesCS4D01G290700) [72], guanine nucleotide exchange family protein (chromosome 5A; 
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TraesCS5A01G361300) [73], and F-box family protein (chromosome 5B; 

TraesCS5B01G038700 and chromosome 6B; TraesCS6B01G001000) [52]. It has been reported 

that the putative 60S ribosomal protein L18a is an up-regulated transcripts in response to drought 

stress in ears and silks during the flowering stage in maize [72].  

 

Flag Leaf Length  
The 13 MTAs responsible for FLLN were detected on chromosomes 1B, 1D, 2A, 2B, 2D, 

4A, 6D, and 7B (Figure 2) with PVE ranging from 1.58 to 32.3% (APPENDIX VII). Previous 

studies have reported QTLs for FLLN on chromosomes 1B [74,75], 2B [19,74–76], 2D [20,74], 

4A [19,74,75], and 7B [20]. The four MTAs identified for FLLN on chromosomes 1D, 2A, and 

6D have not been previously reported and they are potentially novel MTAs responsible for 

FLLN. 

Eleven MTAs responsible for FLLN detected on chromosomes 1B, 1D, 2B, 2D, 4A, 6D, 

and 7B were found in the gene regions (APPENDIX VII) and four of these genes have 

annotations suggesting their involvement in drought stress (Tables 3 and 4). The genes 

associated with four MTAs involved in drought stress are F-box family protein (chromosome 

4A: TraesCS4A01G325200) [52], cytochrome P450 (chromosome 2B; TraesCS2B01G167500 

and chromosome 6D; TraesCS6D01G386300) [57–59], and Rp1-like protein (chromosome 1B; 

TraesCS1B01G400600) [53].  

 

Flag Leaf Width  
The 16 MTAs responsible for FLW were detected on chromosomes 1A, 1B, 1D, 2B, 2D, 

4B, 6B, and 6D (Figure 2) with PVE ranging from 1.6 to 15.2% (APPENDIX VII). Previous 
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studies have found QTLs for FLW on chromosomes 1B [20,74,76], 1D [19,74], 2B [19,74], 2D 

[19,20,74], 4B [19,76], and 6B [19,74,75]. The two MTAs identified for FLW on chromosomes 

1A and 6D have not been previously reported and they are potentially novel MTAs responsible 

for FLW. 

Thirteen MTAs for FLW detected on chromosomes 1A, 1B, 1D, 2D, 4B, 6B, and 6D 

were found in the gene regions (APPENDIX VII) and three of these genes have annotations 

suggesting their involvement in drought stress (Tables 3 and 4). The genes associated with three 

MTAs involved in drought stress are citrate-binding protein (chromosome 1A; 

TraesCS1A01G326700) [77], F-box family protein (chromosome 6B; TraesCS6B01G042800) 

[52], and mitochondrial transcription termination factor-like (chromosome 6D; 

TraesCS6D01G040100) [78]. The SNPs S1A_516732460 and S6D_16376439 were annotated as 

a missense variant and thus may impact the function of the proteins that are annotated as citrate-

binding protein and mitochondrial transcription termination factor-like protein, respectively 

(APPENDIX VII).  

 

Flag Leaf Area  
The 20 MTAs for FLW were detected on chromosomes 1A, 1B, 1D, 2A, 2D, 4D, 5A, 6B, 

and 7D (Figure S2) with PVE ranging from 8.1 to 23.1% (APPENDIX VII). Previous studies 

have reported QTLs for FLA on chromosomes 1B [19,75], 1D [19,20,74], 2A [19,20,74], 2D 

[19,20,74], 4D  [75], 5A [20,74–76], 6B [75], and 7D [20]. The four MTAs identified for FLA 

on chromosome 1A have not been previously reported and they are potentially novel MTAs 

responsible for FLA. 
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Three novel haplotype blocks were observed for FLA on chromosomes 1A (two MTAs), 

6B (two MTAs) and 7D (three MTAs) with PVE by these haplotype block ranging from 5.5% to 

8.6% (Figure 3). Fourteen MTAs for FLA detected on chromosomes 1A, 1B, 1D, 2A, 4D, 5A, 

6B, and 7D were found in the gene regions (APPENDIX VII) and five of these genes had 

annotations suggesting their involvement in drought stress (Tables 3 and 4). The genes 

associated with five MTAs involved in drought stress are citrate-binding protein 

(TraesCS1A01G326700), P-loop containing nucleoside triphosphate hydrolases superfamily 

protein (TraesCS1D01G197200) [79], cytochrome P450 (TraesCS6B01G125900) [57–59], and 

NBS-LRR resistance like protein [53]. 

The multi-trait marker associated with FLW and FLA was located on chromosome 1A 

(S1A_516732460) with PVE ranging from 8.0% to 9.5% (Table S4). Another multi-trait marker 

associated with FLLN and FLA was located on chromosome 2A (S2A_29874199) with PVE 

ranging from 23.1 to 32.3% (APPENDIX VI). The multi-trait MTA indicates that the related 

candidate gene may affect multiple traits.  

 

Stem Diameter  
In the present study, 23 MTAs responsible for STMDIA were identified on chromosomes 

1A, 1D, 2B, 2D, 3A, 3B, 3D, 4D, 5A, 5B, 6A, 6B, 6D, 7A, and 7B (Figure 2) with PVE ranging 

from 2.7 to 28.8% (APPENDIX VII). Earlier study has identified one minor QTL (QSd-3B) for 

STMDIA on chromosome 3B that explained 8.7% of the phenotypic variance [80]. That means, 

the 19 MTAs detected on chromosomes 1A, 1D, 2B, 2D, 3A, 3D, 4D, 5A, 5B, 6A, 6B, 6D, 7A, 

and 7B in the present study except chromosome 3B may potentially be a novel MTAs controlling 

STMDIA under drought stress.  
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Four MTAs were detected on chromosome 3B and two of them (1 bp apart) were 

observed in one haplotype block in 2016 with PVE was 9.2% (Figure 3). Fifteen MTAs for 

STMDIA detected on chromosomes 1D, 2B, 3A, 3B, 6B, 6D, 7A, and 7B were found in the gene 

regions (APPENDIX VII) and four of these genes have annotations suggesting their involvement 

in drought stress (Tables 3 and 4). The genes associated with four MTAs involved in drought 

stress are leucine-rich repeat receptor-like protein kinase family protein (TraesCS3D01G028500) 

[81], protein kinase (TraesCS6A01G122200.1) [64], disease resistance protein (NBS-LRR class) 

family (TraesCS1D01G341500 and TraesCS6B01G346900 ) [53], and F-box protein family 

(TraesCS6B01G347000) [52].  

 

Root Length  
Root length is one of the most important traits under drought stress. We have measured 

root length 3-4 days after anthesis (Zadoks 60 growth stage) under drought stressed field 

condition using WinRhizo® (WinRhizo reg. 2009c, Regent Instruments Inc., Quebec City, 

Quebec, Canada). This trait is very unique compared to previous studies where they focused on 

the roots of seedlings [82–85] rather than direct field-based measurements (labor intensive, time 

consuming, and expensive). Identification of QTL governing root length is very important in 

wheat especially for the wheat grown under drought stress. Limited information is available on 

QTL related to root traits in wheat [82,84–87]. 

In the present study, 15 MTAs responsible for RTLN were identified on chromosomes 

2B, 2D, 3B, 5B, 6A, 6D, and 7A (Figure 2) with PVE ranging from 5.3% to 18.5% (APPENDIX 

VII). Earlier studies have reported QTLs for RTLN on chromosomes 2B [83], 3B [84], 5B 

[82,84], 6A [83,84], and 6D [82,85] in hexaploid wheat and on chromosomes 2B [86,87], 3B 
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[87], 6A [87], and 7A [87] in tetraploid wheat. The MTA identified for RTLN on chromosome 

2D has not been previously reported and it is potentially novel MTAs responsible for RTLN 

under drought stress. Furthermore, previous studies identified very few QTLs for RTLN on the D 

genome of wheat [82,85]. Therefore, the MTAs (eight MTAs) for RTLN detected on the D 

genome of SHWs in this study are potentially novel.  

Seven out of eight MTAs responsible for RTLN were present on chromosome 6D. Two 

haplotype blocks (haplotype block1 of size 64 kbp and haplotype block2 of size 5kbp) were 

identified from five out of seven MTAs for RTLN on chromosome 6D with PVE ranging from 

5.0% to 11.8% (Figure 3). One SNP (S6D_435300571) present in the haplotype block2 was 

found in the gene (TraesCS6D01G332800) with PVE was 13.0%. The gene associated with this 

SNP is protein detoxification gene containing multi-antimicrobial extrusion protein (MatE) 

(Table 3) and has been reported to be expressed mainly in the root than shoots under drought 

stress [88]. For instance, MatE family genes such as HvAACT1 in barley [89] and TaMate in 

wheat [90], encode proteins that are primarily localized to root epidermis cells [89] and required 

for external resistance [60]. In the present study, this gene was also significantly associated with 

BMWT on chromosome 1D. This result implies that that this gene plays an important role for 

RTLN and BMWT in drought-stressed conditions.  

Excluding MTAs on haplotype block, eight MTAs for RTLN detected on chromosomes 

2D, 3B, 5B, 6A, and 7A were found in the gene regions (APPENDIX VII) and four of these 

genes have annotations suggesting their involvement in drought stress (Tables 3 and 4). The 

genes associated with four MTAs involved in drought stress are GRAM domain-containing 

protein/ABA-responsive (TraesCS5B01G502200) [91,92][91,92][92,93][90,91], phosphatase 2C 

family protein (TraesCS7A01G143200.2)[93], and disease resistance protein RPM1 
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(TraesCS2D01G541000.1) [53]. The SNPs S7A_94404310 was annotated as a missense variant 

and thus may have a moderate impact on the protein function (APPENDIX VII).  

 

Potential Candidate Gene Annotations Affecting Yield and Yield-Related Traits Under Drought 
Stress 

This study identified ~194 MTAs present on different chromosomes and associated with 

multiple traits. Of these 62 MTAs were either associated with same trait in multiple years (MTA 

stability in different environments) or multiple traits within the same year or across years 

(suggesting epistasis) (Table S5). Additionally, ~45 of the MTAs were present in genes with 

annotations relevant to the respective trait under drought stress (Tables 3 and 4). Interestingly, 

we noticed MTAs associated with same or related traits were located within genes that had the 

exact same annotation (Figure 4). For instance, some of the MTAs for GY (2 MTAs), BMWT 

(2), TKW (1), AWNLN (2), FLLN (1), FLW (1), and STMDIA (1) were located within genes 

annotated as F-box family protein.  Similarly, the genes annotated as cytochrome P450 harbored 

MTAs for HI (1), TKW (1), FLA (2), GVWT (1), and FLLN (2). Additional examples are 

provided in Figure 4. This result indicates the likely gene families that are important for grain 

yield and grain-yield related traits under drought stress. 

 

Conclusions  

The present study showed SHWs have large amounts of genetic variation for grain yield 

and yield-related traits. The GWAS in 123 SHWs using 35,648 SNPs identified several novel (90 

MTAs: 45 MTAs on the A genome, 11 on the B genome, and 34 on the D-genome) genomic 

regions or haplotype blocks associated with grain yield and yield-related traits in drought 
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stressed condition. Most of the MTAs (120 MTAs) were present in genes and several of them 

(45 MTAs) were annotated with functions related to drought stress. This provided further 

evidence for the reliability of the MTAs identified. We also identified MTAs on different 

chromosomes associated with multiple traits but within genes having the same annotation. This 

resulted in the identification of candidate genes belonging to the same gene family that likely 

have a major role in affecting yield and yield-related traits under drought stress in SHWs. The 

large number of MTAs especially on the D genome (53 MTAs with 34 MTAs being novel) 

identified in this study demonstrate the potential of SHWs for elucidating the genetic architecture 

of complex traits and provide an opportunity for further improvement of wheat under rapidly 

growing drought stressed environment throughout the world.  

 

Abbreviations 

ANOVA Analysis of Variance 

AWNLN Awn Length 

BLUP Best Linear Unbiased Prediction 

BMWT Biomass Weight 

FarmCPU Fixed and random model Circulating Probability Unification 

FLA Flag Leaf Area 

FLLN Flag Leaf Length 

FLW Flag Leaf Width 

GBS Genotyping-By-Sequencing 

GVWT Grain Volume Weight 

GWAS Genome Wide Association Study 

GY Grain Yield 

HI Harvest Index 

IWGC International Wheat Genome Sequencing Consortium  
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MAF Minor Allele Frequency 

QTN Quantitative Trait Nucleotide 

MLM Mixed Linear Model 

MLMM Multi-locus Mixed Model 

MTA Marker Trait Association 

QTL Quantitative Trait Loci 

RTLN Root Length 

SHW Synthetic Hexaploid Wheat  

SNP Single Nucleotide Polymorphism 

STMDIA Stem Diameter 

TKW Thousand Kernel Weight 
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TABLES 

Table 1. Mean monthly temperatures and total monthly rainfalls in two growing seasons (2016 and 2017) 

and 25-year average data in Konya, Turkey.  

Month 

Konya,  

2015-2016 

Konya,  

2016-2017 

Turkey,  

1991-2015 
Konya, 
2015-2016 

Konya, 
2016-
2017 

 

Turkey, 

1991-2015  

 

Temperature (temp)  

(°C)a 

Temp  

(°C) 

Temp  

(°C) b  
Rainfall 
(mm)c 

Rainfall 
(mm) 

Rainfall 
(mm) d 

 

September 22.8 17.1 19.0 35.8 11.2 23.1  

October 15.3 13.2 13.7 34.4 0.0 48.3  

November 7.5 4.9 7.0 5.8 16.6 58.0  

December -0.1 0.5 2.1 8.0 26.8 73.0  

January 1.6 0.2 0.1 37.0 9.0 65.6  

February 4.9 3.4 1.3 0.4 69.2 60.0   

March 8.5 8.2 5.3 37.8 31.0 61.6  

April 15.2 12.7 10.4 9.6 33.2 62.7  

May 18.4 16.7 15.2 38.4 41.2 54.6  

June 23.7 24.4 19.5 15.0 4.8 34.7  

July 26.6 27.7 22.9 0.2 0.0 15.1  

Total/average 13.1 11.7 10.6 222.4 243.0 435.1  

aSource: Bahri Dagdas International Agricultural Research Institute 

bSource: http://sdwebx.worldbank.org/climateportal/index.cfm?page=country_historical_climate&ThisCCode=TUR 

cSource: Bahri Dagdas International Agricultural Research Institute 

dSource: http://sdwebx.worldbank.org/climateportal/index.cfm?page=country_historical 
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Table 2. Phenotypic variation for grain yield and yield-related traits with best linear unbiased predictor values, range, percentage of coefficient of 

variation (CV), and broad sense heritability (H2) of 123 synthetic hexaploid wheat grown in two seasons (2016 and 2017) in Konya, Turkey. 

Trait 
2016 2017 

Mean Range CV H2 Mean Range CV H2 

Grain yield (gm-2) 259 200–341 9.7 0.32 290 241–392 9.9 0.56 

Harvest index 0.4 0.24-0.66 10.9 0.63 0.34 0.27–0.41 6.3 0.64 

Biomass weight (gm-2) 671 537–827 9.1 0.39 865 684–1098 8.9 0.63 

Thousand kernel weight (g) 32.1 24–42 10.5 0.75 41 33–50 8 0.90 

Grain volume weight (Kg hl-1) 65.6 52–77 7.2 0.91 74 68–77 2.3 0.76 

Awn length (cm) 6 2.3–8.6 24.3 0.61 5.6 0.5–8.0 28.3 0.95 

Flag leaf length (cm) 22.4 21.8–22.8 0.8 0.91 12 9.9–16.4 7.6 0.53 

Flag leaf width (cm) 1 0.96–1.13 2.8 0.67 1 0.9–1.3 6.1 0.49 

Flag leaf area (cm2) 18.9 17.6–19.7 2.2 0.85 10.1 7.7–14 11.6 0.52 

Stem diameter (mm) 2.9 2.4–3.5 6.9 0.57 2.9 2.5–4.0 7.4 0.63 

Root length (cm) 393 392–395 0.20 0.6 192.2 72–375 20 0.31 
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Table 3. List of significant markers associated with grain yield and yield-related traits, favorable alleles 

(underlined), SNP effects, and drought-related putative genes from genome-wide association study of 123 drought 

stressed synthetic hexaploid wheat grown in 2016 in Konya, Turkey.  

Trait SNPa -log10(P) Alleles 
SNP 

PVE 
(%) Gene-ID Annotation 

Effect 

GY S3A_686179591 4.08 A/G -14.28 10.7 TraesCS3A01G445100 F-box family protein 

GY S7A_112977027 5.24 A/T -19.17 12.8 TraesCS7A01G158200.1 Sentrin-specific protease 

HI S3A_593313534 13.56 T/C 0.08 16 TraesCS3A01G343700 WRKY transcription factor  

HI S6D_157451060 4.01 A/G -0.03 6.2 TraesCS6D01G170900.1 Cytochrome P450, putative 

HI S6D_462272376 12.01 G/A 0.02 14.5 TraesCS6D01G382600.1 LOB domain protein-like 

BMWT S1D_441309135 4.82 C/G -
105.34 14.4 TraesCS1D01G357500.1 Protein DETOXIFICATION 

BMWT S7B_450630784 4.06 A/G -25.88 10.7 TraesCS7B01G242600.1 F-box family protein 

TKW S2A_47781717 4.52 G/A 0.93 4.2 TraesCS2A01G093500 F-box family protein 

TKW S4A_625466381 4.12 T/G 1.21 15.3 TraesCS4A01G347600 Protein kinase family protein 

TKW S4D_509427923 4.91 C/G -1.72 10.1 TraesCS4D01G364700 Cytochrome P450 family protein 

TKW S6D_452410667 8.16 A/G -1.54 17.7 TraesCS6D01G360800 Protein kinase family protein 

AWNLN S4D_461573496 5.71 T/C 0.32 9 TraesCS4D01G290700.1 60S ribosomal protein L18a 

AWNLN S5A_562540562 11.67 C/T -1.71 11.3 TraesCS5A01G361300.1 Guanine nucleotide exchange family 
protein 

FLLN S1B_667135914 4.38 C/T -0.16 20.8 TraesCS1B01G447400 Disease resistance protein RPM1 

FLW S6D_16376439 4.85 C/T -0.02 13.3 TraesCS6D01G040100.1 Mitochondrial transcription termination 
factor-like  

FLA S1D_278097355 4.74 G/C 0.21 11.5 TraesCS1D01G197200.1 P-loop containing nucleoside triphosphate 
hydrolases superfamily protein 

FLA S6B_120860110 4.01 G/A 0.17 9.3 TraesCS6B01G125800 Cytochrome P450 family protein, expressed 

FLA S6B_120860130 4.01 A/T -0.17 9.3 TraesCS6B01G125900 Cytochrome P450 family protein, expressed 

STMDIA S1D_431523575 6.58 A/G -0.06 10.3 TraesCS1D01G341500 Disease resistance protein (NBS-LRR class) 
family 

STMDIA S3D_10133372 9.83 G/T -0.11 8.6 TraesCS3D01G028500.1 Leucine-rich repeat receptor-like protein 
kinase family protein 

STMDIA S6A_94238211 6.9 T/G 0.06 7.5 TraesCS6A01G122200.1 Protein kinase, putative 

RTLN S5B_669373985 4.62 T/C 0.27 6.9 TraesCS5B01G502200 GRAM domain-containing protein / ABA-
responsive 

RTLN S5B_669374027 4.62 T/C 0.27 6.9 TraesCS5B01G502200 GRAM domain-containing protein / ABA-
responsive 

RTLN S6D_431108774 4.01 A/G -0.27 5.8 TraesCS6D01G332800.1 Protein DETOXIFICATION 

RTLN S7A_94404310 4.01 G/A 0.52 7.5 TraesCS7A01G143200.2 Phosphatase 2C family protein 

PVE: Phenotypic variance explained; GY, Grain yield; HI, Harvest index; BMWT, Biomass weight; TKW, Thousand kernel 
weight; GVWT, Grain volume weight; AWNLN, Awn length; FLLN, Flag leaf length; FLW, Flag leaf width; FLA, Flag leaf 
area; STMDIA, Stem diameter; RTLN, Root length. aS+chromosome_chromosome position in bp._  
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Table 4. List of significant markers associated with grain yield and yield-related traits, favorable alleles 

(underlined), SNP effects, and drought-related putative genes obtained from genome-wide association 

study of 123 drought stressed synthetic hexaploid wheat grown in 2017 in Konya, Turkey.  

Trait SNPa -log10(P) Alleles 
SNP 

PVE 
(%) Gene-ID Annotation 

Effect 

GY S3A_25012018 4.81 A/G -20.02 12.7 TraesCS3A01G047300 F-box domain containing protein 

GY S3D_1203058 4.12 T/G 14.32 12.8 TraesCS3D01G002700 Disease resistance protein RPM1 

BMWT S3A_25012018 6.08 A/G -59.44 14.4 TraesCS3A01G047300 F-box domain containing protein 

TKW S4B_11905230 8.94 C/G -1.11 3.9 TraesCS4B01G016200.1 LOB domain-containing protein, putative 

TKW S4B_637722874 5.17 T/C 0.86 2 TraesCS4B01G344200.1 Zinc finger (C3HC4-type RING finger) 
family protein 

GVWT S1A_522189599 4.11 A/G -0.55 2.5 TraesCS1A01G334800 Cytochrome P450 

GVWT S4A_73454791 5.64 C/T -0.63 5.5 TraesCS4A01G074200.2 Microtubule associated protein family 
protein, putative, expressed 

AWNLN S5B_43896804 7.31 C/T -1.13 6 TraesCS5B01G038700 F-box family protein 

AWNLN S6B_643657 10.55 C/T -1.04 5.7 TraesCS6B01G001000 F-box family protein 

FLLN S1B_631203243 5.26 A/G -0.21 9.8 TraesCS1B01G400600.1 Rp1-like protein 

FLLN S2B_140752747 4.15 G/C 0.29 1.6 TraesCS2B01G167500.1 Cytochrome P450, putative 

FLLN S2D_642055122 4.12 T/C 0.25 5.9 TraesCS2D01G579800 protein kinase family protein 

FLLN S4A_612662321 5.3 C/T -0.23 5.3 TraesCS4A01G325200 F-box family protein  

FLLN S6D_463762312 5.72 G/A 0.25 6 TraesCS6D01G386300 Cytochrome P450, putative 

FLW S1A_516732460 6.99 A/G -0.03 9.5 TraesCS1A01G326700.1 Citrate-binding protein 

FLW S6B_26200560 7.13 C/A 0.03 12.3 TraesCS6B01G042800 F-box family protein 

FLA S1A_516732460 6.9 A/G -0.42 8 TraesCS1A01G326700.1 Citrate-binding protein 

FLA S2A_764065400 4.18 G/T -0.19 3.8 TraesCS2A01G563200 NBS-LRR resistance-like protein 

STMDIA S6B_610963076 5.7 T/G 0.06 7.9 TraesCS6B01G346900-
TraesCS6B01G347000 

NBS-LRR disease resistance protein and 
F-box protein-like 

RTLN S2D_620326979 4.22 T/C 192.21 9.9 TraesCS2D01G541000.1 Disease resistance protein RPM1 

PVE: Phenotypic variance explained; GY, Grain yield; HI, BMWT, Biomass weight; TKW, Thousand kernel weight; GVWT, 
Grain volume weight; AWNLN, Awn length; FLLN, Flag leaf length; FLW, Flag leaf width; FLA, Flag leaf area; STMDIA, 
Stem diameter; RTLN, Root length. aS+chromosome_chromosome position_bp. 
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FIGURES 

 

Figure 1. Principal component bi-plot analysis of 123 drought-stressed synthetic hexaploid wheat grown 

in two seasons (A: 2016 and B: 2017) in Konya, Turkey. AWLN, awn length; BMWT, biomass weight; 

FLA, flag leaf area; FLLN, flag leaf length; FLW, flag leaf width; GVWT, grain volume weight; GY, 

grain yield; HI, harvest index; RTLN, root length; STMDIA, stem diameter; and TKW, thousand kernel 

weight. 
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Figure 2. Significant marker trait associations identified on each chromosome for grain yield and yield-

related traits obtained from genome-wide association study of 123 synthetic hexaploid wheat grown in 

2016 and 2017 in Konya, Turkey. 
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Figure 3. Linkage disequilibrium (LD) values (R2) and haplotype blocks with significant marker-trait associations (MTAs; ≥2) observed (A) on chromosome 7A for grain yield (B) 

on chromosome 3A for grain yield (C) on chromosome 3A for biomass weight (D) on chromosome 3B for stem diameter (E) on chromosome 1A for flag leaf area (F) on 

chromosome 6B for flag leaf area (G) on chromosome 7D for flag leaf area (H) on chromosome 6D for root length and phenotypic variance explained (PVE) by each haplotype 

block . Dark red color represents the strong LD whereas light red color represents the weak LD between pairs of MTAs. 
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Figure 4. Potential candidate gene functions harboring SNPs affecting yield and yield-related traits under 

drought stress. The count of marker-trait associations (for either single or multiple traits) located within 

genes that have the same gene annotation is shown. AWLN, awn length; BMWT, biomass weight; FLA, 

flag leaf area; FLLN, flag leaf length; FLW, flag leaf width; GVWT, grain volume weight; GY, grain 

yield; HI, harvest index; RTLN, root length; STMDIA, stem diameter; and TKW, thousand kernel weight. 
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CHAPTER 4. GENOME-WIDE ASSOCIATION STUDY REVEALS FAVORABLE 

ALLELES ASSOCIATED WITH COMMON BUNT RESISTANCE IN SYNTHETIC 

HEXAPLOID WHEAT 

This chapter is published: Bhatta  M., Morgounov A., Belamkar V., Yorgancilar A., Baenziger P.S. Euphytica 
214:200 (2018).	https://doi.org/10.1007/s10681-018-2282-4 

Abstract 

        Genetic resistance to common bunt is a cost-effective, environmentally friendly, and 

sustainable approach to controlling the disease. To date, 16 race specific common bunt resistance 

genes (Bt1-Bt15 and Btp) have been reported in wheat. However, a limited number have been 

mapped and few markers have been identified, which limits the usage of molecular markers in a 

marker-assisted breeding program. A total of 125 synthetic hexaploid wheats (SHWs) were 

evaluated for reactions to a mixture of common bunt races under field conditions in Turkey in 

2016 and 2017. The objectives of this study were to identify common bunt resistant genotypes, 

identify genomic regions conferring resistance to common bunt using 35,798 genotyping-by-

sequencing derived single nucleotide polymorphisms (SNPs), and investigate the significant 

SNPs present within genes using the functional annotations of the underlying genes. We found 

29 resistant SHWs that can be used in wheat breeding. The genome-wide association study 

identified 15 SNPs associated with common bunt resistance and a haplotype block comprising 

three SNPs in perfect linkage disequilibrium. Five of them were novel and were located on 

chromosomes 2A, 3D, and 4A. Furthermore, seven of the 15 SNPs were found within genes and 

had annotations suggesting potential role in disease resistance. This study identified several 

favorable alleles that decreased common bunt incidence up to 26% in SHWs. These resistant 

SHWs and candidate genomic regions controlling common bunt resistance will be useful for 
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wheat genetic improvement and could assist in further understanding of the genetic architecture 

of common bunt resistance.   

Keywords: Genetic resistance; Genomic regions; Genotyping-by-sequencing; Molecular 

markers; Resistance genes; Wheat genetic improvement 

 

Abbreviations 

SHW, Synthetic Hexaploid Wheat; GBS, Genotyping-by-Sequencing; MTA, Marker Trait 

Association; BLUP, Best Linear Unbiased Predictor; GWAS, Genome Wide Association Study; 

MAF, Minor Allele Frequency; Q-Q plot, Quantile-Quantile plot; SNP, Single Nucleotide 

Polymorphism; IWGSC, International Wheat and Genome Sequencing Consortium 
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Introduction 

        Common bunt [incited by Tilletia tritici (Bjerk.) and T. laevis (Kühn)] is one of the most 

important seed/soil-borne fungal diseases in wheat (Triticum spp.) (Wang et al. 2009; Goates 

2012). Wheat yield and quality is reduced through the production of bunted sori filled with 

fungus teliospores (releasing fishy odor) in the grain (Wang et al. 2009). Although common bunt 

is effectively controlled through chemical seed treatment (Bhatta et al. 2018a), it increases the 

cost of production and may cause harm to the environment and human health (Wang et al. 2009). 

Chemical seed treatment with a synthetic pesticide is not allowed for controlling common bunt in 

organic farming (Fofana et al. 2008). Therefore, development and identification of genetic 

resistance to common bunt is the best method of controlling the disease in a cost-effective, 

environmentally friendly, and sustainable manner. Genetic pest resistance has been employed in 

agriculture for decades, however, effective genetic resistance against common bunt is still 

limited (He and Hughes 2003; Fofana et al. 2008). 

        To date, 16 race specific common bunt resistance genes (Bt1-Bt15 and Btp) have been 

reported in wheat (Goates and Bockelman 2012; Goates 2012). However, only a limited number 

of genes have been mapped (Dumalasová et al. 2012), which is essential for marker-assisted 

breeding. Marker-assisted selection (MAS) can greatly facilitate common bunt resistance 

breeding as the phenotypic assay is difficult, time-consuming, environmentally dependent, and 

expensive. Additionally, MAS is useful for pyramiding resistance genes to provide durable 

resistance. The Bt1 gene is located on chromosome 2B (Sears et al. 1960); Bt4, Bt5, and Bt6 are 

on 1B (Scmidt et al. 1969; McIntosh 1998), Bt7 on 2D (Schaller et al. 1960), Bt9 on 6D (Steffan 

et al. 2017), Bt10 on 6D (Menzies et al. 2006), and Bt11 on 3B (Ciucă 2011). Quantitative trait 

loci (QTL) mapping of common bunt resistance identified 17 QTL on chromosomes 1B (Fofana 
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et al. 2008; Wang et al. 2009; Dumalasová et al. 2012; Galaev et al. 2012; Singh et al. 2016; Zou 

et al. 2017), 3A (Zou et al. 2017), 4B (Singh et al. 2016), 4D (Singh et al. 2016), 5B 

(Dumalasová et al. 2012; Singh et al. 2016), 7A (Fofana et al. 2008; Dumalasová et al. 2012), 7B 

(Dumalasová et al. 2012; Knox et al. 2013), and 7D (Singh et al. 2016). Of the 16 genes, Bt10 is 

commonly used in wheat breeding programs due to its effectiveness against most of the races of 

common bunt (Menzies et al. 2006). New races are likely to evolve that will overcome 

previously identified (mostly race specific) resistance genes. For instance, Goates (2012) 

identified new races of common bunt virulent to Bt8 or Bt12. Therefore, identifying and 

pyramiding new resistance genes are critical components of breeding programs that wish to 

achieve durable resistance.  

        One approach to identifying novel disease resistance genes is through the utilization of 

primary gene pool wild relatives. Synthetic hexaploid wheat (SHWs; 2n=6x=42, AABBDD) 

(Bhatta et al. 2018b) is produced through hybridization of cultivated durum wheat (2n=4x=28, 

AABB, Triticum durum L.) and wild goat grass [(2n=2x=14, DD), Aegilops tauschii Coss.)]. The 

SHWs have been reported to have resistance to multiple abiotic (Bhatta et al. 2018c) and biotic 

stresses including common bunt (Morgounov et al. 2018). The SHWs under study have a large 

amount of genetic diversity especially for the D-genome compared to the elite bread wheat 

cultivars (Bhatta et al. 2018b). A genome-wide association study (GWAS) is useful for the 

identification of genomic regions associated with common bunt resistance. The objectives of this 

study were (i) to identify common bunt resistant genotypes, (ii) determine genomic regions 

associated with common bunt resistance among 125 SHWs using 35,798 genotyping-by-

sequencing (GBS) derived single nucleotide polymorphisms (SNPs), and (iii) further investigate 

the significant SNPs present within genes using the functional annotations of the underlying 
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genes. This is the first report on GWAS for common bunt resistance in wheat and SHW. The 

results of this study will be valuable for accelerating the successful deployment of favorable 

alleles conferring resistance to common bunt through genomic and marker-assisted selection and 

for utilizing common bunt resistance from SHWs for broadening the genetic base of elite wheat 

germplasm.  

 

Materials and Methods 

Site description and plant materials 

       Field experiments were conducted in 2016 and 2017 at a research farm located in 

theTransitional Zone Agricultural Research Institute, Eskisehir, Turkey. The study population 

consisted of 125 SHW lines derived from crosses of seven durum parents crossed with 25 

different Ae. tauschii accessions (APPENDIX I) and was described previously (Bhatta et al. 

2018b). These SHW lines are available from the International Winter Wheat Improvement 

Program (http://www.iwwip.org) at CIMMYT in Turkey (Morgounov et al. 2018). 

 

Disease evaluation and experimental design 

       Phenotypic disease evaluation was performed under field conditions in the 2016 and 2017 

growing seasons. Seeds were artificially inoculated with a mixture of spores (obtained from 

sampling naturally infected spikes) of different races of T. tritici and T. laevis prevalent in 

Eskisehir, Turkey. Seeds were then sown in one-meter row plot around mid-October in an 

augmented design with replicated checks (‘Gerek’ and ‘Karahan’) in both years. Disease 

incidence was estimated as a percentage of bunted spikes per row at plant maturity (around mid-

July). The SHWs were determined as being resistant or susceptible to common bunt based on the 
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percentage of infected spikes: 0.0%= very resistant, 0.1 to 5.0%= resistant, 5.1 to 10.0%= 

moderately resistant, 10.1 to 30.0%= moderately susceptible, 30.1 to 50.0%= susceptible, and 

50.1 to 100.0%= very susceptible (Veisz et al. 2000).  

 

Phenotypic data analysis 

      A combined (two-years) analysis of variance of the percentage of common bunt infected 

kernels was done assuming a mixed linear model. The PROC MIXED routine in SAS 9.4 (SAS 

Institute, 2018) was used to estimate the best linear unbiased predictors (BLUPs) and to 

determine the effects of genotype, year, and their interactions on common bunt resistance 

reactions using the  model: yijklm = µ + Yri + B(Yr)ji + Ck + Gl(ji) + GxYrli + eijklm, where, 

yijklm is the percentage of common bunt spikes; µ is the overall mean; Yri is the effect of the ith 

year; B(Yr)ji is the effect of the jth incomplete block within the  ith year; Ck is the kth check; Gl(ji) 

is the effect of the lth genotype (new variable, where check was coded as 0 and entry was coded 

as 1 and genotype was taken as new variable x  entry) within jth incomplete block of ith year; 

GxYrli is the interaction effect of lth genotype and ith year; eijklm is the residual. In this model, year 

and check were assumed to be fixed effects, whereas genotypes, genotype x year interaction, and 

incomplete blocks nested within a year were assumed to be random effects. Broad-sense 

heritability was calculated based on entry mean basis as described previously (Bhatta et al. 

2018c). A Pearson correlation between the two years’ datasets was calculated using PROC 

CORR in SAS using BLUPs.  

 



101 
 

 

Genotyping and SNP Discovery  

DNA extraction using BioSprint 96 DNA Plant Kits (Qiagen, Hombrechtikon, 

Switzerland), genotyping-by-sequencing, and SNP discovery were carried out as described in 

Bhatta et al. (2018b). SNP discovery was done using TASSEL v. 5.2.40 GBS v2  Pipeline 

(Glaubitz et al. 2014) with physical alignment to the Chinese Spring genome sequence (RefSeq 

v1.0) provided by the International Wheat Genome Sequencing Consortium (IWGSC 2018). 

After SNP discovery, the SNPs with minor allele frequency (MAF) less than 5% and more than 

20% missing data were removed from the analysis Bhatta et al. (2018b, c). All lines had less than 

20% missing sites and thus none were dropped from the analysis. 

 

Population structure, genome-wide association analysis, and candidate gene analysis 

The population structure of the 125 genotypes was assessed using the Bayesian clustering 

algorithm in the program STRUCTURE v 2.3.4 (Pritchard et al. 2000) and principal component 

analysis (PCA) was done using TASSEL (Bradbury et al. 2007, as described in Bhatta et al. 

(2018b, c). In brief, three sub-populations were observed both in the STRUCTURE and PCA, 

and hence, the first three PCs were used in the GWAS to control population structure.  

A GWAS was performed on the BLUPs combined over years to identify SNPs associated 

with common bunt resistance (marker-trait associations: MTAs) using FarmCPU (Fixed and 

random model Circulating Probability Unification) with the first three principal components 

(PC1, PC2, and PC3) and FarmCPU calculated kinship (Liu et al. 2016) implemented in MVP R 

software package (https://github.com/XiaoleiLiuBio/MVP). The identified MTAs were tested 

against a uniform suggestive genome-wide significance threshold (P = 8.8E-05; -log10(P) value = 

4.05) considering the deviation of Q-Q plot (Bhatta et al. 2018c). The percentage of phenotypic 
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variance explained (R2) by each SNP was calculated using TASSEL (Bradbury et al. 2007).  

Haplotype block analysis with linkage disequilibrium (LD) values in adjacent regions (<500 kb) 

of significant MTAs were visualized and plotted in a Haploview software using default 

parameters (Barret et al. 2005). To further understand the role of significant MTAs, functional 

annotations of the underlying genes containing these SNPs were retrieved from the IWGSC 

RefSeq v1.0 functional gene annotation provided for every gene in the genome (IWGSC 2018). 

The T-tests were performed to determine whether the favorable alleles significantly improved the 

trait of interest compared to the unfavorable alleles. Regression analysis was performed between 

the number of favorable alleles and common bunt incidence (%) to understand whether the 

favorable alleles significantly decreases the common bunt incidence in SHWs and vice-versa.  

 

Results and Discussion 

Phenotypic distribution of common bunt incidence in the SHW population 

A combined analysis of variance of common bunt incidence showed the non-significant 

interaction between genotypes and years (mean squares = 66.6, P=0.99) whereas the main effects 

of genotypes (mean squares =682.7, P<0.0001) and years (mean squares = 632.1, P<0.0001) 

were both significant. The non-significant genotype by year interaction implies that genotypes 

responded similarly across years. This result was also reflected by the strong correlation (r=0.95, 

P<0.0001) observed between genotypes across the two years. Therefore, the BLUPs obtained 

from the combined analysis of variance assuming a mixed model was used for further analysis. 

The present study identified moderate heritability (H2=0.58) for common bunt incidence. Low to 

moderate heritability for common bunt incidence was observed previously (Fofana et al. 2008).  
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The percentage of common bunt infection in SHWs based on the combined BLUPs 

ranged from 0.2 to 75.4% with an average of 20.8% (Fig. 1), indicating considerable genetic 

variation among SHWs. As expected, the bunt susceptible check cultivar, Gerek, showed a high 

(60.3%) disease incidence, whereas the bunt resistant check cultivar, Karahan, showed a low 

incidence (1.7%) (Fig. 1). Hence, our field assay was very effective in discriminating among the 

entries. Four of the SHWs were very resistant (<0.1% disease incidence) and 25 were resistant 

(0.1 to 5% disease incidence) to common bunt (Fig. 1). Twenty-one (~72%) resistant SHWs 

derived from Ukrainian durum parents (‘UKR-OD 1530.94, LEUC 84693’, and ‘UKR-OD 

761.93, AISBERG’), six of them (~21%) were from a Romanian durum (PANDUR) parent, and 

two of them (~7%) were from spring durum (Langdon) parent. The 29 resistant SHWs can be 

used in breeding programs for the introduction of common bunt resistance.  

 

Genome-wide association study 

A GWAS was performed to identify MTAs controlling resistance to common bunt using 

a multi-locus mixed model (MLMM) implemented in FarmCPU, where the combined BLUPs 

over two years (2016 and 2017) were the phenotypic data and 35,798 GBS-derived SNPs 

(MAF>5%, missing data <20%) were the genotypic data. The SNPs used in this study were well 

distributed across the 21 chromosomes in the SHWs (Fig. 2).  

Genome-wide association study detected 15 MTAs for common bunt resistance on 

chromosomes 1B, 2A, 2B, 3D, 4A, 7A, and 7B (Fig. 3) with phenotypic variance explained 

(PVE) ranging from 1.22 to 16.7% (Table 1). Earlier studies have reported QTL for common 

bunt resistance on chromosomes 1B  (Scmidt et al. 1969; McIntosh 1998; Fofana et al. 2008; 

Wang et al. 2009; Dumalasová et al. 2012; Galaev et al. 2012; Singh et al. 2016; Zou et al. 
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2017), 2B (Sears et al. 1960), 2D (Schaller et al. 1960), 3A (Zou et al. 2017), 3B (Ciucă 2011), 

4B (Singh et al. 2016), 4D (Singh et al. 2016), 5B (Dumalasová et al. 2012; Singh et al. 2016), 

6D (Menzies et al. 2006; Steffan et al. 2017), 7A (Fofana et al. 2008; Dumalasová et al. 2012), 

7B (Dumalasová et al. 2012; Knox et al. 2013), and 7D (Singh et al. 2016). The five MTAs 

identified in this study on chromosomes 2A (three MTAs), 3D (one), and 4A (one) have not been 

previously reported and they are potentially novel MTAs. The present study identified a 

haplotype block (perfect LD; squared correlation coefficient between locus allele frequency i.e., 

r2 =1) of size 18 bp on chromosome 7A with three SNPs associated with common bunt 

resistance and the PVE by each MTA present on this haplotype block was 5.1%. Identification of 

a haplotype block with multiple MTAs on chromosome 7A as earlier studies (Fofana et al. 2008; 

Dumalasová et al. 2012)  provided increased confidence on these associations and showed that 

the chromosome 7A is important for common bunt resistance in wheat.   

 

Potential candidate genes underlying marker-trait associations and their gene annotations 

The seven MTAs detected on chromosomes 2A (1), 2B (1), 4A (1), 7A (3), and 7B (1) 

were within genes whose annotation suggested that they could be associated with disease 

resistance (IWGSC 2018) (Table 1). For instance, the genes flanking SNP-S2A_690962587 on 

chromosome 2A were annotated as clathrin interactor EPSIN 1 (TraesCS2A01G440100.1) and 

ubiquinol oxidase/alternative oxidase (TraesCS2A01G438200.1). Alternative oxidase (PF01786) 

is a major stress-induced protein that has been found to be involved in maintaining metabolic and 

signaling homeostasis during abiotic and biotic stress in plants (Vanlerberghe 2013; Moore et al. 

2013). The gene containing SNP-S2B_799254305 on chromosome 2B was annotated as 

CsAtPR5 (TraesCS2B01G627300.1). This gene is a precursor of the pathogenesis-related protein 
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5 (PR5) and has been found to be associated with yellow rust (incited by Puccinia striiformis 

f.sp. tritici Westend.) resistance (Bozkurt et al. 2007) and powdery mildew (incited by Blumeria 

graminis (DC.) Speer f.sp. tritici) resistance (Niu et al. 2010) in wheat. The genes flanking SNP-

S4A_721406696 on chromosome 4A were annotated as diacylglycerol O-acyltransferase 2 

(TraesCS4A01G456400.2) and cellulose synthase-like protein or RING/Ubox like zinc-binding 

domain (TraesCS4A01G456300.1) and were previously found to be involved in biotic (Chen et 

al., 2016) and abiotic stress (salt and drought) tolerance (Zhu et al. 2010; Im et al. 2017). All 

three MTAs (SNP S7A_703054426, S7A_703054429, and S7A_703054444) on chromosome 

7A were within the same gene (TraesCS7A01G518800.1), which was annotated as NF-X1-type 

zinc finger protein NFXL1 (TraesCS7A01G518800.1) (Table 1). This gene has been reported to 

be involved in rice blast disease (incited by Magnaporthe oryzae Cavara)  resistance (Li et al. 

2014). The gene associated with SNP S7B_660640575 on chromosome 7B were 

ENTH/ANTH/VHS superfamily protein (TraesCS7B01G393800.2) and Zinc finger protein such 

as PHD (plant homeodomain) finger (TraesCS7B01G393900.1). The PHD finger is a nuclear 

protein involved in regulating defense responses against abiotic and biotic stresses (Hong et al. 

2007; Cheung et al. 2007). While these genes may have a role in controlling resistance to 

common bunt in the SHWs, the present data do not provide proof of this. However, the MTAs 

that were identified in this study provide evidence for evaluating these genes in future functional 

characterization studies for common bunt in wheat. Additionally, these MTAs can be explored in 

marker-assisted breeding. 
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Favorable alleles associated with common bunt resistance 

In the present study, alleles of MTAs that decrease the incidence of common bunt were 

considered favorable whereas alleles that increase the common bunt incidence were considered 

unfavorable. Allelic variation for significant MTAs in the 125 genotypes is presented in box 

plots (Fig. 4). The distribution of favorable/unfavorable alleles varied widely among SHWs (Fig. 

4 and APPENDIX VIII) and the numbers of favorable alleles ranged from 0 to 11 with a median 

of 7 alleles (Fig. 4). The resistant genotypes (29) had favorable alleles ranging from 3 to 11 with 

a median of 8 alleles. The favorable alleles involved in MTAs decreased the percentage of 

common bunt infected spikes by 0.47% (S7A_9996936_G) up to 26 % (S2B_799254305_G) 

(Fig. 4). Six highly favorable alleles (G of SNP 2A_690962587, G of SNP S2B_795282008, G 

of SNP S2B_799254305, T of SNP S3D_575937403, T of SNP S4A_721406696, and T of SNP 

S7B_660640575) significantly (P<0.05) decreased common bunt incidence compared to the 

genotypes with unfavorable alleles (Fig. 4), indicating their potential usefulness in breeding 

programs.  Regression analysis confirmed that common bunt incidence (%) linearly decreased 

with an increase in the number of favorable alleles, whereas it increased with an increase in the 

number of unfavorable alleles (Fig. 5). The PVE (R2) by favorable alleles on common bunt 

incidence was 19% whereas the PVE by unfavorable alleles was 25% (Fig. 5). These results 

suggested that the highly favorable alleles for common bunt resistance from SHWs could be used 

in elite wheat breeding program for pyramiding superior alleles.  

 

Conclusions 

The present study on SHWs found a considerable genetic variation for common bunt 

incidence and identified 29 resistant SHWs that can be used in wheat breeding programs. A 
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marker-trait analysis was conducted using GWAS and identified 15 MTAs for common bunt 

resistance.  Seven of the MTAs were within genes with functional annotations that suggest their 

involvement in disease resistance. This study also identified five novel MTAs, and of these, three 

were found within genes with disease resistance functions, which provided the confidence on the 

usefulness of the identified MTAs. Additionally, we identified three MTAs on a haplotype block 

in a perfect LD and the MTAs present in each haplotype block explained 5.1% of the phenotypic 

variance. We identified highly favorable alleles associated with common bunt resistance and the 

resistant SHWs identified in this study should be valuable for the introgression of resistance into 

elite bread wheat germplasm. Apart from their utility in the marker-aided selection, the markers 

identified here will facilitate a better understanding of the genetic basis of common bunt 

resistance.   
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TABLES 

Table 1. List of significant markers associated with common bunt resistance, favorable allele 

(underlined), SNP effects, and functional annotation of genes containing or flanking significant SNPs 

from the genome-wide association study of 125 synthetic hexaploid wheats grown in 2016 and 2017 in 

Eskisehir, Turkey.  

SNPa -
lop10(P) Alleles SNP 

Effect 
PVE 
(%)b Gene-ID Annotation 

S1B_605788510 7.04 G/T 8.47 4.57 - - 

S2A_393513188 5.80 C/T 3.72 1.22 - - 

S2A_686298452 4.69 C/T 7.86 6.78 - - 

S2A_690962587 10.57 G/A -6.86 8.01 
TraesCS2A01G440100.1-
TraesCS2A01G440200.1 

Clathrin interactor EPSIN 1 - 
Ubiquinol oxidase/Alternative 
oxidase 

S2B_795282008 11.74 G/C 
-
12.29 15.34 - - 

S2B_799254305 12.94 G/C -7.14 16.7 - - 

S3D_575937403 6.54 T/G -5.57 4.01 TraesCS2B01G627300.1 CsAtPR5 

S4A_721406696 4.55 T/C -4.37 3.47 
TraesCS4A01G456300.1-
TraesCS4A01G456400.2 

Cellulose synthase-like 
protein/RING/Ubox like zinc-
binding domain - Diacylglycerol 
O-acyltransferase 2 

S7A_41818214 4.06 A/G 5.07 10.84 - - 

S7A_703054426 4.25 T/C -4.05 5.11 
TraesCS7A01G518800.1-
TraesCS7A01G518900.1 

NF-X1-type zinc finger protein 
NFXL1 -APOLLO 

S7A_703054429 4.25 G/C -4.05 5.11 
TraesCS7A01G518800.1-
TraesCS7A01G518900.1 

NF-X1-type zinc finger protein 
NFXL1 - APOLLO 

S7A_703054444 4.25 C/T 4.05 5.11 
TraesCS7A01G518800.1-
TraesCS7A01G518900.1 

NF-X1-type zinc finger protein 
NFXL1 -APOLLO 

S7A_9996936 5.72 G/T 6.56 5.25 - - 

S7B_629415715 5.86 A/G 6.77 4.88 - - 

S7B_660640575 4.17 C/T 5.28 4.32 
TraesCS7B01G393800.2-
TraesCS7B01G393900.3 

ENTH/ANTH/VHS superfamily 
protein -Zinc finger-PHD-finger 

aS+chromosome_chromosome position in bp 
bPVE: Phenotypic variance explained  
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Figures 

 

 

Fig. 1 Frequency distribution of common bunt infected spikes (%) obtained from best linear 

unbiased predictors combined over two years (2016 and 2017) from 125 synthetic hexaploid 

wheats.  
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Fig. 2 Physical distribution of 35,798 genotyping-by-sequencing derived SNPs within 1-Mb 

window size on 21 chromosomes of 125 synthetic hexaploid wheats. 
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Fig. 3 Manhattan (main panel) and quantile-quantile (Q-Q; top right) plots showing genome-

wide association results for common bunt resistance in 125 synthetic hexaploid wheat lines. The 

Manhattan plot shows the association -log10(p) for each genome-wide SNPs (35,798) on y-axis 

by chromosomal position on x-axis. The green dots in the Manhattan plot shows the significant 

marker-trait associations above the threshold line (red) with P = 8.8E-05 [-log10P=4.05]. The Q-

Q plot shows the deviation of association test statistics (blue dots) from the distribution expected 

under the null hypothesis (red line). 
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Fig. 4 Distribution of favorable and unfavorable alleles in 125 synthetic hexaploid wheat lines 

and comparison of alleles of the SNP markers associated with common bunt incidence (%) to 

determine the significant differences between the mean values of two alleles. The cross symbol 

and horizontal line inside the box plots are mean and median values of common bunt incidence, 

respectively.  *; *** Indicate significance at the 0.05 and 0.001 probability levels, respectively. 

 

 

 

 

 

 



119 
 

 

 

Fig. 5 Scatter plots and regression analysis of common bunt incidence (%) and the number of (a) 

favorable alleles or (b) unfavorable alleles in 125 synthetic hexaploid wheat lines. 
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CHAPTER 5. A GENOME-WIDE ASSOCIATION STUDY REVEALS NOVEL GENOMIC 

REGIONS ASSOCIATED WITH 10 GRAIN MINERALS IN SYNTHETIC HEXAPLOID 

WHEAT 

This chapter is published: Bhatta M., Baenziger P.S., Waters B.M., Poudel R., Belamkar V., 
Poland J., Morgounov A., International Journal of Molecular Sciences 19(10):3237 (2018). 
https://doi.org/10.3390/ijms19103237 

Abstract 

Synthetic hexaploid wheat (SHW; Triticum durum L. x Aegilops tauschii Coss.) is a 

means of introducing novel genes/genomic regions into bread wheat (T. aestivum L.) and a 

potential genetic resource for improving grain mineral concentrations. We quantified 10 grain 

minerals (Ca, Cd, Cu, Co, Fe, Li, Mg, Mn, Ni, and Zn) using inductively coupled mass 

spectrometer in 123 SHWs for genome-wide association study (GWAS). A GWAS with 35,648 

SNP markers identified 92 marker-trait associations (MTAs), of which 60 were novel and 40 

were within genes, and the genes underlying 20 MTAs had annotations suggesting a potential 

role in grain mineral concentration. Twenty-four MTAs on the D-genome were novel and 

showed the potential of Ae. tauschii for improving grain mineral concentrations such as Ca, Co, 

Cu, Li, Mg, Mn, and Ni. Interestingly, the large number of novel MTAs (36) were identified on 

the AB genome of these SHWs indicated that there is a lot of variation yet to be explored and to 

be used in the A and B genome along with the D-genome. Regression analysis identified a 

positive correlation between a cumulative number of favorable alleles in a genotype and grain 

mineral concentration. Additionally, we identified multi-traits and stable MTAs and 

recommended 13 top 10% SHWs with a higher concentration of beneficial grain minerals (Cu, 

Fe, Mg, Mn, Ni, and Zn) and a large number of favorable alleles compared to low ranking 

genotypes and checks that could be utilized in the breeding program for the genetic 
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biofortification. This study will further enhance our understanding of the genetic architecture of 

grain minerals in wheat and related cereals.  

Keywords: Triticum durum, Aegilops tauschii, Triticum aestivum, marker-trait associations, 

genes, bread wheat, genetic biofortification, favorable alleles 

 

Introduction 

The global population is increasing rapidly and is expected to reach 9.8 billion in 2050 [1]. 

With the increase in global population, the demand for staple crops will continue to increase. 

Wheat (Triticum aestivum L.) is one of the most important staple crops, and it feeds more than 

one-third of the world population, providing carbohydrates, proteins, vitamins, antioxidants, 

fibers, and minerals [2]. In 2017/2018, wheat production was estimated at 756.8 million tons [3]. 

Despite the significant growth in wheat production, a large percentage of the population who rely 

on wheat as a staple crop suffer from deficiencies in minerals such as calcium (Ca), copper (Cu), 

iron (Fe), magnesium (Mg), and zinc (Zn) [4–6] because of the of low grain mineral 

concentrations [7]. Increased concentrations of essential minerals and decreased concentrations 

of toxic minerals such as cadmium (Cd) in wheat grain will have a significant impact on human 

health. One sustainable and cost-effective approaches to increasing essential mineral 

concentrations is through genetic biofortification, which requires identification of cultivars with 

useful genetic variability for grain minerals and understanding of the physiological and genetic 

architecture of these minerals in wheat [8].  

Grain mineral concentration is dependent on several processes, including mineral 

absorption from the soil, uptake by the roots, translocation, assimilation, and remobilization to 
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the seed [9]. The involvement of several processes for the accumulation of minerals in grain 

makes them complex traits, which are most likely controlled by many genes [8]. Quantitative 

trait loci (QTL) analysis or genome-wide association study (marker-trait associations; MTAs) 

approaches are widely used to dissect complex traits. In wheat to date, 13 QTLs and 485 MTAs 

were identified for Ca [4,8,10], one QTL and 13 MTAs identified for Cd [11,12], 17 QTLs for 

Cu [8,10,13], 58 QTLs for Fe [5,8,10,13–20], three QTLs for Mg [8,10], 15 QTLs for manganese 

(Mn) [10,13], and 46 QTLs and 16 MTAs for Zn [5,8,10,13–21]. The identification of QTLs or 

MTAs for high concentrations of beneficial grain minerals such as Ca, Cu, Cobalt (Co), Fe, 

Lithium (Li), Mg, Mn, Nickel (Ni), and Zn, and low Cd concentration will assist in genetic 

biofortification through marker-assisted selection and ultimately assist in ensuring nutritional 

security.  

Improved wheat cultivars contain low concentrations of grain minerals [5] and have 

narrow genetic variation for grain minerals compared to wheat’s wild relatives [22]. Synthetic 

hexaploid wheat (SHW; Triticum turgidum L. x Aegilops tauschii Coss.) is being used as a 

means of introducing novel genes/genetic variation into bread wheat [23,24] and it is a potential 

source of high grain mineral concentrations [25]. Thus, we selected a panel of 123 synthetic 

hexaploid wheat genotypes to (i) explore the genetic variation of 10 grain minerals (Ca, Cd, Co, 

Cu, Fe, Li, Mg, Mn, Ni, and Zn) and grain protein concentration (GPC); (ii) identify marker-trait 

associations using a genome-wide association study and (iii) candidate genes containing 

nucleotide variants influencing grain minerals. This report is the first for Cu, Co, Fe, Li, Mg, Mn, 

and Ni in wheat. Results of this study will facilitate the selection of SHWs for use in wheat 

improvement programs and in enhancing the nutritive value through the integration of valuable 

grain mineral favorable alleles from SHWs to meet current and future dietary needs.  
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Materials and methods 

Plant materials and experimental design 

The detail of the experimental materials and design were described previously [26]. In 

brief, a diversity panel of 123 SHWs originating from CIMMYT, Mexico and Kyoto University, 

Japan were used (APPENDIX I). Grain samples from each plot were obtained from field trials 

conducted in 2016 and 2017 growing seasons at the research farm located at the Bahri Dagdas 

International Agricultural Research Institute in Konya, Turkey (37°51'15.894" N, 32°34'3.936" 

E; Elevation = 1,021 m). The mean monthly temperature in both growing seasons was similar 

[26], however, the total rainfall in 2017 growing season (243 mm) was slightly higher than that 

observed in 2016 growing season (222 mm) [26]. However, rainfall in both growing seasons was 

below 25-years average (435 mm) suggesting the presence of drought stressed environmental 

conditions [26]. The soil texture was clayey loam, with a mean pH of 7.7 in 2016 and 8.2 in 2017 

growing season (APPENDIX IX). Details on soil analysis are provided in APPENDIX IX. The 

experimental design in the 2016 growing season was an augmented design with replicated 

checks (‘Gerek’ and ‘Karahan’) and modified alpha lattice design with replicated checks (Gerek 

and Karahan) and two replications in 2017 as described previously [26].  

 

Grain yield, thousand kernel weight, grain protein concentration, and grain mineral analysis  

Grain yield (GY), thousand kernel weight (TKW), and grain protein concentration (GPC) 

were measured using previously reported protocols [26–28]. Whole grain mineral analysis was 

performed as described previously [12]. In brief, approximately 2 g of oven dried grains were 

digested with concentrated nitric acid (Optima, Fisher Chemical, Thermo Fisher Scientific Inc.) 

and hydrogen peroxide (30% H202, Fisher BioReagents, Thermo Fisher Scientific Inc.). Each 
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digestion set of 50 samples included a reagent blank and 0.25 g of standard reference flour 

(Standard reference material 1567a, National Bureau of Standards, MD). Grain mineral 

concentrations were determined in duplicate by inductively coupled plasma-mass spectrometery 

(ICP-MS; Agilent 7500cx, Agilent Technologies Inc.) with Ar Carrier and a He collision cell at 

the University of Nebraska Redox Biology Center Proteomics and Metabolomics Core. Mineral 

concentrations for Ca, Cd, Co, Cu, Fe, Li, Mg, Mn, Ni, and Zn were averaged over the duplicates 

and a reagent blank was subtracted. Mineral concentrations expressed as mg Kg-1 (dry weight 

basis) were used for further analysis [29].  

 

Phenotypic data analysis 

Combined over two years and individual year analyses of variance (ANOVA) were 

computed using a mixed linear model using PROC MIXED in SAS 9.4 [30]. This was performed 

to estimate the best linear unbiased predictors (BLUPs) and to determine whether significant 

variations exists among the genotype, year, and their interactions. The details of the mixed linear 

model used for the analysis was described previously [26]. In brief, for the combined ANOVA, 

year and check were assumed as fixed effects whereas genotype, genotype x year interaction, 

replication nested within a year, and incomplete block nested within replications were assumed 

as random effects. For augmented design in 2016, ANOVA was calculated by assuming check as 

a fixed effect whereas genotype and incomplete block as random effects. Incomplete blocks 

nested within replication, checks fitted into new variable (new variable: check was coded as 0 

and entry was coded as 1, where genotype was taken as a new variable x entry), and replications 

were used to correct for spatial variation in the data. For modified alpha (α) lattice design in 

2017, ANOVA was calculated by assuming check as a fixed effect and genotype, replication, 
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and incomplete block nested within replication as random effects. Broad-sense heritability was 

calculated based on entry mean basis using following formula: 

$% = &'(
&'()*

'+,-.
/ )*

'0
/.

                 (1) 

Where, σ2g, σ2e, and σ2gxyr are the variance components for genotype, error, and genotype x 

year, respectively, whereas n and r are the number of years and replications, respectively. 

The phenotypic correlation was computed using PROC CORR in SAS using BLUPs of 

each trait. To understand the association among grain minerals, GPC, and GY, a factor analysis 

using principal component (PC) method and varimax rotation was performed on correlation 

matrix in each year using the factoextra package in R software [31]. Furthermore, Canonical 

correlation was performed between GY/GPC and mineral concentrations to determine the 

relationship between GY/GPC and overall mineral concentration.  

 

Genotyping and SNP discovery  

Genotyping, SNP discovery, and SNP filtering procedures were described previously [23]. 

Briefly, DNA was extracted from fresh young leaves (approx. 14 days after sowing) using 

BioSprint 96 Plant Kits (Qiagen, Hombrechtikon, Switzerland). Genotyping was performed with 

high-density markers using a genotyping-by-sequencing approach [32]. SNP discovery was 

performed using TASSEL v. 5.2.40 GBS v2  Pipeline [33] with a physical alignment to the 

Chinese spring genome sequence (RefSeq v1.0) provided by the International Wheat Genome 

Sequencing Consortium (IWGSC) [34] . The identified SNPs were filtered for minor allele 

frequency (MAF> 5%) and missing data (<20%) [23,35].  
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Population structure and genome-wide association analysis  

The population structure analysis was described previously [23]. In brief, the population 

structure of 123 genotypes was assessed using STRUCTURE v 2.3.4 [36] and unweighted pair 

group method with arithmetic mean using TASSEL [37].  

A GWAS was performed separately for each year [BLUPs from 2016 (BLUP16), and 

BLUPs from 2017 (BLUP17), and BLUPs combined over years (CBLUP)] to identify MTAs for 

grain minerals using FarmCPU (Fixed and random model Circulating Probability Unification) 

with population structure (Q1-3) as a fixed effect (covariate) and FarmCPU calculated kinship as 

a random effect [38] implemented in the MVP R software package 

(https://github.com/XiaoleiLiuBio/MVP). The identified MTAs were tested against a Bonferroni 

correction at 5% level of significance with a P = 1.4026E-06 (-log10P =5.85) for multiple testing 

correction. Regression analysis was performed between the cumulative number of favorable 

alleles in a genotype and the BLUPs of each trait. Functional annotations of genes were retrieved 

using the IWGSC RefSeq v1.0 annotations provided for Chinese spring (IWGSC) [34]. The 

impact of nucleotide variants on predicted genes or proteins was investigated using SnpEff 

software (http://snpeff.sourceforge.net/). 

 

Results and Discussion 

Phenotypic variation for grain protein concentration and grain minerals  

Genotypic variability for GPC and grain minerals were assessed in 123 SHWs across two 

years (2016 and 2017) in field studies in Turkey. The ANOVA combined over years revealed a 

significant effect of genotype for all traits whereas significant genotype x year effect was 

observed for GPC, Ca, Cu, Mg, Mn, and Ni (Table 1). Non-significant genotype x year 
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interaction for Cd, Co, Fe, Li, and Zn indicate the genetic stability of these traits across years. A 

wide range of genotypic variation for GPC and minerals was observed among the 123 SHWs 

(Table 1). A wide range of genetic variation observed for GY and TKW in these SHWs were 

described previously [26]. Variation for GPC ranged from 130 to 168 g Kg-1 with an average of 

151 g Kg-1 in 2016 and from 116 to 169 g Kg-1 with an average of 138 g Kg-1 in 2017 (Table 1). 

Similarly, variation for grain Fe concentration combined over two years ranged from 17 to 65 mg 

Kg-1 with an average of 39 mg Kg-1 and for grain Zn concentration ranged from 10 to 39 mg Kg-1 

with an average of 23 mg Kg-1. Some of these SHWs had higher grain Co, Cu, Fe, Li, and Mg 

concentrations; similar grain concentrations of Mn, Ni, and Zn, and lower grain Cd and Ca 

concentrations than previously reported in Hard Winter Wheat Association Mapping Panel 

(HWWAMP) consisting of 299 diverse genotypes representing the USA Great Plains [12]. The 

lower concentration of grain Ca in the SHWs than in bread wheat cultivars has been reported 

previously [25]. A previous study had reported much higher grain Cd concentration (up to 0.6mg 

Kg-1) in winter wheat [12] than our study. The Cd concentration in the SHWs in this study was 

<0.1 mg kg-1 which is below the regulatory toxic level of 0.2 mg Kg-1. However, the low Cd 

concentration in SHWs may be reflective of low Cd concentration in the soil, and unless they are 

grown in a high Cd site we cannot ascertain whether these lines will provide low-Cd alleles for 

breeding [12]. Additionally, a previous study on genetic variation for grain Fe, Mn, and Zn 

concentrations in SHWs reported between 25-30% higher grain mineral concentrations of Fe, 

Mn, and Zn than bread wheat cultivars and the higher grain mineral concentrations in SHWs 

were not only due to lower GYs but also due to a higher nutrient uptake efficiency [25]. This 

result indicated that the SHWs are potential sources of high grain mineral concentrations and 

could be used for genetic biofortification of wheat.  
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Broad-sense heritability estimated across the two years was high (H2>0.60) for GPC, Cu, 

Fe, Mg, Mn, and Zn concentrations; moderate (>0.40 and <0.60) for Ca and Ni concentrations, 

and low (<0.40) for Cd, Co, and Li concentrations (Table 1). Higher broad sense heritability 

indicated that the trait was largely governed by the genotypic effect. These results showed 

potential for the improvement of GPC, Cu, Fe, Mg, Mn, and Zn concentrations through 

phenotypic selection within SHWs. Similar heritability for these traits has been reported in the 

previous studies [4,5,8,12,20].  

 

Principal component analysis and phenotypic correlation 

To understand the association among GY, GPC, and 10 mineral concentrations, a factor 

analysis using principal component (PC) method was performed in each year (Figure 1). The 

first three PCs explained from 74.6 to 75.8% of the total variation in the data in 2016 and 2017, 

respectively. In 2016, the first PC explained 53.1% of the variation in the data and the variables 

included were Ca, Cd, Co, Cu, Fe, Mg, Mn, Ni, and Zn; the second PC explained 13.2% of the 

variation in data and variables included were GY and GPC; and the third PC explained 8.3% of 

the variation in the data and variable included was Li. Similarly, in 2017, the first PC explained 

54.2% of the variation in the data and variables included were Ca, Cd, Cu, Fe, Mg, Mn, and Zn; 

the second PC explained 13.2% of the total variance and variables included were GY and GPC; 

and the third PC explained 8.4% of the total variance and the variables included were Co, Li, and 

Ni. Most of the grain minerals in both years were included in the PC1 with positive loadings, 

implying that PC1 is a measure of overall mineral accumulations in the grain, which was similar 

to the conclusions of Guttieri et al. [12]. The second PC showed a negative correlation between 

GY and GPC. The association observed in the factor analysis was supported by the significant 
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positive correlations (r) among most of the grain minerals and negative correlation of GY and 

GPC (Table 2). 

A significant negative correlation between GY and GPC was reported in previous studies 

[12,27] and the negative correlation was mainly due to the dilution effect. As expected, the 

present study also identified a significant negative correlation between GY and GPC (Table 2). 

Additionally, GY was positively correlated with TKW (r=0.37, p<0.0001 in 2016 and r=0.35, 

p<0.0001 in 2017) similar to previous studies [26,28]. However, GY was not correlated with 

grain minerals in this study whereas the significant negative correlation of GY with most of the 

grain minerals was observed after controlling for TKW (Table 2). This result indicated that 

TKW masked the true association of GY with minerals and controlling for the effect of TKW is 

important. Furthermore, canonical correlation analysis between GY and overall mineral 

concentration identified negative correlation (r=-0.37 in 2016 and r=-0.16 in 2017) between 

them. Similarly, several previous studies have identified a negative correlation of GY with grain 

minerals, including Fe [8,39] and Zn [8,10,12,39], which were reported to be associated with a 

dilution effect [12]. In the present study, GPC was significantly positively correlated with Ca, 

Cd, Cu, Fe, Mg, Mn, Ni, and Zn, however, the correlation was not very strong (0.51 > r > 0.19) 

(Table 2). Additionally, canonical correlation analysis between GPC and overall grain minerals 

identified positive correlation (r=0.44 in 2016 and r=0.62 in 2017) between them. Many studies 

have shown a significant positive correlation of GPC with Fe and Zn concentrations 

[12,15,16,21], indicating that these traits might have a similar genetic basis and could be 

improved simultaneously [7]. Additionally, most of the grain minerals had highly significant 

positive correlations (p < 0.01) among each other. For instance, strong correlation (r > 0.70, p < 

0.0001) between Fe and Zn was observed, and they were also strongly correlated (r > 0.70, p < 
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0.0001) with other minerals such as Cu, Mg, Mn, and Zn. Positive correlations among grain 

minerals have been reported previously. For instance, many studies have shown the significant 

correlation between Fe and Zn concentrations in wheat [5,12,14,16,20,39]. However, other 

studies have shown no correlation between Fe and Zn [7,40], indicating the genotypic and 

environmental influence on the relationship between these traits.   

Cadmium is a toxic heavy metal that causes harm to human health. Reducing the grain Cd 

concentration is one of the important plant breeding objectives for creating healthier grains along 

with the enhancement of beneficial grain mineral concentrations [29]. The current study 

identified the significant positive correlation between grain Cd concentration with other minerals 

(Table 2). The previous study in HWWAMP (in this case using 286 genotypes) also identified a 

significant positive correlation between grain Cd and Zn concentration, however, the correlation 

was not very strong (r < 0.49) [12]. However, independent genetic regulation of Cd and Zn has 

been reported [29] which may help explain this weak correlation. The current study identified 

weak to moderate correlation (r < 0.70) of grain Cd concentration with other grain minerals, 

implying that enhancement of beneficial mineral concentration may be possible without further 

increasing grain Cd concentration.  

 

Selection of top-ranking genotypes 

The 13 top 10% SHW lines were selected from two years of combined data that had 

higher amounts of GPC and beneficial grain mineral concentrations (Cu, Fe, Mg, Mn, Ni, and 

Zn) compared to checks and lower ranking genotypes and lower Cd concentration compared to 

lower ranking genotypes and checks (Gerek and Karahan) (APPENDIX X). For instance, the Fe 

and Zn concentration in top ranking genotypes ranged from 49.5 to 56.0 mg Kg-1 and 29 to 35 
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mg Kg-1, respectively, whereas Cd concentration ranged from 0.07 to 0.08 mg Kg-1 (APPENDIX 

X).  This result indicated that these genotypes could be used in the breeding program as a parent 

with a goal of increasing beneficial grain minerals for addressing the global mineral deficiencies 

while decreasing toxic compound such as Cd.   

 

Population structure and genome-wide association study 

Population structure analysis of the 123 SHWs was performed using 35,648 high quality 

GBS derived SNPs (MAF>0.05 and missing data <20%) that were well distributed across 21 

chromosomes (APPENDIX VI). Our previous study on genetic diversity and population structure 

analysis of 101 SHWs identified a large amount of novel genetic variation that could be utilized 

in broadening the genetic diversity of bread wheat germplasms [23]. The population structure 

analysis identified that the 123 SHWs can be divided into three subgroups as described 

previously (APPENDIX V) [26].  

The substantial genetic diversity in these SHWs and our dense SNP markers [26] could 

be useful in identifying genetic factors underlying the variation for grain minerals using GWAS. 

A GWAS analysis performed using a multi-locus mixed linear model implemented in FarmCPU 

algorithm with 35,648 GBS derived SNPs for 10 grain minerals identified a total of 92 MTAs 

distributed across 20 chromosomes (Figure 2) with phenotypic variance explained (PVE) up to 

25% (APPENDIX XI). Thirty-five MTAs were detected on the A genome, 32 MTAs on the B 

genome, and 25 MTAs on the D-genome of SHWs (Figure 2).  
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Calcium  
The 15 MTAs for Ca concentration were observed in 14 different genomic regions on 

chromosomes 1B, 2B, 2D, 3A, 3B, 3D, 6A, 6B, 7A (Figure 2) and the PVE by these MTAs 

ranged from 2.7 to 21.5% (APPENDIX XI), indicating quantitative nature of inheritance for Ca 

concentration. Earlier studies have reported QTLs/MTAs for Ca on chromosomes 1A [8,10], 2A 

[10], 2D [10], 5A [4], 2B, 4A, 4B, 5B, 6A, and 7B [8] in wheat, indicating the involvement of 

these chromosomes in different mapping populations for Ca concentration. However, it is 

difficult to align our findings with earlier studies because of the employment of different marker 

systems such as 90K SNP, short sequence repeat (SSR), and diversity arrays technology 

(DART), the lack of precise location information in previous literature, or the utilization of a 

different version of the reference wheat genome than the most recent IWGSC RefSeq v1.0 as 

described previously [26]. However, the associations identified on the same chromosome as the 

previous study provided confidence in the reliability of these MTAs. The 11 MTAs identified in 

this study on chromosomes 1B, 3A, 3B, 3D, 6B, and 7A have not been reported and they are 

potentially novel MTAs controlling grain Ca concentration. Interestingly, no studies have 

identified a QTL in the D-genome.   

 

Cadmium 
The five MTAs for Cd concentration were observed in five different genomic regions on 

chromosomes 1A, 2A, 2D, 3A, and 6D (Figure 2) with PVE ranging from 1.8 to 14.4% 

(APPENDIX XI). A previous study on QTL analysis in durum wheat identified a major QTL on 

chromosome 5B [11]. A GWAS was conducted using 286 winter wheat association mapping 

population and identified 12 MTAs for Cd on chromosome 5A [29]. All the five MTAs 
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identified in this study are potentially novel MTAs controlling grain Cd concentration. That our 

study did not find the QTLs identified in the earlier studies may be due to the complexity of the 

trait and different genotypes used in this study. The identification of novel MTAs in the D-

genome (2D and 6D) clearly represent variation coming from the Ae. tauschii and show the 

potential of SHW for its utilization in a marker-assisted breeding program upon validation in an 

independent genetic background.  

 

Cobalt, lithium, and nickel  
The present study identified three MTAs on chromosomes 3A, 6D, and 7D for Co, 13 

MTAs on chromosomes 1B, 1D, 2A, 2D, 3D, 5A, and 6D for Li, and eight MTAs on 

chromosomes 1A, 2D, 3A, 4D, 5B, and 6A for Ni (Figure 2). There is no previous report on 

QTL or GWAS analysis for Co, Li, and Ni in wheat. Therefore, all the MTAs identified for Co, 

Li, and Ni are potentially novel MTAs responsible for Co, Li, and Ni concentrations. 

Interestingly, our study identified several MTAs on the D-genome for Co, Li, and Ni, which 

showed the utility of SHWs for the improvement of these traits.  

 

Copper  
A total of 13 MTAs for Cu were identified on chromosomes 1B, 2A, 3A, 3B, 4B, 5A, 5B, 

5D, 6A, and 6B (Figure 2) with PVE ranging from 1.2 to 17.1% (APPENDIX XI). Earlier 

studies have identified one QTL for Cu concentration on chromosome 5A in diploid wheat (T. 

monococum) [13], 10 QTLs on chromosomes 1A, 2A, 3B, 4A, 4B, 5A, 6A, 6B, 7A, and 7B in 

tetraploid wheat [8], and six QTLs on chromosomes 2A, 4A, 4D, 5A, 6A, and 7B in hexaploid 
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wheat [10]. The five MTAs identified in this study on chromosomes 1B, 3A, 5B, and 5D have 

not been reported and they are potentially novel MTAs controlling grain Cu concentration.  

Iron  
A total of three MTAs for Fe concentration were identified on chromosomes 1A and 3A 

(Figure 2) with PVE ranging from 11.2 to 13.2% (APPENDIX XI). Earlier studies have 

identified 58 QTLs distributed on 16 chromosomes 1A, 1B, 2A, 2B, 2D, 3A, 3B, 3D, 4B, 4D, 

5A, 5B, 6A, 6B, 6D, 7A, 7B, and 7D [5,8,10,13–20].  

 

Magnesium  
A total of 13 MTAs for Mg concentration were identified on chromosomes 1B, 1D, 2D, 

3A, 3B, 4A, 4B, 4D, 5B, 5D, and 7A (Figure 2) with PVE ranging from 1.4 to 14.6% 

(APPENDIX XI). Earlier studies have identified eight QTLs for Mg concentration on 

chromosomes 1B, 2A, 3A, 5B, 6A, 6B, 7A, and 7B in tetraploid wheat [8] and three QTLs on 

chromosomes 4A, 5A, and 6A in hexaploid wheat [10]. The six MTAs identified in this study on 

chromosomes 1D, 2D, 3B, 4B, 4D, and 5D have not been reported and they are potentially novel 

MTAs controlling grain Mg concentration.  

 

Manganese  
A total of six MTAs for Mn concentration were identified on chromosomes 2D, 3A, 4B, 

5D, and 6B (Figure 2) with PVE ranging from 4.4 to 14.3% (APPENDIX XI). Earlier studies 

have identified one QTL on chromosome 5A in T. monoccocum [13], two QTLs for Mn 

concentration on chromosomes 2B and 7B in tetraploid wheat [8] and four QTLs on 

chromosomes 1A, 2B, 3B in hexaploid wheat [10]. All the six MTAs identified in this study on 
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chromosomes 2D, 3A, 4B, 5D, and 6B have not been reported and they are potentially novel 

MTAs controlling grain Mn concentration.  

Zinc  
A total of 13 MTAs for Zn concentration were identified on chromosomes 1A, 2A, 3A, 

3B, 4A, 4B, 5A, and 6B (Figure 2) with PVE ranging from 1.8 to 14.1% (APPENDIX XI). 

Earlier studies have identified 46 QTLs on 15 chromosomes 1A, 1B, 1D, 2A, 2B, 3A, 3D, 4A, 

4B, 4D, 5A, 6A, 6B, 7A, and 7B for Zn concentration [5,8,10,13–21]. Additionally, previous 

GWAS for Zn concentration identified 13 MTAs on chromosomes 1B, 3A, and 4B[29]. Three 

MTAs identified in this study on chromosome 3B have not been reported and they are potentially 

novel MTAs controlling grain Zn concentration.  

 

Relationship between grain mineral concentrations and number of favorable alleles  

The number of favorable alleles in a genotype is the cumulative number of alleles from 

MTAs that increases the concentration of beneficial minerals whereas decreases the Cd 

concentration. Linear relationship between grain mineral concentration and number of favorable 

alleles per genotype was observed (Figure 3), implying that the addition of every favorable 

allele in a genotype contributed to increase beneficial grain mineral concentrations whereas 

decrease grain Cd concentration. The number of favorable alleles within 123 SHWs ranged from 

9 to 37 alleles and variance explained (R2) by favorable alleles on grain minerals ranged from 10 

to 53% (Figure 3). The top-ranking 13 genotypes have high number of favorable alleles ranging 

from 23 to 27 alleles (APPENDIX X). This result suggested that pyramiding these favorable 

alleles can enhance the grain mineral concentrations and be used in a breeding program for the 

genetic biofortification.   
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Multi-trait and stable marker-trait associations  

The present study identified common regions associated with multiple traits on 

chromosomes 1B, 2A, 3A, and 5B (Figure 2 and APPENDIX XI). For instance, the MTA for 

Ca and Mg was identified on chromosome 1B at 6,867,825 bp, Cu and Zn on chromosomes 2A 

at 742,969,119 bp, Cu and Mg on chromosome 5B at 607,870,649 bp, and Mg, Mn, and Zn on 

chromosome 3A at 534,469,328 bp. The co-locations of MTAs for Ca, Cu, Mg, Mn, and Zn 

indicated the same genomic region controlling these traits, which was also supported by highly 

significant strong positive correlations among those minerals (Table 2). These results suggested 

that the relationship among these traits was at molecular level, indicating a common genetic 

basis for these traits which could be improved simultaneously. The QTLs co-localization for 

some of the minerals have previously been reported. The co-localization of grain Zn QTLs with 

grain Fe QTLs in tetraploid wheat [8] and hexaploid wheat [5,16,20,21], and QTLs for Mn co-

located with Fe concentration in tetraploid wheat[8] have been observed. Co-localization may 

have occurred either by pleiotropy of the same gene involved in controlling mineral 

concentrations of different elements or by the presence of different linked genes in the same 

regions controlling mineral concentrations of different elements independently. Although Cd was 

significantly associated with grain minerals, we did not find co-localization of grain Cd MTAs 

with the MTAs of other grain minerals, indicating that the grain Cd concentration may be 

governed by the different genetic mechanism as described previously [29]. 

In this study, we identified a stable MTA for Ca on chromosome 6B (32,333,184 bp), Cu 

on 5B (607,870,649 bp), for Mg on 1B (867,825 bp),  for Mn on 2D (58,740,285 bp), for Ni on 

2D (48,611,294 bp), and for Zn on 3A (534,469,328 bp), and five stable MTAs for Li on 

chromosomes 1B (606,491,241 bp), 2D (572,031,650 bp), 3D (610,567,350 bp), 5A 
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(135,164,381 bp), and 6D (30,744,756 bp) (APPENDIX XI ). The stable MTAs identified could 

be used for the genetic improvement of these traits.  

 

Gene underlying marker-trait associations  

The MTAs that were identified were searched against the IWGSC RefSeq v1.0 

annotation to identify genes underlying the various MTAs identified in this study. Identification 

of underlying genes with annotations matching the trait function would provide further 

confidence for these MTAs. The 40 MTAs (Ca: 8 MTAs; Cd:1; Co:2; Cu: 4; Fe: 3; Li: 4; Mg: 5; 

Mn: 3; Ni: 3; and Zn: 7) for 10 grain minerals were found within genes distributed on 

chromosomes 1A, 1B, 2A, 2D, 3A, 3B, 4A, 4B, 4D, 5A, 6A, 6B, 6D, and 7A (APPENDIX XII). 

Of these, 28 MTAs were present in 19 genes whose annotations indicate they are associated with 

grain minerals (Table 3 and APPENDIX XII). For instance, MTAs for Fe were located in genes 

related to Fe concentration such as 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase 

superfamily protein [41,42], ATP synthase gamma chain [43], F-box family protein domain [42], 

GDSL esterase/lipase [44], Leucine rich receptor-like protein kinase [45,46], Myb transcription 

factor [45,46], Na-translocating NADH-quinone reductase subunit A [47]P, No apical meristem 

(NAM) protein [48], protein DETOXIFICATION [46], ROP guanine nucleotide exchange factor 

10 for Fe [42], and universal stress protein family [46]. Additional examples are provided in 

Table 3. This result provides further evidence for these MTAs and indicated that these genes 

could be important for grain minerals in wheat, however, functional characterization studies are 

needed to validate the function of these genes. 

Furthermore, we identified several MTAs for the same or multiple traits located within 

genes that had the same gene annotations (Table 3 and APPENDIX XI). For instance, some of 
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the MTAs for the same traits such as Mg on chromosomes on 3B and 4D, and Zn on 

chromosomes 3B and 6B were within genes that were both annotated as F-box family protein 

domain. Similarly, some of the MTAs for multiple traits such as Ca (1 MTA) on chromosome 

6B, Li (1) on 2D, Mg (1) on 4A, and Zn (1) on 3B were within genes annotated as Leucine-rich 

repeat receptor-like protein kinase (Table 3), indicating that these genes may be important for 

improving multiple traits. Multiple MTAs for different traits within genes having the same gene 

annotation was also reported in our previous study on drought stress related-traits [26].  

 

Conclusions 

The SHWs under study are a valuable resource for the genetic improvement of wheat 

because they were reported to have large amounts of novel genetic diversity including the D-

genome diversity [23], are resistant to multiple stresses [24,26], and showed a weak correlation 

of GY with GPC and most of the minerals, indicating improvement of grain minerals and GPC 

without sacrificing yield could be possible. Further, the strong positive correlations observed 

among the most grain minerals suggested the simultaneous improvement of grain minerals could 

be possible. The top ranking 13 genotypes with higher concentrations of useful grain minerals 

and lower concentration of Cd identified in this study have large number of favorable alleles and 

these SHWs could be used as a donor parent in a wheat breeding program for genetic 

biofortification.  

A GWAS identified 92 MTAs and of which 60 MTAs were novel (15 MTAs on the A 

genome, 21 MTAs on the B genome and 24 MTAs on the D genome). The large number of novel 

MTAs (36) identified in the AB genome of these SHWs indicated that there is a lot variation yet 
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to be explored and to be used in the A and B genome. Several MTAs identified in this study were 

with in genes having potential roles in improving grain mineral concentrations based on 

information for their annotations in literature, which provided further evidence for the reliability 

and usefulness of the MTAs identified. However, further investigation on identified genomic 

regions could significantly assist in genetic biofortification program. Interestingly, this study 

identified several MTAs for grain minerals located in genes on different chromosomes that had 

the same gene annotation, suggesting that the same gene family may play a major role in 

affecting different grain mineral concentrations in SHWs. This study identified multi-trait (Ca 

and Mg; Cu and Mg; Mg and Cu; Mg, Mn, and Zn) MTAs on chromosomes 1B, 2A, 3A, and 5B 

which suggested a common genetic basis of these traits showing the possibility of simultaneous 

improvement of these traits. Additionally, we identified several stable MTAs for Ca, Cu, Li, Mg, 

Mn, Ni, and Zn that could be used for the genetic improvement of grain minerals. In summary, a 

wide range of useful genetic variation for grain minerals and identification of several stable, co-

localized multi-trait, and novel genomic regions especially on the D-genome demonstrate the 

potential of SHWs in its utilization in wheat breeding program for the genetic biofortification 

and this study also provided the information toward further understanding of the genetic 

complexity of grain minerals accumulation in wheat. 

 

Abbreviations used 

SHW, Synthetic Hexaploid Wheat; GY, Grain yield; TKW, Thousand kernel weight; GPC, Grain 

protein content; TKW, Ca, Calcium; Cd, Cadmium; Co, Cobalt; Cu, Copper; Fe, Iron; Li, 

Lithium; Mg, Magnesium; Mn, Manganese; Ni, Nickel; Zn, Zinc; GWAS, Genome-wide 

association study; QTL, Quantitative trait loci; MTA, Marker-trait association; GBS, 
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TABLES 

Table 1. Analysis of variance and phenotype variation for 10 grain minerals, grain protein content and grain yield with minimum (min), maximum 
(max), fold change (max/min), mean, and broad sense heritability (H2) values of 123 synthetic hexaploid wheats grown in 2016 and 2017 growing 
seasons in Konya, Turkey.  

Trait 

2016 2017 Trials combined 

Min Max Fold Mean Min Max Fold Mean Year 
(Yr) 

Genotype 
(G) G x Yr H2 

Ca (mg Kg-1) 47.5 167.2 3.5 103.1 21.6 84.5 3.9 44.3 * ** *** 0.41 

Cd (mg Kg-1) 0.03 0.10 3.44 0.07 0.02 0.13 7.68 0.07 NS * NS 0.28 

Co (mg Kg-1) 0.01 0.06 6.53 0.03 0.01 0.04 6.86 0.02 *** * NS 0.33 

Cu (mg Kg-1) 2.8 11.4 4.1 7.5 2.9 8.9 3.1 5.7 NS *** *** 0.63 

Fe (mg Kg-1) 17.7 61.8 3.5 40.2 15.4 67.7 4.4 38.5 NS *** NS 0.78 

Li (mg Kg-1) 0.04 0.23 6.43 0.09 0.13 1.07 8.43 0.52 *** * NS 0.35 

Mg (mg Kg-1) 617 2097 3 1391 659 2131 3 1458 NS *** ** 0.62 

Mn (mg Kg-1) 20.3 66.2 3.3 41.2 21.5 69.8 3.2 44.9 NS *** ** 0.67 

Ni (mg Kg-1) 0.21 2.22 10.81 0.91 0.13 1.16 8.75 0.48 NS *** *** 0.52 

Zn (mg Kg-1) 8.8 38.1 4.3 23.1 11.1 39.6 3.6 23 NS *** NS 0.65 

Grain protein content (g Kg-

1) 129.8 167.6 1.3 151.2 116.4 168.9 1.5 137.8 *** *** ** 0.68 

Grain yield (g m-2) 54.3 530 9.8 259 194.7 479.5 2.5 290.1 NS * * 0.44 

 

*, **, and *** Significant at the 0.05, 0.01, and 0.001 probability level, respectively; NS: Non-significant at the 0.05 probability level. 
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Table 2. Pearson’s correlation coefficients of 10 grain minerals, grain protein content (GPC), grain yield (GY), and GY controlling for thousand 
kernel weight (GYpTKW) in 123 synthetic hexaploid wheat grown in 2016 (upper triangle) and 2017 (lower triangle) growing seasons in Konya, 
Turkey. 

Trait Ca Cd Co Cu Fe Li Mg Mn Ni Zn GPC GY GYpTKW 

CA 1 0.63*** 0.42*** 0.64*** 0.58*** 0.31*** 0.80*** 0.79*** 0.44*** 0.60*** 0.36*** -0.01 -0.11 

CD 0.64*** 1 0.32*** 0.68*** 0.61*** 0.38*** 0.65*** 0.67*** 0.58*** 0.63*** 0.22* -0.03 -0.40*** 

CO 0.37*** 0.34*** 1 0.49*** 0.63*** 0.19* 0.49*** 0.49*** 0.54*** 0.53*** -0.05 0.13 0.01 

CU 0.82*** 0.67*** 0.42*** 1 0.79*** 0.27** 0.84*** 0.81*** 0.43*** 0.89*** 0.22* 0.04 -0.18* 

FE 0.80*** 0.67*** 0.46*** 0.89*** 1 0.24** 0.79*** 0.82*** 0.48*** 0.84*** 0.19* 0.08 -0.13 

LI 0.41*** 0.33*** 0.43*** 0.30** 0.30** 1 0.38*** 0.26** 0.29** 0.17 0.09 -0.13 -0.14 

MG 0.87*** 0.66*** 0.47*** 0.90*** 0.89*** 0.38*** 1 0.88*** 0.50*** 0.83*** 0.20* -0.01 -0.19* 

MN 0.77*** 0.64*** 0.46*** 0.87*** 0.87*** 0.26** 0.91*** 1 0.50*** 0.83*** 0.19* -0.08 -0.25** 

NI 0.32*** 0.27** 0.37*** 0.42*** 0.38*** 0.30*** 0.46*** 0.34*** 1 0.38*** 0.21* -0.02 -0.28** 

ZN 0.75*** 0.65*** 0.32*** 0.85*** 0.86*** 0.14 0.87*** 0.85*** 0.31*** 1 0.23* 0.07 -0.19* 

GPC 0.31*** 0.22* 0.12 0.43*** 0.48*** -0.08 0.40*** 0.47*** 0.19* 0.51*** 1 -0.37*** -0.36*** 

GY 0.03 0.04 0.02 -0.01 -0.07 0.13 0.05 0.02 -0.03 -0.07 -0.36*** 1 - 

GYpTKW -0.11 -0.10 0.07 -0.19* 0.22* 0.06 -0.14 -0.15 -0.13 -0.24** -0.44*** - 1 

*, **, and *** Significant at the 0.05, 0.01, and 0.001 probability level, respectively. 
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Table 3. Potential candidate genes containing/flanking marker-trait associations for improving grain minerals in SHWs.  

Gene annotation (GeneID) Trait in our study a  Chromosome PVE (%)b 

Traits influenced based on the 

annotations  

References for the association 

of annotations with traits 

2-oxoglutarate (2OG) and Fe (II)-dependent oxygenase superfamily protein (TraesCS2A01G519900-TraesCS2A01G520000) Cu (1)  2A 5.3 Fe, Mg [42,49]  

AP2-like ethylene-responsive transcription factor  

(TraesCS2A01G514200) Cu (1) 2A 3.1 As 

 
ATP synthase gamma chain (TraesCS6B01G117700) Ca (1) 6B 19.9 Fe, Zn [50] 

Chaperone protein dnaJ (TraesCS4B01G187600) Zn (1) 4B 14.1 Cd [41] 

F-box family protein domain (TraesCS6D01G360300, TraesCS3B01G479800, TraesCS3B01G111900, TraesCS6B01G268400, 

TraesCS6D01G064500, TraesCS2D01G106500, TraesCS4D01G333100) Co (1), Li (1), Mg (2), Mn (1), Zn (2)  2D, 3B, 4D, 6B, 6D 1.8-25.2 Fe [43] 

GDSL esterase/lipase (TraesCS5A01G096300) Li (1) 5A 4.4 Fe, Zn, Mn [51] 

Kinase family protein (TraesCS1B01G375400) Li (1) 1B 13.5 Cd, Zn [44,45] 

Leucine rich receptor-like protein kinase (TraesCS2D01G466400, TraesCS6B01G384300-TraesCS6B01G384400, 

TraesCS4A01G490700, TraesCS3B01G192500) Ca (1), Li (1), Mg, Zn 2D, 3B, 4A, 6B 1.8-12.6 Fe [44,45,51] 

MYB transcription factor (TraesCS6B01G053100) Ca (1) 6B 9.9 Cd, Fe, Zn [46] 

Na-translocating NADH-quinone reductase subunit A (TraesCS1A01G432900) Fe (1) 1A 11.2 Fe [47] 

No apical meristem (NAM) protein (TraesCS7A01G068200) Ca (1) 7A 11.8 Fe, Zn, N [51] 

Peroxidase (TraesCS6A01G081700) Ca (1) 6A 9 Cd [52] 

Phosphate translocator (TraesCS3B01G192400) Zn (1) 3B 1.8 P [53] 

Potassium transporter (TraesCS2D01G106600) Mn (1) 2D 8.7 K [54] 

Protein COBRA, putative (TraesCS4B01G187300) Mn (1) 4B 13.4 Al [45] 

Protein DETOXIFICATION (TraesCS3A01G300400) Mg (1) 3A 14.6 Fe [55] 

Protein ROOT HAIR DEFECTIVE 3 homolog (TraesCS1A01G003300-TraesCS1A01G003400) Zn (1) 1A 3 Cd [41] 

ROP guanine nucleotide exchange factor 10 (TraesCS4D01G333000) Mg (1) 4D 7.9 Fe [45] 

Universal stress protein family (TraesCS3B01G418000) Ca (1) 3B 2.9 Fe, Zn [46] 

a The count of marker-trait associations (in the parenthesis) for either single or multiple traits located within genes that have the same gene annotation; b PVE, phenotypic variance explained by the MTA. 
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FIGURES 

 

Figure 1. Factor analysis using principal component method based on correlation matrix on grain yield, grain protein concentration, and 10 grain 
mineral concentrations in 123 synthetic hexaploid wheat lines grown in 2016 (A) and 2017 (B) in Konya, Turkey.
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Figure 2. Significant marker-trait associations identified on each chromosome for 10 grain minerals from 
a genome-wide association study using 35,648 SNPs in 123 synthetic hexaploid wheat grown in 2016 and 
2017 in Konya, Turkey.  
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Figure 3.  Regression analysis between total number of favorable alleles per genotype and best linear 
unbiased predictor values of grain minerals concentrations obtained from two years (2016 and 2017) 
experiments conducted in Konya, Turkey. Using the MTAs, the number of favorable alleles is defined as 
the total number of alleles present in a genotype that increases the grain concentration of beneficial 
minerals such as calcium (A), cobalt (C), copper (D), Iron (E), Lithium (F), Magnesium (G), Manganese 
(H), Nickel (I), and Zinc (J), whereas decreases grain cadmium (B) concentration.  
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APPENDIX 

APPENDIX I. Details of 139 synthetic hexaploid wheats used in this study.  

Entry# Complete Pedigree Information CID SELHX OC Accession# SeggregationNote 

1 AISBERG/AE.SQUARROSA(369) CAWW04GH00003S -0GH-0SE-030E-10E-0E-1YA-0YM 
MX-
TCI 161641   

2 AISBERG/AE.SQUARROSA(369) CAWW04GH00003S -0GH-0SE-030E-16E-0E-1YA-0YM 
MX-
TCI 161643   

3 AISBERG/AE.SQUARROSA(369) CAWW04GH00003S -0GH-0SE-030E-18E-0E-3YA-0YM 
MX-
TCI 161646   

4 AISBERG/AE.SQUARROSA(369) CAWW04GH00003S -0GH-0SE-030E-18E-0E-2YA-0YM 
MX-
TCI 161645   

5 AISBERG/AE.SQUARROSA(369) CAWW04GH00003S -0GH-0SE-030E-2E-0E-2YA-0YM 
MX-
TCI 161650   

6 AISBERG/AE.SQUARROSA(369) CAWW04GH00003S -0GH-0SE-030E-2E-0E-1YA-0YM 
MX-
TCI 161649   

7 AISBERG/AE.SQUARROSA(369) CAWW04GH00003S -0GH-0SE-030E-6E-0E-1YA-0YM 
MX-
TCI 161651   

8 AISBERG/AE.SQUARROSA(511) CAWW04GH00005S -0GH-0SE-030E-10E-0E-1YA-0YM 
MX-
TCI 161653 8_YELLOW_SPIKE 

8 AISBERG/AE.SQUARROSA(511) CAWW04GH00005S -0GH-0SE-030E-10E-0E-1YA-0YM 
MX-
TCI 161653 8_BLACK_SPIKE 

9 AISBERG/AE.SQUARROSA(511) CAWW04GH00005S -0GH-0SE-030E-11E-0E-1YA-0YM 
MX-
TCI 161654   

10 AISBERG/AE.SQUARROSA(511) CAWW04GH00005S -0GH-0SE-030E-14E-0E-1YA-0YM 
MX-
TCI 161656   

11 AISBERG/AE.SQUARROSA(511) CAWW04GH00005S -0GH-0SE-030E-16E-0E-1YA-0YM 
MX-
TCI 161658   

12 AISBERG/AE.SQUARROSA(511) CAWW04GH00005S -0GH-0SE-030E-1E-0E-1YA-0YM 
MX-
TCI 161660   

13 AISBERG/AE.SQUARROSA(511) CAWW04GH00005S -0GH-0SE-030E-2E-0E-1YA-0YM 
MX-
TCI 161663   

14 AISBERG/AE.SQUARROSA(511) CAWW04GH00005S -0GH-0SE-030E-3E-0E-1YA-0YM 
MX-
TCI 161664   

15 AISBERG/AE.SQUARROSA(511) CAWW04GH00005S -0GH-0SE-030E-5E-0E-1YA-0YM 
MX-
TCI 161666   

16 AISBERG/AE.SQUARROSA(511) CAWW04GH00005S -0GH-0SE-030E-8E-0E-1YA-0YM 
MX-
TCI 161668   
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17 LEUC 84693/AE.SQUARROSA(409) CAWW04GH00010S -0GH-0SE-030E-10E-0E-3YA-0YM 

MX-
TCI 161669 17_BROWN_SPIKE 

17 LEUC 84693/AE.SQUARROSA(409) CAWW04GH00010S -0GH-0SE-030E-10E-0E-3YA-0YM 
MX-
TCI 161669 17_BLACK_SPIKE 

18 LEUC 84693/AE.SQUARROSA(409) CAWW04GH00010S -0GH-0SE-030E-11E-0E-1YA-0YM 
MX-
TCI 161670   

19 LEUC 84693/AE.SQUARROSA(409) CAWW04GH00010S -0GH-0SE-030E-15E-0E-1YA-0YM 
MX-
TCI 161673   

20 LEUC 84693/AE.SQUARROSA(409) CAWW04GH00010S -0GH-0SE-030E-2E-0E-1YA-0YM 
MX-
TCI 161677   

21 LEUC 84693/AE.SQUARROSA(1026) CAWW04GH00012S -0GH-0SE-030E-10E-0E-1YA-0YM 
MX-
TCI 161679   

22 UKR-OD 761.93/AE.SQUARROSA(392) CAWW04GH00022S -0GH-0SE-030E-12E-0E-1YA-0YM 
MX-
TCI 161681 22_BLACK_SPIKE 

22 UKR-OD 761.93/AE.SQUARROSA(392) CAWW04GH00022S -0GH-0SE-030E-12E-0E-1YA-0YM 
MX-
TCI 161681 22_BROWN_SPIKE 

23 UKR-OD 761.93/AE.SQUARROSA(392) CAWW04GH00022S -0GH-0SE-030E-15E-0E-1YA-0YM 
MX-
TCI 161687   

24 UKR-OD 761.93/AE.SQUARROSA(392) CAWW04GH00022S -0GH-0SE-030E-15E-0E-3YA-0YM 
MX-
TCI 161689   

25 UKR-OD 761.93/AE.SQUARROSA(392) CAWW04GH00022S -0GH-0SE-030E-2E-0E-1YA-0YM 
MX-
TCI 161694   

26 UKR-OD 761.93/AE.SQUARROSA(392) CAWW04GH00022S -0GH-0SE-030E-8E-0E-1YA-0YM 
MX-
TCI 161696 26_BROWN_SPIKE 

26 UKR-OD 761.93/AE.SQUARROSA(392) CAWW04GH00022S -0GH-0SE-030E-8E-0E-1YA-0YM 
MX-
TCI 161696 26_YELLOW_SPIKE 

27 UKR-OD 952.92/AE.SQUARROSA(1031) CAWW04GH00061S -0GH-0SE-030E-11E-0E-1YA-0YM 
MX-
TCI 161698   

28 UKR-OD 952.92/AE.SQUARROSA(1031) CAWW04GH00061S -0GH-0SE-030E-15E-0E-1YA-0YM 
MX-
TCI 161700   

29 UKR-OD 952.92/AE.SQUARROSA(1031) CAWW04GH00061S -0GH-0SE-030E-16E-0E-1YA-0YM 
MX-
TCI 161703   

30 UKR-OD 952.92/AE.SQUARROSA(1031) CAWW04GH00061S -0GH-0SE-030E-18E-0E-1YA-0YM 
MX-
TCI 161707   

31 UKR-OD 952.92/AE.SQUARROSA(1031) CAWW04GH00061S -0GH-0SE-030E-20E-0E-1YA-0YM 
MX-
TCI 161709   

32 UKR-OD 952.92/AE.SQUARROSA(1031) CAWW04GH00061S -0GH-0SE-030E-6E-0E-1YA-0YM 
MX-
TCI 161710   

33 UKR-OD 952.92/AE.SQUARROSA(1031) CAWW04GH00061S -0GH-0SE-030E-8E-0E-1YA-0YM 
MX-
TCI 161712   

34 UKR-OD 952.92/AE.SQUARROSA(1031) CAWW04GH00061S -0GH-0SE-030E-9E-0E-1YA-0YM 
MX-
TCI 161717   

35 UKR-OD 1530.94/AE.SQUARROSA(310) CAWW04GH00068S -0GH-0SE-030E-12E-0E-1YA-0YM 
MX-
TCI 161719   
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37 UKR-OD 1530.94/AE.SQUARROSA(310) CAWW04GH00068S -0GH-0SE-030E-6E-0E-1YA-0YM 
MX-
TCI 161724   

38 UKR-OD 1530.94/AE.SQUARROSA(392) CAWW04GH00071S -0GH-0SE-030E-10E-0E-1YA-0YM 
MX-
TCI 161726   

39 UKR-OD 1530.94/AE.SQUARROSA(392) CAWW04GH00071S -0GH-0SE-030E-15E-0E-1YA-0YM 
MX-
TCI 161730   

40 UKR-OD 1530.94/AE.SQUARROSA(392) CAWW04GH00071S -0GH-0SE-030E-23E-0E-1YA-0YM 
MX-
TCI 161732   

41 UKR-OD 1530.94/AE.SQUARROSA(392) CAWW04GH00071S -0GH-0SE-030E-6E-0E-1YA-0YM 
MX-
TCI 161734   

42 UKR-OD 1530.94/AE.SQUARROSA(392) CAWW04GH00071S -0GH-0SE-030E-7E-0E-2YA-0YM 
MX-
TCI 161736   

43 UKR-OD 1530.94/AE.SQUARROSA(392) CAWW04GH00071S -0GH-0SE-030E-7E-0E-1YA-0YM 
MX-
TCI 161735   

44 UKR-OD 1530.94/AE.SQUARROSA(458) CAWW04GH00074S -0GH-0SE-030E-12E-0E-1YA-0YM 
MX-
TCI 161738   

45 UKR-OD 1530.94/AE.SQUARROSA(458) CAWW04GH00074S -0GH-0SE-030E-15E-0E-1YA-0YM 
MX-
TCI 161740   

46 UKR-OD 1530.94/AE.SQUARROSA(458) CAWW04GH00074S -0GH-0SE-030E-4E-0E-1YA-0YM 
MX-
TCI 161742   

47 UKR-OD 1530.94/AE.SQUARROSA(458) CAWW04GH00074S -0GH-0SE-030E-5E-0E-2YA-0YM 
MX-
TCI 161746   

48 UKR-OD 1530.94/AE.SQUARROSA(458) CAWW04GH00074S -0GH-0SE-030E-5E-0E-1YA-0YM 
MX-
TCI 161745   

49 UKR-OD 1530.94/AE.SQUARROSA(458) CAWW04GH00074S -0GH-0SE-030E-9E-0E-1YA-0YM 
MX-
TCI 161751   

50 UKR-OD 1530.94/AE.SQUARROSA(629) CAWW04GH00076S -0GH-0SE-030E-11E-0E-1YA-0YM 
MX-
TCI 161752   

51 UKR-OD 1530.94/AE.SQUARROSA(629) CAWW04GH00076S -0GH-0SE-030E-14E-0E-1YA-0YM 
MX-
TCI 161757   

52 UKR-OD 1530.94/AE.SQUARROSA(629) CAWW04GH00076S -0GH-0SE-030E-18E-0E-1YA-0YM 
MX-
TCI 161760 52_BLACK_SPIKE 

52 UKR-OD 1530.94/AE.SQUARROSA(629) CAWW04GH00076S -0GH-0SE-030E-18E-0E-1YA-0YM 
MX-
TCI 161760 52_BROWN_SPIKE 

53 UKR-OD 1530.94/AE.SQUARROSA(629) CAWW04GH00076S -0GH-0SE-030E-1E-0E-1YA-0YM 
MX-
TCI 161765   

54 UKR-OD 1530.94/AE.SQUARROSA(629) CAWW04GH00076S -0GH-0SE-030E-3E-0E-1YA-0YM 
MX-
TCI   54_YELLOW_AWNLESS 

54 UKR-OD 1530.94/AE.SQUARROSA(629) CAWW04GH00076S -0GH-0SE-030E-3E-0E-1YA-0YM 
MX-
TCI   54_BLACK_AWNLESS 
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54 
UKR-OD 1530.94/AE.SQUARROSA(629) CAWW04GH00076S -0GH-0SE-030E-3E-0E-1YA-0YM 

MX-
TCI   54_YELLOW_AWNED 

54 UKR-OD 1530.94/AE.SQUARROSA(629) CAWW04GH00076S -0GH-0SE-030E-3E-0E-1YA-0YM 
MX-
TCI 161772 54_BLACK_AWNED 

55 UKR-OD 1530.94/AE.SQUARROSA(629) CAWW04GH00076S -0GH-0SE-030E-4E-0E-1YA-0YM 
MX-
TCI 161778   

56 UKR-OD 1530.94/AE.SQUARROSA(1027) CAWW04GH00078S -0GH-0SE-030E-11E-0E-1YA-0YM 
MX-
TCI 161780   

57 UKR-OD 1530.94/AE.SQUARROSA(1027) CAWW04GH00078S -0GH-0SE-030E-12E-0E-1YA-0YM 
MX-
TCI 161782   

58 UKR-OD 1530.94/AE.SQUARROSA(1027) CAWW04GH00078S -0GH-0SE-030E-15E-0E-2YA-0YM 
MX-
TCI 161789   

59 UKR-OD 1530.94/AE.SQUARROSA(1027) CAWW04GH00078S -0GH-0SE-030E-15E-0E-1YA-0YM 
MX-
TCI 161788 59_BLACK_SPIKE 

59 UKR-OD 1530.94/AE.SQUARROSA(1027) CAWW04GH00078S -0GH-0SE-030E-15E-0E-1YA-0YM 
MX-
TCI 161788 59_YELLOW_SPIKE 

60 UKR-OD 1530.94/AE.SQUARROSA(1027) CAWW04GH00078S -0GH-0SE-030E-16E-0E-1YA-0YM 
MX-
TCI 161796 60_BLACK_SPIKE 

60 UKR-OD 1530.94/AE.SQUARROSA(1027) CAWW04GH00078S -0GH-0SE-030E-16E-0E-1YA-0YM 
MX-
TCI 161796 60_BROWN_SPIKE 

61 UKR-OD 1530.94/AE.SQUARROSA(1027) CAWW04GH00078S -0GH-0SE-030E-17E-0E-3YA-0YM 
MX-
TCI 161803   

62 UKR-OD 1530.94/AE.SQUARROSA(1027) CAWW04GH00078S -0GH-0SE-030E-17E-0E-2YA-0YM 
MX-
TCI 161802   

63 UKR-OD 1530.94/AE.SQUARROSA(1027) CAWW04GH00078S -0GH-0SE-030E-17E-0E-1YA-0YM 
MX-
TCI 161801   

64 UKR-OD 1530.94/AE.SQUARROSA(1027) CAWW04GH00078S -0GH-0SE-030E-18E-0E-1YA-0YM 
MX-
TCI 161807   

65 UKR-OD 1530.94/AE.SQUARROSA(1027) CAWW04GH00078S -0GH-0SE-030E-18E-0E-2YA-0YM 
MX-
TCI 161808   

66 UKR-OD 1530.94/AE.SQUARROSA(1027) CAWW04GH00078S -0GH-0SE-030E-2E-0E-1YA-0YM 
MX-
TCI 161810   

67 UKR-OD 1530.94/AE.SQUARROSA(1027) CAWW04GH00078S -0GH-0SE-030E-3E-0E-2YA-0YM 
MX-
TCI 161813   

68 UKR-OD 1530.94/AE.SQUARROSA(1027) CAWW04GH00078S -0GH-0SE-030E-3E-0E-1YA-0YM 
MX-
TCI 161812   

69 UKR-OD 1530.94/AE.SQUARROSA(1027) CAWW04GH00078S -0GH-0SE-030E-5E-0E-2YA-0YM 
MX-
TCI 161817   

70 UKR-OD 1530.94/AE.SQUARROSA(1027) CAWW04GH00078S -0GH-0SE-030E-5E-0E-1YA-0YM 
MX-
TCI 161816   

71 UKR-OD 1530.94/AE.SQUARROSA(1027) CAWW04GH00078S -0GH-0SE-030E-5E-0E-3YA-0YM 
MX-
TCI 161818 71_BLACK_SPIKE 

71 UKR-OD 1530.94/AE.SQUARROSA(1027) CAWW04GH00078S -0GH-0SE-030E-5E-0E-3YA-0YM 
MX-
TCI 161818 71_BROWN_SPIKE 
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72 UKR-OD 1530.94/AE.SQUARROSA(1027) CAWW04GH00078S -0GH-0SE-030E-7E-0E-2YA-0YM 

MX-
TCI 161822   

73 UKR-OD 1530.94/AE.SQUARROSA(1027) CAWW04GH00078S -0GH-0SE-030E-7E-0E-1YA-0YM 
MX-
TCI 161821   

74 UKR-OD 1530.94/AE.SQUARROSA(1027) CAWW04GH00078S -0GH-0SE-030E-9E-0E-2YA-0YM 
MX-
TCI 161826   

75 UKR-OD 1530.94/AE.SQUARROSA(1027) CAWW04GH00078S -0GH-0SE-030E-9E-0E-1YA-0YM 
MX-
TCI 161825   

76 PANDUR/AE.SQUARROSA(223) CAWW04GH00079S -0GH-0SE-030E-10E-0E-1YA-0YM 
MX-
TCI 161827   

77 PANDUR/AE.SQUARROSA(223) CAWW04GH00079S -0GH-0SE-030E-10E-0E-2YA-0YM 
MX-
TCI 161828   

78 PANDUR/AE.SQUARROSA(223) CAWW04GH00079S -0GH-0SE-030E-13E-0E-1YA-0YM 
MX-
TCI 161830   

79 PANDUR/AE.SQUARROSA(223) CAWW04GH00079S -0GH-0SE-030E-13E-0E-2YA-0YM 
MX-
TCI 161831   

80 PANDUR/AE.SQUARROSA(223) CAWW04GH00079S -0GH-0SE-030E-14E-0E-1YA-0YM 
MX-
TCI 161836   

81 PANDUR/AE.SQUARROSA(223) CAWW04GH00079S -0GH-0SE-030E-16E-0E-1YA-0YM 
MX-
TCI 161838   

82 PANDUR/AE.SQUARROSA(223) CAWW04GH00079S -0GH-0SE-030E-16E-0E-2YA-0YM 
MX-
TCI 161839   

83 PANDUR/AE.SQUARROSA(223) CAWW04GH00079S -0GH-0SE-030E-17E-0E-4YA-0YM 
MX-
TCI 161846   

84 PANDUR/AE.SQUARROSA(223) CAWW04GH00079S -0GH-0SE-030E-17E-0E-1YA-0YM 
MX-
TCI 161843   

85 PANDUR/AE.SQUARROSA(223) CAWW04GH00079S -0GH-0SE-030E-17E-0E-2YA-0YM 
MX-
TCI 161844   

86 PANDUR/AE.SQUARROSA(223) CAWW04GH00079S -0GH-0SE-030E-18E-0E-1YA-0YM 
MX-
TCI 161852   

87 PANDUR/AE.SQUARROSA(223) CAWW04GH00079S -0GH-0SE-030E-2E-0E-2YA-0YM 
MX-
TCI 161855   

88 PANDUR/AE.SQUARROSA(223) CAWW04GH00079S -0GH-0SE-030E-2E-0E-1YA-0YM 
MX-
TCI 161854   

89 PANDUR/AE.SQUARROSA(223) CAWW04GH00079S -0GH-0SE-030E-4E-0E-2YA-0YM 
MX-
TCI 161861   

90 PANDUR/AE.SQUARROSA(223) CAWW04GH00079S -0GH-0SE-030E-4E-0E-1YA-0YM 
MX-
TCI 161860   

91 PANDUR/AE.SQUARROSA(223) CAWW04GH00079S -0GH-0SE-030E-4E-0E-3YA-0YM 
MX-
TCI 161862   

92 PANDUR/AE.SQUARROSA(223) CAWW04GH00079S -0GH-0SE-030E-9E-0E-1YA-0YM 
MX-
TCI 161864   

93 PANDUR/AE.SQUARROSA(409) CAWW04GH00081S -0GH-0SE-030E-11E-0E-3YA-0YM 
MX-
TCI 161868   
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94 
PANDUR/AE.SQUARROSA(409) CAWW04GH00081S -0GH-0SE-030E-11E-0E-1YA-0YM 

MX-
TCI 161866   

95 PANDUR/AE.SQUARROSA(409) CAWW04GH00081S -0GH-0SE-030E-11E-0E-2YA-0YM 
MX-
TCI 161867   

96 PANDUR/AE.SQUARROSA(409) CAWW04GH00081S -0GH-0SE-030E-13E-0E-1YA-0YM 
MX-
TCI 161874   

97 PANDUR/AE.SQUARROSA(409) CAWW04GH00081S -0GH-0SE-030E-15E-0E-1YA-0YM 
MX-
TCI 161876   

98 PANDUR/AE.SQUARROSA(409) CAWW04GH00081S -0GH-0SE-030E-17E-0E-2YA-0YM 
MX-
TCI 161879 98_AWNLESS 

98 PANDUR/AE.SQUARROSA(409) CAWW04GH00081S -0GH-0SE-030E-17E-0E-2YA-0YM 
MX-
TCI 161879 98_AWNED 

99 PANDUR/AE.SQUARROSA(409) CAWW04GH00081S -0GH-0SE-030E-17E-0E-1YA-0YM 
MX-
TCI 161878   

100 PANDUR/AE.SQUARROSA(409) CAWW04GH00081S -0GH-0SE-030E-17E-0E-3YA-0YM 
MX-
TCI 161880   

101 PANDUR/AE.SQUARROSA(409) CAWW04GH00081S -0GH-0SE-030E-2E-0E-1YA-0YM 
MX-
TCI 161883   

102 PANDUR/AE.SQUARROSA(409) CAWW04GH00081S -0GH-0SE-030E-4E-0E-1YA-0YM 
MX-
TCI 161884   

103 PANDUR/AE.SQUARROSA(409) CAWW04GH00081S -0GH-0SE-030E-6E-0E-1YA-0YM 
MX-
TCI 161885 103_YELLOW_SPIKE 

103 PANDUR/AE.SQUARROSA(409) CAWW04GH00081S -0GH-0SE-030E-6E-0E-1YA-0YM 
MX-
TCI 161885 103_BLACK_SPIKE 

104 PANDUR/AE.SQUARROSA(409) CAWW04GH00081S -0GH-0SE-030E-7E-0E-1YA-0YM 
MX-
TCI 161889   

105 PANDUR/AE.SQUARROSA(409) CAWW04GH00081S -0GH-0SE-030E-7E-0E-2YA-0YM 
MX-
TCI 161890   

106 LANGDON/IG 48042     JAP     

107 LANGDON/IG 126387     JAP     

108 LANGDON/IG 131606     JAP     

109 LANGDON/KU-2074     JAP     

110 LANGDON/KU-2075     JAP     

111 LANGDON/KU-2088     JAP     

112 LANGDON/KU-2092     JAP     

113 LANGDON/KU-2096     JAP     

114 LANGDON/KU-2097     JAP     

115 LANGDON/KU-2100     JAP     

116 LANGDON/KU-2105     JAP     
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117 LANGDON/KU-2079     JAP     

118 LANGDON/KU-20-9     JAP     

119 LANGDON/KU-2093     JAP     

120 LANGDON/PI 508262     JAP     

121 AISBERG/AE.SQUARROSA(369) CAWW04GH00003S -0GH-0SE-030E-18E-0E-1YA-0YM 
MX-
TCI 161644   

122 LEUC 84693/AE.SQUARROSA(409) CAWW04GH00010S -0GH-0SE-030E-11E-0E-2YA-0YM 
MX-
TCI 161671   

123 UKR-OD 1530.94/AE.SQUARROSA(629) CAWW04GH00076S -0GH-0SE-030E-11E-0E-2YA-0YM 
MX-
TCI 161753   

124 AISBERG/AE.SQUARROSA(369)//DEMIR TCI091254 -0SE-0E-8DYR-0E-1YA-0YM TCI 161897   

125 UKR-OD 761.93/AE.SQUARROSA(392) CAWW04GH00022S -0GH-0SE-030E-15E-0E-2YA-0YM 
MX-
TCI 161688   

126 PANDUR/AE.SQUARROSA(223) CAWW04GH00079S -0GH-0SE-030E-17E-0E-3YA-0YM 
MX-
TCI 161845   
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APPENDIX II. Crossing scheme of 124-winter synthetic hexaploid wheat under study. 
 

Durum Parent Ae. taushii parent 
  223 310 369 392 409 458 511 629 1026 1027 1031 
AISBERG - - Xa (9)b - - - X (4)+c1 - - - - 
LEUC 84693 - - - - X (4) - - - - - - 
UKR-OD 761.93 - - - X (4) - - - - - - - 
UKR-OD 952.92 - - - - - - - - - - X (8) 
UKR-OD 
1530.94 - X (3) - X (3) - X (6) - X (4)+3 - X (12)+2 - 

PANDUR X (15) - - - X (8) - - - - - - 
aX: Original 
crosses            
b(): Number of entries from the same cross         
c+: Number of entries segregated and analyzed as unique entry based on phenotypic observation and kinship relationship value 
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APPENDIX III. Combined analysis of variance with means squares and broad sense heritability (H2) of 123 drought stressed 

synthetic hexaploid wheat grown in two seasons (2016 and 2017) in Konya, Turkey.   

Source 
Grain 
yield 

Harvest 
index 

Biomass 
weight 

Thousand 
kernel 
weight 

Grain 
volume 
weight 

Awn 
length  

Flag 
leaf 

length  
Flag leaf 

width 

Flag 
leaf 
area 

Stem 
diameter 

Root 
length 

Year (YR ) 9982 0.0073 229461 411*** 84.3*** 0.3 399*** 0.0005 264*** 0.04 263427*** 
Genotype(G) 5967* 0.0038* 27184* 27*** 18.6** 5.8*** 8* 0.0276*** 14* 0.2*** 9790* 
G X YR 4376* 0.0027*** 20126* 8*** 10.9*** 1.4*** 7.7** 0.0152 12** 0.11 8510* 
H2 0.40 0.62 0.56 0.74 0.75 0.81 0.49 0.56 0.50 0.62 0.27 

*, **, and *** Significant at the 0.05, 0.01, and 0.001 probability level, respectively. 

 

 

 

 

 

 

 

 

 

16
5 

 

 



166 
 

 

APPENDIX IV. Pearson’s correlation of grain yield and related traits of 123 synthetic hexaploid wheat based on adjusted best linear 

unbiased predictors in 2016 (A) and 2017 (B) growing season in Konya, Turkey.  

  

 

 

 GY, Grain yield; HI, Harvest index; BMWT, Biomass weight; TKW, Thousand kernel weight, GVWT, Grain volume weight; 
AWNLN, Awn length; FLLN, Flag leaf length; FLW, Flag leaf width; FLA, Flag leaf area; STMDIA, Stem diameter; RTLN, Root 
length

(A) (B) 
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APPENDIX V. Population structure analysis of 123 synthetic hexaploid wheat. 

(A) Line graph of deltak K over K from 1 to 10, and the highest peak was observed delta K=3, 

suggesting SHW has three subgroups. (B) Three subgroups (Spring_SHW, Winter_SHW1, and 

Winter_SHW2) were identified from the STRUCTURE. (C) UPGMA cluster analysis 
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APPENDIX VI. Physical distribution of genotyping-by-sequencing derived SNPs within 1 Mb 
window size on 21 chromosomes of 123 synthetic hexaploid wheat. 
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APPENDIX VII. Details of significant markers associated with 11 traits in 123 synthetic hexaploid wheat grown in two seasons 
(2016 and 2017) in Konya, Turkey 
 

Year Trait SNP PVALUE Allele Effect 
PVE 
(%) Gene-ID Human readable description 

2016 Awn length S2A_73179800 5.71 T/C -0.54 2.01 TraesCS2A01G124000 Pentatricopeptide repeat-containing protein 

2016 Awn length S4A_602910768 6.07 A/G 0.48 2.89 - - 

2016 Awn length S4A_691270332 5.80 T/G -0.59 5.1 - - 

2016 Awn length S4D_461573496 5.71 T/C 0.32 9.01 TraesCS4D01G290700.1 60S ribosomal protein L18a 

2016 Awn length S4D_490975981 4.56 C/T 0.47 4.4 TraesCS4D01G333500.1 Purple acid phosphatase 

2016 Awn length S5A_14299464 4.25 C/T 0.25 6.06 TraesCS5A01G018300 Thaumatin-like protein 

2016 Awn length S5A_562540562 11.67 C/T -1.71 11.28 TraesCS5A01G361300.1 Guanine nucleotide exchange family protein 

2016 Awn length S5A_663583007 7.31 A/C -0.72 10.69 TraesCS5A01G495900 ABC transporter B family protein 

2016 Awn length S5B_16679831 8.77 A/G -0.78 17.64 - - 

2017 Awn length S1D_374037078 6.26 G/T 0.67 1.19 TraesCS1D01G277100 DNA glycosylase 

2017 Awn length S2B_707465014 5.92 A/G -0.32 12.86 - - 

2017 Awn length S3B_511571190 4.74 C/T 0.59 1.06 - - 

2017 Awn length S4B_654126249 7.99 G/A -0.71 13.96 - - 

2017 Awn length S5A_562786305 10.69 A/G -1.59 8.12 - - 

2017 Awn length S5A_680705502 10.10 C/A 0.92 20.05 TraesCS5A01G518600 - 

2017 Awn length S5B_43896804 7.31 C/T -1.13 5.99 
TraesCS5B01G038700-
TraesCS5B01G038800 F-box family protein 

2017 Awn length S5D_431539773 4.33 G/A 0.28 5.76 - - 

2017 Awn length S5D_434352162 4.23 A/T 0.3 8.14 - - 

2017 Awn length S6B_643657 10.55 C/T -1.04 5.66 
TraesCS6B01G000900-
TraesCS6B01G001000 Pollen Ole e 1 allergen/extensin and F-box protein 

2017 Awn length S7A_675273205 8.15 C/T -0.46 3.11 
TraesCS7A01G483800-
TraesCS7A01G484000 

Hydroxyproline-rich glycoprotein-like and Aspartic 
proteinase nepenthesin 

2016 Biomass weight S1D_441309135 4.82 G/C -105.34 14.39 TraesCS1D01G357500.1 Protein DETOXIFICATION 

2016 Biomass weight S7B_283360494 4.19 G/A 25.62 9.34 - - 
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2016 Biomass weight S7B_450630784 4.06 G/A -25.88 10.73 TraesCS7B01G242600.1 F-box family protein 

2016 Biomass weight S7B_604038670 4.26 C/G 23.45 8.63 -   

2017 Biomass weight S2B_190232037 5.10 C/A -37.57 2.66 TraesCS2B01G209000 Saccharopine dehydrogenase 

2017 Biomass weight S2B_691513138 4.66 T/C -55.49 5.53 TraesCS2B01G494500   

2017 Biomass weight S3A_24973175 4.21 T/C -40.20 7.81 TraesCS3A01G047100 Aspartic proteinase nepenthesin-2 

2017 Biomass weight S3A_24973182 4.21 T/C -40.20 7.81 TraesCS3A01G047100 Aspartic proteinase nepenthesin-2 

2017 Biomass weight S3A_25012018 6.08 G/A -59.44 14.40 
TraesCS3A01G047200-
TraesCS3A01G047300 

DNA-directed RNA polymerase subunit beta' and F-
box domain containing protein 

2017 Biomass weight S4A_704559254 4.17 C/T 72.75 7.26 -   

2017 Biomass weight S6D_459750797 4.53 C/G 33.69 4.90 
TraesCS6D01G377000-
TraesCS6D01G377100 Ethylene-responsive transcription factor and Myosin 

2017 Biomass weight S6D_459750812 4.53 G/A -33.69 4.90 
TraesCS6D01G377000-
TraesCS6D01G377100 Ethylene-responsive transcription factor and Myosin 

2017 Biomass weight S6D_459750827 4.53 G/C -33.69 4.90 
TraesCS6D01G377000-
TraesCS6D01G377100 Ethylene-responsive transcription factor and Myosin 

2017 Biomass weight S7B_682886226 4.26 C/G 42.83 3.11 TraesCS7B01G415000 Chaperone protein dnaJ 

2017 Biomass weight S7B_706522850 4.69 C/T 41.80 14.39 -   

2016 Flag leaf area S1D_278097355 4.74 C/G 0.21 11.45 TraesCS1D01G197200.1 P-loop containing nucleoside triphosphate hydrolases 
superfamily protein 

2016 Flag leaf area S6B_120860110 4.01 A/G 0.17 9.25 
TraesCS6B01G125800-
TraesCS6B01G125900 Cytochrome P450 family protein, expressed 

2016 Flag leaf area S6B_120860130 4.01 T/A -0.17 9.25 
TraesCS6B01G125800-
TraesCS6B01G125900 

Ethylene-responsive transcription factor and 
Cytochrome P450 family protein, expressed 

2017 Flag leaf area S1A_516732460 6.90 G/A -0.42 7.95 TraesCS1A01G326700.1 Citrate-binding protein 

2017 Flag leaf area S1A_532786451 4.23 G/T -0.29 8.10 
TraesCS1A01G345900-
TraesCS1A01G346000 

Splicing factor 3B subunit 5 and 30S ribosomal protein 
S15 

2017 Flag leaf area S1A_532786462 4.23 G/A 0.29 8.10 
TraesCS1A01G345900-
TraesCS1A01G346000 

Splicing factor 3B subunit 5 and 30S ribosomal protein 
S15 

2017 Flag leaf area S1A_575597761 9.33 G/A 0.62 7.23 TraesCS1A01G418000.1 Polygalacturonase 

2017 Flag leaf area S1B_58989138 5.89 A/G -0.32 4.42 
TraesCS1B01G076100-
TraesCS1B01G076200 

Receptor-like protein kinase and Myb/SANT-like 
DNA-binding domain protein 

2017 Flag leaf area S2A_764065400 4.18 G/T -0.19 3.75 TraesCS2A01G563200 NBS-LRR resistance-like protein 

2017 Flag leaf area S2A_29874199 17.79 G/A 4.65 23.07 - - 

2017 Flag leaf area S2D_35564010 4.71 G/A -0.41 7.12 - - 
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2017 
Flag leaf area S4D_54054104 4.89 G/A -0.28 8.07 TraesCS4D01G080000.1 Glutathione S-transferase 

2017 Flag leaf area S5A_587423540 6.15 G/C 0.26 3.90 TraesCS5A01G391700 MADS box transcription factor 

2017 Flag leaf area S6B_643131336 4.83 T/C 0.21 4.14 TraesCS6B01G369100 MADS-box transcription factor 

2017 Flag leaf area S6B_674558588 9.73 T/A -0.65 10.30 
TraesCS6B01G398900-
TraesCS6B01G399000 Fructose-bisphosphate aldolase and Shugoshin-1 

2017 Flag leaf area S7D_558932149 7.71 C/A 0.50 8.00 
TraesCS7D01G439100-
TraesCS7D01G439200 SKP1-like protein and Gibberellin 2-oxidase 

2017 Flag leaf area S7D_10009696 4.63 G/C -0.35 3.09 - - 

2017 Flag leaf area S7D_638535043 4.00 G/A 0.26 3.09 - - 

2017 Flag leaf area S7D_638535044 4.00 A/C -0.26 3.09 - - 

2017 Flag leaf area S7D_638535045 4.00 A/G -0.26 3.09 - - 

2016 Flag leaf length S1B_667135914 4.38 C/T -0.16 20.75 
TraesCS1B01G447400-
TraesCS1B01G447500 

Disease resistance protein RPM1 and Peroxisomal 
membrane protein PEX14 

2016 Flag leaf length S6D_1771825 4.65 A/C -0.16 17.34 TraesCS6D01G003200 Amino acid transporter 

2017 Flag leaf length S1B_62791605 4.48 T/C -0.41 6.58 
TraesCS1B01G080400-
TraesCS1B01G080500 Glycosyltransferase and Tetraspanin  

2017 Flag leaf length S1B_631203243 5.26 A/G -0.21 9.81 TraesCS1B01G400600.1 Rp1-like protein 

2017 Flag leaf length S1D_382219667 6.72 C/G -0.48 4.41 TraesCS1D01G283900.1 Chitinase 

2017 Flag leaf length S2A_29874199 22.52 G/A 4.74 32.27 - - 

2017 Flag leaf length S2B_140752747 4.15 C/G 0.29 1.58 TraesCS2B01G167500.1 Cytochrome P450, putative 

2017 Flag leaf length S2D_642055122 4.12 C/T 0.25 5.86 
TraesCS2D01G579800-
TraesCS2D01G579900 

protein kinase family protein and PLAC8 family 
protein 

2017 Flag leaf length S2D_71578532 4.68 G/A -0.37 3.58 TraesCS2D01G122500.1 Plasma membrane fusion protein PRM1 

2017 Flag leaf length S4A_612662321 5.30 T/C -0.23 5.31 
TraesCS4A01G325200-
TraesCS4A01G325300 F-box family protein  

2017 Flag leaf length S6D_463762312 5.72 A/G 0.25 5.99 
TraesCS6D01G386200-
TraesCS6D01G386300 

Serine/threonine-protein kinase and Cytochrome P450, 
putative 

2017 Flag leaf length S7B_68562846 5.11 C/T 0.22 5.58 
TraesCS7B01G063500-
TraesCS7B01G063600 

Phosphoinositide phosphatase family protein and 
Auxin responsive SAUR protein 

2017 Flag leaf length S7B_520419132 4.40 G/T 0.21 4.70 - - 

2016 Flag leaf width S1B_453278609 4.21 C/T -0.01 13.62 
TraesCS1B01G257400-
TraesCS1B01G257500 pale cress protein (PAC) and Coatomer subunit delta 

2016 Flag leaf width S1B_554003233 4.59 G/A -0.02 9.34 
TraesCS1B01G327900-
TraesCS1B01G328000 

Werner syndrome-like exonuclease, putative and U3 
small nucleolar RNA-associated protein 15-like protein 
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2016 
Flag leaf width S6B_29539690 4.02 C/A -0.02 11.53 

TraesCS6B01G049800-
TraesCS6B01G049900 - 

2016 Flag leaf width S6B_220551194 4.19 T/C -0.03 13.81 
TraesCS6B01G189600-
TraesCS6B01G189700 

DNA damage-inducible protein 1 and Protease do-like 
1, chloroplastic 

2016 Flag leaf width S6B_320552308 4.67 A/G -0.02 15.19 - - 

2016 Flag leaf width S6D_16376439 4.85 T/C -0.02 13.34 TraesCS6D01G040100.1 Mitochondrial transcription termination factor-like 

2017 Flag leaf width S1A_516732460 6.99 G/A -0.03 9.46 TraesCS1A01G326700.1 Citrate-binding protein 

2017 Flag leaf width S1D_16816400 7.47 A/G -0.03 9.86 
TraesCS1D01G036000-
TraesCS1D01G036100 

Lecithin-cholesterol acyltransferase-like 1 and Protein 
FRIGIDA 

2017 Flag leaf width S2B_16009609 5.05 G/A 0.03 2.46 - - 

2017 Flag leaf width S2B_48030550 5.11 T/C -0.03 4.22 - - 

2017 Flag leaf width S2D_32992152 11.31 G/T -0.04 11.01 TraesCS2D01G077400.1 Actin cross-linking protein, putative (DUF569) 

2017 Flag leaf width S4B_534722043 5.75 G/A 0.04 9.41 TraesCS4B01G263700.1 OSBP (oxysterol binding protein)-related protein 1C 

2017 Flag leaf width S6B_26200560 7.13 C/A 0.03 12.29 TraesCS6B01G042800 F-box family protein 

2017 Flag leaf width S6B_73535204 5.34 C/A 0.03 5.51 
TraesCS6B01G097100-
TraesCS6B01G097200 

Wall-associated receptor kinase 3 and Receptor-like 
protein kinase 

2017 Flag leaf width S6B_119525401 6.34 G/A -0.03 1.86 TraesCS6B01G124500 BRCT domain-containing protein 

2017 Flag leaf width S6B_677338037 5.66 C/A -0.02 1.6 TraesCS6B01G401300 Serine-rich protein 

2016 
Grain volulme 
weight S2D_617414673 4.74 A/C -3.20 11.76 - - 

2016 
Grain volulme 
weight S5A_423673926 5.21 A/G -4.41 13.16 - - 

2016 
Grain volulme 
weight S6A_615815033 4.09 A/G -2.87 10.5 TraesCS6A01G417500 Protein furry homolog-like protein 

2016 
Grain volulme 
weight S7A_30902570 4.26 C/T 1.39 9.09 

TraesCS7A01G062200-
TraesCS7A01G062300 DNA topoisomerase 

2016 
Grain volulme 
weight S7A_691163940 4.07 G/A 1.88 9.26 - - 

2017 
Grain volulme 
weight S1A_298646355 5.46 A/G -0.47 10.50 TraesCS1A01G166200.1 Plant basic secretory family protein 

2017 
Grain volulme 
weight S1A_522189599 4.11 G/A -0.55 2.50 TraesCS1A01G334800 Cytochrome P450 

2017 
Grain volulme 
weight S2A_758448348 5.63 A/G 0.50 14.71 TraesCS2A01G552200.1 Pyruvate decarboxylase 

2017 
Grain volulme 
weight S2B_47837996 6.24 G/A -0.49 1.26 TraesCS2B01G086200 Aspartic proteinase nepenthesin-1 
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2017 
Grain volulme 
weight S3A_610441472 4.91 C/T -0.46 8.79 - - 

2017 
Grain volulme 
weight S4A_7441672 4.09 C/T -0.80 16.17 

TraesCS4A01G013100-
TraesCS4A01G013200 Pyridoxal 5'-phosphate synthase subunit PdxT 

2017 
Grain volulme 
weight S4A_73454791 5.64 C/T -0.63 5.45 TraesCS4A01G074200.2 Microtubule associated protein family protein, 

putative, expressed 

2017 
Grain volulme 
weight S7A_14787746 6.11 G/A -0.86 10.32 - - 

2016 Grain yield S1B_631118054 4.44 C/T 24.38 11.35 - - 

2016 Grain yield S3A_686179591 4.08 G/A -14.28 10.71 TraesCS3A01G445100 F-box family protein 

2016 Grain yield S7A_122984835 4.22 C/G 18.06 9.51 
TraesCS7A01G167600-
TraesCS7A01G167700 

Growth-regulating factor and Myb/SANT-like DNA-
binding domain protein 

2016 Grain yield S7A_97410463 4.15 T/C -16.44 11.61 - - 

2016 Grain yield S7A_110655838 5.38 A/G 19.97 13 - - 

2016 Grain yield S7A_110655882 5.38 C/T 19.97 13 - - 

2016 Grain yield S7A_110891713 4.41 G/C -18.42 16.55 - - 

2016 Grain yield S7A_110891755 4.41 C/T 18.42 16.55 - - 

2016 Grain yield S7A_111089350 5.69 T/G -19.60 16.36 - - 

2016 Grain yield S7A_111089373 5.69 A/G 19.60 16.36 - - 

2016 Grain yield S7A_112439457 4.51 G/A -18.38 11.73 - - 

2016 Grain yield S7A_112439468 4.51 C/G 18.38 11.73 - - 

2016 Grain yield S7A_112439502 4.51 G/A -18.38 11.73 - - 

2016 Grain yield S7A_112439538 5.38 T/C -19.97 13.27 - - 

2016 Grain yield S7A_112977027 5.24 T/A -19.17 12.79 TraesCS7A01G158200.1 Sentrin-specific protease 

2016 Grain yield S7A_113791836 4.85 C/G 19.97 12.76 - - 

2016 Grain yield S7A_113791855 4.85 C/T 19.97 12.76 - - 

2016 Grain yield S7A_114998636 4.53 G/A -17.80 15.21 - - 

2016 Grain yield S7A_115267913 5.22 A/G 18.88 17.32 - - 

2016 Grain yield S7A_115313308 5.03 C/T 21.19 15.81 - - 

2016 Grain yield S7B_717371800 4.25 C/T -14.77 10.2 
TraesCS7B01G459600-
TraesCS7B01G459700 receptor kinase 1 
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2017 
Grain yield S1B_5001751 4.06 C/A -36.30 7.63 - - 

2017 Grain yield S2B_67787236 4.37 A/G -18.14 15.95 
TraesCS2B01G106700-
TraesCS2B01G106800 Wound-induced protein 1 

2017 Grain yield S3A_24993796 4.03 G/A -15.29 10.11 TraesCS3A01G047200 DNA-directed RNA polymerase subunit beta' 

2017 Grain yield S3A_24993797 4.03 T/C -15.29 10.11 TraesCS3A01G047200 DNA-directed RNA polymerase subunit beta' 

2017 Grain yield S3A_25012018 4.81 G/A -20.02 12.74 
TraesCS3A01G047200-
TraesCS3A01G047300 

DNA-directed RNA polymerase subunit beta' and F-
box domain containing protein 

2017 Grain yield S3D_1203058 4.12 G/T 14.32 12.76 
TraesCS3D01G002600-
TraesCS3D01G002700 

Aspartic proteinase nepenthesin-1 and Disease 
resistance protein RPM1 

2017 Grain yield S5B_598463062 5.36 T/C -27.74 15.93 - - 

2017 Grain yield S7A_27608184 5.48 G/T -15.96 17.86 TraesCS7A01G057400 Glycosyltransferase 

2016 Harvest Index S1D_237334753 6.47 T/C 0.01 3.84     

2016 Harvest Index S2A_747610082 5.21 G/A -0.02 4.32 TraesCS2A01G528600.1 Heterogeneous nuclear ribonucleoprotein U-like 
protein 1 

2016 Harvest Index S2D_644672229 4.12 G/T 0.02 14.62     

2016 Harvest Index S3A_593313534 13.56 T/C 0.08 16 
TraesCS3A01G343700-
TraesCS3A01G343800 

WRKY transcription factor and Photosystem I reaction 
center subunit VIII 

2016 Harvest Index S3D_447198038 7.64 G/A 0.02 2.36     

2016 Harvest Index S5B_598463062 8.85 T/C -0.03 18.73     

2016 Harvest Index S6B_555296159 6.21 C/T -0.05 7.4 TraesCS6B01G309900.1 Cobyric acid synthase 

2016 Harvest Index S6D_157451060 4.01 G/A -0.03 6.15 TraesCS6D01G170900.1 Cytochrome P450, putative 

2016 Harvest Index S6D_462272376 12.01 A/G 0.02 14.51 TraesCS6D01G382600.1 LOB domain protein-like 

2016 Harvest Index S7B_720164172 8.45 G/C 0.02 2.22 TraesCS7B01G463400 Non-lysosomal glucosylceramidase 

2016 Root length S3B_757480752 5.24 T/C -0.38 18.51 
TraesCS3B01G514800-
TraesCS3B01G514900 

Eukaryotic aspartyl protease family protein and 
Eukaryotic aspartyl protease family protein 

2016 Root length S5B_669373985 4.62 C/T 0.27 6.87 
TraesCS5B01G502100-
TraesCS5B01G502200 

Dual specificity protein phosphatase and GRAM 
domain-containing protein / ABA-responsive 

2016 Root length S5B_669374027 4.62 C/T 0.27 6.87 
TraesCS5B01G502100-
TraesCS5B01G502200 

Dual specificity protein phosphatase and GRAM 
domain-containing protein / ABA-responsive 

2016 Root length S6D_241296319 4.83 T/C 0.26 9.46 
TraesCS6D01G185700-
TraesCS6D01G185800 Nucleosome assembly protein 1-like 1 

2016 Root length S6D_431108774 4.01 G/A -0.27 5.76 TraesCS6D01G332800.1 Protein DETOXIFICATION 

2016 Root length S6D_431173308 4.40 A/C 0.26 6.34 - - 
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2016 
Root length S6D_435300571 5.09 A/G 0.49 16.7 - - 

2016 Root length S6D_435306317 5.20 T/A -0.31 8.73 - - 

2016 Root length S6D_435306318 5.20 T/C -0.31 8.73 - - 

2016 Root length S6D_445773103 4.20 A/G 0.27 5.25 - - 

2016 Root length S7A_94404310 4.01 G/A 0.52 7.5 TraesCS7A01G143200.2 Phosphatase 2C family protein 

2017 Root length S2B_84424899 4.10 G/A 128.42 10.09 - - 

2017 Root length S2D_620326979 4.22 T/C 192.21 9.90 TraesCS2D01G541000.1 Disease resistance protein RPM1 

2017 Root length S6A_169248262 4.16 G/A 211.19 10.65 
TraesCS6A01G166400-
TraesCS6A01G166500 

Glycosyltransferase family 92 protein and Non-
structural maintenance of chromosome element 4 

2017 Root length S6A_169248303 4.16 A/G -211.19 10.65 
TraesCS6A01G166400-
TraesCS6A01G166500 

Glycosyltransferase family 92 protein and Non-
structural maintenance of chromosome element 4 

2016 Stem diameter S1D_431523575 6.58 G/A -0.06 10.31 TraesCS1D01G341500 Disease resistance protein (NBS-LRR class) family 

2016 Stem diameter S2B_153613233 6.40 C/T 0.08 11.03 TraesCS2B01G178500 Protein LTV1 like 

2016 Stem diameter S2D_38781826 8.28 G/A -0.10 6.07 - - 

2016 Stem diameter S3B_8490506 4.52 A/G -0.12 2.15 TraesCS3B01G019600 E3 ubiquitin-protein ligase 

2016 Stem diameter S3B_64310629 4.16 G/C -0.04 1.27 TraesCS3B01G095900 Major facilitator superfamily protein 

2016 Stem diameter S3B_64310630 4.16 T/C -0.04 1.27 TraesCS3B01G095900 Major facilitator superfamily protein 

2016 Stem diameter S3B_647336163 5.03 C/T -0.06 4.12 - - 

2016 Stem diameter S3D_10133372 9.83 T/G -0.11 8.63 TraesCS3D01G028500.1 Leucine-rich repeat receptor-like protein kinase family 
protein 

2016 Stem diameter S3D_13585155 7.28 G/C -0.05 7.76 TraesCS3D01G037500.1 DUF1666 family protein 

2016 Stem diameter S5B_385190372 12.64 A/T 0.18 17.79 - - 

2016 Stem diameter S6A_94238211 6.90 G/T 0.06 7.47 TraesCS6A01G122200.1 Protein kinase, putative 

2016 Stem diameter S7A_723295818 5.80 G/C 0.05 2.71 TraesCS7A01G549300 1,4-alpha-glucan branching enzyme 

2017 Stem diameter S1A_536172046 8.62 G/C -0.07 9.45 - - 

2017 Stem diameter S3A_26820384 4.43 T/C 0.05 2.70 
TraesCS3A01G050400-
TraesCS3A01G050500 

Histone-lysine N-methyltransferase and GMP synthase 
[glutamine-hydrolyzing] 

2017 Stem diameter S4D_82741469 5.00 C/T 0.05 12.52 - - 

2017 Stem diameter S4D_490591063 5.97 A/G -0.15 2.37 - - 
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2017 
Stem diameter S5A_539482288 6.71 C/A 0.14 3.39 - - 

2017 Stem diameter S6A_611857844 6.97 G/C -0.08 9.07 TraesCS6A01G406700 NAC domain protein, 

2017 Stem diameter S6B_610963076 5.70 G/T 0.06 7.68 
TraesCS6B01G346900-
TraesCS6B01G347000 

NBS-LRR disease resistance protein and F-box 
protein-like 

2017 Stem diameter S6D_472404065 6.46 C/T 0.06 4.19 
TraesCS6D01G404800-
TraesCS6D01G404900 

Calcium-dependent protein kinase and Protein 
SAWADEE HOMEODOMAIN-like protein 2 

2017 Stem diameter S6D_94986698 5.76 G/T 0.10 18.08 - - 

2017 Stem diameter S7A_65090371 7.19 G/C -0.10 3.88 
TraesCS7A01G107600-
TraesCS7A01G107700 

Mediator complex, subunit Med7 and 3-ketoacyl-CoA 
synthase 

2017 Stem diameter S7B_159873337 4.03 C/T 0.06 28.77 
TraesCS7B01G132100-
TraesCS7B01G132200 

Loricrin-like and 4-hydroxy-tetrahydrodipicolinate 
synthase 

2016 
Thousand kernel 
weight S2A_47781717 4.52 A/G 0.93 4.16 

TraesCS2A01G093400-
TraesCS2A01G093500 

Myb/SANT-like DNA-binding domain protein and F-
box family protein 

2016 
Thousand kernel 
weight S2B_409327412 5.45 C/A -1.28 5.12 TraesCS2B01G293500 

Tetratricopeptide repeat (TPR)-like superfamily 
protein 

2016 
Thousand kernel 
weight S2D_7309581 6.09 G/T 0.70 14.72 - - 

2016 
Thousand kernel 
weight S3B_758391015 5.42 A/C -0.81 9.73 

TraesCS3B01G516300-
TraesCS3B01G516400 ATP synthase subunit a 

2016 
Thousand kernel 
weight S4A_625466381 4.12 G/T 1.21 15.3 

TraesCS4A01G347500-
TraesCS4A01G347600 

Receptor-like protein kinase and protein kinase family 
protein 

2016 
Thousand kernel 
weight S4A_402470267 6.97 C/T 1.65 18.64 - - 

2016 
Thousand kernel 
weight S4D_509427923 4.91 G/C -1.72 10.06 TraesCS4D01G364700 Cytochrome P450 family protein 

2016 
Thousand kernel 
weight S6D_452410667 8.16 A/G -1.54 17.66 TraesCS6D01G360800 protein kinase family protein 

2016 
Thousand kernel 
weight S7B_714380330 5.06 T/C -0.95 11.46 - - 

2017 
Thousand kernel 
weight S1A_17748135 5.00 C/G 0.62 8.59 - - 

2017 
Thousand kernel 
weight S2B_683472157 4.31 C/T -1.48 12.74 - - 

2017 
Thousand kernel 
weight S2D_7309581 7.60 G/T 0.83 8.51 - - 

2017 
Thousand kernel 
weight S3A_52455011 6.02 T/C 1.31 1.64 TraesCS3A01G081100 Major facilitator superfamily protein 

2017 
Thousand kernel 
weight S4A_681180933 6.12 T/G -0.81 14.08 TraesCS4A01G408300 

Xyloglucan galactosyltransferase KATAMARI1-like 
protein 

2017 
Thousand kernel 
weight S4B_11905230 8.94 C/G -1.11 3.91 TraesCS4B01G016200.1 LOB domain-containing protein, putative 
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2017 
Thousand kernel 
weight S4B_407743714 15.99 A/T 2.31 13.38 

TraesCS4B01G187300-
TraesCS4B01G187400 Protein COBRA, putative and Hexosyltransferase 

2017 
Thousand kernel 
weight S4B_637722874 5.17 C/T 0.86 2.03 TraesCS4B01G344200.1 Zinc finger (C3HC4-type RING finger) family protein 

2017 
Thousand kernel 
weight S5B_288308122 4.31 C/G -0.65 2.21 TraesCS5B01G156100 Alpha/beta-Hydrolases superfamily protein 

2017 
Thousand kernel 
weight S5B_616966405 6.91 G/A 1.29 22.21 - - 

2017 
Thousand kernel 
weight S7D_46755477 6.38 G/A -0.76 4.29 - - 

PVE: Phenotypic variance explained
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APPENDIX VIII. Number of synthetic hexaploid wheat germplasm having either favorable or 

unfavorable alleles associated with common bunt resistance.  
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APPENDIX IX. Soil sample analysis in 2016 and 2017 growing season in Konya, Turkey 

Year Sample pH 
Electrical 
conductivity P205 K20 Organic matter CaCo3 

   

Mmhos cm-

1 Kg ha-1 Kg ha-1 % % 

2016 1 7.70 1.21 2.071 17.19 2.08 30.19 

2016 2 7.74 1.15 2.019 17.19 1.98 30.74 

Mean 
 

7.72 1.18 2.045 17.19 2.03 30.465 

        
2017 1 8.21 0.71 0.888 28.57 1.30 31.57 

2017 2 8.20 0.66 0.853 28.59 1.35 28.27 

Mean 
 

8.205 0.685 0.8705 28.58 1.33 29.92 
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APPENDIX X. Details of top ranking 13 synthetic hexaploid wheat and checks (Gerek and Karahan) based on two years combined 
data. 

Entry# Pedigree name Ca Cd Co Cu Fe Li Mg Mn Ni Zn Favallle GPC GY 

  mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg  g/Kg g/m2 

119 LANGDON/KU-2093 90.87 0.08 0.02 8.79 56.02 0.27 1707.43 58.17 0.79 29.57 27 162.54 212.97 

81 PANDUR/AE.SQUARROSA(223) 108.75 0.08 0.04 8.73 55.67 0.60 1986.62 59.37 1.34 30.20 37 148.86 321.63 

107 LANGDON/IG 126387 96.59 0.09 0.02 7.38 54.27 0.44 1673.35 49.30 0.61 30.24 24 151.83 221.48 

83 PANDUR/AE.SQUARROSA(223) 81.16 0.08 0.04 9.80 54.22 0.38 1862.02 61.53 0.81 33.03 26 147.56 385.60 

118 LANGDON/KU-20-9 80.98 0.08 0.03 8.46 53.73 0.29 1781.54 56.01 0.86 33.16 28 158.35 205.71 

117 LANGDON/KU-2079 89.35 0.07 0.03 8.36 53.35 0.24 1751.60 59.37 0.79 34.47 26 167.43 260.41 

109 LANGDON/KU-2074 92.33 0.09 0.04 7.89 51.37 0.27 1762.32 55.09 1.02 28.91 23 161.75 150.51 

114 LANGDON/KU-2097 81.21 0.08 0.03 7.88 50.87 0.27 1568.09 53.68 0.81 31.43 25 162.61 213.78 

12 AISBERG/AE.SQUARROSA(511) 96.75 0.08 0.03 9.15 50.38 0.26 1894.32 63.00 0.83 33.67 28 149.60 226.72 

82 PANDUR/AE.SQUARROSA(223) 101.91 0.08 0.04 8.68 50.29 0.40 1892.40 55.87 1.07 32.58 34 149.80 300.11 

125 UKR-OD 761.93/AE.SQUARROSA(392) 79.23 0.08 0.03 9.29 49.98 0.28 1793.75 56.75 0.73 32.58 27 137.24 323.52 

90 PANDUR/AE.SQUARROSA(223) 99.33 0.08 0.03 9.09 49.70 0.40 1899.86 56.86 0.90 31.93 31 153.63 275.42 

102 PANDUR/AE.SQUARROSA(409) 82.08 0.07 0.02 8.31 49.45 0.24 1722.92 52.75 0.70 33.74 28 156.68 181.83 

127 Gerek 72.19 0.05 0.02 4.27 30.09 0.31 1179.2 34.01 0.55 16.51 - 133.21 301.1 

128 Karahan 80.32 0.05 0.02 5.94 33.75 0.18 1314.79 33.72 0.45 18.23 - 141.35 300.11 

Favallele, favorable allele; GPC, grain protein concentration; GY, grain yield 
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APPENDIX XI. Details of significant markers associated with 10 grain minerals from genome wide association study of 123 synthetic 
hexaploid wheats grown in 2016 and 2017 in Konya, Turkey.  

Trait Year Dataset SNP Chromosome Position (bp) Alleles Favorable allele PVE (%) SNP effect Pvalue -log10(P) 

Zinc combined CBLUP S1A_1846816 1A 1846816 A/G A 3.0 -0.655 1.47E-07 6.83 

Nickel 2016 BLUP16 S1A_402236557 1A 402236557 G/A A 19.3 -0.153 8.00E-13 12.10 

Iron combined CBLUP S1A_584413238 1A 584413238 T/G G 11.2 -3.354 1.17E-06 5.93 

Iron combined CBLUP S1A_584413248 1A 584413248 G/C C 11.2 -3.354 1.17E-06 5.93 

Cadmium 2017 BLUP17 S1A_587736663 1A 587736663 G/A A 4.0 -0.002 4.25E-07 6.37 

Copper 2016 BLUP16 S1B_544997339 1B 544997339 G/A G 10.6 0.294 3.02E-07 6.52 

Lithium 2017 BLUP17 S1B_606491241 1B 606491241 T/C C 13.5 -0.039 6.29E-10 9.20 

Lithium combined CBLUP S1B_606491241 1B 606491241 T/C C 12.3 -0.011 6.74E-11 10.17 

Magnesium 2017 BLUP17 S1B_6867825 1B 6867825 C/A A 1.4 -121.477 1.62E-08 7.79 

Calcium combined CBLUP S1B_6867825 1B 6867825 C/A A 4.7 -2.938 1.08E-10 9.97 

Magnesium combined CBLUP S1B_6867825 1B 6867825 C/A A 1.4 -73.196 5.35E-08 7.27 

Lithium combined CBLUP S1D_17169160 1D 17169160 C/G C 5.1 -0.011 6.32E-07 6.20 

Magnesium combined CBLUP S1D_466362317 1D 466362317 C/T T 9.6 64.345 1.13E-07 6.95 

Lithium combined CBLUP S2A_11222292 2A 11222292 C/G G 15.2 0.018 2.23E-08 7.65 

Cadmium 2017 BLUP17 S2A_23985636 2A 23985636 G/A G 1.8 0.011 5.59E-14 13.25 

Copper combined CBLUP S2A_738732586 2A 738732586 T/G G 3.1 -0.430 2.57E-07 6.59 

Copper 2016 BLUP16 S2A_742969119 2A 742969119 A/G G 5.3 0.578 1.18E-07 6.93 

Zinc 2016 BLUP16 S2A_742969119 2A 742969119 A/G G 8.9 1.344 1.19E-06 5.92 

Zinc 2017 BLUP17 S2A_750621751 2A 750621751 C/A C 10.3 1.538 2.10E-07 6.68 

Calcium 2017 BLUP17 S2B_502127437 2B 502127437 C/T C 9.3 -1.966 6.64E-07 6.18 

Nickel 2016 BLUP16 S2D_48611294 2D 48611294 C/T T 21.1 0.234 7.09E-14 13.15 

Nickel combined CBLUP S2D_48611294 2D 48611294 C/T T 20.2 0.073 5.56E-10 9.25 

Magnesium 2017 BLUP17 S2D_506778844 2D 506778844 T/G G 11.8 -71.163 5.35E-09 8.27 

Lithium combined CBLUP S2D_517038749 2D 517038749 C/A C 1.9 0.014 3.40E-07 6.47 

Lithium 2017 BLUP17 S2D_572031650 2D 572031650 G/A A 12.6 -0.049 5.23E-09 8.28 
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Lithium combined CBLUP S2D_572031650 2D 572031650 G/A A 14.6 -0.014 1.05E-10 9.98 

Manganese 2016 BLUP16 S2D_58740285 2D 58740285 A/G A 8.7 -2.742 9.39E-07 6.03 

Manganese combined CBLUP S2D_58740285 2D 58740285 A/G A 10.9 -1.267 1.71E-08 7.77 

Calcium combined CBLUP S2D_631996199 2D 631996199 G/A A 7.6 -1.686 2.74E-08 7.56 

Cadmium 2017 BLUP17 S2D_80258448 2D 80258448 C/A C 7.0 0.003 2.15E-07 6.67 

Copper 2016 BLUP16 S3A_23297031 3A 23297031 T/C C 5.8 -0.374 3.45E-07 6.46 

Nickel combined CBLUP S3A_530501108 3A 530501108 T/C T 13.3 0.029 5.04E-07 6.30 

Zinc 2017 BLUP17 S3A_534469328 3A 534469328 A/T A 11.1 -1.094 4.19E-07 6.38 

Magnesium combined CBLUP S3A_534469328 3A 534469328 A/T A 14.6 -31.191 2.62E-07 6.58 

Manganese combined CBLUP S3A_534469328 3A 534469328 A/T A 14.3 -1.466 1.25E-08 7.90 

Zinc combined CBLUP S3A_534469328 3A 534469328 A/T A 12.7 -0.843 5.52E-11 10.26 

Iron combined CBLUP S3A_534535579 3A 534535579 G/C G 13.2 2.675 4.40E-07 6.36 

Calcium combined CBLUP S3A_593702925 3A 593702925 A/G G 7.9 1.270 7.47E-08 7.13 

Cobalt 2017 BLUP17 S3A_736119715 3A 736119715 A/C C 18.5 0.001 1.39E-08 7.86 

Cadmium 2017 BLUP17 S3A_742590055 3A 742590055 C/T C 8.7 -0.003 2.02E-09 8.69 

Zinc combined CBLUP S3B_206308044 3B 206308044 G/A A 1.8 -0.551 4.20E-07 6.38 

Calcium 2017 BLUP17 S3B_548275272 3B 548275272 T/C T 2.7 2.349 4.54E-07 6.34 

Calcium combined CBLUP S3B_655010350 3B 655010350 C/T T 2.9 2.962 1.13E-07 6.95 

Copper combined CBLUP S3B_689167760 3B 689167760 C/T T 9.2 0.281 2.68E-07 6.57 

Magnesium 2017 BLUP17 S3B_727935439 3B 727935439 G/A A 6.7 -59.089 9.76E-08 7.01 

Zinc 2017 BLUP17 S3B_78136780 3B 78136780 T/C T 1.8 0.995 1.32E-06 5.88 

Zinc 2016 BLUP16 S3B_813450132 3B 813450132 C/A C 4.7 2.725 2.30E-09 8.64 

Calcium 2017 BLUP17 S3D_45073985 3D 45073985 T/A A 21.5 -3.463 1.38E-07 6.86 

Lithium 2017 BLUP17 S3D_610567350 3D 610567350 G/T T 22.6 0.066 2.30E-09 8.64 

Lithium combined CBLUP S3D_610567350 3D 610567350 G/T T 16.5 0.021 3.62E-10 9.44 

Zinc combined CBLUP S4A_681683160 4A 681683160 G/A A 13.8 -0.782 7.93E-07 6.10 

Magnesium combined CBLUP S4A_740606543 4A 740606543 A/G G 9.7 81.062 1.01E-07 7.00 

Copper 2016 BLUP16 S4B_37424735 4B 37424735 C/T C 5.2 -0.340 2.98E-07 6.53 
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Manganese combined CBLUP S4B_407743657 4B 407743657 C/A A 13.4 -2.502 1.56E-10 9.81 

Zinc combined CBLUP S4B_408606348 4B 408606348 G/C C 14.1 -1.022 4.21E-08 7.38 

Magnesium combined CBLUP S4B_624138956 4B 624138956 C/T C 1.8 -50.785 1.17E-06 5.93 

Nickel 2017 BLUP17 S4D_381885629 4D 381885629 A/C C 13.6 0.052 1.10E-06 5.96 

Magnesium combined CBLUP S4D_490394558 4D 490394558 T/G G 7.9 -27.722 1.37E-06 5.86 

Lithium 2017 BLUP17 S5A_135164381 5A 135164381 G/C C 4.4 -0.040 9.27E-08 7.03 

Lithium combined CBLUP S5A_135164381 5A 135164381 G/C C 7.2 -0.013 2.65E-09 8.58 

Zinc 2016 BLUP16 S5A_395285802 5A 395285802 G/A A 10.6 -0.736 6.78E-08 7.17 

Zinc combined CBLUP S5A_552354940 5A 552354940 C/G G 8.8 1.664 6.79E-07 6.17 

Copper combined CBLUP S5A_643024354 5A 643024354 A/C A 1.6 -0.275 1.02E-06 5.99 

Magnesium 2016 BLUP16 S5B_405724949 5B 405724949 G/A G 12.0 99.659 1.00E-06 6.00 

Copper 2016 BLUP16 S5B_607870649 5B 607870649 T/C C 14.4 -0.527 9.18E-10 9.04 

Copper combined CBLUP S5B_607870649 5B 607870649 T/C C 17.1 -0.266 3.51E-07 6.46 

Nickel combined CBLUP S5B_616966405 5B 616966405 G/A G 9.2 0.031 1.14E-06 5.94 

Magnesium 2017 BLUP17 S5B_65069754 5B 65069754 C/G C 2.4 -80.852 1.28E-06 5.89 

Magnesium 2017 BLUP17 S5D_28880704 5D 28880704 C/G C 3.8 -54.631 4.13E-08 7.38 

Manganese combined CBLUP S5D_29132492 5D 29132492 C/G C 4.4 -1.391 3.25E-09 8.49 

Copper combined CBLUP S5D_493381192 5D 493381192 C/T T 1.8 0.152 4.84E-07 6.31 

Nickel combined CBLUP S6A_430583367 6A 430583367 C/T C 4.7 -0.090 1.81E-08 7.74 

Calcium 2017 BLUP17 S6A_50345873 6A 50345873 C/T C 9.0 -1.345 6.73E-08 7.17 

Calcium 2017 BLUP17 S6A_592562315 6A 592562315 C/G G 6.9 8.350 2.34E-11 10.63 

Copper combined CBLUP S6A_613579920 6A 613579920 C/G C 1.2 -0.210 4.94E-08 7.31 

Nickel combined CBLUP S6A_99795469 6A 99795469 T/C C 14.9 -0.039 3.17E-07 6.50 

Calcium 2016 BLUP16 S6B_109760004 6B 109760004 T/A T 19.9 2.763 3.77E-09 8.42 

Copper combined CBLUP S6B_27918199 6B 27918199 C/T T 10.9 0.343 1.10E-10 9.96 

Calcium 2016 BLUP16 S6B_32333184 6B 32333184 C/G G 9.9 3.552 1.98E-09 8.70 

Calcium combined CBLUP S6B_32333184 6B 32333184 C/G G 13.0 3.045 4.87E-11 10.31 

Zinc 2016 BLUP16 S6B_482791655 6B 482791655 T/C C 9.4 -1.410 8.46E-07 6.07 
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Manganese 2016 BLUP16 S6B_48536435 6B 48536435 A/T T 11.5 5.491 1.08E-06 5.97 

Calcium 2016 BLUP16 S6B_576856920 6B 576856920 C/G G 9.3 2.298 9.07E-07 6.04 

Copper 2016 BLUP16 S6B_6241996 6B 6241996 A/C C 10.0 0.684 9.94E-11 10.00 

Calcium combined CBLUP S6B_658724336 6B 658724336 C/T T 9.6 1.799 2.03E-08 7.69 

Lithium 2017 BLUP17 S6D_30744756 6D 30744756 A/G G 20.3 0.041 8.40E-10 9.08 

Lithium combined CBLUP S6D_30744756 6D 30744756 A/G G 12.6 0.012 1.57E-11 10.80 

Cadmium combined CBLUP S6D_447907113 6D 447907113 T/C T 14.4 0.001 9.57E-07 6.02 

Cobalt 2017 BLUP17 S6D_452082847 6D 452082847 A/C C 25.2 0.001 2.46E-07 6.61 

Magnesium 2017 BLUP17 S7A_116286914 7A 116286914 T/G G 7.3 -94.175 1.80E-07 6.74 

Calcium 2016 BLUP16 S7A_34297426 7A 34297426 G/A G 11.8 2.574 1.14E-07 6.94 

Cobalt 2017 BLUP17 S7D_17753962 7D 17753962 A/T T 21.2 0.001 1.30E-10 9.89 
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APPENDIX XII. List of significant markers associated with 10 grain minerals and gene annotation to test the reliability of the MTA 
from from genome wide association study of 123 synthetic hexaploid wheats grown in 2016 and 2017 in Konya, Turkey.  

Trait Year Dataset SNPID Gene_Name Gene Annotation 

Cadmium 2017 BLUP17 S2D_80258448 
TraesCS2D01G136700-
TraesCS2D01G136800 

Glycerol-3-phosphate acyltransferase 3, putative and Cysteine-rich receptor-kinase-like protein (Salt stress 
response/antifungal) 

Calcium 2016 BLUP16 S6B_576856920 TraesCS6B01G327300 Allergen, putative 

Calcium 2016 BLUP16 S7A_34297426 
TraesCS7A01G068100-
TraesCS7A01G068200 

Transcription elongation factor 1 and NAC domain-containing protein, putative ( No apical meristem (NAM) 
protein) 

Calcium 2016 BLUP16 S6B_109760004 
TraesCS6B01G117600-
TraesCS6B01G117700 

Pyridoxal 5'-phosphate synthase subunit PdxT and ATP synthase gamma chain 

Calcium 2016 BLUP16 S6B_32333184 TraesCS6B01G053100 MYB transcription factor 

Calcium 2017 BLUP17 S6A_50345873 
TraesCS6A01G081700-
TraesCS6A01G081800 

Peroxidase and Cytochrome P450 

Calcium combined CBLUP S2D_631996199 
TraesCS2D01G559600-
TraesCS2D01G559700 

transmembrane protein, putative (DUF594) and Zn-dependent exopeptidases superfamily protein 

Calcium combined CBLUP S6B_658724336 
TraesCS6B01G384300-
TraesCS6B01G384400 

Leucine-rich repeat receptor-like protein kinase family protein 

Calcium combined CBLUP S3B_655010350 
TraesCS3B01G417900-
TraesCS3B01G418000 

Protein bps1, chloroplastic and Adenine nucleotide alpha hydrolases-like superfamily protein (Universal stress 
protein family) 

Cobalt 2017 BLUP17 S6D_452082847 TraesCS6D01G360300 F-box family protein 

Cobalt 2017 BLUP17 S3A_736119715 
TraesCS3A01G518900-
TraesCS3A01G519000 

DNA topoisomerase and Cytochrome P450, putative 

Copper 2016 BLUP16 S3A_23297031 
TraesCS3A01G042900-
TraesCS3A01G043000 

DNA-binding storekeeper protein-related transcriptional regulator and 30S ribosomal protein S10 
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Copper 
2016 BLUP16 S4B_37424735 

TraesCS4B01G049200-
TraesCS4B01G049300 

50S ribosomal protein L32, chloroplastic and GPN-loop GTPase-like protein 

Copper 2016 BLUP16 S2A_742969119 
TraesCS2A01G519900-
TraesCS2A01G520000 

2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein 

Copper combined CBLUP S2A_738732586 
TraesCS2A01G514200-
TraesCS2A01G514300 

AP2-like ethylene-responsive transcription factor and Ethylene-responsive transcription factor 

Iron combined CBLUP S1A_584413238 
TraesCS1A01G432800-
TraesCS1A01G432900 

Metacaspase-1 and Na-translocating NADH-quinone reductase subunit A 

Iron combined CBLUP S1A_584413248 
TraesCS1A01G432800-
TraesCS1A01G432900 

Metacaspase-1 and Na-translocating NADH-quinone reductase subunit A 

Iron combined CBLUP S3A_534535579 TraesCS3A01G300700 Serpin family protein 

Lithium 2017 BLUP17 S2D_572031650 TraesCS2D01G466400 Leucine-rich repat recepter-like protein [disease resistance protein (TIR-NBS-LRR class) family] 

Lithium 2017 BLUP17 S5A_135164381 TraesCS5A01G096300 GDSL esterase/lipase 

Lithium 2017 BLUP17 S1B_606491241 TraesCS1B01G375400 Kinase family protein 

Lithium 2017 BLUP17 S6D_30744756 
TraesCS6D01G064500-
TraesCS6D01G064600 

F-box protein and F-box SKIP23-like protein 

Magnesium 2017 BLUP17 S3B_727935439 
TraesCS3B01G479800-
TraesCS3B01G479900 

F-box family protein and CBS domain-containing protein-like 

Magnesium combined CBLUP S4B_624138956 
TraesCS4B01G333400-
TraesCS4B01G333500 

carboxyl-terminal peptidase, putative (DUF239) and carboxyl-terminal peptidase (DUF239) 

Magnesium combined CBLUP S3A_534469328 TraesCS3A01G300400 Protein DETOXIFICATION 

Magnesium combined CBLUP S4D_490394558 
TraesCS4D01G333000-
TraesCS4D01G333100 

ROP guanine nucleotide exchange factor 10 and F-box family protein 
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Magnesium combined CBLUP S4A_740606543 TraesCS4A01G490700 Leucine-rich repeat receptor-like protein kinase family protein, putative 

Manganese 2016 BLUP16 S2D_58740285 
TraesCS2D01G106500-
TraesCS2D01G106600 

F-box protein and Potassium transporter 

Manganese 2016 BLUP16 S6B_48536435 TraesCS6B01G071900 thionin-like protein 

Manganese combined CBLUP S4B_407743657 
TraesCS4B01G187300-
TraesCS4B01G187400 

Protein COBRA, putative and Hexosyltransferase ( Glycosyl transferase family 8) 

Nickel 2016 BLUP16 S1A_402236557 TraesCS1A01G229600 Elongation factor 4 

Nickel combined CBLUP S6A_430583367 TraesCS6A01G228400 Prolyl oligopeptidase family protein 

Nickel combined CBLUP S3A_530501108 TraesCS3A01G296300 LURP-one-like protein 

Zinc 2016 BLUP16 S6B_482791655 
TraesCS6B01G268400-
TraesCS6B01G268500 

FBD-associated F-box protein and Sentrin-specific protease 2 

Zinc 2017 BLUP17 S3B_78136780 
TraesCS3B01G111800-
TraesCS3B01G111900 

Accelerated cell death 11 and F-box protein 

Zinc 2017 BLUP17 S2A_750621751 TraesCS2A01G536700 Flowering Locus T-like protein, putative 

Zinc combined CBLUP S4B_408606348 TraesCS4B01G187600 Chaperone protein dnaJ 

Zinc combined CBLUP S4A_681683160 TraesCS4A01G408900 Cytoplasmic FMR1-interacting 

Zinc combined CBLUP S1A_1846816 
TraesCS1A01G003300-
TraesCS1A01G003400 

Protein ROOT HAIR DEFECTIVE 3 homolog 

Zinc combined CBLUP S3B_206308044 
TraesCS3B01G192400-
TraesCS3B01G192500 

Phosphate translocator and Receptor-like kinase (Leucine rich repeat N-terminal domain) 
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