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Transportation of hazardous materials (hazmat) in the United States (U.S.) 

constituted 22.8% of the total tonnage transported in 2012 with an estimated value of 

more than 2.3 billion dollars. As such, hazmat transportation is a significant economic 

activity in the U.S. However, hazmat transportation exposes people and environment to 

the infrequent but potentially severe consequences of incidents resulting in hazmat 

release. Trucks and trains carried 63.7% of the hazmat in the U.S. in 2012 and are the 

major foci of this dissertation. The main research objectives were 1) identification and 

quantification of the effects of different factors on occurrence and consequences of 

hazmat-related incidents, towards identifying effective policies and countermeasures for 

improving safety and; 2) quantifying components of risk of hazmat transportation for 

costs prediction, planning purposes, or short-term decision-making.  

A comprehensive review of literature, study framework, and available data led to 

identification of six foci for this dissertation: 1) estimation of hazmat release statistical 

models for railroad incidents; 2) estimation of rollover and hazmat release statistical 

models for Cargo Tank Truck (CTT) crashes; 3) analyzing hazmat-involved crashes at 

highway-rail grade crossings (HRGCs); 4) model-based and non-model-based methods 

for classifying hazmat release from trains and CTTs; 5) estimation of macroscopic-level 



 

 

statistical models for frequency and severity of rail-based crude oil release incidents; and 

6) estimation of statistical models for types and consequences of rail-based crude oil 

release incidents.  

Some of the findings of this research include: train derailments increased hazmat 

release probability more than other incident types; non-collision CTT crashes were more 

likely to result in rollovers, while rolling over increased the likelihood of hazmat release; 

at HRGCs, flashing signal lights were associated with lower hazmat release probability 

from trucks; increase in volume and distance of crude oil shipped from one state to 

another led to greater frequency and severity of incidents between the two states; and in 

rail-based crude oil release incidents, non-accident releases were associated with higher 

probability of gas dispersion, and lower probability of fire and explosion. Based on the 

results, recommendations regarding policies and countermeasures for improving safety 

are provided. 
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CHAPTER 1 INTRODUCTION 

1.1 Background 

Transportation of hazardous materials (hazmat) exposes people and environment 

(e.g., air and water) to the infrequent but potentially severe consequences of incidents 

resulting in hazmat release. Such incidents, depending on the type of hazmat, quantity of 

release, environment and spatial/temporal characteristics of the incidents may impose 

monetary and non-monetary (e.g., pain and suffering of incident victims) costs upon the 

society. For example, in a 2015 train incident in Maryville, Tennessee release of 29,710 

gallons of Acrylonitrile led to fire, explosion, gas dispersion, water pollution, 

environmental damage, 195 injuries, evacuation of 5,000 people, and $7.7 million worth 

of damages (Pipeline and Hazardous Materials Safety Administration and Office of 

Hazardous Materials Safety 2018). Improving safety of hazmat transportation by 

decreasing the frequency of such incidents and alleviating their consequences from safety 

planning or shipper/carrier points of view benefits society. 

Substances are categorized as hazmat if they can cause injury, death and serious 

illness, or put a significant threat to the human population or the environment due to their 

chemical, physical or other characteristics (Lee 2014). The U.S. Department of 

Transportation defines hazmat as belonging to one of the nine hazard classes, presented 

in Table 1.1, along with the U.S. shipment amounts and ratios in 2012 according to the 

U.S. Census Bureau’s 2012 Commodity Flow Survey (the latest publicly available 

Commodity Flow Survey at this time) (U.S. Department of Transportation and U.S. 

Department of Commerce 2015). 
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Table 1.1 2012 Hazardous Material Shipment Characteristics by Hazard Class for the 

U.S. 
C

la
ss

 

Description 

Value Ton Ton-miles 

2012 

(million 

dollars) 

Percent 

of total 

2012 

(1000s) 

Percent 

of total 

2012 

(million

s) 

Percent 

of total 

1 Explosives 18397 0.79% 4045 0.16% 1012 0.33% 

2 Gases 125054 5.36% 164794 6.39% 33157 10.78% 

3 Flammable and 

combustible liquids 

2016681 86.39% 2203490 85.42% 204573 66.52% 

4 Flammable solids 5415 0.23% 11321 0.44% 5804 1.89% 

5 Oxidizers and 

Organic Peroxides 

7562 0.32% 12025 0.47% 5479 1.78% 

6 Toxic (Poisonous) 

Materials and 

Infectious Substances 

15196 0.65% 7612 0.30% 3607 1.17% 

7 Radioactive Materials 12288 0.53% NA NA 39 0.01% 

8 Corrosive Materials 75850 3.25% 125287 4.86% 37784 12.29% 

9 Miscellaneous 

Dangerous Goods 

57981 2.48% 51006 1.98% 16068 5.22% 

  Total 2334424 100.00% 2580153 100.00% 307523 100.00% 

(Source: 2012 Commodity Flow Survey (U.S. Department of Transportation and U.S. Department 

of Commerce 2015)), NA: Not Available  

Hazmat transportation constitutes a considerable portion of freight transportation 

and is a significant and non-negligible economic activity in the U.S. According to the 

2012 Commodity Flow Survey, 2,580,153 thousand tons (307,524 million ton-miles) of 

hazmat was transported in 2012, with the approximate monetary value of $2,334,425,000. 

This constitutes 22.8% of the total tonnage and 10.4% of the total ton-miles of freight 

transportation. Demand for hazmat transportation in the U.S. has grown over the past 

decade, specifically due to transportation of crude oil. A 15.6% increase in the tonnage 

and 49.4% increase in the value of the transported hazmat since 2007 is reported in the 

2012 Commodity Flow Survey. These statistics justify the need to study the safety 

aspects of hazmat transportation in the U.S.  



3 

 

Hazmat is transported by different modes. Highway, rail, water, air and pipelines 

(and also multimodal, e.g. combination of truck and rail) are the most common modes of 

hazmat transportation. In 2012, highway accounted for 59.4% of the total tonnage (31.4 

% of the total ton-miles) and rail constituted 4.3% of the total tonnage (27.6% of the total 

ton-miles) of hazmat transportation in the U.S. (U.S. Department of Transportation and 

U.S. Department of Commerce 2015) (Figure 1.1). Also, according to Pipeline and 

Hazardous Materials Safety Administration’s (PHMSA) 2008-2017 ten-year incident 

summary reports (Pipeline and Hazardous Materials Safety Administration (PHMSA) 

2018), hazmat-released highway incidents made up 87.6% of the total reported release 

incidents, 93.1% of fatalities, 72.2% of injuries, and 72.2% of the total damages 

(excluding pipelines). These values were 4.0%, 2.0%, 21.1% and 26.5% for rail incidents 

Figure 1.2). This information shows the importance of improving safe transportation of 

hazmat by trucks and trains. 

 

Figure 1.1 Distribution of Hazmat Transportation by Different Modes in the U.S. for 

Tons (left) and Ton-miles (right) of transportation (Source: 2012 Commodity Flow 

Survey) 
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Figure 1.2 Distribution of Different Transportation Modes in Number of Hazmat Release 

Incidents (top left), Fatalities (Top Right), Injuries (Bottom Left) and Total Damages 

(Bottom Right) due to Hazmat Release Incidents (Source: 2008-2017 PHMSA ten-year 

incident summary reports) 

1.2 Problem Statement 

This research is focused on safe transportation of hazmat by trucks and trains at 

microscopic and macroscopic study levels, and from safety planning and shipper/carrier 

points of views. Transportation of hazmat exposes society to the costly consequences of 

release of hazmat when incidents happen. Therefore, stakeholders, such as safety 

planning agencies and hazmat shipper/carriers, are interested in decreasing these costs by 

reducing the likelihood and possible consequences of hazmat release during 

transportation. At both levels of study, the main objectives are: 1) identification and 

quantification of the effects of different factors on occurrence and consequences of 
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hazmat-related incidents, towards identifying effective policies and countermeasures for 

improving safety and; 2) quantifying components of risk of hazmat transportation in a 

study unit (e.g. a link/route in a transportation network, an intersection, or a census tract) 

for costs prediction, planning purposes (e.g. hazmat network design), or short-term 

decision-making (e.g. routing). 

1.3 Study Framework 

In this study the major approaches of studying hazmat transportation and their 

objectives are categorized into microscopic and macroscopic levels. In the microscopic 

approaches, the unit of analysis is individual hazmat carrier incidents (e.g. trains, hazmat 

cars, or cargo tank trucks (CTTs)), and the potentially important variables are at 

microscopic-level (e.g. train length, tank car characteristics, or truck’s weight). In the 

macroscopic approaches the unit of analysis is geographic areas, segments of 

transportation infrastructure, or pairs of origin-designation (OD). In these studies, the 

explanatory variables are at the macroscopic level (e.g. population, traffic volume, or 

volume of hazmat movement among ODs). Figure 1.3 presents the objectives and tools of 

this framework for hazmat transportation safety analysis. 



6 

 

 

Figure 1.3 Outline of the objectives and tools for hazmat transportation safety analysis. 

Microscopic and macroscopic analyses provide useful information for 

stakeholders and they can be used in risk-based decision frameworks. In this study, risk 

of hazmat transportation is defined as equation 1.1.  

𝑅𝑖 = 𝜋𝑖𝑐𝑖 (1.1) 

In this equation, 𝑅𝑖 is the risk of hazmat transportation on transportation entity i (a 

road segment, an intersection, a route, etc.), 𝜋𝑖 is the probability of release of hazmat 

from train/truck on entity i, and 𝑐𝑖 is the cost of release of hazmat from train/truck on 

entity i. Depending on the type of study, an appropriate entity may be chosen. For 

example, network design problems are usually formulated as link-based, while routing 

problems may rely mostly on the hazmat transportation risk of routes. 
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Probability of release of hazmat and release costs are quantified using equations 

1.2 and 1.3. 

𝜋𝑖 = 𝑃𝑖(𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡) × 𝑃𝑖(𝑟𝑒𝑙𝑒𝑎𝑠𝑒|𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡) (1.2) 

𝑐𝑖 = ∑ 𝑐𝑜𝑠𝑡𝑖(𝑘)

𝑘∈𝑆

 (1.3) 

In these equations 𝑃𝑖(𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡) is the probability of occurrence of an incident on 

entity i (examples of incidents are train derailments or truck traffic crashes), 

𝑃𝑖(𝑟𝑒𝑙𝑒𝑎𝑠𝑒|𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡) is the conditional probability of release given an incident on entity 

i, 𝑐𝑜𝑠𝑡𝑖(𝑘) is the costs of type k as a result of hazmat release on entity i, and S is the set of 

all types of costs, S = {carrier damage, property damage, response, clean-up, injuries, 

fatalities, evacuation, transportation infrastructure closure}.  

In the above formulation of the hazmat transportation risk, 𝑃𝑖(𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡) has a 

macroscopic nature (defined as the frequency/rate of incident occurrence), while 

𝑃𝑖(𝑟𝑒𝑙𝑒𝑎𝑠𝑒|𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡) and 𝑐𝑖 can be studied in a microscopic scale. Microscopic and 

macroscopic levels are introduced next, as individual types of study and also components 

of risk. 

1.3.1 Microscopic-Level Approach 

The main objectives of this approach are: 1) Policy-making and determination of 

countermeasures regarding safe transportation of hazmat: this approach is able to identify 

and quantify the impacts of microscopic-level variables on different components of risk 

of hazmat transportation. Such information enables governmental agencies to make 

policies to restrict and guide shippers/carriers towards fewer and less severe hazmat 

release incidents, and also enables shippers/carriers directly to determine 
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countermeasures that can make their operations safer and less costly. 2) Risk assessment: 

it involves calculation of probabilistic costs of hazmat transportation on segments of 

transportation network. Risk can be used in decision-making from both safety planning 

and shipper/carrier’s points of view. Network design and pricing for hazmat 

transportation, and emergency response planning are examples of government’s decision 

frameworks, while hazmat routing, mode choice, destination choice and facility location 

(in cases of existence of more than one alternative) are shipper/carrier’s concerns. 

1.3.1.1 Conditional Probability of Release 

In this research, different approaches for estimating 𝑃(𝑟𝑒𝑙𝑒𝑎𝑠𝑒|𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡) for 

trucks and trains are proposed. The concept behind these approaches is estimating the 

probability of release of hazmat in an incident involving a hazmat-carrying truck/train, 

based on explanatory variables such as characteristics of truck/train, roadway/railroad, 

incident, and environment. The differences in the proposed approaches are based on the 

level of analysis, modeling techniques and how the variables are used. Different 

approaches for trucks and trains are as follows. 

The conditional probability of release of hazmat from trains can be analyzed at 

train-level and hazmat car-level. In the former, the unit of analysis is trains and the 

probability of a train release is of concern, while in the latter hazmat cars are the units of 

analysis and a hazmat car release’s probability is estimated. Equations 1.4 and 1.5 present 

these approaches, respectively. 

𝑃(𝑟𝑒𝑙𝑒𝑎𝑠𝑒|𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡)𝑡𝑟𝑎𝑖𝑛 = Φ(𝑋𝑡𝑟𝑎𝑖𝑛, 𝑋𝑟𝑎𝑖𝑙𝑟𝑜𝑎𝑑, 𝑋𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡, 𝑋𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡) (1.4) 

𝑃(𝑟𝑒𝑙𝑒𝑎𝑠𝑒|𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡)𝑐𝑎𝑟 = Φ(𝑋𝑐𝑎𝑟 , 𝑋𝑟𝑎𝑖𝑙𝑟𝑜𝑎𝑑, 𝑋𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡, 𝑋𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡) (1.5) 
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In these equations, X shows the characteristics of its subscript. Some of the 

characteristics of incidents may depend on other explanatory variables (e.g. number of 

derailed/damaged cars may depend on train’s speed) and can be estimated accordingly, 

while some of them are not predictable at the microscopic level (e.g. type of incident) and 

may be taken in to account in the estimation of 𝑃𝑖(𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡). 

Conditional probability of release for hazmat-carrying vehicles, similar to trains, 

can be assumed to be a function of the explanatory variables (e.g. characteristics of 

trucks, road, environment, and crash). Equation 1.6 presents this approach. 

𝑃(𝑟𝑒𝑙𝑒𝑎𝑠𝑒|𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡) = Φ(𝑋𝑡𝑟𝑢𝑐𝑘, 𝑋𝑟𝑜𝑎𝑑, 𝑋𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡, 𝑋𝑐𝑟𝑎𝑠ℎ) (1.6) 

Examples for 𝑋𝑐𝑟𝑎𝑠ℎ include number of vehicles involved in the crash and rolling 

over. According to literature (Douglas Behrens Pape 2012), in crashes of CTTs, one of 

the main highway hazmat carriers, rollovers are frequent, leading to hazmat release. 

While the number of vehicles involved in the crash is independent of the crash 

characteristics and may be predicted at the macroscopic level (similar to type of train 

incidents), rolling over can be modeled based on explanatory variables (similar to the 

number of railcars derailed/damaged). 

1.3.1.2 Costs 

Equation 1.3 showed that calculating costs of a hazmat release incident needs 

quantification of the eight members of set S. Each of these components are dependent on 

different factors, such as type of release (spillage and/or gas dispersion), consequences of 

release (fire, explosion, environmental damages, entering waterway), quantity of release, 

type of hazmat, mode of transportation, population living within a specified distance from 
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the location of incident, public/private properties located within a specified distance from 

the location of incident, type of environment (e.g. type of soil), and distance to waterway. 

These factors are also interdependent, for example probability of fire depends on the 

quantity released, type of hazmat and type of release.  

Quantification of some of these components can be based on statistical modeling. 

Equations 1.7 and 1.8 are examples of such approaches. It should be noted that, 

parameter estimation of these equations, along with the cost models, can provide useful 

information regarding policy- and decision-making.  

𝑃(𝑓𝑖𝑟𝑒|𝑟𝑒𝑙𝑒𝑎𝑠𝑒) = Φ(𝑋ℎ𝑎𝑧𝑚𝑎𝑡, 𝑋𝑟𝑒𝑙𝑒𝑎𝑠𝑒 , 𝑋𝑐𝑎𝑟𝑟𝑖𝑒𝑟,𝑋𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡) (1.7) 

𝑃(𝑒𝑥𝑝𝑙𝑜𝑠𝑖𝑜𝑛|𝑟𝑒𝑙𝑒𝑎𝑠𝑒) = Φ(𝑋ℎ𝑎𝑧𝑚𝑎𝑡, 𝑋𝑟𝑒𝑙𝑒𝑎𝑠𝑒 , 𝑋𝑐𝑎𝑟𝑟𝑖𝑒𝑟,𝑋𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡) (1.8) 

Examples for 𝑋ℎ𝑎𝑧𝑚𝑎𝑡 include type of hazmat, for 𝑋𝑟𝑒𝑙𝑒𝑎𝑠𝑒 include quantity 

released and type of release (spillage and/or gas dispersion), for 𝑋𝑐𝑎𝑟𝑟𝑖𝑒𝑟 include mode of 

transportation and their characteristics, and for 𝑋𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 include weather. It should be 

noted that type of release is dependent on explanatory variables, itself and can be 

expressed as equation 1.9. 

𝑃(𝑡𝑦𝑝𝑒 𝑜𝑓 𝑟𝑒𝑙𝑒𝑎𝑠𝑒|𝑟𝑒𝑙𝑒𝑎𝑠𝑒) = Φ(𝑋ℎ𝑎𝑧𝑚𝑎𝑡, 𝑋𝑐𝑎𝑟𝑟𝑖𝑒𝑟,𝑋𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡) (1.9) 

1.3.2 Macroscopic-Level Approach 

In the macroscopic-level approaches, the unit of study can be a geographic area 

(e.g. state, county, urban area), or pairs of ODs (e.g. among counties of a state). The main 

objectives of the macroscopic-level study of hazmat-related incidents are: 1) policy-

making for decreasing hazmat transportation costs due to releases, by identifying and 

quantifying the macroscopic factors that affect these costs, such as hazmat production, 
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consumption, infrastructure, policies and restrictions. 2) prediction of frequency and costs 

of hazmat transportation incidents in the future for planning, decision-making, and 

budget allocation. 

1.3.2.1 Probability of Incident Occurrence 

𝑃(𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡) is commonly estimated as an annual incident frequency or rate (e.g. 

incidents per mile, incidents per ton-mile, or incidents per car-mile) multiplied by 

distance or the exposure measure of the transportation entity. Examples of such 

approaches can be found in (Harwood, Viner, and Russell 1990, 1993; Qiao, Keren, and 

Mannan 2009). Besides measures for traffic, incident rates are usually estimated based on 

characteristics of highway/rail, land-use characteristics and driving behavior. Incident 

frequency/rate can solely be the subject of a macroscopic study with the purpose of 

policy/countermeasure identification towards decreasing hazmat incident frequency/rates. 

An example is provided here to avoid confusion about the definitions of probability, 

frequency and rate in this context: if 5 derailments occur on a segment of a railroad per 

year and 3500 trains pass that segment every year, then: the frequency is 5 incidents per 

year; the rate of incidents is 5/3500 = 0.0014 crashes per train passage; if the traffic 

increases to 7000 trains in a year, we expect 7500*0.0014 = 10 crashes in that year; and 

the probability of a derailment in one passage of a train in that segment is 0.14%. 

Area-based approaches may be used in macroscopic hazmat transportation safety 

analysis. However, in this research an OD-based macroscopic approach is considered. In 

this approach, frequency and costs of hazmat-related incidents among pairs of ODs in the 

area under study is modeled based on a set of macroscopic variables. The advantage of 
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OD-based approaches, as opposed to area-based approaches, is that variables such as 

hazmat traffic between the OD pairs, distance of transportation, and availability of modes 

of transportation can be taken into account. This approach can be formulated as equations 

1.10 and 1.11. 

𝑓𝑟𝑒𝑞𝑖𝑗 = Φ(𝑋ℎ𝑎𝑧𝑚𝑎𝑡 𝑡𝑟𝑎𝑓𝑓𝑖𝑐𝑖𝑗
, 𝑋𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑗

, 𝑋𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑓𝑟𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑖𝑗
) (1.10) 

𝐶𝑖𝑗 = Φ(𝑋ℎ𝑎𝑧𝑚𝑎𝑡 𝑡𝑟𝑎𝑓𝑓𝑖𝑐𝑖𝑗
, 𝑋𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑗

, 𝑋𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑓𝑟𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑖𝑗
) (1.11) 

In these equations, 𝑓𝑟𝑒𝑞𝑖𝑗 and 𝐶𝑖𝑗 are frequency and costs of hazmat-related 

incidents between OD pair i and j, respectively and X represents different characteristics 

between OD pair (i, j). The total costs of the area under study will be ∑ ∑ 𝐶𝑖𝑗
𝑛
𝑗

𝑛
𝑖 , in which 

n is the number of sub-areas. 

1.4 Research Foci 

Based on the study framework of section 1.3, previous studies (in chapter 2) and 

available data, six areas were identified as the foci for this dissertation.  

The conditional probability of hazmat release from a hazmat-carrying train in a 

train incident or from a hazmat-carrying truck in a traffic crash is the subject of four of 

these foci. In the first focus, conditional hazmat release statistical models were estimated 

at train and car level for railroad incidents. The second focus estimated rollover and 

hazmat release statistical models for CTT crashes. In the third focus, crashes at highway-

rail grade crossings (HRGCs) were analyzed and separate hazmat release statistical 

models were estimated for truck-train crashes where at least one of the two were carrying 

hazmat. The first three foci used statistical model-based approaches for modeling hazmat 

release with an emphasis on model interpretation for countermeasure and policy 
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determination (while there was a minor emphasis on estimation of the release 

probability). The fourth focus used model-based and non-model-based classification and 

regression methods for classifying hazmat release and estimating hazmat release 

probability (along with a few other incident/crash outcomes) from trains and CTTs.  

Transportation of crude oil by rail has increased significantly in the U.S. in the 

past decade. The other two foci of this dissertation (fifth and sixth) are on rail 

transportation of crude oil in the U.S. The fifth focus developed OD-based macroscopic-

level statistical models to identify and quantify the effects of volumes and distances of 

crude oil movement and other macroscopic variables on the frequency and aggregate 

measures for severity of crude oil release incidents. The sixth focus identified and 

quantified the effects of crude oil, tank car and incident characteristics on types and 

consequences of crude oil release, using statistical models. 

1.5 Dissertation Organization 

This dissertation consists of ten chapters. Chapter 1 introduces the study 

background, states the research problem, outlines the study framework, lists the six foci 

of the dissertation and ends with introducing the structure of the manuscript. Chapter 2 

presents a comprehensive literature review on the general topic of hazmat transportation 

safety. Chapter 3 introduces the statistical models and approaches that were used in this 

research. Chapter 4 to 9 each presents one of the six foci of the dissertation, including 

problem statement, methods, additional literature review, data description, modeling 

results and conclusions for each focus. Chapter 10 presents summary, general 

conclusions and recommendations for future studies. 



14 

 

CHAPTER 2 LITERATURE REVIEW 

2.1 Introduction 

Safe transportation of hazmat has been a topic of research for decades. While the 

studies include a large variety of topics and approaches, in this literature review they are 

categorized into three major sets: studies that used operations research (optimization) as 

their main tool towards hazmat transportation safety operations; studies that are focused 

on assessment and quantification of risk of hazmat transportation; and studies that 

collected hazmat incident data from different sources and provided insightful descriptive 

statistics. This chapter presents general literature review, while chapters 4 to 9 present 

additional literature review wherever needed.   

2.2 Operations Research 

Operations research-based approaches have been used in the hazmat 

transportation literature, frequently. These approaches are proposed from both the safety 

planning and shipper/carrier points of view. Some of the methods from the safety 

planning point of view include: hazmat transportation network design (Verter and Kara 

2008; Bianco, Caramia, and Giordani 2009; Erkut and Alp 2007; Kara and Verter 2004) 

which involves finding an optimum subset of the transportation network links to close 

down to the hazmat-carrying vehicles; transportation network pricing (Marcotte et al. 

2009; Wang et al. 2012) that is the assignment of specific tolls to the transportation 

network links for the vehicles that carry hazmat; and emergency response planning 

(Hamouda 2004; Zografos and Androutsopoulos 2008) that includes decisions regarding 

location, routing and operations of emergency response units. Studies from the 
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shipper/carrier’s point of view focus on: hazmat transportation routing (List et al. 1991; 

Abkowitz and Cheng 1988; Zografos and Androutsopoulos 2008; Romero, Nozick, and 

Xu 2016) which is the consideration of risk in routing caused by the hazmat on-board, 

besides the usual economic concerns in freight routing; mode choice (Bagheri, Verma, 

and Verter 2014) that involves the choice of the safest mode of transportation for hazmat; 

and facility location (Romero, Nozick, and Xu 2016), which is the identification of 

proper locations for hazmat storage, loading, unloading, etc. 

Glickman et al. proposed a routing strategy for hazmat-carrying trains that 

accounts for incident risk from a macroscopic perspective. They quantified rail 

transportation risk by estimating the expected population that resides within a given 

radius of the location of a probable train incident and then used a weighted combination 

of cost and risk to generate alternate routes. The results showed in some cases the 

alternate routes achieved significantly lower risk measures than the practical routes at a 

small incremental cost (Glickman, Erkut, and Zschocke 2007).  

Some studies focused on manifest trains (trains carrying both regular and hazmat 

freight). Verma presented a bi-objective optimization model for planning and managing 

railroad transportation of hazmat by determining the best routing plan for railcars, with 

hazmat and regular freight, and the number of trains of each type required to meet the 

given set of demand. The two minimization objectives were risk and costs (Verma 2009). 

Verma et al. also, proposed a bi-objective optimization problem for tactical planning of 

railroad hazmat transportation (short-term planning for a railroad company with 

predetermined amount of hazmat and regular freight to move). This formulation 
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determines the routes to be utilized for each shipment, the yard activities, and the number 

of trains needed, while minimizing transportation cost and risk. Risk was defined based 

on population exposure (Verma, Verter, and Gendreau 2011). 

Consistency between trucks and trains in intermodal hazmat transportation has 

been the subject of some studies. Verma and Verter defined rail–truck intermodal 

transportation of hazmat as inbound drayage (the transportation activity between the 

shipper and the origin rail terminal by truck), rail haul, and outbound drayage (between 

the destination rail terminal and the receiver by truck). They formulated a bi-objective 

optimization model to plan and manage intermodal shipments by minimizing 

transportation costs and population exposure to hazmat (Verma and Verter 2010). 

Assadipour et al. proposed a bi-objective optimization framework for planning rail–truck 

intermodal hazmat shipments, considering terminal equipment capacity and congestion. 

Risk and transportation costs were minimized, while satisfying the demand on-time. The 

results showed that congestion at the terminals is a potential source of public risk and 

could be a significant source if intermodal terminals are close to population centers. They 

proposed several approaches for reducing this congestion (Assadipour, Ke, and Verma 

2015). 

Some researchers used multi-objective optimization formulation of hazmat 

transportation to consider more than one aspect for optimality. Liu et al. formulated 

hazmat risk management as a multi-attribute decision analysis problem and estimated a 

negative binomial regression model to estimate car derailment probability, following the 

use of a pareto-optimality technique to determine the lowest risk that can be achieved at a 
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specific level of investment. They analyzed two types of risk reduction strategies (broken 

rail prevention and tank car safety design enhancement) and their optimal combination 

under a budget constraint (Liu, Saat, and Barkan 2013). Zografos and Androutsopoulos 

presented a decision support system for hazmat routing considering travel time, risk and 

evacuation implications, while coordinating the emergency response deployment 

decisions with the hazmat routes. The proposed system worked towards alternative 

hazmat routing, in terms of cost and risk minimization, specification of locations for first-

response emergency service units to achieve on-time response to accidents, and 

determination of evacuation paths from the impacted area to shelters (Zografos and 

Androutsopoulos 2008). 

2.3 Risk Assessment 

While quantifying risk of hazmat transportation for segments of the transportation 

systems is necessary in risk-based approaches to hazmat safety (such as in the operations 

research approaches mentioned earlier), it also may provide useful operational 

information. Risk of hazmat transportation is defined generally as the multiplication of 

probability of occurrence of an incident leading to hazmat release and a measure of 

consequences of such a release. Most of these definitions have some components in 

common and many studies focused on quantifying these components. Examples of these 

components include: hazmat-related incident rates in the transportation infrastructure 

(Anderson and Barkan 2004; Liu, Rapik Saat, and Barkan 2017); probability of release 

given an incident (Liu, Saat, and Barkan 2014; Treichel et al. 2006); and the release 

consequences (Saat et al. 2014; Liu et al. 2013). 
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A general study by Nayak et al. presented a set of methods for quantifying risk 

components in hazmat rail transportation. This included development of measures for 

accident rates based on track class, severity of an accident based on accident speed and 

the probability and mean amount of release based on accident speed. Finally, a method to 

estimate the impacts of hazmat release on people and property was proposed in this study 

(Nayak et al. 1983). 

Incident rates per unit of transportation infrastructure (e.g. roadway segment, rail 

segment, route, etc.) as a component of hazmat transportation risk is studied. Harwood et 

al. calculated truck accident rates and hazmat-released truck accident probability based 

on a combination of federal and state truck accident databases. They found area type 

(urban/rural), roadway type (two-lane, multilane undivided/divided, and freeway), and 

truck ADT effective on accident rates, and type of incident (collision/non-collision, 

single/multiple vehicle, run-off/overturn, etc.) effective on hazmat release probability 

(Harwood, Viner, and Russell 1993). Qiao et al. developed hazmat transportation incident 

frequency models for trucks using negative binomial and fuzzy logic. The former was 

used to account for route-dependent variables (population, number of lanes, and weather) 

and the latter took into account route-independent variables (truck configuration, 

container capacity, and driver experience). They recommended the use of multiple data 

sources, such as The Department of Public Safety (DPS) accident databases and the 

Commodity Flow Survey (Qiao, Keren, and Mannan 2009). 

Probability of hazmat release given a hazmat-carrying truck/train incident is 

another important component of hazmat transportation risk. Treichel et al. estimated 
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probabilities of lading loss (given derailment) for a variety of tank car specifications, 

using logistic regression models. Head shield type, head thickness, tank insulation, shell 

thickness, tank car pressure and yard/mainline affected probability of release from head, 

shell, top fittings, and bottom fittings of tank cars. They also investigated effects of train 

speed on lading loss probability and the distribution of quantities of lading lost given a 

release (Treichel et al. 2006). 

Another component of the hazmat transportation risk may be different measures 

for severity of incidents, which may be useful in predicting the consequences of release. 

One of these severity measures for trains is the number of released tank cars. Liu and 

Barkan estimated a generalized probabilistic model for the number of tank cars releasing 

hazardous materials in a train derailment. They considered train length, derailment speed, 

incident cause, position of the first car derailed, number and placement of tank cars in a 

train and tank car safety design as the potentially effective factors (Liu, Saat, and Barkan 

2014). Liu and Hong estimated the number of tank cars released based on the number of 

tank cars derailed. They used a binomial model and a generalized binomial model. The 

former considers the probability of release from a tank car independent of the number of 

the other released tank cars, while the latter takes into account interdependence of 

released tank cars in a train incident. The results showed a better estimation by the 

generalized binomial model, indicating the presence of the interdependence (Liu and 

Hong 2015).  

The number of released tank cars in an incident is a function of the number of 

derailed cars, as was shown in (Liu and Hong 2015). Therefore, some studies worked on 
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modeling the number of derailed cars. Liu et al. used negative binomial models for the 

number of derailed tank cars based on track class, method of operation and annual traffic 

density. The latter variable was obtained from class 1 railroad companies, while the 

others were from the Federal Railroad Administration (FRA) data. Higher track classes, 

signaled operations and larger annual traffic density were associated with lower sizes of 

derailment (Liu, Rapik Saat, and Barkan 2017). Liu et al. analyzed derailments, as the 

most common type of freight-train accidents in the United States. Zero-truncated negative 

binomial regression model was developed to estimate the conditional mean of train 

derailment size. Recognizing that the mean is not the only statistic describing data 

distribution, a quantile regression model was also developed to estimate derailment size 

at different quantiles. Combining the two models resulted in a better understanding of 

train derailment severity distribution (Liu et al. 2013). 

The consequences of release of hazmat and the subsequent costs is another major 

component of risk of hazmat transportation. These costs are comprised of carrier/property 

damage, response/clean-up costs, injuries/fatalities, environmental damages and 

evacuation. Some studies worked on quantifying these costs. Saat et al. proposed a 

quantitative environmental risk analysis of rail transportation for a group of chemicals. 

They developed probabilistic estimates of exposure to different spill scenarios. The 

authors considered the clean-up cost based on route-specific probability distributions of 

soil type and depth to groundwater, traffic volume, car accident rate, and car safety 

features (Saat et al. 2014). Dennis quantified the monetary costs of unit exposure of 

hazmat transportation by trains, considering type of hazmat based on environmental and 
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safety hazard. The costs that were accounted for included equipment damage, lading loss, 

way and structures damage, signal damage, wrecking expenses, environmental costs, and 

others. The data was collected through a survey of railroads in the U.S. (Dennis 1996). 

Clark and Besterfield-Sacre proposed a data-driven quantitative risk assessment approach 

during unloading. They used latent class analysis, loglinear modeling and Bayesian 

networking as their data analysis tools. Consequences of hazmat release were considered 

as dollar loss and release quantity and the most influential variables on these two 

measures were related to the failure of the container (Clark and Besterfield-Sacre 2009). 

Verma developed a risk assessment methodology for hazmat rail transportation 

based on the characteristics of trains and accidents, using Bayes Theorem and Logical 

Diagrams. The results of implementing the method on a case study found transportation 

risk a function of train length, train-decile position of the hazmat railcar, and the number 

of intermediate handling. The front of the train was found riskier, and that 7–9th train-

deciles were the most appropriate for moving hazmat railcars for freight-trains of any 

length. Furthermore, it was concluded that rail-track risk can be reduced by strategically 

distributing hazmat railcars in the train-consist (Verma 2011). 

2.4 Descriptive Statistics 

Descriptive statistics could provide preliminary useful insight towards hazmat 

release incidents. Oggero et al. investigated 1932 incidents reported from the beginning 

of the 20th century to July 2004 around the world that involved the transportation of 

hazmat by road and rail. More than half of the incidents happened on roads (63%). The 

most frequent type of accidents were releases (78%), followed by fires (28%), explosions 
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(14%) and gas clouds (6%). More than half of the accidents did not cause any fatalities. 

Among fatal incidents the number of deaths was between 1 and 10, frequently. Given the 

occurrence of an incident, the consequences were more severe on average in train 

incidents, rather than trucks. Evacuations were rare, however the number of people 

evacuated was mostly between 101 and 1000 (29%), followed by the class of between 1 

and 10 (24%) (Oggero et al. 2006). Ambituuni prepared descriptive statistics of 2318 

accidents involving truck tankers carrying crude oil from 2007 to 2012 in Nigeria. The 

results showed 79% of the accidents were caused by human factors. More than 70% of 

the accidents resulted in loss of containment leading to spills, fires and explosions. 81% 

of the accidents resulted in either injuries, fatalities or both. About $7 million was 

estimated as the average cost per accident (Ambituuni, Amezaga, and Werner 2015). 

2.5 Summary 

Based on the literature review, areas that require more research attention are 

identified. Only one major study was found that focused on conditional probability of 

hazmat release given an incident (Treichel et al. 2006), which was a car-level modeling 

for trains. This probability needs to be studied at other levels considering more 

comprehensive variables for trains, and also for trucks. Hazmat-carrying CTTs’ crash 

data is not analyzed sufficiently, based on this review, while they are responsible for a 

significant portion of hazmat release incidents in the U.S. Although a large number of 

studies focused on quantifying components of hazmat transportation risk, they rarely 

have evaluated the accuracy of these quantifications. While model-based statistical 

approaches are useful in measuring the impacts of factors on risk components, they may 



23 

 

not be necessarily good predictors for these quantifications. So, non-model-based 

methods may provide better estimates, and this needs to be evaluated. Moreover, trucks 

and trains may involve in collisions in highway and railroad grade crossings (HRGC), 

leading to hazmat release, given either of them carrying hazmat. Such incidents are not 

investigated in the literature. 
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CHAPTER 3 METHODOLOGY 

This chapter presents an introduction to the statistical models and other methods 

used in different sections of this research. While this chapter presents general information 

about each method, the way they are utilized, and necessary additional explanations are 

provided in chapters 4 through 9, as needed.  

3.1 Logistic Regression and Multinomial Regression 

Logistic regression models, a common method for modeling binary responses, are 

a type of Generalized Linear Models (GLMs) with the Bernoulli distribution assumption 

for the response variables and cumulative density function of a logistic probability 

function as the link function (Bilder and Loughin 2014; Agresti and Kateri 2011). 

Assuming outcomes of the binary response as success and failure, in logistic regression 

the probability of success (𝜋𝑖) is modeled based a set of explanatory variables. In this 

study, 𝜋𝑖 is the conditional probability of hazmat release in the ith train incident or vehicle 

crash (hazmat release is replaced by other binary response variables in some sections of 

this dissertation). If 𝑥𝑖1, … , 𝑥𝑖𝑝 are p explanatory variables measured on the ith 

observation, in the logistic regression model 𝜋𝑖 is defined as in equation 2.1. 

𝜋𝑖 =
exp (𝛽0 + 𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑝𝑥𝑖𝑝)

1 + exp (𝛽0 + 𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑝𝑥𝑖𝑝)
 (2.1) 

In this equation, 𝛽0, … , 𝛽𝑝 are the logistic regression parameters or coefficients of 

the explanatory variables that are estimated based on the data. Equation 2.2 is another 

way to state logistic regression. The left side of equation 2.2 is the natural logarithm for 

the odds of success (hazmat release) and the right side is a linear combination of the 



25 

 

coefficients with the explanatory variables, often referred to as linear predictors. This 

transformation of 𝜋𝑖 is referred to as the logit transformation (Bilder and Loughin 2014).  

𝑙𝑜𝑔 (
𝜋𝑖

1 − 𝜋𝑖
) = 𝛽0 + 𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑝𝑥𝑖𝑝 (2.2) 

In this study, Maximum Likelihood (ML), a common estimation approach for 

logistic regression, was replaced by the bias-reduction method developed by Firth (Firth 

1993) (except where noted), as bias was detected in the outcome of ML estimation 

(abnormally large estimated standard errors for some of the coefficients (Bilder and 

Loughin 2014)). The bias could be due to complete or quasi separation (an explanatory 

variable separates the data between 0 and 1 for the response variable), as a result of rarity 

of cases of either outcome in the response variables. 

In case of multi-category response variables (types and consequences of crude oil 

release in this dissertation), a popular model is multinomial regression (also known as 

multinomial logit model or baseline-category logit model), which is developed by 

selecting one response category as the base level and forming the odds of the remaining 

J-1 categories against the base level (Bilder and Loughin 2014). Assuming category 1 as 

the base level, multinomial regression relates a set of explanatory variables to each log-

odds by equation 2.3 for 𝑗 = 2, … , 𝐽. 

𝑙𝑜𝑔 (
𝜋𝑗

𝜋1
) = 𝛽j0 + 𝛽j1𝑥𝑖1 + ⋯ + 𝛽𝑗𝑝𝑥𝑖𝑝 (2.3) 

The probabilities will then be defined as equations 2.4 and 2.5 for 𝑗 = 2, … , 𝐽.  

𝜋1 =
1

1 + ∑ exp (𝛽j0 + 𝛽j1𝑥𝑖1 + ⋯ + 𝛽𝑗𝑝𝑥𝑖𝑝)𝐽
𝑗=2

 (2.4) 
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𝜋𝑗 =
exp (𝛽j0 + 𝛽j1𝑥𝑖1 + ⋯ + 𝛽𝑗𝑝𝑥𝑖𝑝)

1 + ∑ exp (𝛽j0 + 𝛽j1𝑥𝑖1 + ⋯ + 𝛽𝑗𝑝𝑥𝑖𝑝)𝐽
𝑗=2

 (2.5) 

Similar reasons, as in logistic regression, cause bias in ML estimates for 

multinomial regression. The bias-reduction method developed by Firth (Firth 1993) and 

adapted to the multinomial case by Kosmidis and Firth (Kosmidis and Firth 2011) is one 

solution for this issue and was utilized in this study due to detection of signs of bias in the 

ML-estimated models.  

3.2 Mixed Logistic Regression 

A logistic regression assumes uncorrelated observations in the dataset. However, 

single-level or multi-level grouping might exist in a dataset causing correlation among 

the observations. In the hazmat release models for trains, a single-level grouping existed 

in the train-level models, while a two-level grouping was present in the car-level models. 

Neglecting these correlations could result in smaller estimated variances, leading to 

model misinterpretation (Bilder and Loughin 2014). Generalized Linear Mixed Models 

(GLMMs) relax the uncorrelated observations assumption by inclusion of random effects 

in models. In case of this study, with binary response and Bernoulli distribution 

assumption, mixed logistic regression as a class of GLMM, were estimated. In a mixed 

logistic regression, equation 2.2 turns into equation 2.6. In this equation, 𝑏𝑗𝑖s are the 

random parameters (for 𝑗 = 0 to p) and are assumed to follow a normal distribution with 

mean of 0 and unknown variance (which will be estimated). 

𝑙𝑜𝑔 (
𝜋𝑖

1 − 𝜋𝑖
) = 𝛽0 + 𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑝𝑥𝑖𝑝 + 𝑏0𝑖 + 𝑏1i𝑥𝑖1 + ⋯ + 𝑏𝑝𝑖𝑥𝑖𝑝 

(2.6) 
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There are different methods for estimation of mixed logistic regression through 

ML, including penalized quasi-likelihood, Laplace approximation and Gaussian 

quadrature (Bilder and Loughin 2014). The latter one was used in this study. 

3.3 Poisson Regression and Mixed-effects Negative Binomial Regression 

Count-response models were estimated in several cases in this dissertation, 

including the number of railcars damaged/derailed on a train, the OD-based frequency of 

crude oil release incidents and the number of crude oil released tank cars. Poisson 

regression was an appropriate approach for the former case, while Mixed-effects 

Negative Binomial Regression was used in the other two. 

For a count response variable 𝑌𝑖 and p explanatory variables 𝑥𝑖1, … , 𝑥𝑖𝑝 for the ith 

observation, assuming a Poisson distribution with mean 𝜇𝑖 for 𝑌𝑖, where 𝜇𝑖 = exp (𝛽0 +

𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑝𝑥𝑖𝑝), results in the Poisson regression model. It is a GLM with Poisson 

random component, a linear systematic component 𝛽0 + 𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑝𝑥𝑖𝑝 and 

logarithmic link function (Bilder and Loughin 2014). These models do not account for 

overdispersion, meaning there is more variability to the counts than what the models 

assume there is (Cox 1983). Negative Binomial Regression (NBR) (also known as 

negative binomial loglinear models) is often used as an alternative to the Poisson 

regression to account for overdispersion. NBRs assume a loglinear relation between the 

count response variable and the explanatory variables.  

Let 𝑉1, 𝑉2, …, 𝑉𝑛 denote an independent and identically distributed sample of unit 

mean gamma random variables with shape parameter 𝛼; that is 𝑓(𝑣1) ∝

𝑣1
𝛼−1𝑒−𝛼𝑣1𝐼(𝑣1 > 0). Suppose the ith count 𝑌𝑖 has a Poisson distribution with mean 𝑣𝑖𝜇𝑖 
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conditional on 𝑣𝑖, therefore 𝑌𝑖|𝑣𝑖 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑣𝑖𝜇𝑖). The counts are then marginally 

independent negative binomial variables with mass functions given by equation 2.7, 

where 𝑦 ∈ {0, 1, 2, … } (Booth et al. 2003). 

Pr(𝑌𝑖 = 𝑦; 𝛼, 𝜇𝑖) =
Γ(y + 𝛼)

Γ(𝛼)𝑦!
(

𝛼

𝜇𝑖 + 𝛼
)

𝛼

(
𝜇𝑖

𝜇𝑖 + 𝛼
)

𝑦

 (2.7) 

If 𝜇𝑖 is related to a set of explanatory variables, denoted by vector 𝒙𝑖, while 𝛽0 

and 𝜷 are the model constant and the vector of model coefficients, respectively, the NBR 

loglinear equation will be as equation 2.8. 

log(𝜇𝑖) = 𝛽0 + 𝒙𝑖′𝜷 or 𝜇𝑖 = 𝑒𝛽0+𝒙𝑖′𝜷 (2.8) 

Similar to the mixed logistic regression, a potential three-level correlation among 

the observations as a result of presence of grouping among them was possible. One way 

to account for this possible multilevel grouping was addition of random effects to the 

above NBR (Bilder and Loughin 2014; Booth et al. 2003), resulting in Mixed-effects 

Negative Binomial Regression (MNBR), as in equation 2.9. 

log(𝜇𝑖) = 𝛽0 + 𝒙𝑖′𝜷 + 𝑏0 + 𝒙𝒊′𝒃 or 𝜇𝑖 = 𝑒𝛽0+𝒙𝑖′𝜷+𝑏0+𝒙𝒊′𝒃 (2.9) 

In this equation, 𝑏0 is the random parameter for the model constant and it is 

assumed to have a Normal distribution with mean 0 and unknown variance. 𝒃 is the 

vector of random parameters for some or all of the explanatory variables’ coefficients, 

and they are also assumed to follow Normal distributions with mean 0 and unknown 

variances. These variances are estimated along with the fixed effects. Similar to mixed 

logistic regression, at least three methods are available for estimating MNBR through 

ML, and Gaussian quadrature was used in this study. 

3.4 Mixed-effects Ordered Logit Models 
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As measures of aggregate severity of crude oil release incidents, quantity released 

and total costs of release of crude oil were categorized as ordinal categorical response 

variables. Ordered Logit Models (OLM), also known as cumulative logit models or 

proportional odds models, is a tool for modeling ordinal categorical response variables on 

a set of explanatory variables, through modeling cumulative probabilities based on the 

category ordering. If the probability of category i of the J categories of the response 

variable is 𝜋𝑖, then cumulative probability for category j of Y is 𝑃(𝑌 ≤ 𝑗) = 𝜋1 + 𝜋2 +

⋯ + 𝜋𝑗  and 𝑃(𝑌 ≤ 𝐽) = 1. The log-odds of cumulative probabilities is, then, as equation 

2.10 (Bilder and Loughin 2014). 

log (
𝑃(𝑌 ≤ 𝑗)

1 − 𝑃(𝑌 ≤ 𝑗)
) = log (

𝜋1 + ⋯ + 𝜋𝑗

𝜋𝑗+1 + ⋯ + 𝜋𝐽
) (2.10) 

OLM assumes this log-odds of cumulative probabilities is a linear function of 

explanatory variables and also the slope of this relationship is the same regardless of the 

category j (Bilder and Loughin 2014; Agresti and Kateri 2011). The OLM model is stated 

as equation 2.11. 

log (
𝑃(𝑌 ≤ 𝑗)

1 − 𝑃(𝑌 ≤ 𝑗)
) = 𝛽𝑗0 − 𝒙𝑖′𝜷 (2.11) 

In this equation, vector 𝒙𝑖 is a set of explanatory variables, 𝛽𝑗0 is the model 

constant for the response category j and 𝜷 is the vector of model coefficients.  

Similar to the MNBR model, to address grouping by inclusion of random effects in the 

OLM models, mixed-effects ordered logit models (MOLM) are used. Equation 2.12 

shows MOLM. In this equation 𝑏0 and 𝒃 are defined as in equation 2.9 (Christensen 

2011). 
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log (
𝑃(𝑌 ≤ 𝑗)

1 − 𝑃(𝑌 ≤ 𝑗)
) = 𝛽𝑗0 − 𝒙𝑖

′𝜷 + 𝑏0 − 𝒙𝒊′𝒃 (2.12) 

Among the three methods for ML estimation of MOLM (similar methods as in 

logistic regression and MNBR), Laplace approximation was used in this study. 

3.5 Bayesian Model Averaging (BMA) 

The idea behind BMA is to find an average for all the models, using different 

subsets of the set of explanatory variables which have close values of the variable 

selection criteria (instead of choosing one model as the best model) to account for the 

uncertainty in finding the best model (since a slight change in the data can result in 

selection of a different “best” model) (Bilder and Loughin 2014). Bayesian model 

averaging uses Bayesian theory to compute the probability that each possible model is the 

correct model (Hoeting et al. 1999). 

Suppose M models are estimated, where M is the total number of possible models 

(𝑀 = 2𝑝). If Bayesian Information Criteria (a model selection criteria where lower 

values indicate better models) for model m is 𝐵𝐼𝐶𝑚, 𝑚 = 1, … , 𝑀, the smallest value for 

BIC among all models is 𝐵𝐼𝐶0, and ∆𝑚= 𝐵𝐼𝐶𝑚 − 𝐵𝐼𝐶0 ≥ 0, then assuming all models 

equally likely before estimation, the estimated probability that model m is correct, 𝜏𝑚, is 

as equation 2.13. 

�̂�𝑚 =
exp (−

1
2 ∆𝑚)

∑ exp (−
1
2 ∆𝑚)𝑀

𝑎=1

 (2.13) 

If 𝜃 is the parameter being estimated, such as the logistic regression parameters, 

its estimate in model m is denoted by 𝜃𝑚, and the corresponding variance is 𝑉𝑎�̂�(𝜃𝑚), 
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then the model-averaged estimate of the parameter is as equation 2.14 and its variance is 

as in equation 2.15 (Bilder and Loughin 2014).  

𝜃𝑀𝐴 = ∑ �̂�𝑚𝜃𝑚

𝑀

𝑚=1

 (2.14) 

𝑉𝑎�̂�(𝜃𝑀𝐴) = ∑ �̂�𝑚[(𝜃𝑚 − 𝜃𝑀𝐴)2 +

𝑀

𝑚=1

𝑉𝑎�̂�(𝜃𝑚)] (2.15) 

Confidence intervals (CI) can be constructed for the model-averaged parameters 

based on 𝜃𝑀𝐴 and 𝑉𝑎�̂�(�̂�𝑀𝐴). BMA results in non-zero estimates of all the parameters, 

but the explanatory variables that are truly unimportant are less likely to appear in models 

with high probability, so 𝜃𝑀𝐴 will be closer to 0 (Bilder and Loughin 2014). In this study, 

BMA was used in the CTT crash analysis. Also, Corrected Akaike Information Criteria 

(AICc) was used in the BMA procedure, instead of BIC, as AICc, relative to BIC, is 

inclined towards models with larger number of explanatory variables, which was 

desirable in this study. 

3.6 Interpretation Tools for Statistical Models 

Quantifying the effects of explanatory variables on response variables can be 

done in different ways, depending on the model and purpose. In this dissertation, Odds 

Ratios (OR) were used for binary, multi-category and ordinal response models, while 

Percentage Change (PC) was utilized for the count-response models. 

Odds for binary response models is defined as the division of probability of 

hazmat release by probability of no release, in the conditional release models (similarly 

can be defined for other binary response variables, such as CTT rollover). For a c-unit 
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increase in a continuous explanatory variable, x, equation 2.16 gives the odds ratio. The 

interpretation is that “the odds of hazmat release change by OR times for every c-unit 

increase in x, holding other variables constant”. If x is a categorical explanatory variable, 

the value of c is 1, and the interpretation changes to “the odds of hazmat release change 

by OR times as x changes from 0 to 1, holding other variables constant” (Bilder and 

Loughin 2014). 

𝑂𝑅 =
𝑂𝑑𝑑𝑠𝑥+𝑐

𝑂𝑑𝑑𝑠𝑥
= 𝑒𝑐𝛽𝑖 (2.16) 

PC is defined as the percentage change in the mean response that results from a c-

unit change in an explanatory variable 𝑥𝑖 (holding other explanatory variables constant) 

(Bilder and Loughin 2014). In MNBR, PC for 𝑥𝑖 equals 100(𝑒𝑐𝛽𝑖 − 1), if only the main 

effects of 𝑥𝑖 is used in the model, and equals 100(𝑒𝑐𝛽𝑖+𝑐𝛽𝑖′𝑥𝑖 − 1), if the quadratic form 

of 𝑥𝑖 is also in the model (𝛽𝑖′ is the coefficient of the quadratic term). OR for MOLMs is 

defined as the change in the odds of 𝑌 > 𝑗 versus 𝑌 ≤ 𝑗, corresponding to a c-unit change 

in an explanatory variable, 𝑥𝑖 (also, holding other explanatory variables constant). 

Similarly, in case of inclusion of only the main effects of 𝑥𝑖, OR equals 𝑒𝑐𝛽𝑖, and equals 

𝑒𝑐𝛽𝑖+𝑐𝛽𝑖′𝑥𝑖, if the quadratic form is included.  

3.7 Random Forests (RF) 

RF is an ensemble machine learning method (methods that generate many 

classifiers/regressors and aggregate their results), proposed by Breiman (Breiman 2001). 

RF is based on bagging (bootstrap aggregating) with decision trees, meaning successive 

classification/regression trees are generated from data which do not depend on earlier 

trees (using a bootstrap sample of the training set), and the results of each 
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classification/regression are aggregated as the final result (Breiman 2001; Friedman, 

Hastie, and Robert 2007). In RF, each node is split using the best among a subset of 

explanatory variables randomly chosen at that node. Performance of RF depends on 

tuning of the hyperparameters (parameters whose values should be set before training).  

In this study, the hyperparameters included number of explanatory variables 

sampled randomly as candidates at each split (v), number of trees to generate (t), and 

terminal nodes’ minimum size (n) (terminal nodes on decision trees are the nodes the 

algorithm do not split, and node size is the number of data observations associated with 

each node). RF was used as a classifier for hazmat release in train incidents and CTT 

crashes, and rollover for CTT crashes, and as a regressor for number of damaged/derailed 

railcars in a train incident. Due to data imbalance for classification in this study (the cases 

of hazmat release/rollover were significantly infrequent), RF was used with under-

sampling. This means that the sample of the data for each tree is drawn with equal 

frequency of classes. Also, the hyperparameter tuning was based on out-of-bag samples 

(Friedman, Hastie, and Robert 2007).  

3.8 Naïve Bayes 

Naïve Bayes is a classification technique which is based on the Bayes’ theorem 

and is appropriate when the number of explanatory variables is large. This method 

assumes that given a class for the response variable, the explanatory variables are 

independent (Friedman, Hastie, and Robert 2007). In other words: 

𝜋𝑖(𝑗|𝑥𝑖1, … , 𝑥𝑖𝑝) = ∏ 𝜋𝑖(𝑗|𝑥𝑖𝑘)

𝑝

𝑘=1

 (2.17) 
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In this equation, 𝜋𝑖(𝑗|𝑥𝑖1, … , 𝑥𝑖𝑝) is the probability of outcome j given the set of 

explanatory variables 𝑥𝑖1, … , 𝑥𝑖𝑝, for observation i. The naïve Bayes classifier determines 

the classes based on the calculated 𝜋𝑖(𝑗|𝑥𝑖1, … , 𝑥𝑖𝑝) using equation 2.18 for each 

observation and depending on the cutoff probability. Naïve Bayes was utilized as a 

classifier, for similar objectives as RF. 

𝜋𝑖(𝑗|𝑥𝑖1, … , 𝑥𝑖𝑝) =
𝜋𝑖(𝑥𝑖1, … , 𝑥𝑖𝑝|𝑗)𝜋𝑖(𝑗)

𝜋𝑖(𝑥𝑖1, … , 𝑥𝑖𝑝)
 (2.18) 

3.9 Support Vector Machines (SVM) 

SVM is a machine learning approach, used for classification and regression, 

originally developed by Vapnik et al. (Boser, Guyon, and Vapnik 1992; Wu and Vapnik 

1999). It is a system for efficiently training linear learning machines in the kernel-

induced feature spaces, while respecting the insights provided by the generalization 

theory, and exploiting the optimization theory (Cristianini and Shawe-Taylor 2000). In 

this study, C-classification and 𝜀-regression were used as the SVM setting for 

classification and count regression, respectively. A kernel function should be chosen to 

use in the structure of the algorithm, for which the Gaussian radial basis kernel was used 

in this study. This kernel function has a hyperparameter, 𝛾, that should be tuned along 

with c, the cost of violation of the constraints of the optimization problem solved during 

training of SVM. Hyperparameter tuning for SVM in this study was based on 5-fold 

stratified cross validation. More in-depth information about SVM and stratified cross 

validation is available in (Friedman, Hastie, and Robert 2007). In this dissertation, SVM 

was used for the same objectives as RF. 
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3.10 Receiver Operating Characteristics (ROC) Curves and Cutoff Probabilities 

ROC curves plot “sensitivity” (also known as “recall” in the classification 

evaluation) versus rate of “false positive (FP)” for various cutoff probabilities used with a 

classification method to choose a cutoff probability that corresponds to an appropriate 

level of sensitivity and FP rate. While these terms are explained in more details in the 

next section, in the context of ROC curves in this study, sensitivity was the proportion of 

actual cases of hazmat release (or other binary outcomes) correctly classified, while FP 

rate was actual non-release cases, incorrectly classified as release. The area under these 

curves (AUC) is a general criterion for performance evaluation in classification (Fawcett 

2006). 

3.11 Classification and Count Prediction Performance Evaluation Measures 

The classification performance evaluation criteria in this study included confusion 

matrix, precision, recall (sensitivity), F1 score and AUC (these measures were calculated 

for each method based on the test dataset). Confusion matrix summarizes the results of a 

classification method. For a binary classification with classes “negative” and “positive”, 

the confusion matrix will be:  

  Classified 

 Classes - + 

Original 

- TN FP 

+ FN TP 
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In this matrix, TN, FP, FN and TP denote true negative, false positive, false 

negative and true positive, respectively. In the hazmat release classification, instead of 

negative and positive, the classes were “no release” and “release”, respectively. For 

example, TN is the number of no release crashes in the test dataset correctly classified as 

no release and FN is the number of release crashes incorrectly classified as no release. 

Precision, recall and F1 score are defined as below: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2.19) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2.20) 

F1  𝑆𝑐𝑜𝑟𝑒 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (2.21) 

In this study, recall is the proportion of real hazmat release cases that are correctly 

classified as hazmat release. Precision denotes the proportion of cases classified as 

hazmat release that are correctly hazmat release. Since cases with release of hazmat are 

significantly costlier than others, recall may be a better evaluation criterion in this study. 

However, precision may also provide useful information depending on how the estimated 

probabilities are to be used, as it captures the costs of misclassifying a non-release case as 

release. F1 score is the harmonic average of precision and recall. These three criteria 

evaluate the performance of the classification after determination of the cutoff point, 

while AUC assesses the general classification regardless of the cutoff point.  

This study used two measures for evaluating the prediction of number of 

damaged/derailed cars in a train, given an incident: Root Mean Square Error (RMSE), 

and Total Count Error (TCE). These measures are defined as below: 
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𝑅𝑀𝑆𝐸 = √
∑ (𝜇𝑖 − 𝑦𝑖)2𝑛

𝑖=1

𝑛
 (2.22) 

𝑇𝐶𝐸 = |
∑ 𝜇𝑖 − ∑ 𝑦𝑖

𝑛
𝑖=1

𝑛
𝑖=1

∑ 𝜇𝑖
𝑛
𝑖=1

| (2.23) 

In the above equations, 𝜇𝑖 is the actual number of derailed or damaged cars in 

incident i, 𝑦𝑖 is the predicted number of derailed or damaged cars in incident i, and n is 

the size of the test dataset. In case of this study, RMSE is more insightful relative to TCE, 

as the major use of the number of derailed/damaged cars prediction is using in the hazmat 

release models. In an independent usage where the number of derailed/damaged cars 

itself is of interest, TCE may be a more useful measure. 
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CHAPTER 4 TRAIN-LEVEL AND CAR-LEVEL MODELING OF HAZARDOUS 

MATERIALS RELEASE IN RAILROAD INCIDENTS 

4.1 Introduction 

Identification of operational, environmental, and technical factors affecting the 

probability of hazmat release from trains in railroad incidents is important for making 

decisions toward decreasing the probability of hazmat release in train incidents; it can 

also be useful in risk-based methods designed to improve the safety of rail transportation 

of hazmat. 

This chapter presents analysis of hazmat-carrying train incidents to fulfil two 

objectives: 1) quantifying the impacts of incident, railroad, environment and train/car 

characteristics on conditional probability of hazmat release (given a train incident) and 2) 

developing a prediction tool for this conditional probability. This chapter considered two 

sets of models; trains were the unit of analysis for the first set of models while hazmat 

cars were the unit of analysis for the second set. For both sets, logistic regression and 

mixed logistic regression were estimated using the Federal Railroad Administration 

(FRA) 2012-2016 rail equipment incident dataset. Single-level and two-level groupings 

in the train-level and hazmat car-level models (due to possible hazmat release 

interdependence among cars belonging to a train and trains belonging to an incident) 

were considered, and significant factors associated with hazmat release identified. 

Moreover, ROC curves were developed to improve the prediction performance of the 

models, by defining an appropriate cut-off point. 
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The next section explains the methods of this chapter. The ensuing section 

introduces the dataset and variables, followed by the estimation results of the models and 

interpretation. The last section presents the conclusions of this chapter. 

4.2 Methods 

As was mentioned in section 3.2, there is a possibility of interdependence in 

hazmat release from trains involved in an incident and hazmat cars that belong to a train, 

which may lead to a single-level correlation in the train-level models and a two-level 

correlation in the car-level models. Logistic regression does not consider multi-level 

correlation among observations, but mixed logistic regression has the capability of 

addressing it. Therefore, this study took both into account. As is shown in Figure 4.1, a 

single-level grouping existed in the train-level models while a two-level grouping was 

present in the car-level models. Neglecting these correlations might result in smaller 

estimated variances, leading to model misinterpretation (Bilder and Loughin 2014). 

The response variable in the train-level logistic regression and mixed logistic 

regression models was a variable that indicated the occurrence of hazmat release from a 

train, given an incident. The response variable in the car-level logistic regression and 

mixed logistic regression models was the occurrence of hazmat release from a hazmat car 

(including tank cars, covered hoppers, gondolas, etc.), given an incident. The explanatory 

variables for the two sets of models included train/car, railroad, operation, environment 

and incident characteristics.  
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Note: Icons in this figure were obtained from http://iconfinder.com, http://clipartfest.com and 

http://thenounproject.com 

Figure 4.1 Multi-level structure of the mixed logistic regression models. 

The logistic regression and mixed logistic regression models can serve as 

prediction tools. As in section 3.10, ROC curves in this study aided visualizing, 

organizing and selecting prediction models based on their performance. In the context of 

this chapter, the definition of sensitivity was the proportion of actual incidents with 

hazmat release correctly predicted while the FP rate was actual incidents without hazmat 

release incorrectly predicted as hazmat release. Cut-off probabilities is the threshold for 

the estimated probabilities the model uses to predict “release” or “no release” for each 

incident. ROC curves plot sensitivity versus false positive rate for various cut-off 

probabilities used with a prediction model.  

4.3 Data and Variables 

Railroad reported incidents involving a hazmat-carrying train were extracted from 

the 2012-2016 US rail equipment incident database (Federal Railroad Adminsitration 

Office of Safety Analysis 2017). According to FRA: “Rail equipment incidents are 
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collisions, derailments, fires, explosions, acts of God, and other events involving the 

operation of on-track equipment (standing or moving) that result in damages higher than 

the current reporting threshold (i.e., $9,500 for calendar year 2012, $9,900 for calendar 

year 2013, $10,500 for calendar year 2014, $10,500 for calendar year 2015, $10,500 for 

calendar year 2016, and $10,700 for calendar years 2017 and beyond, until revised) to 

railroad on-track equipment, signals, tracks, track structures, or roadbed, including 

labor costs and the costs for acquiring new equipment and material.” The extracted 

dataset consisted of 2581 incidents, 2787 trains, and 39162 hazmat cars. Car-level data 

was generated based on the original train-level dataset using information on number of 

hazmat-carrying cars, and number of cars that released hazmat. Tonnage of train cars was 

approximated by dividing the gross tonnage of trains (excluding the power units) by the 

number of cars in each train.  

Table 4.1 and Table 4.2 present the variables of train-level and car-level datasets, 

respectively. Car-level models did not utilize train-level variables (e.g., hazdamrate, 

derrate, typrr, tonnage, and hazcarrate), since their possible impacts on hazmat release 

were at the train level; train-level models did not utilize the car-level variable cartonnage. 

All the categorical explanatory variables were used in the models as sets of dummy 

(indicator) variables, with the base level set to the first level (alphabetical order), with the 

exception of typinc, in which the third level (crossing incidents) was chosen as the base 

level. Track classes 1 and X were aggregated in one level for the variable trkcls, as they 

represented the same maximum speed for freight trains (10 mph). Also, track classes 5 to 

9 were aggregated into one level (they were infrequent in the dataset). 



42 

 

Table 4.1 Statistics for Train-Level Variables 

Variable 
Variable 

Name 
Values and Statistics 

Response Variable   

Hazmat Release hazrel 0 = No (96.73%), 1 = Yes (3.26%) 

Explanatory Variables   

Incident Characteristics   

Type of incident typinc 

1 = Derailment (62.68%), 2 = Collision 

(12.77%), 3 = Crossing (8.50%), Others 

(16.04%) 

Proportion of damaged/derailed hazmat 

cars to all hazmat cars 
hazdamrate Mean = 0.2504, Variance = 0.1540 

Locomotive(s) derailed locder 0 = No (91.96%), 1 = Yes (8.04%) 

Proportion of damaged/derailed cars to 

all cars 
derrate Mean = 0.0989, Variance = 0.0331 

Cause of incident cause 

E = Mechanical and Electrical Failures 

(12.16%), H = Human Factors (39.25%), M 

= Miscellaneous (20.99%), S= Signal and 

Communication (3.01%), T= Track, Roadbed 

and Structures (24.58%) 

Railroad Characteristics   

Type of railroad (Interstate Commerce 

Commission) 
typrr 

1 = Class I (83.05%), 2 = Class II (0.90%), 3 

= Class III (16.05%) 

Method of operation mopera 

1 = Signal indication (24.26%), 2 = Direct 

train control (6.71%), 3 = Yard/restricted 

limits (2.08%), 4 = Block register territory 

(0.47%), 5 = Other than main track rules 

(66.49%) 

Track class trkcls 

1 = Classes 1 and X (67.60%), 2 = Class 2 

(7.61%), 3 = Class 3 (6.71%), 4 = Class 4 

(14.46%), 5 = Classes 5 to 9 (3.62%) 

Type of track typtrk 
1 = Main (32.44%), 2 = Yard (59.78%), 3 = 

Siding (2.37%), 4 = Industry (5.42%) 

Environmental Characteristics   

Temperature temp Mean = 58.62, Variance = 496.55 

Visibility visibility 
1 = Dawn (7.86%), 2 = Day (42.59%), 3 = 

Dusk (7.39%), 4 = Dark (42.16%) 

Weather weather 

1 = Clear (66.49%), 2 = Cloudy (22.53%), 3 

= Rain (7.14%), 4 = Fog (1.15%), 5 = Sleet 

(0.25%), 6 = Snow (2.44%) 

Train Characteristics   

Train speed (mph) trnspd Mean = 12.37, Variance = 211.40 

Train gross tonnage (ton) tonnage Mean = 4404, Variance = 21787396 

Proportion of hazmat tank-cars to all 

tank-cars 
hazcarrate Mean = 0.2947, Variance = 0.0958 

Remote control locomotive rclmod 0 = No (80.19%), 1 = Yes (19.81%) 

(Note: Data obtained from the FRA safety database (Federal Railroad Adminsitration Office of Safety 

Analysis 2017)) 
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Table 4.2 Statistics for Hazmat Car-Level Variables 

Variable 
Variable 

Name 
Values and Statistics 

Response Variable   

Hazmat Release hazrel 0 = No (99.38%), 1 = Yes (0.62%) 

Explanatory Variables   

Incident Characteristics   

Type of Incident typinc 

1 = Derailment (67.46%), 2 = Collision 

(11.89%), 3 = Crossing (10.14%), Others 

(10.51%) 

Locomotive(s) derailed locder 0 = No (89.93%), 1 = Yes (10.07%) 

Cause of incident cause 

E = Mechanical and Electrical Failures 

(14.38%), H = Human Factors (35.03%), M 

= Miscellaneous (20.01%), S= Signal and 

Communication (1.65%), T= Track, Roadbed 

and Structures (28.93%) 

Railroad Characteristics   

Method of operation mopera 

1 = Signal indication (32.67%), 2 = Direct 

train control (8.25%), 3 = Yard/restricted 

limits (2.75%), 4 = Block register territory 

(0.60%), 5 = Other than main track rules 

(55.72%) 

Track class trkcls 

1 = Classes 1 and X (57.83%), 2 = Class 2 

(9.75%), 3 = Class 3 (10.03%), 4 = Class 4 

(20.18%), 5 = Classes 5 to 9 (2.21%) 

Type of track typtrk 
1 = Main (43.11%), 2 = Yard (48.92%), 3 = 

Siding (2.80%), 4 = Industry (5.17%) 

Environmental Characteristics   

Temperature temp Mean = 57.30, Variance = 509.56 

Visibility visibility 
1 = Dawn (8.15%), 2 = Day (43.68%), 3 = 

Dusk (6.81%), 4 = Dark (41.37%) 

Weather weather 

1 = Clear (65.81%), 2 = Cloudy (22.60%), 3 

= Rain (6.84%), 4 = Fog (2.06%), 5 = Sleet 

(0.25%), 6 = Snow (2.45%) 

Train/Car Characteristics   

Train speed (mph) trnspd Mean = 13.89, Variance = 213.38 

Tank car tonnage (ton) cartonnage Mean = 77.30, Variance = 5356.59 

Remote control locomotive rclmod 0 = No (88.37%), 1 = Yes (11.63%) 

(Note: Data obtained from the FRA safety database (Federal Railroad Adminsitration Office of Safety 

Analysis 2017)) 

4.4 Modeling Results 

This section presents the estimation results, model interpretations and prediction 

considerations. 
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4.4.1 Train-Level Models 

This set of models provides the probability of hazmat release from one or more 

cars of each train, given an incident. The five binary response models (Table 4.3) include 

two logistic regression models estimated by ML (A1 and A2), one logistic regression 

model estimated by Firth’s bias reduction estimator (FE) (A3), and two mixed logistic 

regression models (A4 and A5). The Likelihood Ratio (LR) test provided information on 

the impacts of each variable on probability of hazmat release, and variable selection 

(along with Akaike Information Criteria (AIC)). A comparison of models A2 and A3 

shows a slight difference in the estimations, indicating possible biased estimation of A2; 

hence, A3 is preferable. The AIC values and the p-values of the LR test of the random 

parameters show that a mixed effects model is not necessary in train-level models. So, A3 

was chosen as the best model for further interpretation (in terms of re-substitution 

validation, the performance of models was similar).  

  



 

 

Table 4.3 Estimated Train-Level Models 

Variables 

A1) Logistic 

regression (ML) 

A2) Logistic 

regression (ML) 

A3) Logistic 

regression (FE) 

A4) Mixed logistic 

regression 

A5) Mixed logistic 

regression 

LR test p-value LR test p-value LR test p-value LR test p-value LR test p-value 

typinc 0.01219 * 0.00778 ** 0.00893 ** 0.01219 * 0.00778 ** 

hazdamrate 0.00000 *** 0.00000 *** 0.00000 *** 0.00000 *** 0.00000 *** 

temp 0.79757  —  —  0.79757  —  

visibility 0.62895  —  —  0.62895  —  

weather 0.81558  —  —  0.81558  —  

trnspd 0.00003 *** 0.00001 *** 0.00001 *** 0.00003 *** 0.00001 *** 

tonnage 0.00470 ** 0.00547 ** 0.00564 ** 0.00470 ** 0.00547 ** 

trkcls 0.01460 * 0.01326 * 0.01483 * 0.01460 * 0.01326 * 

typtrk 0.56286  —  —  0.56286  —  

locder 0.88518  —  —  0.88518  —  

derrate 0.27772  —  —  0.27772  —  

hazcarrate 0.00000 *** 0.00000 *** 0.00000 *** 0.00000 *** 0.00000 *** 

cause 0.00040 *** 0.00022 *** 0.00026 *** 0.00040 *** 0.00022 *** 

typrr 0.95962  —  —  0.95962  —  

rclmod 0.12957  —  —  0.12957  —  

mopera 0.99563   0.03931 * 0.04360 * 0.99563   0.03931 * 

Random Effects 

Variables NA NA NA Intercept Intercept 

Variance NA NA NA 0.00000 0.00000 

Variance LR test  

comparison with 
NA NA NA Model A1 Model A2 

Variance LR test p-

value 
NA NA NA 0.49962 0.50000 

Re-substitution 

Validation 

Release 20.88% 20.88% 20.88% 20.88% 20.88% 

Overall 97.24% 97.00% 97.20% 97.24% 97.20% 

AIC 613.47 584.64 585.52   615.5 586.6 

Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

NA: Not Applicable, — : Variable not used       



48 

 

Table 4.4 presents estimated coefficients and standard errors, the values of 𝑐 for 

odds ratios, estimated odds ratios and 95% profile LR confidence intervals for odds ratios 

for model A3. The model interpretation is as follows (all the statements in the next two 

paragraphs are subject to “95% confidence” and “conditional on keeping all the other 

variables constant”): 

Table 4.4 Estimated Coefficients and Odds Ratios for Model A3 

Variables 

Coefficients Odds Ratios 

Estimate Std. Error c 
Point 

Estimate 

Lower 

Bound of 

C.I. 

Upper 

Bound of 

C.I. 

(Intercept) -8.6420 0.9631 NA NA NA NA 

typinc1 1.8090 0.5819 1 6.1055 1.9992 24.3916 

typinc2 1.4260 0.7245 1 4.1634 0.9403 20.0359 

typinc4 1.0590 0.6620 1 2.8822 0.7167 12.1323 

hazdamrate 1.9220 0.3043 0.1 1.2119 1.1401 1.2955 

trnspd 0.0515 0.0124 5 1.2934 1.1467 1.4924 

tonnage 0.0001 0.0000 1000 1.0632 1.0207 1.1049 

trkcls2 1.1100 0.4647 1 3.0346 1.1827 7.8901 

trkcls3 1.0140 0.5390 1 2.7559 0.9264 8.3848 

trkcls4 0.0606 0.6027 1 1.0625 0.2987 3.5781 

trkcls5 0.2340 0.7896 1 1.2637 0.2241 5.9801 

hazcarrate 2.5200 0.3450 0.1 1.2867 1.2016 1.3918 

causeh 1.2340 0.5194 1 3.4358 1.2622 11.6063 

causem 1.1060 0.5278 1 3.0208 1.0801 10.0642 

causes 2.0230 0.7551 1 7.5599 1.3317 34.6251 

casuet 1.7910 0.4570 1 5.9956 2.5679 18.7879 

mopera2 -0.0712 0.3487 1 0.9313 0.4435 1.8342 

mopera3 0.1922 0.6187 1 1.2119 0.279 3.8557 

mopera4 0.4817 0.8202 1 1.6189 0.2403 7.2008 

mopera5 -1.4510 0.5132 1 0.2343 0.0819 0.6649 

NA: Not Applicable 

Derailment incidents increased the odds of hazmat release by 2.0 to 24.4 times 

compared to a crossing incident, while sufficient evidence was not available to show that 

collisions and other types of incidents changed the odds of hazmat release, compared to 
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crossing incidents. A 10% increase in the ratio of damaged or derailed cars resulted in 

14% to 30% increase in the odds of hazmat release, and a 10% increase in the ratio of 

hazardous materials-carrying cars on a train increased these odds by 20% to 39%. A 5-

mph increase in train speed was associated with 15% to 49% increase in the odds of 

hazmat release, and a 1000-ton increase in the gross tonnage of the train resulted in 2% to 

11% increase in these odds. 

FRA track class 2 increased the odds of hazmat release (given an incident) by 

1.18 to 7.89 times, compared to FRA track class 1 and X. Other FRA track classes did 

not show statistically significant evidence of affecting the probability of hazmat release. 

Incidents due to track, roadbed and structures, signal and communication, human factors 

and miscellaneous causes compared to mechanical and electrical issues increased the 

odds of release by 2.57 to 18.79 times, 1.33 to 34.63 times, 1.26 to 11.61 times, and 1.08 

to 10.06 times, respectively.  

4.4.2 Hazmat Car-Level Models 

This set of five binary response models provides the probability of hazmat release from 

each hazmat car, given an incident. A number of cars carried hazmat on each train with 

some releasing hazmat, leading to a potential two-level grouping in the dataset: hazmat 

cars belonging to the same train; and hazmat cars that belonged to the same incident from 

the same or different trains. 
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Table 4.5 presents the five estimated models including two logistic regression 

models with ML (B1 and B2), two single-level mixed logistic regression models (B3 and 

B5) with different explanatory variables and a 2-level mixed logistic regression (B4) to 

account for the two possible levels of grouping (there is no FE model as it was similar to 

the ML models). 

AIC values and the LR test for variances of the random parameters in the mixed 

logistic regression models showed that grouping in the car level was statistically 

significant but the incident level grouping could be ignored. All mixed logistic regression 

showed the same cross validation performance and were superior to the logistic 

regression models; Model B5 was selected for interpretation.  

  



 

 

Table 4.5 Estimated Hazmat Car-Level Models 

Models 
B1) Logistic 

regression (ML) 

B2) Logistic 

regression (ML) 

B3) Mixed logistic 

regression 

B4) 2-level Mixed 

logistic regression 

B5) Mixed logistic 

regression 

Variables LR test p-value LR test p-value LR test p-value LR test p-value LR test p-value 

typinc 0.00000 *** 0.00000 *** 0.00033 *** 0.00033 *** 0.00055 *** 

temp 0.00000 *** 0.00000 *** 0.20616  0.20524  0.14155  

visibility 0.00002 *** 0.00001 *** 0.44398  0.44358  —  

weather 0.00804 ** 0.00433 ** 0.89123  0.89141  —  

trnspd 0.00000 *** 0.00000 *** 0.00000 *** 0.00000 *** 0.00000 *** 

cartonnage 0.12937  0.06547 . 0.89327  0.89327  —  

trkclas 0.00006 *** 0.00000 *** 0.06485 . 0.06488 . 0.00001 *** 

typtrk 0.87620  —  0.90482  0.90495  —  

locder 0.01132 * 0.00718 ** 0.87437  0.87437  —  

cause 0.00000 *** 0.00000 *** 0.00000 *** 0.00000 *** 0.00000 *** 

rclmod 0.04997 * —  0.04045 * 0.04040 * 0.10905  

mopera 0.38831  —  0.80503  0.80434  —  

Random Effects 

Levels NA NA 1 Level (trains) 
2 Levels (trains, 

incidents) 
1 Level (trains) 

Variables NA NA Intercept Intercept Intercept 

Variance NA NA 4.0200 (4.0140, 0.0000) 4.2820 

Variance LR test 

comparison with 
NA NA Model B1 Model B3 

A logistic regression 

with similar 

variables 

LRT p-value  NA NA 0.00000 *** 0.50000  0.00000 *** 

Re-substitution 

Validation 

Release 0.00% 0.00% 4.98% 4.98% 4.98% 

Overall 99.38% 99.38% 99.41% 99.41% 99.41% 

AIC 2356.5 2354.8 2101.3 2103.3 2080.3 

Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

NA: Not Applicable 

— : Variable not used 
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Table 4.6 presents odds ratios and their 95% profile LR confidence intervals for 

Model B5 along with estimated coefficients, standard errors and the values for the 

parameter c. All interpretations are subject to “95% confidence” and “conditional on 

keeping all the other variables constant”. The model interpretation is as follows. 

Table 4.6 Estimated Coefficients and Odds Ratios for Model B5 

Variables 

Coefficients Odds Ratios 

Estimate 
Std. 

Error 
c 

Point 

Estimate 

Lower 

Bound of 

C.I. 

Upper 

Bound of 

C.I. 

(Intercept) -11.1806 0.9912 NA NA NA NA 

typinc1 2.3070 0.7003 1 10.0447 2.5459 39.6298 

typinc2 2.0391 0.8566 1 7.6837 1.4335 41.1857 

typinc4 2.0841 0.7568 1 8.0376 1.8235 35.4276 

temp -0.0071 0.0059 10 0.9317 0.8305 1.0452 

trnspd 0.0593 0.0145 5 1.3451 1.1671 1.5502 

trkcls2 1.6586 0.4454 1 5.2517 2.1937 12.573 

trkcls3 1.4134 0.5152 1 4.1098 1.4973 11.281 

trkcls4 0.5925 0.5848 1 1.8085 0.5748 5.6904 

trkcls5 0.4597 0.9016 1 1.5836 0.2705 9.2701 

causeh 1.5382 0.5839 1 4.656 1.4825 14.6227 

causem 1.5662 0.6045 1 4.7885 1.4644 15.6576 

causes 3.3066 0.8892 1 27.2922 4.7768 155.934 

casuet 2.0961 0.5125 1 8.1344 2.9793 22.2088 

rclmod 0.7857 0.4812 1 2.1939 0.8543 5.634 

NA: Not Applicable 

Derailment incidents, collisions and other types of incident increased the odds of 

hazmat release from a car by 2.55 to 39.63 times, 1.43 to 41.19 times and 1.82 to 35.43 

times, respectively, compared to a crossing incident. The odds of release given an 

incident also increased by 17% to 55% for each 5-mph increase in train speed. FRA track 

classes 2 and 3 increased the odds of hazmat release by 2.19 to 12.57 times and 1.50 to 

11.28 times compared to FRA tack class 1 and X, respectively. Incidents caused by track, 

roadbed and structures, signal and communication, human factors and miscellaneous 
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compared to mechanical and electrical issues, increased the odds of release by amounts 

between 2.97 to 22.21 times, 4.78 to 155.93 times, 1.48 to 14.62 times, and 1.46 to 15.66 

times, respectively. 

4.4.3 Prediction 

For both train-level and hazmat car-level models, the datasets were randomly 

divided to model estimation (80%) and model validation (20%) subsets. Models A3 and 

B5 were re-estimated using the estimation data subsets. Figure 4.2 presents the ROC 

curves for both models. The larger area under ROC curves showed that the car-level 

model provided better overall predictions. 

  
Figure 4.2 ROC curves for train-level and hazmat car-level models. 

To achieve higher sensitivity without a large increase in false positive rates, using 

the ROC curves, new cutoff points were selected as 0.05 and 0.01 for the train-level and 

car-level models, respectively. The value of 0.05 relative to the default value of 0.5 

corresponds to increase in sensitivity and false positive rate from 31.82% to 77.27% and 

from 0.19% to 14.77%, respectively, in the train-level model. These values for choosing 
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0.01 over 0.5 for the hazmat car-level model were from 3.85% to 78.85% and 0.01% to 

7.38%, respectively. Table 4.7 shows the prediction results of both models for the 

validation subsets for the cutoff point of 0.5 and the new cutoff points of 0.05 and 0.01. 

Table 4.7 Prediction Results of Train-Level and Hazmat Car-Level Models 

 Train-Level Model Hazmat Car-Level Model 

Cutoff 

Probability 
0.5 0.05 0.5 0.01 

 

No 

Release Release 

No 

Release Release 

No 

Release Release 

No 

Release Release 

No Release 534 1 456 79 7779 1 7206 574 

Release 15 7 5 17 50 2 11 41 

No Release 99.81% 0.19% 85.23% 14.77% 99.99% 0.01% 92.62% 7.38% 

Release 68.18% 31.82% 22.73% 77.27% 96.15% 3.85% 21.15% 78.85% 

Overall 97.13% 84.92% 99.35% 92.53% 

The results showed that both models with the new cutoff probabilities correctly 

predicted approximately 80% of hazmat release occurrences. However, the proportion of 

“no release” incidents predicted as “release” was twice as large for the train-level models. 

Overall, the new cutoff probabilities improved the prediction performance of the models, 

and the car-level models were preferred over train-level models. 

4.5 Conclusions and Discussion 

The research presented in this chapter showed that derailment type incidents 

increased the likelihood of hazmat release more than the other incident types. This 

finding strengthens the existing emphasis of researchers and policy-makers on preventing 

rail derailment incidents involving hazmat. Higher proportion of damaged/derailed 

hazmat cars in a train increased hazmat release probability, emphasizing the need and use 

of countermeasures aimed at decreasing the number of damaged/derailed cars in 

incidents. While all causes of incidents increased hazmat release probability, relative to 

the base level (mechanical and electrical failures), prioritization of the corresponding 
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countermeasures and policies are suggested on this descending order: signal and 

communication; track, roadbed and structures; human factors; and miscellaneous. 

Track class 2 in both models and track class 3 in the car-level models were 

associated with higher probability of hazmat release. This may be a consideration in 

routing of hazmat-carrying trains. In the train-level model, other than main track rules as 

a method of operation was associated with a decrease in hazmat release probability, 

relative to signal indication. Statistically significant evidence was not available with 

respect to the effects of environmental characteristics on hazmat release probability. 

These characteristics might have indirect effects captured in the model through other 

variables and may be assessed in a future study. Higher train speed, train gross tonnage 

and proportion of hazmat tank-cars on trains increased the hazmat release probability. 

These variables are useful in developing policies aimed at requiring railroad companies to 

decrease train speed, gross tonnage, and proportion of hazmat cars in hazmat-carrying 

trains. 

The results of mixed models showed hazmat release from hazmat cars belonging 

to a train were interdependent and hazmat release from trains belonging to an incident 

were independent. Analyzing the incidents in train-level and car-level gave relatively 

consistent results. The train-level model accounted for variables such as hazdamrate, 

derrate, and hazcarrate leading to useful insights. The car-level model captured the effect 

of the number of cars released by having cars as units of analysis. Characteristics of 

hazmat cars were not available in the FRA dataset and therefore not considered in this 

study (which is a limitation of this study). In addition, the car-level model had better 
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performance in prediction, suggesting the implementation of risk-based analyses at the 

car level. 

As reported in the literature review, Liu et al. (Liu, Barkan, and Saat 2011) found 

track-related derailments more likely on lower class tracks. They also reported higher 

speed increased the average number of cars derailed in an incident, while Barkan et al. 

(Barkan, Dick, and Anderson 2003) reported that train speed increased the probability of 

hazmat release. These results are consistent with the findings of this study (reported 

herein). Barkan et al. (Barkan, Dick, and Anderson 2003) also identified the incident 

cause “broken rails or welds”, as the most significant incident cause on the number of 

derailed cars. Although, the current study accounted for grouped incident causes (due to 

limitations of the number of variables usable in the models), the group that contained this 

incident cause (Track, Roadbed and Structures) increased hazmat release probability, 

significantly. Other causes that were in the same group had different effects on release 

probability in (Barkan, Dick, and Anderson 2003), which could not be addressed in the 

current study. 

The results and conclusions of this chapter may be biased to some degree because 

of exclusion of the explanatory variables that were not available in the data and probably 

were correlated to the explanatory variables that were included in modeling (this is also 

known as unobserved heterogeneity). This unavailability was due to either data collection 

restrictions or the fact that some potentially significant factors are not readily observable 

or practically impossible to collect. While inclusion of random parameters in the models 

of this chapter may have addressed this issue to some degree, in practice, the 
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recommendations of this study based on its conclusions need to be taken into account 

cautiously (for policy- and decision-making), considering the fact that some of the 

observed effects of the explanatory variables may be fully or partially the actual effects of 

other unobserved factors.  

Future research on this topic may investigate the effects of other variables, such as 

hazmat car specification and safety design, and type of hazmat on the hazmat release 

probability. The effects of incident causes on hazmat release at a more detailed level in 

train incidents can be the emphasis of a future study.  
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CHAPTER 5 ROLLOVER AND HAZARDOUS MATERIALS RELEASE MODELS 

FOR CARGO TANK TRUCK CRASHES 

5.1 Introduction 

CTTs are one of the major surface transportation carriers of hazmat. CTTs’ 

rollover crashes are the leading cause of injuries and death from hazmat transportation 

incidents, accounting for approximately 75% of gasoline-related fatalities (Calabrese et 

al. 2017). CTTs are susceptible to rollover crashes due to their size, weight distribution, 

having a high center of gravity, and the surging and sloshing of the liquid cargo during 

transportation. Major strategies to address these rollovers are electronic stability control 

systems and driver training (National Highway Traffic Safety Administration (NHTSA) 

2003; Calabrese et al. 2017; Douglas B Pape et al. 2007). Identification of factors that 

affect or associate with probability of rollover and hazmat release in CTT crashes is a 

step toward objectively reducing these probabilities. 

The objectives of this chapter were identification and quantification of the effects 

of various factors on the probability of rollover and release of hazmat in CTT crashes and 

developing prediction tools for these two probabilities. Statistical modeling was 

performed using logistic regression and BMA with rollover and hazmat release as the 

binary response variables, and crash, trucks, roadway, environment, and driver 

characteristics as the explanatory variables. States of Nebraska and Kansas 2010-2016 

police reported crash datasets were combined and filtered for CTT-involved crashes and 

used in the statistical modeling. ROC curves were developed for model validation and 

prediction performance evaluation and improvement. Statistical modeling provided 



57 

 

useful information about the presence and magnitude of effects of explanatory variables 

on rollover and hazmat release. Based on the results, this chapter presents 

recommendations for countermeasures and policies toward improving safety of CTTs.  

The remainder of this chapter includes: an additional literature review on safety 

aspects of CTTs; the chapter’s methods; introduction to the dataset and variables; results 

of the statistical modeling; a discussion of the results; and finally, the chapter’s 

conclusions.  

5.2 Additional Literature Review 

In addition to the general literature review of chapter 2 on hazmat transportation, 

this section reviews studies on safety aspects of CTTs.  

Some studies focused on analysis of CTT-involved crash data. McKnight and 

Bahouth investigated 239 large truck rollover crashes in the US and found almost half of 

the crashes resulted from failing to adjust speed to curves, characteristics of the load, 

condition of the brakes, road surface, and intersection conditions. Other major crash 

contributors involved driver’s attention, steering, and load size (McKnight and Bahouth 

2009). Shen et al. studied 708 crashes of hazmat-carrying CTTs reported during 2004-

2011 in China. They found the predominant crash types were rollover (29.10%), run-off-

the-road (16.67%), and rear-end collisions (13.28%), with a high likelihood of hazmat 

release (up to 75.00 % for freeway crashes). Human-related errors (73.8%) and vehicle-

related defects (19.6%) were the primary reasons of occurrence of such crashes (Shen et 

al. 2014).  
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Calabrese et al. analyzed 93 cargo tank rollovers (2011-2014) based on various 

elements focusing on potential human factors contributors. Driver related factors were 

most frequently identified contributing factors. Driver performance errors comprised 

about half of the rollovers, followed by driver decision errors. Analysis of ten-year 

historic crash statistics showed that the largest proportion of rollovers occurred on 

undivided roadways, straight roads without curves and away from intersections. The most 

effective countermeasures identified were stability control systems, lane departure 

warning, and driver monitoring technologies (Calabrese et al. 2017). Pape et al. evaluated 

different approaches to reducing CTT rollover and reported: motion-base simulators and 

driver performance monitoring systems could improve drivers’ performance in avoiding 

rollovers; electronic stability aids could prevent rollovers by direct intervention in 

slowing the vehicle as it enters a curve at high speed; wider track width effective in 

avoiding rollovers; and sag and horizontal curve combination and pavement conditions as 

associated with tank trucks’ rollovers (Douglas B Pape et al. 2008). 

Some studies analyzed mechanical design of CTTs and their rollover potential. 

Kolaei et al. developed an analytical model of a partly-filled tank of arbitrary cross-

section for predicting transient lateral slosh force and rollover moment. They suggested 

that a tank cross-section with lower overall center of mass and lower critical slosh length 

yielded an enhanced roll stability limit under medium- and high-fill conditions (Kolaei, 

Rakheja, and Richard 2014). Kang et al. formulated an optimization problem for finding 

optimal tank geometry to enhance roll stability limits of partial and fully loaded CTTs. 

They identified wider bottom tanks desirable for high fill volumes, while tanks with 
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approximately conical geometry were desirable when fill volume varied considerably (X. 

Kang, Rakheja, and Stiharu 1999). Zheng et al. studied factors that influence driving 

stability of CTTs. They developed a vehicle dynamics model considering liquid sloshing 

during braking and turning for elliptical, circular and improved rectangular cross-section 

tank shapes and found that the latter tank shape had better driving stability, while the fill 

level of the liquid and the sloshing frequency of the tank influenced driving stability 

(Zheng et al. 2017). 

As a summary, a number of studies worked on quantifying trucks’ tank design 

features on rollovers by experimentation and simulation. A few studies quantified hazmat 

release probability from trains in train incidents. Although some studies used descriptive 

statistics (and not rigorous modeling techniques) in analyzing CTT crashes, the review of 

published literature did not uncover any studies specifically focused on identifying and 

quantifying the effects of the type of factors considered in this study on CTTs’ rollover 

and hazmat release probabilities.  

5.3 Methods 

This chapter involves the estimation of statistical models for two outcomes of 

traffic crashes involving CTTs: rollover and hazmat release. These two binary variables 

(rollover/no rollover and hazmat release/no release) were the response variables modeled 

based a set of explanatory variables including characteristics of crashes, trucks, roadway, 

environment, and driver traits. The binary response models used were BMA-based 

logistic regression which combines logistic regression with BMA as an explanatory 

variable selection tool (introduced in section 3.5). This chapter utilized BMA-based 
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logistic regression because: 1) availability of a relatively large set of explanatory 

variables made the task of variable selection for inclusion in the model specification more 

complicated thus requiring the use of a robust variable selection method and 2) this was 

an exploratory study and consideration of a model selection approach, such as BMA that 

does not eliminate variables from the models was desirable. 

The BMA-based logistic regression models can serve as prediction (classification) 

tools for CTTs’ rollover and hazmat release in crashes. In the context of this chapter, 

sensitivity was the proportion of actual crashes with rollover/hazmat release correctly 

classified, while FP rate was actual non-rollover/non-release crashes, incorrectly 

classified as rollover/release. Cutoff probability is the threshold for the estimated 

probabilities the model uses to classify outcomes: “rollover/release” or “no rollover/no 

release” for each crash.  

5.4 Data and Variables 

The 2010-2016 police-reported crash data from Nebraska and Kansas were 

combined and used in the statistical analysis. Other states in the Midwest were contacted 

but their data were unavailable in the timeframe for this study. The Nebraska and Kansas 

datasets were obtained from Nebraska Department of Transportation and Kansas 

Department of Transportation, respectively. Crashes with the involvement of CTTs were 

extracted from the combined dataset. This resulted in 2015 crashes with a CTT involved 

(all CTTs subset) and 546 crashes with a hazmat-carrying CTT involved (hazmat-

carrying subset). The model for truck rollover used all the CTT-involved crashes 

(carrying hazmat or not), while the model for hazmat release used a subset of the data 
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with hazmat-carrying trucks only. Besides rollover and hazmat release as response 

variables, this study utilized different characteristics of crash, CTTs, roadway, 

environment, and drivers as explanatory variables. Table 5.1 and Table 5.2 present these 

variables and their statistics in the CTT and hazmat-carrying CTT subsets, respectively. 

Criteria for inclusion of the explanatory variables in the study were: 1) variables 

that were identified effective on different safety measures, e.g. injury severity, in the 

literature; 2) variables available in both Nebraska and Kansas crash data without 

significant ratio of missing values (while some information was collected differently in 

the two states, they were converted to a compatible format); and 3) variables that were 

identified potentially effective on probability of rollover and hazmat release in CTT 

crashes. Relative rarity of reported crashes with involvement of CTTs was the reason for 

using a larger crash interval (7 years), compared to usual crash data analyses.  

Table 5.1 Descriptive Statistics for the CTT Crash Data 

Variable Values and Statistics 

Response Variable  

Rollover 1 = No (84.57%), 2 = Yes (15.43%) 

Explanatory Variables  

Crash Characteristics  

Vehicle Point of 

Impact 

1 = None (3.08%), 2 = Center front (17.07%), 3 = Center rear (6.75%), 4 = 

Left front (10.87%), 5 = Left rear (5.66%), 6 = Left side (11.76%), 7 = Right 

front (14.29%), 8 = Right rear (5.26%), 9 = Right side (13.00%), 10 = All 

areas (0.99%), 11 = Other (11.27%) 

Type of Crash 1 = Collision (86.60%), 2 = Non-collision (13.40%) 

Object Involved 1 = No (81.24%), 2 = Yes (18.76%) 

Vehicle Movement 

1 = Straight (61.04%), 2 = Turning left (8.24%), 3 = Turning right (7.44%), 4 

= Changing lanes (2.73%), 5 = Slowing/stopped in traffic (7.49%), 6 = 

Backing (2.68%), 7 = Other (10.37%) 

CTT Characteristics  
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Vehicle Body Style 

1 = Single-unit (20.89%), 2 = Tractor & semi-trailer (71.71%), 3 = Tractor 

with doubles/triples (0.84%), 4 = Truck tractor (0.30%), 5 = Truck with trailer 

(6.25%) 

Vehicle Make 
1 = Freightliner (22.63%), 2 = Internat. Harvester (10.87%), 3 = Kenworth 

(19.90%), 4 = Mack (5.16%), 5 = Peterbilt (14.39%), 6 = Other (27.05%) 

Vehicle Age Mean = 7.55, SD = 6.62 

Gross Vehicle Weight 
1 = 10,000 lbs. or less (2.63%), 2 = 10,001 to 26,000 lbs. (9.33%), 3 = More 

than 26,000 lbs. (88.04%) 

Roadway 

Characteristics 
 

Speed Limit Mean = 53.73, SD = 15.05 

Number of Lanes 
1 = One (4.27%), 2 = Two (61.89%), 3 = Three (3.57%), 4 = Four or more 

(30.27%) 

Road Surface Type 
1 = Asphalt (55.78%), 2 = Concrete (35.38%), 3 = Dirt (1.84%), 4 = Gravel 

(6.50%), 5 = Other (0.50%) 

Road Surface 

Condition 

1 = Dry (82.03%), 2 = Ice (3.03%), 3 = Sand/mud (0.99%), 4 = Slush (0.15%), 

5 = Snow (3.42%), 6 = Wet (9.23%), 7 = Other (1.14%) 

Road Level 1 = Level (77.52%), 2 = Hilltop (1.89%), 3 = Slope (20.60%) 

Road Curvature 1 = Straight (89.53%), 2 = Curved (10.47%) 

Intersection Involved 1 = No (59.85%), 2 = Yes (40.15%) 

Railroad Involved 1 = No (98.96%), 2 = Yes (1.04%) 

In Workzone 1 = No (95.43%), 2 = Yes (4.57%) 

Driver Characteristics  

Driver's Sex 1 = Male (98.06%), 2 = Female (1.94%) 

Driver's Age Mean = 47.55, SD = 12.94 

Alcohol Related 1 = No (98.51%), 2 = Yes (1.49%) 

Environmental 

Characteristics 
 

Weather Conditions 

1 = Clear/Cloudy (86.15%), 2 = Blowing sand, soil, dirt, snow (1.34%), 3 = 

Fog, smog, smoke (1.49%), 4 = Rain/Sleet/… (0.10%), 5 = Severe crosswinds 

(6.80%), 6 = Snow (1.09%), 7 = Other (3.03%) 

Light Conditions 1 = Daylight (73.50%), 2 = Dark (21.49%), 3 = Dawn/Dusk (5.01%) 

(Note: Data obtained from Nebraska and Kansas Departments of Transportation) 

 

Table 5.2 Descriptive Statistics for the Hazmat-Carrying CTT Crash Data 

Variable Values and Statistics 
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Response Variable  

Hazmat Release 1 = No (87.00%), 2 = Yes (13.00%) 

Explanatory Variables  

Crash Characteristics  

Vehicle Point of 

Impact 

1 = None (3.48%), 2 = Center front (17.58%), 3 = Center rear (6.78%), 4 = 

Left front (10.07%), 5 = Left rear (5.68%), 6 = Left side (12.27%), 7 = Right 

front (13.37%), 8 = Right rear (4.03%), 9 = Right side (14.10%), 10 = All 

areas (0.37%), 11 = Other (12.27%) 

Type of Crash 1 = Collision (86.08%), 2 = Non-collision (13.92%) 

Object Involved 1 = No (85.35%), 2 = Yes (14.65%) 

Vehicle Movement 

1 = Straight (62.09%), 2 = Turning left (7.14%), 3 = Turning right (7.14%), 4 

= Changing lanes (1.83%), 5 = Slowing/stopped in traffic (8.06%), 6 = 

Backing (1.47%), 7 = Other (12.27%) 

Rollover 1 = No (84.57%), 2 = Yes (15.43%) 

CTT Characteristics  

Vehicle Body Style 

1 = Single-unit (21.25%), 2 = Tractor & semi-trailer (69.41%), 3 = Tractor 

with doubles/triples (1.47%), 4 = Truck tractor (0.37%), 5 = Truck with trailer 

(7.51%) 

Vehicle Make 
1 = Freightliner (22.63%), 2 = Internat. Harvester (11.36%), 3 = Kenworth 

(24.73%), 4 = Mack (4.21%), 5 = Peterbilt (28.21%), 6 = Other (11.17%) 

Vehicle Age Mean = 6.30, SD = 5.30 

Gross Vehicle Weight 
1 = 10,000 lbs. or less (2.01%), 2 = 10,001 to 26,000 lbs. (5.13%), 3 = More 

than 26,000 lbs. (92.86%) 

Roadway 

Characteristics 
 

Speed Limit Mean = 54.86, SD = 14.46 

Number of Lanes 
1 = One (3.85%), 2 = Two (60.26%), 3 = Three (3.85%), 4 = Four or more 

(32.05%) 

Road Surface Type 
1 = Asphalt (56.04%), 2 = Concrete (34.98%), 3 = Dirt (1.83%), 4 = Gravel 

(6.41%), 5 = Other (0.73%) 

Road Surface 

Condition 

1 = Dry (81.32%), 2 = Ice (4.40%), 3 = Sand/mud (1.28%), 4 = Slush (0.18%), 

5 = Snow (4.40%), 6 = Wet (7.88%), 7 = Other (0.55%) 

Road Level 1 = Level (76.37%), 2 = Hilltop (1.47%), 3 = Slope (22.16%) 

Road Curvature 1 = Straight (89.19%), 2 = Curved (10.81%) 

Intersection Involved 1 = No (63.19%), 2 = Yes (36.81%) 

Railroad Involved 1 = No (98.53%), 2 = Yes (1.47%) 

In Workzone 1 = No (95.97%), 2 = Yes (4.03%) 

Driver Characteristics  
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Driver's Sex 1 = Male (98.90%), 2 = Female (1.10%) 

Driver's Age Mean = 48.76, SD = 11.92 

Alcohol Related 1 = No (98.35%), 2 = Yes (1.65%) 

Environmental 

Characteristics 
 

Weather Conditions 

1 = Clear/Cloudy (86.81%), 2 = Blowing sand, soil, dirt, snow (1.10%), 3 = 

Fog, smog, smoke (0.73%), 4 = Rain/Sleet/… (6.59%), 5 = Severe crosswinds 

(0.92%), 6 = Snow (3.85%), 7 = Other (0.00%) 

Light Conditions 1 = Daylight (72.89%), 2 = Dark (22.89%), 3 = Dawn/Dusk (4.21%) 

(Note: Data obtained from Nebraska and Kansas Departments of Transportation) 

5.5 Results 

This section presents the results of the BMA-based models for CTTs’ rollover and 

hazmat release including the results and their interpretations of the statistical models 

regarding the effects of different factors on probability of rollover and hazmat release in 

CTT crashes. It also provides the ROC curves, cut-off probability determination and 

prediction performance evaluation of the estimated models. 

5.5.1 Estimated Models 

Table 5.3 and Table 5.4 present the BMA-based logistic regression models for 

rollover and hazmat release, respectively, in terms of estimated odds ratios and their 95% 

CIs. In these two tables, the variables are sorted based on their significance, according to 

the frequency of appearance in the estimated models with the highest AICc.  Inclusion of 

“1.0” in a CI for an explanatory variable indicates a lack of sufficient statistical evidence 

for the effects of that explanatory variable on the response variable. The variables with 

sufficient statistical evidence towards their effects on the response variables are in bold 

fonts in these tables. Interpretation of the estimated odds ratios and CIs follows next. All 

the statements regarding the effects of each explanatory variable on the response 
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variables are subject to 95% confidence while holding other explanatory variables in the 

model constant. 

Table 5.3 Odds Ratios and 95% CIs for the Rollover Model 

Variables 
OR Point 

Estimate 

95% Confidence Interval 

(CI) 

Lower 

Bound 

Upper 

Bound 

Vehicle Point of Impact 

Center front 1.99 0.46 8.71 

Center rear 0.47 0.07 3.33 

Left front 1.86 0.41 8.37 

Left rear 0.70 0.11 4.39 

Left side 3.69 0.84 16.13 

Right front 2.41 0.56 10.31 

Right rear 1.01 0.17 6.09 

Right side 6.53 1.55 27.50 

All areas 45.06 4.86 417.62 

Other 0.30 0.07 1.38 

Type of Crash Non-collision 188.96 101.28 352.54 

Object Involved Yes 15.35 9.05 26.02 

Gross Vehicle Weight 
10,001 to 26,000 lbs. 12.53 1.42 110.47 

More than 26,000 lbs. 12.53 1.58 99.16 

Speed Limit (c = 5 mph) 1.17 1.07 1.29 

Number of Lanes 

Two 0.48 0.23 1.02 

Three 0.01 0.00 0.21 

Four or more 0.22 0.09 0.55 

Vehicle Body Style 

Tractor & semi-trailer 0.59 0.36 0.98 

Tractor with doubles/triples 1.01 0.11 9.12 

Truck tractor 11.39 0.39 329.44 

Truck with trailer 0.84 0.36 1.99 

Vehicle Movement 

Turning left 1.23 0.51 2.93 

Turning right 1.38 0.60 3.18 

Changing lanes 0.63 0.05 7.30 

Slowing/stopped in traffic 0.44 0.10 1.96 

Backing 0.00 0.00 0.09 

Other 2.47 1.37 4.47 

Weather Condition 

Blowing sand, soil, dirt, snow 0.09 0.00 1.56 

Fog, smog, smoke 0.39 0.08 1.86 

Rain/Sleet/... 0.83 0.28 2.45 

Severe crosswinds 5.03 1.19 21.33 
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Snow 0.59 0.14 2.46 

Other 0.00 0.00 0.00 

Light Condition 
Dark 1.09 0.69 1.74 

Dawn/Dusk 0.32 0.11 0.95 

Driver Sex Male 0.84 0.24 2.98 

Vehicle Make 

Internat. Harvester 1.58 0.78 3.20 

Kenworth 0.55 0.28 1.06 

Mack 0.83 0.32 2.18 

Peterbilt 1.24 0.72 2.14 

Other 0.63 0.31 1.28 

Road Surface Type 

Concrete 0.73 0.43 1.25 

Dirt 4.38 1.06 18.05 

Gravel 1.91 0.91 3.98 

Other 1.57 0.24 10.19 

Road Surface Condition 

Ice 0.39 0.10 1.47 

Sand/Mud 18.30 1.44 233.11 

Slush 0.00 0.00 0.00 

Snow 1.08 0.34 3.45 

Wet 1.05 0.43 2.57 

Other 0.22 0.04 1.35 

Driver Age 1.00 0.98 1.01 

Road Level 
Hilltop 1.21 0.42 3.46 

Slope 1.52 0.87 2.64 

Alcohol Related Yes 1.03 0.74 1.43 

Intersection Involved Yes 1.04 0.88 1.23 

Railroad Involved Yes 0.88 0.50 1.55 

Truck Age 1.00 1.00 1.01 

In Work Zone Yes 1.00 0.93 1.07 

Road Curvature Curved 1.01 0.96 1.06 

The odds of CTTs’ rollover in a crash increased by an amount between 1.55 to 

27.50 times when the point of impact was the right side of the truck, relative to when 

there is no impact. Also, in case of all areas of the truck being impacted, these odds 

increased by 4.86 to 417.62 times, relative to no impacts. The odds of rollover increased 

by an amount between 101.28 to 352.54 times in non-collision crashes, relative to 

collision crashes. Involvement of an object in crashes increased the rollover odds by 9.05 
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to 26.02 times. Gross truck weight groups of 10,001 to 260,000 lbs., and more than 

26,000 lbs. increased the odds of rollover by amounts between 1.42 to 110.47, and 1.58 

to 99.16, respectively, compared to trucks lighter than 10,001 lbs.  

Each 5 mph increase in the posted speed, increased the odds of rollover of the 

CTTs in crashes by 7% to 29%. Relative to one lane, highways with three lanes, and 

highways with four or more than four lanes decreased the odds of rollover by 0.00 to 0.21 

times, and 0.09 to 0.55 times, respectively. In terms of truck body style, tractor and semi-

trailer decreased the odds of rollover, relative to single-unit trucks, by an amount between 

0.36 to 0.98 times. Compared to moving straight ahead during a crash, backing decreased 

the odds of rollover by 0.00 to 0.09 times, while the movement group “Other” increased 

these odds by 1.37 to 4.47 times. Severe crosswinds, relative to clear weather increased 

the odds of rollover by 1.19 to 21.33 while light conditions during dawn/dusk, relative to 

daylight, decreased the odds of rollover by 0.11 to 0.95.  

Dirt as the road surface type, compared to asphalt, increased the odds of truck 

rollover by 1.06 to 18.05 times, while sand/mud, as road surface condition, relative to dry 

surface, increased these odds by 1.44 to 233.11 times. Each year increase in the age of 

CTTs increased the odds of rollover by an amount up to 1%. The modeling effort did not 

uncover sufficient evidence toward the effects of other explanatory variables on the 

probability of CTT’s rollover in crashes. Only two explanatory variables statistically 

significantly affected hazmat release from these trucks given a crash in a direct manner. 

Relative to non-rollover crashes, rollovers increased the odds of hazmat release by an 
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amount between 8.22 to 29.27 times. When intersections were involved in a crash, the 

odds of hazmat release increased by 1.02 to 3.47 times. 

Table 5.4 Odds Ratios and 95% CIs for the Hazmat Release Model 

Variables 
OR Point 

Estimate 

95% Confidence 

Interval (CI) 

Lower 

Bound 

Upper 

Bound 

Rollover Yes 15.51 8.22 29.27 

Gross Vehicle Weight 
10,001 to 26,000 lbs. 1.70 0.17 16.56 

More than 26,000 lbs. 0.75 0.09 6.16 

Intersection Involved Yes 1.89 1.02 3.47 

Truck Age 0.95 0.89 1.01 

Object Involved Yes 1.64 0.77 3.46 

Speed Limit (c = 5 mph) 1.03 0.93 1.15 

In Work Zone Yes 0.84 0.36 1.96 

Road Curvature Curved 1.07 0.80 1.43 

Alcohol Related Yes 1.13 0.69 1.87 

Vehicle Body Style 

Tractor & semi-trailer 1.02 0.91 1.15 

Tractor with doubles/triples 1.13 0.69 1.84 

Truck tractor 0.00 0.00 Inf. 

Truck with trailer 1.00 0.90 1.11 

Type of Crash Non-collision 0.99 0.93 1.06 

Light Condition 
Dark 0.99 0.96 1.03 

Dawn/Dusk 1.02 0.92 1.13 

Number of Lanes 

Two 1.00 0.96 1.04 

Three 1.01 0.93 1.10 

Four or more 1.00 0.96 1.04 

Road Level 
Hilltop 1.00 0.95 1.04 

Slope 1.00 0.98 1.02 

Vehicle Make 

Internat. Harvester 1.01 0.96 1.06 

Kenworth 1.00 0.97 1.04 

Mack 1.01 0.95 1.08 

Peterbilt 1.00 0.98 1.02 

Other 1.02 0.94 1.12 

Driver Sex Male 0.99 0.94 1.05 

Driver Age 1.00 1.00 1.00 

Road Surface Condition 

Ice 1.00 0.99 1.01 

Sand/Mud 1.00 0.98 1.01 

Slush 0.00 0.00 Inf. 
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Snow 1.00 1.00 1.00 

Wet 1.00 1.00 1.00 

Other 1.00 0.99 1.01 

Railroad Involved Yes 1.00 1.00 1.00 

Vehicle Movement 

Turning left 1.00 1.00 1.00 

Turning right 1.00 1.00 1.00 

Changing lanes 1.00 1.00 1.00 

Slowing/stopped in traffic 1.00 1.00 1.00 

Backing 1.00 1.00 1.00 

Other 1.00 1.00 1.00 

Weather Condition 

Blowing sand, soil, dirt, snow 1.00 1.00 1.00 

Fog, smog, smoke 1.00 1.00 1.00 

Rain/Sleet/... 1.00 1.00 1.00 

Severe crosswinds 1.00 1.00 1.00 

Snow 1.00 1.00 1.00 

Road Surface Type 

Concrete 1.00 1.00 1.00 

Dirt 1.00 1.00 1.00 

Gravel 1.00 1.00 1.00 

Other 1.00 1.00 1.00 

Vehicle Point of Impact 

Center front 1.00 1.00 1.00 

Center rear 1.00 1.00 1.00 

Left front 1.00 1.00 1.00 

Left rear 1.00 1.00 1.00 

Left side 1.00 1.00 1.00 

Right front 1.00 1.00 1.00 

Right rear 1.00 1.00 1.00 

Right side 1.00 1.00 1.00 

All areas Inf. 0.00 Inf. 

Other 1.00 1.00 1.00 

5.5.2 Prediction 

For both BMA-based logistic regression models (rollover and hazmat release), the 

datasets were split into two model estimation (80%) and model validation (20%) subsets. 

The splitting was stratified and random, meaning observations were randomly selected to 

be put in each subset, while the ratio of the classes (rollover/no rollover or release/no 

release) in each subset was held equal to the original data. This was to avoid conclusions 
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that could vary due to randomness of the splitting, as the response variables’ classes were 

highly imbalanced (positive outcomes were rare). Both models were re-estimated using 

the estimation subsets, validated using the validation subsets, and ROC curves were 

generated as in Figure 5.1. The area under the curves indicates that the rollover model did 

a better job in terms of prediction. Despite having a low rate of variables that statistically 

significantly affect the response variable, the hazmat release model also had a relatively 

sufficient prediction performance. 

  
Figure 5.1 ROC curves for the rollover and hazmat release models. 

Changing the cutoff probabilities based on the ROC curves can result in higher 

model sensitivity without a large increase in FP rates. For the rollover and hazmat release 

models, the new cutoff probabilities of 20% and 40% (instead of 50%), respectively, 

were determined. Table 5.5 shows the models’ prediction performance for both sets of 

cutoff probabilities. Correct prediction of rollovers and hazmat release cases increased 

from 71% to 89%, and 45% to 64%, respectively, after using the alternative cutoff 

probabilities. These improvements are at the price of increase in FP rates from 4% and 

5% in the rollover and hazmat release models, to 14% and 12%, respectively. 
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Table 5.5 Prediction Performance of the Models 

 Rollover Model Hazmat Release Model 

Cutoff Probability  0.5 0.2 0.5 0.4 

 
No 

Rollover 
Rollover 

No 

Rollover 
Rollover 

No 

Release 
Release 

No 

Release 
Release 

No Rollover/Release 328 12 293 47 92 5 85 12 

Rollover/Release 18 44 7 55 6 5 4 7 

No Rollover/Release 96.47% 3.53% 86.18% 13.82% 94.85% 5.15% 87.63% 12.37% 

Rollover/Release 29.03% 70.97% 11.29% 88.71% 54.55% 45.45% 36.36% 63.64% 

Overall 92.54% 86.57% 89.91% 85.19% 

5.6 Discussion and Conclusions 

A relatively large number of explanatory variables were found to affect or 

associate with the probability of CTTs’ rollover in crashes. This justifies the use of BMA 

in this study. Only two explanatory variables, including rollover itself, influenced the 

probability of hazmat release. This indicates actions taken to avoid rollovers may affect 

hazmat release indirectly and in the same direction (if a change in the value of a variable 

decreases the probability of rollover, it decreases the probability of hazmat release as 

well). 

Non-collision crashes were more probable to result in a rollover (representing 

only-rollover crashes). This finding emphasizes the possibility of the role of the other 

driver characteristics that were not included in this study (due to unavailability in the 

analyzed data). These characteristics, according to the literature, include inattention, and 

specific skills for driving CTTs in terms of speed adjustment, effective braking, and 

steering. In terms of point of impact, side impacts in addition to impacts to all areas of the 

vehicle, increases the likelihood of rollover, indicating it may be more effective if drivers 

of CTTs get trained towards avoiding such crashes. 
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Relative to moving straight ahead, the probability of rollover in a crash does not 

change for other types of movements (except backing), while one may expect turning 

movements may lead to rollovers more often. This finding is consistent with Federal 

Motor Carrier Safety Administration (FMCSA) CTT safety recommendations, where it is 

emphasized only 7% of CTTs’ rollovers occur on exit ramps (Douglas B Pape et al. 

2007). Backing crashes are less likely to lead into a rollover, probably due to lower speed 

and less severe collisions. Based on this finding, the roadway-related countermeasures for 

truck rollover and hazmat release are recommended to not be restricted to ramps. 

Severe crosswinds was the only weather condition that increased the probability 

of rollover, relative to clear/cloudy weather. Such weather is suggested to be avoided by 

CTTs. This can be taken into consideration by policy-makers, private shippers, or truck 

drivers. If possible, driving during dawn and dusk and road surface conditions of sand 

and mud should be avoided. Probability of overturn increases when the CTTs are heavier 

(consistent with (National Highway Traffic Safety Administration (NHTSA) 2003)) and 

older. Probability of hazmat release increases when there is a rollover. Consequently, 

shippers are encouraged to consider newer trucks and also lighter trucks, in terms of truck 

type, body style and amount of loaded hazmat, specifically in cases of more dangerous 

classes of hazmat. The body style of tractor and semi-trailer decreases the probability of 

rollover, compared to all other body styles and is recommended to consideration, if 

practical.  

Collision with objects increased the probability of CTT rollover. Guardrails and 

other roadside safety structures include a significant portion of these objects. Therefore, 
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considering CTTs in the design of such structures, especially in the regions with higher 

traffic of CTTs, may be a reasonable approach for decreasing these rollovers. Only a 5-

mph increase in the posted speed resulted in up to 27% increase in the odds of rollover of 

CTTs in crashes. Therefore, consideration of lower speed limits is recommended in areas 

with frequent passage of CTTs. In routing for CTTs, shippers may prioritize their options 

based on number of lanes (3 or more) and fewer intersections in addition to usual 

economic concerns, as higher number of lanes is associated with lower probability of 

overturn and intersections increase the odds of hazmat release.  

Based on area under the ROC curves, both models had reliable prediction 

performances. Choosing alternative cutoff probabilities led to about 89% and 64% correct 

prediction of rollover and hazmat release cases. While this ensures the appropriateness of 

the models for inference on this crash data, these models can be utilized for prediction in 

risk-based hazmat transportation decision frameworks, such as routing, facility location, 

and network design. Besides hazmat release probability given a crash, these frameworks 

require quantification of other components of risk, e.g. CTT crash frequency, and 

consequences of hazmat release. 

A limitation of this chapter was the geographic coverage of the analyzed data. A 

source for a national comprehensive police-reported crash data is not available, and each 

state keeps its own crash database, with different variables and not readily available to 

public. Although, Nebraska and Kansas, as two Midwestern states with relatively similar 

traits in terms of weather, roadways and driver behavior may provide results for the 

Midwest, the results may not be generalizable across the U.S. Another limitation was 
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unavailability of some variables in the dataset that could potentially affect probabilities of 

rollover and hazmat release, such as more detailed driver and CTT characteristics, crash 

speed, type and amount of loaded hazmat, etc. (described as unobserved heterogeneity in 

chapter 4). This needs to be taken into account when implementing the policy- and 

decision-making recommendations of this chapter (the fact that some of the observed 

effects of the explanatory variables may be fully or partially the actual effects of other 

unobserved factors). 

Future studies may address these limitations by using more comprehensive 

datasets and possible inclusion of missing information in this study’s data. Utilizing other 

modeling methods and algorithms for inference and prediction may uncover additional 

useful information in future studies.  
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CHAPTER 6 MODELING THE PROBABILITY OF HAZARDOUS MATERIALS 

RELEASE AT HIGHWAY-RAIL GRADE CROSSINGS 

6.1 Introduction 

Trucks and trains carry substantial amount of hazmat in the U.S., leading to the 

potential of costly hazmat release incidents. While these incidents may occur anywhere 

on the transportation system, crashes at highway-rail grade crossings (HRGCs) may lead 

to hazmat release from either trucks or trains, or both. Identifying the contributing factors 

to hazmat release in HRGC crashes involving a hazmat-carrying truck or train is 

important for setting policies and for making more informed public safety-related 

decisions.  

With a focus on crashes at HRGCs involving hazmat-carrying trucks and/or 

trains, the research objective of this chapter was to identify the effects of highway users’ 

characteristics, truck/train attributes, environment, land-use and HRGC traits on the 

probability of hazmat release from trucks or trains in these crashes. The FRA’s HRGC 

crash dataset (2007-2016) yielded two crash data subsets: 1) crashes involving hazmat-

carrying trucks and 2) crashes involving hazmat-carrying trains. Logistic regression 

models were estimated using each data subset with hazmat release/no release as the 

response variable. Both models provided useful information about the presence and 

magnitude of effects of explanatory variables on hazmat release from these two 

transportation modes. Based on the results, this chapter presents recommendations for 

countermeasures and for policies toward decreasing hazmat release in HRGC crashes. 
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Organization of the remaining of this chapter is as follows. The next section 

presents an additional review of literature on safety of HRGCs. Methods, data and 

variables, and modeling results are the ensuing sections of this chapter. Discussion, 

conclusions and a list of references complete this chapter. 

6.2 Additional Literature Review 

In addition to the general literature review of chapter 2 on hazmat transportation, 

this section reviews studies on safety aspects of HRGCs.  

The majority of studies on safety of HRGCs focused on analysis of crash 

frequency and severity at these transportation junctions. Raub examined the performance 

of four specific warning device classes (crossbucks only, STOP signs, flashing lights and 

gates) at HRGCs and compared their effects on crash frequency (Raub 2006). Hu et al. 

studied and identified factors associated with crash injury severity at HRGCs, which 

included number of daily trains, number of daily trucks, highway separation, an obstacle 

detection device, and approaching crossing marks (Hu, Li, and Lee 2010). Other factors 

that were associated with crash frequency and severity at HRGCs include highway motor 

vehicle driver’s age and behavior, traffic volume, and weather conditions (Hao and 

Daniel 2013; Russo and others 2013). Zhao and Khattak found that greater number of 

highway lanes at HRGCs, the presence of standard flashing-light signals and clear 

weather decreased the likelihood of severe injuries (Shanshan Zhao and Khattak 2015). 

Zhao et al. showed that higher train speed, female pedestrians and commercial land use 

were associated with more severe injuries in pedestrian-train crashes at HRGCs (S. Zhao, 

Iranitalab, and Khattak 2018). Fan et al. identified pick-up trucks, concrete, and rubber 
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surfaces associated with more severe crashes at HRGCs, while truck-trailers, snow and 

fog, and higher daily traffic volumes were more likely to be observed in less severe 

crashes (Fan, Kane, and Haile 2015). 

The contributing factors to crash frequency and severity at HRGCs were 

relatively consistent in the reviewed studies. However, these results do not necessarily 

hold in describing probability of hazmat release, which warrants the investigation of 

hazmat-related crashes at HRGCs. The review of published literature did not uncover 

studies specifically focused on the safety of hazmat transportation at HRGCs by trucks 

and trains. 

6.3 Methods 

This chapter involved estimation of two logistic regression models for capturing 

possible impacts and associations of explanatory variables on the probability of hazmat 

release from hazmat-carrying trucks (Truck Model) and trains (Train Model) in crashes 

reported at HRGCs. Occurrences of hazmat release/no release from trucks and trains 

respectively were binary response variables in the two logistic regression models. 

Explanatory variables included HRGC-related traits, train and highway user 

characteristics, type of crash, and environmental and land-use characteristics.  

6.4 Data and Variables 

Ten-year U.S. HRGC accident/incident data (2007-2016) and HRGC history 

inventory data were obtained from FRA safety database (Federal Railroad Adminsitration 

Office of Safety Analysis 2017). According to FRA: “Each HRGC accident/incident must 

be reported to the FRA, regardless of the extent of damages or whether a casualty 
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occurred.” Crashes were matched with the inventory dataset based on unique HRGC 

identification number and approximate date of crash. Two subsets of crashes were 

extracted from this dataset: 1) crashes with hazmat-carrying highway users (trucks) 

containing 75 crashes and 2) crashes with hazmat-carrying trains, including 3726 crashes. 

Truck Model and Train Model were estimated using these two subsets, respectively. 

Table 6.1 presents the variables and their statistics for the truck subset, while Table 6.2 

shows similar information for the train subset.  

Table 6.1 Variables and Statistics of the Hazmat-Carrying Truck Data Subset 

Variable Variable Name Values and Statistics 

Response Variable     

Hazmat Release HAZREL 1 = No (45.33%), 2 = Yes (54.67%) 

Explanatory Variables   

Highway User Characteristics   

Type of Vehicle TYPVEH 
1 = Truck (20.00%), 2 = Truck-trailer 

(72.00%), 3 = Pick-up Truck (08.00%) 

Vehicle Speed VEHSPD Mean = 8.3467, Variance = 164.5268 

Driver Age DRIVAGE Mean = 47.3467, Variance = 169.0944 

Driver gender DRIVGEN 1 = Male (98.67%), 2 = Female (1.33%) 

Train Characteristics   

Railroad Class TYPRR 
1 = Class I (81.33%), 2 = Class II (01.33%), 3 

= Class III (17.33%) 

Freight Train FREIGHT 1 = No (21.33%), 2 = Yes (78.67%) 

Train Speed TRNSPD Mean = 32.4110, Variance = 326.5510 

Number of Cars NBRCARS Mean = 51.5135, Variance = 1615.2670 

Crash Characteristics   

Type of Crash TYPACC 
1 = Train Struck Highway User (92.00%), 2 = 

Train Struck by Highway User (08.00%) 

Environment and Land-use Characteristics  

Temperature TEMP Mean = 63.1600, Variance = 473.4335 

Weather WEATHER 

1 = Clear (64.00%), 2 = Cloudy (30.67%), 3 = 

Rain (05.33%), 4 = Fog, Sleet, Snow 

(00.00%)  

Visibility VISIBLTY 
1 = Dawn (06.67%), 2 = Day (70.67%), 3 = 

Dusk (08.00%), 4 = Dark (14.67%)  

Type of Land Use DEVELTYPE 

1 = Open Space (41.33%), 2 = Residential 

(09.33%), 3 = Commercial (10.67%), 4 = 

Industrial (30.67%), 5 = Other (08.00%) 
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HRGC Characteristics   

Cantilever Flashing-Light 

Signals 
CANTALIVERFLS 1 = No (94.67%), 2 = Yes (05.33%) 

Standard Flashing-Light 

Signals 
STANDARDFLS 1 = No (69.33%), 2 = Yes (30.67%) 

Bells BELLS 1 = No (58.67%), 2 = Yes (41.33%) 

Crossbucks CROSSBUCKS 1 = No (32.00%), 2 = Yes (68.00%) 

Gates GATES 1 = No (70.67%), 2 = Yes (29.33%) 

Highway Traffic Signal HWYTRFICSIG 1 = No (98.67%), 2 = Yes (01.33%) 

Audible AUDIBLE 1 = No (80.00%), 2 = Yes (20.00%) 

Stop Sign STOPSIGNS 1 = No (64.00%), 2 = Yes (36.00%) 

Other Control Devices OTHER 1 = No (82.67%), 2 = Yes (17.33%) 

Public/Private HRGC PUBLIC 1 = No (29.33%), 2 = Yes (70.67%) 

 

Table 6.2 Variables and Statistics of the Hazmat-Carrying Train Data Subset 

Variable Variable Names Values and Statistics 

Response Variable     

Hazmat Release HAZREL 1 = No (99.86%), 2 = Yes (0.13%) 

Explanatory Variables   

Highway User Characteristics   

Type of Vehicle TYPVEH 

1 = Auto (42.53%), 2 = Truck/Truck-

trailer/Pick-up Truck (40.55%), 3 = 

Van/Bus/School Bus (03.43%), 4 = 

Pedestrian (04.85%), 5 = 

Motorcycle/Other (08.64%) 

Vehicle Speed VEHSPD Mean = 7.2321, Variance = 128.9675 

Driver Age DRIVAGE Mean = 42.3601, Variance = 299.6472 

Driver gender DRIVGEN 1 = Male (75.46%), 2 = Female (24.54%) 

Train Characteristics   

Railroad Class TYPRR 
1 = Class I (86.23%), 2 = Class II 

(02.60%), 3 = Class III (11.16%) 

Train Speed TRNSPD Mean = 32.7384, Variance = 243.8642 

Number of Cars NBRCARS Mean = 69.1539, Variance = 1322.8460 

Crash Characteristics   

Type of Crash TYPACC 

1 = Train Struck Highway User (82.54%), 

2 = Train Struck by Highway User 

(17.46%) 

Environment and Land-use Characteristics  

Temperature TEMP Mean = 60.8345, Variance = 491.5737 

Weather WEATHER 

1 = Clear (69.78%), 2 = Cloudy (20.33%), 

3 = Rain (05.60%), 4 = Fog, Sleet, Snow 

(04.29%)  
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Visibility VISIBLTY 
1 = Dawn (05.17%), 2 = Day (57.11%), 3 

= Dusk (05.52%), 4 = Dark (23.18%)  

Type of Land Use DEVELTYPE 

1 = Open Space (28.35%), 2 = Residential 

(21.08%), 3 = Commercial (26.79%), 4 = 

Industrial (16.30%), 5 = Other (07.48%) 

HRGC Characteristics   

Cantilever Flashing-Light Signals CANTALIVERFLS 1 = No (80.69%), 2 = Yes (19.31%) 

Standard Flashing-Light Signals STANDARDFLS 1 = No (54.30%), 2 = Yes (45.70%) 

Bells BELLS 1 = No (41.88%), 2 = Yes (58.12%) 

Crossbucks CROSSBUCKS 1 = No (32.00%), 2 = Yes (68.00%) 

Gates GATES 1 = No (70.67%), 2 = Yes (29.33%) 

Highway Traffic Signal HWYTRFICSIG 1 = No (97.61%), 2 = Yes (02.39%) 

Audible AUDIBLE 1 = No (63.88%), 2 = Yes (36.12%) 

Stop Sign STOPSIGNS 1 = No (78.98%), 2 = Yes (21.02%) 

Other Control Devices OTHER 1 = No (83.75%), 2 = Yes (16.25%) 

Public/Private HRGC PUBLIC 1 = No (12.82%), 2 = Yes (87.18%) 

6.5 Modeling Results 

Two logistic regression models were estimated for hazmat release from trucks 

(Truck Model) and trains (Train Model) in crashes at HRGCs. Variable selection was 

based on AICc. Some variables in both models were not statistically significant (at α = 

0.10 level), but were retained in model specifications, since they contributed to the 

models according to AICc (via describing small proportions of variations in the response 

variable and affecting other parameters of the models) (Bilder and Loughin 2014). Table 

6.3 shows the modeling results including estimated coefficients, standard errors, odds 

ratios and 90% profile likelihood ratio confidence intervals for odds ratios. The 

significance of estimated coefficients with 90% confidence can be judged by looking at 

the odds ratios’ confidence intervals (if each interval does not contain 1, hypothesis of 

equality of the coefficient with zero is rejected).  

In hazmat-carrying truck crashes at HRGCs, with 90% confidence and holding all 

the other variables constant except the variable being interpreted, presence of standard 
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flashing-light signals decreased the odds of hazmat release from trucks by an amount 

between 0.0475 to 0.4716 times, relative to its absence. Railroad crossbucks decreased 

the odds of release from trucks by 0.0461 to 0.4065 times and public crossings increased 

these odds by 1.6148 to 15.8892 times, compared to private crossings. Railroad classes II 

and III decreased the odds of release from trucks by amounts between 0.0013 and 0.9781 

and between 0.0496 and 0.4631, respectively, relative to railroad class I. Freight trains 

increased truck release odds by 1.9958 to 17.4551 times, compared to non-freight trains. 

Crossing control devices introduced as “Other Control Devices” (in Table 6.1) decreased 

the odds of release from trucks by 0.0907 to 0.8836 times, compared to absence of these 

control devices. Sufficient statistical evidence was not available to support the existence 

of effects of any other variables that were considered in this study on the release of 

hazmat from trucks in HRGC crashes. 

In hazmat-carrying train crashes at HRGCs, again, with 90% confidence and 

holding all the other variables constant except the variable being interpreted, railroad 

class II increased the odds of hazmat release from trains by 1.3266 to 62.4336 times, 

relative to railroad class I. Railroad class III did not have any significant difference from 

railroad class I regarding the probability of hazmat release from trains. Type of highway 

user changed the probability of hazmat release from trains: trucks, truck-trailers and pick-

up trucks increased the odds of release by an amount between 1.6463 to 57.1876 times, 

compared to automobiles; crashes with motorcycles, other motor vehicles and other 

objects increased these odds by 2.1248 to 112.5912 times, relative to automobiles; 

hazmat release probability did not change in crashes with vans, buses and school buses, 
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and pedestrians relative to automobiles. An increase in temperature by 5o F decreased the 

odds of hazmat release from trains by an amount between 0.7990 to 0.9863 times. Fog, 

sleet and snow increased the odds of release by 1.3229 to 24.0584 times, relative to clear 

weather. There was not enough statistical evidence toward the existence of any impacts 

or association of any other variables on the release of hazmat from trains in HRGC 

crashes. 

  



 

 

  

Table 6.3 Results of Truck and Train Logistic Regression Models 

Variable c 

Truck Model Train Model 

Estimated 

Coefficient 

Standard 

Error 

Odds 

Ratios 

Odds Ratios 90% 

Confidence Interval Estimated 

Coefficient 

Standard 

Error 

Odds 

Ratios 

Odds Ratios 90% 

Confidence Interval 

Lower 

Level 

Upper 

Level 

Lower 

Level 

Upper 

Level 

(Intercept) NA 0.1276 0.6314 NA NA NA -7.52731 1.44417 NA NA NA 

TYPACC2 1 -1.5033 1.0194 0.2224 0.0409 1.0216 0.94787 0.66771 2.5802 0.8604 7.738 

STANDARDFLS 1 -1.8406 0.7061 0.1587 0.0475 0.4716 — — — — — 

CROSSBUCKS 1 -1.9297 0.6706 0.1452 0.0461 0.4065 — — — — — 

PUBLIC 1 1.5747 0.7058 4.8294 1.6148 15.8892 — — — — — 

TYPRR2 1 -2.6878 2.4092 0.0680 0.0013 0.9781 2.20836 1.17077 9.1008 1.3266 62.4336 

TYPRR3 1 -1.8332 0.6919 0.1599 0.0496 0.4634 -0.84804 1.12983 0.4283 0.0668 2.7466 

FREIGHT 1 1.7275 0.6682 5.6267 1.9958 17.4551 NA NA NA NA NA 

OTHER 1 -1.2336 0.7053 0.2912 0.0907 0.8836 — — — — — 

TYPVEH2 1 — — — — — 2.27244 1.07845 9.7031 1.6463 57.1876 

TYPVEH3 1 — — — — — 2.32472 1.51188 10.2238 0.8503 122.9214 

TYPVEH4 1 NA NA NA NA NA 2.31776 1.50243 10.1529 0.8577 120.1858 

TYPVEH5 1 NA NA NA NA NA 2.73871 1.20683 15.467 2.1248 112.5912 

TEMP 5 — — — — — -0.02382 0.01281 0.8877 0.799 0.9863 

WEATHER2 1 — — — — — 1.00773 0.68463 2.7394 0.8883 8.4473 

WEATHER3 1 — — — — — 0.80258 1.16608 2.2313 0.3278 15.1896 

WEATHER4 1 — — — — — 1.73017 0.88173 5.6416 1.3229 24.0584 

DEVELTYPE2 1 — — — — — -0.42363 1.22511 0.6547 0.0873 4.9111 

DEVELTYPE3 1 — — — — — 0.42381 0.89897 1.5278 0.3482 6.7025 

DEVELTYPE4 1 — — — — — 1.18478 0.84209 3.27 0.8185 13.0645 

DEVELTYPE5 1 — — — — — 1.53165 0.97012 4.6258 0.9379 22.8138 

—: Not Used in the final model, NA: Not Applicable 
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6.6 Discussion and Conclusions 

Standard flashing-light signals, railroad crossbucks and “other crossing control 

devices” (as is in Table 6.1) were effective in reducing the probability of hazmat release 

from trucks in truck-train HRGC crashes. The use of such control devices is 

recommended at HRGCs with high hazmat-carrying truck traffic. Prioritization of safety 

countermeasures implementation may be given to public HRGCs since hazmat release is 

more probable at these locations relative to private crossings. Freight trains were 

associated with higher probability of hazmat release from trucks. This finding is 

reasonable as freight trains are usually longer and heavier relative to other (e.g., 

passenger) trains. HRGCs with more frequent passage of trains that belong to railroad 

classes II and III, and less frequent passage of freight trains were safer for hazmat-

carrying trucks. Routes that minimize the interaction between these trucks with class I 

railroads and freight trains may be preferred and considered in the route selection of 

hazmat-carrying trucks.  

Hazmat-carrying class II railroads were more vulnerable in HRGC crashes 

relative to class I railroads in terms of hazmat release. Extra train hazmat safety 

consideration is recommended for hazmat carrying trains on routes with HRGCs that 

carry high volumes of trucks, truck-trailers and pick-up trucks, and also motorcycle and 

other vehicles (relative to automobiles). With the exception of motorcycles, different 

types of trucks and other vehicles (e.g. recreational vehicles) are heavier than 

automobiles on average, leading to potentially more severe collisions and higher 

probability of hazmat release from trains. Since higher temperature and presence of fog, 
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sleet and snow were associated with smaller and larger probability of hazmat release, 

respectively, weather considerations are recommended in shipping of hazmat by rail and 

may be used in relevant policy-making. 

Both models may be used as a part of a risk assessment framework as explained 

in section 1.3. The framework may include at least two steps: models that predict the 

occurrence of crashes at HRGCs, based on variables such as highway and rail traffic, land 

use, control devices, etc. (e.g. (Oh, Washington, and Nam 2006; Yan, Richards, and Su 

2010)); and models, such as those estimated in this study, that predict the probability of 

hazmat release from trucks, trains, or both, given the occurrence of a crash. The product 

of these two probabilities can provide a hazmat risk measure for each HRGC, useful to 

serve as a prioritization tool for countermeasure implementation or resource allocation. 

As was mentioned in the literature review, a significant number of papers studied 

injury severity of HRGC crashes and used this criterion to evaluate control devices and 

other related factors at HRGCs. It was also mentioned that there was a lack of research on 

hazmat release crashes reported at HRGCs. The question that may arise is whether the 

factors that increase/decrease crash severity at HRGCs are consistent with the factors that 

increase/decrease the probability of hazmat release (positive correlation between crash 

severity and hazmat release). This consistency may question the importance of this study. 

To investigate this possibility, Table 6.4 summarized the results of six studies regarding 

crash severity at HRGC, and the results of this study for comparison. It should be noted 

that, although some variables were defined differently in some studies, the final results 

were consistently reported in this table.  
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Table 6.4 Comparison of the Results of Six HRGC Crash Severity Studies with Hazmat 

Release  

Variables 

Crash Severity Hazmat Release 

(Hao 

and 

Daniel 

2013) 

((Haleem 

and Gan 

2015) 

(Eluru 

et al. 

2012) 

(Shanshan 

Zhao, 

Iranitalab, 

and 

Khattak 

2016) 

(Y. 

Kang 

and 

Khattak 

2017) 

(Shanshan 

Zhao and 

Khattak 

2015) 

Highway 

User 
Train 

TYPACC2 — I I I I I NS NS 

STANDARDFLS — — NS NS I — D NS 

CROSSBUCKS — — D NS I — D NS 

PUBLIC — — — — — — I NS 

TYPRR2 — — — — — — D I 

TYPRR3 — — — — — — D NS 

FREIGHT — — — I — I I NA 

OTHER — — NS — — — D NS 

TYPVEH2 I D NS NA D D NS I 

TYPVEH3 I D D NA NS — NS NS 

TYPVEH4 NA  NS — NA — — NA NS  

TYPVEH5 I NS — NA I — NA I 

TEMP — — D NS — — NS D 

WEATHER2 I NS NS NS I — NS NS 

WEATHER3 I NS D I NS — NS NS 

WEATHER4 I D D I D — NS I 

DEVELTYPE2 D NS — NS NS — NS NS 

DEVELTYPE3 D NS — I NS — NS NS 

DEVELTYPE4 D D — NS D — NS NS 

DEVELTYPE5 D NS — NS NS — NS NS 

OFFPEAK D — — — — — — — 

VEHSPD I — — NA I I NS NS 

VISIBLTY1 I — — — NS NS NS NS 

VISIBLTY3 I — — — I D NS NS 

VISIBLTY4 I — — — I NS NS NS 

TRNSPD I I I I I I NS NS 

DRIVAGE I I I I I I NS NS 

NONPAVED I — — — — — — — 

AADT I D — NS D — — — 

DRIVGEN  — I I I I I NS NS 

BELLS — D — I — — NS NS 

GATES — — I NS NS — NS NS 

HWYTRFICSIG — — NS — NS — NS NS 

AUDIBLE — — NS — NS — NS NS 

STOPSIGNS — — I — D — NS NS 

NBRCARS — — — — I — NS NS 

—: Not Considered in Study, NS: Not Significant, NA: Not Applicable, D: Decrease, I: Increase 

 

 

This comparison shows that there were variables that affected crash severity in 

different studies, almost consistently, but were not associated with hazmat release 
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probability, such as type of crash, train speed, driver age and gender, vehicle speed and 

some types of land-use. The effects of types of highway user, temperature and weather on 

crash severity were inconsistent throughout the severity papers. While these variables 

were not significant in hazmat release from trucks, some of them affected hazmat release 

from trains, but not necessarily in the same way (direction) as in the crash severity. The 

positive effects of standard flashing-light signals, railroad crossbucks and other control 

devices on hazmat release from trucks were not observed in the majority of the crash 

severity literature. Public/private HRGCs and type of railroad were not considered in the 

reviewed crash severity studies, while they were associated with hazmat release. Freight 

trains increased crash severity and the probability of hazmat release from trucks in 

crashes at HRGCs. In general, with an exception of some cases, crash severity modeling 

results were not consistent with hazmat release modeling outcomes, indicating that 

policies and countermeasures based on crash severity studies may not be relevant to 

decreasing hazmat release in crashes at HRGCs. Thus, this underscores the necessity of 

investigating hazmat release in crashes at HRGCs. 

Large proportion of missing values in potentially important variables in the 

dataset and consequently, not using those variables in the model specifications was a 

limitation in this research. These variables included details about HRGC control devices, 

actions of highway users during crashes, sight obstructions, type of hazmat, roadway 

conditions, etc. Similar to chapters 4 and 5, this unobserved heterogeneity and its likely 

effects on the parameter estimates, conclusions and recommendations of this chapter 

should be considered in using the models in practice. Examples of these possible effects 
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include the counterintuitive results regarding the impacts of public/private HRGCs, or 

HRGCs with crossbucks on hazmat release in this chapter. 

For future studies, researchers may address the data issue by using datasets with 

fewer missing values/variables. Other modeling methods can be utilized for analyzing 

hazmat-related crashes at HRGCs that might lead to further insights. Short-term and 

long-term costs and damages of hazmat release at HRGCs may be studied to prioritize 

countermeasures and policies regarding public safety improvements at HRGCs. 
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CHAPTER 7 PREDICTION OF HAZARDOUS MATERIALS RELEASE IN TRAIN 

INCIDENTS AND CARGO TANK TRUCK CRASHES 

7.1 Introduction 

Quantifying conditional probability of release of hazmat from trains in rail 

incidents and CTTs in highway crashes assists safety agencies and shippers in decision-

making, as this probability is an important component of hazmat transportation risk 

(other components include probability of occurrence of an incident, and consequences of 

hazmat release).  

The objective of this chapter was providing computational tools with reliable 

performance for quantifying probability of hazmat release in train incidents and CTT 

crashes. Hazmat release was considered as a binary response variable (release or no 

release), and statistical and machine learning classification methods were utilized to 

probabilistically classify this binary outcome using explanatory variables. The 

explanatory variables included incident/crash, railroad/roadway, environment, and 

train/CTT characteristics. Some of the incident/crash characteristics were also outcomes 

of the incident/crash, and separate tools were developed for their estimation to use in the 

hazmat release models. The datasets were Federal Railroad Administration (FRA) 2012-

March 2018 rail equipment incident data, and combined Nebraska and Kansas 2010-2017 

police reported traffic crash data. Classification methods comprised of logistic regression, 

naïve Bayes, random forests (RF), and support vector machines (SVM). The performance 

assessment of the various methods utilized different criteria, leading to usage 

recommendations for different purposes. 
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7.2 Additional Literature Review 

The additional literature review covers the use of methods of this chapter in the 

transportation safety literature.  

Injury severity of crashes is a multiclass categorical variable and statistical 

models and machine learning techniques are intensively used for classification and 

inference in this field. Examples of statistical models for analyzing injury severity are 

logistic regression or multinomial regression (Abdel-Aty and Keller 2005; Abdel-Aty and 

Abdelwahab 2004; Shaheed and Gkritza 2014; Shanshan Zhao and Khattak 2015; S. 

Zhao, Iranitalab, and Khattak 2018), while examples of machine learning include SVM, 

RF, and neural networks (Iranitalab and Khattak 2017; Li et al. 2012; Abdelwahab and 

Abdel-Aty 2001). This review did not uncover the use of the majority of the methods 

employed in this study for classification and probability estimation of hazmat release 

from trains and CTTs.  

7.3 Methods 

In risk analysis of hazmat transportation, the ability to accurately estimate the 

probability of hazmat release in rail incidents or CTT crashes is important. As was 

discussed in section 1.3, in the context of hazmat transportation, risk has different 

definitions. The majority of them include a form of a multiplication of the probability of 

release from a hazmat carrier by a measure of consequences of release. Probability of 

release is comprised of probability of occurrence of an incident/crash for a hazmat carrier 

and the conditional probability of release given the incident/crash. Some studies have 

investigated probability of occurrence of incidents/crashes for hazmat-carrying trains and 
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trucks, e.g. (Anderson and Barkan 2004; Harwood, Viner, and Russell 1990). This 

chapter focused on estimating probability of hazmat release given an incident/crash using 

classification methods for trains and CTTs. The binary variable hazmat release given an 

incident/crash (yes/no) was the response variable and the explanatory variables included 

incident, railroad, environment, and train characteristics in train incidents and crash, 

trucks, roadway, environment, and driver characteristics for the CTT crashes.  

Similar to chapter 4, this chapter classified hazmat release for trains at two levels: 

train and car. In the train-level classification each row of data was a hazmat-carrying train 

involved in an incident, while in the car-level classification each row was a hazmat-

carrying car on a train involved in an incident. The predicted quantity in the train-level 

and car-level approaches were probability of release from trains and cars, respectively. 

The explanatory variables at each level changed accordingly as in chapter 4. The number 

of cars derailed/damaged in each incident was used in calculation of some of the train-

level explanatory variables. Since this variable was also an outcome of the train incidents, 

predicting its values was necessary to use in the hazmat release classification. Therefore, 

tools for this prediction were also developed in this study and number of 

derailed/damaged cars was the count response variable. 

Classification of hazmat release for CTTs was a similar procedure. Each row of 

data was a hazmat-carrying CTT involved in a crash. One of the explanatory variables 

that was also an outcome of the crash was rollover; a binary variable that indicated if the 

CTT rolled over in the crash. A similar set of explanatory variables were used for 

classifying CTT crashes to rollover/no rollover for use in the hazmat release 
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classification. In the rollover classification, data comprised of the CTT crashes regardless 

of what the CTT has been carrying, hazmat or non-hazmat (since the probability of 

rollover was under study). 

In summary, this study involved four classifications and estimation of a count 

regression model. The classifications include train-level and car-level classification of 

hazmat release, rollover and hazmat release classification of CTTs, and the count 

regression pertained to the number of derailed/damaged cars per train incident. The 

classifiers and the regressors were developed based on a training dataset and compared 

using a test dataset. The classification and regression methods and the performance 

evaluation tools were introduced in chapter 3. 

7.4 Datasets 

Rail incidents and CTT crashes were the two datasets used in this study. This 

section introduces the datasets, along with their variables and statistics. 

7.4.1 Rail Dataset 

Railroad reported incidents including derailments, collisions, crossing incidents 

and other incidents involving a hazmat-carrying train were extracted from the January 

2012-March 2018 U.S. rail equipment incident database (Federal Railroad 

Adminsitration Office of Safety Analysis 2017), with 2012-2016 subset as the training 

dataset and January 2017-March 2018 as the test dataset. The training dataset consisted of 

2581 incidents, 2787 trains, and 39162 hazmat cars and the test dataset had 579 incidents, 

615 trains and 8318 hazmat cars. Car-level data was generated based on the original 

train-level data using information on number of hazmat-carrying cars, and number of cars 
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that released hazmat. Weight of hazmat cars were approximated by dividing the gross 

weight of trains (excluding the power units) by the number of cars in each train. Table 7.1 

and Table 7.2 present the variables and their statistics of the train-level and car-level data, 

respectively. Similar to chapter 4, track classes 1 and X were aggregated in one level for 

the track class variable, as they represented the same maximum speed for freight trains 

(10 mph). Track classes 5 to 9 were aggregated into one level as they were infrequent in 

the data.  

Table 7.1 Descriptive Statistics for the Train-Level Incident Data 

Variable Values and Statistics (training dataset %, test dataset %) 

Response Variables  

Hazmat Release 0 = No (96.73%, 97.07%), 1 = Yes (3.26%, 2.93%) 

Number of 

Derailed/Damaged 

Cars 

Training: Mean = 1.27, SD = 1.66, Test: 1.21, SD = 1.61 

Explanatory Variables  

Incident 

Characteristics 
 

Type of incident 
1 = Derailment (62.68%, 62.76%), 2 = Collision (12.77%, 9.11%), 3 = 

Crossing (8.50%, 9.43%), 4 = Others (16.04%, 18.70%) 

Proportion of 

damaged/derailed 

hazmat cars to all 

hazmat cars 

Training: Mean = 0.2504, SD = 0.3924, Test: Mean = 0.2550, SD = 0.3928 

Locomotive(s) 

derailed 
0 = No (91.96%, 93.66%), 1 = Yes (8.04%, 6.34%) 

Proportion of 

damaged/derailed cars 

to all cars 

Training: Mean = 0.0989, SD = 0.1820, Test: Mean = 0.1079, SD = 0.1987 

Cause of incident 

E = Mechanical and Electrical Failures (12.16%, 13.50%), H = Human Factors 

(39.25%, 38.37%), M = Miscellaneous (20.99%, 20.33%), S= Signal and 

Communication (3.01%, 3.90%), T= Track, Roadbed and Structures (24.58%, 

23.90%) 

Railroad 

Characteristics 
 

Type of railroad 

(Interstate Commerce 

Commission) 

1 = Class I (83.05%, 85.04%), 2 = Class II (0.90%, 0.33%), 3 = Class III 

(16.05%, 14.63%) 

Method of operation 

1 = Signal indication (24.26%, 28.94%), 2 = Direct train control (6.71%, 

6.99%), 3 = Yard/restricted limits (2.08%, 2.44%), 4 = Block register territory 

(0.47%, 0.00%), 5 = Other than main track rules (66.49%, 61.63%) 
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Track class 

1 = Classes 1 and X (67.60%, 61.95%), 2 = Class 2 (7.61%, 8.29%), 3 = Class 

3 (6.71%, 7.80%), 4 = Class 4 (14.46%, 17.40%), 5 = Classes 5 to 9 (3.62%, 

4.55%) 

Type of track 
1 = Main (32.44%, 37.40%), 2 = Yard (59.78%, 53.01%), 3 = Siding (2.37%, 

2.60%), 4 = Industry (5.42%, 6.99%) 

Environmental 

Characteristics 
 

Temperature Training: Mean = 58.62, SD = 22.28, Test: Mean = 56.58, SD = 23.10 

Visibility 
1 = Dawn (7.86%, 7.48%), 2 = Day (42.59%, 41.95%), 3 = Dusk (7.39%, 

8.13%), 4 = Dark (42.16%, 42.44%) 

Weather 

1 = Clear (66.49%, 65.37%), 2 = Cloudy (22.53%, 25.53%), 3 = Rain (7.14%, 

6.83%), 4 = Fog (1.15%, 0.98%), 5 = Sleet (0.25%, 0.33%), 6 = Snow (2.44%, 

0.98%) 

Train Characteristics  

Train speed (mph) Training: Mean = 12.37, SD = 14.54, Test: Mean = 12.88, SD = 15.26 

Train gross tonnage 

(ton) 
Training: Mean = 4404, SD = 4667.70, Test: Mean = 5111.04, SD = 4742.96 

Proportion of hazmat 

tank-cars to all tank-

cars 

Training: Mean = 0.2947, SD = 0.3095, Test: Mean = 0.2761, SD = 0.3038 

Remote control 

locomotive 
0 = No (80.19%, 85.04%), 1 = Yes (19.81%, 14.96%) 

(Note: Data obtained from the FRA safety database (Federal Railroad Adminsitration Office of Safety 

Analysis 2017)) 

 

Table 7.2 Descriptive Statistics for the Train Car-Level Incident Data 
Variable Values and Statistics (training dataset %, test dataset %) 

Response Variable  

Hazmat Release 0 = No (99.38%, 99.46%), 1 = Yes (0.62%, 0.54%) 

Explanatory Variables  

Incident 

Characteristics 
 

Type of Incident 
1 = Derailment (67.46%, 65.66%), 2 = Collision (11.89%, 9.59%), 3 = 

Crossing (10.14%, 9.37%), 4 = Others (10.51%, 15.38%) 

Locomotive(s) 

derailed 
0 = No (89.93%, 90.53%), 1 = Yes (10.07%, 9.47%) 

Cause of incident 

E = Mechanical and Electrical Failures (14.38%, 17.25%), H = Human Factors 

(35.03%, 34.70%), M = Miscellaneous (20.01%, 21.78%), S= Signal and 

Communication (1.65%, 1.60%), T= Track, Roadbed and Structures (28.93%, 

24.67%) 

Railroad 

Characteristics 
 

Method of operation 

1 = Signal indication (32.67%, 40.19%), 2 = Direct train control (8.25%, 

9.99%), 3 = Yard/restricted limits (2.75%, 2.55%), 4 = Block register territory 

(0.60%, 0.00%), 5 = Other than main track rules (55.72%, 47.27%) 

Track class 

1 = Classes 1 and X (57.83%, 48.86%), 2 = Class 2 (9.75%, 9.44%), 3 = Class 

3 (10.03%, 13.18%), 4 = Class 4 (20.18%, 23.61%), 5 = Classes 5 to 9 (2.21%, 

4.92%) 
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Type of track 
1 = Main (43.11%, 51.02%), 2 = Yard (48.92%, 39.87%), 3 = Siding (2.80%, 

3.77%), 4 = Industry (5.17%, 5.34%) 

Environmental 

Characteristics 
 

Temperature Training: Mean = 57.30, SD = 22.57, Test: Mean = 54.01, SD = 24.49 

Visibility 
1 = Dawn (8.15%, 65.69%), 2 = Day (43.68%, 22.93%), 3 = Dusk (6.81%, 

9.91%), 4 = Dark (41.37%, 42.25%) 

Weather 

1 = Clear (65.81%, 63.69%), 2 = Cloudy (22.60%, 22.93%), 3 = Rain (6.84%, 

9.91%), 4 = Fog (2.06%, 0.72%), 5 = Sleet (0.25%, 0.04%), 6 = Snow (2.45%, 

2.72%) 

Train/Car 

Characteristics 
 

Train speed (mph) Training: Mean = 13.89, SD = 14.61, Test: Mean = 14.47, SD = 15.06 

Tank car tonnage (ton) Training: Mean = 77.30, SD = 73.19, Test: Mean = 80.75, SD = 43.29 

Remote control 

locomotive 
0 = No (88.37%, 91.67%), 1 = Yes (11.63%, 8.33%) 

(Note: Data obtained from the FRA safety database (Federal Railroad Adminsitration Office of Safety 

Analysis 2017)) 

7.4.2 CTT Dataset 

For the CTT classification, 2010-2017 police-reported crash data from the states 

of Nebraska and Kansas were combined (obtained from Nebraska and Kansas 

Departments of Transportation), with 2010-2016 as the training dataset and 2017 as the 

test dataset. Crashes with the involvement of CTTs were extracted from the combined 

dataset. This resulted in 2015 crashes with a CTT involved and 546 crashes with a 

hazmat-carrying CTT involved in the training data. These numbers were 183 and 32 in 

the test data. Trainings for truck rollover used all the CTT-involved crashes (carrying 

hazmat or not), while training for hazmat release used a subset of the data with hazmat-

carrying trucks only. The variables and their statistics are presented in Table 7.3 for all 

CTT crashes and Table 7.4 for hazmat-carrying CTT crashes. 

Table 7.3 Descriptive Statistics for the CTT Crash Data 

Variable Values and Statistics (training dataset %, test dataset %) 

Response Variable  

Rollover 1 = No (84.57%, 93.44%), 2 = Yes (15.43%, 6.56%) 
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Explanatory Variables  

Crash Characteristics  

Vehicle Point of 

Impact 

1 = None (3.08%, 4.37%), 2 = Center front (17.07%, 17.49%), 3 = Center rear 

(6.75%, 7.10%), 4 = Left front (10.87%, 12.57%), 5 = Left rear (5.66%, 

9.84%), 6 = Left side (11.76%, 8.74%), 7 = Right front (14.29%, 8.20%), 8 = 

Right rear (5.26%, 10.93%), 9 = Right side (13.00%, 12.57%), 10 = All areas 

(0.99%, 1.64%), 11 = Other (11.27%, 6.56%) 

Type of Crash 1 = Collision (86.60%, 92.35%), 2 = Non-collision (13.40%, 7.65%) 

Object Involved 1 = No (81.24%, 83.06%), 2 = Yes (18.76%, 16.94%) 

Vehicle Movement 

1 = Straight (61.04%, 59.02%), 2 = Turning left (8.24%, 9.29%), 3 = Turning 

right (7.44%, 6.01%), 4 = Changing lanes (2.73%, 4.92%), 5 = 

Slowing/stopped in traffic (7.49%, 9.29%), 6 = Backing (2.68%, 2.73%), 7 = 

Other (10.37%, 8.74%) 

CTT Characteristics  

Vehicle Body Style 

1 = Single-unit (20.89%, 14.75%), 2 = Tractor & semi-trailer (71.71%, 

75.41%), 3 = Tractor with doubles/triples (0.84%, 1.63%), 4 = Truck tractor 

(0.30%, 2.19%), 5 = Truck with trailer (6.25%, 6.01%) 

Vehicle Make 

1 = Freightliner (22.63%, 25.14%), 2 = Internat. Harvester (10.87%, 8.20%), 3 

= Kenworth (19.90%, 15.30%), 4 = Mack (5.16%, 1.64%), 5 = Peterbilt 

(14.39%, 28.42%), 6 = Other (27.05%, 21.31%) 

Vehicle Age Training: Mean = 7.55, SD = 6.62, Test: Mean = 7.59, SD = 7.49 

Gross Vehicle Weight 
1 = 10,000 lbs. or less (2.63%, 3.83%), 2 = 10,001 to 26,000 lbs. (9.33%, 

19.13%), 3 = More than 26,000 lbs. (88.04%, 77.05%) 

Roadway 

Characteristics 
 

Speed Limit Training: Mean = 53.73, SD = 15.05, Test: Mean = 50.00, SD = 17.68 

Number of Lanes 
1 = One (4.27%, 3.28%), 2 = Two (61.89%, 55.74%), 3 = Three (3.57%, 

6.56%), 4 = Four or more (30.27%, 34.43%) 

Road Surface Type 
1 = Asphalt (55.78%, 46.45%), 2 = Concrete (35.38%, 48.63%), 3 = Dirt 

(1.84%, 0.00%), 4 = Gravel (6.50%3.28%), 5 = Other (0.50%, 1.64%) 

Road Surface 

Condition 

1 = Dry (82.03%, 75.41%), 2 = Ice (3.03%, 8.20%), 3 = Sand/mud (0.99%, 

0.00%), 4 = Slush (0.15%, 0.00%), 5 = Snow (3.42%, 3.82%), 6 = Wet 

(9.23%, 11.48%), 7 = Other (1.14%, 1.09%) 

Road Level 
1 = Level (77.52%, 85.24%), 2 = Hilltop (1.89%, 1.64%), 3 = Slope (20.60%, 

13.12%) 

Road Curvature 1 = Straight (89.53%, 88.52%), 2 = Curved (10.47%, 11.48%) 

Intersection Involved 1 = No (59.85%, 52.46%), 2 = Yes (40.15%, 47.54%) 

Railroad Involved 1 = No (98.96%, 98.91%), 2 = Yes (1.04%, 1.09%) 

In Workzone 1 = No (95.43%, 93.44%), 2 = Yes (4.57%, 6.56%) 

Driver Characteristics  

Driver's Sex 1 = Male (98.06%, 97.27%), 2 = Female (1.94%, 2.73%) 

Driver's Age Training: Mean = 47.55, SD = 12.94, Test: Mean = 47.81, SD = 13.17 

Alcohol Related 1 = No (98.51%, 99.45%), 2 = Yes (1.49%, 0.55%) 
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Environmental 

Characteristics 
 

Weather Conditions 

1 = Clear/Cloudy (86.15%, 85.25%), 2 = Blowing sand, soil, dirt, snow 

(1.34%, 2.73%), 3 = Fog, smog, smoke (1.49%, 1.09%), 4 = Rain/Sleet/… 

(0.10%, 8.74%), 5 = Severe crosswinds (6.80%, 0.00%), 6 = Snow (1.09%, 

2.19%), 7 = Other (3.03%, 0.00%) 

Light Conditions 
1 = Daylight (73.50%, 78.14%), 2 = Dark (21.49%, 18.03%), 3 = Dawn/Dusk 

(5.01%, 3.83%) 

(Note: Data obtained from Nebraska and Kansas Departments of Transportation) 

 

Table 7.4 Descriptive Statistics for the Hazmat-Carrying CTT Crash Data 

Variable Values and Statistics (training dataset %, test dataset %) 

Response Variable  

Hazmat Release 1 = No (87.00%, 87.50%), 2 = Yes (13.00%, 12.50%) 

Explanatory Variables  

Crash Characteristics  

Vehicle Point of 

Impact 

1 = None (3.48%, 3.13%), 2 = Center front (17.58%, 15.63%), 3 = Center rear 

(6.78%, 9.38%), 4 = Left front (10.07%, 9.38%), 5 = Left rear (5.68%, 12.5%), 

6 = Left side (12.27%, 12.5%), 7 = Right front (13.37%, 9.38%), 8 = Right 

rear (4.03%, 9.38%), 9 = Right side (14.10%, 15.63%), 10 = All areas (0.37%, 

0.00%), 11 = Other (12.27%, 3.13%) 

Type of Crash 1 = Collision (86.08%, 90.63%), 2 = Non-collision (13.92%, 9.38%) 

Object Involved 1 = No (85.35%, 90.63%), 2 = Yes (14.65%, 9.38%) 

Vehicle Movement 

1 = Straight (62.09%, 62.50%), 2 = Turning left (7.14%, 6.25%), 3 = Turning 

right (7.14%, 3.13%), 4 = Changing lanes (1.83%, 0.00%), 5 = 

Slowing/stopped in traffic (8.06%, 12.50%), 6 = Backing (1.47%, 3.13%), 7 = 

Other (12.27%, 12.50%) 

Rollover 1 = No (84.57%, 90.63%), 2 = Yes (15.43%, 9.38%) 

CTT Characteristics  

Vehicle Body Style 

1 = Single-unit (21.25%, 15.63%), 2 = Tractor & semi-trailer (69.41%, 

68.75%), 3 = Tractor with doubles/triples (1.47%, 0.00%), 4 = Truck tractor 

(0.37%, 9.38%), 5 = Truck with trailer (7.51%, 6.25%) 

Vehicle Make 

1 = Freightliner (22.63%, 28.13%), 2 = Internat. Harvester (11.36%, 6.25%), 3 

= Kenworth (24.73%, 15.63%), 4 = Mack (4.21%, 0.00%), 5 = Peterbilt 

(28.21%, 37.50%), 6 = Other (11.17%, 12.50%) 

Vehicle Age Training: Mean = 6.30, SD = 5.30, Test: Mean = 5.44, SD = 6.12 

Gross Vehicle Weight 
1 = 10,000 lbs. or less (2.01%, 3.13%), 2 = 10,001 to 26,000 lbs. (5.13%, 

6.25%), 3 = More than 26,000 lbs. (92.86%, 90.63%) 

Roadway 

Characteristics 
 

Speed Limit Training: Mean = 54.86, SD = 14.46, Test: Mean = 50.31, SD = 17.27 
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Number of Lanes 
1 = One (3.85%, 6.25%), 2 = Two (60.26%, 46.88%), 3 = Three (3.85%, 

12.50%), 4 = Four or more (32.05%, 46.88%) 

Road Surface Type 
1 = Asphalt (56.04%, 50.00%), 2 = Concrete (34.98%, 50.00%), 3 = Dirt 

(1.83%, 0.00%), 4 = Gravel (6.41%, 0.00%), 5 = Other (0.73%, 0.00%) 

Road Surface 

Condition 

1 = Dry (81.32%, 90.63%), 2 = Ice (4.40%, 3.13%), 3 = Sand/mud (1.28%, 

0.00%), 4 = Slush (0.18%, 0.00%), 5 = Snow (4.40%, 0.00%), 6 = Wet 

(7.88%, 6.25%), 7 = Other (0.55%, 0.00%) 

Road Level 
1 = Level (76.37%, 84.38%), 2 = Hilltop (1.47%, 3.13%), 3 = Slope (22.16%, 

12.50%) 

Road Curvature 1 = Straight (89.19%, 96.88%), 2 = Curved (10.81%, 3.13%) 

Intersection Involved 1 = No (63.19%, 50.00%), 2 = Yes (36.81%, 50.00%) 

Railroad Involved 1 = No (98.53%, 93.75%), 2 = Yes (1.47%, 6.25%) 

In Workzone 1 = No (95.97%, 100.00%), 2 = Yes (4.03%, 0.00%) 

Driver Characteristics  

Driver's Sex 1 = Male (98.90%, 100.00%), 2 = Female (1.10%, 0.00%) 

Driver's Age Training: Mean = 48.76, SD = 11.92, Test: 47.94, SD = 10.68 

Alcohol Related 1 = No (98.35%, 96.88%), 2 = Yes (1.65%, 3.13%) 

Environmental 

Characteristics 
 

Weather Conditions 

1 = Clear/Cloudy (86.81%, 90.63%), 2 = Blowing sand, soil, dirt, snow 

(1.10%, 0.00%), 3 = Fog, smog, smoke (0.73%, 0.00%), 4 = Rain/Sleet/… 

(6.59%, 9.38%), 5 = Severe crosswinds (0.92%, 0.00%), 6 = Snow (3.85%, 

0.00%), 7 = Other (0.00%, 0.00%) 

Light Conditions 
1 = Daylight (72.89%, 68.75%), 2 = Dark (22.89%, 28.13%), 3 = Dawn/Dusk 

(4.21%, 3.125%) 

(Note: Data obtained from Nebraska and Kansas Departments of Transportation) 

7.5 Results 

This section presents the results of the train (train-level and car-level) and CTT 

conditional hazmat release classification, along with CTT rollover classification and 

prediction of number of cars damaged or derailed in train incidents. While logistic 

regression, mixed logistic regression, naïve Bayes and Poisson regression do not have 

hyperparameters to tune, RF and SVM do require it. Also, since RF was trained using the 

under-sampling technique, cutoff probability was not adjusted (and the default 50% was 

used for classification). However, for other methods ROC curves were developed and 

new cutoff probabilities were adjusted. Table 7.5 and Table 7.6 present the adjusted 
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cutoff probabilities, and the classification and prediction results for train and CTT, 

respectively. Figure 7.1 shows the ROC curves for all classification methods with 

adjusted cutoff probabilities.  

The hyperparameters of RF (v, t and n) were tuned using grid search and out-of-

bag cross validation. In other words, a range of values for these three hyperparameter 

were considered based on literature, and RFs were trained using all possible 

combinations of these values on the training set. Best out-of-bag performances (based on 

precision, recall, F1 Score and AUC) resulted in the best trained RFs (in cross validation 

and final training, each RF was run 15 times and the average of the outcomes was used 

for comparison, due to randomness in the structure of RF). The values used in grid search 

were 𝑣 = 1,2, … , 𝑝, 𝑡 = 10, 20, 50, 100, 200, 500, 1000, and 𝑛 = 1, 10, 20, 50, 100, 

where p is the number of explanatory variables. Similarly, SVM’s hyperparameters (𝛾 

and c) were tuned using grid search and 5-fold cross validation. The grid search values 

included 𝛾 = 2−15, 2−13, … , 212, 214, and 𝑐 = 2−15, 2−13, … , 212, 214. While different 

criteria yielded one single set of hyperparameters for SVM as the best performance in all 

cases, three different sets of hyperparameters were identified for RF in classification. So, 

three RFs are reported in Table 7.5 and Table 7.6. 

The results showed the three RFs had the best performance in train-level hazmat 

release classification, based on different criteria. Two of RFs for car-level hazmat release 

classification had the best performance, as well, while the mixed logistic regression 

model had the best precision. According to RMSE, RF had the best prediction 

performance for number of cars damaged or derailed, while the Poisson regression had 
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better TCE. In classification of CTT rollovers, naïve Bayes had the highest precision and 

F1 score, one of the RFs had the best recall, and logistic regression had the highest AUC. 

SVM and one of the RFs had the highest precision and F1 score for CTT hazmat release 

classification, while logistic regression and naïve Bayes performed better based on recall. 

Naïve Bayes had the highest AUC. 

  



 

  

Table 7.5 Results of Train and Car-Level Hazmat Release Classification and Number of Damaged/Derailed Cars Prediction 

Train-

Level 

Method Logistic Regression RF 1 RF 2 RF 3 Naïve Bayes SVM 

Parameters - 
𝑣 = 16, 𝑡 = 1000, 

𝑛 = 100 

𝑣 = 2, 𝑡 = 500, 
𝑛 = 1 

𝑣 = 5, 𝑡 = 1000, 
𝑛 = 10 

- 
𝛾 = 2−15 

𝑐 = 214 

Cutoff 0.05 0.5 0.5 0.5 0.05 0.04 

Release 0 1 0 1 0 1 0 1 0 1 0 1 

0 84.25% 15.75% 56.06% 43.94% 91.45% 8.55% 87.31% 12.69% 67.67% 32.33% 85.93% 14.07% 

1 50.00% 50.00% 0.00% 100.00% 41.11% 58.89% 35.56% 64.44% 38.89% 61.11% 38.89% 61.11% 

Precision 8.74% 6.42% 17.19% 13.28% 5.39% 11.58% 

Recall 50.00% 100.00% 58.89% 64.44% 61.11% 61.11% 

𝐅𝟏 Score 14.88% 12.07% 26.61% 22.03% 9.91% 19.47% 

AUC 71.73% 86.53% 84.20% 87.45% 72.59% 83.72% 

Car-Level 

Method 
Mixed Logistic 

Regression 
RF 1 RF 2 RF 3 Naïve Bayes SVM 

Parameters - 
𝑣 = 1, 𝑡 = 500, 

𝑛 = 1 

𝑣 = 3, 𝑡 = 50, 
𝑛 = 1 

𝑣 = 3, 𝑡 = 1000, 
𝑛 = 1 

- 
𝛾 = 2−2 

𝑐 = 210 

Cutoff 0.01 0.5 0.5 0.5 0.05 0.01 

Release 0 1 0 1 0 1 0 1 0 1 0 1 

0 93.82% 6.18% 84.29% 15.71% 92.35% 7.65% 92.61% 7.39% 76.80% 23.20% 82.81% 17.19% 

1 42.22% 57.78% 21.15% 78.85% 32.44% 67.56% 31.11% 68.89% 24.44% 75.56% 37.78% 62.22% 

Precision 4.84% 2.65% 4.59% 4.83% 1.74% 1.93% 

Recall 57.78% 78.52% 67.56% 68.89% 75.56% 62.22% 

𝐅𝟏 Score 8.93% 5.12% 8.59% 9.02% 3.40% 3.75% 

AUC 80.30% 82.96% 83.20% 83.03% 80.53% 73.15% 

Number of 

Cars 

Damaged 

or 

Derailed 

Method Poisson Regression RF SVM 

Parameters - 𝑣 = 2, 𝑡 = 1000, 𝑛 = 1 𝛾 = 20, 𝑐 = 214 

RMSE 2.6313 2.4825 2.9117 

TCE 1.73% 6.74% 9.47% 



 

 

Table 7.6 Results of the CTT Hazmat Release and Rollover Classification 

Rollover 

Method 
Logistic 

Regression 
RF 1 RF 2 RF 3 Naïve Bayes SVM 

Parameters - 

𝑣 = 21 

𝑡 = 1000 

𝑛 = 100 

𝑣 = 3 

𝑡 = 500 

𝑛 = 1 

𝑣 = 8 

𝑡 = 1000 

𝑛 = 10 

- 
𝛾 = 2−8 

𝑐 = 20 

Cutoff 0.1 0.5 0.5 0.5 0.5 0.5 

Rollover 0 1 0 1 0 1 0 1 0 1 0 1 

0 86.55% 13.45% 81.68% 18.32% 93.14% 6.86% 91.70% 8.30% 97.08% 2.92% 96.49% 3.51% 

1 16.67% 83.33% 8.33% 91.67% 32.04% 67.96% 23.33% 76.67% 33.33% 66.67% 33.33% 66.67% 

Precision 30.30% 25.98% 41.14% 39.32% 61.54% 57.14% 

Recall 83.33% 91.67% 67.96% 76.67% 66.67% 66.67% 

𝐅𝟏 Score 44.44% 40.49% 51.25% 51.98% 64.00% 61.54% 

AUC 92.69% 89.58% 89.98% 90.62% 88.79% 91.33% 

Hazmat 

Release 

Method 
Logistic 

Regression 
RF 1 RF 2 RF 3 Naïve Bayes SVM 

Parameters - 

𝑣 = 23 

𝑡 = 100 

𝑛 = 50 

𝑣 = 16 

𝑡 = 500 

𝑛 = 100 

𝑣 = 4 

𝑡 = 500 

𝑛 = 10 

- 
𝛾 = 2−2 

𝑐 = 2−4 

Cutoff 0.1 0.5 0.5 0.5 0.1 0.5 

Release 0 1 0 1 0 1 0 1 0 1 0 1 

0 64.29% 35.71% 67.86% 32.14% 96.43% 3.57% 76.72% 23.28% 85.71% 14.29% 96.43% 3.57% 

1 25.00% 75.00% 28.33% 71.67% 50.00% 50.00% 50.00% 50.00% 25.00% 75.00% 50.00% 50.00% 

Precision 23.08% 24.16% 66.67% 23.44% 42.86% 66.67% 

Recall 75.00% 71.67% 50.00% 50.00% 75.00% 50.00% 

𝐅𝟏 Score 35.29% 36.13% 57.14% 31.91% 54.55% 57.14% 

AUC 62.50% 75.60% 69.88% 73.07% 80.36% 62.50% 

 

 



 

 

    

    

    
Figure 7.1 ROC curves for the classification methods with cutoff probability adjustment. 
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7.6 Discussion and Conclusions 

The main use of estimating conditional probability of hazmat release from trains 

and CTTs is in risk assessment. Risk assessment combined with economic analyses may 

be used for cost-sensitive decision-making. The type of the decision-making problem 

affects the choice of the criteria for comparison of the methods, and consequently the 

choice of the classification method. In other words, the benefits and costs of correctly 

classifying a hazmat release or misclassifying non-release cases as release depends on the 

objectives of the analysis. In train-level classification, for example, based on all criteria, 

RF is preferred. Among different settings for RF, the choice of method depends on the 

usage. RF1 is preferred if the cost of misclassifying non-release cases as release is not 

high, and RF2 is preferred, otherwise. RF3 is the best choice if these costs are not easy to 

estimate or have too many fluctuations. Similar type of analysis for car-level and CTTs 

should be considered.  

Selection of explanatory variables in this study was based on the reviewed 

literature, availability in the data, and avoidance of variables with missing values. In 

practice, variable selection may depend on other factors, as well. For example, a railroad 

company may have access to more detailed information about characteristics of the 

trains, cars, and operations. The use of these variables may affect the performance of the 

methods presented herein. Also, the purpose of classification and the stage of 

classification affects the availability of variables. Some explanatory variables may be 

outcomes of the incident/crash, and independent of all the other explanatory variables. 
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Such information may be unavailable and very hard to estimate, e.g. point of impact in a 

CTT crash. 

The classification methods classify outcomes of the incidents/crashes based on the 

probabilities they calculate for each class. In case of hazmat risk assessment, it is 

important to estimate these probabilities accurately. However, many classifiers are unable 

to produce accurate probability estimates and their initial estimates need to be calibrated 

(Zhong and Kwok 2013; Niculescu-Mizil and Caruana 2005). Some of the most popular 

calibration methods are Platt scaling (Platt and others 1999) and isotonic regression 

(Zadrozny and Elkan 2001, 2002). Among the classification methods of this study, 

logistic regression’s estimated probabilities are automatically calibrated, but RF, naïve 

Bayes and SVM need further calibration by the above methods, before using in risk 

assessment. Since RF used under-sampling, alternative calibration methods such as (Dal 

Pozzolo et al. 2015) can be utilized. 

The major limitations of this chapter were related to the datasets. The FRA rail 

incidents dataset does not include car characteristics. Availability of such information 

may improve the classification performance of the car-level classification. The CTT crash 

data was limited only to two Midwestern states, which may make the results less 

comprehensive and generalizable (a national police-reported crash data is not available). 

Also, there were some missing variables in the CTT data that could potentially affect 

probabilities of rollover and hazmat release, e.g. detailed driver and CTT characteristics, 

crash speed, type and amount of loaded hazmat, etc. For future studies, using other 

incident/crash dataset may address such limitation. Other classifiers and regressors may 
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be applied to the hazmat release problem and the results can compare to this study. 

Classification methods of this study can be implemented to the other components of 

hazmat risk, such as incident/crash frequency and release consequences in the future 

studies.  
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CHAPTER 8 MODELING OF FREQUENCY AND AGGREGATE MEASURES OF 

SEVERITY OF U.S. RAIL-BASED CRUDE OIL RELEASE INCIDENTS 

8.1 Introduction 

Production of crude oil has significantly increased in the U.S. over the past 

decade and trains transport a large portion of this crude oil to the refineries (26% in 2016 

and 12% in 2016). Between 2008 and 2014, the number of annual train carloads of crude 

oil increased by about 5100%. Despite a modest reduction in crude oil carloads after 

2015 due to changes in the U.S. pipeline capacity and international crude oil market, 

more than 200,000 carloads of crude oil were moved by rail in 2016 (Association of 

American Railroads 2017). This constitutes approximately one-fifth of the total hazmat 

moved by trains in that year in the U.S. (Bing et al. 2015). The transportation of large 

quantities of crude oil by trains potentially exposes people living near railways and the 

proximate environment to the ill effects of hazmat in cases of release incidents. The 

objective of this chapter is to estimate statistical models that can identify and quantify the 

effects of volumes and distances of rail-based crude oil transport and other macroscopic-

level variables on the frequency and severity of crude oil release incidents. These models 

may enable decision- and policy-makers to work towards better preparation for dealing 

with such incidents, decreasing crude oil release costs, and predict these costs for future. 

In this chapter, four OD-based statistical models were estimated for rail-based 

crude oil release incidents in the U.S.: one model for frequency and three models for 

measures of aggregate severity (number of released tank cars, quantity released, and total 

costs). State-to-state volume of crude oil movement (as a measure of exposure), transport 
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distance, availability of other modes of transportation and number of competing class I 

railroad companies served as explanatory variables in the models. This chapter utilized 

the 2007-2016 Pipeline and Hazardous Material Safety Administration (PHMSA) rail-

based crude oil release data. Since the state-to-state volume of crude oil movement is not 

available, a Linear Program (LP) was formulated to approximate these volumes of crude 

oil movement based on Energy Information Administration (EIA) higher-level 

production-consumption data (EIA divides the U.S. into 5 districts and reports the crude 

oil movement among these 5 districts). The estimated models quantified the effects of 

explanatory variables on frequency and aggregate measures of severity of crude oil 

release, along with providing a tool for predicting these safety measures for future. 

The remainder of the chapter is organized as follows: section 2 provides an 

additional literature review, section 3 introduces the methods used in this chapter, section 

4 presents all the datasets that were combined and used in the modeling, section 5 reports 

the modeling results, and conclusions and discussion in section 5 complete this chapter. 

8.2 Additional Literature Review 

The additional reviewed literature focused on transportation of crude oil, and 

macroscopic-level analysis of traffic crashes.  

8.2.1 Crude Oil Transportation 

Exclusive studies on surface transportation of crude oil received more attention in 

the early 2010’s following the crude oil boom in the U.S. Oke et al. presented a medium-

term market equilibrium model of the North American crude oil sector to evaluate 

different strategies, such as restricting rail loads, increasing pipeline capacity, and lifting 
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U.S. crude oil export ban, for mitigating the environmental and public-safety risk due to 

crude oil transportation by rail (Oke et al. 2016). Liu proposed a method for risk 

management of crude oil rail transportation that accounted for track segment specific 

characteristics, train-specific characteristics, and population density along each segment 

(Liu 2016). Liu and Dick estimated unit-train crude oil transportation risk by frequency 

of location-specific rail defect inspection through an optimization framework (Liu and 

Dick 2016). Yazdi and Bagheri compared the risk of transportation of crude oil by 

pipelines, trains and trucks, through a case study and found pipelines as the safest mode 

(Yazdi and Bagheri 2017). Other studies focused on chemical characteristics of different 

types of crude oil, regarding their effects on transportation risk (David Lord et al. 2015; 

Andrews 2014). 

8.2.2 Macroscopic-Level Accident Analysis 

A common macroscopic-level accident analysis in the transportation safety 

literature is crash frequency modeling (Mannering and Bhat 2014). These studies frame 

analytic approaches to identify factors that affect the number of crashes occurring in a 

geographical unit (e.g. a roadway segment, an intersection or a census tract) over a 

specified time period (Dominique Lord and Mannering 2010). The models use different 

explanatory variables, including land-use, demographic, employment, roadway, and 

environmental characteristics (Hadayeghi, Shalaby, and Persaud 2010, 2003; Park and 

Lord 2007). Modeling techniques utilized to account for different aspects of accident data 

included models such as Poisson regression, negative binomial regression, duration, 

multivariate, mixed effects, spatial/temporal correlation, and non-parametric (Mannering 
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and Bhat 2014; Dominique Lord and Mannering 2010). Several studies focused on 

modeling truck accident frequency (Miaou et al. 1992; Harwood, Viner, and Russell 

1990, 1993; Joshua and Garber 1990), and some investigated train accident frequency for 

different type of accidents, especially derailments (Anderson and Barkan 2004; Liu, 

Rapik Saat, and Barkan 2017). 

8.2.3 Summary 

The additional literature review revealed the relatively recent crude oil 

transportation literature focused on risk assessment, market equilibrium, mode choice, 

and chemical aspects of crude oil. Despite the availability of macroscopic-level studies of 

traffic accidents, this review did not find any studies focused on modeling hazmat 

incident frequency or other aggregate measures for hazmat-related incidents. As well, this 

review did not uncover the use of OD-based accident frequency models in published 

literature. 

8.3 Methods 

The explanatory variables in this chapter comprised of state-to-state volume of 

crude oil shipment (as a measure of exposure), distance of shipment, availability of other 

modes of transportation, and the number of class I railroads competing for market. This 

chapter used Mixed-effects Negative Binomial Regression (MNBR) for modeling 

frequency and number of tank cars that released crude oil, and Mixed-effects Ordered 

Logit Models (MOLM) for modeling categorized quantity of release and total costs (the 

reason for categorization of these continuous variables is mentioned in the data and 

variables section). As a state-level crude oil movement data was not available to use as an 
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exposure measure in the models, an LP was formulated for approximating the volumes of 

state-to-state crude oil movement volumes.  

The EIA reports the movement of crude oil in the U.S. based on Petroleum 

Administration for Defense Districts (PADDs), which are geographic aggregations of the 

50 states and the District of Columbia into five districts. Figure 8.1 presents a map of 

these districts. Based on the available information regarding annual state production of 

crude oil, annual state capacity of petroleum refineries, state-to-state transportation 

distance, unit-price of crude oil transportation for different modes (rail, pipeline and 

water), and the PADD-to-PADD movement of crude oil by transportation mode 

information, an LP was formulated to approximate annual state-to-state volume of crude 

oil movement. In other words, the LP disaggregates the PADD-to-PADD crude oil 

movement data to the state-to-state level based on the above additional information.  
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Figure 8.1 Map of U.S. states, PADDs, oil and gas wells, refineries, and their geometric 

centroids (from various sources mentioned in the data and variables section). 

Let 𝑥𝑖𝑗,𝑚 be volume of crude oil movement from state i to refineries in state j by 

transportation mode m (rail, pipeline and water), 𝑑𝑖𝑗 be the defined distance from state i 

to state j, 𝑐𝑚 be the cost per unit volume per unit distance of transportation of crude oil 

by mode m, 𝑃𝑖 be the annual crude oil production of state i, 𝑅𝑗 be the annual petroleum 

refinery capacity for state j, 𝑁𝑘 be a set of states that belong to PADD k, and 𝑇𝑘𝑙,𝑚 be the 

annual volume of crude oil movement from PADD k to PADD l by transportation mode 

m. The formulated LP for minimizing the total cost of crude oil movement in the U.S., 

denoted by Z, is as follows: 

𝑀𝑖𝑛 𝑍 =  ∑ ∑ ∑ 𝑥𝑖𝑗,𝑚𝑑𝑖𝑗𝑐𝑚

3

𝑚=1

50

𝑗=1

50

𝑖=1

 (8.1) 

subject to: 
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(𝑖) ∑ ∑ 𝑥𝑖𝑗,𝑚 = 𝑃𝑖

3

𝑚=1

50

𝑗=1

                                 for 𝑖 = 1 to 50 

(𝑖𝑖) ∑ ∑ 𝑥𝑖𝑗,𝑚 ≤ 𝑅𝑗

3

𝑚=1

50

𝑖=1

                                for 𝑗 = 1 to 50 

(𝑖𝑖𝑖) ∑ ∑ 𝑥𝑖𝑗,𝑚 = 𝑇𝑘𝑙,𝑚

𝑗𝜖𝑁𝑙𝑖𝜖𝑁𝑘

                          for 𝑘 = 1 to  5, 𝑙 = 1 to 5, 𝑚 = 1 𝑡𝑜 3 

(𝑖𝑣) 𝑥𝑖𝑗,𝑚 ≥ 0                                                  for 𝑖, 𝑗 = 1 to 50 and 𝑚 = 1 𝑡𝑜 3 

The objective function Z is the total costs of movement of crude oil among all the 

50 U.S. states. Constraint (i) for each state i, assures that the volume of crude oil moved 

from state i to all other states j is equal to the total crude oil produced in state i. 

Constraint (ii) holds the annual volume of crude oil moved to each state less than or equal 

to the annual refining capacity of the state. Constraint (iii) satisfies the PADD-to-PADD 

crude oil movement by transportation mode among states, and Constraint (iv) is the non-

negativity constraint. For 50 origins, 50 destinations, 3 modes of transportation, and 5 

PADDs, the LP included 7500 decision variables, 150 type (i) equality constraints, 150 

type (ii) inequality constraints, 60 type (iii) equality constraints, and 7500 non-negativity 

constraints. The Simplex method (Dantzig, Orden, and Wolfe 1955) was used to solve the 

LP in this study. 

The underlying assumptions of the LP include: 

- Minimizing the overall transportation costs of the movement of crude oil provides an 

approximation of the crude oil shippers’ decision on the volumes and destinations of 

shipment, 

- 𝑐𝑚𝑠 by mode are equal across the U.S., regardless of origins and destinations, 

- Crude oil produced in a certain year is shipped to refineries in the same year, 

- Transportation cost is the only factor affecting mode and destination choice. 
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8.4 Data and Variables 

The data used in this study comprised of a number of datasets obtained from 

different sources. These included U.S. crude oil release rail incidents data, state 

production of crude oil, crude oil wells and refineries locations, state capacity of crude oil 

refining, PADD-to-PADD data of crude oil movement by water, pipeline and rail, U.S. 

class I railroads maps, and U.S. crude oil pipeline and waterway maps. This section 

presents these datasets and the final variables. 

Transportation distance was used as a cost factor in the LP (equation 8.1), and 

also used as an explanatory variable that affected frequency and severity of incidents. 

This study defined this distance as the geodesic (the shortest path between two points on 

a sphere) distance between each state’s origin points to all the states’ destinations points. 

Origin points of each state were defined as the geometric centroid of the crude oil wells 

in that state, and the destination points of each state was defined as the geometric centroid 

of the refineries located in that state. Origin/destination was the geometric centroid of the 

state, if there were not wells/refineries located in that state. The location information of 

2016 U.S. oil and gas wells and 2017 U.S. refineries were obtained from FracTracker 

(FracTracker n.d.) and the EIA (Energy Information Administration (EIA) 2017a), 

respectively. This study calculated the geometric centroids of oil and gas wells and 

refineries in each state (origins and destinations), and the distances from all origins to all 

destinations using the geographic information system software ArcGIS version 10.5.1. 

Figure 8.1 presents this information.  
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The LP introduced in the methodology section was solved for ten years (2007-

2016) to approximate the state-to-state crude oil movement volumes. The LP’s input data 

was from different sources. Distance (𝑑𝑖𝑗) was defined as above and was assumed 

constant throughout the ten years. It was sufficient to consider the cost of moving crude 

oil by mode m, 𝑐𝑚, in a relative manner. Based on an internet search of crude oil carriers, 

the costs of moving crude oil by rail was assumed 7.15 times as large as pipeline and 5 

times as large as water (𝑐𝑟𝑎𝑖𝑙= 5.0, 𝑐𝑝𝑖𝑝𝑒= 0.7 and 𝑐𝑤𝑎𝑡𝑒𝑟 = 1.0). Despite the existence of 

spatial and temporal variations in these ratios, they were assumed constant in this study, 

as the LP was very insensitive to changes of these values (less than 1% changes in the 

output) due to consideration of constraint (iii) which assures the correct share of modes. 

Annual crude oil production (𝑃𝑖), annual petroleum refinery capacity (𝑅𝑗) and the annual 

PADD-to-PADD volume of crude oil movement were from EIA (Energy Information 

Administration (EIA) 2017b) for 2007-2016.  

Two variables captured the possible effects of availability of other modes or other 

class I railroad companies on frequency and severity of incidents. This was based on the 

hypothesis that in case of availability of pipelines and/or waterway for movement of 

crude oil, the railroad companies may try to decrease their price to stay in a competitive 

mode by decreasing their costs, leading to a lower level of safety. Also, the larger the 

number of competing class I railroad companies are available between the origin and 

destination, similar intention may result in cheaper but less safe transportation. A binary 

variable accounted for availability of other modes based on the petroleum pipelines and 

waterways for petroleum movement maps, obtained from EIA (Energy Information 
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Administration (EIA) 2017a). A continuous variable captured the number of available 

class I railroads between origins and destinations, based on the class I railroad maps 

available from Association of American Railroads (Association of American Railroads: 

Freight Rail Works n.d.). 

Ten-year data (2007-2016) of crude oil release incidents from trains in the U.S. 

was extracted from the PHMSA incident database by the Incident Reports Database 

Search tool (Pipeline and Hazardous Materials Safety Administration and Office of 

Hazardous Materials Safety 2018). According to PHMSA, the reported incidents are 

either reported through telephone within 12 hours after occurrence for more severe 

incidents or through a written notice within 30 days for other incidents. The incidents that 

require telephonic notice include cases “where: 1) as a direct result of a hazardous 

material a person is killed or injured requiring admittance to a hospital, the general 

public is evacuated for one hour or more, a major transportation artery or facility is 

closed or shut down for one hour or more, or the operational flight pattern or routine of 

an aircraft is altered; 2) fire, breakage, spillage, or suspected radioactive contamination 

occurs involving a radioactive material; 3) fire, breakage, spillage, or suspected 

contamination occurs involving an infectious substance other than a regulated medical 

waste; 4) a release of a marine pollutant occurs in a quantity exceeding 119 gallons for a 

liquid or 882 pounds for a solid; 5) a situation exists of such a nature that, in the 

judgment of the person in possession of the hazmat, it should be reported; or 5) during 

transportation by aircraft, a fire, violent rupture, explosion or dangerous evolution of 

heat occurs as a direct result of a battery or battery-powered device. Other incidents 
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include: 1) an unintentional release of a hazmat during transportation including loading, 

unloading and temporary storage related to transportation; 2) a hazardous waste is 

released; 3) an undeclared shipment with no release is discovered; or 4) a specification 

cargo tank 1,000 gallons or greater containing any hazmat that received structural 

damage to the lading retention system or damage that requires repair to a system 

intended to protect the lading retention system, and did not have a release.” 

The extracted data included 460 release incidents, 680 released tank cars, 

1,738,926 gallons of released crude oil and $65,608,355 total damages. Total damages 

included carrier/property damage, response/clean-up costs, evacuation costs, 

injuries/fatalities, and roadway closure (costs of evacuation were assumed $250 per 

person-day (Saat et al. 2014), monetary costs of not-hospitalized injury as the only type 

of injury/fatality that occurred in the dataset was assumed $62,500 per injury (Iranitalab 

and Khattak 2017), and roadway closure was assumed to cost $218,000 per day (Erkut, 

Tjandra, and Verter 2007; Mallela and Sadavisam 2011)). This dataset included the origin 

and destination of movement of each train that was involved in the release incidents. 

Using this information, the annual frequency of incidents, number of tank cars, quantity 

of crude oil released, and total costs for each pair of states (with at least one incident) 

were extracted. Pairs of states with larger-than-zero approximated crude oil movement 

volumes were added to the dataset with zero for frequency and severity of incidents. 

Volumes and other variables (distance, other modes and other class I railroad companies) 

were also added. The final dataset comprised of 318 rows; each row was a pair of states 
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with positive volume of crude oil exchange in one of the years 2007-2016. Table 8.1 

presents a summary of the variables. 

Table 8.1 Variables and Descriptive Statistics of the Final Dataset 

Variable Variable Type Values and Statistics 

Response Variables 

Frequency  Count Min = 0, Max = 17, Mean = 1.3648, Var. = 5.6772 

Number of Tank 

Cars 
Count Min = 0, Max = 35, Mean = 2.0440, Var. = 19.6511 

Quantity Released 

Continuous 

(gallons) 

Min = 0, Max = 475176.00, Mean = 5451.20, Var. = 

1.93E+09 

Categorical 
Categories: = 0, 0 < ≤100, 100 < ≤10000, >10000 

Ratios: 0 (45.77%), 1 (47.34%), 2 (04.07%), 3 (02.82%) 

Total Costs 

Continuous 

(2016 U.S. 

Dollar) 

Min = 0, Max = 25,632,806, Mean = 205,669, Var. = 

2.71E+11 

Categorical 

Categories: = 0, 0 < ≤15000, 15000 < ≤100000, 

>100000 

Ratios: 0 (56.43%), 1 (33.86%), 2 (04.39%), 3 (05.33%) 

Explanatory Variables 

Volume (volume) 
Continuous 

(1000 barrels) 

Min = 0, Max = 1.54E+05, Mean = 1.75E+04, Var. = 

9.35E+08 

Distance (distance) 
Continuous 

(miles) 

Min = 67.03, Max = 2384.39, Mean = 742.0607, Var. = 

2.20E+05 

Other Modes 

(omodes) 
Dichotomous Yes (38.99%), No (61.01%) 

Number of Class I 

Railroad Companies 

(railroads) 

Count Min = 0, Max = 3, Mean = 1.3648, Var. = 0.8066 

The variances of the two continuous response variables (quantity released and 

total costs) were very large. This was due to a few extremely large values relative to the 

other values in these two variables, which could cause biased estimates, if a linear 

regression model was utilized (Nachtsheim et al. 2004). Natural logarithm or a root 

transformation were possible solutions for this issue, however as logarithm of zero is not 

computable and model interpretation of a root transformed response variable is not as 

conclusive, an ordinal categorization of these variables was preferred. Categorization also 
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alleviated the effects of possible inconsistency and inaccuracies in reporting and 

approximating costs and quantities. The thresholds of the categories were determined 

based on the variables’ dispersion between maximum and minimum values, and abating 

the effects of the very large values without excluding them.  

8.5 Modeling Results 

This section presents the results of the four models estimated for frequency and 

aggregate measures of severity of crude oil release rail incidents. The frequency model 

used the number of incidents between each pair of states with positive crude oil 

transportation volume as the response variable in an MNBR. The three aggregate severity 

models used three criteria as response variables to account for severity of incidents, 

again, between each pair of states with positive crude oil transportation volume: 1) the 

number of tank cars that released crude oil; 2) the quantity of crude oil released; and 3) 

the total monetary costs of crude oil release. The tank car model was also a MNBR. The 

quantity of release and total costs models were MOLM.  

In all the four models, the explanatory variables included volume and distance of 

crude oil shipment between pairs of states as continuous variables, availability of other 

modes of transportation as a binary variable (yes/no), number of available class I 

railroads as an integer variable (0-7), and quadratic and interaction terms for volume and 

distance variables. Three grouping factors were considered in the models: year; origin-

destination state pairs; and origin-destination PADD pairs. All the four main variables 

(volume, distance, other modes and railroad companies) were used in the models 
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regardless of their statistical significance, while the inclusion of quadratic and interaction 

terms, and the grouping factors were decided based on AICc values (Cavanaugh 1997).  

Table 8.2 presents the estimated coefficients, likelihood ratio (LR) test p-values 

and estimated standard deviations of random effects for the intercepts. The quadratic 

form of volume of crude oil was significant in all models, while the quadratic form of 

distance and the interaction of distance and volume did not contribute to any of the 

models in terms of AICc, and were excluded. The contribution of three grouping factors 

varied among the models which led to different random effects specifications. Random 

effects for variables other than the intercept did not contribute to the models’ AICc.  

Equations 8.2 to 8.5 present the estimated equations for the frequency, tank cars, 

quantity, and costs models, respectively. In these equations �̂�𝑖 is the estimated frequency 

of crude oil rail incidents, �̂�𝑡 is the estimated number of tank cars released crude oil, 

�̂�(𝑌𝑞 ≤ 𝑗) is the estimated probability of amount of crude oil release falling in a category 

equal or smaller than category j, �̂�(𝑌𝑐 ≤ 𝑗) is the estimated probability of costs of crude 

oil release falling in a category equal or smaller than category j, 𝑋1 is the amount of crude 

oil shipped between a pair of states in thousand barrels per year, 𝑋2 is the geodesic 

distance between a pair of states in miles, 𝑋3 is the availability of modes other than rail 

(pipeline/water) between a pair of states, 𝑋4 is the number of available class I railroad 

companies between a pair of states, e is the base of natural logarithm and N(𝜇, 𝜎2) 

denotes a normal distribution with mean of 𝜇 and variance of 𝜎2. The other parameters 

are similar to their definitions in sections 3.3 and 3.4. 

�̂�𝑖 = 𝑒−2.76761+0.00003𝑋1−0.000000000168𝑋1
2+0.00131𝑋2+0.31678𝑋3+0.61329𝑋4+�̂�𝑠+�̂�𝑝 , (8.2) 
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�̂�𝑠~𝑁(0, 0.80902), �̂�𝑝~𝑁(0, 0.20762).  

�̂�𝑡 = 𝑒−2.79799+0.00004𝑋1−0.000000000207𝑋1
2+0.00148𝑋2+0.29936𝑋3+0.58017𝑋4+�̂�𝑠 , 

�̂�𝑠~𝑁(0, 1.08402).  (8.3) 

�̂�(𝑌𝑞 ≤ 𝑗)

1 − �̂�(𝑌𝑞 ≤ 𝑗)

= 𝑒�̂�𝑗0−0.00009𝑋1+0.000000000462𝑋1
2−0.00508𝑋2−1.77976𝑋3−1.00642𝑋4+�̂�𝑠+�̂�𝑝+�̂�𝑦 , 

�̂�𝑠~𝑁(0, 3.342682), �̂�𝑝~𝑁(0, 1.881592), �̂�𝑦~𝑁(0, 0.074152),   

�̂�00 = 0, �̂�10 = 5.711, �̂�20 = 13.773, �̂�30 = 15.263.  

(8.4) 

�̂�(𝑌𝑐 ≤ 𝑗)

1 − �̂�(𝑌𝑐 ≤ 𝑗)

= 𝑒�̂�𝑗0−0.00008𝑋1+0.000000000400𝑋1
2−0.00271𝑋2−1.18009𝑋3−0.55749𝑋4+�̂�𝑠+�̂�𝑝 , 

�̂�𝑠~𝑁(0, 1.6232), �̂�𝑝~𝑁(0, 1.3972),    

�̂�00 = 0, �̂�10 = 4.433, �̂�20 = 8.206, �̂�30 = 9.068.  

(8.5) 

This chapter used percentage change (PC) and odds ratios (OR) for interpretation 

of MNBR and MOL, respectively. Confidence intervals (CI) were calculated for these 

two measures, along with point estimates to assist with model interpretation. As the 

quadratic form of the variable volume was in the final models, PC or OR for this variable 

was a function of itself, while they were independent for other variables. Therefore, Table 

8.3 presents point estimates and 95% CIs for PCs and ORs for variables distance, 

omodes, and railroads, while Figure 8.2 illustrates these measures for volume, 

corresponding to a range of values for volume. Parametric bootstrap and Wald 95% CI’s 

were calculated for MNBR and MOL models, respectively. The value of c in calculating 

PC and OR for volume, distance, omodes, and railroads were 1000, 100, 1, and 1, 

respectively.  



 

  

Table 8.2 Estimation Results of the Four Incident Frequency and Severity Models 

Model Components Variables 

Frequency Model Tank Cars Model Quantity Released Model Total Costs Model 

Coefficient 
LR Test p-

value 
Coefficient 

LR Test p-

value 
Coefficient 

LR Test p-

value 
Coefficient 

LR Test p-

value 

Fixed 

Effects 

Main 

Effect 

Intercept -2.76761 -2.79799 5.711, 13.773, 15.263 4.433, 8.206, 9.068 

Volume 0.00003 0.00000 *** 0.00004 0.00000 *** 0.00009 0.00022 *** 0.00008 0.00001 *** 

Distance 0.00131 0.00000 *** 0.00148 0.00000 *** 0.00508 0.00000 *** 0.00271 0.00005 *** 

Other Modes 0.31678 0.14582  0.29936 0.23414  1.77020 0.06852 . 1.20350 0.07169 . 

Railroad 0.61329 0.00000 *** 0.58017 0.00005 *** 1.00220 0.09064 . 0.67910 0.13693  

Quadratic 

and 

Interaction 

Terms 

Volume2 -1.68E-10 0.00046 *** -2.07E-10 0.00015 *** -4.62E-10 0.01367 * -4.00E-10 0.00129 *** 

Distance2 — — — — — — — — — — — — 

Volume*Dist. — — — — — — — — — — — — 

Standard Deviation 

of Random Effects 

for the Intercept 

States 0.809 1.084 3.34268 1.623 

PADDs 0.2076 — 1.88159 1.397 

Year — — 0.07415 — 

Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

—: Not used in the model due to not contributing to the model according to AICc 

Table 8.3 95% Confidence Intervals and Point Estimates of PCs and ORs 

Variables 

Frequency Model Tank Cars Model Quantity Released Model Total Costs Model 

Percentage Change Percentage Change Odds Ratios Odds Ratios 

Point 

Estimate 

Lower 

Bound 

of CI 

Upper 

Bound 

of CI 

Point 

Estimate 

Lower 

Bound 

of CI 

Upper 

Bound 

of CI 

Point 

Estimate 

Lower 

Bound 

of CI 

Upper 

Bound 

of CI 

Point 

Estimate 

Lower 

Bound 

of CI 

Upper 

Bound 

of CI 

Distance 14.01 7.78 19.08 15.92 8.00 21.10 1.66 1.31 2.11 1.31 1.14 1.51 

Other Modes 37.27 -9.11 104.88 34.90 -18.24 117.16 5.93 0.84 42.05 3.25 0.85 12.43 

Railroad 84.65 39.45 129.55 78.63 27.50 129.39 2.72 0.82 9.10 1.75 0.84 3.63 

  



 

 

  

  
Figure 8.2 95% confidence intervals and point estimates of PC and OR for volume in the four estimated models. 
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Inclusion of value of “0” in CI’s calculated for PC’s and inclusion of value of  “1” 

in CI’s calculated for OR’s denote the lack of evidence towards the statistical 

significance of the variable’s effects on or association with the response variable. With 

95% confidence and holding all variables constant except the variable being interpreted, 

the models can be interpreted as follows: 

For each 100-mile increase in the distance of crude oil shipment by rail between 

pairs of states, the frequency of crude oil release incidents increased by 7.78% to 19.08%. 

This change in distance led to 8.00% to 21.10% increase in the number of released tank 

cars. Corresponding to the 100-mile increase in distance, the odds of increase in quantity 

released from any of the predetermined levels to a higher level changed by 1.31 to 2.11 

times. This change also resulted in 14% to 51% positive change in the odds of increase in 

total costs from any level to a higher level.  

The models indicated lack of evidence for existence of any impacts from 

availability of modes of transportation (other than rail) from the origin states to the 

destination states on frequency or severity of crude oil release incidents. However, the 

number of class I railroad companies between states was statistically significant in the 

frequency and tank car models. One unit increase in the number of class I railroad 

companies resulted in an increase in the frequency of crude oil release incidents by 

39.45% to 129.55% and in the number of release tank cars by 27.50% to 129.39%. 

Statistical evidence was not sufficient for the effects of this variable on quantity released 

or total costs. 
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Figure 8.2 shows how point estimates and CI’s for volume’s PC and OR change 

as a function of volume itself. For each 1-million-barrel per year increase in the shipment 

of crude oil between a pair of states, sufficient statistical evidence was found regarding 

the response variables limited to restricted volumes. The frequency of incidents increased 

by variable amounts less than 5%, up to a volume point of approximately 32 million 

barrels. The number of tank cars released crude oil increased by a value between 0 to 6%, 

up to a volume point of approximately 40 million barrels. Quantity released and total 

costs increased by less than 20% and 15%, respectively and for up to approximately 23 

million and 29 million barrels per year. The accurate amount of change can be calculated 

for all possible values of volume using the PC and OR estimated equations reported in 

Figure 8.2. With 95% confidence, sufficient statistical evidence was not found for effects 

of volume on the response variables for values higher than the ones mentioned. In all four 

models, approximately after 100 million barrels, increase in volume was identified to 

decrease frequency and aggregate severity of incidents, not statistically significantly. This 

may be due to lack of sufficient observation in this volume range, relative to lower values 

for volume. 

8.6 Conclusions and Discussion 

There are multiple factors that affect crude oil shippers’ destination choice. These 

include type of crude oil, type and capacity of refineries in the destination, transportation 

monetary and non-monetary (e.g. time) costs, etc. Distance affects transportation costs as 

it is correlated with price of transportation and time. But due to presence of other 

variables mentioned above, farther refineries may be more attractive to crude oil shippers. 
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This chapter quantified the effects of distance on frequency and aggregate measures of 

severity of incidents. Therefore, shippers are suggested to include these values in terms of 

monetary or non-monetary costs in their destination choice procedure, potentially leading 

to closer destinations. Policy-makers may consider these quantified impacts, in terms of 

restricting shippers in their refinery destination choice and/or penalizing the choice of 

further destinations. This may decrease potential costs of crude oil release incident, 

benefiting the crude oil shippers and the society, simultaneously. 

This chapter hypothesized that class I railroad companies attempt to decrease their 

costs (leading to more risky performance and more incidents), in order to stay 

competitive with other transportation modes (pipeline and water) and other class I 

railroad companies. Although presence of other modes was not found to exacerbate 

safety statistically, competition with other class I railroad companies was significantly 

associated with lower level of safety, in terms of frequency of incidents and number of 

tank cars released crude oil. Policy-makers may account for this factor in formulating 

safety policies. Also, based on this finding, incident response facilities may be more 

concentrated close to routes connecting origin-destination pairs with competing class I 

railroad companies for crude oil transportation. 

As expected, the larger the volume of crude oil shipped from one state to another, 

the greater was the frequency and aggregate severity of incidents between the two states. 

The finding that the rate of increase in frequency and aggregate severity reduced by 

increase in volume can be attributed to several reasons: higher volumes of shipment of 

crude oil may be more frequent between those pairs of states that have this interaction 
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routinely and consequently have a safer performance due to a lower level of uncertainty. 

Similarly, shipments with lower volumes may face more uncertainties due to smaller 

frequency, leading to more incidents and lower level of safety. Larger shipments of crude 

oil may occur more frequently between closer pairs of origin and destination, resulting in 

less sensitive-to-changes impacts on frequency and severity of incidents.  

In this chapter, the four response variables, despite being interdependent, captured 

different phenomena with different objectives. While a safety planner may be more 

interested in prediction of the frequency and the costs of the incidents, emergency 

response or environmental agencies may find prediction of quantity of release more 

useful. Railroad insurance companies may prefer a prediction tool for costs of incidents, 

while number of released tank cars may be more important from a railroad engineering 

point of view. Policy-makers may focus on any of the models, based on their priorities. 

Frequency models consider all incidents equally, regardless of the size and consequences 

of release. Such an approach is advantageous as it considers potential costs in, for 

example, incidents with potentially large consequences that occurred with small 

consequences due to fast response or occurrence in a small-populated location. As a 

disadvantage, these models treat less-concerning incidents, such as non-accident releases, 

similar to very costly incidents. The use of the frequency model along with at least one of 

the aggregate severity models is recommended in practice. 

The estimated models can be used for prediction in the future by inputting 

predicted values for the explanatory variables. Calculated distances among states may 

change in the future based on changes in number and locations of oil wells and refineries. 
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Transportation modes and railroad companies’ information may be predicted for future to 

use in the models. The parameters of the LP, including productions, refining capacity, 

and PADD-to-PADD shipment volumes need projection for future, based on historic 

data. Variations of the LP may approximate volumes of transportation of other hazmat 

among states. The LP needs modification depending on the hazmat, available modes of 

transportation, type of origin/destination, available production and consumption data, and 

available auxiliary information (such as the PADD information in case of this chapter). 

U.S. production of crude oil peaked in 2015 and faced a reduction in 2016. Also, 

the amount of crude oil moved by rail in the U.S. peaked in 2014 and decreased in 2015 

and 2016. These along with safety improvements have led to a smaller number of rail 

crude oil-release incidents in 2015 and 2016, compared to 2014. However, this reduction 

does not affect the importance of this study because of several of reasons: the future of 

crude oil production and transportation depends on many factors, including international 

crude oil market and prices, domestic demand, economic factors, governmental decisions, 

etc., and the production and movement of crude oil may increase again in the coming 

years; similar sudden and unexpected increases in the rail transportation demand of crude 

oil or other hazmat may occur in the future, and this chapter provided a framework to 

study such occasions; and the amount of movement of crude oil by rail and the resulting 

release incidents, even after the recent reduction, is still considerable and necessary to 

address. 

One limitation of this chapter was the inevitable assumptions made due to lack of 

data availability. The majority of these assumptions were made in the formulation and 
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parameter tuning of the LP. It was attempted to minimize the sensitivity of the results due 

to the assumptions, however there may be still possible differences in the conclusions of 

this chapter as a result of different assumptions. The other limitation was in the 

categorization of the continuous response variables (quantity of crude oil release and total 

costs). It was preferable to model these two variables as continuous response variables 

and estimate the quantified effects of explanatory variables on them directly. 

Nevertheless, due to inconsistency in approximating and reporting of these values, very 

large variations, and the impossibility of the utilization of a useful transformation, these 

variables were categorized. Also, similar to chapters 4, 5 and 6, unobserved heterogeneity 

may be an issue in the models of this chapter as well and needs to be considered in using 

the models and their outcome in practice. 

Future studies may focus on modeling frequency of crude oil-carrying train 

incidents, regardless of releasing the crude oil, and modeling the probability of release of 

crude oil, given an incident, separately. This approach can provide the effects of 

microscopic factors, such as characteristics of crude oil, train, railroad, etc., on 

occurrence of crude oil release incidents. Such a study requires a dataset of crude oil-

carrying train incidents. The use of other statistical methods for modeling or machine 

learning methods for better prediction performance may also be investigated. 
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CHAPTER 9 JOINT AND SEPARATE MODELING OF TYPES AND 

CONSEQUENCES OF RAIL-BASED CRUDE OIL RELEASE INCIDENTS 

9.1 Introduction 

The transportation of large quantities of crude oil by rail potentially exposes 

people living in vicinity of railways and the proximate environment to the ill effects of 

hazmat in case of incidents leading to release. Various factors can affect the likelihood of 

incidents and consequences of crude oil release. Identifying these factors can assist crude 

oil shippers, railroad companies and policy-makers with decisions resulting in safer crude 

oil transportation.  

The main objectives of this chapter were identification of the factors that affect 

the types and consequences of crude oil release from trains, quantification of these 

effects, and investigation of the effects of types and consequences of crude oil release on 

the resulting costs and damages. The considered factors that can impact types and 

consequences of release included characteristics of crude oil, tank cars, and release 

incidents. On January 2, 2014, PHMSA issued a safety alert warning that the type of 

crude oil transported from the Bakken region may be more flammable than traditional 

heavy crude oil (U.S. Department of Transportation (DOT), n.d.). A secondary objective 

of this chapter was testing the hypothesis of the PHMSA safety alert throughout the 

statistical modeling. 

The investigation in this chapter involved estimation of two separate multinomial 

response models for types of crude oil release (gas dispersion, spillage and both) and 

consequences of crude oil release (fire, explosion and none), and one joint multinomial 
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response model, for types and consequences of release. This chapter used the 2007-2016 

PHMSA U.S. rail-based crude oil release data. Estimation of a robust linear regression 

model captured the effects of the types and consequences of crude oil release on total 

post-release costs, including carrier/property damage, response/clean-up costs, evacuation 

costs, injuries/fatalities, and roadway closure. 

An additional literature review pertaining to shipping of crude oil follows this 

introduction. The ensuing section presents the methods of this chapter, dataset and 

variables. Results from the modeling effort, their interpretations, discussion and 

conclusions complete this chapter. 

9.2 Additional Literature Review 

Liu proposed a method for optimal safety risk management of rail transportation 

of crude oil. The model accounted for track segment specific characteristics (segment 

length, track class, method of operation, and annual traffic density), train-specific 

characteristics (train length, train speed, and tank car safety design), and population 

density along each segment. He measured segment-specific risk by the expected number 

of affected persons. Also, the model estimated the average interval between release 

incidents (Liu 2016). Oke et al. presented a medium-term market equilibrium model of 

the North American crude oil sector to evaluate different strategies for mitigating the 

environmental and public-safety risk due to crude oil transport by rail. They reported that 

an integrated policy of restricting rail loads, increasing pipeline capacity, and lifting US 

crude oil export ban can address medium-term risk of crude oil transport by rail (Oke et 

al. 2016). 
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Following PHMSA’s safety alert regarding the possible extra flammability of the 

sweet light crude oil of the Bakken region relative to traditional heavy crude oil, several 

studies investigated the chemical characteristics of this crude oil. Lord et al. reviewed 

these studies and concluded that due to significant variability in criteria and procedures 

used in selection, acquisition, and analysis of crude oil samples, the available information 

was of insufficient quality to enable a meaningful comparison of crude oils. According to 

Lord et al., current methods for crude oil hazard classification and packing were often 

inadequate (David Lord et al. 2015). This provided the motivation to investigate the 

validity of PHMSA’s safety alert in this research. 

9.3 Methods 

This section introduces the statistical approaches used in this chapter by first 

discussing multinomial response models (used for separate and joint modeling of types 

and consequences of release of crude oil), and then discussing continuous outcome 

models (used in modeling post-release costs). 

9.3.1 Multinomial Response Models for Types and Consequences of Release 

Two modeling approaches were considered: estimating two separate multinomial 

models for types and consequences of release; and estimating one joint model for types 

and consequences of release, assuming a joint probability distribution for these two 

variables. Figure 9.1 shows the outcomes of the release incidents based on their 

frequencies in the dataset.  

In the separate approach, the response variables in the two estimated models were 

multinomial and indicated the type or consequence of crude oil release. One model with 
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spillage (base level), gas dispersion, and simultaneous spillage and gas dispersion as 

categories of the response variable was estimated. The categories for the consequences 

model included fire, explosion and none (base level). Multinomial regression models 

were used with characteristics of crude oil, tank car, and release incidents as the 

explanatory variables.  

In the joint approach, the response variable was constructed as a combination of 

the types and consequences of release. Based on the possible combined outcomes for the 

new response variable applicable to the dataset (refer to Figure 9.1), this variable had 5 

levels: 1) spillage with no consequence; 2) spillage and fire; 3) spillage and explosion; 4) 

gas dispersion and no consequence; 5) both types of release and no consequence. Again, 

multinomial regression with a similar set of explanatory variables were used in the 

modeling.  

 

Figure 9.1 Types and consequences of crude oil release. 
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The definition of odds ratios in this chapter is slightly different from section 3.6. 

In the separate consequences model, for example, odds for explosion are the probability 

of explosion divided by the probability of no explosion in an incident of crude oil release. 

For c-unit increase in a continuous explanatory variable, x, the odds ratios are interpreted 

as “the odds of explosion vs. no consequences (the base level) change by OR times for 

every c-unit increase in x, holding the other variables constant”. If x is a categorical 

explanatory variable, the value of c is 1, and the interpretation will be “the odds of 

explosion vs. no release consequence change by OR times as large for x =1 than for x = 

0, holding other variables constant” (Bilder and Loughin 2014; Agresti and Kateri 2011). 

The interpretation of odds ratios for other levels of the separate models and for the joint 

model is in a similar manner. 

9.3.2 Continuous Response Model for Post-Release Costs 

Linear regression models were used, with costs as continuous response variables, 

and types and consequences of release, and two other factors as explanatory variables. 

The objective of estimation of these models was testing whether the types and 

consequences of release of crude oil significantly affect the post-release costs and 

quantifying the possible effects. 

One issue with such a statistical approach for modeling costs of release incidents 

is the distributional assumptions of a regular linear regression (Normal error distribution) 

do not necessary hold, and a heavy-tailed error term distribution is expected (due to 

presence of numerous small and non-costly reported incidents as opposed to few very 

costly release incidents). One remedy is to remove influential observations from the data 
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prior to model estimation. Another approach, termed “robust regression”, is to use a 

fitting criterion that is not as vulnerable as least squares to influential data points (Fox 

and others 2002). While there are different methods for robust regression, the most 

common type is M-estimation, which can be considered as a generalization of the ML 

estimation (Fox and others 2002).  This approach was utilized in this chapter and was 

implemented by the iterated re-weighted least squares. More information and details are 

available in (Huber 2011; Hampel et al. 2011). 

9.4 Data and Variables 

Similar to chapter 8, ten-year data (2007-2016) of crude oil release incidents from 

trains in the U.S. was extracted from the PHMSA database using the Incident Reports 

Database Search tool (Pipeline and Hazardous Materials Safety Administration and 

Office of Hazardous Materials Safety 2018). PHMSA incident data description and 

reporting criteria are available in section 8.3. Missing values in the variables that were 

used in the modeling resulted in less than 3.8% decrease in the dataset’s size, leading to a 

final set of 638 tank cars.  

Table 9.1 presents the variables and their respective statistics. The bakken 

variable indicated whether the crude oil was shipped from the Bakken region and should 

have been categorized as Bakken light sweet crude oil or not.  This variable was formed 

based on the origin state of the shipment (North Dakota or Montana). The packing group 

information was available in the dataset. Packing group I, II and III represent great, 

medium and minor danger, respectively. The criteria for assigning packing group for 

crude oil is based on flash point and initial boiling point of the crude oil, that shippers 
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should obtain through laboratory tests (Class 3-Assignment of Packing Group 2010). 

Information regarding tank head puncture resistance system and tank insulation was 

extracted from the tank car specification marking (Specifications for Tank Cars 2012), 

that was available in the dataset. Tank head puncture resistance system is capable of 

sustaining coupler-to-head impacts of the relative speed of 18 mph, usually accomplished 

by the installation of separate head shields or full-head tank jackets made of 1/2-inch-

thick steel on each end of the tank car (Allen D. Maty 2017). Tank insulation is used to 

moderate the temperature of crude oil during transportation (Allen D. Maty 2017). 

FRA provides the definition of Non-Accident Releases (NARs) as: “the 

unintentional release of a hazmat while in transportation, including loading and 

unloading while in railroad possession, that is not caused by a derailment, collision or 

other rail related accident. NARs consist of leaks, splashes, and other releases from 

improperly secured or defective valves, fittings, and tank shells, and include venting of 

non-atmospheric gases from safety relief devices.” NARs were detected in the data based 

on the provided narrations. 

Table 9.1 Variables and Their Statistics 

Variable Names Values and Statistics 

Response Variables   

Type of Release type Spillage (86.21%), Gas Dispersion (08.93%), Both (04.86%) 

Consequence of Release cons Fire (07.21%), Explosion (07.21%), None (85.58%) 

Joint Type and 

Consequence of Release 
typecons 

Spillage and None (71.79%), Spillage and Fire (07.21%), 

Spillage and Explosion (07.21%), Gas Dispersion and None 

(08.93%), Both and None (04.86%) 

Explanatory Variables   

Bakken Crude Oil bakken 0 = No (51.72%), 1 = Yes (48.28%) 

Packing Group pack.group I (51.88%), II (30.41%), III (17.71%) 

Tank Head Puncture 

Resistance System punc.res 0 = No (90.28%), 1 = Yes (09.72%) 
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Tank Insulation insulated 0 = No (95.45%), 1 = Yes (04.54%) 

Tank Design Pressure 

(psi) dsgnpress mean = 107.97, variance = 3207.14 

Quantity Released 

(gallon) quant.rel mean = 2994.55, variance = 56620119 

Non-Accident Release 

(NAR) nar 0 = No (20.53%), 1 = Yes (79.47%) 

Similar to chapter 8, post-release costs, available in the dataset, included 

carrier/property damage, response/clean-up costs, evacuation costs, injuries/fatalities, and 

roadway closure (costs of evacuation were assumed $250.00 per person-day (Saat et al. 

2014), monetary costs of not-hospitalized injury as the only type of injury/fatality that 

occurred in the dataset was assumed $62500.00 per injury (Iranitalab and Khattak 2017), 

and roadway closure was assumed to cost $218,000.00 per day (Erkut, Tjandra, and 

Verter 2007; Mallela and Sadavisam 2011)). The minimum, maximum, mean and 

standard deviation of the costs were $0.00, $25,330,322.00, $146,792.00 and 

$1,365,787.00, respectively. 

9.5 Modeling Results 

This section presents the estimated statistical models. These include multinomial 

regressions capturing the impacts of crude oil, tank car design and incident characteristics 

on types and consequences (separately and jointly) of release of crude oil in a train 

incident and a robust linear regression model quantifying the effects of type and 

consequence of release of crude oil on the post-release costs.  

9.5.1 Models for Types and Consequences of Release 

The variables used in each model and the p-values of the LR tests are presented in 

Table 9.2. Variable selection was performed using LR test and AICc (Bilder and Loughin 

2014; Agresti and Kateri 2011). 
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Table 9.2 p-values of the LR Test in the Release Type and Release Consequence Models 

Variables 

Separate Joint 

Type of Release 
Consequence of 

Release 

Type and 

Consequence of 

Release 

Crude Oil Characteristics bakken 0.00062 *** 0.09105 . 0.00181 ** 

 pack.group 0.00101 ** 0.00000 *** 0.00000 *** 

Tank Car Characteristics punc.res 0.00000 *** 0.07486 . 0.00000 *** 

 insulated 0.00198 ** —  0.01316 * 

 dsgnpress 0.48524  —  —  

Incident Characteristics nar 0.00000 *** 0.00000 *** 0.00000 *** 

 quant.rel NA  0.00000 *** 0.00000 *** 

Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1   

—: Not Used, NA: Not Applicable 

Point estimates of the odds ratios and their 95% CI for the release type with 

“spillage” as the base level are presented in Table 9.3. With 95% confidence and subject 

to keeping all the other variables (rather than the variable being interpreted) constant, the 

model interpretations are as follows. The odds of gas dispersion vs. spillage, and both 

types of release vs. spillage change by an amount between 0.29 to 0.98 times, and 0.05 to 

0.55 times, respectively, for the light sweet crude oil from Bakken region. Packing group 

II decreased the odds of gas dispersion vs. spillage by 0.14 and 0.64 times relative to 

packing group I. These values were estimated as 0.08 to 0.84 for packing group III. 

Equipment of tank cars to puncture resistance system changed the odds of gas dispersion 

vs. spillage by an amount between 2.35 to 9.70 times, and both release types vs. spillage 

by an amount between 4.49 to 33.67 times. Insulation of the tank cars increased the odds 

of both release types vs. spillage only by 2.58 to 20.26 times. The odds of gas dispersion 

vs. spillage were increased by an amount between 1.74 to 466.39 times, for NARs. Other 

than these effects, there was no sufficient evidence on the impacts of explanatory 

variables on the types of release. 
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Table 9.3 Values of c, Point Estimates of Odds Ratios and Profile LR Confidence 

Intervals for Odds Ratios in Release Type Models 

Variables c 

Gas Both (Gas and Spillage) 

Point 

Estimate 

95% CI 

Lower 

Bound 

95% CI 

Upper 

Bound 

Point 

Estimate 

95% CI 

Lower 

Bound 

95% CI 

Upper 

Bound 

Crude Oil 

Characteristics 

bakken 1 0.53 0.29 0.98 0.17 0.05 0.55 

pack.groupII 1 0.30 0.14 0.64 1.09 0.41 2.85 

pack.groupIII 1 0.27 0.08 0.84 2.10 0.77 5.74 

Tank Car 

Characteristics 

punc.res 1 4.77 2.35 9.69 12.30 4.49 33.67 

insulated 1 1.32 0.37 4.69 7.23 2.58 20.26 

dsgnpress 25 0.97 0.80 1.18 0.93 0.77 1.13 

Incident 

Characteristics 
nar 1 28.51 1.74 466.39 11.01 0.62 195.69 

Table 9.4 presents the odds ratios and 95% CI’s for the consequences of crude oil 

release model, with “none” as the base level. With 95% confidence and holding all the 

other variables except the variable being interpreted constant, it can be said that packing 

group II, relative to packing group I increased the odds of explosion vs. no release 

consequence by an amount between 1.61 to 158.93 times. There was no sufficient 

evidence towards the existence of any impacts of packing group II on fire and packing 

group III on fire and explosion, relative to packing group I. NARs, relative to accident 

releases, decreased the odds of fire and explosion vs. no consequence, by amounts 

between less than 0.01 to 0.11 times, and less than 0.01 and 0.06 times, respectively. The 

odds of fire and explosion vs. no release consequence in a crude oil release incident 

increased for every 1000-gallon increase in quantity of release of crude oil by a 

percentage between 13.69% to 37.56% and 12.96% to 37.91%, respectively. Sufficient 

evidence was not available to support the existence of any effects of Bakken region crude 
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oil, tank head puncture resistance system, tank car insulation and tank car design pressure 

on fire or explosion. 

Table 9.4 Values of c, Point Estimates of Odds Ratios and Profile LR Confidence 

Intervals for Odds Ratios in Release Consequence Models 

Variables c 

Fire Explosion 

Point 

Estimate 

95% CI 

Lower 

Bound 

95% CI 

Upper 

Bound 

Point 

Estimate 

95% CI 

Lower 

Bound 

95% CI 

Upper 

Bound 

Crude Oil 

Characteristics 

bakken 1 4.04 0.58 28.34 14.39 0.47 436.77 

pack.groupII 1 0.52 0.05 5.50 15.98 1.61 158.93 

pack.groupIII 1 0.48 0.07 3.06 0.08 0.00 2.40 

Tank Car 

Characteristics 

punc.res 1 5.56 0.86 35.96 0.79 0.03 21.21 

insulated 1 — — — — — — 

dsgnpress 25 — — — — — — 

Incident 

Characteristics 

nar 1 0.02 0.00 0.11 0.00 0.00 0.06 

quant.rel 1000 1.25 1.14 1.38 1.25 1.13 1.38 

—: Not Used 

Table 9.5 presents the odds ratios and 95% CI’s for the joint model of type and 

consequences of crude oil release, with “spillage and none” as the base level. Again, with 

95% confidence and holding all the other variables except the variable under 

interpretation constant, Bakken crude oil decreases the odds of simultaneous spillage and 

gas dispersion with no consequences vs. spillage with no consequences by an amount 

between 0.07 to 0.58 times. Packing group II, relative to packing group I, increased the 

odds of spillage and explosion vs. spillage and no consequences by an amount between 

1.70 to 138.33 times, while it decreased the odds of gas dispersion and no consequences 

vs. spillage and no consequences by 0.14 to 0.65 times. Packing group III, relative to 

packing group II, decreased the odds of gas disperse and none vs. spillage and none by an 

amount between 0.07 to 0.66. Equipment of tank cars to puncture resistance system 
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increased the odds of gas dispersion with no consequences, and both types of release with 

no consequences vs. spillage with no consequences by amounts between 2.41 to 10.03 

and 4.73 to 35.98 times, respectively. Insulation of the tank cars increased the odds of 

spillage and explosion vs. spillage with no consequences by an amount between 1.82 to 

17146.04 times, while it increased the odds of both types of release and no consequences 

by 2.87 to 22.31 times. The odds of spillage with fire, spillage with explosion, as opposed 

to spillage and no consequences for an NAR were decreased by amounts between less 

than 0.01 to 0.14 times and less than 0.01 and 0.06 times, respectively. A 1000-gallon 

increase in the amount of released crude oil increased the odds of spillage with fire, and 

spillage with explosion vs. spillage with no consequences by amounts between 12.88% to 

36.17% and 12.13% to 36.38%, respectively. 

Table 9.5 Values of c, Point Estimates of Odds Ratios and Profile LR Confidence 

Intervals for Odds Ratios in Release Consequence Models 

Variables c 

Spillage and Fire Spillage and Explosion 

Point 

Estimate 

95% 

CI 

Lower 

Bound 

95% 

CI 

Upper 

Bound 

Point 

Estimate 

95% 

CI 

Lower 

Bound 

95% CI 

Upper 

Bound 

Crude Oil 

Characteristics 

bakken 1 3.31 0.47 23.20 19.99 0.56 719.82 

pack.groupII 1 0.48 0.05 4.55 15.33 1.70 138.33 

pack.groupIII 1 0.45 0.08 2.66 0.04 0.00 1.67 

Tank Car 

Characteristics 

punc.res 1 5.94 0.92 38.16 0.82 0.03 23.04 

insulated 1 1.85 0.02 154.96 176.68 1.82 17146.04 

dsgnpress 25 — — — — — — 

Incident 

Characteristics 

nar 1 0.03 0.01 0.14 0.00 0.00 0.06 

quant.rel 1000 1.24 1.13 1.36 1.24 1.12 1.36 

Variables c 

Gas Dispersion and None Both and None 

Point 

Estimate 

95% 

CI 

Lower 

Bound 

95% 

CI 

Upper 

Bound 

Point 

Estimate 

95% 

CI 

Lower 

Bound 

95% CI 

Upper 

Bound 

Crude Oil 

Characteristics 

bakken 1 0.55 0.29 1.02 0.18 0.06 0.58 

pack.groupII 1 0.30 0.14 0.65 1.12 0.42 2.94 

pack.groupIII 1 0.21 0.07 0.66 1.74 0.64 4.73 
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Tank Car 

Characteristics 

punc.res 1 4.92 2.41 10.03 13.05 4.73 35.98 

insulated 1 1.38 0.39 4.97 7.99 2.86 22.31 

dsgnpress 25 — — — — — — 

Incident 

Characteristics 

nar 1 7.95 0.54 116.85 9.98 0.43 233.75 

quant.rel 1000 1.08 0.90 1.30 1.19 0.99 1.43 

Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

—: Not Used      

9.5.2 Model for Post-Release Costs 

A robust linear regression model was estimated at the incident level, using total 

costs as the response variables, and types of release and consequences of release as the 

explanatory variables. The point estimates and 95% CI’s for the estimated coefficients, 

along with LR test p-values and standard errors are presented in Table 9.6. LR test results 

and CI’s indicate there was not enough evidence in the dataset to show that variations in 

types of release affected the costs, directly. However, the estimated coefficients for fire 

and explosion, along with NAR variable and quantity released were statistically 

significant in the model. These variables changed damage costs by amounts between the 

upper and lower bounds of the CI’s reported in Table 9.6. 

Table 9.6 95% CI's for the Damage Costs Robust Linear Regression Models (rounded to 

nearest $1) 

Coefficients Point 

Estimate 

Standard 

Error LR Test p-value 

95% CI 

Lower Bound 

95% CI 

Upper Bound 

(Intercept) 253,274.38 936.22 —  251,439.42 255,109.33 

Gas Dispersion -291.41 454.96 0.52220  -1,183.12 600.30 

Spillage 303.96 563.48 0.58990  -800.44 1,408.36 

Fire 2,072,608.65 1205.57 0.00000 *** 2,070,245.79 2,074,971.52 

Explosion 13,529,080.97 2188.78 0.00000 *** 13,524,791.03 13,533,370.91 

NAR -251,744.34 755.17 0.00000 *** -253,224.45 -250,264.23 

Quantity Released 28,860.20 192.79 0.00000 *** 28,709.20 29,011.26 

Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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9.6 Discussion and Conclusions 

Sufficient evidence was not found in the data to show the light sweet crude oil of 

Bakken region significantly increased the probability of fire and explosion in case of 

release. Release of this type of crude oil was found less probable to lead to gas dispersion 

or simultaneous spillage and gas dispersion, relative to spillage. Therefore, the results of 

this chapter statistically cannot confirm PHMSA’s safety alert regarding the possibility of 

Bakken crude oil being more flammable than traditional heavy crude oil or other light 

sweet crude oil. While, in case of release, this type of crude oil is more probable to spill 

rather than disperse as gas, there was no sufficient evidence that spillage is costlier than 

gas dispersion, according to the costs model. So, evidence in this data do not support the 

hypothesis that transportation of Bakken crude oil by rail results in a different degree of 

risk, relative to other types of crude oil moved by rail in the U.S. 

The crude oil categorized as packing groups II (medium danger) and III (minor 

danger) decreased the probability of gas dispersion, and packing group II increased the 

probability of explosion, relative to crude oil packing group I (great danger). This might 

be due to possible inaccuracies in results of flash point and initial boiling point tests, or 

effects of other potential important variables that were not considered in this study. This 

finding was consistent with one of the findings of Lord et al. (David Lord et al. 2015), the 

inadequacy of current methods for assignment of crude oil transportation hazard 

classification and packing group. Based on these results, safety-related decisions solely 

based on packing groups are not suggested.  
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Tank car head puncture resistance system and tank car insulation were not found 

to be directly associated with probability of fire or explosion (except for the ignorable 

case of insulation and explosion in the joint model with an unusually wide CI, possibly 

due to small variation in the variable values), but they increased the likelihood of gas 

dispersion. The danger crude oil-carrying trains expose to the populations near railroads 

due to toxic gas dispersion, and a corresponding possible explosion with no time for 

evacuation (although not observed in the data but an example is the Lac-Mégantic rail 

disaster in Canada) is not negligible. So, based on the results, the use of such tank cars is 

not recommended for crude oil-carrying trains that pass though residential areas, while 

they may be preferred in other routes, since far from population gas dispersion may be 

preferred to spillage, due to generally lower probability of fire and explosion. 

For each thousand-ton increase in quantity of crude oil spillage, the probability of 

fire, explosion and total costs increased, significantly. This can be considered in terms of 

the quantity of crude oil that is loaded in each tank car, especially the tank cars with 

fewer safety design features, or tank cars with higher propensity to derail in an incident, 

depending on their position in a train (Saccomanno and El-Hage 1991, 1989; Liu, Saat, 

and Barkan 2014). NARs were associated with higher probability of gas dispersion, and 

lower probability of fire and explosion. Due to significantly smaller quantities of crude 

oil release in these releases, compared to accident-caused releases, they are generally less 

hazardous, and according to the costs models, they cause approximately 250 thousand 

dollars less than other releases on average. Countermeasures regarding prevention of such 

releases, e.g. regular and frequent inspection of valves, can be prioritized for 
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implementation based on the corresponding costs and benefits. Regarding the costs 

model, decision-makers may consider how the consequences of release of crude oil from 

trains affect damage and recovery costs. A more expensive countermeasure that is likely 

to prevent explosions more efficiently may be preferred over a less costly countermeasure 

that performs better towards fire prevention, despite its extra costs. The estimated costs 

that these release consequences cause should be considered in a cost-benefit analysis for 

decision-making. 

The results of the joint and separate models were consistent, and the magnitudes 

and directions of the odds ratios were relatively similar. Both approaches provided 

informative outcomes, useful in inference, and interpretation of the relationships between 

the explanatory and response variables. The differences in the results of the joint and 

separate approaches indicated how using a joint modeling framework for types and 

consequences of crude oil release from trains to account for the possible interdependence 

between these two variables was informative. However, estimation and interpretation of 

only the separate models assuming no correlation between the two response variables 

could be sufficient with regards to the general results and conclusions. As was mentioned 

in chapter 8, reduction in number of rail-based crude oil release incidents does not affect 

the importance of this study because of similar reasons. 

One limitation of this chapter was the unavailability of other potentially important 

variables in the dataset, including other tank car and release characteristics. Some of 

these variables were available in the dataset, but due to large proportion of missing 

values, were not used in this study (such as causes of release, tank cars capacity, amount 
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of material in tank cars, age of tank cars, material of construction, shell and head 

thickness, train speed, and weather conditions). This may have caused bias in the results, 

conclusions and recommendations of this chapter due to unobserved heterogeneity and 

should be considered in practice. Besides fire and explosion, entering a waterway/sewer 

system and environmental damage were the other two reported consequences of release 

of crude oil in the dataset. However, they were not considered in this study, since they are 

not independent of the environment where the release occurred, and the environmental 

information was not available in the dataset.  

For future studies, researchers may address the mentioned limitations of this 

chapter by obtaining datasets that are more comprehensive, in terms of safety design of 

tank cars, release details, and environmental characteristics. Other modeling techniques 

and data analysis approaches may be applied to crude oil release data, which might 

uncover other useful findings. Similar modeling approaches can be utilized for 

investigating types and consequences of other hazmat releases from different modes of 

transportation, such as trucks and pipelines.  
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CHAPTER 10 SUMMARY, CONCLUSIONS AND FUTURE RESEARCH 

This chapter provides a summary of the research and the conclusions of each of the six 

area foci of this dissertation, followed by recommendations for future studies. 

10.1 Train-Level and Car-Level Modeling of Hazardous Materials Release in Railroad 

Incidents 

This effort quantified the impacts of incident type, railroad, environment and 

train/car characteristics on the probability of hazmat release in a hazmat-carrying train 

incident and provided a prediction tool for hazmat release. Two sets of models utilized 

the FRA 2012-2016 rail equipment incident dataset. The units of analyses for these two 

sets were trains and hazmat cars. Logistic regression and mixed logistic regression were 

investigated to account for hazmat release and potential single-level and two-level 

grouping in the data (due to possible hazmat release interdependence among hazmat cars 

belonging to a train and trains belonging to an incident). Development of ROC curves 

improved the prediction performance of the models by defining an appropriate cut-off 

point.  

 Results showed that derailment increased hazmat release probability more than 

other incident types. Incidents due to signal and communication causes were most likely 

to result in hazmat release. Higher proportion of damaged/derailed hazmat cars and 

proportion of hazmat cars in a train, track classes 2 and 3, higher train speed, and train 

gross tonnage were the other important factors. Results of mixed models showed hazmat 

release from cars belonging to a train were interdependent and hazmat release from trains 
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belonging to an incident were independent. While models at both levels led to useful 

results, car-level models had better prediction performance.  

Future studies may utilize other explanatory variables to investigate their effects, 

such as hazmat car specification and safety design, and type of hazmat on the hazmat 

release probability. This requires the use of a more comprehensive train incident data. 

The effects of incident causes on hazmat release at a more detailed level in train incidents 

can be the emphasis of a future study. 

10.2 Rollover and Hazardous Materials Release Models for Cargo Tank Truck Crashes 

CTTs are one of the major surface transportation carriers of hazmat in the U.S. 

CTT’s rollover crashes are the leading cause of injuries and fatalities from hazmat 

transportation incidents. CTTs are susceptible to rollover crashes due to their size, 

distribution of weight, a higher center of gravity, and the surging and sloshing of liquid 

cargo during transportation. This endeavor concentrated on identification and 

quantification of the effects of various factors on the probability of rollover and release of 

hazmat in CTT-involved crashes, and developing a prediction tool for these probabilities. 

BMA-based logistic regression models were estimated with rollover and hazmat release 

as the binary response variables, and crash, trucks, roadway, environment, and driver 

characteristics as the explanatory variables. States of Nebraska and Kansas 2010-2016 

police reported crash data were combined and filtered for CTT-involved crashes and used 

in modeling.  

Salient results were: non-collision crashes were more likely to result in rollovers; 

side impacts to CTTs and severe crosswinds increased the likelihood of rollovers; heavier 
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and older trucks were more prone to rollovers; tractor and semi-trailer decreased the 

probability of rollover compared to all other body styles; and collisions with objects and 

higher posted speeds increased rollover probability. Rollover and involvement of 

intersections in the crash increased the likelihood of hazmat release. ROC curves 

indicated substantial prediction performance for both models, and ensured 

appropriateness of the modeling approach for inference on the crash dataset. 

 Future studies may attempt to use more comprehensive datasets that include other 

explanatory variables that could potentially affect probabilities of rollover and hazmat 

release, such as more detailed driver and CTT characteristics, crash speed, type and 

amount of loaded hazmat, etc. Utilizing other modeling methods and algorithms for 

inference and prediction may uncover additional useful information in future studies. 

While CTTs are one of the major truck carriers of hazmat, other types of trucks are also 

used for this matter. Similar investigation may be considered for those trucks. 

10.3 Modeling the Probability of Hazardous Materials Release at Highway-Rail Grade 

Crossings 

Crashes at HRGCs that involve a truck or a train carrying hazmat expose people 

and the environment to the potentially severe consequences of hazmat release. This 

research involved statistical modeling of the probability of hazmat release from trucks 

and/or trains in crashes at HRGCs to identify factors associated with hazmat release. The 

FRA HRGC crash dataset (2007-2016) yielded two subsets of crashes: 1) those involving 

hazmat-carrying trucks and 2) those involving hazmat-carrying trains.  
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Results from a logistic regression model using data subset 1 (crashes involving 

hazmat-carrying trucks) with hazmat release/no release as the response variable showed 

that standard flashing signal lights, railroad crossbucks, and railroad classes II and III 

(relative to railroad class I) were associated with lower hazmat release probability from 

hazmat-carrying trucks. Hazmat release probability from trucks was higher with freight 

train involvement. Results from a logistic regression model using data subset 2 (crashes 

involving hazmat-carrying trains) revealed that hazmat release probability from trains 

was lower with warmer temperature. However, the probability of release from trains was 

greater with railroad class II (relative to railroad class I), type of highway user (different 

types of trucks and motorcycle relative to automobiles) and weather conditions (fog, sleet 

or snow, relative to clear). A comparison of the results from this study with HRGC crash 

severity studies highlighted the importance and usefulness of this study. 

For future studies, researchers may use other HRGC crash data that include other 

potentially important explanatory variables, e.g. details about HRGC control devices, 

actions of highway users during crashes, sight obstructions, type of hazmat, roadway 

conditions, etc. Different modeling approaches may be utilized for analyzing hazmat-

related crashes at HRGCs that might lead to further insights. Short-term and long-term 

costs and damages of hazmat release at HRGCs may be studied to prioritize 

countermeasures and policies regarding public safety improvements at HRGCs. 

10.4 Prediction of Hazardous Materials Release In Train Incidents and Cargo Tank Truck 

Crashes 
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Quantifying conditional probability of release of hazmat from trains in rail 

incidents and CTTs in highway crashes is an important component of hazmat 

transportation risk as it assists safety agencies and shippers in decision-making. The 

objective of this focus was identifying computational tools with reliable performance for 

quantifying probability of hazmat release in train incidents as well as CTT crashes. 

Hazmat release (release or no release) was classified by statistical and machine learning 

methods (logistic regression, naïve Bayes, RF, and SVM) using available and relevant 

explanatory variables. The datasets were FRA rail equipment incident data, and 

combined Nebraska and Kansas police reported traffic crash data.  

The results were compared based on precision, recall and area under ROC curves 

(AUC). RF had the best performance in classifying hazmat release for trains and railcars 

in almost all cases, based on different criteria. For CTTs, SVM and RF had the highest 

precision, while logistic regression and naïve Bayes performed better based on recall. 

Naïve Bayes had the highest AUC. The research provided recommendations regarding 

usage of the classifiers and regressors depending on the purpose of analysis. 

For future studies, using other incident/crash datasets may address limitation of 

datasets of this focus, in terms of geographic diversity and potentially important 

explanatory variables. Other classifiers and regressors may be applied to the hazmat 

release problem and the results can compare to this study. Classification methods of this 

study can be implemented to the other components of hazmat risk, such as incident/crash 

frequency and release consequences in the future studies.  
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10.5 Modeling of Frequency and Aggregate Measures of Severity of U.S. Rail-Based 

Crude Oil Release Incidents 

Trains transport a large portion of produced crude oil to the refineries in the U.S. 

This potentially exposes people living near railways and the proximate environment to 

the ill effects of incidents resulting in crude oil release. The objective of this focus was to 

identify and quantify the effects of volumes and distances of rail-based crude oil transport 

and other macroscopic-level variables on the frequency and severity of crude oil release 

incidents. An optimization problem was formulated to approximate state-to-state volume 

of crude oil movement based on higher-level production-consumption data. Four mixed-

effects origin-destination based statistical models were estimated for rail-based crude oil 

release incidents: one model for frequency and three models for measures of aggregate 

severity (number of released tank cars, quantity released, and total costs). State-to-state 

volume of crude oil movement, transport distance, availability of other modes of 

transportation and number of class I railroad companies served as explanatory variables.  

Results provided useful insights for policy-makers and shipping companies. Some 

of the findings include: increase in volume of crude oil shipped from one state to another, 

up to a point, led to greater frequency and severity of incidents between the two states; 

for each 100-mile increase in the distance of crude oil shipment, the frequency of 

incidents increased by 14.01%; there was lack of evidence for existence of any impacts 

from availability of other modes of transportation on the response variables, while the 

number of class I railroad companies significantly affected frequency and number of 

released tank cars.    
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Future studies may focus on modeling frequency of crude oil-carrying train 

incidents, regardless of releasing the crude oil, and modeling the probability of release of 

crude oil, given an incident, separately. This approach can provide the effects of 

microscopic factors, such as characteristics of crude oil, train, railroad, etc., on 

occurrence of crude oil release incidents. Such a study requires a dataset of crude oil-

carrying train incidents. The use of other statistical methods for modeling or machine 

learning methods for better prediction performance may also be investigated. 

10.6 Joint and Separate Modeling of Types and Consequences of Rail-Based Crude Oil 

Release Incidents 

The main objectives of this focus were identification of the factors that affect the 

types and consequences of crude oil release from trains, quantification of these effects, 

and investigation of the impacts of types and consequences of crude oil release on the 

resulting costs and damages. The factors considered as potentially affecting types and 

consequences of release included characteristics of crude oil, tank cars, and release 

incidents. Two separate multinomial response models for types of crude oil release (gas 

dispersion, spillage and both) and consequences of crude oil release (fire, explosion and 

none), and one joint multinomial response model were estimated using 2007-2016 

PHMSA crude oil release data. Estimated robust linear regression models captured the 

effects of the types and consequences of release on post-release costs.  

Results showed that non-accident releases were associated with higher probability 

of gas dispersion, lower probability of fire and explosion, and lower costs. Tank car head 

puncture resistance system and tank car insulation did not directly affect the probability 
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of fire or explosion, but they increased the probability of gas dispersion. For each 

thousand-ton increase in quantity of spillage, the probability of fire and explosion 

increased significantly. While sufficient evidence was not found in the data indicating a 

relationship between types of crude oil release and post-release costs, fires and 

explosions prominently increased these costs. 

For future studies, researchers may consider using more comprehensive rail-based 

crude-oil release incident data, in terms of availability of characteristics of design of tank 

cars, details of release, and environmental characteristics. Other modeling techniques and 

data analysis approaches may be applied to crude oil release data, which might uncover 

other useful findings. Similar modeling approaches can be utilized for investigating types 

and consequences of other hazmat releases from different modes of transportation, such 

as trucks and pipelines. 

10.7 Summary of Objectives and Achievements 

This study had two main objectives. The first one was identification and 

quantification of the effects of different factors on occurrence and consequences of 

hazmat-related incidents, towards identifying effective policies and countermeasures for 

improving safety. Chapters 4, 5, 6, 8, and 9 were fully or partially devoted to this 

objective. Contributing factors to the conditional release of hazmat from trains and trucks 

were identified and the magnitude of their effects on hazmat release was estimated in 

chapters 4, 5, and 6. Chapter 8 had a macroscopic perspective, with the objective of 

identifying the factors that affect frequency and severity of crude oil release from trains, 

while chapter 9 took into account the contributing factors to the consequences of crude 
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oil release from trains. Each of the above studies were able to provide effective policies 

and countermeasures for safety improvement.  

The second objective of this study was quantifying components of risk of hazmat 

transportation for costs prediction, planning purposes, or short-term decision-making. 

While chapter 7 was completely devoted to this objective, the estimated models in the 

other chapters were useful for this objective as well. The model-based and non-model-

based methods that were utilized in this study were able to estimate some components of 

hazmat transportation risk, including conditional probability of hazmat release in rail 

incidents, CTT crashes, and HRGC crashes, frequency and aggregate severity of rail-

based crude oil release incidents, and probability of types and consequences of crude oil 

release from trains.  
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