
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Theses, Dissertations, and Student Research in
Agronomy and Horticulture Agronomy and Horticulture Department

11-2018

Epidemiology and Management of Fusarium Head
Blight and Foliar Fungal Diseases of Wheat
Carlos Bolanos-Carriel
University of Nebraska-Lincoln

Follow this and additional works at: http://digitalcommons.unl.edu/agronhortdiss

Part of the Plant Pathology Commons

This Article is brought to you for free and open access by the Agronomy and Horticulture Department at DigitalCommons@University of Nebraska -
Lincoln. It has been accepted for inclusion in Theses, Dissertations, and Student Research in Agronomy and Horticulture by an authorized
administrator of DigitalCommons@University of Nebraska - Lincoln.

Bolanos-Carriel, Carlos, "Epidemiology and Management of Fusarium Head Blight and Foliar Fungal Diseases of Wheat" (2018).
Theses, Dissertations, and Student Research in Agronomy and Horticulture. 151.
http://digitalcommons.unl.edu/agronhortdiss/151

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/189483827?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fagronhortdiss%2F151&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/agronhortdiss?utm_source=digitalcommons.unl.edu%2Fagronhortdiss%2F151&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/agronhortdiss?utm_source=digitalcommons.unl.edu%2Fagronhortdiss%2F151&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/ag_agron?utm_source=digitalcommons.unl.edu%2Fagronhortdiss%2F151&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/agronhortdiss?utm_source=digitalcommons.unl.edu%2Fagronhortdiss%2F151&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/107?utm_source=digitalcommons.unl.edu%2Fagronhortdiss%2F151&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/agronhortdiss/151?utm_source=digitalcommons.unl.edu%2Fagronhortdiss%2F151&utm_medium=PDF&utm_campaign=PDFCoverPages


 
 

EPIDEMIOLOGY AND MANAGEMENT OF FUSARIUM HEAD 

BLIGHT AND FOLIAR FUNGAL DISEASES OF WHEAT 

 

by 

 

Carlos Bolanos-Carriel 

 

A DISSERTATION  

  

Presented to the Faculty of the  

Graduate College at the University of Nebraska  

In Partial Fulfillment of Requirements for the  

Degree of Doctor of Philosophy in Plant Pathology 

 

Under the Supervision of Professors 

Stephen N. Wegulo and Heather Hallen-Adams 

 

Lincoln, Nebraska 

November, 2018  



 

 
 

EPIDEMIOLOGY AND MANAGEMENT OF FUSARIUM HEAD BLIGHT AND 

FOLIAR FUNGAL DISEASES OF WHEAT  

Carlos Bolanos-Carriel, Ph.D.  

University of Nebraska, 2018 

 

Advisors: Stephen N. Wegulo and Heather Hallen-Adams. 

 

Fusarium head blight (FHB) caused by Fusarium graminearum, the FHB-associated 

mycotoxin deoxynivalenol (DON), and foliar fungal diseases are significant threats to 

wheat production. This research 1) evaluated the effects of fungicide chemical class, 

application timing, and cultivar resistance on FHB and DON under field conditions; 2) 

evaluated the effects of field-applied fungicide chemical class, grain moisture, and time 

on DON under grain storage conditions;  3) evaluated the effects of field-applied 

fungicide chemical class and time on trichothecene-related gene (Tri5) expression under 

grain storage conditions; 4) determined the optimum F. graminearum spore concentration 

and spike bagging period following inoculation for accurately discriminating between 

FHB resistant and susceptible wheat cultivars under greenhouse conditions; and 5) 

determined the optimum timing of fungicide applications for control of foliar fungal 

diseases of wheat under field conditions.  A triazole fungicide controlled FHB and DON 

more effectively than a strobilurin fungicide. A triazole applied 6 days after anthesis was 

as effective as an anthesis (standard timing) application, indicating a wider window of 

application for growers’ needed flexibility. In storage, DON decreased over time in grain 

of a moderately resistant cultivar treated with a triazole and increased in grain of a 

susceptible cultivar treated with a strobilurin. During storage, DON biosynthesis Tri5 



 

 
 

gene expression increased over time during storage of high grain moisture grain, a 

significant reduction in the relative expression of the Tri5 gene and a downregulation of 

the gene occurred in the triazole treatment whereas expression of the gene increased in 

the strobilurin treatment. In the greenhouse, lower concentrations of F. graminearum 

inoculum (6.25 x 103 and 1.25 x 104 spores/mL) were more efficient in discriminating 

between a moderately resistant and a susceptible wheat cultivar compared to the standard 

concentration (1 x 105 spores/mL).  The optimum spike bagging period following 

inoculation for discrimination between a moderately resistant and a susceptible cultivar 

was 48 hours or 72 hours (the standard).  Foliar fungicide applications in field plots at the 

flag leaf and boot growth stages of wheat were more effective in protecting yield than 

later applications.  Results from this research will enhance knowledge in the 

epidemiology and management of FHB, DON, and foliar fungal diseases of wheat. 
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CHAPTER I 

INTRODUCTION AND BACKGROUND   

1. Importance and origin of wheat. 

Wheat (Triticum sp.) is the most widely grown crop in the world and the staple food 

for 35 percent of the world’s population (International Development Research Center). 

Wheat provides roughly 19 percent of the global dietary energy consumption (Ray et al. 

2013). Wheat has vital importance for food security and food sovereignty in many 

countries. 

The wheat crop was a driving force behind the development of human civilizations. 

Domestication, the process of adapting from a wild to a farm plant under human control, 

led to the switching from hunter-gatherer to agriculture-based populations (Gustafson et 

al. 2009). Humans during the Neolithic period (20,000 to 2,000 B.C.) based their diets on 

wild relatives of wheat such as einkorn wheat (Triticum boeoticum) and emmer wheat 

(Triticum turgidum) (Lev-Yadun et al. 2000). 

The wheat demand by 2050 is estimated at 1,300 million metric tons (MMT) (Ray et 

al. 2013). Total world production for the 2016-2017 marketing year reached a record of 

750 MMT (USDA - NASS). Despite the scientific and technological progress made in the 

crop, it is projected that there will be a shortfall in wheat production of approximately 

388 MMT by 2050 (Ray et al. 2013). Worldwide, one in nine people lack sufficient food 

supplies and are at risk of hunger (United Nations). Wheat can play a significant role in 

eliminating global food insecurity. 

Wheat belongs to the botanical family Poaceae. The genus Triticum can be 

categorized in three levels of ploidy: diploid, (2n = 2x = 14), tetraploid (2n = 4x = 28) or 

hexaploid (2n = 6x = 42) (Acquaah 2009). Additionally, Triticum aestivum has three 
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genomes A, B and D. Chromosomic substitutions and additions from alien DNA allowed 

an increase in the genetic variability of wheat (Gerlach and Dyer 1980). In 2018, an 

annotated and ordered reference genome was made public as the International Wheat 

Genome Sequencing Consortium (IWGSC) RefSeq v1.0 (Appels et al. 2018). 

There are two main species of wheat cultivated for food which are bread wheat, 

Triticum aestivum (hexaploid), and pasta wheat, Triticum durum (tetraploid), and both 

species came from domesticated tetraploids. The earliest record of using a tetraploid 

wheat involved Triticum dicoccoides around 17,000 B. C. (Kislev 1992; Nevo et al. 

2013). However, the origin of cultivated wheat can be traced back millions of years 

through speciation and later polyploidization events of its diploid relatives Triticum 

urartu (AA genome) and Aegilops speltoides (BB genome) for durum wheat, with the 

addition of Aegilops tauschii (DD genome) for bread wheat (Gill et al. 1991). The 

paleohistory of wheat evolution remains a matter of controversy and debate (El Baidouri 

et al. 2016).  

The center of origin of wheat is distributed around the territory where modern-day 

Israel, Lebanon, Syria, Iraq, and Iran exist. Wheat domestication is thought to have 

occurred in a narrow area between the rivers Euphrates and Tigris in the southern Levant 

(Jordan valley) (Kislev 1992; Lev-Yadun et al. 2000). 
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2. Morphology of wheat and scales of growth.  

Wheat is a self-pollinated crop with grass-like morphology. It is mainly produced for 

the caryopsis or kernel, which consists of an endosperm surrounding the embryo and 

coated with several layers of bran (Jackson and Williams 2016; Reed 2006). Wheat crop 

development is measured in growth stages. The most used scales to describe wheat 

development are Feekes (Fk) (Large 1954) and Zadoks growth stages (GS) (Zadoks et al. 

1974).   

The root development begins with the primary root penetrating the soil which 

provides nutrients and water to the plantule (GS 9). In a second phase (Fk 1, GS 10), 

secondary roots are developed, the first leaf emerges through the coleoptile, and lateral 

ramification or tillering begins and will continue until heading (Haun 1973; Large 1954; 

Zadoks et al. 1974). 

The vegetative growth of wheat consists of several events of branching, beginning 

when the fourth leaf emerges. Usually, two or three tillers can fully develop to spikes. 

The tillering stage (Fk 3, GS 26) includes initial tiller formation, elongation, and erection 

of leaf sheaths. After this, the stages comprise of the extension of the stem starting when 

the first node of the stem is visible and until the sixth node is visible (Fk 4-7, GS 30-35). 

The flag leaf is slightly visible at Fk 8 (GS 37), and the ligule of the flag leaf is 

visible at Fk 9 (GS 39). The stem extension stage ends at Fk 10 (GS 45) when the 

swollen flag leaf sheath, within the stem, is pushed as the stem has elongated and the tip 

of the flag leaf is visible—this stage is known as boot stage (Large 1954; Simmonds et al. 

1985; Waldren and Flowerday 1979). 
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Heading goes from Fk 10.1 (GS 49) to Fk 10.5 (GS 59). The emergence of the 

inflorescence can be divided according to the proportion of the spike that is visible (¼, ½ 

or ¾) (Haun 1973; Large 1954; Simmonds et al. 1985; Zadoks et al. 1974). 

Anthesis, or the blooming stage, corresponds to Fk 10.51 (GS 60). It is characterized 

by the extrusion of the anthers in cultivars which possess this trait (Simmonds et al. 

1985). Anthesis in wheat cannot be understood as a fixed point in time (Paul et al. 2018). 

Flowers of wheat are self-pollinated. When anthesis is complete, the grain goes into milk 

development. At stage 10.54, the kernel begins to fill with the photosynthetic products of 

the flag leaf (Simmonds et al. 1985). During Fk 10.54, 11.1, and 11.2 (dough 

development) dry matter begins to increase in the kernel (soft dough stage, Fk 11.2). The 

ripening of wheat and other small grain cereals begins at the stage Fk 11.3 or hard kernel 

stage. When the kernel hardens and is difficult to dent with the thumbnail, the grain has 

reached the Fk 11.4 stage and is ready for harvest (Haun 1973; Large 1954; Simmonds et 

al. 1985; Waldren and Flowerday 1979; Zadoks et al. 1974).  
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3. Major diseases affecting wheat production. 

Although this dissertation focuses on Fusarium head blight (FHB) and foliar diseases, 

this subchapter provides a brief description of the major diseases of wheat to emphasize 

their importance. Diseases affecting wheat can be divided based on the part of the plant 

where symptoms or signs are first observed. Several wheat diseases, especially those 

affecting leaves, are more distinguishable when the plant has reached vegetative growth 

(Fk 3-5, GS 26-31) than in later growth stages. Young leaves present symptoms such as 

yellowing, mosaics, black spots, yellow halos around brown patches, oval spots, or tan 

spots. These symptoms allow a straightforward identification of certain diseases and 

control measures can be taken according to the severity, incidence, and risk of epidemics. 

In mature stages, diseases affecting stems, spikelets, or florets can be distinguished from 

other problems due to their specificity to the part of the plant affected. 

Five of the most damaging viruses in wheat belong to the group of single-strand 

positive-sense RNA viruses (ssRNA+) (Suzuki et al. 2015). Barley yellow dwarf virus 

(BYDV) is the type species virus in the Luteoviridae. Viruses associated with yellowing 

and dwarfing in the Luteoviridae are the most widespread group of cereal viruses 

worldwide (Figueira et al. 1997). BYDV is the most serious virus disease in winter wheat 

in the southeastern U.S. (Weisz et al. 2005). The virion moves in the phloem and 

generates symptoms of leaf discoloration that turn yellow or purple (Wegulo et al. 2015a) 

and leaf tip necrosis (Ibrahim and Shah 2015). The transmission of the virus is 

mechanical and spread through aphid vectors. 

Soil-borne wheat mosaic virus (SBWMV) is the type species of the genus Furovirus 

in the Virgaviridae (SSRNA+ viruses) (ICTV 2015), and it was the first virus reported in 

wheat (McKinney 1923). The protist Polymyxa graminis transmits the virion. Symptoms 
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in young leaves appear as mottled and parallel streaks (Wegulo et al. 2015a); other 

symptoms are mosaics, stunting, and witches’ broom. The virus can be controlled 

through resistance breeding (Verchot et al. 2001).  

Wheat streak mosaic virus (WSMV) is the type species of the genus Tritimovirus in 

the Potyviridae with monopartite, linear, ssRNA+. WSMV infects all known species of 

wheat and has a broad host range in the Poaceae. WSMV is transmitted by the eriophyid 

wheat curl mite, Aceria tosichella. It is a serious pathogen of wheat in the Great Plains of 

the United States (French and Stenger 2003).  The first symptoms associated with the 

viral infection are yellowing, parallel and discontinuous streaks, leaf rolling and trapping 

(Wegulo et al. 2015a).  

High Plains disease is associated with the High Plains wheat mosaic virus 

(HPWMoV), which is also described as Wheat mosaic virus (WMoV) (Oliveira-Hofman 

et al. 2015). It was first reported in wheat fields of Kansas and rapidly spread to Texas, 

Nebraska, Colorado, Idaho and Utah (Seifers et al. 2009). HPWMoV belongs to the 

genus Emaravirus, and is transmitted by the wheat curl mite. In the Great Plains of the 

United States, yield loss in severely affected wheat fields can reach 100% (Oliveira-

Hofman et al. 2015).      

Triticum mosaic virus (TriMV) is the type member of the genus Poacevirus in the 

Potyviridae of ssRNA+ viruses (Tatineni et al. 2009). It is transmitted by the wheat curl 

mite which also transmits WSMV and HPWMoV (Byamukama et al. 2013). TriMV was 

first discovered in 2006 in Kansas (Seifers et al. 2008). TriMV causes symptoms similar 

to those of WSMV, and both viruses have been found co-infecting wheat. TriMV can 

cause significant yield losses, especially when it co-infects wheat with WSMV or 

HPWMoV (Byamukama et al. 2014).  
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Wheat spindle streak mosaic virus (WSSMV; genus Bymovirus, Potyviridae), is 

taxonomically related to other important viruses affecting small grains such as barley 

mild mosaic virus, oat mosaic virus, rice necrosis virus and wheat yellow mosaic virus 

(ICTV 2015). WSSMV has a non-enveloped, flexuous, filamentous, ssRNA+ genome, 

which serves as viral mRNA. Polymyxa graminis transmits the virion, and the main 

symptoms associated with the viral infection are yellow-green mottling, dashes, and 

streaks (Wegulo et al. 2015a). 

The most prevalent bacterial disease of wheat is bacterial streak or black chaff, 

caused by Xanthomonas campestris pv. translucens (Bamberg 1936; Duveiller et al. 

1992). The bacterium is widespread through the mid-west of the United States, and 

affects wheat, rye, triticale, and barley. Black chaff is more prevalent and severe under 

warm and humid conditions. Symptoms associated with the disease are inter-veinal 

longitudinal streaks, water-soaking lesions, and darkening of the glumes (Kandel et al. 

2014; Wegulo et al. 2015b). It can be easily differentiated from other foliar diseases by 

the presence of a bacterial stream coming out of the vascular bundles under the light 

microscope. 

Crown and root rot of wheat is caused by fungi in the genus Fusarium such as F. 

graminearum, F. culmorum, and Fusarium pseudograminearum (Cook 1981), and 

Cochliobolus sativus. Crown and root rot is detected in wheat fields as brown patches of 

dead plants. Wheat plants affected by crown and root rot have smaller heads and spindly 

internodes (Wegulo et al. 2015a). 

Rusts are important pathogens of wheat and are known as yield-robbers. The fungi of 

the order Uredinales include more than 1700 species of obligate parasites of plants 

(Gwynne-Vaughan 1922). There are three types of rusts affecting wheat: stripe, leaf, and 
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stem rusts. Stripe rust, Puccinia striiformis f.sp. tritici, produces small yellow-orange 

round pustules (Wegulo et al. 2015b). The pustules form longitudinal stripes which are 

visible on the leaves. Leaf rust, Puccinia triticina (synonym Puccinia recondita), is also 

known as brown rust due to the presence of slightly-round orange or brown pustules 

(Wegulo et al. 2015b) that form a random pattern on the leaf surface. Stem or black rust, 

Puccinia graminis f.sp. tritici, is less prevalent in wheat fields in the United States due to 

the efforts conducted to eradicate barberry (the alternate host) during the early 20th 

century. By 1928, the Great Plains of North America were barberry-free (Roelfs and 

Groth 1980). Stem rust pustules are oval in shape, orange-red in color, and occur on 

leaves and stems (Wegulo et al. 2015b). The “Ug99” stem rust race group constitutes a 

major threat to wheat production worldwide (Singh et al. 2011). In 2005, the Borlaug 

Global Rust Initiative was launched because of the danger Ug99 posed. Nowadays, most 

of the bread wheat varieties planted are susceptible to Ug99 (Singh et al. 2011).  

Landraces with new sources of resistance are mapped as the disease progresses. There 

are approximately 50 stem rust-resistance (Sr) genes reported in the Borlaug Global Rust 

Initiative, and the list grows every day (Singh et al. 2015). However, in 2016 there were 

13 variants of the Ug99 race group detected in eastern and southern Africa (Babiker et al. 

2016) and it is spreading. The control of rusts in wheat is difficult and relies on the use of 

resistant cultivars. However, the dependency on a few major genes for resistance has 

triggered mutations in the pathogens which have now overcome host resistance. New 

breeding efforts are trying to introduce several resistance genes into one plant, a process 

known as gene pyramiding (Ayliffe et al. 2008). 

Powdery mildew of wheat caused by Blumeria graminis f. sp. tritici is distributed 

worldwide. The fungus forms abundant hyaline mycelia on the surface of the leaves, and 
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infections usually occur at the beginning of spring. The fungus reduces grain yield and 

quality (Morgounov et al. 2012). Triadimenol was very effective as a seed treatment in 

controlling the disease (Leath and Bowen 1989). Wheat seed treatment fungicides are 

based on carboxamides, dithiocarbamates, phthalimides, acylalanines, and triazoles alone 

or in mixtures (Wegulo 2014), and can be effective in controlling powdery mildew. 

Pyrenophora tritici-repentis causes tan spot of wheat. The fungus is predominantly 

present in the canopy of young leaves under warm and wet conditions at the beginning of 

spring. Tan spot can cause losses of up to 50% (Shaber and Bockus 1988). Other foliar 

diseases that can reduce yield are Septoria leaf blotch (Zymoseptoria tritici) and glume 

blotch (Parastagonospora nodorum). These fungi are necrotrophs, which develop 

fruiting structures in necrotic areas of the affected leaves (Wegulo et al. 2015a).  

Spot blotch (Bipolaris sorokiniana) causes significant yield losses (up to 40%) 

worldwide under warm-humid conditions and is the most destructive wheat fungal 

disease in warmer areas (Acharya et al. 2011; Singh et al. 2016). The pathogen is seed 

transmitted; however, the primary source of epidemics are conidia overwintering in crop 

residues. B. sorokiniana forms clumps of thick-walled conidia (Acharya et al. 2011; 

Duckzek et al. 2009; Gupta et al. 2018). An integrated approach is required to control 

spot blotch and consists of crop rotations, seed treatments, biological control, foliar 

fungicides and the planting of resistant varieties (Acharya et al. 2011). 

Loose smut, caused by Ustilago tritici, is a common disease in the Great Plains of the 

United States. Although loose smut does not affect the quality of the grain, yield loss can 

exceed 40%; and some countries, such as Pakistan contaminated grain is not accepted. 

The best treatment against the disease is to use seed treatment fungicides at the time of 

planting (Wegulo 2017). 
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Common and karnal bunts of wheat kernels are associated with fungi in the genus 

Tilletia (Bonde et al. 1997; Pascoe et al. 2005; Wegulo et al. 2015b, Wright 2003). T. 

indica is a quarantine organism and the causal agent of karnal bunt. Infection levels of 

karnal bunt above 3% make grain unacceptable for human consumption (Wright 2003). 

Common bunt (Tilletia tritici) is widespread in the United States, where infections of 

over 25% can be expected during epidemics (Mathre 2000). Common bunt gives a fishy 

odor to the grain (Bonde et al. 1997).    
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4. Fusarium head blight of wheat (FHB). 

FHB or scab is one of the most important diseases of wheat worldwide. In the United 

States, Fusarium graminearum is the main causal agent of FHB (McMullen et al. 1997b; 

O’Donnell et al. 2000). In 1838, Fusarium graminearum was first described by Lewis 

Schwein, and the fungus was illustrated as the asexual (anamorph) phase of the 

teleomorph Gibberella zeae. 

Some FHB epidemics have been relevant in the history of the United States and 

Nebraska. In 1898, Bessey reported wheat scab in several localities in Nebraska. In 1904, 

some Russian and Hungarian varieties of winter wheat showed severe injury from scab, 

which at that time was considered a new fungal disease in the region (Lyon and Keyser 

1905). Between 1919 -1920, in the United States, wheat grain losses were above 2 MMT 

(Atanasoff 1920; McMullen et al. 1997a), and for Nebraska, reports mentioned severe 

damage of the crop with 25 - 50% yield losses in eastern counties (Fromme 1920).   

In 1947, Chiu (1950) reported severe blight of wheat heads with percentages of 

Fusarium-damaged kernels around 5% in eastern Nebraska counties. In the 1980’s, FHB 

occurred sporadically, although it should be noted that in 1982 there was an epidemic of 

severe consequences for the US grain industry with losses of about 2.72 MMT 

(McMullen et al. 1997a). Major epidemics from 1991 to 1996 across the United States 

totaled 1.3 billion dollars in direct losses (McMullen et al. 1997a; McMullen et al. 2012). 

Frequency and severity of FHB epidemics have increased over the last 10 years. In 

Nebraska, major epidemics occurred in 2007, 2008 (Wegulo et al. 2011), and 2015 

(Bolanos-Carriel et al. 2015).  

In Nebraska, substantial advances have been made towards the development of new 

cultivars with high levels of resistance to FHB (Baenziger et al. 2008; Eckard et al. 
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2015), better management practices (Wegulo et al. 2015c), and knowledge of chemotype 

and aggressiveness of Fusarium graminearum strains associated with the disease 

(Hernandez-Nopsa et al. 2014; Panthi et al. 2014). Progress in the management of the 

disease and development of FHB-tolerant cultivars can be linked to notable economic 

benefits for farmers. 

FHB is highly influenced by environmental conditions particularly during and after 

anthesis. Fusarium graminearum produces ascospores and macroconidia which are 

formed in perithecia and sporodochia, respectively. Ascospores are the main source of 

inoculum for epidemics (Osborne and Stein 2007). Ascospores are released and 

transported by wind and infect flower parts. Warm temperatures and high humidity are 

favorable conditions for complete blighting of heads in 2 to 4 days after infection 

(Fernando et al. 1997). Ascospores have an optimum of 25-28oC for formation and 20oC 

to 30oC for infection (McMullen et al. 2012).  

Perithecia and sporodochia are fruiting structures of the fungus which overwinter in 

crop debris. The relationship between crop debris and FHB epidemics has been well 

documented (Dill-Macky and Jones 2000; Sturz and Johnston 1985).  

Minimum soil temperatures for perithecia production are 6oC to 10oC with an 

optimum in the range 15oC to 20oC (Gilbert et al. 2008; Pereira et al. 2004). High relative 

humidity and soil moisture content are favorable for perithecia formation; therefore, 

humid weather during August and September favor FHB epidemics in the following 

growing season.  

In the spring, ascospores and macroconidia are released from the fruiting bodies. The 

optimum conditions for spore production are a wet substrate and high temperature. The 

optimum temperatures for production of ascospores are 29oC and 32oC for F. 
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graminearum and F. culmorum, respectively. In F. graminearum, inhibition of spores 

occurs when temperatures reach 36oC or greater (Osborne and Stein 2007). 

Discharge of ascospores is triggered by temperatures between 20oC and 30oC and 

high relative humidity (80–92%). Rainfall events before and during anthesis assure the 

presence of inoculum for FHB epidemics. 

Ascospores and macroconidia land on the wheat head during the flowering stage and 

infection occurs. Under wet and rainy conditions, the propagules are dispersed via water 

splash or by wind and then infect internal flower parts, glumes, lemma, and palea. Rain 

splash is considered a major means of pathogen dispersal (Schmale and Bergstrom 2003).   

Infections are favored when the relative humidity is higher than 80% and there is 

wind and rain. If the temperature is between 10oC to 30oC and relative humidity is higher 

than 90% during 4 to 6 hours at the flowering stage, these conditions are perfect for 

infections. 

Penetration of the fungus is favored by low temperature and high relative humidity. 

The optimal infection occurs when the temperature is around 20oC and relative humidity 

is around 100% (Beyer et al. 2006; Osborne and Stein 2007).  

After infection, during wet conditions with temperatures around 25oC to 30oC, 

complete blighting of heads occurs, which explains why symptoms appear suddenly in 

wheat fields under these conditions. The main symptom in the field is the sudden 

presence of bleached spikelets. During FHB epidemics, pink to orange spore masses are 

evident on wheat spikes.  

An important factor in the interaction of wheat and F. graminearum is the formation 

of choline and betaine by wheat during anthesis. These two components have been 

reported as growth stimulants for Fusarium graminearum (Strange et al. 1972). Hyphal 
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orientation is essential for successful infection (Brand and Gow 2009). Penetration by F. 

graminearum is directed towards anthers, pollen, and ovaries of wheat (Buerstmayr and 

Buerstmayr 2015). The hyphal growth of F. graminearum exhibits affinity to the above 

mentioned floral organs or to wheat germ (Strange et al.1974). Under experimental 

conditions, the growth of F. graminearum conidia after germination was directed to the 

ovary of the floret (Blumke et al. 2014). Choline and betaine play a major role in fungal 

attraction (Strange and Smith 1971, 1978; Strange et al. 1972). These compounds, when 

supplied exogenously, can be used as a source of carbon by F. graminearum (Strange and 

Smith 1978; Markham et al. 1993). Choline concentration increased hyphal extension 

rate and inhibited branching frequency (Robson et al. 1995; Weibe et al. 1992). 

Accumulation of choline and betaine in wheat anthers has been considered a 

susceptibility factor for F. graminearum (Strange et al. 1972). Hyphal chemotropism 

towards nutrients is a generally accepted phenomenon, but the underlying mechanisms 

are largely unknown (Turrà et al. 2015). 

In the spikelet, Fusarium-damaged kernels (FDK) are the product of an F. 

graminearum infection and colonization of the head tissue. FDK appear as white, chalky 

collapsed grains. Other names for FDK are shriveled kernels, scabby seeds or 

tombstones. Associated with high severity of FHB, there is an elevated concentration of 

mycotoxins, especially DON, which are harmful to humans and animals. 

F. graminearum isolates are divided according to their chemotype. There are three 

chemotypes in F. graminearum: 3-ADON (DON and 3-acetyl-DON producers), 15-

ADON (DON and 15 acetyl-DON producers), and nivalenol (NIV) (NIV and 4 acetyl-

NIV producers) (Ward et al. 2002). In the NIV chemotype, the calonectrin 4-oxygenase 
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(Tri13 gene), and the trichothecene 4-O-acetyltransferase (Tri7 gene) are functional and 

allow the conversion of the trichodiene (product of the enzyme trichodiene synthase Tri5) 

to NIV; therefore, in the NIV chemotype of F. graminearum the final outcome of the 

pathway is NIV instead of DON. Although the three chemotypes belong to the same 

species, their genetic differences and geographical distribution separate them into 

different genetic populations (Ward et al. 2002).    
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5. Integrated management of Fusarium head blight. 

Integrated management is the most effective strategy for controlling FHB and DON 

(Wegulo et al. 2015c). The sporadic nature of FHB epidemics makes its control a 

challenge. A good forecasting system, choosing a tolerant or moderately-resistant 

cultivar, cultural practices such as residue management and tillage, and timely application 

of fungicides are the major components of an integrated management system for FHB 

(Wegulo et al 2015c).  

Cultivar resistance is the most cost-effective option in this disease management 

strategy (Wegulo et al. 2015c). In monocyclic diseases such as FHB, control is made by 

either reducing the amount of inoculum or by reducing the efficacy of inoculum (Madden 

et al. 2007). Considering that spores of F. graminearum move via wind and rain splash, a 

virulent pathogen will always be present; therefore, moderately resistant cultivars will 

only have an effect on the infection efficiency. Total cultivar resistance to FHB does not 

exist. Moderate-resistance needs to be coupled with the application of fungicides to 

control the infection.  

New systemic or locally-systemic fungicides have given farmers a valuable tool to 

fight the disease; however, the correct selection of the fungicide chemical class and 

application timing play a major role on their efficacy. Fungicide treatments that target 

FHB should be applied during or a few days after anthesis. 

Tillage removes a large quantity of F. graminearum inoculum. Reducing the initial 

population of the fungus not only delays disease progression, but also limits the 

production of DON (Beyer et al. 2006). Blandino et al. (2012) found that direct sowing 

with a susceptible cultivar, without fungicide application showed a 97% higher DON 
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incidence than plowing and using a moderately resistant cultivar with a triazole 

application at heading. 

Crop rotation is critical because the most important source of inoculum for FHB 

epidemics are ascospores released from fruiting bodies overwintering in crop debris 

especially corn and wheat stubble. Continuous wheat or wheat after corn are not a 

recommended rotation scheme if one wants to avoid accumulation of FHB inoculum in 

the soil (Osborne and Stein 2007; McMullen et al. 1997b). Survival of F. graminearum 

occurs mainly in crop stubble but not in soil (Leslie et al. 1990). Using a legume crop 

after wheat or corn can increase the C/N ratio accelerating the decomposition of wheat or 

corn stubble and could reduce the survival and the initial population of F. graminearum. 
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6. Fungicides for controlling foliar diseases, FHB and DON in wheat 

Fungicides play a major role in controlling foliar fungal diseases and FHB, and in the 

prevention of pre- and post-harvest DON contamination in wheat grain. Unfortunately, 

relatively few fungicides have shown good efficacy against FHB (McMullen et al. 1997b; 

Mesterházy et al. 2011). Currently, triazoles are the most effective fungicides against 

FHB (Wegulo et al. 2015c).  

Demethylation inhibitors (DMI), particularly the triazoles, inhibit the C14 

demethylase in the ergosterol biosynthetic pathway (Myung and Klittich 2015). 

Ergosterol is a target for many antifungal compounds and the major component of the 

fungal cell membrane. The function of ergosterol is the bioregulation, fluidity, 

asymmetry, and integrity of the cell membrane. Ergosterol also plays a hormone-like role 

in fungal cells, because it stimulates fungal growth (Kathiravan et al. 2012). Triazoles 

have a direct inhibitory effect on hyphal formation (Ha and White 1999).  

The effect of the triazole tebuconazole (Folicur) on infection by Fusarium culmorum, 

the main causal agent of FHB in Europe, was studied by Zange et al. (2005). Post-

infection wheat heads were treated with Folicur and the fungicide effect was observed 

using Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy 

(TEM). Immediately after the treatment, morphological changes such as excessive 

branching, the formation of bulb-like structures in the tip of the germ tube, severe 

inhibition of fungal hyphae growth, and the absence of mycelium network were observed 

in the growth of the fungus on the surface of wheat spikes treated with the fungicide. 

TEM micrographs of the treated head showed thickening of the cell walls of the fungus, 

accumulation of vacuoles, and abnormal formation of inclusion bodies.       
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According to the Fungicide Resistance Action Committee (FRAC), triazoles have a 

medium risk for fungicide resistance; however, due to the extensive use of this chemistry, 

resistance has become increasingly important over the years (Becher et al. 2010).  

Strobilurin fungicides are beta methoxyacrylate compounds that target respiration in 

various fungi (Nason et al. 2007). Strobilurin A was isolated from Strobilurus tenacellus, 

and biotechnologically generated strobilurins were introduced to the market in 1996 (Ma 

and Michailides 2005). Strobilurins interfere with energy production by binding the 

cytochrome b of the cytochrome bc1 complex and blocking the electron transport chain in 

fungi (Kathiravan et al. 2012).  

Strobilurins have shown a broad spectrum of action against several fungi (powdery 

mildew, rusts, Septoria) as well as growth enhancement of plants. In plants, there are 

several physiological responses to strobilurin fungicides that are linked with growth-

promoting effects. Changes in transpiration rates and hormonal balance and increase in 

nitrate reductase activity are part of the physiological changes caused by the strobilurins 

(Barlett et al. 2002; Tedford 2009). These changes represent a direct effect on enhancing 

CO2 assimilation and water use efficiency, delaying senescence, all resulting in improved 

yields (Reddy 2012; Tedford 2009). 

In wheat, transpiration rates are reduced as well as stomatal conductance (mmol m-2 s-

1), the net rate of photosynthesis, and intercellular carbon dioxide concentration in 

strobilurin treated plants versus controls (Nason et al. 2007); in essence, it results in 

better water use efficiency (Reddy 2012; Tedford 2009). 

Strobilurin fungicides block ethylene production. Strobilurins inhibit the path from s-

adenosyl-l-methionine to ethylene acting as an ACC synthase (Grossmann and Retzlaff 

1997), affecting senescence directly. Azoxystrobin prolongs the time of green leaves on 
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wheat in a range of 8.2 to 11.2 days compared with the non-azoxystrobin treated control 

(Reddy 2012). Strobilurins reduce reactive oxygen species such as NO, O2
-, H2O2 in 

plants and enhance the production of anti-oxidative enzymes such as superoxide 

dismutase, catalase, peroxidase, ascorbate peroxidase and glutathione reductase which 

could be related with the stay-green effect (Wu and Von Tiedemann 2001). 

Tebuconazole alone, mixtures of tebuconazole and other fungicides, and the 

strobilurin azoxystrobin have shown optimal control of stem rust in wheat (Loughman et 

al. 2005; Wanyera et al. 2009). However, strobilurins play a different role in different 

wheat diseases. While strobilurin fungicides can reduce the incidence and severity of 

FHB and are effective in controlling foliar diseases, DON production has shown higher 

levels in strobilurin-treated plots than in the non-fungicide treated check plots 

(Amarasinghe et al. 2013).  

Application of fungicides, especially demethylation inhibitors, is a part of the strategy 

to manage FHB (Wegulo et al. 2015c) and must be timed to protect the head; however, 

two applications (to control foliar and head diseases) are not economical (Wegulo et al. 

2012). Although the importance of fungicides for controlling FHB and DON have been 

highlighted, many reviews and meta-analysis reports indicate incomplete control and 

differences based on cultivar. (Blandino et al. 2006, 2012; Mesterházy 2003, 2014; Paul 

et al. 2008; Pirgozliev et al. 2002). 

The chemical control of FHB is based on the use of triazoles. Triazole dependency 

selects for the development of resistance in F. graminearum towards this chemical class. 

In 2014, tebuconazole-resistant F. graminearum was isolated for the first time in the 

Americas (Spolti et al. 2014). Therefore, there is a need to develop new fungicide 

chemistries for the control of this disease. Antifungal aminoglycosides such as K20 
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produced by bacterial actinomycetes (Takemoto et al. 2018) have been field tested for the 

control of F. graminearum. K20 fungicide has shown a synergistic activity in the control 

of F. graminearum when used together with triazoles (Takemoto et al. 2018). The use of 

two different chemistries of synergistic action with different target sites would reduce the 

risk of loss of efficacy of the triazoles against F. graminearum.  
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7. Cultivar resistance and techniques to evaluate breeding lines for FHB. 

Genetic resistance has the potential to provide an effective control of FHB (Wegulo et 

al. 2015c). It is an ecologically and economically efficient strategy for management of 

the disease. Improvement of cultivar resistance has become a major wheat-breeding 

objective worldwide (Bai and Shaner 2004). However, breeding against FHB is 

challenging due to the quantitative nature of resistance, and technical difficulties when 

screening cultivars in inoculated experiments.  

Wheat has a large and complex genome which poses difficulty in breeding (Tucker et 

al. 2017). Host resistance to FHB is conditioned by oligogenic to polygenic inheritance. 

Quantitative trait loci (QTLs) involved in FHB resistance have been identified on every 

wheat chromosome (Eckard 2015). 

In the United States, breeding efforts against FHB began in 1929 with Christensen 

testing 350 wheat varieties and lines for response to “Fusarial head blight”. After nine 

years of experiments, Christensen concluded that all plants became infected to a greater 

or lesser degree.   

Schroeder and Christensen (1963) proposed two types of resistance to FHB in wheat. 

Resistance to initial infection (type I resistance) includes defense reactions such as the 

activation of enzymes degrading the fungal cell wall or pathogenesis-related proteins. 

Type I resistance is estimated by spraying a spore suspension over flowering spikes and 

counting diseased spikelets. The QTLs Fhb4 and Fhb5 confer type 1 resistance (Kosaka 

et al. 2015). 

Resistance to spread of blight symptoms within a spike (type II resistance) is 

associated with the movement of the pathogen from one infected spikelet to another via 

the rachis.  This type of resistance is estimated by delivering conidia into a single floret 
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of a spike and counting the blighted spikelets after a period of time. QTLs mapped for 

type II resistance are Fhb1, Fhb2 and Fhb3 (Kosaka et al. 2015).  

Mesterhazy (1995) proposed five types or components of resistance to FHB in wheat. 

Additionally to type I and II, he proposed type III or kernel size and number retention; 

which is assessed by observing the damage to the kernels,  kernel number reduction, 

kernel weight, test weight, or visual estimates of Fusarium-damaged kernels; type IV 

resistance, or yield tolerance, which is assessed by measuring grain yield of naturally or 

artificially inoculated spikes or plots and comparing the data with spikes or plots without 

symptoms; and type V resistance, which is the resistance to accumulation of DON or 

ability to decompose DON, assessed by measuring DON concentration at a given level of 

FHB. 

Major breeding efforts have been focused on the introgression of genes from cultivars 

showing native resistance to FHB (from adapted cultivars and breeding lines) (Clark et al 

2016). Additionally, cultivars derived from Sumai 3 have shown unique genes for 

resistance to FHB (Kolb et al. 2001). The nature of cultivar resistance to FHB is 

horizontal, that is, many genes are involved (Mesterhazy et al. 1999). 

Cultivars having the Fhb1 QTL can conjugate DON to a less toxic glucoside (D3G). 

This mechanism plays an important role in wheat resistance to FHB. Transgenic wheat 

expressing an UDP-glucosyltransferase for DON detoxification had significantly lower 

DON compared to controls.  (Li et al. 2015) The resistance provided by Sumai 3 to DON 

accumulation is related to detoxification as well.    

In 2006, Husker Genetics released Overland (NE01643), a semi-dwarf hard red 

winter wheat cultivar, moderately-resistant to FHB (Baenziger et al. 2008). In this 
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cultivar, five chromosomes have resistance alleles (1A, 1B, 3A, 4A and 6A) including 

known QTLs such as Fhb1, Fhb5, and Rht-B1 (Eckard et al. 2015).   

Cultivars of wheat have shown contradictory effects for FHB severity and DON 

accumulation. Hernandez-Nopsa et al. (2014) found that a good yielding cultivar with 

moderate resistance against FHB had high concentrations of DON. In contrast, a 

susceptible cultivar had lower levels of DON than the moderately resistant cultivar.  

Due to the sporadic nature of FHB epidemics, the evaluation of resistant varieties in 

the field is a big challenge; therefore, it is necessary to develop good and precise 

inoculation methods in order to replicate resistance results consistently. Actual methods 

used for screening often result in high experimental error and inconsistent ranking of 

genotypes (Kumar et al. 2015). Additionally, the relationship between DON and visual 

symptoms is not always clear, but in years of epidemics, this relationship is highly 

correlated. 

Marker assisted selection (MAS) can be defined as the use of molecular markers to 

help in or substitute for phenotypic screening (Collard et al. 2008). Molecular markers 

are powerful tools to evaluate breeding lines. These markers are linked to the alleles or 

quantitative trait loci (QTL) of interest. QTL refers to a region of the genome that 

evidences an effect on a character. Genes and QTL are not synonymous terms since a 

QTL does not necessarily represent a single gene (Acquaah 2009). During the 

introgression of a QTL for resistance against FHB, it is necessary to monitor the behavior 

of the genetic material into the new line. Genomic selection uses all the genomic 

information to make predictions of genotypes (Lorenz et al. 2012). Genomic selection has 

proven to be more accurate than classical MAS (Hayes and Goddard 2001; Hefner 2010; 

Lorenz et al. 2012). Genomic selection allowed a map-based cloning of the Fhb1 QTL 
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from the Chinese wheat cultivar Sumai 3 (Rawat et al. 2016), which was a significant 

milestone in developing durable breeding strategies for resistance against FHB.  
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8. Storage of wheat grain. 

Grain storage is an ancient practice implemented since early civilization, 

approximately 7,000 years ago (Reed 1992). Although stored grains are easily maintained 

in semi-arid conditions, this situation is less predictable with climate change. There are 

also significant costs associated with maintaining farm storage under both dry and cold 

conditions. Storage of food products is more critical under tropical conditions, where 

high relative humidity and temperature play a major role in spoilage. A common practice 

among wheat growers is to store grain in farm bins and silos. Storage time is driven by 

economic factors. Properly stored wheat grain should be cleaned and dried before 

storage. One of the major constraints during storage is the risk of losing grain quality; 

therefore, good management practices during storage of wheat grain are fundamental.  

Wheat grain, after harvesting, enters a period of dormancy; at this stage, there is a 

reduction in respiration rates and physiological processes within the grain (Reed 2006). 

However, grain is a living organism susceptible to attack by pathogens, especially under 

deficient storage conditions. Loses during storage are mainly due to infestation by 

insects, damage caused by birds and rodents, and microbial growth—especially by molds 

(Sauer 1992).   

Temperature and moisture (grain moisture content and environmental relative 

humidity) are the two physical factors most directly related to grain spoilage (Magan et 

al. 2004). During storage, grain with high moisture content can increase overall relative 

humidity and moisture in dry grain until equilibrium between dry grain and moistened 

grain is attained; additionally, dormancy of wheat seeds is broken when grain is 

moistened. The major problem with excess moisture is the formation of hot spots by 

respiration of storage microbes which can potentially cause bin burn (Fleurat-Lessard 
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2017). Broken kernels are more difficult to aerate as well as more susceptible to 

colonization by insects and molds (Sauer 1992). 

Culture methods, such as direct plating of kernels in semi-selective media, are of little 

value when making accurate estimations of spoilage potential. Assessing grain infection 

visually can provide a rapid diagnostic of the deteriorating situation in grain; however, 

this evaluation can underestimate the concentration of compounds such as mycotoxins in 

healthy-looking grain. More precise estimations can be obtained by evaluating ergosterol 

concentrations or using molecular techniques to quantify molds and transcriptionally 

active genes of the mycotoxin production pathways.  
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9. Molds and mycotoxins in wheat grain. 

Grain molds contribute to deterioration and rapid loss of quality. Mycotoxins 

associated with mold growth have enormous influence on grain quality loss. Molds can 

become a problem during grain storage, especially in silos that do not provide sufficient 

protection against external relative humidity or direct inflow of water, either by capillary 

exchange from the ground to the grain or by infiltration of rainwater in permeable silos. 

During storage, Penicillium, Aspergillus, and Fusarium are the most prevalent 

mycotoxin producing molds (Wilson and Abramson 1992). Mold contamination of grain 

cannot be eliminated, but the biomass of fungi entering storage can be greatly diminished 

through good post-harvest practices (Reed 2006). 

Mycotoxins are compounds produced by the secondary metabolism of molds. 

Although mycotoxins are not essential for growth, these compounds can play a major role 

in pathogenicity as well as in the colonization of an ecological niche by the mold which 

produces the mycotoxin. Worldwide, it is estimated that around 1 billion metric tons of 

food and food products are lost due to mycotoxin contamination every year (Schmale and 

Munkvold 2009).  

Mycotoxin contamination can occur before, during, and after harvest, and it is rarely 

associated with only one phase (Wilson and Abramson 1992). Additionally, mycotoxin 

accumulation is an additive process which begins in the field and continues during and 

after harvest.  

During storage, grain moisture content and temperature have a direct effect on 

spoilage, self-heating, grain respiration rates, and increased mycotoxin contamination 

(Magan et al. 2014; Reed 2006).  
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Total mold present, infection, and respiration rates are parameters used to evaluate 

grain deterioration during storage. Under conducive conditions, mold spores germinate 

and the hyphae extend and colonize the grain from the outside to the inside. Postharvest 

management, such as cleaning and drying of grain, assures a reduction of fungal growth 

rates as well as lower contamination of mycotoxins during storage.  

In North America, the principal toxin accumulated in wheat grains is deoxynivalenol 

(DON) or vomitoxin, a member of a group of related mycotoxins, the trichothecenes. 

Grain elevators test for DON and will establish a discount in grain prices if the level of 

contamination surpasses acceptable limits. In the United States, the acceptable limit in 

grain is 2 μg/g at the elevators. The U.S. Food and Drug Administration (FDA) limits 

DON to 1 μg/g in food products and 10 μg/g in grain for feed purposes (Henry 2006). 

DON contamination is suspected to have caused a number of important health problems, 

such as mycotoxicosis in China associated with consumption of moldy wheat from 1961 

to 1988; deoxynivalenol toxicosis in India with human food poisonings reported in 1987; 

Kashin-Beck disease in Russia (Miller and Trenholm 1994), and common dermatoxicosis 

among field workers on wheat fields (Reed 2006). In humans, when contaminated grain 

is ingested, it produces a toxic syndrome with symptoms such as diarrhea, nausea, 

vomiting, abdominal pain, headaches, and dizziness. In animals, symptoms of mycotoxin 

intoxication are vomiting, feed refusal, weakness and emaciation (Wegulo 2012). 

Enzymatic activity has important consequences on DON. Feed additives can 

enzymatically de-epoxidize DON (Karlovsky 2011). Increases of 118% and 189% in 

DON have been registered in doughnuts during the baking step due to enzymatic 

conversions and not associated with fungal growth (Miller and Trenholm 1994).  DON is 

highly stable and resistant to heat. Baking and brewing do not reduce DON; therefore, 
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DON produced in the field can be found at the end of the food chain, on the table of 

consumers.  

Other important mycotoxins have been found in wheat, namely nivalenol (NIV) and 

zearalenone (ZEA). Although these toxins are less prevalent in wheat grain, their toxicity 

is higher compared to DON (Desjardins 2006). NIV causes liver damage, failure of the 

immune system, and toxicity to the reproductive system (Calori-Domingues et al. 2016). 

ZEA is an estrogenic mycotoxin and is linked with abortions in livestock, and immune 

and endocrine system morbidity (Zinedine et al. 2007). 
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10. qRT-PCR for gene expression analysis. 

Quantitative reverse transcript polymerase chain reaction (qRT-PCR) is a molecular 

technique used to quantify RNA in real-time. Quantitative techniques such as qRT-PCR 

and q-PCR are highly sensitive and robust, and are applied in pathogen detection 

(Lievens et al. 2006), quantification of gene expression and microarray validation 

(Hallen-Adams et al. 2011), to identify single nucleotide polymorphisms (SNP) for 

genotyping (Yeh et al. 2004), for DNA damage measurements (Furda et al. 2014), and 

GMO detection (Vaitilingom et al. 1999).    

qRT-PCR consists of several steps beginning with RNA extraction and subsequent 

amplification of its complementary DNA strand (cDNA). The messenger RNA (mRNA), 

or target, is a transient molecule, which acts as an intermediary between the DNA and the 

protein. A gene of interest may be expressed or not under given conditions or in a given 

tissue (Glazer and Nikaido 2007) and qRT-PCR is useful for quantifying the variation in 

expression of the gene.  

The amount of mRNA per gene of interest varies depending on cellular factors (RNA 

half-life, type of tissue, cell age, etc.), post-transcriptional or post-translational control of 

gene expression (mRNA regulation, promoters, enhancers, etc.), or external factors (heat, 

stress, moisture, pH, organic components) (Weaver 2012). Additionally, there are genes 

for which mRNA is always present and in high quantities (housekeeping genes); 

inversely, there are genes that have only one mRNA molecule per cell. The abundance of 

mRNA is reflected in the number of times a reverse-transcribed cDNA appears in the 

pool of transcriptionally active genes (Baker et al. 2003; Weaver 2012).  

qRT-PCR is advantageous as it is based on mRNA of transcriptionally active 

organisms while utilizing cDNA, which is more stable than the mRNA (transient 
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molecule and temperature-sensitive) (Weaver 2012). qRT-PCR is more reliable than 

quantitative end-point PCR methods, because there is no linear relationship between the 

starting copy number of a gene and the final yield of the amplified product (Green and 

Sambrook 2014).  

In qRT-PCR, the PCR product is monitored cycle-by-cycle by combining thermal 

cycling, fluorescence detection, and application of a specific software. qRT-PCR uses 

different chemistries to report fluorescence at the moment a desired PCR amplicon is 

detected. The two most common methods for monitoring the change in amounts of 

double stranded PCR product are SYBR green and TaqMan (Green and Sambrook 2014). 

Fluorescence detection by SYBR green chemistry, also known as the intercalation 

method, consists of the binding of double stranded DNA with the dye at each cycle of 

amplification. Fluorescence is emitted and then detected during the amplification.  

The main output of the qRT-PCR assay is the Ct (cycle threshold) value, which is a 

measure of the hybridization kinetics (Livak et al. 1995). Defining the threshold is an 

important step towards the correct and reliable analysis of qRT-PCR data. The threshold 

must be defined above the linear phase of the reaction and must exclude the background 

fluorescence (Green and Sambrook 2014). Several analytical methods consider the 

efficiency of a reaction; however, modifying the efficiency of the reaction per sample has 

been shown to yield highly variable results (Ruijter et al. 2009). Ct values are associated 

with the exponential growth of the PCR product and are turned into a usable value for 

ANOVA (VanGilder et al. 2008). Schmittgen and Livak (2008) proposed the report of 

individual quantitative real-time PCR Ct values as 2-Ct.  

Analyzing relative gene expression has been proposed to avoid bias due to intrinsic 

biological variation in the Ct values of replicates belonging to the same 
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condition/treatment. Gene expression can be relative to: i) a housekeeping gene (for 

example glyceraldehyde 3-phosphate dehydrogenase, GAPDH), ii) an external synthetic 

RNA, or iii) a reference index (average of several controls) (Pfaffl 2004). The most 

commonly-used method is the normalization of the gene expression through the ratio of 

the Ct of the housekeeping gene to the Ct of the gene of interest in a sample. Cts are used 

for the calculation of the 2-ΔΔCt (Schmittgen and Livak 2008) where ΔCt is variation 

between the gene of interest and the reference gene and ΔΔCt is the variation between the 

ΔCt of the treatment and the ΔCt of a reference or calibrator. 
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11. Tri5 gene expression in F. graminearum and its relationship with DON in 

grain. 

The gene Tri5 encodes the trichodiene synthase enzyme (Desjardins 2006) which is a 

key enzyme for the production of all trichothecene mycotoxins (Niessen et al. 2004). 

Trichodiene synthase catalyzes the isomerization and cyclization of farnesyl 

pyrophosphate to trichodiene, which is the first step in the trichothecene production 

pathway (Desjardins 2006). qRT-PCR has been used to study gene expression of Tri5 

(Doohan et al. 1999; Hallen-Adams et al. 2011; Han et al. 2018; Mudge et al. 2006).  

Tri5 is a gene involved in secondary metabolism; therefore, the fungus can live 

without this gene. Furthermore, DON is not essential for stem colonization by F. 

graminearum or F. pseudograminearum in crown rot disease (Mudge et al. 2006). 

However, the ability of F. graminearum to colonize wheat is severely affected when the 

Tri5 gene is disrupted (Proctor et al. 1995). DON appears to give F. graminearum an 

advantage under growth-limiting or stress conditions (Audenaert et al. 2013; Doohan et 

al. 1999; Glazer and Nikaido 2007; Jansen et al. 2005; Miller et al. 1983). The regulation 

of fungal secondary metabolites is complex. It is hypothesized that the fungus recognizes 

the host environment and induces genes for DON biosynthesis (Mudge et al. 2006).  

In wheat, the expression of the F. graminearum Tri5 gene is related to the inhibition 

of plant defense responses such as thickening of the cell wall during the colonization 

process (Mudge et al. 2006; Jansen et al. 2005). Tri5 detection and expression in wheat is 

representative of an actively growing fungus. DON produced at the end of the 

biosynthetic pathway that begins with Tri5 inhibits protein synthesis allowing movement 

of the fungus from cell-to-cell (Brown et al. 2012).  
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qRT-PCR can measure the abundance of transcripts of the Tri5 gene in planta 

(Mudge et al. 2006). Hallen-Adams et al. (2011) detected significant differences in the 

expression pattern of DON biosynthetic genes. F. graminearum in vitro showed lower 

expression of DON biosynthetic genes when compared to growth in planta (Hallen-

Adams et al. 2011). Tri5 has been detected and is highly up-regulated at 7 days post 

inoculation in wheat heads (Mudge et al. 2006); after 72 hours post inoculation in barley 

(Hallen-Adams et al. 2011); and between cell division and cell differentiation stages in 

susceptible wheat cultivars (Chetouhi et al. 2016). In addition, in wheat, Brown et al. 

(2011) detected a high level of Tri5 gene expression during initial asymptomatic 

infection. Infection by F. graminearum in susceptible wheat can be divided into three 

phases: an initial phase where DON and Tri5 gene expression are correlated, an 

intermediate phase characterized by a rapid fungal growth and colonization of the head, 

and a third phase where F. graminearum develops independently of Tri5 gene expression 

(Chetouhi et al. 2016). However, Tri5 expression can be detected in senescent host tissue 

of an FHB-susceptible cultivar (Hallen-Adams et al. 2011).  

High and positive correlations have been found between Fusarium graminearum 

biomass and DON accumulation (Horevaj et al. 2011; Kumar et al. 2015; Nicolaisen et al. 

2009; Pirgozliev et al. 2008; Zhang et al. 2009). However, few gene expression studies 

have found positive relationships between Tri5 expression and DON (Brown et al. 2012; 

Lee et al. 2014). Also, in some studies it has been shown that DON and Tri5 expression 

are not correlated, especially in specific events of the incubation period. Hallen-Adams et 

al. (2011) found that DON levels were high and the ratio of gene expression 

Tri5/GAPDH was low, near or at the infection front. In the same study, the authors found 

that DON concentration increased later in the infection process. Early induction of Tri 
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genes in asymptomatic tissue has been detected in several studies of Tri gene expression 

(Hallen-Adams et al. 2011; Mudge et al. 2006; Chetouhi et al. 2016; Brown et al. 2011). 

Lee et al. (2014) hypothesized that Tri transcript accumulation is necessary before 

initiating DON or NIV biosynthesis. If DON biosynthesis is dependent on an initial Tri 

accumulation, then correlations between DON and gene expression of members of the Tri 

cluster are unlikely, as mRNA is transient and may have degraded by the time of 

detectable DON accumulation. 
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CHAPTER II 

EFFECTS OF CULTIVAR RESISTANCE, FUNGICIDE CHEMICAL CLASS, 

AND FUNGICIDE APPLICATION TIMING ON FUSARIUM HEAD BLIGHT IN 

WINTER WHEAT 

1. Abstract. 

Fusarium head blight (FHB), caused mainly by Fusarium graminearum, can cause 

devastating economic losses in small grain cereal crops. Management of FHB is by a 

combination of strategies and tactics including cultivar resistance, fungicide application 

at anthesis, and cultural practices. This study evaluated, under field conditions, the effects 

of cultivar resistance, fungicide chemical class (triazole versus strobilurin), fungicide 

application timing, and environment on FHB and its associated mycotoxin 

deoxynivalenol (DON).  The moderately resistant hard red winter wheat cultivar 

Overland consistently had lower levels of FHB-index, Fusarium-damaged kernels 

(FDK), and DON, and higher yield compared to the susceptible hard red winter wheat 

cultivar Overley. Under the most FHB-favorable conditions (irrigation and wet growing 

season) and no fungicide application, FHB-index, FDK, DON, and yield in Overland 

were 39%, 55%, 46 µg/g, and 1819 kg/ha, respectively, compared to 80%, 79%, 78 µg/g, 

and 1122 kg/ha, respectively in Overley. The most effective fungicide treatment in 

reducing FHB, FDK, and DON and increasing yield was Prosaro (prothioconazole + 

tebuconazole) applied at anthesis.  Application of Prosaro 6 days post anthesis (DPA) 

achieved a slightly lower but comparable efficacy to that achieved by the anthesis 

application.  Application of Prosaro 12 DPA was least effective. The strobilurin fungicide 

Headline (pyraclostrobin) controlled FHB, FDK, and DON, but was less effective than 
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Prosaro.  Under the most FHB-favorable conditions (irrigation and wet growing season) 

in the susceptible cultivar Overley, control relative to the untreated check achieved by 

Prosaro applied at anthesis, 6DPA, and 12 DPA was 47%, 30%, and 10%, respectively 

for FHB-index; 48%, 37%, and 13% for FDK; and 76%, 78%, and 52% for DON.  Under 

the same conditions in the same cultivar, control relative to the  untreated check achieved 

by Headline applied at anthesis, 6DPA, and 12 DPA was 23%, 9%, and -8%, respectively 

for FHB-index; 24%, 14%, and 5% for FDK; and 47%, 49%, and 39% for DON.  In both 

cultivars, FHB-index, FDK, and DON were higher under irrigated compared to rainfed 

conditions and in a wet compared to a relatively dry growing season. The results from 

this study assert the benefits of using cultivar resistance as a management strategy for 

FHB and DON. Based on the results, triazole fungicides are recommended over 

strobilurins for control of FHB and DON, and the window of fungicide application can be 

extended by up to approximately one week after anthesis without significant loss of 

efficacy. 

2. Introduction. 

Fusarium head blight (FHB) or scab is a devastating disease of wheat and other small 

grain cereal crops. In the United States, the main causal agent of FHB is Fusarium 

graminearum (Dill-Macky 2010). FHB causes economic losses not only in yield and 

grain volume weight reduction, but also in discounts at the elevator due to accumulation 

of mycotoxins such as deoxynivalenol (DON, vomitoxin). In Nebraska, recent major 

outbreaks occurred in 2007, 2008, and 2015 (McMullen et al. 2012; Bolanos-Carriel et al. 

2015). Although considerable research efforts have been undertaken to develop effective 

management strategies and tactics for FHB, the disease continues to be a major challenge 
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for growers. The acreage of wheat and barley have declined drastically due to, among 

other factors, FHB epidemics (McMullen et al. 2012).  

Fusarium graminearum synthesizes mycotoxins as a byproduct of its secondary 

metabolism, especially under stress situations (Glazer and Nikaido 2007). Important 

mycotoxins produced by F. graminearum include the trichothecenes DON and nivalenol 

(NIV), as well as zearalenone (ZEA) (Desjardins 2006). Isolates are divided into 

chemotypes based on whether they produce NIV or one of the acetylated forms of DON 

(Liang et al. 2014; Ward et al. 2008). The main acetylated forms of DON are 3-ADON 

and 15-ADON (Greenhalgh et al. 1986). 

Fungicide application is one of the management tactics for FHB. Fungicide chemical 

class and optimal application timing are critical for effective management of the disease. 

Several fungicides have been proposed to control FHB and DON; however, few of them 

have shown good efficacy. Efficacy of triazole-based fungicides in controlling FHB and 

DON has been demonstrated in field trials (Paul et al. 2008). Fungicide application is 

timed at anthesis because the most damaging infections occur on wheat spikes during that 

growth stage or thereafter (Andersen 1948). The narrow window of fungicide application 

at anthesis presents challenges to the grower who may be unable to apply at that time due 

to various reasons including unfavorable weather (wind, rainfall), scheduling with 

commercial applicators, or unavailability due to personal commitments.  A wider 

application window can provide needed flexibility to the grower.  However, it is not 

known how long after anthesis a fungicide can be applied and still provide acceptable 

efficacy.  This knowledge gap can be filled by comparing the efficacy of a suitable 

fungicide applied at various time intervals starting at anthesis. 



64 
 

 

 

In the field, it has previously been demonstrated that strobilurin fungicides (quinone 

outside inhibitors (QoI)) significantly increase the levels of DON in wheat grain 

(Amarasinghe et al. 2013; Ellner 2005; Madden et al. 2014; Pirgozliev et al. 2002; 

Simpson et al. 2001). However, this phenomenon has not been demonstrated under 

Nebraska conditions. 

Genetic resistance is the most effective and economical strategy for managing FHB. 

In 2006, the winter wheat cultivar Overland (NE01643) with moderate resistance to FHB 

and adaptation to rainfed conditions of Nebraska, South Dakota, and the northern Great 

Plains was released by the Nebraska wheat breeding program (Baenziger et al. 2008). 

Winter wheat cultivar Overley was released in Kansas in 2003 (Fritz et al. 2004) for its 

high yields, but it is susceptible to FHB. Knowledge of the reaction of moderately 

resistant and susceptible wheat cultivars to triazole and strobilurin fungicides will be 

useful in developing more effective management strategies for FHB. The objectives of 

this study were to evaluate the effects of 1) cultivar resistance, 2) fungicide chemical 

class, 3) fungicide application timing, and 4) environment on FHB, Fusarium-damaged 

kernels (FDK), DON, thousand kernel weight (TKW), and yield in a moderately resistant 

and a susceptible winter wheat cultivar under Nebraska field conditions. 

3. Materials and methods. 

Field experiments were conducted under rainfed (one experiment) and irrigated (one 

experiment) conditions during each of the 2015 and 2016 wheat growing seasons at the 

Eastern Nebraska Research and Extension Center (ENREC), formerly the Agricultural 

Research and Development Center (ARDC)) l near Mead, Nebraska (41.2286° N, 

96.4892° W). Two hard red winter wheat cultivars, Overley (susceptible to FHB) and 

Overland (moderately resistant to FHB), were planted in the fall of 2014 and 2015. Plots 
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measured 1.22 m x 6.10 m in 2015 and 1.22 m x 4.57 m in 2016.  Plots were maintained 

according to standard agricultural practices. 

Weather data (Table 1) at the experimental sites were recorded with Watchdog® 

portable weather stations (Spectrum Technologies, Thayer Court, IL) placed in the alleys 

of plots.  In the irrigated experiments, impact sprinklers (model 30H, Rain Bird, Azusa, 

CA) delivered approximately 0.6 inches / day of water to the plots for 5 minutes at 15-

minute intervals from 10 a.m to 5 p.m. every day for the period May to June. 

The experimental design was split plot in randomized complete blocks with four 

replications, with cultivars as the main plots and fungicide treatments as the subplots. 

Treatments consisted of a factorial arrangement of three fungicide treatments (triazole, 

strobilurin, and check) by three application timing (anthesis, 6 days post-anthesis (DPA), 

and 12 DPA).  The fungicides used were tebuconazole + prothioconazole (triazole, 

Prosaro) at a rate of 0.47 L/ha and pyraclostrobin (strobilurin, Headline) at a rate of 0.66 

L/ha. 

Plots were inoculated by spreading F. graminearum-colonized maize kernels at a rate 

of 1.08 g/m2 or approximately 300 kernels/m2 weekly for three weeks beginning in late 

April.  At anthesis and 6 and 12 DPA, fungicides were applied to the spikes using a CO2-

powered backpack sprayer equipped with four Tee-jet 800-LVS nozzles (Tee-Jet 

Technologies, Dillsburg, PA) spaced 30.5 cm apart and set at 241 kPa (35 psi).  A 

volume of   150 L/ha of spray mixture was delivered to the plots. Nonionic surfactant 

(NIS 90-10, Precision laboratories, Waukegan, IL) was added to the spray mixture at 

0.125% v/v.  At 24 h after fungicide treatments, plots were inoculated by spraying the 

spikes with a suspension of F. graminearum spores using a back-pack sprayer.  Spores 
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were harvested from potato dextrose agar (PDA) culture plates on which five Nebraska F. 

graminearum isolates were grown for three to five weeks at room temperature.  The 

spores from the different isolates were mixed in sterile distilled water and the 

concentration was adjusted to 100, 000 spores/mL. 

FHB-index (percentage of symptomatic spikelets on all spikes sampled), was 

assessed on 100 spikes in each plot (20 spikes in each of five randomly selected spots in 

each plot) at 16 and 21 days after fungicide application. At maturity, plots were harvested 

with a small plot combine (Wintersteiger, Dimmelstrasse, Austria) which recorded yield.  

The percentage of FDK was visually determined in subsamples of the harvested grain.  

Gas chromatography with electron capture detection (Tacke and Casper 1996) was used 

to measure DON in subsamples of grain that were previously ground to flour.  DON 

measurement was done at the North Dakota Veterinary Diagnostic Laboratory.   

Fungicide efficacy for FHB-index, FDK and DON was determined with the following 

formula: 

𝐸 = [
(𝐶 − 𝐹)

𝐶
] × 100 

where E is the efficacy, C is the check value, and F is the fungicide treatment value 

Fungicide efficacy for yield was determined using the following the formula: 

𝐸 = [
(𝐹 − 𝐶)

𝐹
] × 100 

Data were analyzed with SAS software version 9.4 (SAS Inc, Cary, NC) using 

generalized linear mixed models. Based on heterogeneous error variances determined by 
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the F-ratio test (Gomez and Gomez 1984), data from each experiment were analyzed 

separately. Fisher’s least significant difference (LSD) test at P = 0.05 was used to 

compare pairs of treatment means.  In this paper, when comparing treatment means, use 

of “significant”, “significantly”, “differed”, “did not differ”, “higher”, “lower”, 

“increased”, or “reduced” is in reference to the LSD at P = 0.05.  F-values for treatment 

effects and their interactions were considered significant at P ≤ 0.05.  To determine the 

effect of irrigated or non-irrigated environment on FHB, FDK, DON, and yield, year was 

considered a replication and means of these variables in each cultivar were averaged over 

fungicide treatments.  Means were averaged over fungicide treatments and irrigation 

environments to determine the effect of year-specific environment on the same variables. 

4. Results. 

4.1 2015 Growing season, rainfed experiment. Under rainfed conditions, the 

effect of cultivar on all measured variables (FHB-index, FDK, DON, TKW, and yield) 

was significant (P ≤ 0.0139).  The effect of fungicide chemical class (Prosaro = triazole 

versus Headline = strobilurin) was significant (P ≤ 0.0320) for all variables except FHB-

index and yield.  The effect of fungicide application timing was similarly significant (P ≤ 

0.0024) for all variables except FHB-index.  The orthogonal comparisons “fungicide 

application at anthesis versus application at 6 and 12 DPA” were significant (P ≤ 0.0119) 

for all measured variables whereas the orthogonal comparisons “chemical class x 

fungicide application timing versus the check” were significant (P < 0.0001) for all 

variables except FHB-index and DON (Table 2).  

Overall, the FHB-index was lower in cv. Overland (here after referred to as Overland) 

than in cv. Overley (here after referred to as Overley) (Fig. 1). In Overley, the untreated 
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check plots had the highest FHB-index, which did not significantly differ (P = 0.05) from 

that in Headline- or Prosaro-treated plots at 12 DPA. In Overland, FHB-index did not 

differ among any treatments including the untreated check (Table 3). Overley had much 

higher FDK than Overland (Fig. 2). In both cultivars, plots treated at anthesis and 6 DPA 

with both fungicides had lower FDK than plots treated at 12 DPA and the untreated 

check plots. Within each cultivar, differences in FDK between the untreated check plots 

and Headline-treated plots at 12 DPA were not significant (Table 3). DON was higher in 

Overley than in Overland (Fig. 3) and ranged from 33 to 46 µg/g in the fungicide treated 

plots of Overley compared to 64 µg/g in the untreated check plots (Table 3). There were 

no significant differences between Prosaro-treated Overley plots sprayed at anthesis, 6 

DPA, and 12 DPA versus Headline-treated plots sprayed at anthesis (Table 3). In 

Overland, DON concentrations in fungicide treated plots ranged from 6 to 14 µg/g 

compared to 16 µg/g in the untreated check (Table 3). DON in Headline-treated plots did 

not differ from that in untreated check plots regardless of application timing (anthesis, 6 

DPA, and 12 DPA) (Table 3).  TKW was higher in Overland than in Overley and lowest 

in Overley untreated check and Headline-treated plots sprayed at 12 DPA (Table 3).  The 

highest TKW was from Overland plots treated with either fungicide at anthesis.  Yield 

was higher in Overland than in Overley in all fungicide treatments including the 

untreated check (Fig. 4).  The highest yield was from Overland plots treated with 

Headline at anthesis and the lowest yield was from Overley untreated check plots (Table 

3). 

4.2  2015 Growing season, irrigated experiment. Under irrigated conditions, 

differences between cultivars and among fungicide treatments were more evident, with 

the effects of cultivar, fungicide chemical class and fungicide application timing on all 
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variables measured (FHB-index, FDK, DON, TKW, and yield) significant (P ≤ 0.0283) 

except the effects of fungicide chemical class on TKW and yield. The orthogonal 

comparisons “fungicide application at anthesis versus application at 6 and 12 DPA” were 

significant (P ≤ 0.0231) for all measured variables except yield whereas the orthogonal 

comparisons “chemical class x fungicide application timing versus the untreated check” 

were significant (P ≤ 0.0097) for all variables except DON (Table 2). FHB-index was 

approximately twice as high in Overley as in Overland (Fig. 1).  In Overley, Headline-

treated plots at 12 DPA showed the highest FHB-index. This value did not significantly 

differ from the values in Headline-treated plots at 6 DPA, Prosaro–treated plots at 12 

DPA, and the untreated check plots. In Overland, there were no differences in FHB-index 

among all treatments (Table 4). Overall, Overley had higher FDK than Overland (Fig. 2).  

In Overley, untreated check plots and Headline-treated plots sprayed at 12 DPA showed 

the highest levels of FDK. There were no significant differences in the levels of FDK 

between the Prosaro-treated plots sprayed at anthesis and at 6 DPA, as well as in the 

Headline-treated plots sprayed at anthesis and 6 DPA. In Overland, the highest FDK 

levels were from Headline-treated plots sprayed at 6 and 12 DPA and in the untreated 

check and the lowest levels were from Prosaro-treated plots sprayed at anthesis and 6 

DPA (Table 4). DON was higher in Overley compared to Overland (Fig. 3).  In Overley, 

it ranged from 17 to 48 µg/g in fungicide treated plots compared to 78 µg/g in the 

untreated check. It was lowest in Prosaro-treated plots sprayed at anthesis and 6 DPA.  

DON in these two treatments was similar but significantly lower than in all Headline 

treatments and the Prosaro treatment at 12 DPA.  In Overland, DON in fungicide treated 

plots ranged from 8 µg/g in the Prosaro anthesis treatment to 37 µg/g in the Headline 

anthesis treatment compared to 46 µg/g in the untreated check (Table 4). TKW was 
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generally higher in Overland than in Overley.  The lightest kernels in both cultivars were 

from the untreated check plots and Headline-treated plots sprayed at 12 DPA.  Yield was 

significantly higher in Overland than in Overley only in the untreated check plots.  

Although it was higher in Overland than in Overley in Prosaro- and Headline-treated 

plots, these differences in yield between the two cultivars were not significant (Fig. 4).  

The highest yield was from Overland plots treated with Prosaro at anthesis.  Differences 

in yield among all other fungicide application timing in both cultivars and for both 

fungicides were mostly non-significant (Table 4).   

4.3  2016 Growing season, rainfed experiment.  The effect of cultivar was 

significant (P ≤ 0.0339) for all measured variables except yield.  The effect of fungicide 

chemical class was significant (P =0.0141) only for FHB-index whereas the effect of 

fungicide application timing was significant (P ≤ 0.0136) for FHB-index, DON, and 

yield. The orthogonal comparisons “fungicide application at anthesis versus application 

at 6 and 12 DPA” were significant (P ≤ 0.0380) for all measured variables except DON 

whereas the orthogonal comparisons “chemical class x fungicide application timing 

versus the check” were significant (P < 0.0001) for FHB-index and yield (Table 2).   

FHB intensity was lower in 2016 compared to 2015.  As in 2015, FHB-index was 

higher in Overley than in Overland (Fig. 1).  In Overley, it ranged from 14% in Prosaro-

treated plots sprayed at anthesis to 33% in Headline-treated plots sprayed at 12 DPA and 

38% in untreated check plots.  Both fungicides were most effective in reducing FHB 

when applied at anthesis followed by 6 DPA and least effective when applied at 12 DPA. 

In Overland, FHB-index ranged from 3% in plots treated with Prosaro at anthesis to 14% 

in the untreated check. All fungicide treatments (Prosaro and Headline) timed at anthesis, 
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6 DPA, and 12 DPA did not significantly differ in FHB-index, but had index values that 

were significantly lower than that in the untreated check (Table 3).  FDK was low (4.2-11 

%) but generally higher in Overley than in Overland (Fig. 2). Differences in FDK among 

fungicide treatments were not significant in both cultivars (Table 3).  DON was similarly 

low (0.4-1.4 µg/g in Overley; 0.1-0.2 µg/g in Overland, Table 3) but higher in Overley 

than in Overland (Fig. 3).  TKW was higher in Overley than in Overland (Fig. 4).  In 

Overley, it ranged from 27 g in the untreated check to  33 g in Headline plots sprayed at 

anthesis and 35 g in Prosaro-treated plots sprayed at 6 DPA.  In Overland, TKW did not 

differ among treatments and ranged from 23 g in the untreated check to 25 g in Headline 

plots sprayed at anthesis (Table 3).  Overland yielded higher in the untreated check, 

Prosaro, and Headline treatments; however, these differences were not significant (Fig. 

4).  Yield ranged from 2208 kg/ha (Headline applied at 12 DPA) to 4061 kg/ha (Headline 

applied at anthesis).  Later application timing of both fungicides (12 DPA) resulted in 

lower yield than earlier application timing (anthesis and 6 DPA) (Table 3). 

4.4  2016 Growing season, irrigated experiment. The effect of cultivar was 

significant (P ≤ 0.0039) for FHB-index, DON, and TKW.  The effect of fungicide 

chemical class was significant (P ≤ 0.0310) only for FHB-index and FDK whereas the 

effect of fungicide application timing was significant (P ≤ 0.0530) for all measured 

variables except DON. The orthogonal comparisons “fungicide application at anthesis 

versus application at 6 and 12 DPA” were significant (P ≤ 0.0280) for all measured 

variables except DON and TKW whereas the orthogonal comparisons “chemical class x 

fungicide application timing versus the check” were significant (P ≤ 0.0236) for all 

variables except DON (Table 2).  FHB-index was higher in Overley compared to 

Overland (Fig. 1).  In Overley it ranged from 23% in the Headline anthesis treatment to 
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67% in the Headline treatment applied 12 DPA and 74% in the untreated check. In 

Overland it ranged from 13% to 37% in the Headline treatment applied 12 DPA and 38% 

in the untreated check.  In both cultivars and for both fungicides, the anthesis treatments 

were the most effective and the treatments applied 12 DPA were the least effective in 

reducing FHB-index.  FDK was higher in Overley than in Overland in the untreated 

check and Headline treatments but not in the Prosaro treatment (Fig. 2).  In Overley, FDK 

was highest in the untreated check (39%) and Headline treatment applied at 12 DPA 

(43%) and lowest in Prosaro anthesis treatment (22%). In Overland, FDK was similarly 

highest in the untreated check (26%) and Headline treatment applied at 12 DPA (27%) 

and lowest in Prosaro anthesis treatment (14%) (Table 4). DON was generally low but 

significantly higher in Overley than in Overland (Fig. 3).  In Overley, it ranged from 2.6 

µg/g in the Prosaro treatment applied at 6 DPA to 4.2 µg/g in the anthesis Headline 

treatment.  DON was very low in Overland, ranging from 0.6 to 1.2 µg/g with no 

significant differences among all treatments (Table 4).  TKW was greater in Overley than 

in Overland (Fig. 4).  In Overley, it highest in the Headline anthesis treatment (30 g) and 

lowest in the Headline treatment applied 12 DPA (25 g) and the untreated check (26 g) 

with the values in the latter two treatments significantly lower than in all other treatments 

(Table 4).  Yield was not significantly different among cultivars and fungicide treatments 

(Fig. 5) and ranged from 1865 kg/ha in the Overley untreated check to 3492 kg/ha 

Prosaro anthesis treatment in Overley (Table 4). 

4.5  Effect of fungicide application timing on FHB-index, FDK, DON, 

TKW, and yield. In the 2015 rainfed experiment, fungicide application timing (0, 6 or 12 

DPA) generally did not have an effect on FHB-index in either Overley or Overland.  In 

the irrigated experiment, however, FHB-index in Overley was higher when Headline was 
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applied 6 and 12 DPA compared to the anthesis application. In Overland in the irrigated 

experiment, fungicide application timing had no effect on FHB-index. In the 2016 rainfed 

experiment, FHB-index was significantly higher in Overley treated with Headline 12 

DPA compared to the anthesis and 6 DPA applications.  In Overland in the same 

experiment, fungicide application timing had no effect on FHB-index.  In the 2016 

irrigated experiment, FHB-index increased with each delay in fungicide application in 

both cultivars and for both fungicides, and this trend was most pronounced in Overley 

treated with Headline (Fig. 6). 

In the 2015 rainfed experiment, FDK was significantly higher in Overley treated at 12 

DPA with both Headline and Prosaro compared to the anthesis and 6 DPA applications.  

In Overland, there was no effect of fungicide application timing on FDK.  In the 2015 

irrigated experiment in Overley, FDK was higher in both the Headline and Prosaro 

treatments applied 12 DPA compared to the anthesis treatments.  In Overland, FDK was 

similar in the 6 and 12 DPA Headline treatments, but higher in these two treatments than 

the anthesis Headline treatment.  In the Prosaro treatments in Overland, FDK 

significantly increased with each delay in fungicide application. In the 2016 rainfed 

experiment, there was no effect of fungicide application timing on FDK in both cultivars 

and for either fungicide.  In the irrigated experiment, FDK was higher in Overley treated 

with Headline at 12 DPA compared to the anthesis and 6 DPA treatments whereas in 

Overland, FDK was higher in the Prosaro treatments applied at 6 and 12 DPA compared 

to the anthesis treatment (Fig. 7). 

A significant effect of fungicide application timing on DON in the 2015 rainfed 

experiment was observed only in Overley treated with Headline where the 12 DPA 
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treatment resulted in more DON than the anthesis and 6 DPA treatments.  In the 2015 

irrigated experiment, there was no effect of fungicide application timing on DON in 

either cultivar.  Similarly, there was no effect of fungicide application timing on DON in 

either cultivar in both the rainfed and irrigated experiments in 2016 (Fig. 8). 

An effect of fungicide application timing on TKW was observed only in 2015.  In the 

rainfed experiment, TKW was lower when both fungicides were applied to both cultivars 

at 12 DPA compared to the anthesis applications. In the rainfed experiment, TKW was 

lower in Overley treated with both fungicides at 12 DPA compared to the anthesis and 6 

DPA treatments (Fig. 9).  Yield was significantly reduced with each delay in fungicide 

application in both experiments in 2015 and in the rainfed experiment in 2016 (Fig. 10). 

4.6  Fungicide efficacy.  Overall, Prosaro applied at anthesis achieved the 

highest efficacy in reducing FHB-index, FDK, and DON, as well as increasing yield.  

Among the Headline treatments, the anthesis application also achieved the highest 

efficacy, but this efficacy was in general lower than that achieved by Prosaro applied at 

anthesis.  In both Overley and Overland and for both fungicides, efficacy declined with 

each delay in fungicide application, with applications at 12 DPA having the lowest 

efficacy. Efficacy in reducing DON was much higher for Prosaro than for Headline 

(Table 5). 

4.7  Effect of environment on FHB-index, FDK, DON, and yield. Averaged 

over fungicide treatments and years, FHB-index and FDK were significantly higher in the 

irrigated compared to the rainfed environment in both cultivars.  DON did not differ 

between the irrigated and rainfed environments in Overley, but was higher in the irrigated 

compared to the rainfed environment in Overland. Yield did not differ between the 
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irrigated and rainfed environments in Overley, but was lower in the irrigated compared to 

the rainfed environment in Overland (Fig. 11). Averaged over fungicide treatments and 

irrigation environments, FHB-index, FDK, and DON were higher and yield was lower in 

2015 when there was above average rainfall that favored high FHB intensity compared to 

2016 when a dryer environment was unfavorable to disease development (Fig. 12). 

5. Discussion 

Integration of cultivar resistance with other management strategies is an effective and 

recommended approach to managing FHB in wheat and other small grain cereal crops.  

In this study, Overland, a moderately resistant winter wheat cultivar, consistently had 

lower FHB-index, FDK, and DON and yielded higher than the susceptible Overley. In a 

previous study which evaluated 363 U.S. winter wheat accessions (Jin et al. 2014), 

Overland was among the accessions that displayed low levels of FHB and DON, which is 

in agreement with the results obtained in this study. Previous research has similarly 

shown moderately resistant cultivars to have lower FHB-index, FDK, DON and higher 

yield than susceptible cultivars.  Wegulo et al. (2011) demonstrated in the field that under 

high FHB intensity and no fungicide application, the moderately resistant winter wheat 

cultivars Roane and Truman had lower FHB severity, FDK, and DON and higher yield 

than susceptible cultivars Overley and Tomahawk. In a field study by Amarasinghe et al. 

(2013), the moderately resistant spring wheat cultivar Glenn similarly had lower FHB 

severity, FDK, and DON and yielded higher than the susceptible cultivar Roblin.  

Willyerd et al. (2012) analyzed data from more than 40 field trials conducted in 12 U.S. 

states and found that the wheat cultivars classified as moderately resistant, fungicide-

untreated had lower FHB-index and DON compared to the cultivars classified as 

susceptible or moderately susceptible, fungicide-untreated. 
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Triazoles and strobilurins are the two classes of fungicides most widely used to 

control foliar and spike diseases of wheat.  In this study, the triazole fungicide Prosaro 

was more effective in reducing FHB, FDK, and DON and increasing TKW and yield than 

the strobilurin fungicide Headline.  This result is consistent with results from previous 

studies that compared the efficacy of triazoles and strobilurins in controlling FHB and 

DON.  Pirgozliev et al. (2002) found the strobilurin azoxystrobin to be less effective in 

reducing FHB and DON than the triazole metconazole.  In a meta-analysis of 292 

uniform fungicide field trials conducted in 17 U.S. states from 1995 to 2013, Paul et al. 

(2018) found that triazoles applied to wheat at anthesis were more effective in reducing 

FHB and DON than strobilurins. 

In addition to the inferior efficacy of strobilurins in reducing FHB and DON, this 

class of fungicides has been demonstrated in several studies to elevate DON.  Ellner 

(2005) reported that in 85% of the plots in 23 field trials, strobilurins applied before 

anthesis (Zadoks growth stages 33, 49, and 55; Zadoks et al. 1974) increased DON by up 

to 65% compared to the untreated check plots.  Simpson et al. (2001) and Mesterházy et 

al. (2003) similarly reported increases in DON in wheat grain from field plots treated 

with the strobilurin azoxystrobin. In this study, the field-applied strobilurin did not 

increase DON over the untreated check.  However, when grain from the 2015 growing 

season was cleaned to remove FDK so it could be used in a separate study, DON in grain 

from strobilurin-treated plots was higher than DON from untreated check plots (Bolanos-

Carriel et al. 2016). 

The optimum fungicide application timing to control FHB and DON in the field is at 

anthesis because most infections occur during this growth stage or shortly thereafter 
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(Andersen 1948).  However, the short window during anthesis presents challenges to the 

grower who may not be able to spray a fungicide during that time due to various reasons 

including unfavorable weather, scheduling with commercial applicators, or unavailability 

due to personal commitments.  Therefore, there have been efforts to determine whether 

post-anthesis fungicide applications can be effective in controlling FHB and DON.  In 

this study, the effect of fungicide application timing was most apparent in the triazole 

(Prosaro) treatments applied to the susceptible cultivar Overley in the irrigated 

environments, which favored high levels of FHB.  In these treatments, FHB-index, DON, 

and FDK were similar between the anthesis and 6 DPA applications, but generally lower 

in the anthesis application.  However, FHB-index, FDK, and DON the levels were 

significantly higher in the 12 DPA application compared to the two earlier applications.  

These results suggest that fungicide application can be delayed by about one week and 

still achieve effective control of FHB and DON.   

These results are similar to those obtained by D’Angelo et al. (2014) who found that 

FHB-index, FDK, and DON levels in post-anthesis applications of up to 6 days were 

generally not significantly different from those in earlier applications, although the earlier 

applications resulted in higher percent control compared to the untreated check.  Meta-

analysis of data from 19 years of fungicide field trials (Paul et al. 2018) showed that pre-

anthesis (at heading) applications of the triazole fungicides Caramba (metconazole) and 

Prosaro were much less efficacious in controlling FHB and DON than applications at 

anthesis or 5 to 7 days later.   The anthesis applications resulted in better percent control 

of FHB-index compared to applications 5 to 7 days later. However, the difference in 

percent control between the two timing was not large (6% and 10% for Caramba and 

Prosaro, respectively).  For DON there was no difference in percent control between the 
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anthesis and the late (5 to 7 days) applications (3% and 1% for Caramba and Prosaro, 

respectively).  These results are similar to those obtained in this study and similarly 

suggest that a triazole application about one week post anthesis can control FHB and 

DON with comparable efficacy to that achieved with anthesis applications. 

The meta-analysis by Paul et al. (2008) discussed in the preceding paragraph and the 

results from this study indicate that applications of triazole fungicides to wheat before 

anthesis or too long past anthesis (12 days in this study) are not recommended because 

their efficacy in reducing FHB and DON is too low.  In this study, efficacy of Prosaro in 

reducing FHB-index, FDK, and DON was highest when it was applied at anthesis, 

generally decreased with each 6-day delay in application, and was lowest when the 

fungicide was applied 12 DPA.  This suggests, as stated above, that the best window for 

triazole fungicide application to wheat for control of FHB and DON is anthesis to 

approximately one week later.  

Environment played a significant role in the development of FHB.  FHB and DON 

developed to higher levels in the irrigated compared to the rainfed experiments in both 

years, and in 2015 when there was above average rainfall before and during anthesis 

compared to 2016 when there was much less precipitation.  This was expected since FHB 

is favored by moisture before and during anthesis, as demonstrated in previous studies 

(Cowger et al. 2009; Hernandez Nopsa et al. 2012; Kriss et al. 2012) 

This study demonstrated the value of cultivar resistance as a management strategy for 

FHB and DON.  The moderately resistant cultivar Overland consistently had lower levels 

of FHB, FDK, and DON in FHB-favorable field environments compared to the 

susceptible cultivar Overley. The study confirmed, for the first time, that under Nebraska 
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field conditions, a strobilurin fungicide was less effective in reducing FHB, FDK, and 

DON compared to a triazole fungicide.  In addition, the study showed that anthesis 

applications of a triazole fungicide were most effective in reducing FHB, FDK, and 

DON, but applications at 6 DPA had comparable efficacy, indicating that growers have a 

wider window during which they can apply a triazole fungicide to control FHB and DON 

during disease-favorable growing seasons.    
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Table 1. Weather conditions at the experimental plots near Mead, Nebraska during the 2015 and 2016 growing seasons. 

 

Environment 

Temperature oC 
 

Precipitation (mm)a 

 
Relative Humidity (%) 

2015 
 

2016 
 

2015 
 

2016 
 

2015 
 

2016 

Min. Max. Avg.   Min. Max. Avg.                 

Rainfed 
May 0.72 31.2 16.0 

 
0.94 30.7 15.6 

 
193 

 
186 

 
66.4 

 
60 

June 11.2 35.8 22.5 
 

10.2 38.4 25.9 
 

104 
 

68 
 

71.3 
 

60 

  
 

              

Irrigated May 1.8 33.6 15.9 
 

0.83 31.0 15.8 
 

234a 

 
251a 

 
64.4 

 
60.6 

June 10.9 36.0 22.4   10.0 37.3 25.1   599a   572a   69.7   63.7 

 
a Precipitation includes rainfall and irrigation water 

 

N/A = not applicable as the values of DON in the dryland experiment for the growing season 2016 were below of the limit of quantification. 

Conservative T Grouping for cult*trt Least Squares Means (α =0.05) 

Negative values are means for treatment lower than the means for the non-fungicide sprayed check plots 

 

Same letters in the same column are not different (LSD α=0.05)  
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Table 2. P > F values from analysis of variance of data from experiments conducted near 

Mead, Nebraska to determine the effects of cultivar resistance, fungicide chemical class, 

and fungicide application timing on Fusarium head blight (FHB) index, Fusarium-

damaged kernels (FDK), deoxynivalenol (DON), thousand kernel weight (TKW), and 

yield in two winter wheat cultivars under rainfed and irrigated conditions during the 2015 

and 2016 growing seasons 

Effect   
Index FDK DON TKW Yield 

2015 2016 2015 2016 2015 2016 2015 2016 2015 2016 

 Rainfed 

Cultivar (C) 0.0058 0.0037 0.0019 0.0328 0.0006 0.0339 <.0001 0.0020 0.0139 0.1074 

Fungicide (F) 0.3315 0.0141 0.0082 0.1425 0.0171 0.3698 0.0320 0.7424 0.3987 0.8286 

Timing (T) 0.2984 <.0001 <.0001 0.4883 0.0024 0.0136 <.0001 0.1571 <.0001 <.0001 

A vs. 6 and 12 0.0119 <.0001 <.0001 0.0263 <.0001 0.4056 <.0001 <.0001 0.0003 0.0380 

Fact vs. Adda 0.6060 <.0001 <.0001 0.2998 0.0678 0.8870 <.0001 0.5438 <.0001 <.0001 

F*T 0.8828 0.5244 0.4342 0.7483 0.7735 0.8517 0.5619 0.0797 0.0085 0.6182 

C*F 0.3211 0.0835 0.1675 0.1425 0.3903 0.6663 0.7579 0.7396 0.5262 0.7055 

C*T 0.0923 0.0054 0.0068 0.0393 0.3066 0.0032 0.0121 0.2156 0.0098 0.0809 

C*M*F 0.7368 0.6236 0.9559 0.7724 0.5104 0.8677 0.0349 0.0086 0.0256 0.1192 

 Irrigated 

Cultivar (C) <0.0001 <0.0001 0.0019 0.0789 0.0283 <0.0001 0.0090 0.0039 0.1217 0.1974 

Fungicide (F) 0.0071 <0.0001 <.0001 0.0310 <.0001 0.0862 0.8095 0.5999 0.2174 0.6536 

Timing (T) 0.0191 <0.0001 <.0001 0.0002 0.0009 0.1890 0.0037 0.0006 <.0001 0.0530 

A vs. 6 and 12 0.0231 <.0001 <.0001 0.0020 <.0001 0.1452 0.0017 0.9766 0.2983 0.0280 

Fact. vs. Add. 0.0097 <.0001 <.0001 0.0009 0.7536 0.6442 0.0062 <.0001 0.0001 0.0236 

F*T 0.4024 0.0387 0.0347 0.0425 0.0320 0.6232 0.2534 0.0149 0.1680 0.6514 

C*F 0.1587 0.2126 0.2441 0.0108 0.8106 0.1635 0.1698 0.1900 0.1506 0.4549 

C*T 0.0250 0.0035 0.3060 0.2398 0.1330 0.0881 0.1021 0.4278 0.2866 0.5575 

C*M*F 0.8673 0.0428 0.8744 0.4335 0.2236 0.4615 0.2590 0.6976 0.6187 0.8388 

 

aAdditional contrasts (Add) were fungicide application at anthesis versus 6 and 12 days post 

anthesis (A vs. 6 and 12 DPA) and factorial (Fact) (chemical class x fungicide application timing) 

versus additional (non-sprayed check) 
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Table 3. Means of Fusarium Head blight index (FHB-index), Fusarium-damaged kernels (FDK),  deoxynivalenol (DON), thousand 

kernel weight (TKW), and yield from experiments conducted near Mead, Nebraska to determine the effects of cultivar resistance, 

fungicide chemical class, and fungicide application timing on the variables in two winter wheat cultivars under rainfed conditions 

during the 2015 and 2016 growing seasons 

Cultivar 
Fungicide 

Treatment 

FHB-index 

(%) 

 FDK 

(%) 

 DON 

(µg/g) 

 TKW 

(g) 

 Yield 

(kg/ha)5 

2015 2016  2015 2016  2015 2016  2015 2016  2015 2016 

O
v

erley
 

Check 59.5 aa 38.4 a  77.5 a 11.0 a  63.8 a 1.2 ab  16.5 f 26.5 e-g  677 j 2731 ef 

Prosaro A 40.5 bc 13.5 fg  43.2 c 6.2 bc  34.9 cd 0.8 b-d  23.9 b 31.2 b-d  1484 e-h 3542 a-d 

Prosaro 6 DPA 26.9 cd 20.9 de  43.8 c 6.0 bc  33.0 d 0.4 ed  22.1 cd 34.8 a  1284 g-i 3160 c-e 

Prosaro 12 DPA 48.2 ab 29.1 bc  61.0 b 7.2 a-c  37.8 cd 1.4 a  22.1 cd 30.3 cd  1114 h-j 2775 ef 

Headline A 43.8 b 18.9 ef  48.0 c 8.8 ab  37.8 cd 1.1 a-c  21.7 d 33.2 ab  1468 e-h 4061 a 

Headline 6 DPA 39.6 bc 26.6 cd  53.0 bc 7.8 a-c  40.2 bc 0.6 c-e  18.4 e 31.3 b-d  1428 g-i 2756 ef 

Headline 12 DPA  50.2 ab 33.4 ab  74.0 a 10.2 a  45.6 b 1.4 a  18.0 ef 31.8 b-d  933 ij 2208 f 

O
v

erlan
d
 

Check 13.5 de 13.8 ef  29.2 d 7.2 a-c  16.3 e 0.1 e  23.9 bc 22.9 h  1942 c-e 3113 c-e 

Prosaro A 6.5 e 2.6 h  11.5 f 5.8 bc  6.2 f 0.1 e  28.2 a 23.8 gh  2531 b 3958 ab 

Prosaro 6 DPA 11.8 de 5.9 gh  16.5 ef 7.8 a-c  10.5 ef 0.1 e  27.3 a 23.3 h  2159 b-d 3590 a-d 

Prosaro 12 DPA 7.4 de 9.6 fg  17.8 ef 4.2 c  9.6 ef 0.1 e  25.4 b 24.2 gh  2340 bc 3077 de 

Headline A 6.2 e 4.5 gh  11.5 f 4.2 c  10.7 ef 0.1 e  28.4 a 24.6 f-h  3088 a 3745 a-c 

Headline 6 DPA 10.5 e 8.6 f-h  20.2 d-f 8.2 ab  11.3 ef 0.2 e  25.0 b 24.3 f-g  1874 d-f 3636 a-d 

Headline 12 DPA 8.6 de 7.2 gh  23.0 de 5.2 bc  14.0 e 0.1 e  24.9 b 23.2 h  1694 e-g 3313 b-d 

aMeans followed by the same letter within a column are not significantly different according the least significant difference (LSD) test at P = 0.05.  
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Table 4. Means of Fusarium Head blight index (FHB-index), Fusarium-damaged kernels (FDK),  deoxynivalenol (DON), thousand kernel weight 

(TKW), and yield from experiments conducted near Mead, Nebraska to determine the effects of cultivar resistance, fungicide chemical class, and 

fungicide application timing on the variables in two winter wheat cultivars under irrigated conditions during the 2015 and 2016 growing seasons 

Cultivar 
Fungicide 

Treatment 

Index 

(%) 

 FDK 

(%) 

 DON 

(µg/g) 

 TKW 

(g) 

 Yield 

(kg/ha)5 

2015 2016  2015 2016  2015 2016  2015 2016  2015 2016 

O
v

erley
 

Check 80.3 aba 73.5 a  79.2 a 39.0 a  78.1 a 4.1 ab  19.8 ef 25.8 b-d  1122 cd 1865 c 

Prosaro A 42.2 de 28.1 e-h  41.5 g-h 21.5 b-d  19.0 de 2.9 cd  23.7 a-d 27.9 ab  1656 b-d 3492 a 

Prosaro 6 DPA 56.1 cd 34.9 d-f  50.2 e-g 22.5 c-d  16.8 de 2.6 d  25.1 ab 27.5 a-c  1272 b-d 2605 a-c 

Prosaro 12 DPA 72.3 a-c 51.3 b  68.8 bc 25.0 bc  37.4 bc 3.7 a-c  22.2 b-f 28.0 ab  988 d 2928 ab 

Headline A 62.0 b-c 23.0 gh  60.5 cd 26.8 b  41.4 bc 4.2 a  24.4 a-c 29.6 a  1525 b-d 3044 ab 

Headline 6 DPA 72.7 a-c 45.3 bc  68.2 bc 26.2 bc  40.2 bc 3.1 b-d  20.6 d-f 27.6 ab  1324 b-d 2798 a-c 

Headline 12 DPA  86.4 a 67.2 a  75.0 ab 43.2 a  48.0 b 4.1 ab  19.6 f 25.1 c-e  1147 b-d 2376 bc 

O
v

erlan
d
 

Check 38.6 d-f 37.7 c-d  54.8 d-f 25.5 cd  46.1 g 1.1 e  21.5 c-f 21.2 fg  1819 b-d 2332 bc 

Prosaro A 19.2 f 13.1 h  22.0 i 13.8 d  7.8 e 0.6 e  24.6 a-c 20.1 f-h  2914 a 2817 a-c 

Prosaro 6 DPA 22.7 ef 18.9 gh  34.2 i 25.2 b  11.2 e 1.1 e  22.9 b-e 17.6 i  2050 bc 2662 a-c 

Prosaro 12 DPA 28.4 ef 31.0 d-f  45.8 fg 24.2 bc  18.3 de 0.8 e  24.8 ab 18.7 g-i  1481 b-d 2166 bc 

Headline A 35.4 ef 19.6 gh  42.8 g-h 15.2 cd  37.2 b-e 0.7 e  26.5 a 21.9 ef  2079 b 2945 ab 

Headline 6 DPA 25.1 ef 33.4 de  58.2 c-e 18.5 b-d  18.2 de 0.9 e  24.5 ab 19.1 g-i  1864 b-d 2823 a-c 

Headline 12 DPA 26.9 ef 37.4 cd  58.0 c-e 27.0 b  29.1 cd 1.2 e  23.0 b-e 18.1 hi  1491 b-d 2079 bc 

aMeans followed by the same letter within a column are not significantly different according the least significant difference (LSD) test at P = 0.05.  
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Table 5. Fungicide efficacy (%) in experiments conducted near Mead, Nebraska to determine the effects of cultivar resistance, fungicide chemical 

class, and fungicide application timing on the variables in two winter wheat cultivars under irrigated conditions during the 2015 and 2016 growing 

seasons 

C
u
ltiv

ar 

Treatment 

Rainfed 

 

Irrigated 

FHB-Index FDK DON Yield 

 

FHB-Index FDK DON Yield 

2015 2016 2015 2016 2015 2016 2015 2016 

 

2015 2016 2015 2016 2015 2016 2015 2016 

O
v
erley

 

Prosaro A 41.9 ab 65.4 ab 43.5 ab 42.8 a 44.4 ab 28.7 ab 41.9 a 20.2 ab 

 

50.5 a 62.2 ab 47.1 b 43.4 a 75.2 a 23.2 ab 28.3 ab 46.6 a 

Prosaro 6 DPA 44.2 ab 47.2 b-d 43.8 ab 44.9 a 48.2 ab 67.4 a 42.9 a 11.1 a-c 

 

30.4 a 52.0 bc 36.0 bc 39.4 bc 77.6 a 27.8 ab 5.8 ab 7.2 ab 

Prosaro 12 DPA 33.6 ab 27.1 b-d 21.6 cd 34.0 a 37.2 a-c -16.1 b 32.2 ab -8.4 cd 

 

10.1 ab 30.2 de 12.2 d-f 33.3 ab 45.5 a-c 10.4 ab -18.3 b 35.6 a 

Headline A 30.1 ab 52.0 b-d 38.1 bc 22.2 a 39.3 ab -4.1 b 48.9 a 31.6 a 

 

23.9 ab 68.5 a 22.8 cd 28.1 ab 43.7 a-c -5.7 ab 25.5 ab 32.0 a 

Headline 6 DPA 16.5 ab 31.2 b-d 32.7 bc 28.1 a 37.5 a-c 59.5 a 50.2 a -7.0 b-d 

 

10.1 ab 38.0 cd 11.0 d-f 33.3 ab 49.7 a-c 10.4 ab 14.3 ab 28.0 ab 

Headline 12 DPA 6.5 b 12.4 d 3.6 d 5.9 a 27.1 bc -40.6 b 2.1 ab -29.8 d 

 

-8.9 b 8.0 ef 4.5 d-f -19.6 c 34.3 bc -2.2 ab 1.3 ab 9.6 ab 

O
v
erlan

d
 

Prosaro A 53.0 a 76.8 a 59.7 a 23.4 a 61.2 a N/A 19.4 ab 21.2 ab 

 

44.3 a 65.0 a 59.0 a 47.3 a 82.1 a 35.9 a 39.1 a 16.9 ab 

Prosaro 6 DPA 14.0 ab 48.0 b-d 42.6 a-c -4.7 a 29.5 bc N/A 8.2 ab 12.2 a-c 

 

38.1 a 50.2 bc 36.5 bc 1.5 bc 73.9 a -8.8 ab -6.1 ab 11.1 ab 

Prosaro 12 DPA 49.4 ab 11.9 d 37.0 bc 37.4 a 24.4 bc N/A 16.3 ab -2.4 b-d 

 

7.8 ab 17.0 ef 15.7 de 2.3 bc 62.0 ab 21.9 ab -27.2 b -12.0 b 

Headline A 53.2 a 62.3 a-c 60.2 a 39.6 a 30.9 bc N/A 35.6 a 16.4 ab 

 

4.0 ab 47.0 c 18.9 c-e 39.6 ab 14.1 c 35.9 ab 12.7 ab 20.3 ab 

Headline 6 DPA 21.8 ab 18.3 cd 31.1 bc 34.0 a 35.7 a-c N/A -4.8 b 12.3 a-c 

 

32.5 a 11.0 ef -7.7 ef 28.7 ab 57.5 a-c 21.8 ab 25.8 ab 8.8 ab 

Headline 12 DPA 37.8 ab 44.2 cd 17.6 cd 5.8 a 10.6 c N/A -17.0 b 5.8 a-d 

 

25.0 a -2.0 f -9.1 f -5.6 bc 34.3 bc -14.1 b -22.8 b -15.6 b 

aMeans followed by the same letter within a column are not significantly different according the least significant difference (LSD) test at P = 0.05)  
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Figure captions 

Fig. 1. Fusarium head blight (FHB) index averaged over years and fungicide 

application timing treatments in experiments conducted near Mead, Nebraska to 

determine the effects of cultivar resistance, fungicide chemical class, and fungicide 

application timing in hard red winter wheat cultivars Overland (moderately resistant) and 

Overley (susceptible) under rainfed and irrigated conditions during the 2015 and 2016 

growing seasons. 

Fig. 2. Fusarium-damaged kernels (FDK) averaged over years and fungicide 

application timing treatments in experiments conducted near Mead, Nebraska to 

determine the effects of cultivar resistance, fungicide chemical class, and fungicide 

application timing in hard red winter wheat cultivars Overland (moderately resistant) and 

Overley (susceptible) under rainfed and irrigated conditions during the 2015 and 2016 

growing seasons. 

Fig. 3. Deoxynivalenol (DON) averaged over years and fungicide application timing 

treatments in experiments conducted near Mead, Nebraska to determine the effects of 

cultivar resistance, fungicide chemical class, and fungicide application timing on the 

variable in in hard red winter wheat cultivars Overland (moderately resistant) and 

Overley (susceptible) under rainfed and irrigated conditions during the 2015 and 2016 

growing seasons. 

Fig. 4. Thousand kernel weight (TKW) index averaged over years and fungicide 

application timing treatments in experiments conducted near Mead, Nebraska to 

determine the effects of cultivar resistance, fungicide chemical class, and fungicide 

application timing in hard red winter wheat cultivars Overland (moderately resistant) and 
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Overley (susceptible) under rainfed and irrigated conditions during the 2015 and 2016 

growing seasons. 

Fig. 5. Yield averaged over years and fungicide application timing treatments in 

experiments conducted near Mead, Nebraska to determine the effects of cultivar 

resistance, fungicide chemical class, and fungicide application timing in hard red winter 

wheat cultivars Overland (moderately resistant) and Overley (susceptible) under rainfed 

and irrigated conditions during the 2015 and 2016 growing seasons. 

Fig. 6. Fusarium head blight (FHB) index in hard red winter wheat cultivars Overland 

(moderately resistant) and Overley (susceptible) treated with the triazole fungicide 

Prosaro (prothioconazole + tebuconazole) and the strobilurin fungicide Headline 

(pyraclostrobin) at anthesis, 6 days post anthesis (DPA), and 12 DPA in field experiments 

conducted near Mead, Nebraska under rainfed and irrigated conditions during the 2015 

and 2016 growing seasons. 

Fig. 7. Fusarium-damaged kernels (FDK) in hard red winter wheat cultivars Overland 

(moderately resistant) and Overley (susceptible) treated with the triazole fungicide 

Prosaro (prothioconazole + tebuconazole) and the strobilurin fungicide Headline 

(pyraclostrobin) at anthesis, 6 days post anthesis (DPA), and 12 DPA in field experiments 

conducted near Mead, Nebraska under rainfed and irrigated conditions during the 2015 

and 2016 growing seasons. 

 

Fig. 8. Deoxynivalenol (DON) concentration in hard red winter wheat cultivars 

Overland (moderately resistant) and Overley (susceptible) treated with the triazole 
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fungicide Prosaro (prothioconazole + tebuconazole) and the strobilurin fungicide 

Headline (pyraclostrobin) at anthesis, 6 days post anthesis (DPA), and 12 DPA in field 

experiments conducted near Mead, Nebraska under rainfed and irrigated conditions 

during the 2015 and 2016 growing seasons. 

Fig. 9. Thousand kernel weight (TKW) in hard red winter wheat cultivars Overland 

(moderately resistant) and Overley (susceptible) treated with the triazole fungicide 

Prosaro (prothioconazole + tebuconazole) and the strobilurin fungicide Headline 

(pyraclostrobin) at anthesis, 6 days post anthesis (DPA), and 12 DPA in field experiments 

conducted near Mead, Nebraska under rainfed and irrigated conditions during the 2015 

and 2016 growing seasons. 

Fig. 10. Yield in hard red winter wheat cultivars Overland (moderately resistant) and 

Overley (susceptible) treated with the triazole fungicide Prosaro (prothioconazole + 

tebuconazole) and the strobilurin fungicide Headline (pyraclostrobin) at anthesis, 6 days 

post anthesis (DPA), and 12 DPA in field experiments conducted near Mead, Nebraska 

under rainfed and irrigated conditions during the 2015 and 2016 growing seasons. 

Fig. 11. Fusarium head blight (FHB) index, Fusarium-damaged kernels (FDK), 

deoxynivalenol (DON) concentration, and yield averaged over fungicide treatments and 

years in hard red winter wheat cultivars Overland (moderately resistant) and Overley 

(susceptible). Experiments were conducted near Mead, Nebraska to determine the effects 

of cultivar resistance, fungicide chemical class, and fungicide application timing under 

rainfed and irrigated conditions during the 2015 and 2016 growing seasons. 

Fig. 12. Fusarium head blight (FHB) index, Fusarium-damaged kernels (FDK), 

deoxynivalenol (DON) concentration, and yield averaged over fungicide treatments and 
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irrigation environments in hard red winter wheat cultivars Overland (moderately 

resistant) and Overley (susceptible). Experiments were conducted near Mead, Nebraska 

to determine the effects of cultivar resistance, fungicide chemical class, and fungicide 

application timing under rainfed and irrigated conditions during the 2015 (wet) and 2016 

(relatively dry) growing seasons. 
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Fig. 3. 
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Fig. 4. 
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Fig. 9. 

 

 

 

Rainfed-2015

Days Post Anthesis

0 6 12

T
K

W
 (

g)

0

10

20

30

40

50

Overland-Headline
Overland-Prosaro
Overley-Headline
Overley-Prosaro

dd

a a a

c
b

c
b

b
c

b

Irrigated-2015

Days Post Anthesis

0 6 12

T
K

W
 (

g)

0

10

20

30

40

50
Overland-Headline
Overland-Prosaro
Overley-Headline
Overley-Prosaro

bc bc
ab

a-cab ab

d cd
b-d

ab
a

ab

Rainfed-2016

Days Post Anthesis

0 6 12

0

10

20

30

40

50
Overland-Headline
Overland-Prosaro
Overley-Headline
Overley-Prosaro

bcbc
ab

bc

d

a

d d d d d

Irrigated-2016

Days Post Anthesis

0 6 12

0

10

20

30

40

50
Overland-Headline
Overland-Prosaro
Overley-Headline
Overley-Prosaro

a

bc
aaa ab

cd
efde

f ef ef

c



102 
 

 
 

Rainfed-2015

Days Post Anthesis

0 6 12

Y
ie

ld
 (

k
g/

ha
)

0

1000

2000

3000

4000
Overland-Headline
Overland-Prosaro
Overley-Headline
Overley-Prosaro

b

ef

b

d-f

bc
de

f

d-f

a

de de
de

Irrigated-2015

Days Post Anthesis

0 6 12

Y
ie

ld
 (

k
g/

ha
)

0

1000

2000

3000

4000
Overland-Headline
Overland-Prosaro
Overley-Headline
Overley-Prosaro

bc
bc

bc
bc

bc
bc

bc
c

b

a

b
bc

Rainfed-2016

Days Post Anthesis

0 6 12

0

1000

2000

3000

4000

Overland-Headline
Overland-Prosaro
Overley-Headline
Overley-Prosaro

de

a-c

a

de

a-c

b-d

a-c
ab

a-c

a-d
cd

Irrigated-2016

Days Post Anthesis

0 6 12

0

1000

2000

3000

4000
Overland-Headline
Overland-Prosaro
Overley-Headline
Overley-Prosaro

ab

b
b

ab

a

ab

ab
abab

ab
ab

b

e

 

 

 

 

Fig. 10. 

 

 



103 
 

 
 

 

 

Fig. 11. 
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CHAPTER III 

EFFECTS OF FIELD-APPLIED FUNGICIDES, MOISTURE, AND TIME ON 

DEOXYNIVALENOL DURING POSTHARVEST STORAGE OF WINTER 

WHEAT GRAIN 

1. Abstract. 

Fusarium head blight (FHB), caused mainly by Fusarium graminearum, causes major 

losses in wheat.  Triazole fungicides have been shown to be more effective than 

strobilurins in controlling FHB and the associated mycotoxin deoxynivalenol (DON) 

when applied at anthesis.  The effects of field-applied fungicides on DON during grain 

storage have not been investigated.  DON concentration was monitored during 120 days 

of grain storage in darkness at 10oC, 40% RH, and 10%, 16%, or 20% grain moisture 

following harvest of winter wheat cultivars Overland (moderately resistant) and Overley 

(susceptible) to determine the effects on DON of a triazole (Prosaro) and a strobilurin 

(Headline) applied at anthesis.  In cv. Overland, DON decreased significantly (P = 0.05) 

from 3.6 to 3.0 and 2.7 to 2.2 µg/g in the untreated check and Prosaro treatments, 

respectively, whereas in the Headline treatment, there was a non-significant decrease 

from 4.4 to 4.1 µg/g.  In cv. Overley, DON increased significantly from 3.1 to 3.6 µg/g 

and 2.9 to 3.5 µg/g in the untreated check and Headline treatments, respectively, but 

remained the same at 2.2 µg/g in the Prosaro treatment.  DON did not differ between 

16% (3.2 µg/g) and 20% (3.1 µg/g) grain moisture, but was significantly lower (2.7 µg/g) 

at 10% moisture.  These results indicate that the effects on DON of fungicides applied at 

anthesis in the field can extend through the grain storage period.  Triazoles are 
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recommended over strobilurins and grain should be stored at the lowest possible moisture 

maintained throughout the storage period.  

2. Introduction. 

 Fusarium head blight (FHB) is a devastating disease of wheat and other small grain 

cereals that results in major economic losses worldwide.  It is caused mainly by Fusarium 

graminearum, but other species of Fusarium are known to be causal agents.  Symptoms 

are manifested as premature whitening or bleaching of one or more spikelets on the spike, 

which results in partial or entire bleaching of the spike.  Bleached spikelets are sterile or 

contain shriveled kernels that appear chalky white or pink, referred to as Fusarium-

damaged kernels (FDK), scabby kernels, or “tombstones”. In addition to poor grain 

quality, infection by this pathogen also results in contamination of grain with the 

mycotoxin deoxynivalenol (DON) which is harmful to human and animal health 

(McMullen et al. 2012). In humans, ingestion of DON-contaminated grain results in food 

poisoning symptoms including diarrhea, nausea, vomiting, abdominal pain, headache, 

and dizziness (Desjardins 2006). In animals, symptoms include vomiting, feed refusal, 

weakness, and emaciation (Pestka 2007). 

 Management strategies and tactics for FHB include cultural practices such as crop 

rotation and tillage to reduce residue-borne inoculum, the use of genetic resistance, and 

fungicide application timed at anthesis (Parry et al. 1995; Wegulo et al. 2015).  Following 

an FHB-favorable growing season, grain quality losses and mycotoxin concentration in 

grain can be reduced during harvest.  Because FDK are lighter than healthy kernels, they 

can be blown away by adjusting the combine’s fan speed and shutter opening (Salgado et 

al. 2011, 2014).  To further reduce DON contamination in grain, post-harvest practices 
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can be undertaken including the use of sieves and specific gravity tables to clean grain by 

removing the lighter FDK (Dexter and Nowicki 2003). 

 Even after pre-storage measures to remove FDK, grain from an FHB-favorable 

growing season will still contain DON at the time it is stored.  Suboptimal storage 

conditions including higher than ideal moisture and temperature can lead to an increase 

of DON during storage (Birzele et al. 2000).  High grain moisture content, measured as 

water activity (aw), is favorable to fungal growth and mycotoxin formation in grain 

during storage (Magan et al. 2003; Magan et al. 2014). Water activity is the ratio of the 

partial pressure of water vapor in the grain to the saturation vapor pressure of pure water 

under the same environment.  It is numerically equivalent to equilibrium relative 

humidity (ERH) expressed as a decimal and is the major environmental factor, along with 

other factors including temperature, that influences stability or spoilage of stored food or 

grain (Pitt and Hocking 2009). Control of aw is critical to reducing the growth of fungi 

and their metabolic activities during food or grain storage (Comerio et al. 1999; Schwabe 

and Kramer 1995). The optimal conditions for in vitro growth of F. graminearum are 

25oC and aw = 0.85 (Brennan et al. 2003; Hope et al. 2005). 

 In the field, FHB and DON are controlled by applying a fungicide to the wheat heads 

at anthesis (Wegulo et al. 2011, 2015). Demethylation inhibitor (DMI) fungicides, also 

known as triazoles, slow fungal growth by inhibiting the biosynthesis of sterols which are 

essential in the maintenance of cell membrane integrity (Chen et al. 2014; Hewitt 1998). 

Strobilurins are quinone outside inhibitors (Bartlett et al. 2002; Myung 2015; Nason et al. 

2007) which interfere with energy production in fungi. In the wheat-FHB pathosystem, 

strobilurin fungicides applied at anthesis have been correlated with increased DON levels 

in grain (Amarasinghe et al. 2013; Ellner 2005; Madden et al. 2014). However, this 
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increase in DON does not always occur (Pirgozliev et al. 2002).  The effects of field-

applied fungicides on DON during wheat grain storage have not been investigated.  The 

objectives of this study were to i) compare the effects a triazole and a strobilurin 

fungicide applied at anthesis in the field on DON concentration during wheat grain 

storage, and ii) determine the effect of wheat grain moisture and time on DON 

concentration during storage.    

3. Materials and Methods 

 Grain of winter wheat cv. Overland (moderately resistant to FHB, Baenziger et al. 

2008) from a 2015 rain-fed field trial and winter wheat cv. Overley (susceptible to FHB, 

Fritz et al. 2004) from a 2016 irrigated field trial was used in postharvest storage 

experiments.  In both field trials which were conducted at the Eastern Nebraska Research 

and Extension Center (ENREC) near Mead, Nebraska (41.2286° N, 96.4892°W), the 

triazole Prosaro® (prothioconazole + tebuconazole, 0.475 L/ha) and the strobilurin 

Headline® (pyraclostrobin, 0.658 L/ha) were applied at label rates during anthesis (mid-

spring) or not applied (untreated check) to the spikes with a CO2-powered backpack 

sprayer equipped with four tee-jet nozzles (TeeJet Technologies, Dillsburg, PA) spaced 

30.5 cm apart on a boom and set at a pressure of 241 kPa.  Plots (1.2 m x 6.1 m) were 

inoculated 24 h after fungicide application by spraying a spore suspension of F. 

graminearum (100,000 spores/mL) on the spikes. This was in addition to F. 

graminearum-colonized corn kernels that had been spread on the soil surface of the plots 

in early spring at the rate of 67 kernels/m2. Because of the high FHB intensity in 2015, 

FDK levels were very high and therefore grain of cv. Overland from the rain-fed trial was 

used after cleaning with a modular fractionating aspirator (Carter Day International, Inc., 

Minneapolis, MN, USA) to remove FDK.  In contrast, FHB intensity in 2016 was very 
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low and therefore grain of cv. Overley from the irrigated trial was used without removing 

FDK. 

 Before initiation of the postharvest grain storage experiments, grain samples were 

stored in paper bags at room temperature for 264 days (cv. Overland from the 2015 

growing season, experiment 1) or 79 days (cv. Overley from the 2016 growing season, 

experiment 2). At the time the experiments were initiated, moisture content had dropped 

from 15% (aw 0.53) at the time of harvest to 8% (aw 0.26) in grain from the 2015 growing 

season, and from 15% to 11% (aw 0.40) in grain from the 2016 growing season.     

To calculate the amount of water needed to hydrate the grain to a desired moisture 

content (16% and 20%), two hydration curves were generated based on preliminary 

experiments. For grain from the 2015 growing season, the equation used was Y = 2.11 + 

0.12X, r2 = 0.70; and for grain from the 2016 growing season, the equation used was Y = 

6.47X - 3.85, r2 = 0.96; where X is total milliliters of sterile distilled water (SDW) to be 

added to the grain and Y is the difference between the initial moisture content of the grain 

and the desired moisture content.  

 Tempering was achieved by evenly spreading a 300 g sample of non-sterile grain 

from each field plot on a plastic tray (50 cm long x 30 cm wide x 3 cm high) and 

sprinkling evenly with SDW using a heavy-duty manual sprayer (Rubbermaid, Wooster, 

OH). After tempering, grain samples were separated and homogenized manually and 

transferred to a sterile Microbox® hermetically-sealed micro-propagation container of 

dimensions 15 cm long x 15 cm wide x 20 cm high (SacO2, Veldeken, Belgium). 

Microbox’s containers have a filter in the lid for gas exchange which blocks the entrance 

of external organisms or spores (Birzele et al. 2000). Therefore, these containers prevent 

external contamination of the grain’s environment. Water activity (aw) was determined 
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using a Pawkit® water activity meter (Decagon Devices, Pullman, WA). Grain moisture 

content (%) was determined using a grain moisture seed tester (Dickey Jhon Corp., 

Auburn, IL), model GAC 500-XT. After 14 days of tempering, grain moisture and aw 

were determined, and SDW was added again if the initial tempering was not enough to 

adjust to 16% (aw 0.60) or 20% (aw 0.75) grain moisture. In experiment 2 (Overley grain 

from the 2016 irrigated trial), non-tempered grain at a moisture content 10% (aw 0.40) 

was added as a third moisture treatment.   

 After initial tempering, grain samples in Microbox® containers were stored in a seed 

cooler (Bally Case & Cooler, Inc., Bally, PA) under dark conditions at 10oC and 40% RH 

and monitored for changes in moisture content and water activity at monthly intervals. 

RH and temperature inside the containers were monitored using Watchdog® sensors 

model 1400 (Spectrum Technologies, Thayer Court, IL). Sampling was conducted at 0, 

30, 60, 90, and 120 days after tempering. From each of the micro propagation containers, 

at the specific storage time, a random sample of 20 mL of grain volume was taken and 

milled using a cyclone sample laboratory mill (UDY Corporation, Fort Collins, CO). 

Deoxynivalenol and its acetylated derivatives 3-ADON and 15-ADON were quantified in 

an Agilent 6890/5975 system using gas chromatography-mass spectrometry (GC-MS).  

Each experiment was designed as a split-split plot with four replications and was repeated 

once.  The whole plot, subplot, and sub-subplot consisted of fungicide treatments, grain 

moisture treatments, and grain storage time, respectively.  

 Statistical analysis for each experiment was carried out using SAS software version 

9.4. In this study, there were two different experiments (Experiment 1 and Experiment 2) 

with two runs (experiment repeated once) in each experiment.  
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Based on homogeneity of error variance using F-ratio test (Gomez and Gomez 1983), the 

two runs of the same experiment were combined and analyzed using generalized mixed 

models.  

 Experimental units were arranged in a split-split plot design (SSPD) with containers 

serving as samples from the whole plot unit (fungicide treatment by reps), split-plot was 

grain moisture, and split-split-plot was storage time.  

First, data were analyzed as repeated measures split-plot-in-time assuming compound 

symmetry, using PROC GLM to test all the elements of the SSPD. Random effects of the 

model were: reps (blocks), reps by fungicide treatment, runs, the effect of fungicide 

within runs by reps, fungicide within grain moisture by reps, fungicide within time by 

reps, as well as fungicide within time by moisture by reps, and the variation among 

containers within reps, fungicide, and moisture combinations. Second, PROC GLIMMIX 

was used to obtain the standard errors throughout. Here, the statement: random slash 

residual, type equals compound symmetry, subject equals (reps, runs, moisture, 

fungicide) within container, was added to analyze the data with the compound symmetry 

covariance structure. LS-means were estimated in PROC GLIMMIX (SAS Inc, Cary, 

NC), and the Fisher - least significant difference test (Fisher – LSD, α=0.05) was used to 

determine differences between main effects and interactions among factors. In this 

manuscript, highly significant differences were considered if the P ≤ 0.01, and significant 

differences were considered if the P ≤ 0.05.  

Second and third order polynomial models were tested using PROC GLIMMIX. The 

model can be explained as: 

µi = β0 + β1 x + β2x2 + β3x3 + β4x4 
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where µi is DON concentration (μg/g), x is the quantitative factor storage time, β0 is the 

intercept, and β1, β2, β3, β4, are the linear, quadratic, cubic and quartic coefficients 

relating storage time and DON, respectively. Type I or sequential sum of squares was 

used to find the response curve that best fit the data.  

4. Results 

 4.1 Effects of fungicide treatments and grain storage time on DON.  The effects 

of fungicide and storage time treatments on DON were highly significant in both 

experiments.  Two-way or three-way interactions between fungicide, moisture, and time 

treatments were not significant at P = 0.05 (Table 1), indicating that differences in DON 

among fungicide treatments were not significantly affected by moisture levels and vice 

versa.  Therefore, comparison of fungicide treatment means was done by averaging over 

moisture treatments and time, and comparison of moisture treatments was done by 

averaging over fungicide treatments and time (Gomez and Gomez 1984).  When grain of 

the moderately resistant cv. Overland from the 2015 growing season was cleaned to 

remove FDK, the Headline® treatment had more DON than the untreated check and 

Prosaro® treatments (Fig. 1, 0 DAT).  In comparably clean grain of the susceptible cv. 

Overley from the 2016 growing season, the Headline® treatment had a DON level 

similar to that in the untreated check but higher than that in the Prosaro® treatment (Fig. 

2, 0 DAT).  In cleaned grain of the moderately resistant cv. Overland, DON declined 

significantly over 120 days of storage in the untreated check and Prosaro® treatments 

whereas in the Headline® treatment, there was a slight but non-significant decline (Fig. 

1).  In comparably clean grain of the susceptible cv. Overley, DON increased over 120 

days of storage in the untreated check and Headline® treatments, but not in the Prosaro® 

treatment (Fig. 2).   
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4.2 Effect of moisture treatments on DON. The effect of grain moisture at 16% or 

20% on DON was non-significant in cv. Overland (Table 1).  However, in cv. Overley, a 

significant effect (P = 0.0168) was observed, with DON similar at 16% and 20% 

moisture but higher at these moisture levels than at 10% moisture (Table 1, Fig. 3). 

4.3 Variation in DON over grain storage time.  In cv. Overland, DON 

concentration declined during the first 30 days by an average (over the two moisture 

levels) of 21, 34, and 40% in the Headline®, untreated check, and Prosaro® treatments, 

respectively.  Over the next 30 days, DON levels increased by an average of 19, 27, and 

51% in the Headline®, check, and Prosaro® treatments, respectively. Thereafter, DON 

levels in all treatments stabilized with slight fluctuations.  During the 120 days of storage, 

DON decreased over time in all three treatments (Figs. 1 and 4).  In cv. Overley, DON 

concentration in the Headline treatment increased by an average (over the three moisture 

levels ) of 31% over the first 30 days, decreased by 20% over the following 60 days, then 

increased by 15% over the last 30 days.  In the untreated check, DON concentration 

increased by 25% during the first 60 days, decreased by 21% during the following 30 

days, and increased by 20% during the last 30 days.  In the Prosaro treatment, DON 

concentration increased by 17% over the first 30 days, decreased by 23% over the 

following 60 days, and increased by 12% over the last 30 days.  Over the 120 days of 

storage time, DON significantly increased in the Headline and untreated check but 

remained the same in the Prosaro treatment (Figs. 2 and 5).  The trends in DON 

concentration over time in moisture treatments averaged over fungicide treatments were 

similar to those in fungicide treatments averaged over moisture treatments (Fig. 6). 

5. Discussion 
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 Previous research has demonstrated the superior efficacy of triazole fungicides in 

controlling FHB and DON in wheat when applied in the field at anthesis compared to the 

inferior efficacy of strobilurin fungicides and their tendency to elevate DON in grain 

when applied in the field before or during anthesis (Blandino and Reyneri, 2009; Ellner, 

2005; Oldenburg et al. 2001).  However, the effects of field-applied triazole and 

strobilurin fungicides on DON concentration during storage have not been investigated.  

This study was designed to fill this knowledge gap.   

 In both experiments at the beginning of grain storage, the higher or similar DON 

concentration in the field-applied strobilurin (Headline) treatment compared to the 

untreated check and the lower DON concentration in the field-applied triazole (Prosaro) 

treatment compared to the strobilurin and untreated check (Figs. 1 and 2) are consistent 

with previous reports (Blandino and Reyneri, 2009; Ellner, 2005; Oldenburg et al. 2001). 

It was remarkable to observe in the moderately resistant cv. Overland a decrease in DON 

over 120 days of grain storage in the triazole and untreated check but not in the 

strobilurin treatment.  In contrast, in the susceptible cv. Overley, DON increased over 

120 days of grain storage in the strobilurin and untreated check but did not increase in the 

triazole treatment.  Although the two storage experiments were conducted at different 

times and the grain of each cultivar was from different growing seasons, the most notable 

difference is that cv. Overland is moderately resistant to FHB (Baenziger et al. 2008) 

whereas cv. Overley is susceptible (Fritz et al. 2004).  Therefore, the decrease in DON 

during storage of grain of cv. Overland and the increase in the mycotoxin during storage 

of grain of cv. Overley was likely due to the difference in genetic resistance to FHB and 

DON between the two cultivars.  Further research is needed to validate this observation. 
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 The lower DON concentration at 10% compared to 16% or 20% grain moisture 

during storage observed in cv. Overley is consistent with results from previous research 

by other investigators.  Ramirez et al. (2006) showed that the growth rate of and DON 

production by two isolates of F. graminearum on irradiated wheat grain increased as 

water activity (aw), a measure of grain moisture, increased.  Birzele et al. (2000) found 

DON concentration in stored wheat grain at 20% moisture to be approximately three 

times the concentration at 17% moisture by the 5th and 6th week of storage.  In contrast, in 

this study DON concentration at 16% moisture did not differ from that at 20% moisture 

over a period of 17 weeks (120 days) of grain storage.  This difference in the results 

between the two studies is likely due to the temperature at which grain was stored.  In the 

study by Birzele et al. (2000), grain was stored at 20oC whereas in this study grain was 

stored at 10oC.  In this study, however, DON concentration at 10% moisture was lower 

than that at 16% and 20% moisture, which is in agreement with the results of Birzele et 

al. (2000) that demonstrate higher DON production in Fusarium-contaminated wheat 

grain stored at higher compared to lower grain moisture.  Comerio et al. (1999) and Hope 

et al. (2005) similarly showed that more DON was produced by F. graminearum in stored 

grain at higher than at lower aw values.      

 In both experiments, the reasons for the fluctuation in DON concentration over time 

(Figs. 4-6) are not known, but may be related to biochemical processes in grain that may 

be influenced by a range of factors including environmental conditions (moisture, 

temperature), the amount of fungal biomass present in the grain, the level of expression 

of trichothecene biosynthesis genes (Hallen-Adams et al. 2011) or, as shown in this 

study, the level of resistance of the wheat cultivar.  Kolmanicˇ et al. (2010) and Zhang et 

al. (2016) found DON to decrease over time in stored wheat flour and wheat grain, 
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respectively.  However, Zhang et al. (2016) also observed an increase in DON in stored 

wheat flour.  Similarly, in the study by Birzele et al. (2000) in which DON was measured 

weekly for six weeks in winter wheat grain stored at 20oC and 17% or 20% moisture 

content, DON increased over time at both moisture levels, but the increase was much 

greater at the 20% moisture level by the fifth week, indicating that grain moisture content 

played a significant role in the synthesis of DON during grain storage.  

 This research has demonstrated that the reduction in DON observed in the field from 

applying a triazole fungicide (Prosaro) at anthesis can be extended through the period of 

grain storage.  A strobilurin fungicide (Headline) applied at anthesis in the field was 

ineffective in reducing DON in grain of the moderately resistant cv. Overland stored in 

the dark at 10oC for 120 days in storage.  In contrast, DON in grain of the same cultivar 

treated at anthesis in the field with a triazole fungicide (Prosaro) declined in storage 

under the same conditions and period.  In the susceptible cv. Overley treated and stored 

similarly, DON increased during storage in the strobilurin and untreated check, but in the 

triazole treatment, it was lower at the beginning of storage than in the strobilurin and 

untreated check and did not increase over time.  More DON was produced in storage in 

grain of cv. Overley tempered to 16% or 20% moisture compared to non-tempered grain 

at 10% moisture, indicating the importance of proper drying of grain before storage.  

Based on these results, triazole but not strobilurin fungicides are recommended for 

control of FHB and DON, and grain should be stored at the lowest moisture content 

possible to prevent or limit DON production during storage.  
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Table 1. Analysis of variance from experiments conducted to evaluate the effects of field-

applied fungicides on deoxynivalenol (DON) during storage of grain of two winter wheat 

cultivars 

 

 Experiment 1 

(cv. Overland) 

Experiment 2 

(cv. Overley) 

Source 

of variation 

 

d.f. 

 

P > F d.f. 

 

P > F 

Replicated 

experiment (runs)2 

1 0.8294 1 0.2424 

Fungicide 

Treatments (F) 

2 <.0001 2 0.0124 

Reps 3 0.0035 3 0.0414 

F * Reps3 6 0.0011 6 0.0947 

Runs*Reps(F) 11 0.0049 11 0.0788 

Grain moisture (M) 1 0.8777 2 0.0168 

          Linear - - 1 0.0001 

         Quadratic - - 1 0.4619 

F * M 2 0.0058 4 0.8778 

Reps * M(F) 9 0.1045 18 0.1695 

Container 

(Reps*Runs*F*M) 

12 0.0063 24 0.0044 

Storage time (T) 4 <.0001 4 <.0001 

          Linear 1 0.1729 1 0.4623 

         Quadratic 1 <.0001 1 0.0779 

         Cubic 1 <.0001 1 <.0001 

        Quartic 1 <.0001 1 0.0822 

F x T 8 0.4360 8 0.0620 

M x T 4 0.2061 8 0.2542 

F x M x T 8 0.1537 16 0.5218 

Reps * T(F) 36 0.0153 36 0.2045 

Reps*M*T(F) 36 0.5447 72 0.4295 

Residual 96  143  
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Fig. 1. DON concentration in storage averaged over moisture and time at 0 days after 

tempering (DAT) compared to 120 DAT in grain of winter wheat cv. Overland not 

treated (check) or treated at anthesis with the strobilurin fungicide Headline and the 

triazole fungicide Prosaro during the 2015 growing season. Means with the same letter 

are not significantly different according to the least significant difference (LSD) test at P 

= 0.05. 
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Fig. 2. DON concentration in storage averaged over moisture and time at 0 days after 

tempering (DAT) compared to 120 DAT in grain of winter wheat cv. Overley not treated 

(check) or treated at anthesis with the strobilurin fungicide Headline and the triazole 

fungicide Prosaro during the 2016 growing season. Means with the same letter are not 

significantly different according to the least significant difference (LSD) test at P = 0.05. 
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Fig. 3. Effects of moisture on DON concentration in storage averaged over fungicide 

treatments and time (120 days) in grain of winter wheat cultivars Overland and Overley. 
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Fig. 4.  DON concentration in storage averaged over moisture treatments in grain of 

winter wheat cv. Overland not treated (check) or treated at anthesis with the strobilurin 

fungicide Headline and the triazole fungicide Prosaro during the 2015 growing season. 
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Fig. 5. DON concentration in storage averaged over moisture treatments in grain of 

winter wheat cv. Overley not treated (check) or treated at anthesis with the strobilurin 

fungicide Headline and the triazole fungicide Prosaro during the 2016 growing season. 
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Fig 6. Effects of moisture on DON concentration in storage averaged over fungicide 

treatments in grain of winter wheat cultivars Overland and Overley.
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CHAPTER IV 

Tri5 GENE EXPRESSION ANALYSIS DURING POSTHARVEST STORAGE OF 

WHEAT GRAIN FROM FIELD PLOTS TREATED WITH A TRIAZOLE AND A 

STROBILURIN FUNGICIDE 

1. Abstract 

Fusarium head blight (FHB) and the trichothecene mycotoxin deoxynivalenol (DON) 

have profound negative impact on the wheat industry, worldwide. In the United States, 

FHB is mainly associated with Fusarium graminearum. The purpose of this study was to 

evaluate expression of the trichodiene synthase gene (Tri5) of F. graminearum in hard-

red winter wheat susceptible or moderately resistant to FHB from field plots treated with 

a triazole and a strobilurin fungicide or left untreated during storage. Aliquots of infected 

wheat collected from field plots were put in storage and periodically sampled to 

determine Tri5 gene expression using quantitative reverse transcript PCR (qRT-PCR). 

Results showed consistent detection of the GAPDH (housekeeping gene), indicative of 

metabolically active fungi, and significantly high (χ2 : P < 0.0001) detection of Tri5 in 

the FHB-susceptible compared to the FHB-moderately resistant cultivar. Tri5 gene 

expression and DON were not or were minimally correlated which conveys that the DON 

prediction was not accurate. The strobilurin fungicide did not significantly reduce Tri5 

gene expression compared with untreated wheat, while only in the triazole treatment, a 

significant reduction in the relative expression of the Tri5 was detected after 120 days, as 

well as a downregulation of Tri5 from 60 to 120 days of storage in the FHB-susceptible 

cultivar. In wheat grain from strobilurin-treated plots, the expression of Tri5 went up 
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from 0 to 30 days after tempering the grain in grain from Overland -2015 dryland as well 

as in grain from Overley- 2016 irrigated. Genetic expression of Tri5 that is necessary for 

DON production can increase during storage of high-moisture grain. Fusarium fungi can 

persist in wheat kernels for several months post-harvest and may actively produce toxin 

during this period. 

2. Introduction 

Fusarium head blight (FHB) is a major threat for wheat production worldwide. In the 

United States, FHB is mainly associated with Fusarium graminearum. FHB causes 

economic losses due to reduction in yield and accumulation of mycotoxins such as 

deoxynivalenol (DON). Mycotoxins are considered a global food security issue 

especially in low-income countries and places with deficient management of cereal grain 

during postharvest storage (Haubruge et al. 2003). 

DON is one (of many) trichothecene mycotoxins, a group of related sesquiterpenoid 

compounds, produced by a wide range of Sordariomycetes. DON plays a function as a 

virulence factor, and it is essential for pathogen movement from florets to rachis in wheat 

heads (Jansen et al. 2005). The trichodiene synthase gene (Tri5) catalyzes the 

isomerization and cyclization of farnesyl pyrophosphate to trichodiene. This is the initial 

step in the DON production pathway (Hohn and Beremand 1989; Desjardins 2006). In 

the FHB-susceptible spring wheat cultivar Wheaton, strains of F. graminearum with a 

disrupted Tri5 gene showed reduced virulence and slow development of FHB symptoms 

(Proctor et al. 1995). Additionally, expression of the Tri5 gene during wheat infection is 

related to the inhibition of plant defense responses such as thickening of the cell wall 
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during the colonization process (Mudge et al. 2006; Jansen et al. 2005). Conjugation of 

DON to a less toxic glucoside (deoxynivalenol-3-glucoside; D3G) plays an important 

role in wheat resistance to FHB. Transgenic wheat expressing an UDP-

glucosyltransferase for DON detoxification had significantly lower FHB compared to 

controls (Li et al. 2015).    

DON inhibits protein synthesis allowing movement of the fungus from cell-to-cell 

(Brown et al.  2012). Quantitative reverse transcript PCR (qRT-PCR) can be used to 

measure the abundance of transcripts of the Tri5 gene in planta (Mudge et al. 2006) and 

thereby predict DON concentrations. Hallen-Adams et al. (2011) detected significant 

differences in the pattern of expression of DON biosynthetic genes during a wheat 

infection time course. Tri5 has been shown to be highly up-regulated at 7 days after 

inoculation of wheat heads (Mudge et al. 2006), 72 hours after inoculation (Hallen-

Adams et al. 2011), and between cell division and cell differentiation stages in 

susceptible wheat (Chetouhi et al. 2016), while Brown et al. (2012) detected a peak in 

Tri5 gene expression during initial asymptomatic infection.    

In the wheat-F. graminearum pathosystem, FHB and DON are controlled not only by 

using moderately-resistant cultivars, but also by applying fungicides. However, the 

selection of the fungicide chemical class and the fungicide application timing are critical 

for effective management. In the field, strobilurin fungicides can increase DON levels in 

wheat (Blandino and Reyneri 2009; Edwards et al. 2001; Ellner, 2005; Madden et al. 

2014; Mesterhazy et al. 2003; Pirgozliev et al. 2002; Simpson et al. 2001). The 

mechanism producing this increase is not known. In contrast, triazole fungicides are 
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effective at controlling FHB and DON (Amarasinghe et al. 2013; Edwards et al. 2001; 

Mesterhazy et al. 2003; Pirgozliev et al. 2002; Wegulo 2012; Wegulo et al. 2015).    

Grain mold pathogens can be divided into pre-harvest or field, and post-harvest or 

storage, according to their prevalence in different phases during development in the grain 

ecosystem. FHB-associated pathogens are considered as field molds; however, poor 

drying and cleaning practices can lead to postharvest mycotoxin accumulation (Aldred 

and Magan 2004). During storage, one of the critical factors influencing grain quality is 

moisture content. High grain moisture content is conductive to mycotoxin accumulation 

(Comerio et al. 1999; Hope et al. 2005). The dynamic of DON during postharvest storage 

of F. graminearum-infected winter wheat after different field applied fungicide 

treatments is unknown. The use of qPCR in wheat treated with fungicides provides a 

method to discriminate among fungicide efficacies which is not apparent in visual disease 

assessments (Doohan et al. 1999). 

Pre-harvest and post-harvest management strategies heavily impact FHB pathogen 

structure and population in the field and during storage. The abundance of FHB 

pathogens in grain are well correlated with DON (Demeke et al. 2010; Horevaj et al. 

2011). The correlation between DNA from trichothecene-producing Fusarium species 

and DON in harvested grain has been studied using competitive PCR to determine the 

efficacy of fungicides applied at anthesis in winter wheat (Edwards et al. 2001). Tri5 

DNA and DON were at high levels and were positively correlated in inoculated field 

trials. Additionally, the Tri5-PCR assay showed that metconazole and tebuconazole 

(triazole fungicides) were highly effective in controlling trichothecene-producing 
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Fusarium, and that the highest concentration of Tri5 DNA (pg/ng of total DNA) was 

obtained in grain from azoxystrobin (a strobilurin)-treated plots.  

Seed grain provides a good reservoir for FHB pathogens. High spore loads of F. 

graminearum and DON concentrations can be readily detected in grain harvested from 

wheat fields in an FHB epidemic year. Grain inoculated with F. culmorum at anthesis 

showed 16 times higher concentration (pg/ng of total DNA) of Fusarium DNA than non-

inoculated seed lots (Glynn et al. 2007). The Tri5 gene has been used in qRT-PCR to 

evaluate the relative transcript abundance at different points of kernel colonization. The 

expression of Tri5 never ceased during the whole process of kernel colonization (Hallen-

Adams et al. 2011). Furthermore, Tri5 gene expression and mycelial in vitro growth rate 

of F. graminearum were independent and the expression of Tri5 remained constant 

irrespective of the solute stress and incubation temperature (Marin et al. 2010). 

This study aimed to evaluate the expression of the Tri5 gene in wheat with high grain 

moisture content during postharvest storage using qRT-PCR, as well as to determine the 

effect of postharvest storage time on Tri5 gene expression in winter wheat from field 

plots treated at anthesis with Headline (pyraclostrobin; a strobilurin) and Prosaro 

(prothioconazole + tebuconazole; triazoles). Information on the effects of field applied 

fungicide chemical class on DON production in storage will enable growers to make 

informed decisions on the choice of fungicide to apply to control FHB and DON. Also, 

information on DON accumulation in storage will be useful in setting the optimum grain 

storage conditions following harvest. 
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Knowing the relationship between the expression of DON biosynthesis genes (e.g. 

Tri5) and DON concentration during storage will enable researchers to accurately predict 

DON accumulation in storage. Understanding the conditions for transcriptional changes 

of the Tri5 gene may give clues behind the response of high DON in strobilurin-treated 

field trials, and the dynamics of Tri5 and DON during postharvest storage. 

3. Materials and Methods 

3.1 Field conditions. During the growing seasons 2015 and 2016, field trials were 

conducted at the Eastern Nebraska Research and Extension Center (ENREC), formerly 

the Agricultural Research and Development Center (ARDC) near Mead, Nebraska 

(41.2286° N, 96.4892° W). Hard red winter wheat (HRWW) cultivars Overley, which has 

shown susceptibility to FHB and DON accumulation in grain (Peiris et al. 2016); and 

Overland, which has shown moderate resistance to FHB and DON accumulation in grain 

(Baenziger et al. 2008; Jin et al. 2013; Nopsa et al. 2014), were sown under dryland and 

irrigated conditions. During the third week of April, in both 2015 and 2016, field plots 

were inoculated by spreading corn kernels colonized with Fusarium graminearum (67 

kernels/m2) on the soil where the wheat plants were growing. 

A triazole-based fungicide (prothioconazole and tebuconazole) available 

commercially as Prosaro® (Bayer Ag life science, Kaiser-Wilhelm-Allee, Leverkusen, 

Germany) was applied at a rate of 0.467 L/ha to the wheat heads. A strobilurin-based 

fungicide (pyraclostrobin) available commercially as Headline® (BASF Corporation, 

Davis Drive, Research Triangle Park, NC) was applied at a rate of 0.657 L/ha to the 

wheat heads. Both fungicides were applied in the field plots at anthesis (A), when 30 to 
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40 percent of anthers were extruded. Fungicides were sprayed using a CO2 propelled-

backpack sprayer coupled with four tee-jet nozzles (TeeJet Technologies, Dillsburg, PA, 

USA) at a rate of 150 L/ha, and at a spray pressure of 241 kPa (35 psi). A nonionic 

surfactant (Induce, Helena Agri-Enterprises, Collierville, TN, USA) was added to the 

mixture at a rate of 0.125% vol./vol. 

During anthesis, and 24 hours after applying the fungicide treatments, a second 

inoculation was carried out by spraying a spore suspension of F. graminearum (1 x 105 

spores/mL) at a rate of 27 mL/m2 on the wheat heads.  

Wheat heads were harvested when grain moisture content dropped below 15% using a 

small combine for trial plots (Wintersteiger, Ried im Innkreis, Austria). Grain samples 

from each trial unit were threshed twice using a single-head thresher (Precision Machine, 

Lincoln, NE, USA).  

3.2 Postharvest storage trials. Two postharvest storage trials were conducted with 

grain of the cultivar Overland from the 2015 growing season planted under dryland 

conditions (trial 1), and grain of the cultivar Overley, from the 2016 growing season 

planted under irrigated conditions (trial 2). Postharvest storage trials were conducted in 

duplicate at the wheat pathology laboratory and greenhouses at the University of 

Nebraska- Lincoln. Each experiment had three biological reps from each fungicide 

treatment by postharvest storage time combination.  

For the 2015 growing season (trial 1), due to high levels of infection, Fusarium-

damaged kernels (FDK) were removed from the mass of grain using a fractionating 

aspirator (Carter Day International, Inc., Minneapolis, MN, USA). The aspirator removed 

light kernels (FDK) by rotating a wire mesh which allowed the classification and 
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separation of grain with < 2% of FDK. Grain samples were passed through the 

scalperator three times. The mass of grain from each trial plot used for the postharvest 

storage trial 2 (2016 growing season, Overley- irrigated) consisted of a mixture of 

apparently healthy kernels and FDK (i.e., FDK were not separated). 

Non-sterile grain (300 g), free of impurities, was placed on a plastic tray (50 cm x 30 

cm x 3 cm height) and sprinkled evenly over the tray’s surface. Grain samples were 

tempered with sterile distilled water using a heavy-duty manual sprayer (Rubbermaid, 

Wooster, OH). After tempering, grain samples were separated and homogenized 

manually and transferred to a sterile Microbox® hermetically-sealed micropropagation 

container of dimensions 15 cm x 15 cm x 20 cm height (SacO2, Veldeken, Belgium). 

Microbox containers have a filter in the lid for gas exchange which blocks the entrance of 

external organisms or spores. Water activity (aw) was determined using a Pawkit® water 

activity meter (Decagon Devices, Pullman, WA, USA). Grain moisture content (%) was 

determined using a grain moisture seed tester (Dickey John Corp., Auburn, IL, USA), 

model GAC 500-XT. After 14 days of tempering, grain moisture and aw were determined. 

Sterile distilled water was added to reach 20% grain moisture. Grain samples were 

monitored for changes in the percentage of moisture content and aw at monthly intervals. 

Relative humidity and temperature inside the containers were monitored using 

Watchdog® sensor model 1400 (Spectrum Technologies, Thayer Court, IL, USA). 

Samples were stored in a seed cooler (Bally Case & Cooler, Inc., Bally, PA, USA) in the 

dark at 10oC and 40% environmental RH.  

3.3 Deoxynivalenol determination. From each of the micro-propagation containers 

at the specified storage time, a random sample of grain was taken and milled using a 
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cyclone sample laboratory mill (UDY Corporation, Fort Collins, CO, USA). 

Deoxynivalenol (DON) quantification was performed in an Agilent 6890/5975 system at 

the Plant Pathology, Physiology, and Weed Science Department of the Virginia 

Polytechnic Institute and State University (Blacksburg, VA, USA) using gas 

chromatography-mass spectrometry (GC - MS).  

3.4 RNA extraction and purification. Molecular studies were conducted in the 

laboratories of the Food Innovation Complex at the University of Nebraska-Lincoln. 

Samples of grain from cultivars Overland (trial 1) and Overley (trial 2), were freeze-dried 

and stored at -80oC until RNA extraction. RNA extraction was performed using the hot 

phenol-chloroform and lithium chloride precipitation method according to the 

specifications of Goswami et al. 2006 with modifications. Briefly, freeze-dried grain 

samples were ground in a mortar and mixed with a heated (80oC) mixture 1:1 of 

extraction buffer (Tris-LiCl-EDTA-SDS) and phenol. The extract was transferred into 30 

mL tubes, and a half volume of chloroform was added to the mixture. The mixture was 

centrifuged for 30 minutes at 2500 x g. An aqueous layer formed at the top of the tube 

was transferred to a new tube and one third volume of 8M LiCl was added. The tube was 

incubated on ice for at least 2 hours. Centrifugation was performed for 5 minutes at 

12000 x g and 4oC. The pellet formed at the bottom of the tube was washed with 3 mL of 

2M LiCl and 3 mL of 70% ethanol. The supernatant was removed and re-suspended in 2 

mL ultra-pure DEPC-treated water, followed by the addition of 200 L of 3M NaOAc, 

and 5.5 mL of 95% ethanol. The suspension was kept at -80oC for 15 minutes, and then 

centrifuged for five minutes at 12000 x g. The pellet at the bottom of the tube was 
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washed with 3 mL of 70% ethanol. Centrifugation and washing were repeated twice. The 

pellet was dissolved in 100 L ultra-pure DEPC-treated water, and transferred to a 1.5 

mL Eppendorf tube. RNA was quantified using an Eppendorf Bio-Photometer plus 

(Eppendorf North America, Hauppauge, NY, USA). For DNase treatment, a mixture of 2 

L (20 U) of Thermo scientific DNase I (Life technologies, Carlsbad, CA, USA), 4 L of 

10X incubation buffer, and 88 L of nucleic acids was incubated at 37oC for 15 minutes, 

and then incubated further after adding 0.2 M EDTA at 75oC for 10 minutes. The sample 

was purified with the RNeasy Mini Kit (Qiagen, Valencia, CA, USA) following the 

manufacturer’s instructions. After RNA purification using the Qiagen kit, the 

concentration and absorbance at 260/280 nm were taken with the BioPhotometer. 

3.5 cDNA assay. Complementary strand DNA (cDNA) was prepared using the 

Thermo-Fisher Maxima First Strand cDNA Synthesis Kit for RT-qPCR (Life 

technologies, Carlsbad, CA, USA). RNA concentration was adjusted to 1 µg using 

molecular biology grade water. On ice, 4 µL of 5X reaction mix and 2 µL of reverse 

transcriptase were mixed together with 14 µL of the RNA- water suspension for a total of 

20 µL volume reaction. cDNA reaction was conducted in a T-100TM thermal cycler (BIO-

RAD, Hercules, CA, USA) and the amplification protocol consisted of an initial cycle at 

25oC for 10 minutes, followed by incubation at 50oC for 15 minutes, and final cycle at 

85oC for 5 minutes.  

3.6 Quantitative reverse transcript PCR. Quantitative reverse transcript PCR  was 

conducted in an Eppendorf MasterCycler RealPlex (Eppendorf North America, 

Hauppauge, NY, USA) using SYBR Green I chemistry. Data acquisition and 
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visualization was carried out by the MasterCycler ep RealPlex software. Primer pairs 

Tri5-F (5’-TCT ATG GCC CAA GGA CCT GTT TGA- 3’) and Tri5-R (5’- TGA CCC 

AAA CCA TCC AGT TCT CCA -3’), and  Gapdh–F (5’- CTA CAT GCT CAA GTA 

CGA CTC TTC C – 3’) and Gapdh –R (5’- GCC GGT CTC GGA CCA CTT G – 3’), 

amplifying Tri5 and glyceraldehyde 3-phosphate dehydrogenase (GAPDH), respectively 

(Hallen-Adams et al. 2011) were used in a paired qRT-PCR assay.  The GAPDH 

(housekeeping gene) was amplified to normalize the expression of the Tri5 gene. qRT-

PCR assays were conducted in a 96-well PCR plate (half of the plate to amplify the 

GAPDH gene, and half for the Tri5 gene). A preliminary assay was conducted using 

cDNA samples from wheat grain to determine the adequate primer concentration (0.5, 1, 

1.5, 2 and 2.5 µL/reaction) in the qRT-PCR. Final volume of qRT-PCR reactions 

contained: 1 µL of cDNA product, 2.5 µL of each Tri5 primer (forward and reverse) or 

1.5 µL of each GAPDH primer, 12.5 µL of the Thermo Fisher Maxima SYBR Green 

qPCR Master Mix (Life technologies, Carlsbad, CA), and water to 25 µL.  

Amplification consisted of an initial denaturation step at 95oC for 2 minutes, followed 

by 40 cycles which consisted in denaturation at 95oC for 15 seconds, annealing at 55oC 

for 15 seconds, and extension at 68oC for 20 seconds. Final holding temperature was 4oC.  

3.7 Data analysis. Threshold values from each qRT-PCR assay were adjusted 

manually. Cycle threshold (Ct) values were archived for Tri5 and GAPDH. Individual Ct 

values of the target Tri5 gene were compared with that of the housekeeping gene 

GAPDH, and the relative ratio of expression was calculated (cycle threshold [Ct] ratio). 

Normalization of the Tri5 gene expression was done based on the Ct value of the fungal 

GAPDH from each corresponding assay. Relative gene expression was calculated using 
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the 2-ΔΔCt (Schmittgen and Livak 2008) using the expression of the untreated check plots 

as calibrators. 

Statistical analysis was carried out using SAS software version 9.4 (SAS Inc, Cary, 

NC) for the ratio of Tri5 gene expression relative to GAPDH. In each postharvest storage 

trial, both experiments were analyzed using generalized linear mixed models (PROC 

GLIMMIX). The Fisher-least significant difference (Fisher-LSD, α=0.05) was used to 

determine differences among LS-means through the main effects of the factors (fungicide 

treatments at anthesis and postharvest storage time) and the interaction fungicide 

treatments by storage time. The F-ratio test (Gomez and Gomez 1984) was used to 

determine homogeneity of error of variances. Based on these results, experiments were 

combined and LS-means, standard errors (SE) and standard deviations (SD) were used 

for graphics.  

Pearson correlation coefficients among the ratio GAPDH/Tri5 versus DON, and 

CtTri5 versus DON were requested using PROC CORR in SAS, using LS-means by 

fungicide treatment and postharvest storage time. LS-means were compared separately by 

trials. Chi-square (χ2) test was used to determine if the threshold at which Tri5 gene was 

detected differed by cultivar (Overley versus Overland). Logit test on the binary response 

distribution was conducted using PROC GLIMMIX. The binary variable consisted in the 

detection or absence of the gene of interest and/or reference gene. The results of the type 

II test of fixed effects were used to determine if there was an effect of fungicide 

treatments, postharvest storage time or the interaction fungicide treatment by storage time 

on the detection of the Tri5 gene. 

4. Results 
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In Overland (moderately resistant to FHB; trial 1), Tri5 was detected in 74 % of the 

total reactions conducted. In Overley (susceptible to FHB and DON accumulation; trial 

2), Tri5 was detected in 96% of the reactions. Pearson’s Chi-square test showed a 

significant difference (p<0.0001) in the frequency of reactions at which Tri5 gene was 

detected in Overley versus Overland (Table 3). Descriptive statistics by trial in each 

combination of fungicide treatment by postharvest storage time are presented in Table 1. 

Overall, the coefficients of variation were low in both trials with 12.8% and 8.2% for 

CtTri5 and 13.8% and 12.7% for the ratio of Tri5 expression relative to GAPDH in trials 

1 and 2, respectively. In most cases the standard deviation in the CtGAPDH was higher 

than in the CtTri5 (Table 1). The housekeeping gene GAPDH showed high relative 

expression (Table 1) denoted as lower Ct values than Tri5 in both trials (Table 1). 

The effect of the interaction fungicide treatments by storage time was consistently 

detected as significant on Tri5 gene expression relative to GAPDH (Ratio 

CtGAPDH/CtTri5) (Table 2). Overall, there was an increase in relative Tri5 gene 

expression during storage (Figure 1). LSD-Fisher over the total reactions at which Tri5 

was detected in both trials (653) showed a significant difference in Tri5 gene expression 

at 120 days of storage (Ratio CtGAPDH/CtTri5 = 0.79) compared to the expression 

registered at 0 days (0.75) and 30 days of storage (0.76). The trend over postharvest 

storage time is summarized in Figure 1 for both trials. In Overland grain from triazole-

treated plots, the Ct ratio of GAPDH/Tri5 increased from 60 days to 120 days of 

postharvest storage (Figure 1). However, Tri5 expression in these combinations of 

fungicide and storage time were not significant compared to strobilurin-treated grain at 

30 days and untreated checks at 60 and 120 days of storage (Fisher-LSD; α = 0.05). 
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Although, a significant increase of Tri5 gene expression was detected in Overland grain 

from strobilurin-treated plots from 60 to 120 days of storage, the detection of the gene of 

interest was significantly lower (p = 0.0154) in the grain from triazole-treated (Tri5 

detected in 66% of samples/reac in trial 1) than in the strobilurin-treated (81% Tri5 

detection) and untreated check plots (77% Tri5 detection) according to the Logit test of 

the binary response distribution.  

In Overley, Tri5 gene expression levels were higher in the grain from strobilurin-

treated plots (Ratio CtGAPDH/CtTri5 = 0.79) compared to the grain that came from 

triazole treated plots (0.73) and untreated check plots (0.75). The strobilurin fungicide did 

not significantly reduced Tri5 gene expression compared with the untreated grain (Figure 

1).   

At the first evaluation after tempering the grain (30 days of storage), grain that came 

from strobilurin-treated plots showed a consistent increase in Tri5 gene expression over 

that from untreated check plots (Figure 2). A 2.6-fold and 4.4-fold change in gene 

expression was detected in Overland (trial 1) and Overley (trial 2), respectively. In both 

trials, from 30 to 120 days of storage, fold changes in gene expression were variable 

without a clear trend and dependent of the expression of the reference sample (untreated 

check) instead of a clear fungicide effect (Figure 2). In grain from Overland (trial 1), Tri5 

was downregulated from 0 to 30 days of storage (Figure 2).     

Pearson’s correlation coefficients were not significant among DON concentration and 

either the Ct ratio GAPDH/Tri5 or DON-CtTri5, for either cultivar. (Figure 3).  

5. Discussion 
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The population of toxigenic fungi in stored grain depends largely on the field and 

storage conditions, as well as harvest process (Magan et al. 2014). Under poor storage 

conditions the risk of mycotoxin contamination increases due to the growth of F. 

graminearum in the mass of grain. In this study, qRT-PCR was conducted to determine 

changes in gene expression of the Tri5 gene under postharvest storage conditions in grain 

that came from field plots treated with triazole or strobilurin fungicides at anthesis, or left 

untreated. 

Detection of Tri5 gene was higher in the post-harvest trial using Overley grain (FHB-

susceptible) than in the Overland grain (moderately resistant). Spread of Fusarium 

through the wheat head is promoted by DON, and higher Tri5 expression (and thus 

higher DON) in the susceptible cultivar would lead to higher levels of infection and 

spread of the fungus within plant. (Bai et al. 2001; Jansen 2005; Jiao et al. 2008; Kumar 

et al. 2015). Our results showed significantly higher (χ2; p < 0.0001) levels of Tri5 gene 

detection in the FHB-susceptible compared to the FHB-moderately resistant cultivar. 

Jansen et al. (2005) reported that the progress of infection in an FHB-moderately resistant 

barley (Hordeum vulgare) cultivar was slower than in FHB-susceptible cultivars. Also, 

Hallen-Adams et al. (2011) found that spring wheat carrying the Fhb1 allele for FHB 

resistance showed minimal detection of Tri5 and significant deviation in Tri5 gene 

expression compared with a FHB-susceptible cultivar. 

Levels of expression of the Tri5 gene by F. graminearum may be related to the 

activation of genes of resistance or susceptibility by the host. Gene expression is highly 

variable between an FHB-susceptible and an FHB-moderately resistant cultivar. In a 

microarray study conducted by Bernardo et al. (2007), as many as 86% of the wheat 
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genes differentially expressed in response to F. graminearum came from the FHB-

susceptible cultivar (Clark), and 14% of the genes came from the FHB-moderately 

resistant cultivar (Ning 7840). The activation of susceptibility genes in the FHB-

susceptible cultivar could trigger a synergistic expression of Tri5 in F. graminearum, and 

therefore increase of Tri5 detection in the FHB-susceptible than in the FHB-moderately 

resistant cultivar. 

Fungicide treatments not only control the disease in the field but also result in higher 

quality grain that is less affected by pathogens which could potentially increase 

mycotoxin levels during storage. Fungicides applied to control FHB pathogens reduce the 

amount of trichothecene-producing Fusarium present in grain and, indirectly, DON 

concentrations (Pirgozliev et al. 2002). DON biosynthesis Tri5 gene expression was 

significantly reduced in the relative expression of the Tri5 gene and a downregulation of 

the gene occurred in the triazole treatment from 0 to 30 days of storage in Overland grain, 

whereas expression of the gene increased in the strobilurin treatment from 0 to 30 days in 

both trials using Overland and Overley grain. In the FHB-susceptible cultivar, the Tri5 

gene expression levels were lower in grain that came from triazole-treated plots than 

either non-fungicide treated check or strobilurin-treated plots. Furthermore, only in grain 

from triazole-treated plots was a significant reduction in the relative expression of the 

Tri5 detected, while in the grain from the non-fungicide sprayed check plots and 

strobilurin-treated plots an increase in the relative expression of the Tri5 was detected at 

the end of the postharvest trial. Therefore, the population of F. graminearum actively 

producing DON was apparently diminished by the action of the triazole fungicide. 

Conversely, in grain from strobilurin-treated plots, the expression of Tri5 went up after 
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tempering the grain (30 days) in both trials (Figure 1). Gene expression decreased in 

wheat treated with a triazole fungicide. Also, Tri5 was significantly downregulated from 

60 to 120 days of storage. However, DON was still being produced in stored grain 120 

days after harvest. These findings emphasize the value of triazole fungicide usage (and 

the fact that treating wheat for foliar diseases with strobilurins will not protect against 

head blight). 

Storage conditions, especially grain moisture, had a significant impact on DON. Our 

study demonstrates that the genetic expression of the Tri5 (necessary for the production 

of DON) can increase postharvest due to the presence of a transcriptionally-active mass 

of fungi under conditions of high grain moisture content. In grain of both cultivars, the 

high and consistent expression of the housekeeping gene GAPDH indicated the presence 

of living postharvest fungi (Table 1). Therefore, there is potential for metabolically active 

fungi to grow and produce toxin during several months of storage. Transcriptional 

activity of the Tri5 gene from F. graminearum was detectable in grain with high grain 

moisture content (20%, aw = 0.75) after 120 days of postharvest storage after tempering 

the grain. Hallen-Adams et al. (2011) detected Tri5 activity in senescent tissue of a 

susceptible cultivar. The authors suggested the ability of the fungus to resume DON 

biosynthesis in dried infected grain. This study corroborates that suggestion, 

demonstrating increases of transcriptional activity of F. graminearum-Tri5 from 0 to 120 

days after tempering the grain.  

Tri5 gene expression was not a good predictor of deoxynivalenol grain concentration, 

as DON was not correlated with Tri5 relative expression. Similarly, Bernaldez et al. 

(2017) found that the expression of aflR gene in Aspergillus flavus was not a good 
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indicator of aflatoxin B1 production. These results are also in agreement with Hallen-

Adams et al. (2011) who observed inconsistent correlation of Tri5 expression relative to 

fungal GAPDH and DON concentration. Regulation of the trichothecene production is 

complex, with unknown positive and negative factors affecting the expression of the 

toxin gene Tri5 (Hallen-Adams et al. 2011) and other genes in the Tri cluster (Jiao et al. 

2008; Schmidt-Heydt et al. 2011). Early induction of Tri genes in asymptotic tissue has 

been detected in several studies (Brown et al. 2012; Chetouhi et al. 2016; Hallen Adams 

et al. 2011; Mudge et al. 2006). Lee et al. (2014) hypothesized that Tri transcript 

accumulation is necessary before initiating DON biosynthesis. Tri gene expression has 

been shown to be maximal during symptomless infection. If DON biosynthesis is 

dependent on an initial Tri accumulation, then direct temporal correlations between DON 

and gene expression of members of the Tri cluster are unlikely. 

In conclusion, DON can be present during postharvest storage even if F. 

graminearum is not actively transcribing Tri5. Cultivar resistance to FHB seems to affect 

both detection and expression of the Tri5 gene.  If conditions are favorable for mold 

growth, F. graminearum can express Tri5 and therefore produce higher accumulation of 

DON in grain storage. Field management practices, such as cultivar resistance and 

fungicide chemical class and application timing have an impact on the quality of stored 

grain, and therefore should not be underestimated.   
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Table 1. Summary statistics on the evaluation of the effect of fungicide treatments 

applied at anthesis and postharvest storage time on gene detection (CtGAPDH and 

CtTri5) in grain from the FHB – moderately resistant cultivar Overland (dryland – 

growing season 2015; trial 1) and FHB-susceptible cultivar Overley (irrigated – growing 

season 2016; trial 2) averaged over two experiments.
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Fungicide 

treatment 

Storage 

time 
Variable 

Total reactions Mean Standard Deviation Minimum Maximum 

Overland Overley Overland Overley Overland Overley Overland Overley Overland Overley 

Check 

0 CtGAPDH 21 21 24.34 23.82 4.03 3.56 18.65 18.65 33.91 30.71 

0 CtTri5 20 20 32.63 32.28 2.68 2.23 29.14 29.14 39.37 36.34 

30 CtGAPDH 22 22 22.25 22.00 1.93 1.56 18.57 18.57 27.55 25.53 

30 CtTri5 21 21 31.08 31.08 1.91 1.91 28.19 28.19 35.33 35.33 

60 CtGAPDH 20 20 25.34 25.34 3.43 3.43 20.53 20.53 34.61 34.61 

60 CtTri5 20 20 32.9 32.90 3.09 3.09 27.99 27.99 39.71 39.71 

90 CtGAPDH 21 21 25 25.00 2.99 2.99 21.7 21.70 33.26 33.26 

90 CtTri5 21 21 31.95 31.95 1.55 1.55 28.54 28.54 34.92 34.92 

120 CtGAPDH 20 20 24.36 24.36 3.7 3.70 19.53 19.53 35.25 35.25 

120 CtTri5 21 21 30.51 30.57 1.52 1.53 27.19 27.19 32.8 32.80 

Strobilurin 

 

 

0 CtGAPDH 29 29 22.65 22.44 2.8 2.60 18.22 18.22 31.11 31.11 

0 CtTri5 29 29 30.27 30.34 3.03 3.07 24.95 24.95 36.14 36.14 

30 CtGAPDH 29 29 24.06 24.03 3.95 4.02 18.88 18.88 34.27 34.27 

30 CtTri5 29 29 30.31 30.36 1.84 1.86 26.77 26.77 33.9 33.90 

60 CtGAPDH 27 27 24.32 23.98 3.25 2.79 18.77 18.77 33.09 29.64 

60 CtTri5 27 27 31.61 31.56 2.7 2.75 26.7 26.70 36.29 36.29 

90 CtGAPDH 28 28 24.35 23.93 3.22 2.96 18.82 18.82 32.19 29.76 

90 CtTri5 26 26 31.75 31.61 2.56 2.51 27.23 27.23 36.6 36.60 

120 CtGAPDH 29 29 23.44 23.23 4.73 4.58 17.8 17.80 34.79 34.79 

120 CtTri5 28 28 30.99 30.68 3.54 3.18 24.92 24.92 39.47 37.08 

Triazole 

0 CtGAPDH 25 25 24.1 24.15 2.46 2.47 20.74 20.74 29.61 29.61 

0 CtTri5 22 22 31.64 31.62 3.27 3.23 27.29 27.29 38.2 37.96 

30 CtGAPDH 25 25 25.05 24.71 2.49 2.28 21.34 21.34 29.45 28.54 

30 CtTri5 23 23 33.1 33.10 2.25 2.25 29.49 29.49 37.59 37.59 

60 CtGAPDH 24 24 23.18 23.27 2.43 2.52 19.51 19.51 31.67 31.67 

60 CtTri5 22 22 32.13 32.13 2.04 2.04 27.56 27.56 35.61 35.61 

90 CtGAPDH 25 25 24.45 24.45 3 3.00 19.87 19.87 31.43 31.43 

90 CtTri5 25 25 32.45 32.45 2.92 2.92 27.74 27.74 38.87 38.87 

120 CtGAPDH 25 25 23.43 23.43 2.88 2.88 20.19 20.19 31.6 31.60 

120 CtTri5 25 25 30.93 30.93 2.56 2.56 26.99 26.99 36.5 36.50 
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Table 2. ANOVA summary on the evaluation of Fungicide treatments applied at anthesis and storage time on the Tri5 gene expression 

relative to GAPDH (Ratio CtGAPDH/CtTri5) in grain from the FHB-moderately resistant cultivar Overland (Dryland – growing 

season 2015; trial 1) and FHB-susceptible cultivar Overley (Irrigated – growing season 2016; trial 2).  

 2015-Overland Dryland (Trial 1)  2016-Overley Irrigated (Trial 2) 

 Experimenta 1  Experiment 2  Experiment 1  Experiment 2 

Source dfb F value P-value  Df F value P-value  df F value P-value  df F value P-value 

Fungicide 

Treatment (F) 2 0.29 0.7658  2 0.72 0.5271  2 1.09 0.3949  2 0.53 0.6119 

Storage Time (T) 4 1.11 0.3529  4 2.55 0.0421  4 0.12 0.9742  4 1.92 0.1097 

F*T 8 1.90 0.0653  8 2.45 0.0163  8 2.46 0.0155  8 2.28 0.0246 

Residual 130    140    167    156   
 

a Each experiment had three independent biological reps 

b The number of degrees of freedom was dependent of the total reactions at which Tri5 and GAPDH were detected



158 
 
 

 
 
 

 

Table 3. Count frequency of qRT-PCR reactions at which Tri5 gene was or was not 

detected in two winter wheat cultivars with different reaction to FHB and DON, Overland 

(moderately-resistant – trial 1) and Overley (susceptible – trial 2).    

Tri5 gene Overland-2015 Dryland Overley- Total 

 Oa Eb O E  

Detected 300 337.82 353 315.18 653 

Non-detected 103 65.18 23 60.82 126 

Totalc  

χ2; P<0.0001  

403  376  779 

a O = Observed values represent the total counts of reactions at which Tri5 was or was not 

detected 

b E = Expected counts under the independence hypothesis (Ha = Detection of Tri5 is 

dependent of the cultivar) 

c Totals are the sum of reactions conducted in two independent experiments at each trial. 
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Fig. 1. Effect of postharvest storage time on Tri5-gene expression relative to GAPDH 

(Ratio CtGAPDH/CtTri5) in grain that came from triazole- and strobilurin-treated plots at 

anthesis, and non-fungicide sprayed plots in the (A) 2015 growing season in the cultivar 

Overland (moderately resistant to FHB and DON accumulation) – Dryland (trial1), and 

the (B) 2016 growing season in the cultivar Overley (susceptible to FHB and DON 

accumulation) –Irrigated (trial2). LS-means came from two independent experiments at 

each trial. 
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Fig. 2. Fold change in Tri5 gene expression relative to the GAPDH in wheat grain  from 

Triazole- and Strobilurin-treated plots of the cultivars (A) Overland (moderately-resistant 

to FHB) – 2015 Dryland (Trial 1) and Overley (susceptible to FHB) – 2016 Irrigated 

(Trial 2).Non-fungicide treated plots were used as calibrators. Data for 2-ΔΔCt calculation 

correspond to LS-means averaged over two independent experiments at each Trial. 
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Fig. 3. Dependence of the amount of DON and the Tri5 relative gene expression to 

GAPDH in grain of the cultivars Overland (moderately resistant to FHB and DON 

accumulation) 2015 – Dryland (Trial 1), and Overley (susceptible to FHB) 2016 - 

Irrigated (Trial 2) for the combinations of fungicide treatments by postharvest storage 

time (n = 15). LS-means came from two independent experiments at each Trial. 
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CHAPTER V 

DETERMINING THE OPTIMUM INOCULUM CONCENTRATION AND SPIKE 

BAGGING PERIOD FOR DISCRIMINATING BETWEEN FHB-SUSCEPTIBLE AND -

RESISTANT WHEAT CULTIVARS UNDER GREENHOUSE CONDITIONS 

1. Abstract 

Fusarium head blight (FHB), caused mainly by Fusarium graminearum, results in 

devastating economic losses in small grain cereal crops.  In regions where FHB occurs 

frequently, breeding for resistance to the disease is a priority in small grain breeding 

programs.  Screening lines or cultivars for resistance to FHB under controlled conditions 

is necessary due to the sporadic nature of the disease under field conditions.  However, 

screening for resistance is challenging due to the quantitative nature of resistance to FHB 

and the variability in aggressiveness of pathogen isolates. Too high or too low inoculum 

concentration or too much humidity can lead to inaccurate results. Greenhouse 

experiments were conducted to determine the optimum inoculum concentration and spike 

bagging period following inoculation for discriminating between a susceptible and a 

moderately resistant spring wheat cultivar.  The cultivars used were Samson (susceptible) 

and Glenn (moderately resistant). In one experiment, spikes were inoculated at anthesis 

with the standard spore concentration of 1 x 105 F. graminearum spores/mL and 1/2, 1/4, 

1/8, and 1/16 of the standard concentration.  In a second experiment, spikes were 

inoculated at anthesis with the standard spore concentration of 1 x 105 F. graminearum 

spores/mL and covered with Ziplock® bags for 12, 24, 36, 48, or 72 hours.  In both 

experiments, FHB severity was visually assessed seven times at 3-day intervals following 
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inoculation.  The percentage of Fusarium-damaged kernels (FDK) and deoxynivalenol 

(DON) concentration were determined after harvest. FHB severity was the best variable 

for discriminating between the two cultivars.  FHB severity results showed that 1/16 and 

1/8 of the standard spore concentration discriminated between the two cultivars whereas 

higher concentrations did not.  The best discrimination between the two cultivars was 

achieved by bagging spikes for 48 or 72 hours following inoculation.  The results from 

this study indicate that for screening wheat cultivars for resistance to FHB under 

greenhouse conditions, lower concentrations of F. graminearum spores (6.25 x 103 or 

1.25 x 104 spores/mL) are better than higher concentrations, and the optimum spike 

bagging period following inoculation is 48 to 72 hours. 

2. Introduction 

Fusarium head blight (FHB) is an economically important disease of wheat and other 

small grain cereals. The main causal agent of FHB in North America is Fusarium 

graminearum (O’Donnell et al. 2000; Hernandez-Nopsa et al. 2014). The disease is 

characterized by sudden bleaching of wheat spikes, and by the sporadic nature of its 

epidemics (McMullen et al. 1997). In Nebraska, recent epidemics of FHB in wheat 

occurred in 2007, 2008, and 2015 (McMullen et al. 2012; Bolanos-Carriel et al. 2015; 

Wegulo et al. 2011). 

Genetic resistance provides effective control of the disease, and the use of moderately 

resistant cultivars is the most cost-effective management strategy (Wegulo et al. 2015). 

Major sources of resistance to FHB are found in cultivars that have native resistance such 
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as Sumai 3, Glenn, and Overland (Anderson et al. 2001; Baenziger et al. 2008; Mergoum 

et al. 2006, 2007; Schweiger et al. 2016; Waldron et al. 1999; Zhou et al. 2003). Sumai 3 

has been extensively studied to identify quantitative trait loci (QTL) conferring FHB 

resistance. Overland is adapted to rainfed conditions of the Great Plains of the United 

States and has moderate resistance to FHB. Glenn is a hard red spring wheat cultivar that 

has Sumai 3 FHB resistance.  

Schroeder and Christensen (1963) proposed two types of FHB resistance in wheat: 

type I and II. Type I, or resistance to initial infection, includes defense reactions such as 

activation of enzymes that degrade the fungal cell wall or pathogenesis-related (PR) 

proteins (Walter et al. 2010). Type I resistance is estimated by spraying a spore 

suspension over flowering spikes and counting diseased spikelets (Miedaner et al. 2003). 

QTLs Fhb4 and Fhb5 confer type I resistance (Buerstmayr et al. 2003). Type II, or 

resistance to spread of the pathogen within a spike, is associated with movement of the 

pathogen from one infected spikelet to another via the rachis.  This type of resistance is 

estimated by delivering conidia into a single floret of a spike and counting the blighted 

spikelets after a period of time.  Fhb1, Fhb2, and Fhb3 are QTLs mapped for type II 

resistance (Buerstmayr et al. 2003).  

Mesterhazy (1995) proposed five types or components of resistance to FHB in wheat. 

In addition to type I and II described above, he proposed type III or kernel size and 

number retention, type IV or yield tolerance, and Type V or resistance to accumulation of 

mycotoxins. 
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Host resistance to FHB is complex and is conditioned by several genes providing 

small effects. Genes for FHB resistance have been identified on every wheat 

chromosome (Eckard et al. 2015). Breeding against FHB is challenging due to the 

quantitative nature of resistance and the technical difficulties encountered when screening 

cultivars in inoculated experiments. 

Despite the importance of breeding for resistance against FHB, actual methods used 

for screening often result in high experimental error or inconsistent ranking of genotypes 

(Kumar et al. 2015). FHB reaction and DON accumulation differ among cultivars and 

environmental conditions (McMullen et al. 2012; Wilcoxson et al. 1992).  Inoculation 

methods and techniques to enhance infection are critical in differentiating the severity of 

FHB among lines or cultivars that the breeder seeks to develop. Among the most 

commonly used methods for evaluating FHB resistance are needle and spray inoculation. 

Needle inoculation involves the use of a thin syringe to infiltrate a water suspension of F. 

graminearum into a healthy spikelet of wheat (Mesterhazy 2014). Significant and 

consistent differences in FHB area under the disease progress curve (AUDPC) have been 

detected in greenhouse trials using the technique of floral injection of spores (Bai and 

Shaner 1996). However, this method is inefficient in estimating DON and yield.  

Practical experience has shown that the standard spore concentration (1 x 105 

spores/mL) and the standard spike bagging period following inoculation (72 hours) may 

be too high and too long to accurately discriminate between wheat lines or cultivars. The 

objectives of this study were to determine 1) the optimum spore concentration and 2) the 
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optimum spike bagging period following inoculation for discriminating between an FHB 

susceptible and a moderately resistant spring wheat cultivar.  

3. Materials and Methods 

3.1 Plant material and greenhouse conditions. Spring wheat cultivars: Glenn 

(moderately resistant to FHB, Mergoum et al. 2006) and Samson (susceptible to FHB, 

Ransom et al. 2010; Westbred 2016), were grown in the greenhouse in 15-cm-diameter 

clay pots. Substrate consisted of a mixture of sphagnum peat moss (Premier Horticulture 

Inc., Quakertown, PA), black clay-loam soil, vermiculite (Palmetto Vermiculite 

Company, Woodruff, SC), and sand in the proportion 1:1:0.5:0.5, respectively. The 

substrate was sterilized using a Lindig-150 soil pasteurizer (Lindig Manufacturing Corp., 

St. Paul, MN). Pots were drip irrigated every day. Fertilization was made in conjunction 

with irrigation using a 20-20-20 N-P-K liquid fertilizer injected at a rate of 250 µg/g. In 

the first set of experiments, daily photoperiod was extended by five hours of light (5 pm 

to 10 pm) using Lumigrow Pro 325 LED Grow Lights (Lumigrow Inc., Emeryville, CA).  

In the second set of replicate (repeated) experiments, photoperiod was extended using 

400-watts incandescent Day Brite lighting (Emerson Electric Co., St. Louis, MO). There 

was a total of twelve plants in each pot. 

3.2 Isolates and strains of F. graminearum. Isolates used in the experiments were 

obtained from wheat spike samples collected from Nebraska wheat fields during the 2015 

and 2016 growing seasons. Isolates were obtained and characterized by Valverde-

Bogantes (2017). Wheat kernels were surface sterilized with 70% ethanol for 1 minute, 
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washed with distilled sterilized water, and dried on sterile paper towels in a laminar flow 

cabinet. Kernels were placed on Fusarium selective medium (KH2PO4 1 g; MgSO4 • 

7H2O 0.5 g; peptone 15 g; agar 20 g; PCNB 1 g; distilled water 1000 mL) (Nash and 

Snyder 1962) contained in 9-cm-diameter Petri plates which were then incubated at room 

temperature for 5 to 7 days. 

Colonies showing morphological characteristics of Fusarium were transferred to 

PDA on which they grew for 7 days.  Sterile distilled water was added to each plate and 

mycelia and spores were dislodged using an L shaped plastic rod followed by filtering 

through four layers of sterile cheesecloth.  The spore suspension was serially diluted and 

300 μL were spread onto PDA in 9-cm-diameter plates. After 24 h of incubation at room 

temperature, single spore isolates were obtained and maintained on PDA. 

3.3 . Preparation of inoculum. Seven F. graminearum isolates were transferred onto 

PDA plates and incubated in a Thermo Scientific™ Precision™ Low Temperature 

Incubator (Thermo Fisher Scientific Inc., Waltham, MA) at 25oC with a 12 hour light-

dark period. Under these conditions, all isolates grew and covered the whole surface of 

the plate after 10 to 14 days. After 21 days of incubation, culture plates were stored at 

4oC until needed for inoculation. To prepare spore suspensions, culture plates were 

removed from storage and incubated on a shelf for 12 hours at room temperature. Sterile 

distilled water was added to each plate and mycelia and spores were dislodged with an L-

shaped plastic rod followed by filtration through four layers of cheesecloth. Spore 

concentration was determined using INCYTO™ C-Chip™ disposable hemocytometers 

(INCYTO, Korea). 
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3.4 Inoculation of spikes. Wheat spikes were inoculated on different days when they 

reached full anthesis (GS 65). The spore suspension was prepared in the morning and 

inoculation was performed in the afternoon and night of the same day. Each wheat spike 

was numerically identified using Fisherbrand™ colored label tape (Thermo Fisher 

Scientific Inc., Waltham, MA) and inoculated with approximately 1 mL of spore 

suspension using 8-oz super-mist manual sprayers (Sprayco, Livonia, MI).  

3.5 Experimental layout. Each experiment was repeated once.  Treatments were 

arranged in a split plot design in randomized complete blocks with four replications.  

Main plots were the cultivars and subplots were spore concentration or spike bagging 

period treatments. In the inoculum concentration experiment, spore concentrations were 

the standard (1x105 spores/mL), one half (5x104 spores/mL), one quarter (2.5x104 

spores/mL), one eighth (1.25x104 spores/mL), and one-sixteenth (6.25x103 spores/mL) of 

the standard. Wheat spikes were covered with a 7.5 x 13 cm Ziplock® bag for 72 hours 

after inoculation.  In the spike bagging period experiments, wheat spikes were inoculated 

using a spore suspension (1x105 spores/mL) prepared using a mixture of the seven F. 

graminearum isolates described above.  Inoculated spikes were covered with Ziplock® 

bags for 12, 24, 36, 48, or 72 hours. 

3.6 Disease assessment and grain processing. Following inoculation, disease 

severity (percentage of symptomatic spikelets on the spikes) was visually assessed seven 

times at 3-day intervals on 12 to 30 spikes in each pot. After 40 to 56 days following 

inoculation, spikes were harvested by hand and threshed individually using a single spike 

thresher (Precision Machine, Lincoln, NE). The grain from each pot was kept separately, 
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and the total number of kernels was counted using a seed counter (Agriculex, Guelph, 

Ontario, Canada). A sample of 100 kernels was used to determine the percentage of 

Fusarium-damaged kernels (FDK). Grain samples were ground to flour using a cyclone 

sample laboratory mill (UDY Corporation, Fort Collins, CO). Samples were sent to the 

North Dakota Veterinary Diagnostic Laboratory for DON analysis using gas-

chromatography with electron capture detection (GC-ECD) (Tacke and Casper 1996). 

3.7 Data analysis. Data were analyzed with SAS software version 9.4 using 

generalized linear mixed models PROC GLIMMIX. Based on the F-test for homogeneity 

of variances (Gomez and Gomez 1984), a combined analysis of the two replicated 

experiments of each experiment was conducted. Greenhouse room, cultivars, inoculum 

concentration, and spike bagging period were considered fixed effects. Block, block 

within greenhouse room, and cultivar by block within greenhouse room were considered 

random effects.  

4. Results 

4.1 Inoculum concentration experiments. In the experiment conducted to determine 

the optimum spore concentration for discriminating between cultivar resistance levels, 

the effect of cultivar was significant for all measured variables (FHB severity, FDK and 

DON; Table 1).  The susceptible cultivar Samson had higher FHB severity, FDK, and 

DON than the moderately resistant cultivar Glenn. Neither the cultivar by greenhouse 

room interaction nor the third-order interaction greenhouse room by cultivar by spore 

concentration was significant. However, the interaction spore concentration by cultivar 
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was significant for FDK and FHB severity at 21 days post inoculation (dpi) (Table 1, 

Figure 5). The effect of spore concentration was significant for FHB severity and DON 

(Table 1). FHB severity was significantly higher in the spikes inoculated with 1 x 105 and 

5 x 104 spores/mL in the susceptible cultivar Samson (Fisher-LSD α = 0.05) (Table 2).  

A change in magnitude of the response to inoculum concentration by cultivar was 

detected at 21 dpi. Concentrations 6.25 x 103 and 1.25 x 104 spores/mL allowed clear 

rank separation between the moderately resistant and the susceptible cultivar (Figures 2 

and 5). In Glenn, the lowest DON was detected in grain from spikes inoculated with F. 

graminearum at 6.25 x 103 spores/mL (25.8 µg/g) (Table 2). However, this value was not 

significantly different compared to DON in the rest of the inoculum concentrations, with 

the exception of DON in spikes inoculated with 5 x 104 spores/mL, which was a very 

high concentration (64.1 µg/g). In Samson, DON in grain from spikes inoculated with 5 x 

104 spores/mL had 95.3 µg/g (Table 2). The high levels of variability detected in these 

experiments did not allow the separation of this value from the treatments 1 x 105 

spores/mL (82.6 µg/g) and 2.5 x 104 spores/mL (81.3 µg/g). 

The effect of greenhouse room was highly significant for FHB severity and DON 

(Table 1).  It is noteworthy that DON in grain from the room with LED lights (85.9 µg/g) 

was 2.4 times higher than that in the room with incandescent lights (35.5 µg/g) (Table 2). 

Temperature in the room with LED lights was 24.2oC compared 23.1oC in the room with 

incandescent lights. 
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Linear regression analysis was conducted where the orthogonal polynomials showed 

a significant linear effect (Tables 1 and 2). Spore concentrations were highly and 

positively related to FHB severity (3.1 ≤ β1 ≤ 14.5, 0.31 ≤ R2 ≤ 0.94) (Table 4). The 

strongest relationship between FHB severity and incremental concentrations of inoculum 

was at 3 dpi (R2 = 0.94, P < 0.0001), followed by 6 dpi (R2 = 0.59, P = 0.0092), and 18 

dpi (R2 = 0.50, P = 0.0220).   

4.2 Spike bagging time experiments. Highly significant effects of cultivar and spike 

bagging period following inoculation of spikes with F. graminearum were detected for 

FHB severity, FDK, and DON. In the spike bagging experiment, a significant difference 

between cultivars in FHB severity was detected at 3 dpi in the 36 h and 48 h bagging 

treatments.  This difference was remarkably increased at 9 dpi in the 48 h and 72 h 

bagging treatments (Table 1, Figures 6 and 7).  

FDK did not differ among bagging treatments in Samson. FDK in the 72 h bagging 

treatment in Glenn was similar to that in the 12 h and 72 h bagging treatments in Samson 

(Table 2). For DON, 12 h of bagging did not separate the moderately resistant cultivar 

Glenn from the susceptible cultivar Samson (Table 2). Likewise, no significant 

differences between the cultivars were detected following 72 hours of bagging. However, 

there was a difference of 8 µg/g DON between Samson (49.8 µg/g) and Glenn (41.8 

µg/g) in the 72 h bagging treatment. 

The greenhouse room effect was highly significant for DON and FDK (Table 2). 

Contrary to the results in the spore concentration experiment, in the bagging period 
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experiment higher values of DON and FDK were recorded in the room with incandescent 

lights than in the room with LED lights.  This was unexpected given that temperature in 

the room with LED lights was 1oC higher than that in the room with incandescent lights. 

DON was linearly and positively related to spike bagging treatments (R2 = 0.60) (Table 

4). 

Correlations among variables evaluated in the spike bagging experiment are 

summarized in Table 5. FDK and DON were highly and positively correlated in the 

susceptible Samson (R = 0.89; n = 10; P = 0.0006) and the moderately resistant Glenn (R 

= 0.78; n = 10; P = 0.0075), as well as when means of both cultivars were analyzed 

together (R = 0.81; n = 20; P < 0.0001).   

5. Discussion 

Screening cultivars for FHB resistance was conducted using the two spring wheat 

cultivars Samson (susceptible) and Glenn (moderately resistant). These cultivars were 

chosen as they represent two different genetic backgrounds. The standard spore 

concentration used in FHB studies is 1 x 105 spores/mL, and the standard spike bagging 

period following inoculation is 72 hours. Practical experience indicates that both 

standards (concentration and spike bagging period) may be too high and too long, 

respectively, for accurate discrimination between moderately resistant and susceptible 

wheat lines or cultivars. This study demonstrates that 6.25 x 103 spores/mL (1/16 of the 

standard) and 1.25 x 104 spores/mL (1/8 of the standard) are sufficient to discriminate 
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between cultivars, and that the spike bagging time following inoculation of wheat spikes 

needed to differentiate among cultivars should be 48 to 72 hours. 

A significant difference in DON between cultivars was detected in spikes inoculated 

with 6.25 x 103 spores/mL. The average was 25.8 µg/g for Glenn compared with 60.2 

µg/g for Samson. A high concentration of spores resulted in very high FHB severity, and 

as a result differences between cultivars were masked. A high inoculum concentration 

will result in too much disease, which will lower the accuracy of discriminating between 

a resistant and a susceptible cultivar.  Similarly, a low inoculum concentration will result 

in too little disease that will not be useful in differentiating between a resistant and a 

susceptible cultivar. Therefore, insufficient or excessive inoculum concentration can lead 

to inaccurate results in screening and can increase type II error (failure to discriminate 

cultivars by not rejecting the null hypothesis). Although a significant difference between 

the susceptible and moderately resistant cultivar was detected at 9 dpi in the 12 h and 36 

h bagging treatments, a better discrimination and separation of cultivars was detected in 

the 48 h and 72 h bagging treatments. 

In a similar study, different inoculum concentrations were used to characterize the 

development of FHB and DON in SD3845 (susceptible line) (Stein et al. 2009). It was 

found that FHB incidence and severity and inoculum concentration followed a negative 

exponential function with an asymptote at approximately 5000 conidia/spike and no 

further effect of inoculum concentration after adding more inoculum. In addition, DON 

showed a positive linear relationship with significant increases of the toxin up to 2.5 x 
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104 conidia/spike. Our results contrast with this finding as no linear relationship was 

detected between DON and inoculum concentration in the susceptible cultivar Samson 

and the moderately resistant cultivar Glenn. High levels of variability in these 

experiments did not allow the separation of treatments which showed differences in 

means for DON of 32 µg/g. This was likely because most of the susceptible plants 

showed symptoms but also some spikelets may have escaped infection, resulting in a 

large coefficient of variation (59%) of the mean for the susceptible cultivar (mean 76 

µg/g; n = 40; standard deviation 46 µg/g). Inaccurate evaluation of resistance may be due 

in part to escape of infection in susceptible lines due to external influences such as 

moisture, opening of florets and other non-direct variables (Bai and Shaner 1996). 

In the spore concentration experiment, significantly higher FHB severity and DON 

were observed in the LED-lit room compared to the room with incandescent lights.  This 

may have been due in part to the optimal spike bagging period of 48 or 72 hours and the 

higher room temperature in the LED-lit room. A significant reduction in FDK and DON 

was observed in the LED-lit room compared to the room with incandescent lights. The 

reason why there was significantly less FDK and DON in this room is unknown. A 

hypothesis is that the blue-purple light supplemented in the LED-lit room could have 

caused death of actively growing F. graminearum hyphae when spikes were exposed by 

removal of bags in the treatments with shorter bagging periods (12 h and 24 h). Trzaska 

et al. (2017) demonstrated that blue light at 405 nm triggered a high production of ROS 

in living cells and subsequent death of actively growing hyphae. In Fusarium spp., blue 
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light was highly effective in inhibiting fungal growth of germinated spores leading to 

production of immature hyphae (Trzaska et al. 2017). Lumigrow Pro 325 LED Grow 

Lights produce two main peaks at 660 and 440 nm. Blue LED light at 440 nm effectively 

inactivates Candida albicans when irradiated over planktonic cells (Dovigo et al. 2011). 

LED lights are a relatively new technology in agriculture. Exposing microorganisms to 

different wavelengths can be useful in disease management in greenhouse crops.  

Screening cultivars for FHB resistance is a difficult task even when comparing lines 

that are clearly different in QTLs for resistance. Inoculation techniques can have 

important consequences in the advance of a breeding program targeting resistance to 

FHB. Methodology, availability of inoculum, and control of the environment are critical 

factors to consider in phenotyping FHB resistance. In addition, variation in FHB 

screening can be a result of the genotype x environment interaction (Geddes et al. 2008).   

Screening for FHB resistance represents an investment in time and resources. 

Optimization of techniques will prevent removal of good lines in the early stages of the 

breeding program.  The results from this study indicate that spore concentration and spike 

bagging time following inoculation are critical in accurate discrimination between 

resistant and susceptible cultivars. The results also indicate that differences in 

environmental conditions such as temperature and type of incident light can have a 

significant effect on the results obtained when screening cultivars for resistance to FHB. 
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Table 1. Effects of cultivar, spore concentration, and spike bagging period following inoculation on FHB severity in greenhouse 

experiments.  

Source gl 

Inoculum concentration Spike bagging 

3 dpi 6 dpi 9 dpi 12 dpi 15 dpi 18 dpi 21 dpi 3 dpi 6 dpi 9 dpi 12 dpi 15 dpi 18 dpi 21 dpi 

P > F 

Greenhouse 

rooma 

1 
0.0004 <.0001 0.0055 0.0153 0.1754 0.8689 0.1360 0.0016 0.0121 0.0336 0.0340 0.0981 0.0476 0.0961 

GR (Rep) 6 0.9720 0.9956 0.6058 0.4838 0.2053 0.1492 0.0318 0.7937 0.8404 0.8051 0.7125 0.2715 0.3847 0.2619 

Cultivar (CV)b 1 1.0000 0.2920 0.0120 0.0036 0.0019 0.0157 <.0001 0.0123 0.0183 0.0097 0.0076 0.0012 0.0003 0.0004 

CV * GR 1 0.8364 0.0218 0.1316 0.0798 0.1373 0.3004 0.7371 0.6699 0.7354 0.2940 0.4154 0.4524 0.6093 0.1589 

CV * Rep(GR) 6 0.0779 0.0049 0.0524 0.0591 0.2460 0.1486 0.9518 0.0316 0.0086 0.0405 0.1666 0.6609 0.8267 0.9139 

Treatment (T)c 4 <.0001 0.0036 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 

linear 1 <.0001 0.0245 0.0061 0.0009 0.0003 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 

quadratic 1 0.3819 0.5947 0.0500 0.0329 0.0169 0.0336 0.0114 0.2848 0.5714 0.3103 0.5653 0.7396 0.8469 0.2241 

cubic 1 0.8260 0.8322 0.5760 0.3802 0.3796 0.6091 0.8841 0.0579 0.1826 0.1894 0.0373 0.0479 0.1198 0.5527 

quartic 1 0.5149 0.8078 0.8456 0.8815 0.8510 0.7767 0.8036 0.8981 0.5891 0.5629 0.4808 0.4006 0.5178 0.7439 

T * GR 4 0.5872 0.7219 0.5609 0.5198 0.1373 0.3124 0.6327 0.8758 0.7747 0.5358 0.4855 0.4455 0.7184 0.7657 

T * CV 4 0.9752 0.2608 0.5446 0.1917 0.4241 0.8035 0.0064 0.0316 0.1070 0.0330 0.2242 0.4083 0.1184 0.5844 

T * CV * GR 4 0.1101 0.2382 0.7410 0.2769 0.4112 0.5804 0.2972 0.9796 0.6229 0.4937 0.8832 0.7580 0.2962 0.2369 
a Sets of replicate (repeated) experiments were conducted in separate greenhouse rooms for a total of four independent experiments 

(two replicates for spore concentration, and two for spike bagging period).  
b Cultivars used in this study were Glenn (FHB moderately-resistant) and Samson (FHB-susceptible). 
c Treatments for the spore concentration experiments were 105, 5x104, 2.5x104, 1.25x104 and 6.25x103 spores/mL; and for spike 

bagging time were 12, 24, 36, 48, and 72 hours post inoculation.    
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Table 2. Effects of cultivars, spore concentration, and spike bagging period on Fusarium-damaged kernels (FDK) and deoxynivalenol 

(DON) under greenhouse experimental conditions. 

Effect d.f. 

Inoculum concentration  Spike bagging 

FDK DON  FDK DON 

P > F 

Greenhouse room (GR)a 1 0.2297 0.0005  <0.001 0.0278 

(GR)rep  6 0.4326 0.4852  0.5877 0.7465 

Cultivar (CV)b 1 0.0020 0.0062  0.0004 0.0250 

CV * GR 1 0.8433 0.1217  0.8821 0.6500 

CV * Rep(GR)  6 0.0126 0.4832  0.3003 0.6179 

Treatment (T)c 4 0.0892 0.0481  0.0236 0.0008 

        Linear 1 - 0.2483  0.1253 0.0010 

        quadratic 1 - 0.1439  0.3078 0.8966 

        Cubic 1 - 0.7027  0.6379 0.2975 

        quartic 1 - 0.1626  0.5570 0.5211 

T * GR 4 0.0168 0.2576  0.1329 0.1692 

T * CV 4 0.0480 0.3170  0.3145 0.7265 

T * CV * GR 4 0.1705 0.5384  0.5386 0.4447 
a Sets of replicate (repeated) experiments were conducted in a separate greenhouse rooms for a total of four independent experiments 

(two replicates for spore concentration, and two for spike bagging period).  

b Cultivars used in this study were Glenn (FHB moderately-resistant) and Samson (FHB-susceptible). 

c Treatments for the spore concentration experiments were 105, 5x104, 2.5x104, 1.25x104 and 6.25x103 spores/mL; and for spike 

bagging time were 12, 24, 36, 48, and 72 hours post inoculation.     
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Table 3. LS-means for Fusarium-damaged kernels (FDK) and deoxynivalenol (DON) in spring wheat cultivars Samson (FHB-

susceptible) and Glenn (moderately resistant) cultivars used to determine the effects of inoculum concentration (spores/mL) and spike 

bagging period following inoculation under greenhouse conditions  

Cultivar 

Inoculum concentration Spike bagging period 

spores  

mL 

Fraction 

standarda 

FDK  

% 

DON 

(µg/g) 

hours spike 

bagged 

FDK  

% 

DON 

(µg/g) 

Samson 

1x105 1 67.4 a 82.6 ab 12 39.3 a-c   20.4 d 

5x104 1/2 63.4 ab     95.3 a 24  43.7 a 40.1 ab 

2.5x104 1/4 57.1 bc   58.5 b-d 36  47.9 a  38.6 a-c 

1.25x104 1/8 57.9 a-c 81.3 ab 48  46.2 a 43.2 ab 

6.25x103 1/16 57.0 bc 60.2 bc 72  41.9 ab  49.8 a 

        

Glenn 

1x105 1  34.9 e    31.1 cd 12  20.2 e  20.2 d 

5x104 1/2 50.2 cd 64.1 a-c 24  26.8 de 29.8 b-d 

2.5x104 1/4 41.4 de 58.0 b-d 36  32.5 cd  23.6 cd 

1.25x104 1/8 39.5 e 50.5 b-d 48  27.6 de 32.1 b-d 

6.25x103 1/16 40.8 e    25.8 d 72  34.9 b-d  41.8 ab 

Greenhouse room effect 

 A2-LED  53.8 85.9  24.7 20.3 

 B2-INC  48.2 35.5  47.6 47.3 

ANOVA factor P ≤ 
 

NS 0.0001  0.0001 0.0001 
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Table 4. Linear regression analysis between spore concentration, spike bagging time and FHB-severity evaluated at 3, 6, 9, 12, 15, 18, 

and 21 days post inoculation.  

  Linear regression parameters 

 Variable Intercept Slope R2 F - value P > F 

Spore concentration 

FHB-SEV3dpi 2.92 3.10 0.94 134.11 <.0001 

FHB-SEV6dpi 16.99 5.68 0.59 11.65 0.0092 

FHB-SEV9dpi 35.40 11.96 0.32 3.78 0.0878 

FHB-SEV12dpi 52.08 14.44 0.31 3.63 0.0934 

FHB-SEV15dpi 67.88 14.52 0.32 3.75 0.0889 

FHB-SEV18dpi 79.18 14.43 0.50 8.04 0.0220 

FHB-SEV21dpi 89.77 8.95 0.33 3.94 0.0823 

Spike bagging 

FHB-SEV3dpi 0.98 0.15 0.78 27.61 0.0008 

FHB-SEV6dpi 10.89 0.28 0.65 15.29 0.0045 

FHB-SEV9dpi 25.01 0.33 0.59 11.36 0.0098 

FHB-SEV12dpi 41.88 0.31 0.57 10.57 0.0118 

FHB-SEV15dpi 57.26 0.31 0.60 11.97 0.0086 

FHB-SEV18dpi 72.37 0.26 0.57 10.77 0.0112 

FHB-SEV21dpi 84.73 0.18 0.61 12.43 0.0078 
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Table 5. Correlation coefficients for Fusarium head blight (FHB) severity, Fusarium-damaged kernels (FDK), and deoxynivalenol 

(DON) concentration from experiments conducted to determine the effect of inoculum concentration and spike bagging period 

following inoculation on the efficiency of discrimination between a susceptible and a moderately resistant cultivar. 

 
Inoculum concentration Spike bagging period 

 

 
susceptible                                                             

N = 10 

moderately resistant                                                    

N = 10 

combined                                                                  

N = 20 

susceptible                                                                 

N = 10 

moderately resistant                                     

N = 10 

combined                                         

N = 20  
       R    Prob > |r|       R Prob > |r|       R Prob > |r|       R Prob > |r|      R Prob > |r|      R Prob > |r| 

FHB-sev 3 dpi/ FDK 0.6577 0.0387 0.2261 0.5299 0.2614 0.2657 -0.2456 0.494 -0.131 0.7183 -0.0392 0.8697 
FHB-sev 3 dpi/ DON 0.796 0.0059 0.4193 0.2278 0.5545 0.0112 0.0459 0.8998 0.0242 0.9471 0.0917 0.7006 

FHB-sev 6 dpi/ FDK 0.4814 0.1589 0.3105 0.3826 0.3717 0.1065 -0.2621 0.4644 -0.1517 0.6757 0.0536 0.8225 

FHB-sev 6 dpi/ DON 0.8856 0.0007 0.4458 0.1966 0.75 0.0001 0.0544 0.8814 0.0307 0.9329 0.1432 0.5471 
FHB-sev 9 dpi/ FDK 0.5955 0.0693 0.4132 0.2352 0.6266 0.0031 -0.2312 0.5204 0.1336 0.713 0.1683 0.4782 

FHB-sev 9 dpi/ DON 0.9298 <.0001 0.6273 0.0522 0.867 <.0001 0.0797 0.8267 0.1775 0.6237 0.2076 0.3798 

FHB-sev 12 dpi/ FDK 0.6195 0.0561 0.3381 0.3393 0.6817 0.0009 -0.2692 0.452 0.04744 0.8965 0.1367 0.5655 
FHB-sev 12 dpi/ DON 0.8383 0.0024 0.5449 0.1033 0.8 <.0001 0.0176 0.9615 0.0578 0.874 0.1409 0.5534 

FHB-sev 15 dpi/ FDK 0.7412 0.0142 0.3421 0.3333 0.7614 <.0001 -0.1955 0.5884 0.0582 0.8732 0.1759 0.4582 

FHB-sev 15 dpi/ DON 0.7245 0.0178 0.316 0.3737 0.6813 0.0009 0.1138 0.7543 0.0388 0.9152 0.1865 0.4312 
FHB-sev 18 dpi/ FDK 0.8178 0.0038 0.1035 0.7761 0.6621 0.0015 -0.0631 0.8624 -0.1172 0.747 0.1897 0.4231 

FHB-sev 18 dpi/ DON 0.5388 0.1081 0.01671 0.9635 0.4631 0.0398 0.2583 0.4712 -0.0899 0.8048 0.2326 0.3237 

FHB-sev 21 dpi/ FDK 0.2596 0.4688 0.1981 0.5832 0.5571 0.0107 0.0912 0.802 -0.037 0.9191 0.2624 0.2638 
FHB-sev 21 dpi/ DON -0.0934 0.7974 -0.0153 0.9665 0.2093 0.3759 0.4108 0.2383 -0.054 0.8822 0.2991 0.2001 

FDK/DON 0.5995 0.0857 0.697 0.0251 0.6739 0.0011 0.8905 0.0006 0.7824 0.0075 0.8189 <.0001 
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Fig. 1. Progression of Fusarium head blight severity in a moderately resistant (Glenn) and 

a susceptible (Samson) spring wheat cultivar. Plants were inoculated with spore 

suspensions of Fusarium graminearum   6.25 x103,    1.25x104,   

2.5x104,   5x104, and    1x105 spores / mL. 
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Fig. 2. Progression of Fusarium head blight (FHB) severity in a moderately resistant 

(Glenn) and a susceptible cultivar (Samson) at different concentrations of Fusarium 

graminearum inoculum. Evaluations of FHB severity were made from 3 to 21 days post 

inoculation at 3 day intervals.  
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Fig. 3. Progression of Fusarium head blight (FHB) severity in a moderately resistant 

(Glenn) and a susceptible (Samson) spring wheat cultivar exposed to different spike 

bagging periods (hours). Plants were inoculated with a spore suspension of Fusarium 

graminearum (105 spores / mL) and spike bagging period was  12 hours,   24 

hours,  36 hours,   48 hours, and      72 hours after inoculation.   
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Fig. 4. Progression of Fusarium head blight (FHB) severity in a moderately resistant 

(Glenn) and a susceptible cultivar (Samson) exposed to different spike bagging periods 

following inoculation of wheat spikes. FHB severity was evaluated seven times at 3 day 

intervals following inoculation. 
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Fig. 5. Effect of Fusarium graminearum inoculum concentration on Fusarium head blight 

(FHB) severity in a moderately resistant (Glenn) and a susceptible (Samson) spring wheat 

cultivar 21 days post inoculation in the greenhouse. 
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Fig. 6. Effect of Fusarium graminearum spike bagging period on Fusarium head blight 

(FHB) severity in a moderately resistant (Glenn) and a susceptible (Samson) spring wheat 

cultivar 3 days post inoculation in the greenhouse. 

  



193 
 

 

 

Spike bagging time after inoculation

F
H

B
 s

ev
er

ity
 (

%
) 

at
 9

 d
p
i

0

10

20

30

40

50

72 h48 h36 h24 h12 h

a

bc

a

e

c

b

d

f

Glenn

Samson

de

de

bc b-d

c-e

e

f

 

Fig. 7. Effect of Fusarium graminearum spike bagging period on Fusarium head blight 

(FHB) severity in a moderately resistant (Glenn) and a susceptible (Samson) spring wheat 

cultivar 9 days post inoculation in the greenhouse. 
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CHAPTER VI 

TIMING OF FUNGICIDE APPLICATIONS FOR MANAGEMENT OF FOLIAR 

FUNGAL DISEASES OF WINTER WHEAT 

1. Abstract 

Foliar fungal diseases of wheat are associated with significant economic losses every 

year. This study was carried out to determine the effect of the fungicides ProsaroTM 

(prothioconazole + tebuconazole) and Headline® (pyraclostrobin) applied at different 

times on foliar disease severity and yield in winter wheat. In 2015 and 2016, field trials 

were conducted using two winter wheat cultivars Overley and Overland under dryland 

and irrigated field conditions. There was a highly significant effect (P < 0.0001) of 

fungicide treatments on the area under disease progress curve (AUDPC) in both years 

and environments. Overall, AUDPC was significantly higher in plots treated with Prosaro 

at or after anthesis compared to plots treated prior to anthesis. In addition, there was a 

significant reduction in yield in the applications timed at 6 and 12 days after anthesis, 

without regard to the fungicide chemical class. Critical point models, as well as the trends 

in disease progress curves, were variable among years and environments. Critical point 

models showed that foliar disease severity at anthesis and a few days after anthesis more 

accurately predicted yield loss in an epidemic year (2015) compared to a dryer year 

(2016). Foliar disease severity assessment later in the 2016 growing season (milk stage of 

wheat grain development) provided a more reliable relationship with yield in both 

environments. AUDPC and yield were highly and negatively correlated (R = -0.98; n = 8;  

P <0.0001 in 2015, and r = -0.84; n = 9; P = 0.0089 in 2016). Applications of ProsaroTM 

at the flag and boot stages of wheat development were more effective in protecting yield 
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from foliar fungal diseases in both years and environments than applications made at later 

growth stages.   

2. Introduction 

Wheat (Triticum aestivum) is planted on more acreage than any other crop in the 

world (Baenziger et al. 2009; Bishwajit et al. 2017). In 2003, the total acreage of wheat 

was 215 million hectares on five continents (Chrispeels and Sadava 2003). Wheat is the 

primary source of protein and calories for 35% of the world's population (Food and 

agriculture organization of the United Nations 2015), and plays a significant role in food 

security and food sovereignty in many countries.  

Foliar fungal diseases of wheat are associated with significant losses of the 

photosynthetic area. Frequency and severity of foliar fungal disease epidemics have 

increased over the years. In wheat, rust epidemics (stripe, leaf, and stem) have increased 

in severity after higher winter temperatures and lower spring temperatures in the Pacific 

Northwest of the United States (Caubel et al. 2017; Luck et al. 2011). Emerging 

infectious diseases pose a grave risk to plant health. Monoculture and the effects of 

climate change have caused increases in incidence and severity for many foliar fungal 

diseases; therefore, the use of fungicides has expanded widely. In wheat fields of the 

United States, in the central Great Plains, major foliar fungal diseases are leaf rust 

(Puccinia triticina), stripe rust (Puccinia striiformis), tan spot (Pyrenophora tritici-

repentis), powdery mildew (Blumeria graminis), spot blotch (Cochliobolus sativus; 

anamorph: Bipolaris sorokiniana), and Septoria tritici blotch (Septoria tritici) (Wegulo et 

al. 2011).  Wheat rusts include stripe or yellow rust, leaf or brown rust, and stem or black 

rust (Puccinia graminis f.sp. tritici).  Stripe rust is associated with losses totaling over 5 

MMT per year, and 88% of the cultivars planted worldwide are susceptible to the disease 
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(Schierenbeck et al. 2016). Early epidemics of leaf rust affecting the flag leaf can cause 

60 - 70% yield losses (Huerta-Espino et al. 2011). The group of stem rust races known as 

“Ug99” constitutes a major threat to wheat production worldwide. Most of the bread 

wheat varieties planted are susceptible to stem rust Ug99 (Singh et al. 2015).  

Tan spot is a foliar disease that can cause losses of up to 50% of the crop (Shabber 

and Bockus 1988). The disease has been increasing in severity in wheat fields due to no-

tillage practices, causing serious damage especially when conditions are warm and humid 

(Wegulo et al. 2012).   

Powdery mildew of wheat is one of the most common foliar diseases, and it is 

frequently reported in Western and Southern Europe and South America (Caubel et al. 

2017; Morgounov et al. 2012). Blumeria graminis reduces yield and grain quality, and 

infects wheat leaves primarily in the spring when air temperatures begin to warm. 

(Morgounov et al. 2012).   

Foliar disease severity can be used to estimate yield loss by models. Models that help 

to simplify the relationships between disease severity and yield loss are important tools 

for decision-making in the field to optimize disease management strategies. Three models 

frequently used in plant disease epidemiology are the critical points, the multiple points, 

and the area under disease progress curve (AUDPC) (Campbell and Madden 1990; James 

1974; Teng et al. 1979). Critical point models use disease severity at a particular point in 

time to predict future yield loss using simple linear regression analysis (Zadoks and 

Schein 1979). Critical point models provide the best fit to estimate yield loss due to rust 

epidemics (Teng et al. 1979). In Brazil, a critical point model was used to relate yield and 

severity of foliar blast (Pyricularia oryzae), brown spot (Bipolaris oryzae), and scald 

(Gerlachia oryzae) of rice (Bordin et al. 2016). In winter wheat, in four studied locations, 
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the highest relationship between tan spot/spot blotch severity and yield was at the 

flowering stage (Wegulo et al. 2009). In Iran, prediction of crop loss showed that disease 

assessments from Zadoks growth stage 39 (GS39) (Zadoks et al. 1974) to GS60 were 

good indicators of yield loss in the bread wheat-stripe rust pathosystem (Eslahi and 

Mojerlou 2016). A model to estimate the effect of the wheat diseases Septoria tritici 

blotch (STB) and leaf rust on plant growth and yield predicted the effect of these diseases 

on crop growth with less than 10% differences between modeled versus experimental 

data (Robert et al. 2004).  

Studies on crop physiology have shown the importance of the flag leaf of wheat as it 

contributes a large proportion of photosynthates for grain filling (Borrill et al. 2015; 

Chrispeels and Sadava 2003; Stoy 1963). Fungicides are applied to wheat leaves to 

maximize yield. The fungicides Headline® (pyraclostrobin) and ProsaroTM 

(prothioconazole + tebuconazole) are registered for controlling foliar fungal diseases on 

wheat (Wegulo 2010). Fungicide chemical class and application timing have shown 

inconsistent results in the control of foliar diseases of wheat (Cromey et al. 2004; Wegulo 

et al. 2009, Wegulo et al. 2011). A fundamental question in this research is, how do pre-

anthesis (flag and boot), anthesis, or post-anthesis fungicide applications (6 or 12 days 

post-anthesis) impact yield and foliar disease severity? 

The objectives of this study were to determine the effect of two fungicides 

(Headline® and ProsaroTM) applied at pre-anthesis, anthesis, and post-anthesis on foliar 

fungal disease severity and yield. Critical point model analysis was also employed to find 

the best relationship between foliar disease severity and yield loss.  

3. Materials and methods 
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Field experiments were conducted under rainfed (one experiment) and irrigated (one 

experiment) conditions during the 2015 and 2016 wheat growing seasons at the Eastern 

Nebraska Research and Extension Center (ENREC), formerly the Agricultural Research 

and Development Center (ARDC) near Mead, Nebraska (41.2286° N, 96.4892° W). 

Winter wheat cultivars Overland and Overley were planted in the fall of 2014 and 2015. 

The size of the experimental plots was 1.22 m by 6.10 m in 2014 and 1.22 m by 4.57 m in 

2015. Seeding rate was 60 kg/ha in both years. The Nebraska Certified Seed Book 

characterizes the reaction of Overland as moderately resistant (MR) to moderately 

susceptible (MS) to leaf rust, and MR to stem and stripe rust (Nebraska Crop 

Improvement Association). Overley is characterized as highly susceptible to stripe rust, 

MS reaction to leaf rust and powdery mildew, MR to tan spot, and highly susceptible to 

Fusarium head blight (DeLange Seed Inc. Girard, Kansas) and highly resistant (R) to leaf 

rust (Fritz et al. 2004).  

The irrigation system consisted of a fixed-superficial rectangular framework. 

Sprinklers (full circle Impact Sprinklers of 1.9 cm model 30H, Rain Bird, Azusa, CA) 

were spaced 6.7 m x 4.6 m apart. Irrigation cycles were programmed using an ICC-

commercial irrigation controller (Hunter Industries, San Marcos, CA). Plots were 

irrigated with a run cycle of 5 minutes ON and 15 minutes OFF from 10 A.M. to 8 P.M. 

seven days a week. 

Weather data were collected using Watchdog® portable weather stations (Spectrum 

Technologies, Thayer Court, IL, USA). Stations were placed on dryland and irrigated 

plots close to the borders. Weather data (temperature, relative humidity, leaf wetness, and 

rainfall) were recorded daily at one-hour intervals. In the irrigated plots, rainfall values 
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represent the sum of precipitation and water collected by the rain bucket when the 

irrigation system was turned on from 30 May, 2015 to 22 June, 2015 and from 23 May, 

2016 to 14 June, 2016. Leaf wetness (a representation of the quantity of water freely 

available on the surface of leaves (Rowlandson et al.2015)) was measured using gold-

plated leaf wetness sensors (Spectrum technologies) on a scale from 1 (dry) to 15 (wet). 

Eight fungicide treatments were applied to generate different levels of foliar disease 

intensity. Fungicide treatments consisted of two chemicals (a triazole and a strobilurin) 

applied at different stages of wheat development. Tebuconazole + prothioconazole 

(triazole-DMI), commercially available as ProsaroTM (Bayer Ag life science, Kaiser-

Wilhelm-Allee, Leverkusen, Germany), was sprayed at GS 39 or flag leaf stage, GS 45 or 

boot stage, anthesis (GS 60) when 30-40% of the anthers of the wheat head were 

extruded, 6 days, and 12 days post-anthesis (DPA) at a rate of 0.47 L/ha. Pyraclostrobin 

(strobilurin-QoI), commercially available as Headline® (BASF Ag Products, Research 

Triangle Park, NC, USA), was sprayed at GS 60, 6 DPA, and 12 DPA at a rate of 0.66 

L/ha.  Untreated check plots were also included.  

Fungicides were applied using a CO2-powered-backpack sprayer, equipped with four 

Tee-jet 800-1 VS nozzles (TeeJet Technologies, Dillsburg, PA), spaced at 30.5 cm apart, 

and set at 241 kPa, delivering a volume rate of 150 L/ha. A non-ionic spray adjuvant NIS 

90-10 (Precision laboratories, Waukegan, IL, USA) was added at a rate 0.125% vol/vol to 

improve the performance of the fungicides.  

At weekly intervals, foliar disease severity was visually estimated as the percentage 

of necrotic foliage in each plot. The first assessment was made at approximately GS 37 - 

39 (when the ligule of the flag leaf was visible), and the final assessment was made at 
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approximately late milk to dough development (GS 77 – 80; when the kernels began to 

fill with the photosynthetic products of the flag leaf) (Kearney 2006).  

Foliar disease severity was estimated as the percentage of necrotic tissue over the 

total leave tissue, and it was used to calculate the area under the disease progress curve 

(AUDPC) according to the trapezoidal integration method (Campbell and Madden 1990). 

Plots were harvested when grain moisture content dropped to 15% using a small plot 

combine (Wintersteiger, Dimmelstrasse, Austria) and yield was estimated (kg/ha). 

Data analysis was carried out using SAS software version 9.4. Disease ratings and 

AUDPC were analyzed using generalized linear mixed model PROC GLIMMIX (SAS 

Inc, Cary, NC, USA).  Repetitions and the interaction Repetition by Cultivar (Error A) 

were specified as random effects.  Least square means (LS-means) were compared using 

Fisher-LSD (alpha=0.05). 

Type I results of the analysis of variance were obtained using timing of application of 

ProsaroTM fungicide as a quantitative factor. A sequential sum of squares was used to 

determine linear, quadratic, cubic, and quartic relationships among ProsaroTM application 

timing and yield and AUDPC. The model proposed was: 

y=β0+ β1x+ β2x2 + β3x3 + β4x4 

where: y is the response (yield); x is the quantitative factor (ProsaroTM application 

timing); β0 is the intercept; β1, β2, β3, β4, are the linear, quadratic, cubic and quartic 

coefficients relating the timing to the response (yield/AUDPC), respectively. 

Regression analysis was used to relate foliar disease severity and yield. Critical point 

models of the foliar disease severity were obtained using PROC REG. Treatment LS- 
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means were used in regression analysis. Coefficients of determination (R2) and the t-test 

and its associated P-value for the slope were used to determine the growth stage at which 

disease severity was most strongly related to yield. 

Correlation coefficients among AUDPC and yield values were determined using 

PROC CORR. LS-means by cultivar were selected and compared with pairs by growing 

season at each variable (AUDPC and yield) and between AUDPC and yield for each 

growing season. Data were separated by cultivar (Overley and Overland) and 

environmental conditions (dryland and irrigated). 

4. Results 

4.1 Environmental conditions. Climatological data were taken from dryland and 

irrigated environments at the experimental plots. Rainfall was higher in 2015 than in 

2016 (Table 2). In irrigated plots, rainfall values represent the sum of precipitation and 

water from the sprinkler system in May and June (periods of active growth and grain 

filling). Total rainfall values in May and June were 3 and 2.3 times higher in irrigated 

versus dryland plots in 2015 and 2016, respectively (Table 2). Additionally, in June, leaf 

wetness values were 1.3 times and 1.9 times higher in irrigated versus dryland plots in 

2015 and 2016, respectively (Table 2).  

4.2 Foliar diseases on winter wheat. Overall, AUDPC was higher in 2015 than in 

2016 (Tables 3 and 4). Additionally, in both years Overley matured more quickly than 

Overland. There was greater variation in foliar disease severity in the first year than in the 

second year. In 2015, Overley showed higher AUDPC than Overland.  Also, Overland 

had higher yield than Overley (Tables 3 and 4).  
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4.3 Dryland conditions. Overall, under dryland conditions, there was a highly 

significant effect (P < 0.0001) of fungicide treatments on foliar disease severity, AUDPC 

and yield, except for foliar disease severity 1 and 2 in 2016 which were not significant. 

AUDPC was statistically higher in plots treated with Prosaro at anthesis compared to 

plots treated with Prosaro at GS 45 (Table 3). In Overley, Prosaro- and Headline- treated 

plots sprayed at 12 DPA were not significantly different from each other or from the 

untreated check plots (Table 3). 

The highest yield was in the Prosaro-treated plot sprayed at anthesis (for Overley, and 

2015).The lowest AUDPC was in the Prosaro-treated plots sprayed at GS 45. In the 

fungicide-treated plots, the highest reductions in yield were in the Prosaro-treated plots 

sprayed at anthesis (1484 kg/ha) compared to the Prosaro-treated plots sprayed at 12 

DPA (1114 kg/ha; 25% yield reduction), and Headline-treated plots sprayed at 12 DPA 

(933 kg/ha; 37% yield reduction) (Table 3). In Overley, untreated check plots showed the 

lowest yield (677 kg/ha).  

In 2015 for Overland, Prosaro-treated plots at GS 39 and GS 45 showed significantly 

lower foliar disease severity (Table 3, Figure 1b) compared to all other treatments. Yield 

showed similar trends as AUDPC in Overland; however, the Prosaro-treated plots at GS 

39 (3314 kg/ha) and GS 45 (3441 kg/ha) and Headline treated plots at anthesis (3088 

kg/ha) showed significantly higher yields compared to all other treatments (Table 3).  

In 2016 for Overley, AUDPC in the untreated check plots was significantly higher 

compared to fungicide-treated plots (Table 3).  AUDPC was highest in the untreated 

check plots; inversely, Prosaro-treated plots sprayed at GS 45 had the lowest AUDPC 

value (Table 3). 
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In 2016 for Overland, spraying Prosaro and Headline at 6 and 12 DPA did not 

provide adequate control for foliar diseases. Although Prosaro- and Headline- treated 

plots sprayed at anthesis showed better control, these treatments were not as good as the 

earlier applications of Prosaro (GS 39 and GS 45).  Prosaro-treated plots sprayed at GS 

39 and GS 45 yielded 4665 kg/ha and 4702 kg/ha, respectively.  In Overland, untreated 

check plots yielded higher as compared to sprayed plots with Headline at 6 DPA and 

Prosaro at 12 DPA (Table 3). Both treatments reached 100% foliar disease severity by the 

end of the experiment (Figure 2). 

4.4 Irrigated conditions. Under irrigated conditions, effects of fungicide treatments 

on AUDPC and yield were highly significant in both years. Also, there was a significant 

effect of cultivar on AUDPC in 2016 (P = 0.0241) (Table 4). In 2015 for Overley, 

Prosaro-treated plots sprayed at GS 45 showed the lowest level of foliar disease severity, 

which was approximately four times less than the untreated check plots in the same 

experiment (AUDPC = 1837 in the untreated check plots versus 397 in the Prosaro –

treated plots at GS 45) (Table 4). In Overland, the lowest levels of AUDPC were detected 

in the Prosaro-treated plots at GS 39 and GS 45 (Table 4).  

In 2016, in Overland, AUDPC in the untreated check plots had ranked equally as 

Prosaro-treated plots sprayed at 6 and 12 DPA, as well as Headline-treated plots sprayed 

at 6 and 12 DPA (Fisher-LSD; α = 0.05) (Table 4). In Overland, yield in the untreated 

check plots overlapped in rank with all fungicide treatments, except for Prosaro-treated 

plots at anthesis. Prosaro-treated plots at anthesis reached the highest yield with 3498 

kg/ha (Table 4). 

4.5 Disease progress curves. In general, disease progression showed different 

patterns in the growing season of 2015 than in 2016. Under dryland conditions, disease 
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progress in 2015 (Figure 1) showed greater variation in foliar disease severity from the 

first to the fifth assessment than disease progress in 2016 (Figure 2). Likewise, under 

irrigated conditions disease progression increased more quickly in 2015 (Figure 3) 

compared to disease progression in 2016 (Figure 4). Among all the treatments evaluated 

in this study, Prosaro-treated plots at GS 39  consistently showed the lowest foliar disease 

severity in all combinations of year by environment for both cultivars (Figures 3 and 4). 

However, there was an exception for the growing season 2015 in the cultivar Overley 

where Prosaro was not sprayed in plots at GS 39 due to rain (Figures 1a and 2a). 

 In 2015 under dryland as well as under irrigated conditions for Overley, disease 

progress curves showed inconsistent results of foliar disease severity with several 

intersecting points between lines of progression (Figures 1a and 2a). A significant or 

highly significant effect of the interaction cultivar by fungicide was present on many 

evaluations of foliar disease severity (Tables 3 and 4).  

In Overland, progress curves showed that Prosaro applications at GS 39 and GS 45 

effectively controlled foliar diseases (Figures 1b and 2b). Foliar disease severity was 

reduced by 56% and 48% in foliar disease progression in Prosaro treated plots at GS 45 

compared to untreated check plots under dryland and irrigated conditions, respectively. 

Under irrigated conditions in Overley, plots treated with Prosaro at GS 45 showed a 

slow progression compared to the untreated check (Figure 3a). In Overland, Prosaro 

treatment at GS 39 and GS 45 was effective in controlling foliar disease severity (Figure 

3b).  

In the growing season 2016 under dryland and irrigated conditions, both cultivars 

showed low levels of disease severity until day 150 (Figures 3 and 4). Under irrigated 
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conditions for Overley, untreated check plots showed higher levels of foliar disease 

severity compared to the other treatments at the end of the evaluation period. This trend 

was evident beginning at day 147 (Figure 4a). In Overland, the last evaluation (day of the 

year 164) showed higher levels of disease for all the treatments starting at the fourth 

evaluation. Overland plots were similar in their disease level with prominent 

differentiation starting at day 155 (Figure 4b).  

4.6 Correlations between AUDPC and yield. Correlation analyses using LS-means 

of fungicide treatments by year and by cultivar between AUDPC and yield, revealed high 

correlations between yield and foliar disease severity. Correlation coefficients for 

AUDPC were R = -0.98 (n= 8; P <0.0001) in 2015, and R = -0.84 (n= 9; P = 0.0089) in 

2016. In Overley under irrigated conditions, foliar diseases were highly and positively 

correlated in both years (R = 0.89; n=8; P = 0.0028) as well as yield for both years (R = 

0.67; n = 8; P = 0.0697). In Overland under irrigated conditions, Pearson’s correlation 

coefficient for AUDPC was R = 0.92 (n=8; P = 0.0005) among years (2015 versus 2016). 

In 2015, AUDPC and yield were poorly correlated (R = – 0.35; n=8; P =0.3552). 

However, in 2016 foliar diseases and yield were highly and negative correlated R = -0.91 

(n=9; P = 0.0009). 

Under dryland conditions, Pearson’s correlation coefficients were high and positive 

for AUDPC, R = 0.95 (n = 8; P <.0001) among years (2015 versus 2016), and for yield, R 

= 0.87 (n = 8; P = 0.0019), among years. For the relationships AUDPC versus yield, 

correlations coefficients were R= -0.93 (n=8; P 0.0003) and R= -0.97 (n=9; P <0.0001) in 

the growing seasons 2015 and 2016, respectively.  

4.7 Critical point models. Analysis of critical point models was conducted using 

linear regression with foliar disease severity as the independent variable, and yield as the 



206 
 

 

 

dependent variable. Considering the coefficients of determination (R2) and the P-values 

for regression, the best relationships of yield versus foliar disease severity were reached 

at the second and third evaluation in the 2015 growing season under dryland and irrigated 

conditions, respectively. Plants were close to the flowering growth stage (GS 60) and a 

few days after flowering (GS 60-65) at the timing of the second and third evaluation. 

Meanwhile, the best relationships of yield and foliar disease severity were reached at the 

fourth evaluation in the 2016 growing season under both dryland and irrigated conditions 

(Table 5). AUDPC and yield were significantly linearly related in irrigated plots in 2015 

(R2 = 0.6480, P < 0.0001) and in 2016 (R2 = 0.6544, P < 0.0001). In contrast, the lowest 

relationship between AUDPC and yield was in the dryland environment in 2016 (R2 = 

0.1117, P = 0.1752) (Table 5).  

4.8 Prosaro application timing on yield and AUDPC. Polynomial regression 

models were fit using the method of least squares to describe the relationships yield-

Prosaro application timing and AUDPC-Prosaro application timing (Table 6). First 

(linear) and second (quadratic) order polynomials were detected as significant (P<0.05) 

for both relationships (timing-AUDPC) and (timing-yield). In two of the combinations of 

the environment by growing season, the linear relationship offered the best fit for 

Prosaro-application timing versus yield for irrigated 2016 and dryland 2015 (Figure 5 and 

Table 6). On the other hand, for the dryland 2016, and irrigated 2015, the quadratic 

relation offered the best fit to the data. Therefore, yield reached an inflection point a few 

days before anthesis and decreased at 6 and 12 DPA (Figure 5 and Table 6). For AUDPC, 

ANOVA (type-I) showed that the linear effect offered the best fit between Prosaro 

application timing and AUDPC (Figure 6 and Table 6). 

5. Discussion 
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Foliar fungal diseases in the 2015 and 2016 growing seasons caused damage to the 

canopy of the crop and reduced yield. Overall, foliar disease severity was higher in 2015 

than in 2016. Models based on regression analysis such as critical point models (Zadoks 

and Schein 1979), and trapezoidal integration (Madden et al. 2007) were used to 

determine the relationships yield and foliar disease severity by years and environments. 

Fungicides were effective in controlling foliar diseases and provided gradients of foliar 

disease severity for disease modeling. As it was demonstrated in this study, early-timed 

applications (GS 39 – GS 45) were effective in controlling foliar diseases and protecting 

yield better than the anthesis and post-anthesis applications in the winter wheat 

pathosystem. 

Critical point models and AUDPC were used to interpret yield loss on field plots of 

wheat with artificially-created differential levels of disease using fungicides. In 2015, the 

critical point for foliar disease severity assessment was in the flowering stage up to few 

days after (GS 60 – 65). This approach also showed that measurements of foliar disease 

severity early in the growth development (GS 37 - 39) were highly variable and poorly 

related to yield (Table 5). These results are in agreement with Wegulo et al. (2009) who 

demonstrated that tan spot and spot blotch severity in winter wheat were strongly related 

to the yield when severity was assessed at the flowering stage (GS 60).  

Applying Prosaro early in the growing season significantly reduced foliar disease 

severity. The protective-curative effect of the triazole-fungicide application timed at GS 

39 and GS 45 positively impacted on yield in the two growing seasons and both 

environments without regard to the cultivar. Prosaro-treated plots at GS 45 showed a 78% 

reduction in AUDPC compared to the untreated check plots. Headline and Prosaro 
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applied at anthesis did not differ in the AUDPC in either growing season or environment. 

Fungicides applied at anthesis showed equal efficacy in controlling foliar fungal diseases 

and protecting yield. However, slightly higher yields were detected in the Headline-

treated plots than in the Prosaro-treated plots at anthesis. This fact was evident when 

comparing AUDPC values for both fungicide chemistries versus the untreated checks in 

each combination of year by environment. In a similar study, the application of a triazole 

only, and a triazole combined with a strobilurin fungicide at anthesis significantly 

delayed flag leaf greenness; however, this increase in green leaf area during maturation 

was not correlated with higher yields (Blandino and Reyneri 2009). In contrast, this study 

showed that applications of either fungicide chemical class at anthesis increased yields 

compared to the untreated checks. Inversely, post-anthesis applications (6 and 12 DPA) 

of Prosaro and Headline did not improve control of foliar fungal diseases. Post-anthesis 

applications of both chemical classes were as poor as the untreated check plots at 

controlling foliar fungal diseases. 

AUDPC was significantly and negatively correlated with yield in both growing 

seasons. These results are indicative that foliar disease severity affected yield in both 

years. In addition, correlations suggested a higher relationship between foliar disease 

severity and yield loss in the 2016 growing season as correlations were more robust (r ≤ -

0.90) and reliable (P < 0.0001). Linear regression analysis for AUDPC-yield showed 

stronger relationships in the irrigated environment than in the dryland environment in 

both growing seasons. Therefore, results of this study indicate that environmental 

conditions can affect not only the estimation of foliar disease severity and their 

relationships with yield loss, but also, the effectiveness of controlling foliar diseases in 

winter wheat. 
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The significant differences of fungicide treatments on AUDPC and yield compared to 

the untreated check plots implied that a fungicide application was needed during both 

growing seasons. Climatic conditions in 2015 and 2016 were conductive to a high 

incidence and severity of foliar fungal diseases in winter wheat fields in southeastern 

Nebraska. In 2016, Creech and Werle reported that grain yield was decreased in 2015 and 

quality was low in 2016. The yield-protective effect of triazole-fungicide applied early in 

the growing season was demonstrated in both years in both environments. Similar results 

were found by Wegulo et al. (2009), and Wegulo et al. (2012) when evaluating the 

economic impact of foliar disease control in winter wheat and the yield response to foliar 

fungicide application in winter wheat, respectively. It was found that applications of 

fungicides at GS 39 or later had the highest yield benefit and net return. Earlier 

applications (GS 31) can be counterproductive (Wegulo et al. 2012), which emphasizes 

the importance of well-timed applications of fungicides in this pathosystem. In the 

cultivar Overland, Prosaro applications at GS 39 and GS 45 effectively controlled foliar 

diseases. Reductions of 56% and 48% in foliar disease development were detected in 

Prosaro treated plots at GS 45 compared to untreated check plots under dryland and 

irrigated conditions, respectively. 

Yield loss can be estimated by subtracting the yield of the untreated check plots from 

the attainable yield of the fungicide-treated plots. In 2016, under dryland conditions, the 

highest yield was registered in the plots treated with Prosaro at GS 45 (late boot) in both 

cultivars. In these scenarios, yield losses of 29% and 34% were detected in Overley and 

Overland, respectively.  Our results are similar to those reported in the wheat-yellow spot 

and Septoria nodorum blotch pathosystem in Western Australia, where under favorable 
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and continuous disease development both diseases were associated with losses of around 

30% loss in grain yield (Bhathal et al. 2003). 

Disease progress curves indicated epidemic development patterns in both years and 

environments. However, disease progress curves showed inconsistent results of foliar 

disease severity with several intersecting points between lines of progression. Foliar 

disease progression reached a peak after the day of the year 150 (2015) and 160 (2016) in 

dryland and irrigated environments. These results are similar to leaf rust epidemics of 

barley in New Zealand where the epidemic showed low severity early in the season and 

became more severe as the season progressed (Whelan et al. 1997). Results from this 

study showed high variability at the end of the growing season (middle of June in 2015 

and end of June in 2016) expressed as high coefficients of variation in the late 

evaluations of foliar disease severity (data not shown). Similar results were reported by 

Wegulo et al. (2009) who found that the disease severity assessment made after GS 71 

(watery ripe) at the day of the year 176 had a weak relationship to yield (Wegulo et al. 

2009).  

Models for crop loss assessment are tools used to understand the relationships 

occurring in a foliar disease-plant pathosystem. However, there are some constraints of 

using these models to interpret biological results. Disease forecasting and prediction of 

the amount of foliar disease severity in a pathosystem involve several interactions 

between the host, the pathogen, and the environment, including the human interventions 

that aim to control the pathogen. Fungicide application timing showed inconsistent results 

by cultivar and year. Although fungicides applied at GS 39 and GS 45 were effective in 

controlling foliar diseases and protecting yield, their efficacy depended on the cultivar. 
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Overland showed higher yield with fungicides applied at GS45 than GS39, while the 

inverse relationship was true for Overley.  

In the absence of disease, Overley is a higher yielder than Overland. The lower yield 

in Overley in this study was due to the 2015 severe epidemics of Fusarium head blight 

and stripe rust; Overley is highly susceptible to both diseases. 

Inconsistency of results from application timing was reported by Cromey et al. (2004) 

in the Didymella exitialis-wheat pathosystem, where they found that tebuconazole and 

azoxystrobin applied at different growth stages provided no consistent effect on green 

leaf area retention. Additionally, the effect of Prosaro application timing on yield was 

related to linear and quadratic polynomials depending on the year and environment. 

Bockus et al. (1997) had proposed a quadratic model to relate moderately severe tan spot 

epidemics and increased seed yields. According to this model, an inflection point 

between boot and full heading constitutes the optimum time where the effectiveness of 

fungicide application is at its maximum. However, neither linear nor quadratic models fit 

the data of application timing under high disease pressure (Bockus et al. 1997). 

This study demonstrated that earlier fungicide applications at growth stages GS 39 

and GS 45 more effectively controlled foliar fungal disease in winter wheat than later 

applications. Analysis of critical point models showed a stronger relationship between 

foliar fungal diseases and yield when disease severity was evaluated close to flowering 

under warm and wet weather conditions, whereas the best relationship to predict yield 

loss by foliar diseases was obtained using disease severity readings around the milk 

growth stage under drier conditions. 
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Table 1. Dates for evaluation of foliar disease severity 

 

Evaluation Growing season 
Date of  

evaluation 
Date of year 

Severity 1 

2015 April 24 
 

144 
 

2016 May 11 
 

132 
 

Severity 2 

2015 May 31 
 

151 
 

2016 May 20 
 

141 
 

Severity 3 

2015 June 7 
 

158 
 

2016 May 28 
 

149 
 

Severity 4 

2015 June 11 
 

162 
 

2016 June 4 
 

156 
 

Severity 5 

2015 June 19 
 

170 
 

2016 June 12 
 

164 
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Table 2. Summary of weather conditions at the experimental plots 

  Temperature oF Rainfalla Dew Point Leaf wetnessb Relative Humidity 
Environment 

 
 Minimum   Maximum   Average  (mm) oF 1-15 % 

  2015 2016 2015 2016 2015 2016 2015 2016 2015 2016 2015 2016 2015 2016 

                
Rainfed May 33.3 33.7 88.2 87.2 60.8 60.1 193.4 186.2 48.8 45.0 3.3 4.1 66.4 60.0 

June 52.1 50.3 96.4 101.1 72.5 78.6 104.1 68.1 61.9 62.2 4.3 2.7 71.3 60.0 
   

     
 

 
 

     
Irrigated May 35.2 33.5 92.5 87.8 60.7 60.5 200,7 252.2 47.8 45.6 3.0 3.4 64.4 60.6 

June 51.7 50.0 96.8 99.1 72.3 77.1 599.4 571.5 60.9 62.1 5.8 5.1 69.7 63.7 

 

Values were taken from portable weather stations model WatchDog 1450 (Spectrum Technologies Inc., Thayer Court, Aurora, 

IL) 

a Rainfall (mm) for May 2015- 2016 and June 2015, 2016 on irrigated plots represent the sum of precipitation and the quantity 

of water collected by the rain bucket when the sprinkler system was turned on. 

b Leaf wetness is measured in a Range/Resolution on a scale from 0 (dry) to 15 (wet) (Spectrum technologies). 
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Table 3. Foliar Damage associated with leaf rust, stripe rust, and tan spot, in wheat cultivars Overland and Overley under dryland 

conditions evaluated in Mead, NE, 2015 and 2016. 

  Foliar disease severity % 
AUDPC 

YIELD  

(kg/ha)  Treatment2 1 2 3 4 5 

  2015 2016 2015 2016 2015 2016 2015 2016 2015 2016 2015 2016 2015 2016 

O
v

er
le

y
 

Check 29.7 ab2 5.1 a-d 58.9 a 11.0 d-g 65.3 ab 37.5 a-c 88.8 a 54.7 a 100 a 99.8 a  2086 a 1362 ab  677 i 2730 e-g 
Prosaro GS 39  N/A 4.4 b-d N/A   5.8 g N/A 18.2 f N/A 20.8 g N/A 65.0 b-d N/A   700 f N/A 3275 c-e 

Prosaro GS 45    8.8 f 4.1 cd 13.5 fg   8.3 e-g 18.7 h 17.7 f 19.5 k 23.4 fg 36.2 h 52.0 ef   563 h   683 f 1233 gh 3861 bc 

Prosaro GS 60 16.7 e 4.4 b-d 30.4 c-e   8.4 e-g 31.7 g 22.5 ef  36.3 ij 24.8 fg 30.8 h 64.3 b-f   909 g   794 ef 1484 e-g 3542 b-d 
Prosaro 6 DPA  26.9 bc 4.4 b-d 46.8 ab 10.8 d-g 65.9 ab 25.4 d-f 62.2 ef 29.6 e-g 56.2 ef 57.8 d-f 1599 c   853 ef 1284 f-h 3160 d-f 

Prosaro 12 DPA 28.3 b 4.4 b-d 58.1 a 12.1 c-f 73.8 a 29.6 b-e 85.6 ab 43.8 b-d 100  a 74.8 bc 2106 a 1097 cd 1114 g-i 2575 fg 

Headline GS 60 20.3 de 6.2 a-d 25.2 ef 12.9 c-f 36.0 fg 22.8 ef 30.6 j 25.9 fg 45.7 g 60.2 c-e  936 g   839 ef 1468 e-g 4062 ab 
Headline 6 DPA 22.8 cd 2.8 d 32.4 c-e   7.5 fg 57.2 bc 29.6 b-e 65.6 de 38.3 c-e 57.3 e 74.8 bc 1439 de   976 c-e 1428 e-h 2756 e-g 

Headline 12 DPA 27.0 bc 3.6 cd 57.9 a 11.0 e-g 69.5 a 35.0 bc 84.5 ab 40.8 b-e 100  a 76.9 b 2065 a 1112 c   933 hi 2208 g 

O
v

er
la

n
d
 

Check 29.9 ab 6.3 a-d 41.3 b-d 19.5 a-c 56.9 b-d 46.8 a 78.2 bc 56.2 a 99.8 a 100  a 1817 b 1543 a 1942 c-e 3113 d-f 

Prosaro GS 39    9.8 f 7.2 a-d 11.2 g 15.3 a-d 19.2 h 21.1 ef 16.2 k 22.4 g 30.7 h 49.4 f  506 h   774 ef 3314 a 4665 a 

Prosaro GS 45  10.4 f 9.1 a 12.2 g 14.7 a-e 14.2 h 27.2 c-f 15.2 k 24.6 fg 20.8 i 58.8 d-f  430 h   889 d-f 3441 a 4702 a 

Prosaro GS 60 26.6 bc 8.1 a-c 23.3 e-g 16.5 a-d 42.9 fe 36.8 bc 55.8 gh 33.1 d-f 47.1 g 75.2 bc 1175 f 1130 c 2531 b 3958 bc 

Prosaro 6 DPA  27.6 bc 9.1 a 29.7 de 15.2 a-e 53.2 cd 36.8 bc 43.1 ih 51.9 ab 66.0 d 99.5 a 1292 ef 1392 a 2159 b-d 3590 b-d 

Prosaro 12 DPA 29.9 ab 8.7 ab 33.1 c-e 20.5 ab 52.1 c-e 38.8 ab 66.2 de 50.8 ab 91.0 b 99.3 a  1596 cd 1448 a 2340 bc 3077 d-f 

Headline GS 60 20.3 de 5.7 a-d 30.9 c-e 19.4 a-c 43.9 d-f 34.4 b-d 48.9 gh 41.2 b-e 50.0 fg 68.7 b-d  1182 f 1164 bs 3088 a 3745 b-d 

Headline 6 DPA 33.8 a 7.8 a-c 32.8 c-e 21.2 a 67.2 a 39.3 ab 72.2 cd 49.7 a-c 75.1 c 99.5 a  1678 bc 1445 a 1874 c-f 3077 d-f 

Headline 12 DPA 30.2 ab 8.2 a-c 43.1 bc 14.2 b-f 55.0 c 36.1 bc 74.7 cd 51.9 ab 93.9 ab 100  a 1768 b 1374 a 1694 d-g 3313 c-e 

 

P-value 

 Cultivars (C) 

Fung. Trt. (F) 

C x F 

0.0006 
<.0001 

0.0232 

0.0653 
0.9592 

0.3030 

0.0144 
<.0001 

0.0040 

0.0027 
0.1499 

0.5280 

0.0199 
<.0001 

<.0001 

0.0820 
<.0001 

0.1741 

0.2299 
<.0001 

<.0001 

0.0516 
<.0001 

0.0976 

0.0905 
<.0001 

<.0001 

<.0001 
<.0001 

<.0001 

0.0427 
<.0001 

<.0001 

0.0127 
<.0001 

0.0250 

0.0046 
<.0001 

0.0008 

0.0333 
<.0001 

0.0479 

1LS-means with the same letter in each row are not significantly different (LSD α =0.05). 

Foliar disease severity is the percent of necrotic tissue over the total leaf tissue  

Dosage of commercial products: Prosaro (Prothioconazole+ Tebuconazole) and Headline (Pyraclostrobin) were at 6.5 and 9 fluid ounces 

per acre, respectively. 

Fungicide treatments were applied at different stages of wheat development.  
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Table 4. Foliar Damage associated with leaf rust, stripe rust, and tan spot, in wheat cultivars Overland and Overley under 

irrigated conditions evaluated in Mead, NE, 2015 and 2016. 

Fungicide 

Foliar disease severity (%) 
AUDPC 

YIELD  

(kg/ha) 1 2 3 4 5 

2015 2016 2015 2016 2015 2016 2015 2016 2015 2016 2015 2016 2015 2016 

O
v

er
le

y
 

Check 16.0 e-f1 4.1 ab 53.0 bc 20.5 a-e 59.8 ab 45.6 a-d 72.9 a 76.9 a 100 a 100  a 1837 a 1585 ab 1122 de 1865 e 

Prosaro GS 39  N/A 3.6 b N/A   7.2 g N/A 15.2 h N/A 23.5 ef N/A 54.8 de     N/A   620 f N/A 3382 ab 

Prosaro GS 45    6.8 g 6.2 a 11.0 j 14.8 ef 10.3 f 22.8 gh 11.3 g 30.6 d-f 30.2 f 59.7 c-e   397 h   863 d-f 1802 b-e 3098 a-d 

Prosaro GS 60 16.9 d-f 4.4 ab 26.0 ih 19.8 a-e 31.5 e 22.8 gh 22.6 f 50.2 bc 31.7 f 72.8 bc   782 fg   946 de 1656c-e 3492 a 

Prosaro 6 DPA  24.6 bc 4.2 ab 44.5 cd 20.5 a-e 43.2 c-e 24.2 gh 40.7 e 67.9 a 61.3 de 73.4 b 1296 e 1023 d 1272 c-e 2605 a-e 

Prosaro 12 DPA 22.4 b-e 4.9 ab 64.2 a 19.6 b-e 68.7 a 38.2 b-f 70.1 ab 72.0 a 100 a 96.4 a 1991 a 1325 c   988 e 2928 a-d 

Headline GS 60 19.7 c-e 4.1 ab 29.8 d-g 14.3 ef 33.5 de 23.9 gh 23.3 f 44.2 cd 49.3 e 67.2 b-d   920 f   919 de 1525 c-e 3044 a-d 

Headline 6 DPA 20.6 b-e 4.1 ab 35.8 ef 18.8 c-f 57.1 a-c 33.7 e-g 63.6 bc 72.0 a 75.5 b-d 96.8 a 1525 b-d 1230 c 1324 c-e 2798 a-e 

Headline 12 DPA 24.8 bc 4.8 ab 54.6 b 17.4 d-f  68.3 a 37.0 c-f 63.2 bc 71.0 a 100 a 100 a 1873 a 1309 c 1147 de 2376 b-e 

O
v

er
la

n
d

 

Check 24.8 bc 4.2 ab 34.7 e-g 23.8 a-d 60.2 ab 42.4 a-e 62.5 bc 62.6 ab 97.8 a 100 a 1646 b 1712 a 1819 b-e 2332 c-e 

Prosaro GS 39  23.0 b-d 4.7 ab   9.3 j 14.5 ef 12.0 f 18.3 h 22.7 f 18.4 f 55.2 e 52.4 e   652 g   752 ef 1895 b-d 3498 a 

Prosaro GS 45  11.8 fg 4.2 ab 11.2 j 12.4 fg 10.8 f 29.8 fg 14.4 fg 27.0 ef 29.9 f 48.4 e   442 h   870 d-f 2545 ab 3234 a-c 

Prosaro GS 60 22.3 b-e 5.0 ab 22.9 i 25.2 a-c 55.0 a-c 41.4 a-e 70.1 ab 25.2 ef 72.1 cd 89.9 a 1445 c-e 1448 bc 2914 a 2817 a-e 

Prosaro 6 DPA  31.9 a 4.4 ab 32.4 e-h 22.4 a-d 47.2 b-d 47.4 a-c 48.9 de 31.9 de 78.3 bc 92.9 a 1389 de 1643 a 2050 bc 2662 a-e 

Prosaro 12 DPA 21.5 b-e 5.2 ab 27.3 f-i 21.7 a-d 56.2 a-c 51.1 a 62.1 bc 41.9 cd 85.5 ab 100 a 1490 b-d 1728 a 1481 c-e 2166 bc 

Headline GS 60 21.7 b-e 4.6 ab 36.6 de 25.8 ab 55.6 a-c 33.9 d-g 56.0 cd 30.1 58.2 e 89.1 a 1395 de 1332 bc 2079 bc 2945 a-d 

Headline 6 DPA 19.9 c-e 4.1 ab 22.8 i 22.0 a-d 46.3 b-d 49.0 a-c 63.9 a-c 36.5 c-e 61.1 de 99.2 a 1285 e 1667 a 1864 b-e 2823 a-e 

Headline 12 DPA 26.9 ab 5.4 ab 26.2 fg 26.5 a 54.4 a-c 50.2 ab 67.8 ab 41.6 cd 94.7 a 100 a 1572 bc 1759 a 1491 c-e 2079 de 

 

P – value 

 Cultivars (C) 

Fung. trt. (F) 

F x C 

0.0031 

<.0001 

0.3373 

0.7390 

0.6350 

0.6741 

<.0001 

<.0001 

<.0001 

0.0234 

<.0001 

0.1283 

0.6195 

<.0001 

0.0012 

0.0436 

<.0001 

0.0615 

<.0001 

<.0001 

<.0001 

0.0110 

<.0001 

0.0017 

0.4558 

<.0001 

<.0001 

0.0144 

<.0001 

0.0105 

0.8595 

<.0001 

<.0001 

0.0241 

<.0001 

0.0002 

0.1040 

<.0001 

0.5861 

0.5445 

0.0057 

0.7547 

1LS-means with the same letter in each row are not significantly different (LSD α = 0.05). 

Foliar disease severity is the percent of necrotic tissue over the total leaf tissue  

Fungicide treatments were applied at different stages of wheat development. 

Dosage of commercial products: Prosaro (Prothioconazole+ Tebuconazole) and Headline (Pyraclostrobin) were at fluid ounces per acre. 
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Table 5. Coefficient of determination (R2), intercepts, and slopes from regressions of yield (kg/ha) versus disease severity 

assessment at different growth stages, and on area under disease progress curve (AUDPC) in the study of fungicide application 

timing on foliar disease severity in Nebraska during 2015 and 2016 

  Intercept  Slope  R2  P > F 

  Dryland Irrigated  Dryland Irrigated  Dryland Irrigated  Dryland Irrigated 

      2015 

May 24  2864 1913  -41.82 -9.97  0.1578 0.0128  0.1143 0.6650 

May 31  3166 2418  -37.55 -22.36  0.4807 0.4648  0.0020 0.0026 

June 7  3126 2193  -25.69 -10.80  0.3410 0.1667  0.0138 0.1037 

June 11  2921 2001  -18.71 -6.02  0.3179 0.0665  0.0184 0.3176 

June 19  2863 2362  -15.14 -9.47  0.2657 0.2171  0.0342 0.0594 

AUDPC  3064 2341  -1.29 -0.49  0.3435 0.2231  0.0134 0.0556 

       2016 

May 11  2335 3350  181.80 -123.86  0.3043 0.0263  0.0176 0.5207 

May 20  2947 3848  36.51 -55.06  0.0635 0.3396  0.3129 0.0111 

May 28  4352 3915  -29.45 -32.44  0.1319 0.6157  0.1384 0.0001 

June 4  4510 3683  -28.09 -19.72  0.2769 0.6308  0.0249 <.0001 

June 12  4669 4413  -16.11 -19.62  0.1988 0.6052  0.0636 0.0001 

AUDPC  4308 4102  -0.87 -1.04  0.1117 0.6585  0.1752 <.0001 
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Table 6. Linear and quadratic regressions between AUDPC and yield versus Prosaro application timing 

under dryland and irrigated conditions in 2014-2015 and 2015-2016 

Linear regression analysis 

   Linear  Regression parameters 

 Variable Intercept Slope R2 F - value P > F 

Dryland 2015 

Yield 

2164 -56 0.88 22.77 0.0175 

Irrigated 2015 1903 -21 0.27 1.09 0.3724 

Dryland 2016 3596 -44 0.74 8.31 0.0633 

Irrigated 2016 2955 -33 0.90 27.47 0.0135 

       

Dryland 2015 

AUDPC 

1123 51 0.90 28.17 0.0131 

Irrigated 2015 1090 44 0.81 13.46 0.0350 

Dryland 2016 1030 20 0.94 50.99 0.0057 

Irrigated 2016 1129 36 0.96 74.60 0.0033 

Quadratic regression analysis 

   Slope  Regression parameters 

 Variable Intercept Linear Quadratic R2 F - value P > F 

Dryland 2015 

Yield 

1944 -47 2.38 0.99 227.96 0.0044 

Irrigated 2015 2255 -36 -3.78 0.91 9.55 0.0947 

Dryland 2016 3864 -56 -2.88 0.96 25.19 0.0382 

Irrigated 2016 3004 -35 -0.53 0.92 11.25 0.0816 

        

Dryland 2015 

AUDPC 

997 58 1.68 0.97 38.55 0.0253 

Irrigated 2015 927 51 1.76 0.91 10.15 0.0897 

Dryland 2016 982 22 0.52 0.99 99.49 0.0100 

Irrigated 2016 1121 36 0.09 0.96 25.18 0.0382 

 

  



223 
 

 

 

Fig. 1. Foliar disease severity in cultivars A) Overland and B) Overley under rainfed conditions during the 2014-2015 

growing season. Plots were treated with ProsaroTM (triazole) and Headline® (strobilurin) at different application timing (GS 

39, GS 45, GS 60-anthesis, 6 and 12 days post anthesis). Fungicides were applied at full label rates. Evaluations of foliar 

disease severity were conducted at day of the year: 144 (May 24), 151 (May 31), 158 (June 7), 162 (June 11) and 170 (June 

19).   Prosaro was not sprayed in plots of the cultivar Overley at GS 39 due to rain. 
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Fig. 2. Foliar disease severity in cultivars A) Overland and B) Overley under rainfed conditions of the 2015-2016 growing 

season. Plots were treated with ProsaroTM (triazole) and Headline® (strobilurin) at different application timing (GS 39, GS 

45, GS 60-anthesis, 6 and 12 days post anthesis). Fungicides were applied at full label rates. Evaluations of foliar disease 

severity were conducted at the day of the year: 132 (May 11), 141 (May 20), 149 (May 28), 156 (June 4) and 164 (June 12).   
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Fig. 3. Foliar disease severity in cultivars A) Overland and B) Overley under irrigated conditions of the 2014-2015 growing 

season. Plots were treated with ProsaroTM (triazole) and Headline® (strobilurin) at different application timing (GS 39, GS 

45, GS 60-anthesis, 6 and 12 days post anthesis). Fungicides were applied at full label rates. Evaluations of foliar disease 

severity were conducted at the day of the year: 144 (May 24), 151 (May 31), 158 (June 7), 162 (June 11) and 170 (June 19).   

Prosaro was not sprayed in plots of the cultivar Overley at GS 39 due to rain.  
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Fig. 4. Foliar disease severity in cultivars A) Overley and B) Overland under irrigated conditions of the 2015-2016 growing 

season. Plots were treated with ProsaroTM (triazole) and Headline® (strobilurin) at different application timing (GS 39, GS 

45, GS 60-anthesis, 6 and 12 days post anthesis). Fungicides were applied at full label rates. Evaluations of foliar disease 

severity were conducted at the day of the year: 132 (May 11), 141 (May 20), 149 (May 28), 156 (June 4) and 164 (June 12).  
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Fig. 5. Linear and quadratic effect of Prosaro application timing on yield. Prosaro was applied at GS 39 

(-16 days to anthesis), GS45 (-7 days to anthesis), GS60 (anthesis = 0), 6 and 12 days post anthesis. 
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Fig. 6. Linear effect of Prosaro application timing on AUDPC. Prosaro was applied at GS39 (-16 days to 

anthesis), GS45 (-7 days to anthesis), GS60 (anthesis = 0), 6 and 12 days post anthesis. 
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APPENDICES 

Appendix 1. Pearson correlation coefficients and probability under null hypothesis r = 0 in the 

evaluation of fungicide chemical class, fungicide application timing, and cultivar resistance on FHB, 

DON, weight of one thousand kernels (TKW), pounds of a bushel of grain (TWG), and Yield. 

 2014-2015 2015-2016 Combined 

 Rainfed Irrigated Rainfed Irrigated  

 R P > |r| R P > |r| R P > |r| R P > |r| R P > |r| 

IND/FDK 0.959 <.0001 0.821 0.0003 0.730 0.0030 0.850 0.0001 0.985 <.0001 

IND/DON 0.976 <.0001 0.735 0.0028 0.859 <.0001 0.658 0.0199 0.862 0.0126 

IND/TKW -0.914 <.0001 -0.663 0.0098 0.606 0.0215 0.357 0.2101 -0.906 0.0050 

IND/TWG -0.895 <.0001 -0.863 <.0001 0.572 0.0324 0.155 0.5971 -0.922 0.0031 

IND/Yield -0.848 0.0001 -0.767 0.0014 -0.769 0.0013 -0.523 0.0550 -0.894 0.0066 

FDK/DON 0.969 <.0001 0.804 0.0005 0.679 0.0075 0. 747 0.0022 0.824 0.0137 

FDK/TKW -0.942 <.0001 -0.692 0.0061 0.304 0.2910 0.281 0.3315 -0.872 0.0106 

FDK/TWG -0.989 <.0001 -0.835 0.0002 0.255 0.3785 0.047 0.8710 -0.899 0.0059 

FDK/Yield -0.918 <.0001 -0.847 0.0001 -0.411 0.1444 -0.549 0.0416 -0.893 0.0068 

DON/TKW -0.927 <.0001 -0.659 0.0104 0.679 0.0076 0.860 <.0001 -0.699 0.0803 

DON/TWG -0.968 <.0001 -0.681 0.0074 0.759 0.0016 0.592 0.0257 -0.690 0.086 

DON/Yield -0.879 <.0001 -0.557 0.0384 -0.508 0.0636 0.068 0.8175 -0.589 0.1641 

TKW/TWG 0.895 <.0001 0.729 0.0030 0.880 <.0001 0.852 0.0001 0.942 0.0015 

TWG/Yield 0.878 <.0001 0.892 <.0001 -0.267 0.3562 0.486 0.0780 0.973 0.0002 

TKW/Yield 0.940 <.0001 0.510 0.0622 -0.267 0.3562 0.400 0.1559 0.929 0.0024 
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Appendix 2. Means of weight in pounds of a bushel of grain (TWG) evaluated under 

irrigated and rainfed conditions of southeastern Nebraska (Mead-ARDC), growing 

seasons 2015 and 2016. 

Cv. Fungicide treatments 

Test weight (lb/bu) 

Irrigated  Rainfed 

2015  2016  2015  2016 

Overley 

 

Check 40.2 f-h  48.9 b-d  34.1 f  53.3 cd 

Prosaro A 46.7 b-d      51.5 ab  43.7 c      55.6 a 

Prosaro 6 DPA 44.8 d-g  48.9 b-d  43.2 c  54.8 ab 

Prosaro 12 DPA     38.2 h  49.5 a-d       38.2 ef      55.4 a 

Headline A 45.7 c-f  50.8 a-c       40.9 cd      55.8 a 

Headline 6 DPA 42.3 e-h      52.1 a  42.1 c  54.0 bc 

Headline 12 DPA  39.1 gh  48.8 b-d       35.5 de  55.2 ab 

Overland 

 

Check 44.5 e-g      48.4 cd  47.6 b  53.0 cd 

Prosaro A     53.5 a      48.5 cd  52.1 a  52.2 de 

Prosaro 6 DPA 50.7 a-d      44.3 f  52.6 a      51.4 e 

Prosaro 12 DPA 46.1 c-f      45.5 ef       50.6 ab  52.1 de 

Headline A 51.1 a-c  50.0 a-c  51.3 a  53.8 bc 

Headline 6 DPA     51.9 ab      45.0 ef  52.0 a  52.1 de 

Headline 12 DPA     45.1 d-g      45.6 ef       50.0 ab  51.9 de 
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Appendix 3. Maps of precipitation in the state of Nebraska during the months of May 

and June of 2015 and 2016. Black circles highlight the location of the Saunders County 

(one inch of precipitation represents 25.4 mm) (Source: High Plains Regional Climate 

Center (HPRCC)) 
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Appendix 4.  Effects of cultivar resistance and fungicide treatments on acetylated 

derivatives of deoxynivalenol 3-ADON and 15-ADON in winter wheat under two 

environmental conditions, in the growing seasons 2015 and 2016 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source 
3A-DON 15A-DON 

P>F 

Rainfed, 2015   

Cultivar (C) 0.0036 0.0205 

Fung. trt. (F) 0.5499 0.7353 

C x F 0.5499 0.5683 

Anthesis  vs. Post-

Anth. 

0.4612 0.1136 

Factorial  vs. 

Additional 

0.7497 0.5257 

Irrigated, 2015   

Cultivar (C) 0.0681 0.0096 

Fung. trt.(F) 0.9907 0.7535 

C x F 0.8475 0.9117 

Anthesis.  vs. Post-

Anth. 

0.9676 0.5570 

Factorial  vs. 

Additional 

0.8052 0.1271 

Rainfed, 2016   

Cultivar (C) NA NA 
Fung. trt.(F) NA NA 
C x F NA NA 
Anthesis  vs. Post-

Anth. 

NA NA 

Factorial  vs. 

Additional 

NA NA 

Irrigated, 2016   

Cultivar (C) NA NA 
Fung. trt.(F) NA NA 
C x F NA NA 
Anthesis  vs. Post-

Anth. 

NA NA 

Factorial  vs. 

Additional 

NA NA 
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Appendix 5. Means for acetylated relatives (3-ADON and 15-ADON) evaluated under 

rainfed and irrigated field conditions of southeastern Nebraska (Mead-ARDC), growing 

seasons 2015 and 2016. 

Cv. Fungicide  

Treatment 

3-ADON 

(µg/g) 

15-ADON 

(µg/g) 

3-ADON 

(µg/g) 

15-ADON 

(µg/g) 

  Rainfed Irrigated 

  2015 2016 2015 2016 2015 2016 2015 2016 

O
v

erley
 

Check 1.0 ab 0.1 2.0 a 0.1 0.6 a-c 0.1 1.5 ab 0.1 

Prosaro A 0.9 ab 0.1 1.1 b-d 0.1 0.7 a-c 0.1 1.2 ab 0.1 
Prosaro 6 DPA 0.9 ab 0.1 1.6 ab 0.1 0.7 a-c 0.1 1.9 ab 0.1 

Prosaro 12 

DPA 

1.2 a 0.1 1.6 ab 0.1 0.8 a-c 0.1 2.6 ab 0.1 

Headline A 0.8 ab 0.1 1.3 a-c 0.1 0.7 a-c 0.1 1.3 ab 0.1 

Headline 6 

DPA 

0.9 ab 0.1 1.4 ab 0.1 0.9 ab 0.1 2.6 a 0.1 

Headline 12 

DPA  

0.6 bc 0.1 1.4 ab 0.1 0.8 a-c 0.1 2.3 ab 0.1 

O
v

erlan
d
 

Check 0.1 c 0.1 0.5 cd 0.1 0.4 a-c 0.1 0.8 ab 0.1 

Prosaro A 0.1 c 0.1 0.6 cd 0.1 0.1 c 0.1 0.7 b 0.1 

Prosaro 6 DPA 0.1 c 0.1 0.4 d 0.1 0.1 c 0.1 0.9 ab 0.1 

Prosaro 12 

DPA 

0.1 c 0.1 0.4 d 0.1 0.4 a-c 0.1 0.7 ab 0.1 

Headline A 0.1 c 0.1 0.5 cd 0.1 0.3 a-c 0.1 0.8 ab 0.1 

Headline 6 
DPA 

0.1 c 0.1 0.5 cd 0.1 0.1 c 0.1 1.0 ab 0.1 

Headline 12 

DPA 

0.1 c 0.1 0.5 cd 0.1 0.2 bc 0.1 1.4 ab 0.1 
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