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Candida albicans inhabits the gastrointestinal tract dormant commensal member 

but can become an opportunistic pathogen when the host microflora or immune system 

is compromised.  Adhesion to a biological or synthetic surface, followed by a 

morphological change from the yeast to hyphae phenotype. Biofilm formation is 

becoming a common occurrence on types of medical devices. Because C. albicans 

resistant to commonly available anti-fungal drugs is increasing, innovative treatments 

are critically needed. Phenolic compounds are promising anti-fungal synergists. Supina 

grass was used as the complex matrix as it is abundant and highly sustainable source of 

phytochemicals even though grass cuttings are typically disposed. Therefore, the 

objective of this research is to determine the potential of phenolic compounds in 

isolation, as a combination and in present matrix, supina turf grass, to act synergistically 

in remediating C. albicans adhesion and biofilm formation from a synthetic surface.  

Chapter 1 of this study focused on the ability of 7 phenols (ferulic, gallic, sinapic, 

coumaric, epicatechin, catechin and quercetin) and 2 non-phenolic (farnesol and 

chlorophyll) common in natural systems to combat the cited virulent factors using 

different incubation times, 1, 3, 6 and 24 h, and treatment dosages (0.06-4.00 mM). The 

highest potency for occurred at 6 h post treatment but only chlorophyll, farnesol, and 

catechin were effective against adhesion while all the compounds were able to act 



 

 

against biofilm formation. However, percent remediation ranged from < 0 to 40% with C. 

albicans (A72) being more stable and G, F being the most effective phenol. Interestingly, 

the lower dosages resulted in the greatest effectiveness.     

Chapter 2 describes the ability of two phenols to act synergistically to remediate 

adhesion and biofilm formation.  After screening combination of compounds described 

above, the same 6 sets were the most effective against adhesion and biofilms, and 

included F-G, S-Q, F-E, E-C, CAT-Q, and CAT-C.  In combination, the non-phenolic 

compounds in combination were not as effective as in isolation.  The efficacy of the 

phenol combination was 20-60%, which again occurred with the lower dosages, (0.03-

0.25) while the higher concentration (up to 4 mM) resulted in limited or no inhibition.   

The phenols acted synergistically to detach bound cells as the factionary inhibitory 

concentrations (FIC) was less than 0.05.  For the biofilm experiments, with the FIC was 

0.5<FIC>1.0 indicating partial synergy.    

Lastly, Chapter 3 demonstrated that a supina grass extract (at ng levels) was 

able to remediate C. albicans cellular adhesion and biofilm formation (50-70%). This 

study therefore generated information on the ability from a readily available agricultural 

stream, which then is expected to facilitate the development of efficacious anti-fungal 

treatments capable of remediating potentially life-threatening C. albicans infections.   
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LITERATURE REVIEW 
 

 
I. Candida albicans and Morphological Transitions   

C. albicans inhabits the gastrointestinal tract (GI) as a typical dormant commensal 

member that resides in the human gut microflora, oral and mucosa surfaces. Although 

C. albicans is hosted by approximately 70% of healthy individuals without causing any 

problems (Gow, 2013), it can become an opportunistic pathogen when the immune 

system, GI enzymes or host microflora is compromised (Schulze and Sonnenborn, 

2009). Such an event is typically accompanied by a deficient immune response (e.g., in 

HIV/AIDS patients), interventions used to treat chronic diseases (e.g., cancer and 

diabetes), injuries or surgeries or medical implants (Brown et al., 2014; Pfaller et al., 

2007). In particular, candidaemia and disseminated candidiasis are serious medical 

infections caused by C. albicans, currently accounting for 30-40% of the mortality rate 

(Kullberg and Filler, 2002).  It has been estimated that 40,000 cases of invasive 

candidiasis occur annually in the U.S alone (Centers for Disease (Control and 

Prevention and US Department of Health and Human Services, 2013).  As such, 

virulence factors leading to opportunistic infections that include phenotype switching 

ability, hydrolytic enzyme secretion, adhesion to both endothial and epithelium cells and 

biofilm formation are a critical area of research (Wang and Helliwe, 2000). 

C. albicans can colonize any site from the oral cavity to the rectum and peri-anal 

tissues in the gastrotestinal tract due, in part, to their moist surfaces that can sustain 

needed nutrients.  However, viable cells can survive for 24 h on dry surfaces if the 

degree of contamination is sufficiently high (Cannon and Chaffin, 1999).  Regarding its 

physiology, C. albicans is a diploid polymorphic yeast with eight pairs of chromosomes 

that can colonize under both aerobic and anaerobic conditions (Schulze and 

Sonnenborn, 2009).  Additionally, C. albicans is able to switch to three distinct 
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morphological phenotypes consisting of budding yeast (round shaped cells), 

pseudohyphae (branched structures with lateral buds) and hyphae (presence of 

elongated filaments) (Fig. 1). All three forms can be induced in laboratory under select 

medium and incubation conditions (Biswas et al., 2007; Veses and Gow, 2009). For 

example, yeast is able to transition to the hyphae phenotype in the presence of serum, 

neutral pH, 5% CO2 (the partial pressure of CO2 in the bloodstream) and N-acetyl-d-

glucosamine (GlcNAc) (Sudbery, 2011). In the host, however, C. albicans has adapted 

to grow and form hyphae in the host under a variety of conditions due to the 

microenvironment diversity present.  For example, C. albicans morphological switching 

involves communicating not only with other C. albicans cells, but also the surrounding 

bacteria present in the environment. C. albicans is further equipped with a quorum 

sensing mechanism to sense its own population density in the environment, which is 

based on farnesol secretion into the environment to prevent hyphal formation (Sudbery, 

2011).  This microorganism can also form chlamydospores (a spore-like structure) and 

opaque phenotype, which is important for biofilm formation, as will be discussed further 

in the next section (Scaduto and Bennett, 2015; Mayer et al., 2013; Odds, 1985; 

Sonneborn et al., 1999).  
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Notably, the hyphal form of C. albicans facilitates adhesion and invasion and is 

considered the virulent phenotype that leads to systemic infections.  Indeed, both the 

Figure 1: Different morphologies of C. albicans 
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yeast and hyphal forms are present at infection sites (Jacobsen et al., 2012; Pope et al., 

1982; and Saville et al., 2003). However, hyphae invade the epithelial barriers or the 

interepithelial cells, and are considered the virulent phenotype that leads to systemic 

infections.  C. albicans that has transitioned into the hyphae state is also the most 

resistant to anti-fungal agents (Gale et al., 1998; San-Blas, et al., 2000; Oh, et al., 2012.; 

and Sudbery, 2011). Therefore, information on the fundamental roles of yeast-hyphae 

morphological transition is critical to understanding the different infection stages of C. 

albicans bloodstream infections (Jacobsen et al., 2012).  

The hyphae phenotype is fundamentally associated with elevated adhesiveness; 

therefore, will more readily colonize other cells and organs than will the yeast cells 

(Saville et al., 2003).  Hyphal invasion into epithelial cells are mediated by two distinct 

mechanisms: induced endocytosis of host and active penetration. Induced endocytosis 

is defined as a host-driven process activated by interaction between the C. albicans 

invasin Als3 and host E-cadherin. (Almeida et al., 2008). Alternatively, active penetration 

is a fungal-driven process that is moderated by hyphal extension and other hyphal-

related health risks.  For example, the invasive hyphae are responsible for epithelial 

tissue damage (Jacobsen et al., 2012), and are crucial for escaping phagocytic cells, 

which are the first line of defense in combating infections. (Lorenz et al., 2004).  

This mechanism is facilitated by the presence of C. albicans yeast cells that can be 

phagocytosed by macrophages, but once engulfed transition to hyphae form damaging 

the surrounding membrane and eventually killing the phagocyte (Lorenz et al., 2004; 

Jacobsen et al., 2012). It is clear that morphological transition from yeast to hyphae 

plays a fundamental role in C. albicans infection stages, involving escape from 

epithelium surfaces into the bloodstream, colonization of internal organs and disruption 

of the immune defense systems.  As C. albicans that has transitioned into the hyphae 
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state is the most resistant to anti-fungal agents (Gale et al., 1998; San-Blas, et al., 2000; 

Oh, et al., 2012.; and Sudbery, 2011), inhibition or mitigation of the yeast-hyphal switch 

is a potential antifungal target to control C. albicans infections. 

 
II. Adhesion and Biofilm Virulence Factors of C. albicans 
 

Microbial virulence factors can be defined as “the capability of a micro-organism to 

cause infectious diseases via pathogenic (virulent) factors that directly interact with host 

cells, or a pathogenic component that can damage the host” (Yang, 2003; Casadevall 

and Pirofski, 2001). As stated previously, Candida spp. are naturally present in the 

human microbiota, thereby allowing the interaction with implanted biological and 

synthetic surfaces, which include dentures, shunts, prostheses, implants, endotracheal 

tubes, pacemakers and various types of catheters. 

Adhesion of C. albicans to a surface, whether biological or synthetic, is the first step 

in its pathogenic phase followed by a morphological change from the yeast to hyphae 

phenotype (the virulent state) (Schulze and Sonnenborn, 2009; Yang, 2003; Han, et al., 

2011). C. albicans cells’ initial attachment to a surface is mediated by nonspecific and 

specific factors (Ramage et al., 2005). The nonspecific factors include cell surface 

hydrophobicity and electrostatic forces, as well as fungal surface specific adhesion 

stimulating ligands in the habituation films, such as serum proteins and salivary factors. 

The ligand receptors are fibrinogen and fibronectin (Ramage, et al., 2005; Chaffin, et al., 

1998; Webb et al., 1998). Therefore, adhesion is a potential colonization strategy, and it 

is the connection point between the cell wall of Candida and host surfaces (Cannon and 

Chaffin, 1999). 

C. albicans adhesion to host cells is highly associated with the strain and the host 

cells, as several studies have shown at least four candida-host cell recognition systems 

(Calderone, 1993; Calderone, 1994; Webb et al.,1997). First, Candida strains within the 
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oral cavity or that have been isolated including C. glabrata, C. tropicalis, C. kefyr, C. 

krusei, and C. guilliermondii, which produce blastoconidium mannoprotein with lectin-

comparable properties that recognize the terminal fucose or n-acetylglucosamine-

containing glycosides of host epithelial cells. Second, the CR2/CR3 complement 

receptors are present in select C. albicans strains which are thereby able to identify 

endothelial cells. In addition, two other recognition systems are enabled due to the 

mannan oligosaccharide and the Candida cell wall chitin content.  It is expected that a 

clear understanding of these ligand-recognition systems will demonstrate sites 

susceptible to Candida invasion throughout the body and onto synthetic devices (Webb 

et al.,1997). 

Moreover, C. albicans biofilm formation is a virulent factor, which if not treated, can 

lead to life threatening systemic infections (Ramage, et al., 2005; Nobile and Mitchell, 

2006; Bauer et al., 2002). Biofilm formation is a common occurrence on both biological 

and synthetic surfaces (Ramage et al., 2005; Nobile and Mitchell, 2006; Bauer et al., 

2002). Biofilms are three-dimensional assemblies of microorganisms surrounded by 

extracellular polymeric substances (Figure 2) that protect yeast cells from being attacked 

by the surrounding environment and the immune system. (Li et al., 2016).  The biofilm 

complex structure facilitates nutrient influx, waste product disposal, and microniche 

establishment throughout the biofilm (Ramage et al., 2005).   

 Biofilm process is known as a stepwise process (shown in Figure 3) initiated by 

adhering to a given foreign substrate followed by yeast cell proliferation, hyphal 

transition and mature biofilm formation (Blankenship and Mitchell, 2006). Gene 

expression alteration begins after 30 min of adhesion to a surface. Recent studies in 

quorum sensing suggest that a dispersal stage might be an additional step in the C. 

albicans life cycle, which involves non-adherent yeast cells. Therefore, adhesion, yeast-
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hyphae transition, and quorum sensing are a vital key process in biofilm development 

(Blankenship and Mitchell, 2006; Hornby et al., 2001; Ramage et al., 2002).   

The hyphal form plays an important role in maintaining the structural integrity of the 

multilayered architecture of a fully developed biofilm (Ramage et al., 2005).  Ramage et 

al. (2002) conducted a study on the molecular pathways that regulated filamentation to 

form biofilms.  A series of genetically defined C. albicans mutant strains that are unable 

to form hyphae under different environmental conditions were used and tested for their 

ability to form biofilm.  It was determined that the single fg1 and double cph1 efg1 

deletion mutants were unable to form biofilms or even hyphae. The regulator protein 

Efg1 is the key element to form a fully mature biofilm on most biological and artificial 

surfaces (Ramage et al., 2005). 
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Figure 3: Biofilm formation process 

 

 

 

 

 

 

Figure 2: Biofilm formation 
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In addition to filamentation, a quorum sensing strategy is facilitating a cell-cell 

communication process which is a fundamental to biofilm formation that involves an 

array of microbial activities, such as biosynthesis of extracellular enzymes, antibiotic, 

extracellular polymeric substances, and extracellular virulence factors (Simoes et al., 

2010). Quorum sensing is beneficial for biofilm in terms of self-organization by 

preventing unwanted overpopulation and regulating nutrient competition. 

Microorganisms can detect and respond to their own population densities through the 

environmental sensing system producing an auto-inducer organic signal (AL). This 

organic signal accumulates during the growth in the surrounding environment resulting in 

either trigger gene expression or physiological responses (Simoes et al., 2010).  

However, it is notable that the physiological response is highly dependent on the 

achieved critical threshold signal molecule concentration. Therefore, quorum sensing 

systems are important in the infection process (Simoes et al., 2010). As an example, the 

farnesol molecule is produced during high cell density growth to inhibit C. albicans 

filamentation (Ramage et al., 2005; Hornby et al., 2002; Kruppa et al., 2004).  Therefore, 

a study used various concentrations of farnesol to test the ability to inhibit C. albicans 

biofilm formation, and the results indicated that biofilms decreased for farnesol-treated 

samples compared to the untreated controls (Ramage et al., 2002).  Yet, such infections 

(candidiasis) are increasing due to the biofilm formation on these surfaces as the anti-

fungal resistance to commonly used anti-fungal agents is augmented (Schulze and 

Sonnenborn, 2009; Yang, 2003; Magee and Chibana, 2002).  Although it is more logical 

to prevent biofilm formation it is still critical to mitigate this virulent effect when it does 

arise (Simoes et al., 2010).  Therefore, the inhibition or remediation of both cell adhesion 

and biofilm formation can be a promising strategy to reduce C. albicans colonization of 
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synthetic products used for human health purposes, such as catheters. (Wang et al., 

2012). 

III. Phenols as Anti-Fungal Agents 

Phenolic compounds are highly diverse class of compounds with more than 8000 

known structures (Bravo 1998), all of which are classified by the presence of at least one 

or more hydroxyl groups bonded to one or more phenol groups (Figure 4).  Phenolic 

compounds are widely distributed throughout the plant kingdom and include phenolic 

acids, terpenoids, organosulfur compounds, isoquinoline alkaloids, flavonoids, lactone, 

and naphthoquinone. These compounds are synthesized through the pentose 

phosphate, shikimate and phenylpropanoid pathways, and, as secondary metabolites, 

act as defense chemicals against biotic (e.g., pathogens) and abiotic (e.g., UV light) 

stresses to protect the host (Treutter, 2005 and Bravo, 1998). 

In terms of human health protection, studies have shown that phenols are able to 

protect against cellular stresses, such as oxidation and inflammation, as well as 

providing treatment for various conditions or diseases, including cancer, hypertension, 

vascular fragility, allergies, diabetes and hypercholesterolemia (Treutter, 2005; Bravo, 

1998; Papadopoulou, et al., 2005).   
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Figure 4: Common phenolic compounds chemical structure 
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However, the bioavailability and solubility of phenols can be affected by 

derivatization to other types of molecules, such as sugars, in vivo (Wesgner, 2011).  Still, 

phenolic compounds have been reported to act as C. albicans anti-fungal agents 

through various mechanisms of action, including inhibition of fungal toxin, adhesion, 

secretory systems, virulent gene expression, and quorum sensing strategies (Ivanova et 

al., 2013). Phenolic compounds have thus been proposed to be promising anti-fungal 

agents due to their capability to inhibit the virulence factors (Ivanova et al., 2013). 

For example, Vikrant et al. (2015) have shown that gallic acid, capric acid, carvacrol, 

and terpenen-4-ol were able to inhibit the growth of C. albicans by preventing the normal 

budding process due to destruction of membrane integrity (Vikrant et.al, 2015). Multiple 

studies have also shown the anti-fungal effect of various plant extracts against certain 

microorganisms, including C. albicans.  One such study completed by Papadopoulou et 

al. (2005) demonstrated that non-alcoholic red wine prevented the growth of several 

pathogenic microorganisms that included C. albicans, Staphylococcus aureus, and 

Escherichia coli. These results were attributed to the presence of a broad range of 

flavonoids (flavonols, flavanols and anthocyanins) and non-flavonoids (mainly phenolic 

compounds) present in red wine. Moreover, seven phenolic compounds extracted from 

olive leaves (caffeic acid, verbascoside, oleuropein, luteolin 7-O-glucoside, rutin, 

apigenin 7-O-glucoside and luteolin 4’-O-glucosid) inhibited the growth of C. albicans 

and gram positive (B. cereus, B. subtilis, S. aureus) and gram-negative bacteria (E. coli, 

P. aeruginosa, K. pneumoniae). 

Phenolic compounds have also been shown to act as anti-fungal agents against 

Candida virulence factors.  For example, flavonoid-rich extracts from honey prevented 

hyphal formation of C. albicans (Teodoro et al.2015 and Candiracci et al. 2012). Studies 
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in our own lab have shown that phenols in combination work synergistically to prevent 

formation of the hyphal phenotype in vitro (Shi, 2016; Camara, 2015). 

Yet, studies remain limited on the inhibitory/remediation effects of phenols on C. 

albicans adhesion to and biofilm formation on synthetic materials, albeit research has 

shown that other small molecules, such as filastatin (one of 50,000+ small molecules 

screened), are effective against both these virulence targets (Fazly et al., 2013; Wong et 

al., 2014).  It must be noted that these studies did not focus on the synergistic potential 

of small molecules in combination to prevent or remediate these events of two different 

species. 

Interestingly, it has been demonstrated that the green tea phenol, catechin 

epigallocatechin gallate (EGCG), acted synergistically with miconazole, fluconazole and 

amphotericin B (typical anti-fungal drugs used to treat C. albicans) resulting in reduced 

levels of anti-fungal agents needed to inhibit C. albicans biofilm formation (Ning et al., 

2015). Another study by Sun et al., (2015) reported that the two neolignan compounds. 

Magnolol and honokiol, which were extracted from M. officinalis, exerted a synergistic 

antifungal effect against C. albicans inhibiting adhesion, yeast-hyphae transition and 

subsequently biofilm formation through the Ras1-cAMP-Efg1 pathway. Therefore, ability 

of phenols and polyphenols to act as synergists might be a promising and potent 

treatment strategy to prevent and/or remediate adhesion and biofilm formation as multi-

target mechanisms of action are expected. 

IV. Determination of Anti-Fungal Synergists   

 When two combined drugs produce a similar effect, a quantitative analysis is 

required to differentiate exaggerated or diminished effects from an additive versus from 

a synergistic action (i.e., compounds exert a greater response together than if the 

responses exerted by the individual components were added together) (Tallarida, 2001). 
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Methods to identify dietary synergists are not consistent among the reported studies 

(Tan et al., 2003; Barrera et al., 2005; Berenbaum, 1989) but construction of 

isobologram plots (first introduced by Berenbaum in 1989) may be the most reliable 

approach for this purpose (Wagner and Ulrich-Merzenich, 2009).  (A typical isobologram 

is illustrated in Figure 5, where x and y axes represent the dosage of two or more 

substances [e.g., isolated phenolic compounds, or an extract] while the lines represent 

the type of interaction of the compounds that inducing a given response [e.g., inhibition 

or remediation of adhesion of C. albicans at a pre-established level].) When the specified 

response is obtained at the given dose combination, a point is plotted. 

 The combinations of the different compounds are tested again until a line can be 

plotted based on the position of the points.  The compounds that produce a concave, 

linear, or convex correlation indicate that these agents act as synergists, additives or 

antagonists, respectively, with one another or within the complex matrix. This effect can 

be confirmed by determining the fractional inhibitory concentration index (FICI), as 

defined below.  
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Figure 5: Illustration of an isobologram 

 

 

 

 



16 

 

 

The equation of FICI is: 

 I=Σi (xi / Xi)  

where I is the FICI 

 i is the ith individual substance in the combination 

 xi is the dose of the individual substance in the combination 

 Xi is the dose of individual substance, which has same effect as the combination. 

 FICI <1 suggests synergism, whereas FICI >1 suggests antagonism. If FICI = 1, no 

interaction occurred between the two substrates and the effect of two is, rather, additive. 

This method was applied to a methanol rosemary extract alone and combined with 

butylated hydroxytoluene (BHT) and butylated hydroxyanisole (BHA) to determine its 

antimicrobial activity. The isobologram confirmed the extract acted synergistically with 

both of these compounds (Tallarida, 2001; Romano et al., 2009; Moreno et al., 2008). 

Moreover, the efficacy of a combination of antimicrobial drugs (sulphadoxin and 

pyrimethamine) to treat human malaria caused by P. falciparum was analyzed by 

constructing an isobologram.  A strong concave curve was generated, indicating strong 

synergism (Bell, 2005). It was farther reported that therapeutic efficacy of a combination 

of plant extracts (Gingko biloba and Echinacea) was due to a synergic interaction 

(Williamson, 2001).  

In term of phenolics compounds, one study indicated that curcumin combined with 

five azoles and two polyene antifungal drugs provided increased inhibition of 21 clinical 

isolates of C. albicans as well as some sensitive laboratory strains (Sharma et al., 

2010b).  Moreover, theaflavin and epicatechin showed a synergistic effect to inhibit C. 

albicans growth in a plate (Betts et al., 2013). However, extensive studies are still 

required to identify the individual, synergistic or additive effects of phenolic compounds 
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on the different virulence factors of C. albicans, with an emphasis on adhesion and 

biofilm formation as no known studies have been reported to date.  

V. Supina Turf Grass as a Source for Phenolic Anti-Fungal Agents  

       The efficacy and safety of any drug, including anti-fungal agents, depends on their 

consistent production and delivery.  Although phenols are available in all plants, they are 

typically consumed as part of a larger matrix of dietary compounds and thus are difficult 

to monitor for targeted drug-related purposes. Isolation of the phenolic synergists from a 

single source that is highly sustainable is thus optimal in development of drugs. The 

Poaceae or grass family is among the most abundant and renewable plant families on 

the planet that may offer a novel source of phenols (Margorie, 1999; Thompson and 

Thompson, 2010; and Odey et al., 2012).   

The cereal species in particular (corn, rice, and wheat) are staple foods that are widely 

consumed on a global basis, and these species have been recognized as the primary 

nutraceutical sources within the Poaceae family (Thompson and Thompson, 2010). Poa 

supine, shown in Figure 5, is an interesting species among the grass family due to its 

turf characteristics and as a native species to the European Alps (Leinauer, et al., 1997).  

This grass is easy to cultivate in short time periods. 
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Figure 6: Supina Grass  

 

 

 

 

 

 

 

 

 

 

 

 

 



19 

 

VI. Objectives and Specific Aims 

The objective of this study was to determine the synergistic potential of selected 

phenolic compounds in isolation (Chapter 1) and combination followed by phenolic-rich 

turf grass extracts in inhibiting or remediating C. albicans adhesion to and biofilm 

formation on substrates simulating medical devices. This research is significant as it is 

the first to: a) to screen the ability of several selected isolated phenolic compounds to 

inhibit or remediate the adhesion and biofilm virulence factors of two strains of C. 

albicans (A72 and SC5314), using synthetic surface, b) to study the synergistic effect of 

a combination of phenolic compounds targeting C. albicans adhesion and biofilm 

virulence factors and  c) determine the potential synergistic interplay of the phenols 

within a complex matrix, using extracts from Supina turf grass to inhibit C. albicans 

virulence factors.  

The rationale for this study is that information will be generated to provide a 

foundation to determine the feasibility of obtaining synergistic C. albicans anti-fungal 

agents from a readily available agricultural stream (in the short term), which then is 

expected to facilitate the development of efficacious anti-fungal treatments capable of 

preventing potentially life-threatening C. albicans infections (in the long term). Therefore, 

the central hypothesis for this project is that the richly diverse phenolic compounds 

present in grasses will impart a great anti-fungal effect in terms of inhibiting or 

remediating adhesion and biofilm formation by C. albicans. This hypothesis will be 

tested, and the study objective satisfied by completing the following specific aims.   

         Specific Aim 1 (chapter 1):  To screen the ability of several select phenolic 

compounds to remediate the adhesion and/or biofilm formation of C. albicans 

(A72 and SC5314). The working hypothesis for this specific aim is that certain phenols 

will be more effective than others in remediating adhesion and biofilm formation but will 
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do so in a dose dependent manner with varying percent inhibition concentration values 

(%IC).  

         Specific Aim 2 (Chapter 2):  To determine the potential synergistic interplay of 

the most effective phenols established in Specific Aim 1 to prevent and/or 

remediate the adhesion and biofilm formation of C. albicans (A72 and SC5314). 

The working hypothesis for this specific aim is that the phenols will act synergistically to 

prevent or remediate the adhesion/biofilm formation to a greater degree than can be 

elicited by the isolated components alone but will be dependent on the type of phenolic 

and concentration.   

Specific Aim 3 (Chapter 3): To determine the potential synergistic interplay of 

the phenols within a complex matrix, using extracts from Supina turf grass, to 

prevent and/or remediate the adhesion and biofilm formation of C. albicans (A72 

and SC5314). The working hypothesis for this specific aim is that the phenols will act 

synergistically with Supina turf grass extracts to prevent or remediate the adhesion to a 

greater extent than can be elicited by the isolated component alone. 
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Chapter 1 

Natural compounds, with an emphasis on the phenols, are able to reduce biofilm 

formation and cell adhesion established by C. albicans (A72 and SC5314) but the 

degree of mitigation is based on yeast strain, compound and concentration 

 
1.1 Abstract 

 C. albicans is an endogenous and an opportunistic member in the human 

microbiota. C. albicans can switch from budding yeast form to hyphal form leading to life-

threating infections. Moreover, C. albicans not only can adhere to epithelial and 

endothelial cells of the host, but also can colonize internal and implanted devices by 

forming biofilms. Recently, C. albicans has evolved and developed resistance to 

commonly available antifungal agents for these virulence factors. Therefore, there is a 

high necessity to develop innovative antifungal agents to increase the treatment efficacy 

against C. albicans infections.  The objective of this study was to determine if 8 

compounds, with an emphasis on the phenols, were able to remediate C. albicans (A72 

and SC5314) infection by reducing existing adhered cells and/or biofilms. After exposing 

C. albicans (A72 and SC5314) to the isolated compounds at 9 different concentrations 

ranged from 0.06-4.00 mM) at four time points (1, 3, 6, and 24h), it was determined that 

for most of the compounds were most effective at the 6 h point.  Among the compounds, 

catechin, chlorophyll, and farnesol were able to reduce adhesion of C. albicans (A72 and 

SC5314), while gallic acid, ferulic acid, sinapic acid, quercetin, catechin, epicatechin, 

and coumaric acid, as well as chlorophyll and farnesol were all able to reduce biofilm 

formation at all concentrations by 50-60%.  However, cellular adhesion varied from 0-

50% due to the high variability of the test.    

 

Keywords: Candida, phenols, biofilm formation, cellular adhesion 
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1.2.  Introduction 

 
             Candida albicans is a dormant commensal member of the human microbiota, 

which inhabits the gastrointestinal (GI) tract and oral cavity but can become an 

opportunistic pathogen when the host microflora is compromised (Jacobsen et al., 2012; 

Sudbery et al., 2004). Although 70% of individuals carry this yeast without showing 

health problems (Gow, 2013), C. albicans infections (candidiasis) can be life threatening, 

particularly in individuals who are critically ill, (immunodeficiency syndrome, 

hematological malignancy).  As such, mortality rates are often more than 30-40% when 

these infections become septic (Kullberg and Filler, 2002; Garcia et al. 2014). It also has 

been reported that multiple chronic conditions are also associated with C. albicans, such 

as depression, denture stomatitis and more recently obesity (Edwards DA, 1985; 

Guggenheimer et al., 2000; Salerno et al., 2011; Srebrnik and Segal, 1990). 

C. albicans is metabolically flexible, which contributes to itis ability to switch 

morphology (yeast-hyphae), adhere to host surfaces and form biofilms (da Silva Dantas 

et al., 2016). Adhesion of C. albicans to a surface, whether biological or synthetic, is the 

first step in its pathogenic phase followed by a morphological change from the yeast to 

hyphae phenotype (Schulze and Sonnenborn, 2009; Yang, 2003; Han, et al., 2011.   As 

such, cellular adhesion is an important feature of pathogenicity (Wang et al., 2012, 

Sundstrom, 2002).  Moreover, biofilm formation is another critical virulence factor of C. 

albicans as it forms on both biotic and abiotic surfaces (Simoes et al., 2009) with 

catheters and other types of intravenous devices being primary targets.  If such 

colonized devices are not surgically replaced, C. albicans biofilms can lead to life-

threatening systemic infections (Nobile et al., 2006; Bauter et al., 2002; Mayer et al., 

2013) that have accounted for costs exceeding a billion dollars a year in the United 

States alone (Miller et al., 2001). 
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Biofilm formation occurs in sequential steps with initial adhesion of yeast cells to a 

surface, yeast cell proliferation, and hyphal cells forming the top part of the biofilm and 

creating extracellular matrix material.  Lastly, the yeast cells start to disperse or scatter 

from the biofilm complex (Mayer et al., 2013). Indeed, mature biofilms are far more 

resistant to commonly used anti-fungal agents and becoming even more so compared to 

the planktonic form counterpart due to the high complexity of biofilm architecture, matrix 

of biofilms, enhanced drug efflux pump expression and Candida metabolic plasticity 

(Mayer et al., 2013).    

Azoles and polyenes are currently the most commonly prescribed anti-Candida 

drugs, while other treatments are in various phases of clinical development, including 

amorolfine, natifine, terbinafine, tolaftate, rilopirox, cilofungin, pradimycin, and 

benanomicin A (Ellepola, 2000). Still, fungal infections are more difficult to treat than 

their bacterial counterparts as multiple infection areas are possible making development 

of anti-fungal treatments even more complicated (Ellepola, 2000). Additionally, the anti-

fungal agents azoles and polyenes, stimulate adverse side effects (Miceli et al., 2011; 

Ellepola, 2000), one of which is killing other benign microbiota consortium, thereby 

providing potential niches that other pathogens may colonize (Candiracci et al., 2011). 

Thus, development of innovative and multiple targeted anti-fungal agents that act on 

biofilms formed by C. albicans is critical. 

 As such, natural compounds are currently being studied extensively as 

alternates for current treatment approaches to protect from or mitigate already existing 

microbial infections (Gallucci et al., 2014; Nguyen et al., 2013; Palaniappan and Holley, 

2010; Saleem et al., 2010). In particular, phenolic compounds are steadily growing as 

anti-fungal agents for human usages because, as secondary metabolites in plants, it is 

their function to protect against multiple threats, including fungal based diseases that 
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attack the host (Papadopoulou et al., 2005; Hirasawa et al., 2004). Phenols are widely 

distributed throughout the plant kingdom and include terpenoids, organosulfur 

compounds, isoquinoline alkaloids, flavonoids, lactone and naphthoquinone (Treutter, 

2005 & Bravo, 1998). Studies have also shown that phenolic compounds possess 

multiple human health promoting properties due to their ability to protect against cellular 

stresses, such as oxidation and inflammation, as well as to treat conditions or diseases, 

includin, cancer, hypertension, vascular fragility, allergies, diabetes and 

hypercholesterolemia (Treutter, 2005; Bravo, 1998; Papadopoulou, et al., 2005).  

Despite such benefits, a critical gap of knowledge exists on the ability of phenolic 

compounds to target C. albicans adhesion and biofilms already established on synthetic 

devices used for human health purposes. Therefore, the objective of this work was to 

screen the ability of several phenolic compounds ubiquitous throughout nature, including 

ferulic acid, gallic acid, sinapic acid, quercetin, catechin, epicatechin, and coumaric, as 

well as chlorophyll and farnesol to remediate biofilm formation and cellular adhesion. 

The expected outcome of this study was to identify phenolics and their degree of efficacy 

to remediate the cited virulence factors, as isolated compounds, at different 

concentrations and against two strains of C. albicans, A72 and SC5314.  

1.3      Materials and Methods 

1.3.1    Preparation of C. albicans yeast stock culture 

Two C. albicans strains (SC5314 and A72) were obtained from Kenneth 

Nickerson, University of Nebraska-Lincoln. A stock culture was grown to the stationary 

phase in 500 ml of yeast extract 5 g, peptone 2.5 g, and dextrose 10 g medium (YPD). 

The medium (25 ml) was then added to 125 ml Erlenmeyer flasks and a ½ loopful of C. 

albicans (A72 and SC5314), which was maintained on YPD agar for not more than 1 

month, was incubated in a shaking water bath at 30°C for 22 h (or until cells achieved 
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stationary phase, i.e., no budding observed microscopically).  The cells were then 

washed three times with potassium phosphate buffer (pH 6.5) followed by centrifugation 

until a clear supernatant was obtained.  The ensuing pellet was then resuspended in 7.5 

ml of phosphate buffered saline and maintained at 8-10 o C until use.     

1.3.2      Treatment preparation. 

   Serum media (Atlanta Biological) was thawed at room temperature for 5 min, 

and then 5 ml was dissolved in 45 ml of potassium phosphate buffer (pH 6.5) prior to 

use.  Stock solutions of gallic acid (G), ferulic acid (F), sinapic acid (S), epecatchin (E), 

farnesol (FA), and þ-coumaric acid (C) were freshly prepared at 200 mM in 100% 

ethanol until the solids had completely dissolved.  Alternatively, quercetin, catechin 

(CAT), and chlorophyll (CH) were diluted in 50:50 ethanol: water solution.  The 

concentrations of the natural compounds used for this study were prepared by diluting 

the stock solution such that the final delivery system was consistently 2% ethanol while 

the natural products ranged from 4.0-0.06 mM in eight 2-fold increments.  Ethanol (2%) 

was selected as the delivery system as the chosen solvent had to completely dissolve 

the natural products while at a concentration that did not inhibit biofilm formation or 

cellular adhesion preliminary experiments had shown that 2% ethanol met these 

requirements. Methanol and dimethyl sulfoxide were screened as other potential delivery 

candidates.  Methanol at any concentration inhibited adhesion and biofilm formation 

assays by inhibiting a control with only the cells + the media, whereas dimethyl sulfoxide 

quickly oxidized the phenols (data not shown).  

Chlorophyll was also used for these studies due to the high abundance of this 

compound in grasses and other natural systems (Şükran, et al., 1998), whereas farnesol 

was selected as it is a quorum sensing compound produced by C. albicans to inhibit the 

yeast from switching to the hyphae state (Shirtliff et al., 2009).  Farnesol is also present 
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in many dietary compounds so is not expected to be lethal to C. albicans at low 

quantities, but also could be an important compound for inhibiting other C. albicans 

virulence factors, such as biofilm formation and cellular adhesion (Ramage, et al., 2002). 

1.3.3     Biofilm/adhesion remediation treatments 

 To determine the effects of the natural compounds on established adhered cells 

and biofilm formation, C. albicans strains (A72 and SC5314) were added at 5 x 106 cell 

per ml to Immunol 2HB 96 well plates with each well containing 140 l serum.  The 

plates were covered with aluminum and incubated at 37 o C.  After the 24 h incubation, 

60 l of a given phenol at various concentration were added to each well.  Another set of 

wells that contained and did not contain the cells were prepared with only 60 l of 2% 

ethanol to serve as the negative and positive control, respectively. The treatments were 

monitored for adhered cells at 1, 3, 6 and 24 h against the negative control. 

 1.3.5    Adhesion assay 

 The adhesion assay was performed according to Pierce et al. (2008).  Briefly, the 

medium from each well was carefully removed and 50 l of crystal violet was added to 

the wells.  The plates were covered again and incubated at room temperature for 45 

min. After incubation, each plate was rinsed gently with 400 l of ice cold water 5-10 

times.  The plates were inverted onto a paper towel to remove any non-adherent cells 

and water. The plates were then incubated for another 30 min at room temperature after 

adding 200 l of 75% methanol to each well. The absorbance was determined at 590 nm 

using a microtiter plate reader (Fazly et al., 2013).   

1.3.5    Biofilm assay 

  Biofilm formation was determined by using the (2,3-Bis-(2-Methoxy-4-Nitro-

5-Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide) XTT kit according to the 

manufacturer’s direction (Sigma-Aldrich). (The XTT kit consists of XTT labeling reagent 
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and electron coupling reagent. This assay relies on yellow tetrazolium XTT salt cleavage 

to an orange formazan dye by the active metabolic cells, which indicates the viable cells, 

and is based on procedures cited by Pierce et al., 2008 & Sudjana, et al., 2012).  The 

XTT labeling reagent and electron coupling reagent were thawed in a water bath set at 

37 o C, and then 0.1 ml of electron coupling reagent was added to 5 ml of XTT labeling 

reagent to be activated prior to use. The XTT mixture 100 l was added to each well and 

incubated for 2 h. The absorbance was determined at 450 nm using a microtiter plate 

reader.   

1.3.6    Percent remediation calculations  

         Remediation of biofilm formation or C. albicans adhesion in already established 

films were defined as % remediation for both cases, which was determined by the 

following equation (Romano et al., 2009): 

        % Remediation = (Acontrol- Asample)/ (Acontrol)*100  

Where: Acontrol is the absorbance of untreated cells 

Asample is the cells with the treatment. 

1.3.7    Statistical analysis  

         The biofilm/adhesion experiments were completed on 3-9 replicates for each 

treatment/concentration used and time point monitored.  After data outliers were 

removed by the Grubs test at a 5% confidence interval, the final results were reported as 

the mean +/- standard deviation.  One-way ANOVA was used to determine whether 

various treatments differed in terms of % remediation at 95% confidence interval (p < 

0.05) using Tukey’s honest significant difference. The statistical analyses were obtained 

with Stats Graphic Centurion XVI.1. 
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1.4    Results and discussion  

The ability of C. albicans to develop resistance against the currently available 

antifungals is a contributing factor for increases of mortality rate (up to 30-40%) for 

patients who are critically ill (González de Molina et al., 2012; and Fazely et al., 2013). 

For this reason, efforts to discover new strategies to treat virulence factors of C. 

albicans, such as biofilm formation and cellular adhesion, are intensifying. 

Many researchers have investigated the potential of phenolic compounds for 

such antimicrobial properties (Borges et al., 2013; Candiracci et al., 2012; Faria et al., 

2011; Gallucci et al., 2014; Kazuko et al., 2010; Nguyen et al., 2013; Palaniappan and 

Holley, 2010; Saito et al., 2013; Wang et al., 2009). For example, resveratrol ranging 

from 200 µM to 900 µM prevented yeast-to hyphae transition of C. albicans (SC5134) 

(Kazuko et al., 2010). Another study reported that hyphal formation of C. albicans was 

impaired by catechin at a concentration of 2.8 mM (Saito et al., 2013). However, there is 

a lack of notable studies using naturally isolated phenolic compounds to remediate C. 

albicans adhered cells and formed biofilms. 

In this study, several isolated phenolic compounds were screened for their ability 

to remediate C. albicans (SC5134 and A72) adhesion. As stated previously, the 

remediation effect was determined at four-time points (1, 3, 6 and 24 h) for each natural 

compound at eight different concentrations. However, the 6 h time point showed the 

most potent and significant effects for the majority of the compounds at the various 

concentrations.  For example, at 3 h, the compounds aided in cellular adhesion (data not 

shown), while the 24 h data showed a decrease in the remediation, again for most of the 

treatments (data not shown).  Given this initial screening process, only the 6 h 

treatments were analyzed further by statistically comparing the various compounds that 

showed remediation at a given concentration (Figure 1, 3; Table 1, 3) and a given 
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compound across concentrations (Figure 1.2, 1.4, and Table 1.2, 1.4) for C. albicans 

strains A72 and SC5314.         

1.4.1    Remediating C. albicans (A72) cellular adhesion    

In the case of C. albicans, A72, only one phenol, catechin (CAT), and the two 

non-phenols, chlorophyll (CH) and farnesol (FA), were able to reduce cellular adhesion 

using concentrations soluble at 2% ethanol (Figure 1.1).  However, percent remediation 

was not significantly different among these compounds at the low concentrations (p > 

0.05) (Table 1.1), which ranged from a low of -18% (CAT at 0.06 mM) to a high of ~ 30% 

(CAT at 0.06, 0.5 mm; FA 0.06) (Figure 1.1) indicating that the three compounds could 

be used at these low concentrations but the efficacy of each would not be consistent.  

Despite these results, at 2, 3 and 4 mM, the compounds showed significant differences 

from each other at each level while exerting different responses at each level (Table 1).   

For example, CAT was significantly different relative to CH and FA at 2.00 mM, which in 

turn were statically different from one another.  Indeed, CAT exhibited a % remediation 

of > 50%, while the effect was substantially lower for CH and FA at 0 and 20%, 

respectively (Figure 1.1).  Yet, when the level increased to 3.00 mM, CAT affected 

cellular remediation similar to both CH and FA, while the latter compounds were 

statistically different.  Interestingly, at this higher concentration, the reduction of cellular 

adhesion exhibited by both CAT and FA decreased compared to 2.00 mM concentration, 

i.e., by 28 percentage points for CAT and 11 percentage points for FA.  On the other 

hand, cellular adhesion remained at approximately 0 to 10% when treated with CH at 

3.00 mM, but at a concentration of 4.00 mM the response increased to 44%.  This value 

was statistically different compared to FA and CAT, which were similar in that both 

negatively affected remediation at this concentration.   
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Figure 1.1: Effect of catechin (Cat), chlorophyll (CH), and farnesol (FA) on remediating C. albicans 
 (A72) cellular adhesion 6 h post exposure of a given treatment concentration. 

Each point and vertical bar represent the mean ± standards deviation of three replicates. 
 

                                          Table 1.1.   Rows with different letters show significant difference 

                                                (p < 0.05) in remediation of C. albicans (A72) cellular adhesion  
                                                 across the different compounds but at the same treatment  
                                                 concentration.   

mM CAT  CH  FA  

0.06 -17.12 7.54 28.47 

0.13 9.68 22.73 5.11 

0.25 -3.66 15.91 17.48 

0.5 29.56 -0.51 -6.82 

1.00 26.17 20.79 30.28 

2.00  51.65a -1.72 b 20.88 c 

3.00 23.76ab 1.17 b 9.93 a 

4.00 23.08 a 44.04 b 19.5 ab 
                                                    mM - millimolar concentration of compound 

         CAT – Catechin, CH – Chlorophyll, FA – Farnesol 
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Figure 1.2 and Table 1.2 respectively show the reduction of cellular adhesion plots of 

each compound across concentration and the corresponding statistical analysis.  

Clearly, a typical log dose response curve was not generated in these studies. When the 

cells were exposed to either CH and FA, the different concentrations were not 

statistically different, which was unexpected given a low concentration of 0.06 mM and 

the high of 4.00 mM (Table 1.2). These results indicate that unreliability of developing 

either of these compounds as a means to mitigate cellular adhesion of C. albicans, A72, 

given that the % remediation exerted by CH and FA was approximately 0 to 45% and -

10 to 30% for CH and FA, respectively, regardless of concentration (Table 1.2).  The 

values obtained from the various concentrations most likely were due to the high 

variability caused by the interaction of these compounds with C. albicans, A72, as 

evidenced by the large error bars shown in Figure 1.2.   

In contrast, decreased variability occurred when CAT was used at most concentrations, 

which cannot be explained at this point in our research.  As shown in Table 1.2, the 

responses exerted by both the 0.13 and 0.25 mM CAT treatments were statistically 

similar to 0.06 mM, while 0.13 mM treatment also trended with all the other 

concentrations except 2.00 mM.   Notably, the treatments that ranged from 0.50 to 4.00 

mM were all statistically similar resulting in % remediation of approximately 25-50%.  

Although this range is fairly large for developing a consistently efficacious anti-virulence 

treatment mitigating C. albicans (A72) adherence to cells, the significance of this data is 

that it shows the potential of CAT to remediate cellular adhesion. In another study, CAT 

was able to inhibit hyphal formation of C. albicans (NUD-202) at 2.8 mM with 10% fetal 

calf serum as the inducing agent, i.e., the same concentration and medium used herein 

(Saito 2013).        
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Figure 1.2: Effect of different concentrations of catechin (Cat), chlorophyll (CH), and farnesol (FA) on 
remediating C. albicans (A72) cellular adhesion 6 h post treatment exposure.  Each point and vertical bar 

represent the mean ± standards deviation of three replicates. 

 
Table 1.2.   Rows with different letters show significant difference (p < 0.05) in percent adhesion 

remediation across different treatment concentrations using a given compound. 

mM 0.06 0.13 0.25 0.5 1.00 2.00 3.00 4.00 

CAT -17.12a 9.68 abc -3.66ab 29.65bc 26.17 51.65 c 23.7 abc 23.0 abc 

CH 7.54 22.73 15.91 -0.51 20.79 -1.72 1.17 44.04 

FA 28.47 5.11 17.48 -6.82 30.28 20.88 9.93 19.58 
 mM - millimolar concentration of compound  
CAT – Catechin, CH – Chlorophyll, FA – Farnesol    
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As such, development of CAT as a consistently efficacious treatment for reducing 

cellular adhesion may be possible with more research to understand the interaction of 

this compound with C. albicans.  Khan et al., (2012) further showed that the cell 

suspension concentration and the medium used affects the properties of an anti-fungal, 

which also could translate into reducing established film formation. 

       Plant extracts that derived from Krameria, Aesculus hippocastanum, and 

Chelidonium majus demonstrated potential remediation activity against Staphylococcus 

aureus and Staphylococcus epidermidis strain adhesion after 24 h of exposure (Artini et 

al., 2012).  Although the plant extracts were not characterized, this study shows the 

potential of using natural products rich in micronutrients, including the phenols, as are all 

plant products, of remediating C. albicans A72 cellular adhesion.  

1.4.2    Remediating C. albicans (SC5314) cellular adhesion    

Similar to C. albicans (A72), only CAT, CH and FA showed remediation properties 

against C. albicans (SC5314) (Figure 1.3).  Still, differences occurred in the 

effectiveness across concentrations between the strains, as shown by the difference 

between the trend lines vs concentration for each strain (Figure 1.1 and 1.3).  In 

particular, the percent remediation of C. albicans (SC5314) cellular adhesion was not 

significantly different among these compounds at the low concentrations 0.06-0.25 mM; 

CAT did vary at 0.05 and 1.00 mM compared to CH and FA at these concentrations; and 

all three compounds were similar at the high concentrations of 2.00-4.00 mM, unlike C. 

albicans A72 (Table 1.1).    

        At 1.00 mM treatment, the percent remediation was significantly different between 

CAT and the other two compounds (CH and FA), which a low of 0% for CAT, but 

increased to 40% and 45 % for to CA and FA, the latter showing the most potent 
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responses (Figure 1.2) among the treatment combinations.  For the other significantly 

different response caused by a concentration (2.00 mM), the effective values were much 

closer in their degree in potency that CAT, CH and FA, the percent remediation 

produced was 20, 35 and 25%, respectively. 
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Figure1. 3 Effect of different concentrations of catechin (CAT), chlorophyll (CH), and farnesol (FA) on 
remediating C. albicans (SC5314) cellular adhesion 6 h post treatment exposure.  Each point and vertical 

bar represent the mean ± standards deviation of three replicates. 
 

 
                                          Table 1.3.   Rows with different letters show significant difference 

                                               (p < 0.05) in remediation of C. albicans (SC5314) cellular adhesion  
                                                across the different compounds but at the same treatment  
                                               concentration.  

mM CAT  CH  FA  

0.06 4.74 36.31 18.16 

0.13 24.19 31.52 16.13 

0.25 9.92 3.73 32.3 

0.5 -1.58 a 30.78 b 34.36 b 

1.00 -1.25 a 42.03 b 45.91 b 

2.00 22.87 36.32 29.62 

3.00 29.72 3.62 32.47 

4.00 35.77 20.12 26.9 
                                                 mM - millimolar concentration of compound  
                                                  CAT – Catechin, CH – Chlorophyll, FA – Farnesol    
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Clearly, the compounds act upon the two strains differently (Figures 1.1 and 1.3). The 

mid-range concentrations (1.00 and 2.00 mM) were more effective against the C. 

albicans SC5314 strain while the higher concentrations were the most efficacious in 

reducing the virulent factor produced by C. albicans A72 (Table 1.2).  Although the 

reduction in adhesion differed across compounds at the same concentration in some 

cases (Table 3), the adhesion responses were statistically similar for each compound 

across concentrations regardless of dosage (Table 1.4), similar to that shown for C. 

albicans (A72) (Table 2).  The adhesion reduction for CAT, CH, and FA ranged 

respectively from 0-35% (at 0.5 and 1.00 mM for the low and 4.00 mM for the high), 2-

40% (0.25 and 3.00 mM for the low and 1.00 mM for the high), and 20-40% (0.05 and 

0.13 mM for the low and 1.00 for the high).   

Again, similar to C. albicans (A72), the relatively broad dosage ranges indicate that 

unreliability of developing any of these compounds at any concentration to alleviate 

cellular adhesion of C. albicans (SC5314), albeit FA may be acceptable given that a low 

dosage of 0.06 mM could still elicit quite high reductions.  This is especially important as 

farnesol is a well-characterized quorum signal molecule, which blocks the transition from 

yeast to hyphae (Derengowski et al., 2009).  Moreover, this data showed the ability of a 

relatively large molecule, chlorophyll, to mitigate C. albicans cellular adhesion, as most 

studies used small molecules (Fazely et al., 2013; Wong, et al., 2014).   Nonetheless, 

inhibition or reduction of the initial adherence could be an ideal strategy to prevent 

mature biofilm formation (Cerca et al., 2005) given their resistance to anti-fungal agents.  

Thus, more studies are needed on the remediation of adhered cells and it must be 

applied to different strains and species of Candida because the treatment may act 

differently on each as indicated here.   
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Figure 1.4: Effect of catechin (Cat), chlorophyll (CH), and farnesol (FA) on remediating C. albicans (SC5314) 
adhesion after 6 h exposed to the specified treatment concentration.   

 Each point and vertical bar represent the mean ± standards deviation of nine replicates. 
 

  Table 1.4.   Rows with different letters show significant difference 

  (p < 0.05) in percent adhesion remediation exerted by the different  
 concentrations but at the same treatment compounds.   

Mm 0.06 0.13 0.25 0.50 1.00 2.00 3.00 4.00 

CAT 4.74 24.19 9.92 -1.58 -1.25 22.87 29.72 35.77 

CH 36.31 31.52 3.73 30.78 42.03 36.32 3.62 20.12 

FA 18.16 16.13 32.3 34.36 45.91 29.62 32.47 26.9 
mM - millimolar concentration of compound  
CAT – Catechin, CH – Chlorophyll, FA – Farnesol    
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1.4.3    Remediating C. albicans (A72) biofilm formation             

          Yeast to hyphae transition of C. albicans is a virulence factor of critical concern, as 

it participates in host tissue penetration, enabling invasive growth followed by biofilm 

formation (Raut et al., 2013). The construction of biofilms can be divided into 2 phases: 

initial adherence at 3 to 4 h followed by biofilm formation at 12 to 24 h (Ceonye et al., 

2011) resulting in a heterogeneous structure that consists of yeast, hyphae, and 

pseudohyphea, and is coated with extracellular polymeric materials. The yeast to 

filaments transition strengthens and support the biofilm structure (Raut et al., 2013), 

which makes biofilms the most resistant virulence factor to available antifungal agents 

(Fazely et al., 2013). 

          To this end, the natural compounds used in the cell adhesion assays were 

screened at the 8 concentrations cited previously (Sections 1.4.1- 1.4.2) for their ability 

to migrate biofilms produced by C. albicans SC5134 and A72.  Similar responses to the 

treatments at the different concentrations occurred for the various time points (1, 3 and 

24 h) as described for the adhesion work (Section 1.4.1-Section 1.4.2) with the most 

potent effect occurring at the 6 h time point (data not shown).  Therefore, results 

obtained from reduction of biofilm formation in the presence of several natural 

compounds at this time point will be the focus for the next two sections.       

For C. albicans A72, several compounds (G, F, S, E, Q, C, CAT, CH and FA) were able 

to attenuate biofilm formation (Figure 1.5) compared to those that promoted the 

reduction of cellular adhesion, namely CAT (Figure 1.1).  At the concentrations ranging 

from 0.06-1.00, the compounds did not differ significantly in terms of their ability to 

reduce established biofilms with the exception of FA (at 0.05, 0.25, and 0.05 mM), C / 

CH (0.25 mM), and Q (0.06, 0.13 and 0.25 mM) (Table 5).  For the phenol (Q), the 

remediation results were statistically different from G, F, S and E at 
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Figure 1.5: Effect of gallic acid (G), ferulic acid (F), sinapic acid (S), epicatechin (E), quercitin (Q), 
p-coumaric acid (C), catechin (CAT), chlorophyll (CH), and farnesol (FA) on remediating C. albicans (A72) 

biofilm formation 6 h post exposure of a given treatment concentration.   

Each point and vertical bar represent the mean ± standards deviation of three replicates. 
 
Table1.5.   Rows with different letters show significant different (p < 0.05) in percent 

remediation of C. albicans (A72) biofilm formation exerted by compounds 
6 h post exposure of a given treatment concentration. 

mM G  F  S  E  Q  C  CAT  CH  FA  

0.06 57.49 58.55 38.38 52.75 44.05 ab 35.06 ab 50.16 ab 22.43b 18.4 b 

0.13 44.25 57.24 38.81 53.08 30.49 ab 36.97 ab 21.74 ab 34.41ab 11.32 b 

0.25 52.72 48.27 37.3 51.43 33.52 ab -0.19 bc 32.22 bc 22.14bc 4.42 c 

0.5 54.61 41.33 38.11 50.83 7.72 b 28.46 a 39.3 a 28.16ab - 38.2 b 

1.00 60.05 52.57 30.1 42.59 4.84 bc 18.27ab 26.04 ab 14.9 bc -11.42abc 

2.00 56.57a 52.68 a 56.04 a 43.9 26.78 bc 38.42ab 29.83 bc 12.17 b 21.89 bc 

3.00 59.78 48.6 49.5 ab 49.8 32.81 c 44.44abc 39.8 bc 5.6 c 13.17 bc 

4.00 61.17 a 56.26 a 43.1 abc 44.5 35.48bcd 36 abcd - 22 d 1.86 cd 8.49abcd 
mM - millimolar concentration of compound G – Gallic acid, F- Ferulic acid, S- Sinapic acid, E- Epicatechin, 
Q- Quercetin,C- þ-coumaric acid, CAT – Catechin, CH – Chlorophyll, FA – Farnesol 
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concentrations > 1.0 mM.  In fact, Q, CAT, CH and FA started to trend differently from 

the other molecules in most cases with increasing treatment levels exhibiting lower 

remediation effect < 40 %, i.e., those greater than 1.0 mM (Figure 1.5 and Table 1.5), 

except for the FA at 4.00, which was statistically similar to multiple compounds.   

           Yet, at a concentration of 0.50 mM FA (-38%) was the least effective in 

remediating biofilm formation followed by 4.00 mM CAT and CH resulting in a % 

remediation of -22% and 1.86 respectively.  It must be noted that 4.00 mM CAT was also 

statistically similar to 4.00 mM CH.  Notably, these three compounds were the most 

effective in reducing cellular adhesion.  Moreover, a 0% reduction occurred with 1.00 

mM Q treatment, but this result was statistically comparable with several of the 

remaining compounds, which ranged in a high of 60% for F, G, and E.  Additionally, Q 

was statistically similar in % biofilm reduction with that of FA at 0.50 mM, (-38%) and CH 

(1.86%). 

These results most likely are due to the structure-function effect of the 

compounds and thereby their mode of interaction with the C. albicans biofilm formation.  

The phenols, Q and CAT, are aglycone flavonoids and farnesol is a sesquiterpene; each 

are fairly small compounds consisting of 15 carbons whereas chlorophyll is a much 

larger compound that is essential for photosynthesis (Esten and Dannin, 1950), Although 

different structurally, all of these compounds are highly insoluble in water due mainly to 

the lack of hydroxyl groups, soluble derivatization groups and/or size of the molecule 

(Esten and Dannin, 1964; Mishra et al., 2011).  These structures thereby promote 

greater solubility in more non-polar delivery systems, which also may be limiting their 

ability to directly interact with the films.   As phenolic acids, G, F, S, and C are small 

molecular weight molecules containing an acid group and hydroxyl groups located at 

different position on the phenol; whereas epicatechin is a glycosylated flavonoid.  
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Additionally, the structural characteristics could also be affecting their degree of potency 

due to differences in their antioxidative capacities, especially at the higher 

concentrations.  This hypothesis is supported by Bores et al. (2013) who attributed the 

structure of the antimicrobial phenolics to the phenolic antioxidant capacity and 

ultimately increasing toxicity to microorganisms.  Still, it is unclear whether the phenols 

are actively destroying existing biofilms or affecting the ability of C. albicans to promote 

the growth of biofilms via their antioxidative properties.    

       These results further demonstrate that the behavior of Q coincides with the phenolic 

acids and epicatechin phenols when the concentrations are low (< 2.00 mm) but is more 

similar to the non-phenols, CH and FA, at concentration of 3 and 4 mM (Table 1.5). The 

chemical substructure of quercetin is such that it is able to stop oxidative processes by 

acting both as a scavenger of free radicals and by chelating reactive metals involved in 

oxidation (Spencer et al. (2004).  In fact, quercetin has been cited in various reports as 

exerting higher antioxidative capacities than any of the other phenolic compounds used 

herein (Rice-Evans, 1997).  Yet, terpenes, such as FA, and chlorophyll are able to 

scavenge free radicals, but a direct correlation to phenols have not been reported to our 

knowledge.  Again, many of the test compounds in reducing the biofilms were similar to 

FA, CAT, Q and CH and each other at one concentration but different at another dosage 

indicating that treatment levels may promote a different mode of action for each 

compound.     

          The compounds FA, CH, CAT, and Q also showed relatively high variability across 

treatment concentration similar to that discussed in the cellular adhesion sections for 

both C. albicans A72 and SC5314, which may account, in part, for their comparable 

results across compounds (Figure 1.5 and Table 1.5). The trend lines representing these 

FA, CH, CAT and Q (Figure 1.5), show more randomness between concentration points 
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and thus ranged from 0 to 30%, 42 to -22%, 0-20% and -40 -22% for Q, CAT, CH and 

FA, respectively.   On the other hand, G, F, S, E and S produced less variability, and the 

highest remediation values.  More specifically, gallic acid (G) was able to reduce biofilm 

formation by 55-60% regardless of dosage (Figure 1.6), which was not statistically 

different (Table 1.6).  Moreover, G was the only phenol that did not trend concurrently 

with another compound (Table 1.5) or across concentration (Table 1.6).  Although biofilm 

reduction was not affected by a given compound-based dosage levels for any of the 

treatments (Table 1.6), G, F, S, E and C showed the most consistent trend lines across 

concentrations with a remediation range of 40-60%. These results indicate that one or 

more of the phenolic acids are potential candidates as anti-fungals for remediation of 

biofilms produced on synthetic devices.   

1.4.4   Remediating C. albicans (SC5314) biofilm formation             

In the case of C. albicans, strain SC5314, the compounds G, F, S, E, Q, C, CAT, CH 

and FA were again able to reduce the formation of the corresponding biofilm formation 

(Figure 1.7). At the lower concentrations ranging from, 0.06-0.50 mM, the compounds 

were not significantly different in terms of their ability to reduce established C. albicans 

biofilms with the exception of FA (at 0.06 0.13, 0.25, 0.5 mM), CH and Q (0.13 and 0.50 

mM), CAT (0.25 and 0.50 mM) (Table 1.7).  The compounds, Q, CAT, CH, and FA, 

again started to trend differently from the other molecules with increasing 

concentrations, i.e., those greater than 1.0 mM.   The flavonoid, Q, was significantly 

different in % remediation compared to S and E at 1.00 and 2.00 mM; CH, FA at 2.00 

mM, and G, F, E, and S at 3.00 and 4.00 mM. It has been proposed by Nitiema et al. 

(2012) that antimicrobial activities increase when lower groups of hydroxyls are bonded 

to phenols or flavonoids, which results in high chemical affinity to the pathogenic lipid 

membrane.   Yet, this research indicates again that the least soluble compounds in 
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aqueous solution due in part to the presence of hydroxyl groups was the least effective 

in negatively impacting biofilm formation. For example, at concentration 0.05 mM FA 

was the least effective, resulting in % remediation of ~ 4% and ~ 6%, respectively. 
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      Figure 1.6: Effect of different concentrations of gallic acid (G), ferulic acid (F), sinapic acid (S), 
epicatechin (E), quercetin (Q), catechin (CAT), p-coumaric acid (C), chlorophyll (CH), and farnesol (FA) on 
remediating C. albicans (A72) biofilm formation 6 h post treatment exposure.  Each point and vertical bar 

represent the mean ± standards deviation of three replicates. 
 

 
Table 1.6.   Rows with different letters show significant difference (p < 0.05) in percent biofilm formation 

across different treatment concentrations using a given compound.  

Mm 0.06 0.13 0.25 0.50 1.00 2.00 3.00 4.00 

G 57.49 44.25 52.72 54.61 60.05 56.57 59.78 61.17 

F 58.55 57.24 48.27 41.33 52.57 52.68 48.6 56.26 

S 38.38 38.81 37.3 38.11 30.1 56.04 49.5 43.1 

E 52.75 53.08 51.43 50.83 42.59 43.9 49.8 44.5 

Q 44.05 30.49 33.52 7.72 4.84 26.78 32.81 35.48 

C 35.06 36.97 -0.19 28.46 18.27 38.42 44.44 36 

CAT 50.16 21.74 32.22 39.3 26.04 29.83 39.8 -22 b 

CH 22.43 34.41 22.14 28.16 14.9 12.17 5.6 1.86 

FA 18.4 11.32 4.42 -38.2 -11.42 21.89 13.17 8.49 
mM - millimolar of compound concentration G – Gallic acid, F- Ferulic acid, S- Sinapic acid, E- Epicatechin, 
Q- Quercetin, C- þ-coumaric acid, CAT –   Catechin, CH – Chorophyll, FA – Farnesol 
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Figure 1.7: Effect of gallic acid (G), ferulic acid (F), sinapic acid (S), epicatechin (E), quercetin (Q), p-
coumaric acid (C), catechin (CAT), chlorophyll (CH), and farnesol (FA) on remediating C. albicans (SC5314) 

biofilm formation 6 h post exposure of a given treatment concentration.  Each point and vertical bar 
represent the 

mean ± standards deviation of three replicates. 

 
Table 1.7.   Rows with different letters show significant difference (p < 0.05) in percent 

6 h remediation of C. albicans (SC5314) biofilm formation exerted across compounds 
6 h post exposure of a given treatment concentration. 

mM G  F  S  E  Q  C  CAT  CH  FA  

0.06 56.9 50.83 51.43 53.97 32.51 5.9 18.53 34.21 18.39 

0.13 57.16 53.69 54.24 57.16 7.5 b 38.38 23.47bcd 32.5abcd 20.68 d 

0.25 50.38 49.25 62.75 52.99 41.3abc 33.03 15.05 cd 29.66abc 5.01 d 

0.5 53.76 53.43 68.72 60.06 35.32 bc 37.04 25.09 cd 23.59 cd 4.29 c 

1.00 35.55 52.75 60.09 53.7 13.83 c 37.66 20.96 bc 12.92 c 9.14 c 

2.00 61.69 48.85 73.77 56.95 18.14 bc 41 25.37 cd 21.61 d 16.23 d 

3.00 64.6 53.69 60.26 51.63 11.44 b 28.25 16.13 b 25.36 ab 13.87 b 

4.00 63.43 69.54 51.73 44.97 39.2 abc 31.65 18.25 c 15.76 c 14.24 c 
mM - millimolar concentration of compound G – Gallic acid, F- Ferulic acid, S- Sinapic acid, E- Epicatechin, 
Q- Quercetin C- þ-coumaric acid, CAT – Catechin, CH – Chlorophyll, FA – Farnesol 
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G, F, S, and E were able to reduce biofilm formation by equivalent amounts at all 

concentrations, with relatively high biofilm reduction of 50-60% (Figure 1.8), (Table 1.8).  

It has also been reported that phenolic compounds cause reduction of pathogenic 

infections by the accumulating at the site of infection (Nicholson,1992). The results 

presented in this manuscript might be attributed to the smaller molecular weight of G, F 

and S, in comparison to flavonoids i.e., Q and E or non-phenolic compounds FA and CH. 

Due to their size, the phenolic acids could accumulate at the site and thereby reduce 

biofilm formation through altering the hydrophobicity causing cytoplasmic content 

leakage. Another possible mode of action is by acting on reducing the ergosterol 

biosynthesis, which can damage the cell membranes and eventually reduce the growth 

of C. albicans and thus biofilm formation (Teodoro et al. 2015).  At any rate, these 

results are supported by Wang et al. (2009), who demonstrated that gallic acid 

prevented C. albicans biofilm formation at an MIC50 of 5.9 mM. The compounds, CH 

and Q, were significantly different in terms of remediation biofilm across treatment 

concentrations (Figure 1.8) further supporting that their structure may be impacting 

biofilm formation for C. albicans (SC5314) differently as both are uniquely different from 

the remaining compounds.  Despite the ability of Q to remediate biofilm formation, 

variability was high among the various concentrations, which ranged from a low of 8% to 

a high of 42%. Yet for the phenolic acid, C, the high variability caused a % remediation 

between the low  
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Figure 1.8: Effect of different concentrations of gallic acid (G), ferulic acid (F), sinapic aicd (S), epicatechin 
(E), catechin (CAT), p-coumaric acid (C), chlorophyll (CH), and farnesol (FA) on remediating C. albicans 

(SC5314) biofilm formation 6 h post treatment exposure.  Each point and vertical bar represent the mean ± 

standards deviation of three replicates. 
 

Table 1.8.   Rows with different letters show significant difference (p < 0.05) in percent adhesion 

remediation across different treatment concentrations using the given compound. 
mM - millimolar concentration of compound  

mM 0.06 0.13 0.25 0.50 1.00 2.00 3.00 4.00 

G 56.9 57.16 50.38 53.76 35.55 61.69 64.6 63.43 

F 50.83 53.69 49.25 53.43 52.75 48.85 53.69 69.54 

S 51.43 54.24 62.75 68.72 60.09 73.77 60.26 51.73 

E 53.97 52.32 52.99 60.06 53.7 56.95 51.63 44.97 

Q 32.51bcd 7.5 a 41.3 d 35.32 cd 13.83 ab 18.14 d 11.44 a 39.2 bcd 

C 5.9 38.38 33.03 37 37.66 41 28.25 31.65 

CAT 18.53 23.47 15.05 25.09 20.96 25.37 16.13 18.25 

CH 34.21 a 32.5 a 29.66ab 23.59abc 12.92 c 21.61abc 25.36abc 15.76bc 

FA 18.39 20.68 5.01 4.29 9.14 16.23 13.87 14.24 
G – Gallic acid, F- Ferulic acid, S- Sinapic acid, E- Epicatechin, Q- Quercetin, C- þ-coumaric acid, CAT – 
Catechin, CH – Chorophyll, FA – Farnesol 
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concentration 0.06 mM of ~6% and high concentration 2.00 mM of 41% (Figure 1.8), 

which were not significantly different (Table 1.8).   

In conclusion, biofilm formation was reliably and substantially reduced when phenolic 

acids and derivative flavonoids, particularly gallic acid, ferulic acid, sinapic acid and 

epicatechin, were used as the treatments.  Moreover, the effects of the doses were not 

significantly different across concentrations indicating that even at low doses, biofilm 

formation by either C. albicans strain (A72 or SC5314) could be inhibited.  Despite the 

efficacy of these compounds, they were unable to inhibit cellular adhesion.  In fact, the 

opposite occurred, in that the compounds able to reduce cellular adhesion, again for 

both strains, were least effective in reducing biofilm formation.  Nonetheless, these 

studies show that phenols and other compounds ubiquitous in plants (CH) or C. albicans 

(FA) may be potent anti-fungal agents that act on established cellular adhesion and/or 

biofilm formation.      
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Chapter 2 
Natural compounds, with an emphasis on phenols, act synergistically to 
remediate cellular adhesion and biofilm formation produced by C. albicans 
(A72 and SC5314) on synthetic devices  
 
2.1   Abstract 
  
 C. albicans is a commensal member of the microbiome that inhabits the 

gastrointestinal and oral mucosa. However, it can be an opportunistic pathogen 

and cause superficial infections when the environment is compromised, and it 

can also cause life threating systematic infections.  C. albicans strains have 

become resistant to available antifungal agents, which leads to growing interest 

toward inventing novel strategies to remediate adhesion and biofilm formation. 

The objective of this study was to determine the potential synergistic interplay of 

the 7 phenols and 2 non-phenolic compounds to remediate cell adhesion and 

biofilm formation of C. albicans (A72 and SC5314). After exposing C. albicans 

(A72 and SC5314) to the different treatment combinations at 5 different 

concentrations 0.03-0.5 mM to C. albicans for (6 h) most of the treatment 

combinations (G-F: Gallic Acid-Ferulic Acid, S-Q: Sinapic Acid-Quercetin, F-E: 

Ferulic Acid-Epicatechin, E-C: Epicatechin-Coumaric Acid, CAT-Q: Catechin-

Quercetin, CAT-CH: Catechin-Chlorophyll) were effective on mitigating cellular 

adhesion of C. albicans (A72 and SC5314) by > 50 % with FIC > 0.5. Further, the 

same combinations with the addition of CAT-C: Catechin- Coumaric Acid were 

effective on remediating ~ > 30 % of biofilm with 0.5< FIC <1. 

Keywords: Candida, phenols, synergism 
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2.2   Introduction 
 
 Candida albicans inhabits the gastrointestinal tract (GI) as a typical 

commensal member but can become an opportunistic pathogen when the 

immune system, GI enzymes, or host microflora is compromised (Schulze & 

Sonnenborn, 2009).  As such, mortality have been reached 30-40% due to 

Candida infections of the mucosal membranes (candidiasis) or of the 

bloodstream (candidemia) especially in individuals who are critically ill (González 

de Molina et al., 2012; Shareck and Belhumeur, 2011; Underhill and Iliev, 2014; 

Miceli et al., 2011; Pfaller and Diekema, 2007; Pfaller et al., 2012). For 

hospitalized patients, C. albicans is considered the most prevalent cause of 

nosocomial bloodstream infections (Magill et al., 2014).  Expenditures of $6,000–

$29,000 have been estimated by the Centers for Disease Control for each C. 

albicans case of infection, which have resulted in increasing costs to U.S health 

care of millions of dollars annually (CDC (Centers for Disease Control and 

Prevention), 2013). 

The ability of C. albicans to transition from yeast to hyphal growth is the 

predominant virulence factor that has been linked to its pathogenicity (Hazan et al., 

2002; Sudbery et al., 2004).  The filamentous form is more invasive than the yeast form 

as it is able to penetrate and colonize the other body organs (Dalle et al., 2010; Phan et 

al., 2007; Sudbery et al., 2004; Weide and Ernst, 1999; Zhu and Filler, 2010). Moreover, 

the hyphal form is highly resistant to host defenses (Clark and Hajjeh, 2002; Yan et al., 

2013).  C. albicans infections are also capable of forming biofilms on the surfaces of 

synthetic devices used for human health purposes, such as an intravascular or urinary 

catheter, and endotracheal tubes, as well as devices implanted in their entirety into the 

body, including, but not limited to, subprosthetic heart valves, cardiac pacemakers and 
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joint replacements, all of which are susceptible to C. albicans cellular adhesion and 

biofilm formation.  (Douglas, 2003).  

Notably, C. albicans biofilm is 10–1000 times more resistant to antifungal drugs 

in comparison to other C. albicans morphologies (Douglas, 2003). Amphotericin B, 

fluconazole, flucytosine, itraconazole and ketoconazole are important antifungal drugs 

clinically investigated for their efficacy in treating C. albicans biofilm formation.  However, 

these drugs were less effective in treating biofilms compared to the other C. albicans 

virulence factors (Hawser et al., 1995).  Moreover, only a limited number of antifungal 

drugs are currently available to address C. albicans biofilm production.  For example, 

lipid formulations of amphotericin B and two echinocandins (caspofungin and 

micafungin) were reported as antibiofilm to C. albicans (Kuhn et al., 2002). Also, 

caspofungin was approved as an antifungal drug that suppresses biofilm formation by 

inhibiting the major C. albicans cell wall component β1,3-glucan synthesis (Bachmann et 

al., 2002; Ramage et al., 2002). In this context, specific mechanisms of action of C. 

albicans reaction to drugs have been identified to contribute to their resistance, such as 

restricted drug penetration into the biofilm matrix, decreased growth rate or lack of 

nutrients due to phenotypic changes, and an increase in resistance gene expression 

induced by surface contact (Douglas, 2003).  

      Recently, researchers have proposed an approach to C. albicans resistance 

to commonly used drugs by developing agents that maintain the organism in its 

non-virulent phenotype (Shareck and Belhumeur, 2011).  As C. albicans is a 

benign member of microbiota when in its yeast form, targeting the non-lethal 

morphology maybe will ensure that a more lethal pathogen will not colonize the 

vacant niche (Lewis and Kontoyiannis, 2001).   
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 Natural compounds, such as phenolic compounds, have been extensively 

investigated as promising antifungal agents (Gallucci et al., 2014; Nguyen et al., 

2013; Palaniappan and Holley, 2010; Saleem et al., 2010).   Phenolic 

compounds are a highly diverse class of compounds widely distributed 

throughout the plant kingdom and include terpenoids, organosulfur compounds, 

isoquinoline alkaloids, flavonoids, lactone, and naphthoquinone (Bravo, 1998). 

Phenolic compounds have been reported to act as C. albicans anti-fungal agents 

through various mechanisms of action. For example, Vikrant et al. (2015) has 

reported that gallic acid, capric acid, carvacrol, and terpene-4-ol were able to 

disrupt membrane integrity, prevent the normal budding process, and potentially 

inhibit the growth of C. albicans.  

 Yet, studies remain limited on the inhibitory/remediation effects of phenols 

on C. albicans adhesion to and biofilm formation on synthetic materials. 

Additionally, the previously cited studies did not focus on the synergistic potential 

of phenolic compounds in combination to prevent or remediate these events.  

Instead, these studies have focused on isolated phenols despite emerging 

evidence showing that complex phenolic-rich extracts impart greater benefits 

than the sum of the individual components (synergism) (Lewis and Kontoyiannis, 

2001, Junio et al., 2011). 

As such, a significant gap of knowledge exists on the ability of phenolic 

compounds to act as synergists to remediate C. albicans cell adhesion and biofilm 

formation.  Therefore, the main objective of this work is to investigate the ability of the 

phenols (gallic acid, ferulic acid, sinapic acid, quercetin, epicatechin, cumeric, catechin) 

and the other natural compounds (chlorophyll, and farnesol) to act synergistically 

inhibiting adhesion and biofilm formation. These phenols were selected because they 
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were present in multiple food systems and/or are ubiquitous throughout the plant 

kingdom thereby sustaining their availability pending their degree of efficacy.  Moreover, 

these compounds were used for this research based on another study that showed 

these phenols were the most effective in remediating cellular adhesion or biofilm 

formation (Chapter 1).  They were thus combined with other phenols with the 

expectation that they would provide highly potent synergists or additives to reduce 

adhesion and/or biofilm formation.  The significance of this research is that antifungal 

resistance by C. albicans species will diminish due to the multi-targeted effect provided 

by several natural compounds acting synergistically or additively.  Additionally, potential 

synergists/additives that specifically protect against cellular adhesion or biofilm formation 

will be identified.  

2.3      Materials and Methods 

2.3.1    Preparation of C. albicans yeast stock culture 

Two C. albicans strains (SC5314 and A72) were obtained from Kenneth 

Nickerson, University of Nebraska-Lincoln. A stock culture was grown to the stationary 

phase in 500 ml of 5 g of yeast extract, 2.5 g of peptone, and 10 g of dextrose (YPD). 

The medium (25 ml) was then added to 125 ml Erlenmeyer flasks and a ½ loopful of C. 

albicans (A72 and SC5314), which was maintained on YPD agar for not more than 1 

month, was incubated in a shaking water bath at 30°C for 22 h (or until cells achieved 

stationary phase, i.e., no budding observed microscopically).  The cells were then 

washed three times with potassium phosphate buffer (pH 6.5) followed by centrifugation 

until a clear supernatant was obtained.  The ensuing pellet was then re-suspended in 7.5 

ml of phosphate buffered saline and maintained at 8-10 o C until use.     
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2.3.2      Treatment preparation. 

  Serum media (Atlanta Biological) was thawed at room temperature for 5 min, 

and then 5 ml was dissolved in 45 ml of potassium phosphate buffer (pH 6.5) prior to 

use.  Stock solutions of gallic acid (G), ferulic acid (F), sinapic acid (S), epicatechin (E), 

farnesol (FA), and þ-coumaric acid (C) were freshly prepared at 200 mM in 100% of 

ethanol until the solids had completely dissolved.  Alternatively, quercetin, catechin 

(CAT), and chlorophyll (CH) were diluted in 50:50 ethanol: water solution.  The natural 

compounds were prepared by diluting a freshly prepared stock solution such that the 

final delivery system was consistently 2% ethanol while the phenols and non-phenols 

ranged from 4.0-0.06 mM in eight 2-fold increments.  Ethanol (2%) was selected as the 

delivery system as preliminary experiments completed with this solvent were able to 

dissolve the phenols and non-phenolic compounds at the various concentrations utilized 

that did not prevent biofilm formation or cellular adhesion.  Methanol and dimethyl 

sulfoxide were also screened as potential delivery candidates.  However, methanol at 

most of the concentrations screened prevented adhesion and biofilm formation assays, 

whereas dimethyl sulfide quickly oxidized the phenols (data not shown).  

2.3.3   Biofilm/adhesion remediation treatments 

C. albicans strains (A72 and SC5314) were added at (5 x 106 cell per ml) to 

Immunol 2HB 96 well plates with each well containing 140 l serum.  The plates were 

covered with aluminum and incubated at 37 o C for 24 h.  The two different compounds 

that served as the treatments were added at final concentrations of 0.03 to 0.5 mM to 

determine the effects of the natural compounds on established adhered cells and biofilm 

formation, After the 24 h incubation, 60 l of a phenolic combination at various 

concentrations were added to each well.  Again, another set of wells that contained and 

did not contain the cells were delivered but only 60 l of 2% ethanol was added to serve 
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as the negative and positive control, respectively.  The plates were covered again with 

aluminum and incubated at 37 o C for 6 h.   

 2.3.4   Adhesion assay 

 The adhesion assay was performed according to Pierce et al. (2008).  Briefly, the 

medium from each well was carefully removed and 50 l of crystal violet was added to 

the wells.  The plates were covered again and incubated at room temperature for 45 

min. After incubation, each plate was rinsed gently with 400 l of ice cold water 5-10 

times.  The plates were inverted onto a paper towel to remove any non-adherent cells 

and water. The plates were then incubated for another 30 min at room temperature after 

adding 200 l of 75% methanol to each well. The absorbance was determined at 590 nm 

using a microtiter plate reader (Fazly et al., 2013).   

2.3.5   Biofilm assay 

  Biofilm formation was determined by using the (2,3-Bis-(2-Methoxy-4-Nitro-

5-Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide) XTT kit according to the 

manufacturer’s direction (Sigma-Aldrich). (The XTT kit consists of XTT labeling reagent 

and electron coupling reagent. This assay relies on yellow tetrazoluim XTT salt cleavage 

to an orange formazon dye by the active metabolic cells, which indicates the viable cells 

and is based on procedures cited by Pierce et al., 2008 & Sudjana, et al., 2012).  The 

XTT labeling reagent and electron coupling reagent were thawed in a water bath set at 

37 o C, and then 0.1 ml of electron coupling reagent was added to 5 ml of XTT labeling 

reagent to be activated prior to use. One hundred l of the XTT mixture was added to 

each well and incubated for 2 h. The absorbance was determined at 450 nm using a 

microtiter plate reader.   
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2.3.6   Percent Remediation calculations  

         Remediation of biofilm formation or C. albicans adhesion of already established 

films were defined as % remediation for both cases, which was determined by the 

following equation (Romano et al., 2009): 

        % Remediation = (Acontrol- Asample)/ (Acontrol)*100  

Where: Acontrol is the absorbance of cells without a treatment 

Asample is the cells with the treatment. 

2.3.7   Synergistic Interaction  

Synergism was determined by calculating the fractional inhibitory concentration. 

FICA is the activity of phenolic compound A in the presence of B/activity of phenolic 

compound B alone. FICB is the activity of phenolic compound B in the present of 

A/activity of phenolic compound A alone. The equation FICindix = FICA+FICB was used to 

determine if the compounds acted as synergists, additives or antagonists.  The synergist 

values were considered in the range of FICindix, whereas compounds with values <1, 0, 

or > 1 acted as synergists, additives or antagonists, respectively (Romano et al., 2009).  

2.3.8   Statistical analysis  

         The biofilm/adhesion experiments were completed on 4 replicates for each 

compound/concentration used and the time point monitored.  After data outliers were 

removed by the Grubs test at a 5% confidence interval, the final results were reported as 

the mean +/- standard deviation.  One-way ANOVA was used to determine whether the 

various treatments differed in terms of % remediation at 95% confidence interval (p < 

0.05) using Tukey’s honest significant difference. The statistical analyses were obtained 

with Stats Graphic Centurion XVI.1. 
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2.4   Results and discussion  

          2.4.1   Remediating C. albicans (A72 and SC5314) cellular adhesion in response to 

natural compounds:  

         C. albicans adhesion to a surface is the first in sequential steps to colonization and 

biofilm formation (Mayer et al., 2013) and thus must be considered the first line of attack 

when developing anti-candida drugs.   Yet, reports remain non-existent to our knowledge 

on discovering drugs that specifically remove Candida cells bound to a given surface, 

whether it be biological or synthetic, with the following exception.  After screening 30,000 

small molecules for their protective properties against several Candida virulence factors, 

Fazly et al. (2013) showed the number of bound cells established on a polystyrene 

surface for 4 h was reduced by 35-40% after 8 h of exposure to 50 M filastatin, but the 

results were not as effective as when the molecule was initially co-incubated with 

unbound Candida cells (% Inhibition = ~90%).   

The adhesive method for screening compounds used herein was administered to 

intact C. albicans cells.  As such, the compounds were able to directly interact with the 

cells, and thus act on various potential targets that include secreted cellular adhesives, 

the cell membrane, (either indirectly by transporting the compound into the cells and 

affecting internal pathways that cause adhesion, or directly by affecting the membrane 

wall), or as a signal transduction agent.   As secondary molecules in plants, phenols are 

expected to be potent ant-adhesive Candida agents due to their ability to complex 

proteins, disrupt microbial membranes, act as cell signaling agents, and provide anti- 

oxidative protection properties (directly and indirectly) (Papadopulou et al., 2005; 

Kanwala et al. 2010; Candiracci et al 2012; Brovo and Lazo; 1997; Hirasawa and 

Takada, 2004).    
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Yet, in our own lab (Chapter 1), 7 different phenols, which are ubiquitous 

throughout nature (gallic acid (G), ferulic acid (F), sinapic acid (S), p-coumaric acid (C) 

epicatechin gallate, (E) quercetin (Q) and catechin (CAT)), provided minimal or no 

benefits in reducing the quantity of C. albicans cells bound to a synthetic surface 

regardless of concentration, with the exception of CAT.  In fact, CAT was the most 

effective anti-fungal adhesive when applied to both of the two stains of C. albicans, A72 

and SC5314, used in this study compared even to C. albicans’s own quorum sensing 

molecule farnesol (FA), and chlorophyll (CH).  Chlorophyll is another molecule 

consumed throughout the world due to the intake of green plants that has also been 

shown to exert antimicrobial activities against C. albicans but has been studied for its 

cell growth prevention properties (Maedawa et al. 2007).  Yet, % remediation effects in 

response to CH and FA were highly variable (ranging from 0% to 40%) making an 

efficacious treatment for reducing bound C. albicans cells on a synthetic surface highly 

improbable.  Although catechin showed promise as an active anti-cell adhesive for C. 

albicans, it too would require further development due to it is wide range in providing 

protection (% remediation =10-50% (Chapter 1)).  

Limited studies have shown that complex phenolic-rich extracts impart greater 

health properties (synergism) than the sum of the individual components, as reviewed by 

Wagner and Ulrich-Merzenich (2009) and Mukherjee et al. (2011), especially when 

applied to remediation of Candida spp. cellular adhesion.   As a result, critical gaps in 

research remain on the synergistic effects of phenolics on Candida-based infections as 

well as other health related benefits. However, one such study was conducted by 

Ackland et al. (2005), who reported an antiproliferative effect caused by flavanols, i.e., 

quercetin and kaempferol, that acted synergistically to reduce the proliferation of human 

gut cancer cell lines (HUTI-80 and Caco-2) and a breast cancer cell line (PmC42). The 
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combinations of the two flavanols were more effective compared to the additive effect of 

each compound.  

In the context of our work, a synergistic effect between anti-Candida drugs (i.e., 

amphotericin and fluconazole) and phenolic compounds (caffeic acid, cinnamic and 

benzoic acids, thymol, and 2,3- and 2,5-dihydroxybenzaldehydes) has been reported 

(Faria, et al. (2011), Dai et al. 1987) to result in decreased cell growth. Another study 

targeted the suppression of the yeast-to-hyphae switch by using a flavonoid-rich honey 

extract (Canonicom 2014), which resulted in the inhibition of Candida albicans 

morphogenesis by modulating DNA and mitochondrial function. The authors proposed 

that the agents worked synergistically, considering that the standard phenolics identified 

in the extracts showed lower yeast-to-hyphae inhibition activities when tested as isolated 

compounds. However, these studies did not follow up on the synergistic hypothesis by 

confirming with isobolograms and/or calculating the FIC or focusing on the virulence 

factors cellular adhesion or biofilm formation.  For this study, the same 7 phenols (G, F, 

S, E, C, Q, CAT) and 2 non-phenols (CH and FA) used in isolation (Chapter 1) were 

screened for their potential as synergists to prevent C. albicans (SC5314 and A72) 

cellular adhesion and biofilm formation.  This section focuses on the former virulence 

factor.   

2.4.1a   Remediating C. albicans (A72) bound cells exposed to 2 natural 

compounds:  For these studies, the compounds previously cited were prepared in 

different combinations by preparing a given concentration using a 1:1 ratio for each 

natural product.  These combinations ranged from 0.03 to 4.00 mM and were then tested 

for their ability to remediate C. albicans (A72) cells adhered to a synthetic surface when 

incubated with the phenolic combinations for 6 h.  This time duration was selected so as 

to remain consistent with the studies performed with the isolated components (Chapter 
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1).  Only those combinations that, for the most part, showed cellular reduction greater 

than 50% at any concentration used are reported herein (Figure 2.1), albeit it must be 

noted that other phenolic sets were able to remediate cellular adhesion at percentages 

less than 50%.   

As the combinations did not produce statistically different remediation results at 

the cited concentrations, each were equally capable of detaching the bound cells despite 

compound structural differences and the compound combination, with the exception of 

the 0.5 mM treatments (Figure 2.1).  Only two of the seven phenols were a subset of 1 

combination, while the other phenols played a role in two of the treatment sets.  For 

example, CAT positively impacted remediation when combined with Q and C, while E 

altered adhesion when combined with either C or F These data may indicate that a given 

compound plays a different role within a combination compared to its counterpart, but 

the same when combined with another compound.  However, more studies are needed 

to test this hypothesis.  Interestingly, the non-phenolic compounds did not influence 

adhesion when combined with the phenolic compounds.  As both FA and CH  

.   
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 Figure 2.1:  Percent remediation of C. albicans (A72) treated with different sets of dual 
compounds. Each set of bars represents remediation results for cited compounds at the 
concentration specified for each set.  G-F: Gallic Acid -Ferulic Acid, S-Q; Sinapic Acid-Quercetin, 
E-C; Epicatechin- Coumaric Acid, CAT-Q; Catechin-Quercetin, CAT-C: Catechin-Coumaric Acid.  
(Different letters shown for a given compound combination for each treatment level indicate  
 statistical difference (p >0.05) in cellular adhesion). Bars represent the mean % remediation +/- 
standard deviation (n=4).   
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reduced adhesion when used as isolated compounds, these results were not expected 

and cannot be explained at this time. 

For concentrations 0.03 – 0.25 mM, % remediation ranged from a high of ~80% 

(CAT-Q at 0.25) to a low of 30% (E-C at 0.03 mM) accounting for variability (Figure 2.1).  

At a concentration of 0.50 mM, only the S-Q treatment resulted in a reduction of bound 

cells, while the other combinations showed no inhibition.  Percent remediation 

decreased for the majority of depicted treatment sets as well as the combinations 

that are not shown when the increasing concentration were used with several 

treatments even producing antagonistic effects (data not shown).  These results 

could be due to the fact that the additional carbon contributed to cell growth when 

serum is used as the transition media, as was determined by other unrelated 

experiments completed in our lab.  Alternatively, researchers have reported 

similar but atypical responses of cells exposed to low doses of pure natural 

agents as applied to number of responses (Kampa et al. 2004; Fimongnari, 2004; 

Yang et al. 2001, Daron and Casagrande, 2001, Zbasnik et al. 2010).  Generally, 

the lower dosage produced a positive response, while increasing dosages either 

worsen the response for select dosages or improved or worsened the response 

depending on the condition being tested.  For example, Zbasnik, et al. (2010) 

showed that low doses (< 100 g/mL) of grain sorghum dry distiller’s grain GS-

DDG, a co-product of ethanol production with high levels of lipids, was able to 

lower the proliferation of Caco 2 cells. Yet, at higher levels of GS-DDG (200-

400 g/mL) proliferation actually increased, but then growth decreased and then 

plateaued with GS-DGG concentrations of 500-1000 g/ml. Darbon and 

Casagrande (2001) attributed this low dose phenomenon to the ability of 

biological systems to compensate to lower levels of toxicity of a bioactive agent  



75 

 

 
but are unable to overcome this effect at higher treatment doses.  More studies 

are critically needed to understand this low-dose response as these results may 

have important clinical implications. 

        As a result, the dual treatments that produced the most potent results 

(Figure 2.1) were further analyzed to see whether significant differences occurred 

across treatment levels.  As shown by Figure 2.1 the only significant difference in 

terms of phenolic treatment levels occurred at 0.5 mM for all the combinations 

with the exception of S-Q.  Again, this could be due to the phenols acting on 

different targets for this combination compared to the other dual treatments. That 

being said, the lower levels (0.03-0.25 mM) were not statistically different across 

these dosages for any of the combinations (Figure 2.2), which may be caused by 

saturation of the active sites at concentration lower than 0.03 mM.    

However, as no significant difference occurred across combinations 

(Figure 2.1), the range of reduction of bound cells was 30-82%, which is high 

variability for treating cellular adhesion indicating that higher sample sizes may 

be needed to increase the signal to noise ratio so as to determine the optimal 

treatment option.  Also, use of phenols (whether singly or in combination) appears to 

yield inconsistent results in reducing cellular adhesion of C. albicans A72 from a 

bound surface, as using only 1 phenol was also highly inconsistent for mitigating 

adhesion (Chapter 1).  Yet, no combinations used at the ranges 0.03-0.25 mM 

resulted in negative remediation values, potentially making this approach the first 

line of attack in preventing biofilm formation.  



76 

 

   

 
Figure 2.2:  Percent remediation of C. albicans (A72) treated with different sets of dual 
compounds.  Each set of bars represents remediation results for cited compound ranging at 
specified concentration provided for each set.  G-F: Gallic Acid -Ferulic Acid, S-Q; Sinapic 
Acid-Quercetin, E-C; Epicatechin- Coumaric Acid, CAT-Q; Catechin-Quercetin, 
CAT-C: Catechin-Coumaric Acid.  (Different letters shown for a given compound  
combination for each treatment level indicate statistical difference (p >0.05) in cellular adhesion). 
Bars represent the mean % remediation +/- standard deviation (n=4). 
 

Table 2.1: Results of FIC index show the results of the two phenolic treatments 
 to remediate C. albicans (A2) cellular adhesion where FIC < 0.5 (synergistic), 0.5> FIC < 1 (partial synergy), 
 and FIC >1.0 (antagonistic).  

 G-F S-Q F-E CAT-Q CAT-C 

FIC      < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 

 
G-F: Gallic Acid -Ferulic Acid, S-Q; Sinapic Acid-Quercetin, E-C; Epicatechin- Coumaric Acid, CAT-Q;  
Catechin-Quercetin, CAT-C: Catechin-Coumaric Ac 
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This study further showed that that multiple combinations of dual phenols at low 

concentrations may be used sequentially to reduce established bound C. 

albicans for reasons that are not understood at this time.  However, Salamatullah 

(2018) and Aldawsari (2018) both showed that lower concentrations of phenols 

combined with the amylase and glucosidase inhibitor of acrobose acted 

synergistically to inhibit the breakdown of starch and disaccharides, thus 

protecting against risk factors for diabetics, but the responses were not linear in 

terms of dosages.   Another study completed in our laboratory by Columbanus 

(2018) further demonstrated the synergistic effect of phenols in modulating the 

macrophage phenotype with the lower doses again being the most effective but 

not in a dose dependent manner.  Of course, more studies are needed to test 

this hypothesis. Still, these compounds acted synergistically as expected given 

that they were unable to inhibit adhesion as isolated compounds, even at high 

concentrations of 4.0 mM (Chapter 1).  Calculation of the FIC confirmed these 

results as shown in Table 2.2.    

As stated previously, most of the compounds that reduced cellular 

adhesion in combination were unable to do so as isolated compounds (F, G, Q, 

C, and S).  Moreover, C and CAT that did impact adherence as single 

compounds (Chapter 1) showed relatively large variability making it difficult to 

determine their efficacy.  Therefore, it is clear that a synergistic interaction 

occurred to remediate this virulence factor for most of the combined compounds.  

Still, as isoblograms would be difficult if not impossible to construct considering 

that the single concentrations were unable minimally to reduce adhesion at any 
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concentration (Chapter 1), FIC values were calculated to provide additional 

evidence that the compounds interacted as synergists.  As shown in Table 2.1 all 

the FIC values were below 0.5 providing additional evidence that the each of the 

two compounds that were able to remediate adhesion interacted as synergists.    

          2.4.1b   Remediating C. albicans (SC5314) bound cells when concurrently 

exposed to 2 natural compounds:  Percent remediation of cellular adhesion in 

response to treatment with two phenols was also evaluated for C. albicans strain 

SC5314, to determine if the responses to the compounds differed with strain.  

Therefore, screening was again completed using different phenolic combinations 

and concentrations to ascertain the most potent phenol dual treatments and 

concentrations when using the 7 phenols and 2 non-phenolic compounds, as 

was done for C. albicans (A72).  As stated previously (Chapter 1) only three of 

the 9 compounds tested in insolation were able to detach bound C. albicans 

(SC5314), which included the non-phenols, FA and CH, and the flavonoid, CAT, 

at concentrations ranging from 0.06-0.5 mM that was accompanied with high 

variability. 

        In this study, 6 treatment groups were able to reduce cellular adhesion at 

levels greater than 50% when exposed at the lower concentrations tested (0.03 

to 0.25 mM).  Again, higher levels were unable to remediate adhesion, similar to 

that reported for C. albicans (A2) (data not shown).   At a concentration of 0.5 

mM, only S-Q exerted a % remediation of 52 +/- 18 %, while the other 

compounds were not effective at this concentration (Figure 2.3).  Moreover, the 

same phenolic combinations that also positively impacted  
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Figure 2.3:  Percent remediation of C. albicans (SC5314) treated with different sets of dual compounds. 
 Each set of bars represents remediation results for cited compound ranging at specified concentration 
 provided for each set.  G-F: Gallic Acid -Ferulic Acid, S-Q; Sinapic Acid-Quercetin, E-C;  
Epicatechin- Coumaric Acid, CAT-Q; Catechin-Quercetin, CAT-C: Catechin-Coumaric Acid.   
(Different letters shown for a given compound combination for each treatment level indicate  
statistical difference (p >0.05) in cellular adhesion). Bars represent the mean % remediation +/- standard deviation 
 (n=4).   
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C. albicans (A2) provided therapeutic responses (Figure 2.1 and 2.2).  This data 

suggest that the phenols are acting on similar targets for both strains. The effect 

of the phenols was not statistically different across compounds for 0.03-0.25 mM, 

with the exception of S-Q as discussed above.  In addition, E-C showed a 

statistical difference at 0.03 mM in comparison to the other treatments with a low 

of ~20%, even though the high was ~50%. The other phenolic combinations were 

statistically comparable resulting in % remediation that ranged from 35-75% 

(0.03 mM), accounting for variability.  At 0.06, 0.12 and 0.25 mM, the % 

remediation respectively ranged from 30-70%, 35-70% and 40-75%. These 

values are again similar to that obtained when the phenols were used to treat C. 

albicans (A72).   

          As expected from the previous data, there was no statistical difference for 

a given phenol set across concentrations of 0.03-0.25 mM except for CAT-Q 

(Figure 2.4).  In this case, the 0.03 mM concentration provided the optimal effect 

(70 +/- 2 %) but was not significantly different from the 0.12 mM (58 +/- 14 %) 

and 0.25 mM (65 +/- 5 %) treatments.  Alternatively, the 0.06 mM concentration 

(52 +/- 10 %) produced statistically different % remediation results than the 0.03 

mM treatment for synergistic effect of phenols in modulating the macrophage 

phenotype with the lower doses again being the most effective but not in a dose 

dependent manner.  Still, these compounds acted synergistically as expected 

given that they were unable to inhibit adhesion as isolated compounds, even at 

high concentrations of 4.0 mM (Chapter 1).  Calculation of the FIC confirmed 

these results as shown in Table 2.2. 
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Figure 2.4: Percent remediation of C. albicans (SC5314) treated with differ sets of dual 
compounds.  Each set of bars represents % remediation results for cited treatment levels ranging  

specified at for each compound dual.  G-F: Gallic Acid -Ferulic Acid, S-Q; Sinapic Acid-Quercetin, E-C; 
Epicatechin- Coumaric Acid, CAT-Q; Catechin-Quercetin, CAT-C: Catechin-Coumaric Acid.  (Different 
letters shown for \ a given concentration indicates statistical difference (p >0.05) in cellular adhesion). Bars 
show the mean % remediation +/- standard deviation (n=4).   

 

               
Table 2.2: Results of FIC index show the results of the two phenolic treatments to   
 remediate C. albicans (SC5314) where FIC < 0.5 (synergistic), 0.5> FIC < 1 (partial  
 synergy), and FIC >1.0 (antagonistic).   

 
 
 

G-F: Gallic Acid -Ferulic Acid, S-Q; Sinapic Acid-Quercetin, E-C; Epicatechin-Coumaric Acid, CAT-Q; 
Catechin-Quercetin, CAT-C: Catechin-Coumaric Acid 

 
 

 G-F S-Q F-E CAT-Q CAT-C 

FIC      < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 
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 To our knowledge, only our group has studied the effects of phenols across 

multiple concentrations, thus more work is needed to understand the mechanism 

behind this phenomenon.  Nonetheless, various phenolic combinations were able 

to reduce C. albicans (SC5314) adhesion (data not shown).  Although variability 

ranged from 30%-80%, this information is significant for developing products that 

combat this virulence factor as a means to prevent the formation of biofilms 

(Figure 2.3 and 2.4).  

2.4.2   Remediating C. albicans (A72 and SC5314) biofilm formation when 

concurrently exposed to 2 natural compounds: 

C. albicans infections have become a serious clinical problem due to the ability of 

C. albicans to produce biofilms on synthetic and biological surfaces.  Biofilms are not 

only more resistant to antifungal agents compared to the yeast form, but the antibiotic 

concentrations required to remediate biofilm formation are relatively high (Cerca et al,. 

2005).  In fact, Candida biofilm formation is a leading case of denture stomatitis 

development, which affects 65% of edentulous individuals (Brooun et al., 2000). C. 

albicans biofilms are extremely resistant to available antimicrobial agents, such as 

amphotericin B, chlorhexidine, nystatin, and fluconazole.  Several mechanisms of action 

that may lead to the biofilm antimicrobial resistance have been investigated, including 

changes of cytoplasmic membrane, growth rate, efflux pump of cell wall, and dispersion 

of drugs (Ultee et al., 2002; Walsh et al., 2003; Puupponen-Pimiä et al., 2005; Campos 

et al., 2009).  Nett et al., (2007) demonstrated that the changes on cell wall or matrix β 

1,3-glucans were associated with the development of C. albicans biofilm antifungal 

resistance because the β 1,3-glucans of biofilm cells were 2-fold higher in comparison to 

the planktonic cells.   
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Despite this resistance, several studies demonstrated the synergistic/additive 

increased potency of combining phenols combined with currently C. albicans resistant 

antibiotics (Chandra et al., 2001; Chandra et al., 2001; Kuhn et al, 2002; Kuhn et al, 

2002). For example, thymol, a monoterpenoid phenol derivative, combined with 

fluconazole antibiotic was able to reduce C. albicans (MTCC 227) biofilm formation after 

24 h of exposure to the treatments, with the minimum inhibition concentration (MIC) for 

reducing 90% of the film increasing from 0.2 mg /ml to 0.5 mg /ml (Pemmaraju et al., 

2013).  Yet, reports remain limited on the efficacy of phenolic compounds acting as 

synergists on remediating C. albicans biofilm formation.   In another study completed by 

Answari et al. (2019) the authors show that phenolic rich honey was able to disrupt the 

structure of established C. albicans biofilms (MIC = 40% w/v) by 70-75 % after an 

incubation period of 24 hr.   Yet these studies did not identify the phenols responsible for 

this effect or if the compounds acted synergistically or additively.   

However, in a study completed in our laboratory on the effects of isolated 

phenols on remediating biofilm formation, 4 of the 7 different phenols (G, F, S, and E 

used in the adhesion studies (Section 2.4.1) were able to remediate biofilm formation by 

C. albicans A72 and SC5314, ranging from 40-60% in comparison to flavonoids i.e., Q 

and E or non-phenolic compounds FA and CH, which exhibited low effect ~ 30 %.  

Therefore, to understand if these compounds were more potent in reducing biofilm 

formation when combined as couplets, the 7 phenolic compounds, G, F, S, E, C, Q, 

CAT, and 2 non-phenolic compounds, FA and CH, were investigated as potential 

synergistic agents for remediating C. albicans (SC5314 and A72) biofilm formation.   

2.4.2a   Remediating C. albicans (A72) biofilm formation when concurrently 

exposed to 2 natural compounds:  Different concentrations of the previously cited 

compounds were prepared using a 1:1 ratio of each natural product with the different 
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combinations again ranging from 0.03 mM to 4.00 mM to screen for their ability to 

remediate matured biofilm formation of C. albicans A72 upon the exposure to the natural 

products for 6 h.  Again, the 6 h incubation time was selected so as to be consistent with 

isolated compounds study (Chapter 1).  However, this incubation time also provided the 

most efficacious results based on a time course study using 1, 3, 6 and 24 h time points. 

The combinations that reduced biofilm remediation ~ > 30% are reported for this study 

rather than ~ 50% used for the adhesion studies, mainly as most of the combinations 

exhibited values at approximately this value (Figure 2.5).  Nonetheless, most of the 

tested combinations were able to decrease C. albicans biofilm formation at a given 

concentration, although less than 30%.  For most the treatments, there was no statistical 

difference across compounds regardless of concentration.   However, the highest 

reduction occurred for G-F at 0.03 mM, which was statistically different from the other 

compounds, exhibiting % remediation of 43% +/- 2 %, while the other combinations S-Q, 

F-E, E-C, CAT-Q, and CAT-CH ranged from 30-40%. For concentrations 0.06 and 0.12 

mM, biofilm formation was reduced by 25-37%, and 25-50%, respectively.  In terms of 

the 0.25 mM concentration, the highest inhibition occurred among the treatment for CAT-

CH, which was 37 +/- 7%.  This combination was statistically similar to all of the other 

compounds except for S-Q, which ranged in remediation from 23-33%.  Interestingly, S-

Q was again the only combination to reduce biofilm formation at 0.5 mM (30-40%), at 

which the other treatments showed no inhibition.  Notably, all the combinations that 

reduced biofilm formation were the same as those cited for the adhesion studies for both 

strains of C. albicans (A72 and SC5314) across concentrations.  This may be due to the 

fact that these compounds were able to detach the cells from the surface of the synthetic 

material thereby allowing lower biofilm formation and greater synergism in the similar 

compounds.  
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Figure 2.5:  Percent remediation of C. albicans (A72) treated with different sets of dual compounds. 

Each set of bars represents remediation results for cited compound ranging at specified concentration    

provided for each set. G-F: Gallic Acid -Ferulic Acid, S-Q; Sinapic Acid-Quercetin, F-E; Ferulic Acid- 

Epicatechin E-C; Epicatechin- Coumaric Acid, CAT-Q; Catechin-Quercetin, CAT-CH: Catechin-Chlorophyll. 

(Different letters shown for a given compound combination for each treatment level indicate statistical 

difference (p >0.05) in cellular adhesion). Bars represent the mean % remediation +/- standard deviation 

(n=4). 

 

 

 

 

 



86 

 

 

Again, the most potent duel treatments (Figure 2.5) were further analyzed to 

demonstrate if there were any significant differences across treatment levels (Figure 

2.6). Most of the phenolic treatments were able to mitigate C. albicans A72 biofilm 

formation at levels that showed no statistically significant difference despite different 

concentrations. However, G-F acted significantly different at different concentration 

levels as stated previously. The effect decreased to < ~ 40 % upon increasing the 

concentration to 0.06, 0.12, or 0.25 mM.  The phenol ferulic acid (F) played a positive 

role on remediating biofilm formation when it was combined with G, while F was less 

effective when combined with E, but E become more effective when combined with C. 

These results indicated that the compounds can perform distinct roles within a 

combination in comparison to its counterpart. It was obvious that at these concentrations 

0.06, 0.12, 0.25 mM, the response was not statistically different among phenolic 

combinations, which might be attributed again to the saturation of the active sites. The 

combinations and levels cited could be used for treating C. albicans A72 biofilm 

formation as the percent ranged ~ 28- 43 %. As shown in Chapter 1, using single 

phenols or compounds was not as effective in remediating biofilm formation. Therefore, 

the significance of these results is that the phenolics in a combination can ideally target 

C. albicans A72 biofilm formation on synthetic surfaces. The FIC value (Table 2.3) 

supports that the phenols act at least partially synergistically in exerting this response. 

(Isobolobograms were again not constructed for this experiment as the lower doses 

were more potent than the higher doses (0.5 mM – 4.00 mM) (data not shown).)  
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Figure 2.6:  Percent remediation of C. albicans (A72) treated with different sets of dual compounds. 
 Each set of bars represents remediation results for cited treatment levels ranging specified at for        

 each compound combination.  G-F: Gallic Acid-Ferulic Acid, S-Q; Sinapic Acid-Quercetin, F-E; Ferulic 

Acid-Epicatechin E-C; Epicatechin-Coumaric Acid, CAT-Q; Catechin-Quercetin, CAT-CH: Catechin-

Chlorophyll.  (Different letters shown for a given concentration indicates statistical difference (p >0.05) in 
cellular adhesion). Bars show the mean % remediation +/- standard deviation (n=4).   

 
Table 2.3: The FIC index shows the results of the two phenolic treatments to remediate   C.        
albicans (A2) where FIC < 0.5 (synergistic), 0.5> FIC < 1 (partial synergy), and FIC >1.0 
(antagonistic).   

               
 
 
 
 

G-F: Gallic Acid-Ferulic Acid, S-Q; Sinapic Acid-Quercetin, E-C; Epicatechin- 
Coumaric Acid, CAT-Q; Catechin-Quercetin, CAT-CH: Catechin-Chlorophyll 

 

 G-F S-Q F-E CAT-Q CAT-CH 

FIC  0.5> FIC <1 0.5>FIC < 1 0.5> FIC < 1 0.5> FIC < 1 0.5> FIC < 1 
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Phenolic compounds as antimicrobial agents have been shown to alter the 

physiological surfaces, surface charge, and cytoplasmic membrane of cells.  For 

example, the addition of G to F increased the cell hydrophilic properties of P. aeruginosa 

bacteria, while the same combination increased the hydrophobic properties for L. 

monocytogenes. This effect was attributed to the addition of G to the cells; whereas F 

had a lower impact on modulating the physiological surfaces (Borges et al., 2013). 

Moreover, 100 µg/ml of G-F was reported to damage 60% of cytoplasmic cell 

membranes of P. aeruginosa bacteria.  Due to cell membrane damage, the intracellular 

K+ was released (Borges et al.,2013). The antibacterial hydroxybenzoic acids, such as 

G, are more polar than hydroxycinnamic acids, i.e., F and C, which enable these 

molecules to be more easily transported through the cell membrane (Campos et al., 

2003; Nohynek et al., 2006).  This phenomenon may partially explain the high 

remediation in both the biofilm formation and adhesion (Section 2.3.1) of G-F, and the 

type of microorganisms and the chemical nature of cell membranes are also factors that 

might affect their ability to reduce biofilm formation (Borges et al., 2013). Moreover, 

another study performed with catechin demonstrated that the number of hydroxyl groups 

on the B-ring was associated with its antimicrobial activity (Kajiya et al., 2004). 

Therefore, the structural function of these compounds has impacted the antimicrobial 

activity and thereby their mode of interaction with the C. albicans biofilm formation. 

2.4.2b   Remediating C. albicans (SC5314) biofilm formation when concurrently 

exposed to 2 natural compounds:  The effect of the treatment of two phenols in a 

combination on remediating C. albicans (SC5314) was also determined to see whether 

the responses would vary based on strain. The same combinations that were screened 

previously on remediating the A72 biofilm were applied with the exception of CAT-CH. 
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Instead, CAT-C was used because it showed more potency than CAT-CH. As shown 

(Chapter 1), these 7 phenols and 2 non-phenolic compounds have exposed a sort of 

remediation as isolates. Only G, F, S, and E were capable of treating biofilm formation 

when tested alone at low concentrations (0.03- 0.05 mM). However, the high variability 

in percent remediation, ranging from ~ 40 to > 70%, hinders their use as anti-biofilm 

treatments. Therefore, six treatment combinations were evaluated for their ability to treat 

biofilm formation of SC5314 at concentration levels ranging 0.03-0.5 mM.  Again, 0.5 

mM concentration did not result in any reduction for any treatments with the exception of 

S-Q, which exhibited a remediation of 20.06 +/- 6% (Figure 2.7). At the lowest 

concentration, 0.03 mM, CAT-C was significantly different from F-E and E-C, while the 

other combinations were not different from one another. Specifically, CAT-C exposure 

resulted in high percent of remediation (38.03 +/- 4%) while FE gave 19.54 +/- 2 % and 

EC gave 15.49 +/- 2 % at 0.03 mM. The phenolic treatment E-C trended differently at 

0.25 mM than CAT-C and F-E, whereas the later combinations were statistically similar. 

Percent remediation was ~ 40 ± 7% CAT-C, while the remediation effect decreased to 

34.8 ± 1% for F-E and 12.87 ± 4% for E-C at 0.25 mM. Again, E revealed a positive 

remediation effect when combined with F and C.  However, at the higher concentration 

of 0.12 mM, E contributed a different impact in combination with either C and F. These 

results again indicated that the compounds could elicit different responses within a 

combination rather than its counterpart and it may be the same upon combining with 

another compound. It should be noted that C had low impact (~ 6% 0.06 mM) on 

remediating C. albicans SC5314 when tested alone (Chapter 1). 
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Figure 2.7:  Percent remediation of C. albicans (SC5314) treated with different sets of dual compounds. 

Each set of bars represents remediation results for cited compound ranging at specified concentration    

provided for each set.  G-F: Gallic Acid -Ferulic Acid, S-Q; Sinapic Acid-Quercetin, F-E; Ferulic Acid- 

Epicatechin, E-C; Epicatechin- Coumaric Acid, CAT-Q; Catechin-Quercetin, CAT-C: Catechin-Coumaric 

Acid. (Different letters shown for a given compound combination for each treatment level indicate 

statistical difference (p >0.05) in cellular adhesion). Bars represent the mean % remediation +/- standard 

deviation (n=4). 
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On the other hand, most of the treatment combinations were not significantly 

different among concentrations (Figure 2.8), with exception of S-Q was significantly 

different at 0.5 mM, while the other combinations did not exhibit any remediation effect. 

Also, S-Q at 0.5 and 0.06 mM was trending differently since it exhibited percent inhibition 

ranging from a low 20.09 +/- 6% and a high of 30.78 +/- 2%, respectively. 

The combination of E-C trended differently among concentrations, and the 

percent remediation ranged from a low of ~12 +/- 4 % at 0.25 mM to a high of ~ 30 +/- 

4% at 0.06 mM. Interestingly, CAT-C was not statistically similar to E-C. it elicited a 

remediation effect that ranged from a low of 26.96 ± 6 % at 0.12 mM and a high of 38 +/- 

4 % at 0.03 and 0.06 mM to ~ 40 +/- 7 % at 0.25 mM.  Also, the FIC values were 

calculated to determine whether the combinations act as synergistic/antagonistic or as 

additives (Table 2.4). All the FIC values were 0.5> FIC <1 which provides more evidence 

that these treatment combinations act at least as partial synergists to remediate C. 

albicans SC5314 biofilm formation.  

The data indicated that these combinations were more highly effective in treating 

cellular adhesion of C. albicans SC5314 and A72 in comparison to biofilm formation. 

Several factors might explain the high antifungal resistant of C. albicans biofilms 

because biofilm is a 3D structure that consists of yeast, hyphae, and pseudohyphae 

bounded by exopolymer matrix (mainly carbohydrates and proteins) (Kumamoto et al., 

2005). These exopolymers provide a protection of the structure of biofilm by hindering 

antifungal invasion to immune system components (LaFleur et al., 2006). A 

subpopulation of highly tolerant cells (persister) produced by C. albicans biofilm is 

proposed to be responsible for the high resistance because these cells are able to grow 

in the presence of antifungal drugs and under different concentrations higher than MIC 

(LaFleur et al., 2006). However, more studies are needed to confirm this hypothesis 
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relative to the strains which were used. Moreover, it was noted that membrane sterol 

alteration could account for biofilm antifungal resistance and altering the membrane 

characteristics thereby reducing the drug permeability (Kumamoto et al., 2005). For 

example, amphotericin B targets ergosterol to alleviate mature biofilms, azoles hinder 

the biosynthesis of ergosterol, (Mukherjee et al., 2003; Garcia et al., 2004; Kumamoto et 

al., 2005) and echinocandins prevent cell wall β-glucan biosynthesis (Datry et al., 2006).  

In studies performed with þ-coumaric, caffeic, p-hydroxybenzoic, protocatechuic, vanillic, 

and syringic acids; and thymol, eugenol, and carvacrol, these compounds increased the 

permeability of the cell cytoplasmic membrane causing cell constituent (proteins, nucleic 

acids, and inorganic ions such as potassium or phosphate) leakage (Ultee et al., 2002; 

Walsh et al., 2003; Puupponen-Pimia et al., 2005; Campos et al., 2009). 
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Figure 2.8:  Percent remediation of C. albicans (SC5314) treated with different sets of dual compounds. 
 Each set of bars represents remediation results for cited treatment levels ranging specified at for        

 each compound dual.  G-F: Gallic Acid -Ferulic Acid, S-Q; Sinapic Acid-Quercetin, F-E; Ferulic Acid- 

Epicatechin E-C; Epicatechin- Coumaric Acid, CAT-Q; Catechin-Quercetin, CAT-C: Catechin-Coumaric 

Acid.  (Different letters shown for \ a given concentration indicates statistical difference (p >0.05) in cellular 
adhesion). Bars   show the mean % remediation +/- standard deviation (n=4).   

 
Table 2.4: Results of FIC index show the results of the two phenolic treatments to remediate C.  
albicans (A2) where FIC < 0.5 (synergistic), 0.5> FIC < 1 (partial synergy), and FIC >1.0 
(antagonistic). 

 G-F S-Q F-E CAT-Q CAT-C 

FIC  0.5> FIC < 1 0.5> FIC < 1 0.5> FIC < 1 0.5> FIC < 1 0.5> FIC < 1 

                       G-F: Gallic Acid -Ferulic Acid, S-Q; Sinapic Acid-Quercetin, E-C; Epicatechin-  
                       Coumaric Acid, CAT-Q; Catechin-Quercetin, CAT-C: Catechin-Coumaric Acid 
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Another study demonstrated that the action of p-coumaric and ferulic acid as 

antibacterial agents was due to dynamic alteration of phospholipid chains (Ota et al., 

2011). Also, (-)-epigallocatechin gallate caused fluorescent probe calcein leakage due to 

formation of large pores on the lipid membranes (Tamba et al.,2007). The phenolic 

compounds can be acting on multiple targets explained herein thereby remediating 

biofilm formation. Another study demonstrated that the synergistic effect of 

epigallocatechin-gallate combined with the antifungal agents (itraconazole or 

ketoconazole) was caused by blocking the ergosterol biosynthesis pathway (Navarro- 

Martinez, et al., 2006). Also, several studies reported that the synergistic effect of 

phenolic compounds (i.e. curcumin) with fluconazole against C. albicans occurred 

because of high production of ROS, which induced apoptosis (Sharma et al., 2010; Fu et 

al., 2011). Therefore, this study focused on studying the synergistic potential of 

phytochemical compounds on remediating C. albicans biofilm formation. This information 

is significant for developing natural interventions alternative to current antifungal 

approaches. However, more studies are needed to explain the mechanism of action and 

how these compounds interact with C. albicans to elicit such an effect. 
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Chapter 3 
Coumaric Acid and Ferulic Acid Present in Supina Grass Interact Synergistically 

to Remediate Adhesion and Biofilm Formation of Candida albicans (A72 and 

SC5314)  

3.1   Abstract  

Candida albicans cells’ adhesion to a surface, whether mammalian or synthetic, 

is the first step in its pathogenic phase followed by a morphological change from 

the yeast to hyphae phenotype (the virulent state). Moreover, C. albicans biofilm 

formation is becoming a common occurrence on catheters and other types of 

intravenous devices, which if not surgically replaced, can lead to life threatening 

systemic infections.  Yet, resistance is increasing to limited anti-fungal agents 

currently used to combat these Candida virulence factors.  Therefore, the 

objective of this study was to determine the potential synergistic interplay of the 

phenols present in supina grass to remediate the adhesion and biofilm formation 

of C. albicans (A72 and SC5314). An extract of supina was prepared and 

characterized for phenolic content, which confirmed the presence of primarily 

ferulic, coumaric, and lower levels of caffeic acids.  The extract was then used to 

treat cell adhesion and biofilm formation established by C. albicans (A72 and 

SC5314) at incubation times of 1, 3, 5 and 24 h and 4 concentrations ranging 

from 0.72-7200 ng/g.  The extracts were able to remediate cellular adhesion and 

biofilm formation for both C. albicans strains at time points 3 and 6 h by 50-70% 

at primarily the lower dosages and were mostly effective at all the doses, but not 

in a dose dependent manner.  Upon combining the extract with different phenol 

levels of ferulic and coumaric acids, C. albicans adhesion and biofilms were 

induced even further, i.e., 50-70%, (6 h incubation.  Moreover, these compounds 

acted synergistically with the grass matrix based on calculation of the fractional 

inhibitory values, which were below 0.5.   
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Keywords: Candida, phenols, synergism, biofilm formation, cellular adhesion  

3.2      Introduction 

 

Candida albicans inhabits the gastrointestinal tract as a typical benign 

commensal member but can become an opportunistic pathogen when the host 

microflora is compromised (Teodoro et al.,2015).  Candida infections (candidiasis) can 

be life threatening, particularly in individuals who are critically ill, (immunodeficiency 

syndrome, hematological malignancy) causing mortality rates of over 30-40% (Morgan et 

al., 2005). Adhesion to a surface, whether biological or synthetic, is the first step in its 

pathogenic phase followed by a morphological change from the yeast to hyphae 

phenotype (the virulent state) (Han et al., 2011).   

Moreover, C. albicans biofilm formation is becoming a common occurrence on 

catheters and other types of intravenous devices, which if not surgically replaced, can 

lead to life threatening systemic infections (Nobile et al.,2006; Bauter et al., 2002).  The 

estimated costs of treating such infections exceed a billion dollars a year in the United 

States alone (Miller et al., 2001).  The increasing C. albicans infection rate has been 

attributed to the emergence of strains resistant to commonly used antifungal agents.  

Moreover, considering that infectious diseases are causing ever increasing mortality 

rates among the human population, pathogens appear to have a greater ability to 

transform and attain resistance to antimicrobial drugs (Sakagami et al., 2002; 

Nascimento et al.,2000) thereby necessitating the development of innovative and 

multiple targeted anti-fungal agents.  

Phenolic compounds present in grasses (such as supina) may exert such anti-

fungal properties due to their ability to complex proteins, disrupt microbial membranes or 

act as cell signaling agents (Papadopoulou et al., 2005; Hirasawa et al., 2004).  In fact, 

as secondary components in plants, these compounds function as antifungal and 
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antibacterial agents to provide natural protection. As such, plants have been used to 

treat and prevent diseases over thousands of years.  Reports have shown the health-

promoting benefits of plant phenolics even though their mechanisms and mode of 

actions are not fully understood (Maciel, 2006).  However, such research will require an 

interdisciplinary approach due to the rich levels of phenols present in our environment 

coupled with their chemical diversity, which in turn affects their solubility, stability, 

desolation and absorption, which all influence their release that potentially affects 

antimicrobial potency (Negri et al., 2014).  Additionally, as phenolic compounds are 

largely available in all of plants, and thus typically consumed as a part of large matrix in 

our diets, it is a challenge to identify their specific health-promoting benefits, but such 

compounds have properties that protect against cellular oxidation, cellular inflammation, 

energy dysfunctions, cancer, heart disease, diabetes, to name a few identified in the 

studies conducted thus far. In particular, phenols have been effectively used as 

antimicrobials in multiple studies (Alzoreky et al., 2003; More et al., 2008; Shinobu et al., 

2011; Pessini et al., 2003; Tempone et al., 2008; Rajeh et al.,2010; Kumar et al, 2005). 

Although most of these studies have been conducted in with isolated phenols, humans 

consume a richly diverse composition of phenols on a daily basis via plant-based food 

intake.  As such, it is only reasonable to hypothesize that phenols from plants act 

together to provide their health benefits, and thus the development of novel drugs from 

these components should take this approach (Wagner and Ulrich 2009).  

The Poaceae or grass family is among the most abundant and renewable plant 

families on the planet that may offer a novel source of phenols (Margorie et al., 1999; 

Thompson & Thompson, 2010; Odey et al., 2012).  The cereal species in particular 

(corn, rice, and wheat) are staple foods that are widely consumed on a global basis, and 

these species have been recognized as the primary nutraceutical sources within the 
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Poaceae family (Thompson and Thompson, 2010). However, Poa supina is also an 

interesting species among grass family due to its turf characteristics and it is a native 

species to the European Alps (Leinauer, et al., 1997).  Despite its potential to contain 

chemically diverse phenols, the supina grass is typically disposed of in the landfills as 

grass clippings.  Therefore, the objective of this project is to determine the ability of a 

supina extract to remediate C. albicans (A2 and SC5314) colonization and possible 

synergistic interactions of the phenols present in this plant.  Thus, an extract of supina 

was characterized for the presence of multiple components, including the phenols, to 

provide a point of reference of its composition pending a positive impact.   Moreover, this 

grass was selected as it is easy to cultivate in short time span thereby providing 

sustainability as a source of extractable phenols from a drug-related perspective. Also, 

natural plant extracts have demonstrated a superior metabolic power, which might be 

attributed to the balance of phenolics present in plant extracts (Ray et al., 2004).  As a 

result, it is expected that this project will provide information on whether this sustainable 

co-product stream could be a source of anti-fungal phenol synergists and if a more 

complex matrix of enriched phenols is more effective in targeting C. albicans virulence 

phenotypes. 

3.3   Materials and Methods 

3.3.1   Supina grass extraction  

Supina grass was provided by Dr. Roch Gaussoin from the Agronomy and 

Horticulture Department at the University of Nebraska-Lincoln. Clippings of the grass 

were sequentially extracted with 25:75 water:methanol followed up by 75:25 water: 

methanol, 25:75 water:ethanol followed up by 75:25 water: ethanol and ethanol using 

the same pellet after each extraction in order to recover the chemically diverse 

polyphenols.  Approximately 0.5 g of finely ground supina grass was extracted with 10 
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ml of a solvent for ~ 1 h and centrifuged for 15 min. The supernatant was collected, and 

the pelleted residue was extracted with the next solvent. Each supernatant was analyzed 

for total phenols, flavonoids, anthocyanins, chlorophyll, and then the values were added 

to obtain the final concentrations. 

3.3.2   Total phenols 

     Total phenolic content of the extract was determined by the Folin-Ciocalteu 

method (Singleton and Rossi 1965). Extract aliquots (100 µl) were treated with 100 µl 

Folin-Ciocalteu reagent and 4.5 ml of nanopore water. After 3 min of mixing, 0.3 ml of 

2% (w/v) sodium carbonate was added and the samples were incubated at room 

temperature for 2 h with intermittent shaking. The absorption at wavelength 760 nm was 

measured with a Beckmen Coulter DU 800 Spectrophotometer (Fullerton, CA).  The 

sample data was expressed as the means +/- standard deviation calculated to mg gallic 

acid equivalent g-1 GT (dry weight). 

3.3.3   Total flavonoids  

 Total flavonoids were determined by the method according to Adom and Liu 

(2002). Extracts (125 µl) with proper dilution was added to 37.5 µl of 5 % (w/v) sodium 

nitrite and 0.625 ml of nanopore water. After 4-6 min of incubation at room temperature, 

75 µL of 10 % (w/v) aluminum chloride was added to the sample. Following an additional 

5-7 min of incubation, 0.25 ml of 1.0 M sodium hydroxide and 0.4 ml nanopore water 

were added to the mixture. The samples then were vortexed and monitored at 510 nm. 

Total flavonoids were expressed as mg catechin equivalents g-1 grass clipping (dry 

weight) of triplicate analyses.  

3.3.4   HPLC profile  

The extracts were hydrolyzed following Devananad et al., (2006) by weighing 

200 mg of sample into 50 ml conical plastic tubes. 2 N Sodium hydroxide was added (5 
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mL) in water containing 10 mM EDTA and 1% ascorbic acid followed by thorough 

mixing.  After the mixture was stirred for 30 min at 40 to 45 o C, 1.4 ml of 7.2 N 

hydrochloric acid in water were added and vortexed for 10 s. The free phenolics were 

extracted from the samples by adding 6.4 mL of ethyl acetate and centrifuged at 3000 

rpm until a clear supernatant was obtained. The organic layers were transferred to 

another 50 ml tube, and the extraction was repeated again, and the extracts combined. 

The extracts were dried under a steady stream of liquid nitrogen until the residue was 

completely dried, which was then diluted in 1 ml of methanol: water (80:20) and vortexed 

3 times at 30 s per vortex to dissolve the residue. The samples were filtered through 

PVDF syringe filter (0.45 µm) and analyzed by HPLC.  

Phenolic profiling was completed on extract that showed high potency by using a 

reverse-phase HPLC system coupled with a C18 column (5 µm, 250 x 4.6 mm) and a 

photo-diode array detector.  The method reported by Lin et al. (2008) was adopted for 

resolving the phenolic acids. In brief, the mobile phase consisted of a combination of A 

(0.1% formic acid in water) and B (acetonitrile) with a flow rate of 1 ml/min. The gradient 

was varied linearly from 10–26% B (v/v) in 40 min, to 65% B at 70 min, and finally to 

100% B at 71 min and held at 100% B to 75 min maintaining a flow rate of 1 ml/min. The 

UV-vis spectra from 190 to 650 nm was collected using a photodiode array detector.  

The resolved peaks were identified and quantified with external standards and 

expressed as the mean +/- standard deviation of µg per g of clipped grass for triplicate 

analyses.    

3.3.5       Preparation of C. albicans yeast stock culture 

 C. albicans strains (SC5314 and A72) were obtained from Kenneth Nickerson, 

University of Nebraska-Lincoln. A stock culture was grown to the stationary phase. i.e., 

no visible budding was observed which was typically 24 -30 h post inoculation, in 500 ml 
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of yeast extract (5 g), peptone (2.5 g), dextrose (10 g) medium (YPD). Aliquots of the 

media (25 ml) were then added to 125 ml Erlenmeyer flasks, along with a ½ loopful of C. 

albicans (A72 and SC5314) which had been maintained on YPD agar. The inoculated 

flasks were incubated in a shaking water bath at 30°C for 22 h (or until cells achieved 

stationary phase, i.e., no visible signs of budding).  The cells were then washed three 

times with potassium phosphate buffer (pH 6.5) followed each time with centrifugation 

until a clear supernatant was obtained.  The ensuing pellet was then re-suspended in 7.5 

ml of PBS and maintained at 8-10 o C until use.     

3.3.6   Virulent cell induction and treatment 

  Serum media from Atlanta Biological was thawed at room temperature for 5 min, 

and then 5 ml of the serum was dissolved in 45 ml of potassium phosphate buffer (pH 

6.5) prior to use. The 25:75 and 75:25 methanol and ethanol extracts were combined, 

and 1.5 ml was concentrated under a steady stream of liquid nitrogen. After the sample 

was completely dried, the residue was dissolved in 1 ml of 100% ethanol as a stock 

solution. Different concentrations (0.72, 7.2, 72, 720, and 7200 ng/g) of the extracts were 

prepared by re-diluting in 2% ethanol.  The stock solutions of þ-coumaric and ferulic 

acids were prepared by preparing 300 mM of each phenol in 100% of ethanol until the 

solids had completely dissolved. Then, the concentrations of 0.03, 0.06, 0.125, 0.25, 0.5, 

1, and 3 mM were prepared by diluting the stock solution into 2% ethanol. Preliminary 

experiments were completed that showed an organic solvent was needed to ensure 

complete solvation of the phenols.  Methanol at any concentration affected the adhesion 

and biofilm formation assays, while ethanol at concentrations below 2% did not hinder 

induction of the two virulence factors (data not shown).    
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3.3.7   Remediation experiments 

C. albicans strains (A72 and SC5314) were added at 5 x 106 cell per ml in each 

well of Immunol 2HB 96 well plates containing 140 l serum. The plates were covered 

with aluminum and incubated at 37 o C.  After the 24 h incubation, 60 l of the extracts at 

a given concentration that ranged from 0.72-7200 ng/g were added to each well. The, 

the plates were covered again with aluminum and incubated at 37 o C for 6 h.  Adhesion 

and biofilm remediation were analyzed at 1, 3, 6 and 24 h.  The 6 h point was selected 

for further analysis as preliminary studies showed cellular adhesions and optimal biofilm 

formation occurred at this time point.     

3.3.8   Adhesion assay 

 The adhesion assay was performed according to Pierce et al. (2008).  Briefly, 

the media from each well was carefully removed and 50 l of crystal violet was added to 

the wells.  The plates were covered again and incubated at room temperature for 45 

min. After incubation, each plate was rinsed gently with 400 l of ice cold water 5-10 

times.  The plates were inverted onto a paper towel to remove any non-adherent cells 

and water. The plates were then incubated for another 30 min at room temperature after 

adding 200 l of 75% methanol to each well. The absorbance was determined at 590 nm 

using a microtiter plate reader (Fazly et al., 2013).  

3.3.9   Biofilm assay 

  Biofilm formation was determined by using the (2,3-Bis-(2-Methoxy-4-Nitro-

5-Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide) XTT kit according to the 

manufacturer’s direction (Sigma-Alorich). (The XTT kit consists of XTT labeling reagent 

and electron coupling reagent. This assay relies on yellow tetrazoluim XTT salt cleavage 

to yield an orange formazan through the active metabolic cells, which indicates the 

viable cells; the method is based on procedures cited by Pierce et al., 2008 & Sudjana, 
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et al., 2012).  The XTT labeling reagent and electron coupling reagent were thawed in a 

water bath set at 37 o C, and then 0.1 ml of electron coupling reagent was added to 5 ml 

of XTT labeling reagent to be activated prior to use. The XTT mixture (100 l) was added 

to each well and incubated for 2 h. The absorbance was determined at 450 nm using a 

microtiter plate reader. 

3.3.10   Percent Remediation calculations  

         Remediation of biofilm formation or C. albicans adhesion in already established 

films were defined as % remediation for both cases, which was determined by the 

following equation (Romano et al., 2009): 

        % Remediation = ((Acontrol- Asample)/(Acontrol))*100  

Where: Acontrol is the absorbance of cells without a treatment 

Asample is the cells with the treatment. 

3.3.11   Synergistic Interaction  

Synergism was determined by calculating the fractional inhibitory concentration 

FICA, which is the activity of phenolic compound A in the presence of B/activity of 

phenolic compound B alone. FICB is the activity of phenolic compound B in the present 

of A/activity of phenolic compound A alone. The equation FICindex =FICA+FICB was used 

to determine if the compounds acted as synergists, additives or antagonists.  The 

synergist values were considered in the range of FICindex, whereas values <1, 0, or > 1 

indicated synergists, additives or antagonists, respectively (Romano et al., 2009).  

3.1.12   Statistical analysis  

  The biofilm/adhesion experiments were completed on 3-9 replicates for each 

treatment/concentrate used and the time point monitored.  After data outliers were 

removed by the Grubs test at a 5% confidence interval, the final results were reported as 

the mean +/- standard deviation of the one-way ANOVA, which was used to determine 
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whether that various treatments differed in terms of % remediation at 95% confidence 

interval (p < 0.05) using Tukey’s honest significant difference. Grass clipping 

characterization analyses were completed in triplicate and the results expressed as the 

mean +/- standard deviation. The statistical analyses were obtained with Minitab 17. 

3.4       Results and discussion  

Several studies have been conducted on the antimicrobial activity of plant 

extracts.  For example, extracts from Ruta graveolens and Zingiber officinale, used in 

Asia, exhibited an inhibitory effect against Bacillus cereus strains (Alzoreky et al., 2003). 

In another study, extracts of six plants from South Africa (Annona senegalensis, 

Englerophytum magalismontanum, Dicerocarym senecioides, Euclea divinorum, Euclea 

natalensis, and Parinari curatellifolia were tested against human oral cavity pathogens, 

such as Actinobacillus actinomycetemcomitans, Actinomyces naeslundii, Actinomyces 

israelii, Candida albicans, Porphyromonus gingivalis, Prevotella intermedia and 

Streptococcus mutans; E. natalensis showed some inhibitory effect against C. albicans 

in a disc diffusion assay (More et al., 2008).  

Moreover, several types of plant extracts demonstrated antimicrobial activity 

against Candida, including those from Curcuma zedoaria, Psidium guajava, Plectranthus 

amboinicus, Aristolochia cymbifera, Plectranthus barbatus, Lippia alba, Hydrocotyle 

bonariensis, Hydrocotyle bonariensis, Justicia pectoralis var. stenophylla, Herreria 

salsaparilha, Mentha X piperita, Eleutherine bulbosa, Baccharis trimera, Calamintha 

adscendens, Albizia inundata, Bauhinia forficata, Cymbopogon citratus, Plectranthus 

grandis, and Euphorbia hirta (Shinobu  et al., 2011; Pessini et al., 2003; Tempone et al., 

2008; Rajeh et al.,2010). A study by Polaquini et al. (2006) showed the effect of a crude 

extract of Neem (Azadirachta indica) on inhibiting Candida adhesion; however, it did 

discuss Candida biofilm formation inhibition. Crossandra infundibuliformis and Labisia 
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pumila extracts also demonstrated potential in inhibiting Candida spp growth and 

filamentous antifungal activity (Madhumitha et al., 2011; Karimi et al., 2013).  The 

extracts also showed from Bauhinia racemosa showed antimicrobial activity against 

Candida albicans (Kumar et al, 2005). 

A study demonstrated a high anti-adherent potential of Schinus terebinthifolius 

and Croton urucurana extracts on in vitro C. albicans biofilm formation (Barbieri et al., 

2014). The dried bark of Acacia catechu was also able to suppress microbial growth and 

enhance the immune system to face the invading antigens of organisms.  Acacia 

catechu has shown potency as antimicrobial agent due to its taxifolin and active 

chemical ingredients including catechin, epicatechin, epigallocatechin, epicatechin 

gallate, and quercetin (Lakshmi et al., 2006). 

 Strawberry, raspberry, and cloudberry extracts demonstrated potential effect on 

suppressing C. albicans growth (Liisa et al., 2006).  Another study investigated the effect 

of propolis on C. albicans virulence factors.  Propolis is a substance from plant sources 

collected by honeybees that yielded dramatic reduction of C. albicans adhesion, yeast-

mycelial conversion, and hyphae length at 0.22 mg/ml. (D’auria et al., 2003). Common to 

these studies is the use of plant extracts, which all contain phenolic compounds and 

chlorophyll.   Phenolic and flavonoid compounds have been associated with the potential 

of plant extracts to act as antimicrobial agents. A study by Rauha et al., (2000) reported 

that purple loosestrife (Lythrum salicaria) extract was very active against Candida 

albicans, while white birch (Betula pubescens), pine (Pinus sylvestris) and potato 

(Solanum tuberosum) extracts significantly inhibited the gram-positive bacterium 

Staphylococcus aureus.  However, although grasses are the most abundant plant in the 

world, studies related to their ability to protect against C. albicans virulence factors, 

among other health promoting benefits, are non-existent to our knowledge, which has 
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made supina grass one of the most underutilized agriproducts in modern medicine 

(Wenger, 2011).  

3.4.1   Characterization of Supina Grass 

          3.4.1a:  Total Phenols:  Phenolic compounds such as ferulic, caffeic, p-

hydroxybenzoic, protocatechuic, p-coumaric, vanillic, and synergic acids are typically 

present in cereal grains (Cowan, 1999). These phenolics are present as conjugates, 

bound with sugars, fatty acids, or proteins (White and Xing, 1997). In this work, total 

phenols of supina grass extracts were quantified by Folin-Ciocalteu method. The result 

indicated that total phenolic content of supina grass extracts was 0.96 ± 0.05 mg/g, 

shown in Table 1. In a study by Wenger (2011), the total phenolic content of supina 

grass was 0.89 ± 0.13 mg/g.  These differences may be attributed to the extraction 

methods used as preliminary data shown in our lab have shown that even the solid to 

water ratio substantially affects the phenolic level. 

3.4.1b:  Total Flavonoids:   Flavonoids are polyphenolic compounds that are also 

abundant in the plant kingdom, and mainly include flavones, flavonols, and anthocyanins 

(Papadopoulou et al.,2005). They are known for several biological activities with an 

emphasis on their antioxidant properties as they can scavenge free radicals, chelate 

reactive metals, activate antioxidative enzymes such as super oxidase dehydrogenase, 

or inhibit pro-oxidant enzymes, such as xanthine oxidase (Wegner, 2011; Havsteen, 

1983; Bylka et al., 2003). Flavonoids possess health promoting properties and may be 

considered a health promoter, which has the potential to prevent or treat human chronic 

diseases (Bylka et al., 2003). There is a growing interest of flavonoids’ antipathogenic 

properties due to the increasing resistance of pathogens to available drugs (Wegner, 

2011). Therefore, in this study total flavonoids present in supina grass extracts were 

determined and the results showed that extracts contained 0.49 ± 0.01 mg/g (Table 3.1). 
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3.4.1c:  HPLC Profile:  A reverse-phase HPLC system was used for identification and 

quantification of phenolic compounds present in supina grass extracts (Table 3.1 and 

Figure 3.1). The most abundant phenols were caffeic acid (2.3 ± 0.03 mg/ g), coumaric 

acid (1.592 ± 0.09 mg/ g) and ferulic acid (2.8699 ± 0.09 mg/ g).  In another study, ferulic 

acid was the most predominant phenolic in supina grass extracts, which supports our 

results (Wegner, 2011). However, ferulic acid quantities were lower in the latter study 

(30.9 ± 1.99 mg/100 g). 
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Table 3.1: Total Phenolics content (TPC), Total Flavonoids (TFC), Ferulic acid, 
Coumaric acid, and Caffeic acid content. 

 

TPC 0.96±0.05 mg/g 

TFC 0.49±0.01 mg/g 

Ferulic acid 2.8699 ± 0.09 mg/g 

Coumaric acid 1.592 ± 0.09 mg/g 

Caffeic acid  2.3 ± 0.03 mg/g 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

 
 
Figure 3.1: HPLC Chromatogram showing peaks of (1) Caffeic acid, (2) P-coumaric acid, and 
(3) Ferulic acid at 23 mg/100 ml, 159.19 mg/100 ml, and 286 mg/100 ml, respectively. 
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3.4.2   Effect of Supina grass extracts to remediate C. albicans (SC5314 and A72) 

cellular adhesion: 

Use of plants as traditional medicines that can potentially prevent and treat 

diseases has been a common practice in antiquity but has increased in intensity during 

the modern age (Chaudhari et al., 2016; Silva et al., 2010; Cowan, 1999).  In terms of C. 

albicans infections, herbal approaches are an ideal strategy to prevent cell pathogenicity 

and thus control biofilm formation due to the biodiversity of plants, cost-efficiency and 

sustainability. Indeed, studies completed in our laboratory showed that phenols are more 

potent in combination (Chapter 2) than the sum of the individual components (Chapter 

1).  Therefore, supina grass may be a promising, underutilized agro-product for reducing 

adherence of already established C. albicans cells to several surfaces (Barbieri et al, 

2014) and thus offer a potentially novel alternative to currently used anti-adhesion 

approaches while averting resistance to such treatments (Martins et al.,2015).   

Therefore, in the present work, the remediation effect of a supina grass extract 

was determined at four time points (1, 3, 6 and 24 h) using five different concentrations 

(0.72, 7.2, 72,720, and 7200 ng/g).  The effectiveness of the extracts was analyzed by 

statistically comparing the four time points that showed remediation at a given 

concentration (Figures 3.2 and 3.4) and a given time point across concentrations 

(Figures 3.3 and 3.5) for two strains of C. albicans, A72 and SC5314. 

3.4.2a   Remediating C. albicans (A72) cellular adhesion:  In the case of C. 

albicans (A72), % remediation of cellular adhesion was significantly different among time 

points at the given concentrations (P>0.05) (Figure 3.2). At the low concentration of 0.72 

ng/g, the % remediation was significantly high (> 50% at 6 h) and decreased  
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Figure 3.2: Effect of supina grass extracts on remediating C. albicans 

(A72) cellular adhesion 1, 3, 6, and 24 h post exposure of a given treatment concentration. 
Each point and vertical bar represent the mean ± standards deviation of three replicates. The bars within 

the same time having different letters are significantly different, p < 0.05.  
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significantly to -14.27% by 24 h.  Additionally, reduction of cellular adhesion at 3 and 24 

h were significantly different when the cells were exposed to 0.72 and 72 ng/g. The 3 h 

incubation with the 72 ng/g treatment exerted a high of 54.89 %, while the remediation 

decreased significantly to 21.28% by 24 h. When the concentration increased to 72 ng/g, 

the cellular adhesion was significantly different at 24 h relative to 3 and 6 h but were the 

latter they were not statistically different from one another.  Percent remediation at 24 h 

was the lowest at 20.90%, while the effect at 3 and 6 h was much higher: 52.92 and 

50.62%, respectively. The % remediation at 1 h was significantly different from that at 

the other time points at 7200 ng/g, which resulted in a remediation effect of -28.69%. 

The results indicated that the 1 h exposure to 7200 ng/g and 24 h to 0.72 ng/g of the 

extract has the lowest effect on remediating cellular adhesion to C. albicans A72 cells.  

The values obtained from these time points most likely were due, in part, to the high 

variability as evidenced by the large error bars (Figure 3.2), as the results were 

significantly similar at least for the 0.72 ng/g extract for time points 1, 3 and 24 hr.  

Cellular adhesion can be difficult to interpret as it is not uncommon to have imprecise 

results when monitoring this effect.   This could be due to the different targets that may 

be affected by the compounds or the assay itself.      

Figure 3.3 shows the differences between each time point across different 

concentrations.  Remediation at the highest concentration, 7200 ng/g, and 1 h (-28.69%) 

was significantly different from that at any other concentration or time point. However, 

the reactions produced in response to different concentrations of extracts were not 

significantly different among time points, which ranged from low of ~ - 28 % to a high of 

> 50%.  Again 1 h (7200 ng/g) and 24 h (0.72 ng/g) had high variability among 

concentrations (Figure 3.3).  
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Figure 3.3: Effect of supina grass extracts on remediating C. albicans 
(A72) cellular adhesion at diffrent concentration (0.72,7.2, 72,720, 7200 ng/g). 

Each point and vertical bar represent the mean ± standards deviation of three replicates. The bars within 

each response concentration having different letters are significantly different, P< 0.05. 
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As was confirmed by HPLC analysis shown in Figure 3.2, supina extracts 

contained high quantities of phenolic compounds including coumaric (C), ferulic (F), and  

caffeic acid, which are hydroxylated derivatives of cinnamic acid, but the hydroxyl 

groups’ numbers and position on the aromatic ring and substitution type results in 

potential differences on phenolic characteristics (Borges et al.,2013).  

Phenolic antifungal extracts target the fungal membrane and its components as a 

common mechanism of action (Martins et al., 2015).  Jothy et al. (2012) investigated the 

anticandidal mechanism of action of methanol extract of Cassia fistula. The extracts 

entered and disrupted the plasma membrane. The extracts accumulated in the plasma 

membrane, which caused mitigation of cell growth. Several studies support that F, CA, 

and C effectively mitigated fungal infections by disrupting the cell cytoplasmic 

membrane. (Campos et al,2009; Walsh et al., 2003; and Ultee et al., 2002).  

3.4.2b   Remediating C. albicans (SC5314) cellular adhesion:  In contrast to C. 

albicans strain A72, the % remediation of C. albicans SC5314 cellular adhesion was 

significantly similar among time points at concentrations 0.72, 720 and 7200 ng/g. For 

example, these concentrations detached established adhered cells by percentages of 

30.24, 54.54, and 32.11 at 24 h; 47.12, 49.99, and 47.88 at 1 h; 55.86, 52.59 43.80 at 3 

h; and 47.88, 46.33, and 47.29 at 6 h respectively (Figure 3.4). The responses produced 

when incubated for 24 h were significantly different from 1 and 3 h, while the latter time 

points were similar at 7.2 ng/g (24 h). When the concentration increased to 72 ng/g, 

incubation at 24 h was significantly different from 3 and 6 h, causing a reduction of 

bound cells by 42.65 % (Figure 3.4). Clearly, the time points affected the two strains 

differently (Figures 3.2 and 3.4). While the 1 h and 24 h were not as effective on 

remediating C. albicans A72 cellular adhesion, these time points were effective on 

alleviating cellular adhesion of SC5314 with higher % remediation and less variability. 
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Figure 3.4: Effect supina grass extracts on remediating C. albicans 
(SC5314) cellular 1,3,6,24 h post exposure of a given treatment concentration. 

Each point and vertical bar represent the mean ± standards deviation of three replicates. The bars within 
the same treatment time having different letter are significantly different, p < 0.05.  
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These results indicate that extracts may be acting on different targets. The 

adhesion responses were statistically similar for each time point across concentrations 

(Figure 3.5), except the efficacy at 0.72 and 7200 ng/g were different at 24 h, i.e., 30.24 

and 54.54 % at 0.72 and 7200 ng/g, respectively. Different concentrations acted similarly 

for the two strains at each time points and efficient. Only the 0.72 and 7200 ng/g were 

not effective at alleviating cellular adhesion of A72 at 24 and 1 h of exposure, 

respectively.  

As plant extracts are the focus of many clinical applications due to their high 

numbers of bioactive molecules, which might show synergic or antagonistic, and diverse 

effects and in turn neutralize or reduce side effects and toxicity, supina grass shows 

efficacy at detaching bound C. albicans cells from synthetic surfaces at ng/g levels.  In 

some cases, incubation time periods do contribute to differences in the degree of 

potency, but for the most part % remediation is consistent at approximately 30-50%.   

Using supina grass may also prove to useful for human health purposes, as plant 

extracts tend to target symptoms directly, which lessens side effects and toxicity and 

thus promote nutritional balance (Martins et al., 2015).   Moreover, supina grass may be 

effective for treating infection by other species/strains of Candida, as the study by 

D’auria et al., (2003) demonstrated the efficacy of the plant source (propolis) at 0.22 

mg/ml to reduce hyphal transition of the following Candida strains: C. albicans, C. 

glabrata, C. tropicalis, C. guilliermondii, C. parapsilosis, C. krusei, C. humicola, and C. 

intermedia.  Such studies could have important ramifications for the effects of supina 

grass in mitigating Candida cellular adhesion.  Of course, more studies are needed to 

test this this hypothesis.   
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Figure 3.5: Effect of supina grass extracts on remediating C. albicans 
(SC5314) cellular adhesion at different concentration (0.72,7.2, 72,720, 7200 ng/g). 

Each point and vertical bar represent the mean ± standards deviation of three replicates. The bars within 

each response concentration having different letter are significantly different, (p < 0.05).  
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3.4.2a    Remediating C. albicans (A72) biofilm formation:  The extracts were 

analyzed further by comparing the four time points that showed remediation at a given 

concentration (Figures 3.6 and 3.7) and a given time point across concentrations 

(Figures 3.8 and 3.9) for C. albicans (A72 and SC5314). For C. albicans A72, after 

incubation with the supina grass, only the 24 h time point resulted in different responses 

among concentrations as % biofilm remediation ranged from a low -0.29 % (7.2 ng/g) to 

high of 11.93 % (0.72 ng/g). As the concentration increased to 7.2 ng/g, 24 h had a low 

of ~ -0 % (24 h) (Figure 3.6).  

Moreover, at a 72 ng/g dosage, the responses ranged from a low of 14.85% (24 

h) to a high of 44.46% (3 h), and the 1 and 3 h trend were different at the same 

concentration, i.e., with a % remediation of >40 % (3 h) and ~ 17 % (1 h). Again, it is 

clear that incubation for 1 and 24 h was not as efficient as incubation for 3 and 6 h at 

remediating biofilm formation by C. albicans A72, similar to the case reported for cellular 

adhesion remediation (Figure 3.2 and 3.4).  

Figure 3.7 demonstrates the effect of different concentrations on remediating 

biofilm formation at the various treatment incubation times for C. albicans (A72).  The 

concentrations performed similarly at mitigating biofilm formation at the 6 h incubation 

period, which ranged from a low 21.65 % (0.72 ng/g) to a high of 33.06 % (7200 ng/g). 

The % remediation was significantly different for biofilms exposed to the supina grass 

extracts after 3 h, with the 720 ng/g dosage exhibiting a biofilm reduction of < 50 %, 

while the 7200 ng/g resulted in a > 50 % remediation effect.  Also, the low concentration 

of 0.72 ng/g elicits < 30 % remediation.  
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Figure 3.6: Effect supina grass extracts on remediating C. albicans 
(A72) biofilm formation 1, 3, 6, and 24 h post exposure of a given treatment concentration. 

Each point and vertical bar represent the mean ± standards deviation of three replicates. The bars within 
the same time having different letter are significantly different p < 0.05.  
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  Figure 3.7: Effect of supina grass extracts on remediating C. albicans 

(A72) biofilm formation at different concentration (0.72,7.2, 72,720, 7200 ng/g). Each point and vertical bar 

represent the mean ± standards deviation of three replicates. The bars within each response concentration 

having different letter are significantly different, p < 0.05. 
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After 24 h of exposure to the 7200 ng/g treatment, the biofilm decreased by > 40 

%, which was different than the lowest concentrations that were able to impact the 

biofilm reduction. These results indicated that supina grass extracts can potentially act 

as efficient antifungal agents. The extracts at the different concentrations were able to 

remediate biofilm remediation more effectively than cellular adhesion at 1 and 24 h in C. 

albicans A72. This remediation action is strongly attributed to the cinnamic derivatives 

(CA, F, and C), which are commonly present with other polyphenolic compounds with 

higher overall antioxidant capacity (Cowan, 1999).  As proposed by Borges et al (2013) 

the compounds that exert high antioxidant capacity to scavenge free radicals also 

represent high antimicrobial activity (Borges et al., 2013), as the harm caused by 

microbes is due in part by their ability to release abundant reactive oxidative species.   

3.3.3b   Remediating C. albicans (SC5314) biofilm:  In the case of strain SC5314, 

the % remediation was significantly different among time points.  Case in point, the 24 h 

exposure treatments were not similar to 1 and 3 h, which in turn were statistically 

different from one another (Figure 3.8). Also, the 1 h incubation time was  
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       Figure 3.8: Effect supina grass extracts on remediating C. albicans 
(SC5314) biofilm 1,3,6,24 h post exposure of a given treatment concentration. 

Each point and vertical bar represent the mean ± standards deviation of three replicates. The bars within 
the same time having different letter are significantly different, p<0.05.  

 
 
 

                                  
 

 

 

 

 

 

 

 

-20

-10

0

10

20

30

40

50

60

1h 3h 6h 24h

%
 R

e
m

e
d

ia
ti

o
n

Grass concentration (ng)

Remediation of C.albican (SC5314) Biofilm

0.72 7.2 72 720 7200

b

a

bc c

b

a

b
b

c

a

a

bc

a

b
bc

a

ab

ab

b



128 

 

statistically differently from 3 and 6 h (720 ng/g), and from 24 h (7200 ng/g).  It should be 

noted that 3 and 6 h were the most effective times to reduce established biofilms 

produced by the SC5314 C. albicans strain among concentrations.  Accordingly, 1 h is 

not enough time to allow penetration into cells to alter biofilm formation or to act directly 

upon it structure, while after 24 h extracts also lose their activity to influence the biofilm 

formation as % remediation declined relative to the 3 and 6 h time points.   

As depicted in Figure 3.9, the differences between each time point among the 

different concentrations showed that 72, 720, and 7200 ng/g exhibit different responses 

at 1h: 7.58. 13.66, and 32.47%, respectively. When the time responses increased to 3 

and 6 h, the concentrations elicited similar responses, which ranged from 30% to > 47% 

(3 h) from ~25 to~ 31% (6 h). However, 0.72 ng/g exhibited a different response among 

other concentrations that ranged from a high of 45% (3h) to a low of ~ 4 % (24 h). The 

extracts were more efficient at remediating C. albicans SC5314 cellular adhesion (> 

50%) than biofilm formation, which was < 50 %. The inability to remediate C. albicans 

SC5314 biofilm formation that might be due to other substances present in the extracts. 

However, this hypothesis needs further investigation.    

. 
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       Figure 3.9: Effect of supina grass extracts on remediating C. albicans 
(A72) biofilm formation at different concentration (0.72,7.2, 72,720, 7200 ng/g). 

. Each point and vertical bar represent the mean ± standards deviation of three replicates. The bars within 

each response concentration having different letter are significantly different, p < 0.05. 
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Supina grass extracts have shown a potential to remediate C. albicans (SC5314 

and A72) cellular adhesion and biofilm formation via different means.  Nonetheless, the 

extracts significantly remediated cellular adhesion for both strains more effectively than 

biofilm formation.  Indeed, the extracts were effective on remediating cellular adhesion 

for most time points and concentrations. For biofilm formation, the 24 and 1 h 

incubations were the least effective, particularly at low extract concentrations for both 

strains.  

3.2.5   Synergistic effects of phenolic compounds with supina extracts combined with 

phenols on remediating C. albicans (A72 and SC5314) 

Herbal efficacy is often described as being due to the chemically diverse 

components present in the natural system, which are distinct in concentrations and 

constituents. Thus, these components may act synergistically or additively to contribute 

to such a positive effect (Junio et al., 2011).  The literature has demonstrated that 

mixtures of phytochemicals have a high capacity of acting as synergists rather than in 

isolation (Spelman et al., 2006; Wagner, 2009). Therefore, in this study, supina grass 

extracts were combined with ferulic (F) and coumaric (C) acids because they are the 

main phenolics identified in this system. Five concentrations of supina extract (0.72, 7.2, 

72, 720, and 7200 ng/g) were combined with four concentrations of F and C (0.03, 0.06, 

0.13, and 0.25 mM) that showed effectiveness in reducing adhesion and biofilm 

formation either as isolated components (Chapter 1) or when combined with another 

phenol (Chapter 2). The 6 h response time was studied because it shows the maximum 

remediation effect in most of the cases.  

3.2.4a   Synergistic remediation of C. albicans (A72) celluar adhesion: When 

supina grass extracts were prepared at the different concentrations used previously 

were combined with the most predominant phenols present in the extraction (F and C), 



131 

 

significant differences on the remediation effect occurred (P>0.05) (Figure 3.10). The 

percent remediation ranged from 66.69 % (7200 ng/g /0.03 mM) to 72.47 % (7.2 

ng/g/0.03 mM) for supina grass - C and from 46.76 % (7200 ng/g /0.03 mM) to 56.23 % 

(7.2 ng/g/0.03 mM) supina grass – F. Upon increasing the concentration of phenols C 

and F to 0.06, the two compounds started to trend the same at the low concentrations of 

the supina grass (0.72 and 7.2 ng/g).  

Increasing the concentration of phenols to 0.13 mM in the mixture of supina 

grass (7.2, 720, and 7200 ng/g) resulted in percent remediations of 52.77, 48.49, 50.92 

supina grass-F to 71.66, 65.55, 68.15% supina grass-C respectively.  However, the 

addition of supina grass extract at small concentrations exerted high % remediation > 70 

% in comparison to high concentrations of extracts (720, 7200 ng/g), which exhibited < 

70 % remediation for supina grass-C, and > 50% for supina grass-F.  These results 

demonstrated the strongest potential of C on disrupting the cytoplasmic membrane of 

cells causing ion leakage and proton influx, and potentially reducing cell viability 

(Campose et al., 2009).   

Most importantly, however, these results showed the synergistic interaction with 

supina grass and the phenols as most of combinations were able to statistically able to 

inhibit the cellular adhesion at greater levels than when the phenols are not present at 

the quantities cited.  The FIC values also show that a synergistic effect is occurring 

between the extract and the phenol of interest, as all were below 0.5.   Similarly, 

punicalagin is a small component identified from Punica granatum fruit peel extracts, 

which showed a synergic effect as antifungal agent against C. albicans (ATCC 10231) 

upon combination with fluconazole for 24 h with 0.25 FIC (Endo et al., 2011).   
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Figure 3.10: Effect of supina grass extracts combined with isolated ferulic and coumaric acid (SEC 
and SEF) on remediating C. albicans (A72) cellular adhesion 6 h post exposure at a given treatment 

concentration. Each point and vertical bar represent the mean ± standards deviation of three replicates. 
The bars within each compound having different letter are significantly different P<0.5. 
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3.2.4b   Remediating cellular adhesion of C. albicans (SC5314):  For C. albicans 

SC5314, the two compounds supina extract - C and supina extract-F were not 

statistically different among the concentrations screened (P>0.05). Supina extract - C 

and supina extract-F exhibit percent remediation > 70 %. However, the two compounds 

trended differently (P< 0.05) (Figure 3.11) upon combing 7.2 and 7200 ng/g of supina 

extract with 0.06 mM of C and F. The remediation effect ranged from 54.60 to 64.80 % 

(SEC) and from 66.69 % to 73.97 % (SEF) respectively. The bioactive compounds might 

be responsible for the high remediation effect against C. albicans SC5314, and again the 

synergistic effect exerted by the phenols, as evidenced by the FIC values, but F or C did 

not contribute more than the other in remediating cellular adhesion in C. albicans 

(SC5314) indicating again different mechanisms of action between the two strains, which 

thus have to be taken into consideration when developing a suitable treatment for these 

virulent effects. 

3.2.4c.   Remediating biofilm formation of C. albicans (A72):  C. albicans A72 

demonstrated similar remediation effects among compounds supina extract- C and 

supina extract-F extract at concentrations tested (Figure 3.12), which ranged from ~ 20 

% to < 40% for supina extract- C, while remediation by supina extract-F ranged from 

12% to > 50%. However, the biofilm remediation effect trended differently at some of the 

concentrations as 0.72 and 72 ng/g /0.03 mM exhibited ~ 19% (supina extract- C), > 

50% (supina extract – F) >20 (supina extract-C), and ~ 45% (supina extract – F), 

respectively.  The addition of 0.06 mM C and F to 72 and 7200 ng/g SE showed a low of 

~ 23 to a high of 37.64 % when treated with supina extract- C and a low of ~ 9% to a 

high of 21.45% remediation effect when exposed to supina extract-F, respectively. As 

the concentrations  
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Figure 3.11: Effect of supina grass extracts combined with isolated ferulic and coumaric acids (SEC 
and SEF) on remediating C. albicans (SC5314) cellular adhesion 6 h post exposure at a given treatment 

concentration. Each point and vertical bar represent the mean ± standards deviation of three replicates. 
The bars within each compound having different letter are significantly different, P<0.05. 
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of supina extract- C and supina extract- F increased to 7200 ng/g and 0.13 mM, the 

remediation effect was significantly different as reduction was respectively 37.04% and 

~6%.  

In a study performed on demonstrating the antimicrobial activity of olive mill 

wastewater (OMW) in combination with phenolic compounds including ascorbic acid, 

tyrosol, protocatechuic acid, vanillic acid, caffeic acid, gallic acid, ferulic acid, and p-

coumaric acid, results indicated that these combinations demonstrated complete 

reduction of gram-positive (Streptococcus pyogenes and Staphylococcus aureus) and 

Gram-negative bacteria (Escherichia coli and Klebsiella pneumoniae); also, the extracts 

and phenolic compounds had synergic effect (Tafesh et al., 2011). In support of this 

data, a study completed using Plantago major extract and a combination of its two major 

compounds (aucubin and baicalein) demonstrated strong alleviation of C. albicans 

biofilm formation in dose-dependent manner (Shirley et al., 2015).   

3.2.4d   Remediating biofilm formation of C. albicans (SC5314):  The remediation 

potential of supina extract - C and supina extract - F were statistically different in the 

case of C. albicans SC5314 (P< 0.05). Supina extract - C showed a high percent of 

remediation that ranged from ~ 29 % to > 50 % at the concentrations tested (Figure 

3.13). On the other hand, supina extract - F exhibited low percent biofilm remediation 

ranged from ~ 9 % to ~ 26 %. These results again demonstrated the high efficacy 

induced by the addition of C to supina extract comparison to F.  
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Figure 3.12: Effect of supina grass extracts combined with isolated ferulic and coumaric acids (SEC 
and SEF) on remediating C. albicans (A72) biofilm formation 6 h post exposure at a given treatment 

concentration. Each point and vertical bar represent the mean ± standards deviation of three replicates. 
The bars within each compound having different letter are significantly different, P<0.05. 
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Figure 3.14: Effect of supina grass extracts combined with isolated ferulic and coumaric acids (SEC 
and SEF) on remediating C. albicans (SC5314) biofilm formation 6 h post exposure at a given treatment 

concentration. Each point and vertical bar represent the mean ± standards deviation of three replicates. 
The bars within each compound having different letter are significantly different, P<0.05. 
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3.5   Conclusions:   

Supina grass extracts were the most effective on remediating the two strains of 

C. albicans, SC5314 and A72, cellular adhesion and biofilm formation at an incubation 

time of 3 and 6 h. However, upon combining the extracts with C or extracts with F, the 

remediation effect of cellular adhesion and biofilm formation was higher than 50 % in 

comparison to biofilm formation remediation (< 50 %), which indicates that the phenols 

and extracts were acting synergistically, as also supported by the FIC <0.5. Therefore, 

the significance of this study is that a sustainable co-product stream could be used as a 

source of anti-fungal agents with phenol synergists most likely playing an important role.  

Moreover, as complex matrix, supina grass-enriched phenols or phenols extracted from 

this natural system may be more effective in targeting C. albicans virulence phenotypes 

and also acting on multi-targets thereby aiding in preventing resistance to a potentially 

novel anti-fungal agent.  
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Summary  

The overall objective of this study was to screen the ability of several selected 

isolated phenolic compounds to remediate virulence factors: cellular adhesion and 

biofilm formation of two strains of C. albicans (A72 and SC5314), using synthetic 

surfaces; to study the synergistic effect of a combination of phenolic compounds 

targeting C. albicans adhesion and biofilm virulence factors; and to determine the 

potential synergistic interplay of the phenols within a complex matrix, using supina turf 

grass extracts to remediate C. albicans virulence. 

Several isolated phenolic compounds were screened for their ability to remediate 

C. albicans (SC5134 and A72) 6 h post cellular adhesion. Among the 7 phenolic 

compounds and 2 non-phenolic compounds tested only catechin (CAT), chlorophyll (CH) 

and farnesol (FA), were able to reduce A72 cellular adhesion. At the low concentration 

range (0.5- 0.06), results were not statistically different, indicating that the three 

compounds could be used at these low concentrations but the efficacy of each would not 

be consistent. CAT exhibited a % remediation of > 50% at 2.00 mM. However, these 

compounds were not statistically different among concentrations.  

Unlike A72, the percent remediation of C. albicans (SC5314) cellular adhesion 

was not significantly different among these compounds at the low concentrations 0.06-

0.25 mM, but CAT did vary at 0.05 and 1.00 mM compared to CH and FA at these 

concentrations, but then all three compounds were similar at the high concentrations of 

2.00-4.00 mM. Obviously, the compounds act upon the two strains differently. The mid-

concentrations (1.00 and 2.00 mM) were more effective in reference to C. albicans 

SC5314, strain while the higher concentrations were the most efficacious on remediating 

the cellular adhesion of C. albicans, A72. 
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On the other hand, the isolated compounds (G, F, S, E, Q, C, CAT, CH and FA) 

were able to remediate C. albicans A72 biofilm formation. The phenol Q trended 

differently from the other phenolic compounds at >1.00 mM.  At concentrations > 1.00 

mM, Q, CAT, CH and FA started to trend differently from the other molecules in most 

cases with the exception of 4.00 mM. It must be noted that FA, CAT, and CH were the 

least effective at remediating C. albicans A72 biofilm. These results most likely are due 

to the structure-function effect of the compounds and thereby their mode of interaction 

with the C. albicans biofilm formation.   

Again, the compounds G, F, S, E, Q, C, CAT, CH and FA were able to reduce 

the formation of the corresponding biofilm in the case of C. albicans, strain SC5314 at 

low concentrations (0.5-0.06 mM). Then, the compounds Q, CAT, CH, and FA, started to 

trend differently at high concentrations > 1.00 mM. The compounds G, F, S, and E were 

effective on remediating biofilm formation of SC5314 by > 50 %. 

The same 7 phenols (G, F, S, E, C, Q, CAT) and 2 non-phenols (CH and FA) 

used in isolation (Chapter 1) were screened for their potential as synergists to remediate 

C. albicans (SC5314 and A72) 6 h post cellular adhesion and biofilm formation. Each of 

the combinations (G-F, S-Q, F-E, E-C, CAT-Q, and CAT-C) were equally capable of 

detaching the bound cells despite compound structural differences and the compound 

combination in the case of C. albicans A72. However, only the CAT-Q treatment resulted 

in a remediation of cellular adhesion at 0.50 mM. The compound CAT- Q was optimal on 

remediating cellular adhesion of A72 (30-82 %).  

Again, the 6 treatment groups were able remediate cellular adhesion of SC5314 

at levels greater than 50% when exposed to the lower concentrations tested (0.03 to 

0.25 mM). Only S-Q exerted a % remediation of 52 +/- 18 % AT 0.5 mM. Similar to A72, 

CAT-Q provided the optimal effect (70 +/- 2 %) 0.03 mM but was also significantly similar 
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for the 0.12 mM (58 +/- 14%), and 0.25 mM (65 +/- 5%) 0.25 mM treatments. These 

combinations were acting synergically to remediate cellular adhesion of SC5314 and 

A72 with FIC < 0.5.  

The same combinations used for the adhesion reduced biofilm remediation ~ > 

30%. The highest reduction occurred for G-F at 0.03 mM, which was statistically different 

from the other compounds exhibiting % remediation of 43% +/- 2 % (G-F), while the 

other combinations S-Q, F-E, E-C, CAT-Q, and CAT-CH ranged from 30-40%. For 

concentration 0.06, 0.12, and 0.12 mM, biofilm formation was reduced by 25-37%, and 

25-50%, respectively.  In terms of the 0.25 mM concentration, the highest inhibition 

occurred among the treatment for CAT-CH, which was 37 +/- 7%.  The combination S-Q 

was again the only combination to reduce biofilm formation at 0.5 mM (30-40%), at 

which the other treatments showed no inhibition.   

In the case of SC5314, CAT-C exposure resulted in high percent of 38.03 +/- 4% 

remediation among the treatments at 0.03 mM (low remediation was achieved by FE 

and EC at 0.03 mM, 19.54 +/- 2 % and 15.49 +/- 2 % at 0.03 mM, respectively). The 

phenolic treatment, E-C trended differently at 0.25 mM than CAT-C and F-E, whereas 

the later combinations were statistically similar. Percent remediation was ~ 40 ± 7% with 

CAT-C, while the remediation effect decreased to 34.8 ± 1% for F-E and 12.87 ± 4% for 

E-C at 0.25 mM.  The data indicated that these compounds act at least partially 

synergistically as the value of FIC was 0.5<FIC >1. These results are significant in the 

development of potential antifungal drugs to remediate C. albicans SC5314 and A72 

virulence factors including cellular adhesion and biofilm formation. However, the 

mechanism of action needs to be further investigated to provide clear understanding. 

Supina grass extracts were characterized in term of phenolic and flavonoid 

content, with total phenolic content 0.96 ± 0.05 mg/g and total flavonoid content 0.49 ± 
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0.01 mg/g, respectively. HPLC profile showed that supina extracts contain caffeic acid 

2.3 ± 3.32 mg /g coumaric acid 1.59.19 ± 9.2 mg / g, and ferulic acid, 2.86 ± 9.43 mg/ g. 

Supina extracts were effective at remediating cellular adhesion of A72 and SC5314 at 3 

and 6 h by > 40% at concentrations tested (0.72- 7200 ng/g). On the other hand, 

remediation of biofilm formation of the two strains of C. albicans was lower (< 40 %) at 

the same time points. Upon combining the extracts with ferulic or coumaric acids, the 

remediation effect ranged from 50 to > 70% for remediating cellular adhesion for both 

strains, and the result indicated that they act synergically (FIC <0.5). however, 

remediation of biofilm formation for both strains was < 40 % comparison to cellular 

adhesion for both strains.  

Therefore, this project generates a foundation to determine the feasibility of obtaining 

`synergistic C. albicans anti-fungal agents that act upon virulent targets from a readily 

available agricultural stream (in the short term), which then is expected to facilitate the 

development of efficacious anti-fungal treatments capable of preventing potentially life-

threatening C. albicans infections (in the long term). Such knowledge provides alternative 

marketing opportunities for a sustainable but highly under-utilized co-product stream that 

is present throughout the world, but typically disposed of.  

This project could be extended by studying the synergic effect of phenolic 

compounds on preventing cellular adhesion and biofilm formation of C. albicans using 

additional strains or different phenolics. Also, different turf grass might be used to the 

project. The mechanism of action of these phenolic compounds need to be further 

investigated.  
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