
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Computer Science and Engineering: Theses,
Dissertations, and Student Research Computer Science and Engineering, Department of

12-2018

Scale-Out Algorithm For Apache Storm In SaaS
Environment
Ravi Kiran Puttaswamy
University of Nebraska-Lincoln, ravikiran.mara@live.com

Follow this and additional works at: http://digitalcommons.unl.edu/computerscidiss

Part of the Computer Engineering Commons, and the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Computer Science and Engineering: Theses, Dissertations, and Student Research by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Puttaswamy, Ravi Kiran, "Scale-Out Algorithm For Apache Storm In SaaS Environment" (2018). Computer Science and Engineering:
Theses, Dissertations, and Student Research. 159.
http://digitalcommons.unl.edu/computerscidiss/159

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/189483868?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F159&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F159&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F159&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F159&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F159&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F159&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F159&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss/159?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F159&utm_medium=PDF&utm_campaign=PDFCoverPages

Scale-Out Algorithm For Apache Storm In SaaS Environment

by

Ravi Kiran Puttaswamy

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Master of Science

Major: Computer Science

Under the Supervision of Ying Lu

Lincoln, Nebraska

December, 2018

Scale-Out Algorithm For Apache Storm In SaaS Environment

Ravi Kiran Puttaswamy, M.S.

University of Nebraska, 2018

Adviser: Ying Lu

The main appeal of the Cloud is in its cost effective and flexible access to computing

power. Apache Storm is a data processing framework used to process streaming data. In

our work we explore the possibility of offering Apache Storm as a software service.

Further, we take advantage of the cgroups feature in Storm to divide the computing

power of worker machine into smaller units to be offered to users. We predict that the

compute bounds placed on the cgroups could be used to approximate the state of the

workflow. We discuss the limitations of the current schedulers in facilitating this type of

approximation as the resources are distributed in arbitrary ways. We implement a new

custom scheduler that allows the user with more explicit control over the way resources

are distributed to components in the workflow. We further build a simple model to

approximate the current state and also predict the future state of the workflow due to

changes in resource allocation. We propose a scale-out algorithm to increase the

throughput of the workflow. We use the predictive model to measure the effects of many

candidate allocations before choosing it. Our approach analyzes the strengths and

drawbacks of Stela algorithm and design a complementary algorithm. We show that the

combined algorithm complement each others strengths and drawbacks and provides

allocations to maximize throughput for much larger set of scenarios. We implement the

algorithm as a stand alone scheduler and evaluate the strategy through physical

simulation on the Apache Storm Cluster and on software simulations for a set of

workflows.

iii

COPYRIGHT

© 2018, Ravi Kiran Puttaswamy

iv

ACKNOWLEDGMENTS

Foremost, I would like to express my sincere gratitude to my advisor Prof. Ying Lu for the

continuous support of my study and research, for her patience, motivation, enthusiasm,

and immense knowledge. Her guidance helped me in all the time of research and writing

of this thesis. I could not have imagined having a better advisor and mentor for my

Masters Thesis.

Besides my advisor, I would like to thank the rest of my thesis committee: Prof.

David Swanson and Prof. Hongfeng Yu, for their encouragement and insightful

comments.

I would also like to thank the CSE department and HCC for providing ample

amount of support and resources to help me complete my work.

Finally I would like to my family and friends, without whom I wouldn’t be here

today.

v

Contents

List of Figures vii

List of Tables ix

1: Introduction 1

2: Literature Review 8

3: Background 16

3.1 Architecture of Apache Storm . 18

4: Stela 24

4.1 Identify Congested Components . 25

4.2 Measure Desirability of Congested Component 25

4.3 Choosing The Component . 26

4.4 Drawbacks of Stela . 27

5: Scale-Out Algorithm 29

5.1 Goals and Assumptions . 29

5.2 Approach and Design . 30

5.2.1 Resource Units . 31

5.2.2 Batch Allocation . 31

5.2.3 Compute Model . 31

vi

5.2.4 Calculating Throughput for Allocation 34

5.2.5 Strategy . 35

5.2.6 Residual Resources . 37

5.2.7 Algorithm . 38

5.2.8 Comparision to Stela . 42

6: Implementation and Evaluation 45

6.1 Changes to Storm Framework . 46

6.2 Evaluation . 47

6.2.1 Software Simulation . 48

6.2.2 Analysis . 59

6.2.3 Validation in Testbed . 63

7: Future Work 70

8: Conclusion 72

References 73

vii

List of Figures

1.1 A sample topology where Cx indicates the level of congestion. It varies be-

tween 0 (no congestion) and 1.0 (fully Congested) 4

1.2 A sample topology with more components. Cx indicates the level of conges-

tion. It varies between 0 (no congestion) and 1.0 (fully Congested) 4

1.3 Tree structure of the topology. For the entire topology A is the rootnode.

B,D,E,C are the children. B,E,D is a child subtree of A. B is the root of the subtree 6

3.1 Topology structure indicating Spout and Bolt 17

3.2 High Level Architecture of Apache Storm . 18

3.3 Architecture of Worker Process1 . 19

3.4 Task distribution in a Topology . 20

3.5 Internal message buffer of worker process 22

6.1 Test topology : linear . 50

6.2 Test topology : Diamond . 51

6.3 Test topology : simple Tree . 52

6.4 Test topology : topology 17 . 54

6.5 Throughput increase comparison for Test topology : topology 17 55

6.6 Throughput increase comparison for topology 17 with child ratios swapped . 56

6.7 Throughput increase comparison for topology 17 step capacity increased . . . 57

viii

6.8 Throughput increase comparison for topology 17 step capacity increased child

ratio swapped . 58

6.9 Test topology : testMix topology . 59

6.10 Throughput increase comparison for testMix topology 59

6.11 Throughput increase comparison for testMix with child ratio swapped : test-

MixRev topology . 61

6.12 Throughput increase comparison for testMix with step capacity increase :

testMixStep topology . 61

6.13 Throughput increase comparison for testMix with step capacity increase and

child ratio swapped : testMixStepRev topology 62

6.14 Throughput increase comparison for combined algorithm and Stela 64

6.15 Throughput increase comparison for combined algorithm and Stela 67

6.16 Test topology : topology 10 . 68

6.17 Throughput increase comparison Stela and our approach : topology 10 68

6.18 Throughput increase comparison Stela and Combined : topology 10 68

6.19 Throughput comparison measured and estimated 69

ix

List of Tables

6.1 Input, output and max processing rates for topology : linear 50

6.2 Allocations and throughput increase for topology : linear 50

6.3 Input, output and max processing rates for topology : diamond 51

6.4 Allocations and throughput increase for topology : diamond 51

6.5 Input, output and max processing rates for topology : simple tree 52

6.6 Allocations and throughput increase for topology : simple tree 53

6.7 Input, output and max processing rates for topology : topology 17 53

6.8 Allocations and throughput increase for topology : topology 17 54

6.9 Input, output and max processing rates for topology : topology 17 56

6.10 Input, output and max processing rates for topology : mix topology 60

6.11 Input, output and max processing rates for topology : topology 10 65

1

Chapter 1

Introduction

Cloud computing technology has received widespread acceptance in the recent years.

Companies are moving their assets and workloads to the cloud through mixed or pure

cloud deployments in ever increasing numbers.2 The cloud offers a lot of flexibility by

allowing the user to procure resources on demand, which reduces operational costs.

Cloud computing is offered in many flavors, to better suit the user’s perception of the

infrastructure. Some of the popular flavors are Infrastructure as a Service (IaaS),

Platform as a Service (PaaS) and Software as a Service (Saas). In IaaS, the computing

resources and the supporting infrastructure like networking, storage etc. are owned by

the cloud providers. The user can procure these resources on demand. This flavor

provides the greatest freedom, as the user can customize the infrastructure and the

software. PaaS offers the middleware with the infrastructure. Middleware typically

includes the operating system, development tools, database management system, etc.

The user typically deploys his application using the tools provided by the middleware.

SaaS offers a complete software solution as a service. The user can connect to the

software and use it over the internet. The applications are deployed and maintained by

the cloud provider or a third party agent, and the user has no access or control over the

infrastructure that hosts the service.

2

One of the technologies to take advantage of this form of computing is Big Data.

Cloud computing along with the recent advancements to the data processing

frameworks has greatly reduced the barrier of entry to many medium and small sized

companies. Apache Hadoop,3 Apache Storm,4 Apache Spark,5 Heron,6 Milwheel,7 Apache

Zookeeper,8 S49 are among the more popular frameworks used for big data processing.

Creating and maintaining a data center is expensive and often untenable for small

companies. Instead now they can take advantage of the infrastructure provided by the

cloud. The cloud and the frameworks enable the user to develop their solutions quickly

and test the viability and usefulness of these big data solutions before committing to it

fully.

The current approaches to deploy big data applications often obtain resources in

either IaaS10 or PaaS11 flavor. Typically machines are acquired and configured with the

necessary software like data processing framework. These approaches place some

burden on the user as they are responsible for deploying, configuring and maintaining

the necessary software. For small companies such investments in resources may be

untenable. In our work we explore the possibility of offering data processing frameworks

in a SaaS flavor.

SaaS has seen steady growth in recent times.12 When a software is offered as service,

the service provider installs, configures and maintains the software. The user accesses

the software through a service point. The whole infrastructure supporting the software is

abstracted and hidden from the user. The user has no control over the machines on

which the software is hosted, or on the software itself. The software provider defines the

operations that the user can execute as well as the means to acquire or release resources.

For the SaaS flavor of data processing frameworks, the user only needs to provide

the workflow to execute and the number of resources to be used. The service provider

would allocate the requested resources and execute the topology on the cloud. The user

does not have any control over the machines or the software or where the workflow is

3

deployed. It is up to the service provider to ensure that the workflow is executed in

isolation and its performance is not impacted by workflows of other users. Additionally

the service provider needs to ensure that the privacy and security concerns of users are

addressed. This could be done externally by using containers or internally if the data

processing framework supports features similar to containers.

Apache Storm is a popular framework used to process streaming data. This project

is open sourced,13 in active development and has widespread usage. The workflow for

processing data is called a Topology. A topology is described in the form of an acyclic

graph. Each node represents some task to be performed on data and the arcs indicate the

flow of data between nodes. Compute resources are allocated to the node to execute the

task. The part of the framework responsible for allocating the compute resources to the

components is called a Scheduler. Resources are typically allocated at the beginning of

the execution of the workflow. The user can add or remove additional resources to

accommodate changes in the workload. This operation is called Scaling a topology. This

becomes a very important operation in the cloud environment, as the user wants to

maintain just as many resources as needed. In our work, we concentrate on adding

resources to topology also called the Scale Out operation.

Deciding on which node should receive the resources can be extremely tricky in

some cases. Consider the scenario where the user wants to scale the topology by

allocating resources to relieve the congested components.

In the topology shown in figure 1.1, nodes B and C are congested. Allocating the

resource to either B or C seems to be the obvious solution. Allocating the resource to B

would decongest the component and increase the output from B. However D and F are

already running close to their capacity. It is possible that one or both of them could get

congested. The net effect of the allocation would have been to transfer the congestion to

a downstream node, resulting in little improvement in throughput. In this case,

allocating the resource to C seems like a better option. In general, topologies are complex

4

Figure 1.1: A sample topology where Cx indicates the level of congestion. It varies between
0 (no congestion) and 1.0 (fully Congested)

and the throughput could depend on many factors. Thus, generating an optimal

allocation for a resource is a challenging task.

When multiple resources are provided for allocation, the scheduling problem

becomes even more complicated. Consider the following example when two resources

are provided for allocation.

Figure 1.2: A sample topology with more components. Cx indicates the level of congestion.
It varies between 0 (no congestion) and 1.0 (fully Congested)

In the sample topology shown in figure 1.2 nodes B, C and D are congested. Two

resources are provided to the scheduler to allocate to the topology. These resources can

be allocated to

5

• the most congested components in the B branch (.i.e. to B and D)

• components C and F

• component B and the remaining resource to either C or F

As the number of resources increase, the number of ways the resources can be

distributed among the components also increases drastically. Suppose a topology

contains ‘n’ number of components and ‘r’ resources are procured for allocation. Each of

the resource can be allocated in ‘n’ ways. The total number of possible allocations are nr.

Even if we restrict the allocation to only congested components, during the allocation

child components can potentially get congested and will need to be considered for

allocation. Thus nr gives the worst case possibilities.

Iterating and evaluating through all the possible distributions can be time

consuming. Picking the right solution requires the scheduler to consider a number of

factors related to the topology both in current state, and the possible state after

allocation. This further illustrates the complexity of scheduling multiple resources.

There are two approaches to allocate multiple resources. One way would be to

allocate them in a serial manner. Each instance of the resource is considered in isolation.

At any given time, optimal allocation for only one instance is calculated and assigned,

before considering the next instance. Such a scheduling strategy is called Serial

allocation. The other way is to consider a set of resources at a time for allocation. The set

of resources considered is called a batch. The allocation for all the resources in the batch

is calculated at the same time, before considering the next batch. Typically, for small

number of resources all the resources are grouped into a single batch. Such a scheduling

strategy is called Batch Allocation. A scheduler typically opts for one of these approaches.

The relative merits and the trade offs of each of the approaches will be discussed later.

We base our work on a scheduler called Stela.14 Stela implements a scaleout

algorithm that follows the serial allocation method. Stela increases the throughput of a

6

topology by allocating resources to congested nodes. In order to choose between

congested nodes, Stela uses a novel method to measure the impact of the nodes on the

throughput. If the throughput of the subtree under the congested component is high,

then the impact is determined to be high. Stela picks the component with the highest

impact, allocates a resource and updates the state of components in the topology. The

steps are repeated for each resource. Once the resource is allocated, it is absolute and it

cannot be reallocated.

Stela uses a relatively simple approach. Stela prioritizes paths with the highest

impact on throughput to decongest. More often than not, this strategy leads to optimal

results. Stela assumes correlation between the impact of a congested component to the

throughput. This assumption is the main strength as well as a drawback for Stela. Apart

from impact, there are other factors that contribute to the throughput like the state of

the subtree. If the subtree is already running near capacity, then the allocation just

moves the congestion downstream and the throughput increase may be less than

expected. In our algorithm, we attempt to address such limitations.

We now define the conventions of how the term "root", "subtree", "children", "child

Subtree" are used in our work. The terms are used only to our work.

Figure 1.3: Tree structure of the topology. For the entire topology A is the rootnode.
B,D,E,C are the children. B,E,D is a child subtree of A. B is the root of the subtree

In the topology shown in figure 1.3, A is the "root" node of tree {A,B,C,D,E,F}.

7

B,D,E,C are treated as "children" of A. {B,D,E} is a "subtree" of A. {C} is also a subtree of A.

In the subtree {B,D,E}, B is the "root" and {D,E} are the "children". In the work, when B is

referred to as the "root", it is done so in the context of the "subtree" with B as the root. The

children of the root node refer to all the nodes under the root node, and not just the

immediate child nodes unless otherwise specified.

In our work, we look at using the new features developed by Apache Storm to

support it in a SaaS flavor. We mainly focus on the scale-out operation of a topology.

Given additional compute resources, we provide an effective algorithm to allocate the

resources to the components to maximize the throughput of the topology.

8

Chapter 2

Literature Review

For the literature review, we first examine the role and usage of clusters in the context of

private in-house deployment and public clouds. We then consider some of the research

efforts related to scheduling which determines allocation of tasks from a workflow to a

cluster. Finally we consider related work which focuses on model based scheduling, as

we use the same approach in our scaleout algorithm.

Clusters were traditionally used for high performance and high throughput

computing, and were often shared among many users or teams. HTCondor15 is one of

the oldest software solutions and was initially designed to harness cpu power from idle

desktop workstations. User can submit a job to HTCondor. HTCondor then chooses

machines from the available pool, executes the job and returns it back to the user. The

user can specify some constraints over which machines can execute the job, but it is up to

HTCondor to select the right machines.

Borg16 is a cluster management software used at Google. Borg is used to execute

production jobs and non-production jobs. Production jobs are very sensitive to latency

and are executed with higher priority, while the non-production jobs are treated with

lower priority. The cluster is divided into cells, each cell containing thousands of

machines running a mix of production and non-production jobs. Jobs from different

9

users are executed within the same cell and sometimes on same machine. Each job

contains a set of tasks. The user can apply some additional constraints to the tasks.

When a user submits a job to Borg, Borg looks for machines that match the user defined

constraints to schedule the job. In order to improve machine utilization, Borg uses

containers to execute the jobs. Every job has a priority assigned to it. Borg allows jobs of

lower priority to be preempted by higher priority jobs to ensure that production jobs are

not starved of resources. Borg presents a typical view of a cluster management software

used in companies. Other companies have similar software used to manage their private

clusters17181920 and provide similar functionality as Borg.

The service provided by the in-house cluster are very similar to those provided by

the cloud. The user can procure resources on the fly to execute his tasks. But there are

also some differences between the services provided by the in-house cluster and the

cloud. In the case of in-house clusters, users typically belong to the same company. The

requirement for security and privacy is much lower than that of the cloud, as the users

can be trusted. Also in-house clusters are designed to maximize resource utilization of

the cluster. It expects the user to be more accommodating and willing to release some of

his resources for higher priority jobs of other users. But in the cloud, the user expects

that his jobs execute in strict isolation from other users. The cloud should not revoke

resources from users without his permission. Finally, the cost of over allocating

resources is more costly to a user in the cloud than in an in-house cluster. Thus the

principles used to design cluster management software and user solutions need to be

reexamined in the cloud context. Typically a user acquires virtual machines from the

cloud to execute his tasks. Virtual machines offer good security, privacy and isolation

guarantees. But the cost of procuring a virtual machine to execute small jobs can be

expensive. A resource allocation strategy with finer granularity is favored.21

Schedulers play an important role in determining how the tasks within a job are

distributed among the machines and consequently determine how well the resources are

10

used. An efficient distribution can increase the overall utility of the machines, thus

requiring fewer machines to execute the job. This is important not only in the context of

acquiring resources for initial deployment, but also when scaling the workflow to keep

up with the changes in the volume of input. Over allocation of resources could have

adverse implications on the cost for the user. We now examine some popular strategies

used to distribute the tasks efficiently.

The following set of schedulers belong to a class of communication oriented

schedulers. The main goal of these schedulers is to minimize the communication cost

incurred on the network and the cpu consumption of the worker hosts, and thus

improving the overall utilization of the machines to do useful work. T-Storm22 aims to

reassign executors with the highest inter-node traffic to the same node while making

sure that the nodes are not overloaded by the reassigned executors. It is to be noted that

an executor typically communicates with many other executors. T-Storm monitors each

worker to measure the input and output traffic of each executor. It then sorts the

executor by highest inter-node traffic. T-Storm recognizes that moving an executor to a

different node to reduce the inter-node traffic with one of its communicating executor

could adversely increase inter-node traffic with its other communicating executors. Thus

the algorithm calculates the net effect of the reassignment on the overall inter-node

traffic, and only reassigns the executor if the overall inter-node traffic of the workflow is

reduced. T-Storm assumes that when the executor is moved to a different node, it is

added to the same worker process as its communicating partner to reduce inter-process

traffic.

Traffic Aware Two-Level Scheduler for Stream Processing Systems in a

Heterogeneous Cluster23 is an improvement over T-Storm as it explicitly addresses the

problem of reducing inter-process traffic. The scheduler thus has two goals. It first aims

to minimize the inter-node traffic, and second to minimize the intra-node traffic

between the worker processes. To reduce the inter-node traffic, the algorithm in the

11

paper locates a pair of components with the highest traffic between them. It then

allocates this subgraph of two components on to a node with the highest available

capacity. If the node can accommodate more components, the subgraph is expanded to

include a neighboring component. Among all the neighbouring components of a

subgraph, the neighbour with the highest traffic with the subgraph is chosen. The

subgraph is expanded until the node cannot accommodate any more components. The

same process is repeated until all the components are assigned to nodes. The second goal

to minimize the intra-process communication within the node is achieved by using a

graph partitioning tool called METIS.24 The algorithm sets a threshold for maximum

number of the tasks that can be allocated to the worker. The algorithm then uses METIS

to partition the tasks of the component assigned to the node into groups with roughly T

tasks each, while minimizing inter group traffic. Tasks in a group are allocated to a

worker process.

Poster:Iterative Scheduling for Distributed Stream Processing Systems25 also uses a

graph partitioning technique. Poster uses k-way clustering to form groups of tasks.

Poster partitions tasks with high communication among them into the same group, thus

minimizing the traffic between the tasks of the groups. Poster determines a threshold T

on the number of tasks in the graph that the optimization software can solve in a given

time to obtain task allocation. If the threshold T is set high, then the software is allowed

more time to process the graph. The threshold is determined by how long the user can

wait to obtain an allocation. If the number of tasks in the graph is greater than T, then

the algorithm uses a heuristic approach to reduce the size of the graph to T tasks in

iterative steps. The central idea is to partition the graph into groups by K-way clustering,

and then combine one of the group to a single virtual task, thereby reducing the size of

the graph. The capacity of the node is determined by the number of tasks it can host. For

each iteration Poster checks if the size of the graph t, is less than or equal to the

Threshold T. If t is greater than T, the graph is partitioned into k groups such that the

12

number of tasks in each group is roughly equal to the number of tasks the node with the

highest available capacity can accommodate. The algorithm heuristically assumes that

the task group will be allocated to the node with highest capacity. The combined virtual

task is reintroduced to the graph and t is updated. The process is repeated, and for the

next iteration the machine with the next largest available capacity is considered and the

number of partitions is adjusted so that the tasks in each group is roughly equal to the

capacity of the considered node. The process stops when t≤ T. As an optimization,

Poster tries to combine more than one group in each iteration. If more than one machine

of the same capacity is available, then it continues to combine groups until no more

machines of the same capacity is available or until the threshold T is reached.

An alternative approach to scheduling is to use Load balancing techniques. Load

Adaptive Distributed Stream Processing System for Explosive Stream Data26 focuses on

redistribution of the tasks to share the load across all nodes. The paper uses cpu load as

the primary factor to determine if a node is overloaded. The algorithm continually

monitors the nodes and executors at runtime. Based on the cpu load a machine can be

classified as ‘overloaded’ or ‘normal’. The executors are similarly profiled as ‘red’, ‘yellow’

or ‘green’. The tasks in the ‘red’ executors are migrated to ‘green’ executors in ‘normal’

node to reduce the load on the overloaded machines.

We can benefit by incorporating these approaches to extend our work. From the

service provider’s perspective, when user makes a requests for a set of resource units, it

is up to the provider to determine from which machines these units are allocated. Based

on the traffic generated by the users workflow, the provider can apply traffic aware

techniques to move the resource units with high traffic among them to the same

machine. Alternatively, use Load aware techniques to balance the workload on the nodes.

We now consider some previous research done on Model based scheduling, and

other research that uses containers.

Model-driven Scheduling for Distributed Stream Processing Systems27 seeks to use

13

a model driven predictive approach to do resource allocation. For a workflow with a

given input rate, the algorithm provides the number of resources (VM) required to

sustain the input rate and an allocation to map the tasks to the resources. The intuition is

that the number of threads required to sustain a stable input rate for each of the tasks in

turn determines the number of resources required for the workflow. The algorithm

depends on a priori performance modeling of each of its tasks. The paper distinguishes

between Linear Scaling Approach (LSA) and Model Based Approach (MBA) for modeling

the input rate of the task. LSA assumes that the input rate sustained by a single thread

scales linearly as we increase the number of threads. MBA on the other hand explicitly

models the effect of number of threads on the input rate. The rest of the discussion uses

MBA modeling, as MBA is shown to be more efficient to LSA in experiments. Each task is

profiled in a single resource slot. Each resource slot is equivalent to a worker process and

each machine has a set number of slots. For each task, the peak input rate attained and

the corresponding memory and cpu usage is measured for a given number of threads of

the task. Thus this task model table provides a range of input rates achieved

corresponding to thread count, memory and cpu usage. This is later used as a lookup

table to determine the number of threads, memory and CPU resources required to

sustain an input rate.

For scheduling, the input rate for each of the tasks is calculated based on the input

rate given to the workflow. The resources required (number of threads, memory and

cpu) corresponding to the input rate is looked up in the task modeled table. For mapping

these resources to a VM, the paper uses a novel technique called Slot Aware Mapping.

Essentially the resources in each VM is divided into slots with a set amount of CPU and

Memory. Tasks are selected from the workflow in the order of Breadth First Search (BFS)

traversal. A slot from the VM is procured and a set of threads belonging to a task is

allocated to it. The number of threads selected depends on the maximum input rate

achievable with the cpu and memory resources provided by the slot. This can be looked

14

up from the task model table. The process is repeated until all the threads of the tasks are

allocated to slots. This mapping approach provides an efficient allocation with minimal

resources used.

For our work, we use the LSA approach. We profile the peak performance for a slot

instead of number of threads and assume that the input rate of the slots scale linearly.

The definition of Slot in the paper is similar to our definition of a ‘resource unit’. Our

algorithm focuses on scaling a topology to increase throughput as opposed to the

algorithm described by model based approach that focuses on sustaining an input. Other

efforts to model the behavior of the tasks and framework are summarized in paper.28

In the next work we examine the role of containers in scheduling. ‘Cost-Efficient

Enactment of Stream Processing Topologies’29 uses containers on top of VMs to allow for

fine-grained elastic provisioning. The paper extends the VISP runtime30 and optimizes

the execution of CERMA project. CERMA has three sources of input with varying input

load, and uses 9 operators to process the input. Each of the operators defines a different

functionality. Accordingly each of the operators have different cpu and memory

requirements. In addition to this, each of the operators have SLA defined like the

maximum processing time for each data item. The operators are deployed on virtual

machines obtained from the cloud. The paper aims to minimize the virtual machines

acquired and used, while maintaining the SLA for each component. The approach used

by the paper is to deploy operators in containers. As the memory and cpu requirements

of each of the operators are different, the containers are defined individually with just

enough resources. This approach also ensures that resources allocated to a container is

not shared by operators, thus an operator can perform at its capacity at all time. The use

of containers are also useful for scaling the operators. If the SLA of an operator is not

met because of the increase in input rate, a new instance of operator is created. As the

memory and cpu requirement of the container is known, the algorithm can easily check

for an existing virtual machine to see if it has enough capacity to host the operator. As

15

every operator executes in its own container, addition or removal of an operator from

the virtual machine does not affect the performance of other operators. We advocate for

a similar model to allocate resource units from the cloud for Storm.

Efficient Bottleneck Detection in Stream Process System Using Fuzzy Logic Model31

addresses one more important aspect of predictive allocation. It is important to

determine the state of the components when an allocation is made. Typically multiple

operators are deployed on the same machine sharing the cpu and memory. Increasing

input to one operator could adversely increase cpu consumption of other operators on

the same or different machine. Due to the interrelated effects, predicting congestions is

a hard problem. The paper uses fuzzy logic control theory to detect congestion. It

assumes that each worker process hosts operators of the same component thus

processing input stream of a single component, and defines a set of rules to determine if

a component gets congested.

The complexity of congestion detection can be attributed to components on a

machine sharing a common pool of cpu and memory resources. In our model, we define

cpu limits on each resource unit and each resource unit contains operators of a single

type. Thus each component has its own pool of memory and cpu. This approach

simplifies the task of congestion detection. The user only needs to compute the

maximum capacity of the component based on allocated resources and compare it with

the input rate.

The final work describes a simulation framework. Modeling and Simulation of

Spark Streaming32 describes the implementation of a framework to simulate Spark

Streaming. The framework allows the user to configure a number of parameters

mimicing the execution cost of each stage, number of worker nodes, resource

specification of worker nodes, data arrival pattern etc. The framework allows the user to

experiment with various configurations and measure the processing time, scheduling

delay and other parameters.

16

Chapter 3

Background

Apache Storm is a distributed real time streaming data processing framework. It was

developed by Nathan Marz in Backtype. The project was later open sourced after being

acquired by Twitter.

The data stream is made of Tuples. A tuple is a named list of values, where each

value can be of any type. The workflow submitted to storm is called a Topology. As

mentioned before, topology is represented as an acyclic graph. The topology is a map of

computations that need to be performed on the tuple, and the subsequent destination

for the output.

The nodes in the topology are called Components. The components can be either a

Spout or a Bolt shown in figure 3.1. A spout reads data from an external source and emits

it into the topology. Bolts receive data from spout or other bolts. Each bolt is made of a

number of tasks, each performing the same operation. The tuple is processed by one of

the tasks. The output is emitted back to the topology to be consumed by the next bolt. If

the bolt does not have any children, then it is called a Sink. In order to distribute the

tuples among the tasks of the bolt, storm supports Stream Groupings. There are eight

built-in stream groupings. Storm also provides an interface to define custom groupings.

Storm supports two processing semantics, at-most once and at-least once. In case

17

Figure 3.1: Topology structure indicating Spout and Bolt

of at-most once semantics, Storm guarantees that a tuple is delivered to a component for

processing, at most once. If the tuple is lost, say due to machine failure or network

latency, Storm does not resend the tuple. These tuples are lost. In case of at-least once

semantics, storm makes sure that the tuple is processed at least once. Tuples are

replayed when there are failures, and replayed till they are processed. In certain

scenarios, it is possible for the same tuple to be processed more than once. Using

Trident, a higher level abstraction over Storm’s basic abstractions, exactly-once

processing semantics can be achieved. The type of processing semantics used is very

much dependent on the type of problem the application is trying to solve.

18

3.1 Architecture of Apache Storm

A Storm cluster is a collection of machines, also called as Nodes. It consists of two types

of nodes, Master Node and Worker Node. At any point of time, there can be only one

active master node in the cluster. It can however have as many workers as needed.

Figure 3.2: High Level Architecture of Apache Storm

Figure 3.2 provides an overview of the Apache Storm architecture. Master node

hosts the Nimbus service. A topology submitted to the cluster for execution is accepted

by Nimbus service. It is also responsible for distributing code around the cluster,

assigning tasks to the worker nodes and monitoring the nodes for failures.

The scheduling decisions are made by a component called Scheduler. These

decisions include allocating the compute resources to the components of the topology

during the initialization, scale-out, scale-in operations, and reclaiming the resources

after the topology is killed.

Storm provides 4 built-in schedulers, namely Even Scheduler, Isolation Scheduler,

Resource Aware Scheduler33 and Default Scheduler. The Even scheduler distributes the

tasks evenly among the worker nodes. The aim is to spread out the workload evenly

19

among the worker nodes, so that none of the worker nodes sits idle. The Default

Scheduler uses the same strategy of distributing resources evenly. It in fact calls the Even

Scheduler internally. The Isolation scheduler lets the user specify which topologies

should be “isolated", meaning that they run on a dedicated set of machines within the

cluster. Any other topologies executed on those machines will be evicted, before the

isolated topologies are scheduled on them. Resource Aware Scheduling allows the user to

specify the resources required for the topology. The user can specify the amount of cpu

and memory required for each of the component in the topology. If the scheduler is not

able to allocate the requested amount of resources, the topology is not scheduled.

Figure 3.3: Architecture of Worker Process1

The worker node hosts a daemon called Supervisor. The Supervisor is responsible

for receiving assignments from Nimbus and execute it on the worker machine.

Additionally, it communicates the heartbeat status to the Nimbus. The Node may host

one more worker process. Each worker process is a JVM process. The worker process

may in turn contain one or more Executors. Each Executor is a thread in the worker

process, and executes tasks from the same component. The executors may in turn

execute one or more tasks. Since each Executor is a single thread, the tasks within the

executors are run serially.

20

The initial number of workers, executors and tasks to be created for the topology,

can be specified in the topology description. These initial numbers are called

“parallelism_hint". It basically indicates how many of the tasks are being executed in

parallel. Suppose if the component has 8 tasks. If it requests for only one worker and

executor, then all the 8 tasks are executed serially on a single thread (Executor). If the

component requests two executors, then the tasks are split between two threads, and

hence more tasks are executed in parallel.

Figure 3.4: Task distribution in a Topology

Figure 3.4 shows the distribution of tasks in a topology. The user scales out the

topology by adding more resources. Even scheduler distributes the tasks evenly across

the resources. The 6 tasks of A share a single executor as shown in in the 3.4. When the

21

number of executors are increased to 2, the tasks of A are distributed evenly among the

two executors with 3 tasks each. If the number of executor is increased to 3, each executor

will execute 2 tasks of A. No changes are seen for Task C, as the number of executors

remain same. The same principle holds true when the number of worker processes is

increased. The executors are redistributed so that each of the worker process hosts equal

number of executors (except in the case when the number of executors is odd).

These numbers can be adjusted during runtime. The name of the command used to

adjust the parallelism hint is called “rebalance”. It allows the user to modify the number

of workers and executors assigned to a component. Note that the number of tasks in a

component cannot be modified by the rebalance command.

Storm version 1.0 and above implement automatic Backpressure. This feature

essentially slows down or throttles the process of a parent component whenever a

component is congested in the topology. In Storm 1.x the feature can be disabled by

configuration options. In Storm 2.0, the feature is redesigned and it is no longer possible

to disable it using configuration options. The new implementation uses the state of the

internal message buffers to determine if the worker is saturated with messages. If it is,

then it sends a backpressure signal to the worker process of parent component

requesting it to stop sending tuples until further notice.

Figure 3.5 shows the internal message buffers1 used in a worker process. The

internal message buffers play a major role in the operation of Storm. The tuples are

transferred between workers in batches, essentially making the input pattern bursty.

The message buffers essentially insulates the rest of the components from the input

pattern. The message buffers are essentially implemented as queues. The worker process

uses three queues. The worker receive thread adds the incoming tuples to the Worker

Receive queue. If the receive queue is full, the receive thread redirects the incoming

tuples to a different queue called Overflow queue. This queue is used by the Backpressure

mechanism to send backpressue signal to the parent component. The third queue is the

22

Figure 3.5: Internal message buffer of worker process

Transfer queue, which acts as a common output buffer for a worker. The tuples emitted

by the executors are added to the output queue. The transfer thread then sorts the tuples

by destination, collects tuples into batches, and sends them to the destination. Each

executor maintains two queues, the Executor Input queue and the Executor Send queue.

The tuples from the input queue are sorted and added to the respective executor’s input

queue. After operating on the tuple, executor sends the emitted output tuple to the send

queue. A send thread then collects the tuples from send queue of executor and adds it to

the Output queue of worker.

Storm version 2.0 implements support for cgroup Enforcement. This feature is

critical to support Storm in a SaaS flavor and essentially provides the same features as a

container. cgroups34 (abbreviated from control groups) is a Linux kernel feature that

limits, accounts for, and isolates the resource usage (CPU, memory, disk I/O, network,

etc.) of a collection of processes. cgroups allows the provider to enforce resource limits

23

on the worker process. This can ensure that each worker processes executes in isolation

and is not affected by other workers.

We define Input rate for a component as the number of tuples arriving to the

component in unit time. The Output rate similarly is the number of tuples emitted by

component in unit time. Processing rate is defined as the number of tuples processed by

the executors of the component in unit time.

Apache Storm 1.2 introduced a new metric system, to allow users to collect and

report the internal state of the cluster. The metric system is based on Dropwizard

Metrics. The new system defines a set of API’s that can collect different kind of

information. A Timer metric aggregates timing duration and provides duration

statistics. A Meter metric measures events and provides an exponentially weighted

moving average for one-, five- and fifteen-minutes. A Counter metric simply counts the

number of events. In our implementation we extensively use the Meter metric.

Our approach will be using the cgroups feature implemented in Apache 2.0 to create

worker process under cgroups, and the metric system to measure the number of tuples

moving through each of the internal queues. More details are provided in the

implementation chapter.

24

Chapter 4

Stela

Stela is a scale-out algorithm designed to increase the throughput of the topology. Stela

achieves this by allocating resources to congested components. The idea is that the

increased processing power due to newly allocated resources increases the output from

the congested component. This output then propagates downstream and leads to overall

increase in throughput.

Stela follows the serial allocation approach. When multiple resources are made

available to allocate, Stela decides on each resource in isolation. Once the decision is

made, it is not reconsidered or reverted when deciding the allocation for the subsequent

resources.

The Stela algorithm for allocating a single resource can be summarized into three

tasks as listed below.

1. Identify congested components

2. Measure desirability of each congested component

3. Select a congested component and allocate a resource

If the user provides more than one resource, the above tasks are repeated in order

for each resource.

25

4.1 Identify Congested Components

A component is determined to be congested by the Stela algorithm if the processing rate

of the component is less than or equal to its input rate. Essentially, the number of tuples

input to the component in a unit time is greater than the number of tuples that can be

processed by the same component. An excess of input leads to tuples being dropped. The

processing power of the component is proportional to the amount of resources allocated.

The algorithm measures the input, output and processing rates of each component

in real time at regular intervals. If the input rate for the component is greater than the

processing rate, the component is classified as congested. All the congested components

of the topology are stored in a list called “congestedMap”

4.2 Measure Desirability of Congested Component

Once the list of congested components are identified, these components or the

allocations derived for these components need to be ranked.

In order to measure the desirability of each component, the algorithm uses a novel

metric called “Expected Throughput Percentage” or ETP. ETP essentially gauges the

importance of each node to the overall throughput of the topology. More specifically, the

percentage of the total throughput contributed by the subtree of the congested node. To

measure the output from a subtree, ETP considers only those sinks that do not contain a

congested component in the path as shown in Algorithm 1

The ETP for a component is calculated as below. ETP for each congested component

is calculated and stored in a map called “ETPMap".

ETP (M) =
ThroughputEffectiveReachableSinks

ThroughputWorkflow

26

Algorithm 1 ETP Calculation Algorithm
1: procedure FindETP(Topology topology, Component component)
2: if component.hasChild == false then
3: return component.outputRate/throughput(topology)
4: end if
5: subtreeSum = 0
6: queue.add(component.children)
7: while queue.isEmpty() == false do
8: Component child = queue.pop()
9: if child.isCongested == true then

10: continue
11: end if
12: if child.hasChild == true then
13: queue.add(child.children)
14: else
15: subtreeSum += child.outputRate
16: end if
17: end while
18: return subtreeSum/throughput(topology)
19: end procedure

4.3 Choosing The Component

Stela employs a greedy approach to choose among the congested components. It uses the

prepared ETPMap to pick the component with the highest ETP. Once the resource is

allocated to the component, the input and output for the component and the

downstream components are updated. If k resources are allocated to component M, the

new processing rate for the component after allocating one additional resource is

calculated as

k + 1

k
∗ CurrentProcessingRate(M)

The Stela scaleout algorithm is presented at Algorithm 2 .

27

Algorithm 2 Stela Scaleout Algorithm
1: procedure Stela(Topology topology, int numRes)
2: Map<Component, int> allocationMap = null
3: while numRes > 0 do
4: List<Component> congestedMap =
5: getCongestedComponents(topology);
6: for Component comp : congestedMap do
7: etp = FindEtp (topology, comp)
8: ETPMap.add(comp, etp)
9: end for

10: Component target = ETPMap.getMaxEtp()
11: currentAlloc = allocationMap.get(target)
12: allocationMap.add (target, currentAlloc+1)
13: numRes = numRes-1
14: update input, output and processing rate of all components
15: end while
16: end procedure

4.4 Drawbacks of Stela

In its outlook, the algorithm is fairly optimistic. The algorithm does not consider the

after effects of allocation. Consider fig 1 for example.

If the ETP of B is greater than C, the resource is allocated to component B. However,

the increase in the throughput is not realized as D gets congested. Stela does not check if

the downstream components are able to handle the additional output from component B.

Stela does not examine or measure the consequences of an allocation before making

the allocation. So it is unable to detect scenario mentioned above. As a result, Stela

produces less than optimal allocations in the following two cases. First, downstream

nodes do not have the capacity to handle the increased output. Second, the degree of

congestion of a component is not taken into account. That is, a lightly congested

component is treated the same as a heavily congested component. It is possible that the

increase in the output on a lightly congested component might be too little to improve

the throughput significantly. Thus being able to predict the after effects, and estimate

the increase in throughput could help overcome these limitations, which motivates our

28

work in this thesis.

29

Chapter 5

Scale-Out Algorithm

5.1 Goals and Assumptions

We recognize scaling to be an important operation in the cloud, and is critical to the

success of such a service. Our work proposes an algorithm to a support scale-out

operation. More specifically, given a set of resources for scheduling our algorithm

provides an allocation to decongest components and maximize the throughput increase.

Additionally it attempts to predict the state of the topology if the suggested allocation is

indeed committed.

The scale out algorithm focuses on maximizing the throughput of the topology by

allocating resources to congested components.

In order to narrow the scope and simplify the problem, our work makes the

following assumptions about the topology and the cluster.

• The resources are made available in the form of resource units. Each resource unit

provides a fixed amount of processing power, that is the cpu power on a machine

of a cluster. The processing power provided by each resource unit is equal. This can

be enforced by using cgroups or containers.

• We assume that the congestions are caused by the lack of compute power allocated

30

to components. It is assumed that network capacity is infinite, and the effects of

network latency can be ignored.

• We assume that when a topology reaches a steady state, the input, processing and

output rates of the components remain nearly constant.

• It is assumed that the cluster is configured to disable backpressure enforcement.

When backpressure is enforced, Storm throttles the input whenever a component

gets congested. Thus a single component can become the bottleneck for the entire

topology. This not only limits user’s ability to control execution, but can also adversely

affect resource usage. It prohibits components from fully utilizing the resources

allocated to it, as the input can get throttled due to congestion in a different part of the

topology.

The flip side of the argument is that the tuples can get dropped when backpressure

is disabled. Our algorithm caters to the same class of topologies as Stela, where loss of

tuples is tolerable. In the future work section, we propose an approach to further

improve backpressure system, where the loss of tuples can be avoided.

The above assumptions are consistent with those made by Stela. In our approach,

each component is free to scale as required. In a cloud environment this allows for

maximum flexibility and control over how the resources are allocated and used by the

topology. The user can prioritize certain components over others, sometimes at the

expense of congesting components of lower priority.

5.2 Approach and Design

The general approach taken by our algorithm is very much contrary to Stela. Our

algorithm chooses to use Batch allocation and measures the effects of an allocation

before it is made. Our algorithm is conservative and considers allocations that do not

31

worsen or introduce any new congestion in the downstream components. We propose a

simple model to predict the input and output rates of the components after an allocation

is made. Finally, we recognize the limitations of our algorithm and provide an approach

to incorporate Stela as a co-scheduler. Combining both algorithms provides better

allocations to a larger set of scenarios than each of the individual algorithms.

5.2.1 Resource Units

The resources are provisioned in terms of resource units. Each resource unit is

guaranteed a certain processing power by using cgroups. All the resource units have

equal processing power allocated to them. The user can request resource units to be

allocated to a component. The component uses these resources provided to execute its

tasks. For the rest of the discussion the term resource is used to indicate resource unit.

5.2.2 Batch Allocation

Batch allocation strategy is favored by our algorithm. Serial allocation strategy does not

take the the number of resources provided into consideration before making scheduling

decisions. When a resource is allocated to a component, the output propagates through

its subtree. If any of the components in the subtree are congested, then additional

resources need to be allocated. Knowledge of the number of resources needed by a

subtree to achieve required throughput and the number of resources provided to a user

could be helpful in deciding allocations.

5.2.3 Compute Model

In order to estimate the state of the components in the topology we build a simple model.

The model serves the following purposes

1. Represents the state of the components in the topology

32

2. Allows the algorithm to predict if the allocation causes a congestion in the subtree

3. Allows the algorithm to estimate the throughput for an allocation

The processing power for components are supplied in resource units. So logically,

we can view components as made of resource units. Components are profiled to measure

the maximum input, output and processing rates when executed in a single resource

unit. The total rates for a component is obtained by multiplying the number of resources

allocated to the component with their profiled rates. The components are organized in a

structure similar to the topology complying to their parent-child relationships. The

network capacity is assumed to be unlimited. We define the following properties for the

component.

unitCount is the total number of resource units allocated to a component.

congestion is a flag set to a component to indicate if it is congested. A component is

determined to be congested if the inputRate exceeds processingRate.

inputRate is the total number of tuples flowing into a component in unit time. It

can be calculated as the aggregate of the inputs coming into all the resource units that

are executing the tasks of the given component M. Note that this accounts for both

processed tuples and dropped tuples.

inputRate(M) = ΣinputRate(resource units), ∀ resource unit ∈M

droppedRate is the number of tuples dropped by the component if the processing

power is not sufficient. This is measured from the component.

droppedRate(M) = inputRate(M)− processingRate(M)

processingRate is the input that is processed by the component in unit time. This

33

could be less than or equal to the inputRate.

inputRate(M) = processingRate(M) + droppedRate(M)

outputRate is the total number of tuples flowing out of a component in unit time.

This is calculated as the aggregate output of all the resource units that are executing the

tasks of the given component.

outputRate(M) = processingRate(M) ∗ outInRatio(M)

outInRatio is a simple ratio of the output to processing rate of a component.

outInRatio(M) =
outputRate(M)

processingRate(M)

maxProcessingRate is the maximum input the component can process. This is

determined by the amount of resources allocated to component. Max input for a

component is profiled for a resource unit beforehand. Given ‘n’ is the number of

resources allocated to component M,

maxProcessingRate(M) = maxProcessingRate(resourceunit) ∗ n

childOutputRatio(i) is the ratio of tuples destined for the ith child component of

component M. This is profiled beforehand.

childOutputRatio(i) =
rateoftuples assigned to childi

outputRate(M)

throughput of a topology is calculated as the sum of all the totalOutput of leaf nodes.

throughput = ΣtotalOutputRate(M), ∀M is a leaf node in topology T

34

throughputResourceRatio is calculated as the ratio of increase in throughput to the

number of resources allocated. Given ‘n’ is the number of resources allocated to a subtree

rooted at M,

throughputResourceRatio(M) =
increaseInThroughput

n

5.2.4 Calculating Throughput for Allocation

The current throughput can be directly obtained by measuring the output of leaf

components. This section describes an approach to calculate the throughput when a new

resource is allocated.

As per the assumptions made, the processing rate is entirely dependent on the cpu

allocated. If ‘n’ is the current number of resources allocated to a component M. When a

new resources is added, the maximum processing rate and thus the maximum output

rate of the component changes.

• The new processing rate is calculated as shown below.

newMaxProcessingRate(M) =
(n + 1)

n
∗maxProcessingRate(M)

• The new output rate is accordingly calculated as below.

newOutputRate(M) = newProcessingRate(M) ∗ outInRatio(M)

The children use the same procedure to update their processing, input and output

rates. These changes are propagated further till all the components in the subtree are

updated. We update the values for each component in the subtree by using a modified

BFS traversal. The new throughput of the topology is then calculated as the sum of the

output of all the leaf components with its updated output rates. It is to be noted that the

35

model is simple and makes assumptions about the topology. In our testing we show that

the model predicts the rates of the components with reasonable accuracy.

5.2.5 Strategy

This section describes the high level strategy used by our algorithm. The user provides

the topology and the number of resources to be allocated. The algorithm works on the

principle that the throughput of the topology is constrained due to congestions in

components and the output rate can be increased by decongesting components.

An allocation is defined as a map of components associated with the number of

additional resources to be allocated. The allocation map is initialized to a list of all the

components mapped to the value 0 indicating no additional resources are currently

allocated to any component. When the algorithm decides to allocate a resource to the

component, the value corresponding to the component in the map is incremented.

Similar to Stela, the algorithm starts by identifying all the congested components in

the topology. Components are profiled for their maxProcessingRate. A component is

determined to be congested if the maxProcessingRate for the component is less than the

inputRate. This can also be determined by measuring the droppedRate. If a component

has a droppedRate above a threshold, then the component is congested. In our work we

use the maxProcessingRate.

The strategy is to allocate resources to a congested component to increase its

output. If any of the components in the subtree gets congested additional resources can

be allocated till it is no longer congested. It is important to note that we do always

decongest a root component completely every time it is considered. The extent to which

the root component is decongested depends on the output the subtree can support with

the remaining resources. Thus the resources allocated can be split into two parts, the

ones allocated to congested root component, and the ones allocated to subtree to sustain

the output. If the total number of resources required is more than the resources available

36

then this introduces or worsens congestion of at least one component in the subtree.

For each congested component, the algorithm allocates resources to the root

congested component incrementally. For each iteration one additional resource is

allocated until the root component is completely decongested. After each allocation to

the root component, the algorithm propagates the increased output through its subtree.

If any of the components in the subtree gets congested, the number of additional

resources is calculated for the component. The new output is then propagated through

its child components. At the end of the subtree, the algorithm obtains the total number

of additional resources needed by the subtree, as well as the throughput increase caused

by the additional resources. If the total number of resources exceeds the number of

resources provided, then the allocation is rejected.

Each valid allocation is stored in a map keyed by the root component and the

number of resources allocated to the root. The map also stores some useful information

like the throughput increase, number of resources needed and the

throughputResourceRatio. The list of valid AllocationMap are maintained in a list called

AllocationMapList.

The AllocationMapList is sorted in decreasing order of throughputResourceRatio.

The algorithm tries to select as many allocations as possible in order, as long as the total

number of resources required for the allocations is less than or equal to the resources

provided by the user. These allocations are combined together to obtain optimal

allocation. Though we are selecting allocations in a greedy serial order, the number of

resources allocated at each step may be greater than 1. So essentially we are allocating

resources in batches. A further improvement to this method is to use an algorithm

similar to the one that solves knapsack problem to ensure the selection of allocations is

optimal as well.

Next, we describe how to combine allocations. Though each of the allocations are

calculated separately, it is possible that some of the components in these allocation

37

overlap with each other. Consider two allocations A and B. If the root of allocation B is a

descendent of the root of allocation A then allocation A is a superset of B. This follows

from the rule that the algorithm considers only the allocations that completely decongest

all of the descendents of a subtree rooted at a congested node. Since allocation A is a

superset of B, if A is chosen then B is discarded from our solution.

5.2.6 Residual Resources

Our algorithm uses a greedy approach similar to Stela to select allocations from the

AllocationMapList. This number of resources allocated in each greedy selection is

dictated by the allocation considered in the allocationMap. It is possible that in some

cases not all the provided resources can be allocated. There are cases where the

remaining resources are not sufficient to satisfy any allocation from the

AllocationMapList. When this happens, these resources are called Residual resources.

Many approaches can be taken to allocate the residual resources. One approach

would be to choose an unused allocation from the sorted allocationMapList with the

highest throughputResourceRatio and allocate resources to components encountered in

a Deapth First Search (DFS) or Breadth First Search (BFS) traversal. Since the number of

resources are not sufficient the subtree becomes partially congested. The outcome of this

approach can vary greatly depending on the number of remaining resources, the selected

allocation and the topology itself.

We select an unused allocation with the lowest number of resources required

instead of one with the highest throughputResourceRatio. The idea is that even if we

worsen the state of congestion with the residual resources, fewer resources would be

needed to decongest these newly created congestions. Resources could be allocated to

decongest these components the next time user wants to scale out the topoplogy.

Once the allocation is selected, we allocate one residual resources to the root

component. The increased output now causes new components in the subtree to

38

congest. Thus we have a problem of allocating the remaining residual resources to the

subtree to decongest it. This is exactly the same problem as the scale out problem, except

for in this case we are trying to scale out a subtree instead of the entire topology. This

gives us a good premise to use recursion to solve the problem.

A new topology is created which mirrors the subtree. One resource is allocated to

the root of the subtree and our algorithm could then be called with the remaining

number of residual resources to obtain an optimal allocation for the subtree of newly

congested nodes. If all of the resources are still not allocated to the subtree because they

are not sufficient to decongest any node and its descendents, the allocation with the

lowest resource requirement for the subtree can again be selected and a new topology

can be created. This process can be repeated until all the resources are allocated. A

residual allocation map is created by combining the optimal allocation obtained from

each of the steps to the optimal allocation for the main topology. The algorithm section

provides more details about this process.

Thus the output from our algorithm to the user would be two allocation maps

• optimalAllocationMap - does not worsen the congestion in the topology. This does

not contain allocations for residual resources

• residualAllocationMap - is the combined map obtained by merging the

optimalAllocationMap with the residual map obtained by the aforementioned

recursive algorithm.

5.2.7 Algorithm

The algorithm expands upon the strategy outlined in the previous section. We first

introduce the two main data structures used in the algorithm as shown in Algorithm

5.2.7. Allocation is a simple map structure, that maps a component to the number or

resources allocated to it. Each component is initialized to 0 resources and can be

39

incremented or decremented as needed. The second structure AllocationMap is used to

associate an allocation with a congested component. For each congested component in

the topology, the algorithm tries to decongest it and its subtree by allocating resources.

The root of the subtree is stored in headComp. Our algorithm explores options to

partially decongest the root node, so headRes stores the number of resources allocated to

just the root component of a subtree.

Algorithm 3 Data Structures
Allocation {comp1 : nRes1, comp2 : nRes2, ... };
. foreach component compi in the topology, nResi is number of resources allocated to

ith component.

AllocationMap {
headComp,
headRes, . resources allocated to headComp of a subtree
Allocation, . for the subtree
Throughput, . throughput increase due to the Allocation
totRes, . sum of nResi in the Allocation
throughputResRatio

}

The scale out algorithm as shown in Algorithm 4 accepts the topology and number

of resources to be allocated from the user. The topology contains the runtime

information like the input rate, processing rate, output rate etc of each component. The

algorithm can be divided into four parts.

• Get allocation for the topology using the approach described in previous section

(line : 2). For the rest of the discussion we refer to it a predictive approach.

• Allocate the residual resources to the sub topology (lines 6-14).

• Get allocation using Stela approach (line : 15).

• Pick the allocation that is predicted to give the higher throughput (lines 16-18).

Line 2: gets the allocation using our predictive approach as described in Algorithm

5. The predictiveAlloc returns two values. The first is an allocation that does not worsen

40

congestion of any component stored in optimalAlloc variable. The second is allocaTable.

It is essentially the list of all congested components and respective allocations to

decongest their subtree. These will be used to allocate residual resources.

Lines 6-13 allocate any resources not allocated by predictiveAlloc. Line 7 sorts

unused AllocationMaps in allocTable, picks the allocation that needs the least number of

resources say c. We use our predictiveAlloc algorithm to allocate the residual resources.

We creates a new topology by copying the components of subtree under the headComp

of allocation c. This new topology is used as input in Line 11. Line 10 allocates a resource

to the head node of the new topology. This causes some of the components of the subtree

to get congested. Line 11 tries to allocate the remaining resources to the new topology.

The optimal allocation returned from the step is used to update residualAlloc. The

remaining unallocated resources are updated, and the loop is executed with the new

AllocationMapList till all the resources are allocated. Once all the resources are allocated

residualAlloc from our algorithm is obtained. Line 14 obtains allocation using stela

algorithm. We then pick the allocation with the higher throughput and apply it for the

user.

The merge operation in line 12 is performed by adding the resources allocated to

each component in both allocation maps. For example if map 1 allocates 1 resource to

component A 2 resources to component B, and map 2 allocates 0 resources to component

A and 2 resource to component B, then the merged map allocates 1 resource to

component A and 4 resources to component B.

Algorithm 5 gives the pseudocode of the predictive strategy we discussed in the

previous section and can be summarized into th following steps. Line 2 gets a list of

congested components in the topology. Lines 5-25 obtain a list of candidate allocations.

Essentially for each component in congested list, one or more resources are allocated to

head component. By doing a bfs traversal through its subtree the number of resources

needed to decongest the whole subtree is calculated as shown in Lines 12-16. If the total

41

Algorithm 4 Scale out Algorithm
1: procedure ScaleOut(Topology topology, int numRes)
2: {optAlloc, allocTable} =
3: PredictiveAlloc (topology, numRes);
4: Allocation residualAlloc = optimalAlloc
5: excessRes = numRes - countRes(optAlloc)
6: while excessRes > 0 do
7: sortByResRequired(allocTable) . non decreasing
8: c = allocTable[0];
9: newTopo = makeTopologyOfSubtree(c.headComp)

10: allocate 1 resource to c.headComp in newTopo
11: {tempAlloc, allocTable} = PredictiveAlloc (newTopo, excessRes-1)
12: residualAlloc.merge(tempAlloc)
13: excessRes = numRes - countRes(residualAlloc)
14: end while
15: stelaAlloc = GetStelaAlloc(topology, numRes)
16: if throughputIncrese(stelaAlloc) > throughputIncrease(residualAlloc) then
17: residualAlloc = stelaAlloc
18: end if
19: apply residualAlloc
20: end procedure

number of resources required for allocation is less than or equal to the number of

resources provided to the user, the allocation is stored in allocMapList in Line 22.

The allocMapList is sorted by throughputResourceRatio. The strategy is to select as

many allocations as possible that have high throughputResourceRatio as long as we have

enough resources. The final optimal allocation is calculated, by walking through the list

in order as shown in Lines 28-40. For each allocation considered, if it requires less than

or equal to the remaining resources, we update the optimal allocation and remaining

resources in Line 36-38. The step exits when all the resources are allocated (Line 30) or we

reach the end of the allocMapList.

Consider the graph in figure 1.3. If both components A and its child B are congested,

then our predictive algorithm calculates an allocation to decongest both of the subtrees

of A and B separately. As we follow the rule to decongest all of the components in subtree,

the allocation for A is a superset of the allocation for B.

42

Now consider the case where the throughputResourceRatio of the subtree of A is

greater than B. When we sort the allocations in line 26 in Algorithm 5, allocation A is

placed above B. As a result, when calculating the optimal allocation allocation of A is

considered first. If we do have enough resources, allocation of A is added to optimal

allocation snapshot (Line 36). When we consider allocation of B we need to be careful

when adding all of the allocation to optAlloc since the resources for subtree B will be

allocated twice.

We use the following rules when considering overlapping allocations. If optAlloc

already has an allocation that is a superset of the allocation being considered, say

allocation of A is already added to optAlloc and allocation of B is considered, then this

allocation of B is ignored.

If the allocation being considered is a superset of any of the allocation already part

of optAlloc, say allocation of B is already added to optAlloc and allocation of A is being

considered, then the allocation of B is removed from optAlloc and allocation of A is added

in its place.

We check if an allocation overlaps with the current snapshot optimal allocation

optAlloc. If any of the components in optAlloc are descendents of the considered

allocation, the number of overlapping resources are returned.

5.2.8 Comparision to Stela

The approach taken by our algorithm contrasts with that of Stela. Stela is good at

aggressively seeking out high reward paths. Though the actual rewards may vary

depending on the state of the topology. Our algorithm in contrast is good at considering

different subtrees based on the number of resources provided, e.g. if decongesting a high

reward path takes 4 resources, and we have only 3, our algorithm looks at other subtree

that can be decongested with three resources. If one or more of such subtrees are found,

our algorithm selects the one that leads to the highest increase in throughput.

43

Algorithm 5 Decongesting allocation
1: procedure predictiveAlloc(Topology topology, int numRes)
2: List<Component> congestedList = getCongestedComponents(topology);
3: currThroughput = GetThroughput(topology)
4: List<AllocationMap> allocMapList = null
5: for Component congComp : congestedList do
6: Allocation tempAlloc; Queue queue;
7: for int res = 0; res < numRes; res++ do
8: tempAlloc.initialize() . initialize nResi to 0
9: throughput = 0; tempAlloc[congComp] += res

10: queue.erase(); queue.add(congComp.children)
11: while queue.empty() == false do
12: qc = queue.pop(); queue.add(qc.children)
13: qc.NewIn = qc.inputRate;
14: qc.newOut = qc.newIn * qc.outInRatio
15: qc.newRes = ceil(qc.newIn/qc.maxProcessingRate)
16: tempAlloc[qc] = qc.newRes - qc.oldRes
17: end while
18: allocRes = CountRes(tempAlloc); newThroughput = GetThrough-

put(topology)
19: if allocRes <= numRes then
20: thrInc = newThroughput - currThroughput
21: resThrRatio = thrInc/allocRes
22: allocMapList.add(congComp,res,tempAlloc,thrInc,allocRes,resThrRatio)
23: end if
24: end for
25: end for
26: sortBythroughputResourceRatio(allocMapList)
27: AllocationMap optAlloc = null; remRes = numRes
28: for tempAlloc : allocMaplist do
29: if remRes <= 0 then
30: break;
31: end if
32: tempRemRes = remRes
33: overlapRes = CheckOverlap(optAlloc.Allocation, tempAlloc.Allocation)
34: temp = remRes+overlapRes
35: if countRes(tempAlloc.Allocation) <= temp then
36: optAlloc.merge(tempAlloc.Allocation)
37: allocMapList.remove(tempAlloc)
38: remRes -= (countRes(tempAlloc.Allocation) - overlapRes)
39: end if
40: end for
41: return optAlloc, allocMapList
42: end procedure

44

When constrained by limited resources we can make allocations in one of two ways.

That is, to either partially decongest the high throughput subtree or fully decongest a

another subtree. Which of the option is better in terms of throughput increase depends

entirely on the characteristics and state of a topology.

It is also easy to see that because of the contrasting approaches between our

algorithm and Stela, they work better in different scenarios. Stela tends to do better

when the outputs are mainly produced by a few leaf nodes, and our algorithm tends to be

better when the outputs are more evenly produced by the leaf nodes. This follows from

the above reasoning that there may be multiple subtrees that produce similar throughput

with lesser number of resources required. However if the outputs are concentrated along

a few paths then the other subtrees explored by our approach may not produce as much

output as these partially decongested high throughput paths.

Our algorithm and Stela together cover a greater number of scenarios than each of

them alone. We thus decide to combine Stela approach with our algorithm. That is, we

compare the residualAllocationMap from our algorithm with the allocationMap

produced by Stela. We pick the better allocation based on the predicted resultant

throughput and apply the allocation for the user.

45

Chapter 6

Implementation and Evaluation

The algorithm is a standalone component and is not integrated with Storm. The

program takes the metrics as input and outputs two allocations optimalAllocation and

residualAllocation as described in Algorithm 5. For the case of testing, we modify the

algorithm to present the allocations by Stela and our approach separately. The algorithm

is a standalone program written in Java. It does not aim to be an autoscaling program,

although it can be accomplished with a bit of external scripting work. The advantage of

being a standalone program is that it does not interfere with the performance of Storm.

It could be hosted on different machines, and can execute as many instances as needed.

The user can experiment with different allocations without affecting the topology

executing in Storm and apply the changes only when he is comfortable.

The input contains the list of components in the topology and the number of free

resources to be allocated. Each component contains topology related information the

like id of its parent and children components. It also contains the runtime state of the

component like input, output, processing and dropped rates. If the component has

multiple children, it maps the ratio of the total output going to each children. For

example, if a component has 2 children A and B, and 100 tuples are emitted, where 60 are

sent A and 40 to B, then the output ratio for A is 0.6 and B is 0.4. When an allocation is

46

made to the parent components, the input to the child is obtained by accumulating the

input from each of its parent components and the output ratio to the child component.

The input uses JSON format to describe the component information. We use this

format because current webapi for storm returns output in JSON format. It would be

possible to implement or extend the existing webapi to return the component runtime

information, and use it as input to the program.

6.1 Changes to Storm Framework

Apache Storm 2.0 implements cgroup support for its worker process. When enabled, the

Apache Storm creates its process in a control group. cgroups provide compute guarantee

and isolate the cgroup processes from each other. However, in its current state the

second requirement of Isolation, that resource units are not to be shared between

components is not met. This is because the user does not have explicit control over how

the executors are distributed among worker processes.

In Storm, a worker may contain more than one executors. Executors are essentially

threads of execution in a worker process. The work of the component are executed by

tasks in executors. An executor may contain execute many tasks, but all the tasks within

an executor belong to the same component.

In order to facilitate the Isolation requirement, we implement a custom scheduler.

The scheduler allows the user to specify the number of workers to be allocated to each

component. Additionally, the user can also provide the number of executors and tasks

for each component. The scheduler also ensures that each worker process contains

executors belonging to a single component. The scheduler operates similarly to even

scheduler. The workers are evenly distributed among the worker machines. The

executors of a component are evenly distributed among the number of component

workers. This fulfills the isolation requirements.

47

To measure the current state of the topology, the algorithm uses Storm metrics. For

the algorithm, we need to collect the input rate, processing rate, dropped rate and output

rate. Metrics are collected at the key points of the Storm processing pipeline. Input rate

is collected by monitoring worker Receive Thread. The worker receive queue size set to a

constant. Once the number of tuples in the receive queue exceed the size of the queue,

the tuples are dropped. The dropped metrics counts the number of tuples being dropped.

The processed rate is collected at the executor input queue. For the output, we collect two

metrics. The emitted rate is the number of tuples directly emitted by the executors and

placed in executor send queue. The tuples are then transmitted to the transfer queue,

where the worker send thread transmits the tuples to destination workers. This could

either be on the same machine or might travel over the network to a different machine.

We collect transfer rate as the tuples exiting from the transfer queue.

The reason to collect two different metrics, emitted rate and transferred rate is to

ensure that the tuples are not dropped after processing due to network constraints. In

our experiments, no tuples were dropped between the emitted queue and transfer queue.

Typically metrics are stored in databases. To simplify our implementation, we use

"org.apache.storm.metrics2.reporters.ConsoleStormReporter" metrics reporter. The

output is emitted to the worker log. Since each worker is dedicated to a single

component, we map the worker to component and accumulate the individual rates of

each worker to obtain the metrics for a component. This is a bit tedious; we used scripts

to map and collect the metrics numbers.

6.2 Evaluation

In this section, we evaluate our algorithm. We first describe the experimental setup used

to execute our tests. We then outline the methodology used to design, execute and collect

the results. We then present the results generated by the tests, analyze and contrast

48

those results with that of Stela.

The experiments are designed to evaluate two objectives. First we analyze the

allocations suggested by both the approaches to understand why one approach works

better than the other in that particular scenario. We analyze drawbacks of Stela and

explain how our approach compensates for those drawbacks by suggesting alternative

allocations. And conversely, we also discuss how Stela compensates for the drawbacks of

our approach. We ultimately show that in a typical topology our combined algorithm

helps in improving the allocations suggested by Stela.

Secondly we evaluate the accuracy of the predictive model used by our approach.

We rely heavily on the ability of the model to predict the input and output rates of the

components after an allocation. So it is important to establish some confidence in our

model.

In line with the objectives experiments for evaluation are divided into two parts.

The first set of experiments are conducted by software simulation. We design topologies

of varying shapes and sizes. For larger topologies, we vary the input, processing and

output rates of each of the components to generate a new set of test topologies. We then

execute our algorithm and Stela to obtain allocations for the topology and measure the

throughput increase. The number of free resources provided to the algorithm is

increased for each iteration.

6.2.1 Software Simulation

For simulation we use the JSON input files as described before. We design topologies

with varying shapes, input and processing rate and child ratio, and execute our

algorithm. We obtain the allocations returned by Stela and our approach and compare

them.

Figure 6.1 shows the structure of a sample topology. The shape of the topology is

linear. Output from each component flows to the next and there are no branches. We

49

present the input, output and max processing rates for each of the components in Table

6.1. Followed by the allocations returned by our approach and Stela.

The table provides the initial configuration of the topology. We execute our

algorithm on topology in this state for each iteration. It is to be noted that each iteration

is executed in isolation and none of the effects of previous iteration is carried over to

next iteration. Column 1 of the table contains the name of the component. In our tests

we use a numbers as names . The second column contains the number of resources

allocated to the component allocated in the initial configuration. The allocation

suggested by Stela or our approach is applied on top of the initial configuration. Column

3 shows the input rate as described in the approach section. The spout does not have have

input rate or max processing rate. We only define the output rate for the spout for each

resource allocated to it. In our algorithm we consider spout to be congested component

and the resources can be used to scale the spout if no other congested components exist.

If the input rate is greater than the maximum processing rate (column 5), then only part

of the input rate is processed and the rest of the tuples are dropped. The dropped rate

can be obtained by inputRate - MaxProcRate. The output rate is the output from the

component. The child ratio indicates the children of the compnent and the ratio of the

output rate each child component receives. The format used to represent child ratio is

{component name : ratio}. In the above case, because this is a linear topology all of the

output from component 1 goes to component 2. Hence the ratio of 1.

Table 6.2 column 1 shows the number of resources offered to the algorithm to

allocate. Column 2 shows the allocation returned by Stela algorithm and column 4 shows

the allocation returned by our approach. The format to indicate the allocation is

{component:number of resources allocated}.Column 3 and 5 shows the increase in

throughput of topology because of the allocation.

In this experiment, we see both Stela and our approach return identitcal allocations.

However the rationale for choice changes are quite different. At the start, both

50

Figure 6.1: Test topology : linear

Table 6.1: Input, output and max processing rates for topology : linear

Name Res inputRate OutputRate MaxProcRate childRatio

1 1 - 500 - {2:1}
2 1 500 400 400 {3:1}
3 1 400 250 250 {4:1}
4 1 250 250 900

Table 6.2: Allocations and throughput increase for topology : linear

Resources Stela Stela Throughput Inc Our Approach Our Throughput Inc

1 {3:1} 150 {3:1} 150
2 {2:1, 3:1} 250 {2:1, 3:1} 250
3 {2:1, 3:2} 350 {2:1, 3:2} 350

component 2 and 3 are congested. Stela chooses to decongest 3 as it has the highest ETP,

our approach chooses the component 3 as it is the best choice among the congested

components that do not cause any congestion downstream. We see how this rationale

affects the allocations in the following test cases.

We now present the next topology. Figure 6.2 shows a simple diamond circuit. This

operation is common among other topologies as they constitute aggregate step. The

input, processing and output rates of the topology is presented in table 6.3. The

allocations and the throughput are presented in table 6.4. Similar to the previous

topology, both approaches provide similar allocations. Next we would like to discuss the

allocation for 1 resource.

Stela calculates the ETP for both the congested components of 2 and 3. The ETP for

both the components are the same as they lead to the same sink which is component 4. In

this case the selection between the components is arbitrary. In this example we assume

Stela makes the better choice and allocate the resource to component 3. Our approach

51

however calculates the actual throughput increase due to decongestion, and allocates the

resource to component 3.

Figure 6.2: Test topology : Diamond

Table 6.3: Input, output and max processing rates for topology : diamond

Name Res inputRate OutputRate MaxProcRate childRatio

1 1 - 1000 - {2:0.5, 3:0.5}
2 1 500 400 400 {4:1}
3 1 500 200 200 {4:1}
4 1 600 600 900

Table 6.4: Allocations and throughput increase for topology : diamond

Resources Stela Stela Throughput Inc Our Approach Our Throughput Inc

1 {2:1} or {3:1} 150 or 200 {3:1} 200
2 {2:1, 3:1} 250 {2:1, 3:1} 250
3 {2:1, 3:2} 350 {2:1, 3:2} 350
4 {2:1, 3:2, 4:1} 400 {2:1, 3:2, 4:1} 400

Figure 6.3 presents the simple tree topology. The input, output and processing rates

are presented in table 6.5. We use this topology to highlight more of the differences

between the allocation strategy of Stela and our approach.

The topology in its initial state has three congested components. Stela calculates

ETP for each of the congested components. Component 4 has the highest ETP as the

throughput of the subtree of component 4 is 500. However Stela does not recognize that

this allocation only increases the throughput only by 100 as shown in table 6.6. Our

approach calculates the throughput for each of the congested component after allocation

52

and chooses to decongest component 3 instead of 4 as it leads to higher throughput

increase.

When two resources are provided for allocation, our approach provides a different

allocation than when one resource was provided. This is different from Stela as it

employs serial allocation technique. The initial state of the topology is the same for each

iteration, the order in which the components are decongested also remains same. Stela

allocates a resource to component 2 for the same reason described for previous iteration.

It then allocates the second resource to 4 based on the new state. The allocations in rest

of the iterations are straight forward as both the approaches allocate resources to the

remaining congested component 3 till it gets completely decongested.

Figure 6.3: Test topology : simple Tree

Table 6.5: Input, output and max processing rates for topology : simple tree

Name Res procRate OutputRate MaxProcRate childRatio

1 1 - 2000 - {2:0.6, 3:0.4}
2 1 1200 800 800 {4:0.75, 5:0.25}
3 1 800 300 300 {6:1}
4 1 600 500 500
5 1 200 200 900
6 1 300 300 600

The topologies designed until now are simple and the allocations show the basic

difference in the strategy used by Stela and our approach. It also highlights the scenarios

53

Table 6.6: Allocations and throughput increase for topology : simple tree

Resources Stela Stela Throughput Inc Our Approach Our Throughput Inc

1 {4:1} 100 {3:1} 200
2 {2:1, 4:1} 500 {2:1, 4:1} 500
3 {2:1, 3:1, 4:1} 700 {2:1, 3:1, 4:1} 700
4 {2:1, 3:2, 4:1} 900 {2:1, 3:2, 4:1} 900

where Stela or our approach does better. We now design topologies of larger size.

Further we manipulate its characteristics like the child ratio and max processing rates of

the components while maintaining the same structure of topology. We analyze to see the

effects of the allocations mainly to ascertain if a single strategy works well for a topology

in all cases.

Figure 6.4 shows the structure of a tree topology. The topology has a total of 17

components and branches of the topology are somewhat symmetrical. The input, output

and max processing rates are presented in table 6.7. The throughput increases

corresponding to resource allocations are shown in figure 6.5

Table 6.7: Input, output and max processing rates for topology : topology 17

Name Res procRate OutputRate MaxProcRate childRatio

1 2 - 2000 - {2:0.4, 3:0.35, 4:0.25}
2 1 800 1600 900 {5:0.55, 6:0.45}
3 1 700 1400 1100 {7:0.6, 8:0.4}
4 1 500 1200 400 {9:1}
5 1 880 1200 800 {10:0.5, 11:0.5}
6 1 720 1400 700 {12:0.5, 13:0.5}
7 1 840 840 900 {14:1}
8 1 560 500 500 {15:1}
9 1 1200 1000 1000 {16:0.6, 17:0.4}
10 1 600 400 400
11 1 600 300 300
12 1 700 700 900
13 1 700 700 800
14 1 840 840 900
15 1 500 500 700
16 1 600 500 500
17 1 800 800 900

54

Figure 6.4: Test topology : topology 17

Table 6.8: Allocations and throughput increase for topology : topology 17

Resources Stela Stela Throughput Inc Our Approach Our Throughput Inc

1 {6:1} 40 {16:1} 500
2 {6:1, 9:1} 140 {16:2} 700
3 {6:1, 9:2, 17:1} 200 {11:1, 16:2} 1000

In table 6.8 we provide allocations returned by our approach and Stela for the first

three iterations. In the first iteration, we see component 6 has the highest ETP score.

Stela accordingly allocates the resource to component 6. However the children of

component 6 are already processing input close to the max processing rate. Allocating

resource to 6 congests both its children, thus the throughput increase is not achieved.

55

Figure 6.5: Throughput increase comparison for Test topology : topology 17

In the next iteration the algorithm is provided with two resources. Because of the

serial allocation strategy, Stela allocates the first resource to component 6 as it is

operating in the same premise as the first iteration. For allocating the second resource

ETP for each component is recalculated. In this case, component 9 is found to have a

higher ETP than any of the children of component 6. Unfortunately in this case

component 9 suffers from similar problem as component 6. This behavior is similar to

the earlier case with the simple tree.

If any early choice made by Stela is bad, then the same choice is made for every

iteration. These resources allocated are a liability until later when its children are

decongested. In the third iteration, effectively Stela is working with just one resource.

This is a major drawback of Stela and our approach addresses it by searching for other

allocations that can be made unless we have enough resources to decongest the subtree

of component 6.

For the next experiment we use the same topology as shown in figure 6.4. We swap

the child rates for the topology presented in table 6.7 essentially redirecting output of

child 1 to child 2, and vice versa. As an example for component 1, the child rate after the

swap will be {2:0.25, 3:0.35, 4:0.4} and for component 2 will be {5:0.45, 6:0.55}. The

maximum processing rates and the input to output ratio is retained for the component.

We present the full table 6.9. The input rate can be calculated by multiplying the output

56

rate of the parent component with the child ratio. The input rate for component 2 is

calculated as output rate of its parent component 1 and the child ratio for 2, i.e. 2000 *

0.25 = 500. Rest of the table is updated similarly. We present throughput increases for

each iteration in figure 6.6.

Table 6.9: Input, output and max processing rates for topology : topology 17

Name Res procRate OutputRate MaxProcRate childRatio

1 2 - 2000 - {2:0.25, 3:0.35, 4:0.4}
2 1 500 1000 900 {5:0.45, 6:0.55}
3 1 700 1400 1100 {7:0.4, 8:0.6}
4 1 800 1200 400 {9:1}
5 1 450 675 800 {10:0.5, 11:0.5}
6 1 550 1100 700 {12:0.5, 13:0.5}
7 1 560 560 900 {14:1}
8 1 840 500 500 {15:1}
9 1 1200 1000 1000 {16:0.4, 17:0.6}
10 1 337 337 400
11 1 337 300 300
12 1 550 550 900
13 1 550 550 800
14 1 560 560 900
15 1 500 500 700
16 1 600 500 500
17 1 800 800 900

Figure 6.6: Throughput increase comparison for topology 17 with child ratios swapped

In this case, we see the performance of Stela is much better than the previous case

shown in figure 6.5. The changes in the child ratio affects the input rate of each

57

component. It also affects the throughput under each component which is essential to

calculate ETP. As a result Stela picks a different set of components to decongest. It is

important to see that the changes in the input rate on the components can have a

significant impact on the performance of the approaches.

For the next experiment we use the topology shown in figure 6.4. In this case we

retain the child ratio as presented in table 6.7 and increase the capacity of some of the

components. As the topology resembles the tree structure, we define the level of a

component as 1 + the number of connections between the component and the root. We

follow the rule to increment maximum processing rate by steps of 200 for each level after

2. Thus for the components in level 2 (2,3,4) are maximum processing rate is

incremented by 0, level 3 components (5,6,7,8,9) by 200, level 4 components by 400 and so

on. We present the results in figure 6.7

Figure 6.7: Throughput increase comparison for topology 17 step capacity increased

The changes in capacity affects the number of congested components and also

makes it easier for the algorithm to allocate resources to lower level components with

more confidence. The results and the rationale are similar to the cases discussed in prior

experiments.

We make use of the topology shown in figure 6.4 one last time for our experiment.

Here we retain the modifications made for previous case in figure 6.7 and swap the input

ratios as we did for the case figure 6.6. We present the results in figure 6.8. The test again

58

shows that the changes in the processing rates of the component and the input rate can

have significant impact on the output.

Figure 6.8: Throughput increase comparison for topology 17 step capacity increased child
ratio swapped

For the next set of experiments we will use a different topology. The structure of the

topology is presented in figure 6.9. The topology is similar to the tree topology. The top

part of the topology resembles a skewed tree. Table 6.10 shows the initial state of the

topology. We will modify the processing rate and child ratios of the components like in

the case of the previous topology. We present the results and summarize our findings

later.

In the first case, we get the allocations for the topology for the state presented in

table 6.10. Figure 6.10 shows the throughput increase for the allocations. We see in this

case Stela provides better allocations for the topology. We will now swap the child ratios

as described earlier. The results are presented in figure 6.11. In this case we see our

approach doing better than Stela. Further we modify the maximum processing rate of

components by incrementing them in steps of 100 for every level beyond 2. Processing

rates of level 2 components (4,5,6,7) are incremented by 100, level 3 by 200 and so on. We

obtain the allocations for the modified topology and present the results in figure 6.12. We

then swap the child ratios of the topology modified for figure 6.12 and present the

resulting throughput increase for allocations in 6.13. The results for this topology is

similar to those obtained from topology 17. We present our analysis of the results in the

59

Figure 6.9: Test topology : testMix topology

next section.

Figure 6.10: Throughput increase comparison for testMix topology

6.2.2 Analysis

In this section we summarize the observations that can be made from the results of the

experiments. In our experiments, we show the conditions under which one approach

60

Table 6.10: Input, output and max processing rates for topology : mix topology

Name Res procRate OutputRate MaxProcRate childRatio

1 2 2 2000 1 {2:0.4, 3:0.6}
2 2 1000 2000 1500 {4:0.6,5:0.4}
3 1 1200 2400 1500 {6:0.6, 4:0.4}
4 1 800 800 800 {8:0.75,9:0.25}
5 1 600 600 600
6 1 600 600 600 {10:0.4,11:0.35,12:0.25}
7 1 500 1000 500 {13:0.6,14:0.4}
8 1 600 600 700 {15:0.75,16:0.25}
9 1 200 200 400
10 1 240 240 600
11 1 210 420 800 {17:0.5,18:0.5}
12 1 150 150 600 {19:1}
13 1 600 600 700 {20:1}
14 1 400 400 600 {21:1}
15 1 450 450 60 {22:0.75,23:0.25}
16 1 150 150 400
17 1 210 420 500
18 1 210 210 500
19 1 150 150 500
20 1 600 600 900
21 1 400 400 600
22 1 337 337 700
23 1 112 112 500

provides better allocations than the other. Stela allocates resources in a serial manner.

When Stela decongests a component and if the components in the subtree is already

processing close to their maximum processing rate then the subtree gets partially

congested. The throughput increase is determined by the throughput produced by this

partially decongested subtree. If most of the output is skewed towards fewer paths in the

subtree and if these high yielding paths are not congested, then the throughput increase

is significant. In these cases Stela performs better. If enough resources are not available

to decongest the subtree, then the overall allocation will have subpar increase in

throughput. Because the choices made by Stela are greedy, the allocations have high risk

with high rewards in favorable circumstances.

61

Figure 6.11: Throughput increase comparison for testMix with child ratio swapped : test-
MixRev topology

Figure 6.12: Throughput increase comparison for testMix with step capacity increase :
testMixStep topology

Our algorithm avoids selecting a components for decongestion if not enough

resources are available to decongest the subtree. The degree to which our algorithm does

better in these cases depends on existence of alternate congested components whose

subtree that can be fully decongested. The throughput increase from these fully

decongested subtrees is usually higher than the partially decongested subtree of a high

ETP component.

The conditions that favor one approach over the other is dependent on the shape of

the topology, the processing rates and output rates of the component, the child ratio and

the number of resources provided. We see in case of topology testMixRev using base

configuration (table 6.10) the conditions favor Stela allocation (figure 6.10). However

62

Figure 6.13: Throughput increase comparison for testMix with step capacity increase and
child ratio swapped : testMixStepRev topology

when we swap the child ratio Stela returns better allocation for few cases, and our

approach returns better allocation for others. (figure 6.11). We can see similar changes

when we change the maximum processing rates of the components (figure 6.12). We

infer that it is hard to predict which of the algorithms provide better allocations for a

given topology given its initial state, as changes to child ratio or processing rate could

shift the topology from favoring one approach to another.

We also observe that both algorithms work well individually, but neither of the

algorithms work better than other in all circumstances. We have discussed the

drawbacks of Stela before. Lets consider a scenario where our approach does poorly. In a

subtree if most of the output is concentrated on few paths, then it is prudent to allocate

resources to these paths to produce maximum output for each resource allocated. The

rest of the subtree that has low contribution to the throughput can be deallocated later at

lower priority. But because of our policy we do not consider this subtree until we have

sufficient resources to completely decongest it. Even when we consider it, we have to

make the allocation to even the low yielding paths in order to decongest the whole

subtree. These resources could be better used elsewhere. This diminishes the

effectiveness of our approach and these are exactly the scenarios where Stela does well.

63

Finally we show that the combined algorithms is an improvement over Stela

because of the complementary approach used by our algorithm and Stela. Figure 6.14 and

Figure 6.15 shows the throughput increase of the combined algorithm over Stela. The

graph is a compilation of the results from previous experiments. The degree to which the

the combined algorithm is better than Stela depends on the state of the topology as

described before.

6.2.3 Validation in Testbed

Anvil is the Holland Computing Center’s cloud computing resource at UNL. It is based

on the OpenStack software, allowing the user to provision virtual machines of varying

computing memory, cpu cores and disk size. For our experiments, we used machines

with 2 CPU cores, 4GB of RAM, and 80GB of Hard Disk space. The machines are imaged

with CentOS 7.4 XFCE. cgroups are configured to reserve 10% of the total CPU for each

process created under it. Storm is configured to use the cgroup, and thus each worker

process created by storm is guaranteed 10% of cpu. Each machine is configured with 7

slots, so a maximum of 7 worker process can run on it.

The experimental setup contains 8 machines. One machine is dedicated to be Storm

server hosting Nimbus. It does not host any worker process. The rest of the 7 machines

are configured to execute worker processes as described above. The setup was mainly

used to execute larger topologies, with the main aim to validate that cgroups allow us to

estimate the input and output rates within reasonable accuracy. The larger number of

worker process gets distributed among the machines forcing some components to direct

its output over the network to reach its intended child component. We execute a test

topology with 10 components as shown in figure 6.16 with the configuration shown in

table 6.11.

The test uses the modified version of Exclamation Topology. Exclamation topology

is one of the sample topologies provided by Storm starter kit. The topology has three

64

Figure 6.14: Throughput increase comparison for combined algorithm and Stela

components S1, C1 and C2. The spout S1 generates a random word, passes it onto its

child component C1. The C1 adds a Exclamation character to the word passed to it by S1.

C1 passes the modified word to its child component C2 which does the same and outputs

the word.

65

Table 6.11: Input, output and max processing rates for topology : topology 10

Name Res procRate OutputRate MaxProcRate childRatio

1 2 - 16000 - {2:0.44, 3:0.33, 4:0.22}
2 1 7040 4700 4700 {5:0.6, 6:0.4}
3 1 5280 3500 3500 {7:0.6, 8:0.4}
4 1 3520 2500 2500 {9:0.6, 10:0.4}
5 1 4224 2800 2800
6 1 1880 1880 2100
7 1 2100 2100 2700
8 1 1400 1400 3800
9 1 1500 1500 3800
10 1 1000 1000 3600

The test modifies the components C1 and C2. To simulate components with various

cpu loads, we add a spin loop in the component. A series of components are prepared

with varying cpu load and profiled for maximum input and output rates. The number of

children and the output ratio to children are modified as needed to build more complex

topologies.

For testing, the components of topology is profiled to collect the maximum

processing and output rates. A JSON file with all the components and its rates is created

and provided to the algorithm. The program is executed for the input file with different

number of free resources to be allocated. The allocations and the throughput is collected

from the program. The topology is executed again with the allocation provided by the

program, and output is noted from the test bench. The predicted throughput from the

program is compared with the values obtained from the test bench.

The test on the test bench is executed three times for each case, and the average of

the values are considered. Each test is executed for 30 minutes, and the average input,

output rates of the last 15 minutes is considered.

We simulate the topology to obtain allocations for our approach and Stela. We

present the comparison between the Stela and our approach in terms of the throughput

increase (figure 6.17) as we have done in software simulation section. We also show that

66

the combined algorithm does better than Stela (figure 6.18).

We apply the allocations obtained by software simulation for both our approach and

Stela on the test bed. We measure the throughput from the test bed and compare it with

the throughput predicted by simulation. The results are shown in Figure 6.19

By testing a simulated topology on the test bed, we see that the predicted

throughput is fairly close to the measured throughput. We further measure the

processing rate of each during the test. For most cases the measured value stays

consistent and within 10% difference from the estimated value. This shows that the

model can be used in a reliable way to estimate the throughput of a allocation.

67

Figure 6.15: Throughput increase comparison for combined algorithm and Stela

68

Figure 6.16: Test topology : topology 10

Figure 6.17: Throughput increase comparison Stela and our approach : topology 10

Figure 6.18: Throughput increase comparison Stela and Combined : topology 10

69

Figure 6.19: Throughput comparison measured and estimated

70

Chapter 7

Future Work

In this section, we identify some of the areas that can be improved in the algorithm, and

some related approaches to ours that can be used to solve other problems.

Firstly in our testing, we see that the processing and output rates remain reasonably

constant for a component when executed in a worker process created under cgroup. The

input rate to the worker process was somewhat constrained within a range. When the

input rate increases, more of the processing power would be used to drop the tuples

instead of processing them. This can affect the processing rate of the worker. A more

detailed analysis of the worker process created under cgroup could help create better

mathematical models.

An improvement to the process could be to profile the components automatically at

runtime. Profiling the components in general is tedious. If the characteristics of the

component changes over time, then the process cannot rely on the existing processing

and output rates to produce good allocations. One approach to profile the components

would be to monitor the amount of cpu used by the process, and then correlate it with

the number of tuples being processed in unit time. This can be used to estimate the

maximum processing rate the worker can support.

Our algorithm uses a policy to avoid introducing or worsening congestion. If an

71

allocation does introduce any congestion in its subtree, it is rejected. If most of the

throughput is produced by fewer paths, our approach won’t be able to consider the

subtree until we have enough resources to decongest all of the components in the

subtree. This policy can be too restrictive, and strategies for partially decongesting the

subtree need to be explored further.

72

Chapter 8

Conclusion

In our work we make a case to offer Storm as a service, as it is a natural progression from

the way storm in IaaS or PaaS flavors. We use cgroups to allow users to procure

resources smaller than a machine. We use a design where a worker process executes

tasks of a single component. We implement a new scheduler to allow users to control the

allocations of the resources to the components in their workflow. This design allows us

to estimate the processing rate of the components for a given input rate and for the

number of resources allocated. We build a model to estimate the state of the topology for

a given allocation. We build a scheduler based on Stela to scale out the workflow. We

discuss the weakness of Stela, and design a new algorithm using a predictive model.

Further we test our approach by testing it against different topologies and show that our

algorithm improves upon the the allocation provided by Stela in several cases. Finally we

show that our predictive model is reasonably accurate in estimating the throughput of

the topology and verify it against the topology by executing on a physical test bed.

73

References

[1] Michael G. Noll. Understanding the internal message buffers of storm.

https://www.michael-noll.com/blog/2013/06/21/

understanding-storm-internal-message-buffers/, June 21 2013.

[2] Louis Columbus. Roundup of cloud computing forecasts, 2017.

https://www.forbes.com/sites/louiscolumbus/2017/04/29/

roundup-of-cloud-computing-forecasts-2017/#63be5dd831e8, April 29

2017.

[3] Apache hadoop. http://hadoop.apache.org/.

[4] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M.

Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Donham,

Nikunj Bhagat, Sailesh Mittal, and Dmitriy Ryaboy. Storm@twitter. In Proceedings

of the 2014 ACM SIGMOD International Conference on Management of Data, SIGMOD ’14,

pages 147–156, New York, NY, USA, 2014. ACM.

[5] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher

Kellogg, Sailesh Mittal, Jignesh M. Patel, Karthik Ramasamy, and Siddarth Taneja.

Twitter heron: Stream processing at scale. In Proceedings of the 2015 ACM SIGMOD

International Conference on Management of Data, SIGMOD ’15, pages 239–250, New

York, NY, USA, 2015. ACM.

https://www.michael-noll.com/blog/2013/06/21/understanding-storm-internal-message-buffers/
https://www.michael-noll.com/blog/2013/06/21/understanding-storm-internal-message-buffers/
https://www.forbes.com/sites/louiscolumbus/2017/04/29/roundup-of-cloud-computing-forecasts-2017/#63be5dd831e8
https://www.forbes.com/sites/louiscolumbus/2017/04/29/roundup-of-cloud-computing-forecasts-2017/#63be5dd831e8
 http://hadoop.apache.org/

74

[6] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion

Stoica. Spark: Cluster computing with working sets. In Proceedings of the 2Nd

USENIX Conference on Hot Topics in Cloud Computing, HotCloud’10, pages 10–10,

Berkeley, CA, USA, 2010. USENIX Association.

[7] Tyler Akidau, Alex Balikov, Kaya Bekiroglu, Slava Chernyak, Josh Haberman,

Reuven Lax, Sam McVeety, Daniel Mills, Paul Nordstrom, and Sam Whittle.

Millwheel: Fault-tolerant stream processing at internet scale. In Very Large Data

Bases, pages 734–746, 2013.

[8] Apache zookeeper. https://zookeeper.apache.org.

[9] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4: Distributed stream computing

platform. In 2010 IEEE International Conference on Data Mining Workshops, pages

170–177, Dec 2010.

[10] X. Liu and R. Buyya. Performance-oriented deployment of streaming applications

on cloud. IEEE Transactions on Big Data, pages 1–1, 2018.

[11] Get started with apache storm on hdinsight using the storm-starter examples.

https://docs.microsoft.com/en-us/azure/hdinsight/storm/

apache-storm-tutorial-get-started-linux.

[12] Sebastian Lambert. 2018 saas industry market report: Key global trends & growth

forecasts. https://financesonline.com/

2018-saas-industry-market-report-key-global-trends-growth-forecasts/.

[13] Apache storm. https://github.com/apache/storm.

[14] L. Xu, B. Peng, and I. Gupta. Stela: Enabling stream processing systems to scale-in

and scale-out on-demand. In 2016 IEEE International Conference on Cloud Engineering

(IC2E), pages 22–31, April 2016.

https://zookeeper.apache.org
https://docs.microsoft.com/en-us/azure/hdinsight/storm/apache-storm-tutorial-get-started-linux
https://docs.microsoft.com/en-us/azure/hdinsight/storm/apache-storm-tutorial-get-started-linux
https://financesonline.com/2018-saas-industry-market-report-key-global-trends-growth-forecasts/
https://financesonline.com/2018-saas-industry-market-report-key-global-trends-growth-forecasts/
https://github.com/apache/storm

75

[15] Michael Litzkow, Miron Livny, and Matthew Mutka. Condor - a hunter of idle

workstations. In Proceedings of the 8th International Conference of Distributed Computing

Systems, June 1988.

[16] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric

Tune, and John Wilkes. Large-scale cluster management at google with borg. In

Proceedings of the Tenth European Conference on Computer Systems, EuroSys ’15, pages

18:1–18:17, New York, NY, USA, 2015. ACM.

[17] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D.

Joseph, Randy Katz, Scott Shenker, and Ion Stoica. Mesos: A platform for

fine-grained resource sharing in the data center. In Proceedings of the 8th USENIX

Conference on Networked Systems Design and Implementation, NSDI’11, pages 295–308,

Berkeley, CA, USA, 2011. USENIX Association.

[18] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad Agarwal, Mahadev

Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth Seth,

Bikas Saha, Carlo Curino, Owen O’Malley, Sanjay Radia, Benjamin Reed, and Eric

Baldeschwieler. Apache hadoop yarn: Yet another resource negotiator. In

Proceedings of the 4th Annual Symposium on Cloud Computing, SOCC ’13, pages 5:1–5:16,

New York, NY, USA, 2013. ACM.

[19] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren Zhou, Zhengping Qian,

Ming Wu, and Lidong Zhou. Apollo: Scalable and coordinated scheduling for

cloud-scale computing. In 11th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 14), pages 285–300, Broomfield, CO, 2014. USENIX

Association.

[20] Narayanan A. Tupperware: containerized deployment at facebook.

http://www.slideshare.net/dotCloud/

tupperware-containerized-deployment-at-facebook, June 2014.

http://www.slideshare.net/dotCloud/tupperware-containerized-deployment-at-facebook
http://www.slideshare.net/dotCloud/tupperware-containerized-deployment-at-facebook

76

[21] J. Cervino, E. Kalyvianaki, J. Salvachua, and P. Pietzuch. Adaptive provisioning of

stream processing systems in the cloud. In 2012 IEEE 28th International Conference on

Data Engineering Workshops, pages 295–301, April 2012.

[22] J. Xu, Z. Chen, J. Tang, and S. Su. T-storm: Traffic-aware online scheduling in

storm. In 2014 IEEE 34th International Conference on Distributed Computing Systems,

pages 535–544, June 2014.

[23] Leila Eskandari, Jason Mair, Zhiyi Huang, and David Eyers. A topology and traffic

aware two-level scheduler for stream processing systems in a heterogeneous

cluster. In Dora B. Heras, Luc Bougé, Gabriele Mencagli, Emmanuel Jeannot, Rizos

Sakellariou, Rosa M. Badia, Jorge G. Barbosa, Laura Ricci, Stephen L. Scott, Stefan

Lankes, and Josef Weidendorfer, editors, Euro-Par 2017: Parallel Processing Workshops,

pages 68–79, Cham, 2018. Springer International Publishing.

[24] George Karypis and Vipin Kumar. A fast and highly quality multilevel scheme for

partitioning irregular graphs. SIAM Journal on Scientific Computing, 20(1):359–392,

1999.

[25] Leila Eskandari, Jason Mair, Zhiyi Huang, and David Eyers. Iterative scheduling for

distributed stream processing systems. In Proceedings of the 12th ACM International

Conference on Distributed and Event-based Systems, DEBS ’18, pages 234–237, New York,

NY, USA, 2018. ACM.

[26] M. Lee, M. Lee, S. J. Hur, and I. Kim. Load adaptive distributed stream processing

system for explosive stream data. In 2015 17th International Conference on Advanced

Communication Technology (ICACT), pages 753–757, July 2015.

[27] Anshu Shukla and Yogesh L. Simmhan. Model-driven scheduling for distributed

stream processing systems. J. Parallel Distrib. Comput., 117:98–114, 2018.

77

[28] Y. Wang, Z. Tari, M. R. HoseinyFarahabady, and A. Y. Zomaya. Model-based

scheduling for stream processing systems. In 2017 IEEE 19th International Conference

on High Performance Computing and Communications; IEEE 15th International Conference

on Smart City; IEEE 3rd International Conference on Data Science and Systems

(HPCC/SmartCity/DSS), pages 215–222, Dec 2017.

[29] Christoph Hochreiner, Michael VÃűgler, Stefan Schulte, and Schahram Dustdar.

Cost-efficient enactment of stream processing topologies. PeerJ Computer Science,

3:e141, December 2017.

[30] Christoph Hochreiner. Visp testbed - a toolkit for modeling and evaluating resource

provisioning algorithms for stream processing applications. In ZEUS, 2017.

[31] Y. Zhai and W. Xu. Efficient bottleneck detection in stream process system using

fuzzy logic model. In 2017 25th Euromicro International Conference on Parallel,

Distributed and Network-based Processing (PDP), pages 438–445, March 2017.

[32] J. Lin, M. Lee, I. C. Yu, and E. B. Johnsen. Modeling and simulation of spark

streaming. In 2018 IEEE 32nd International Conference on Advanced Information

Networking and Applications (AINA), pages 407–413, May 2018.

[33] Boyang Peng, Mohammad Hosseini, Zhihao Hong, Reza Farivar, and Roy Campbell.

R-storm: Resource-aware scheduling in storm. In Proceedings of the 16th Annual

Middleware Conference, Middleware ’15, pages 149–161, New York, NY, USA, 2015. ACM.

[34] Introduction to control groups (cgroups).

https://access.redhat.com/documentation/en-us/red_hat_enterprise_

linux/6/html/resource_management_guide/ch01.

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/resource_management_guide/ch01
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/resource_management_guide/ch01

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	12-2018

	Scale-Out Algorithm For Apache Storm In SaaS Environment
	Ravi Kiran Puttaswamy

	List of Figures
	List of Tables
	Introduction
	Literature Review
	Background
	Architecture of Apache Storm

	Stela
	Identify Congested Components
	Measure Desirability of Congested Component
	Choosing The Component
	Drawbacks of Stela

	Scale-Out Algorithm
	Goals and Assumptions
	Approach and Design
	Resource Units
	Batch Allocation
	Compute Model
	Calculating Throughput for Allocation
	Strategy
	Residual Resources
	Algorithm
	Comparision to Stela

	Implementation and Evaluation
	Changes to Storm Framework
	Evaluation
	Software Simulation
	Analysis
	Validation in Testbed

	Future Work
	Conclusion
	References

