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Abstract 
Precision agriculture offers the technologies to manage for infield variability and 
incorporate variability into irrigation management decisions. The major limitation 
of this technology often lies in the reconciliation of disparate data sources and the 
generation of irrigation prescription maps. Here the authors explore the utility of 
the cosmic-ray neutron probe (CRNP) which measures volumetric soil water con-
tent (SWC) in the top ~ 30 cm of the soil profile. The key advantages of CRNP is that 
the sensor is passive, non-invasive, mobile and soil temperature-invariant, making 
data collection more compatible with existing farm operations and extending the 
mapping period. The objectives of this study were to: (1) improve the delineation of 
irrigation management zones within a field and (2) estimate spatial soil hydraulic 
properties to make effective irrigation prescriptions. Ten CRNP SWC surveys were 
collected in a 53-ha field in Nebraska. The SWC surveys were analyzed using Em-
pirical Orthogonal Functions (EOFs) to isolate the underlying spatial structure. A 
statistical bootstrapping analysis confirmed the CRNP + EOF provided superior soil 
hydraulic property estimates, compared to other hydrogeophysical datasets, when 
linearly correlated to laboratory measured soil hydraulic properties (field capacity 
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estimates reduced 20–25% in root mean square error). The authors propose a soil 
sampling strategy for better quantifying soil hydraulic properties using CRNP + EOF 
methods. Here, five CRNP surveys and 6–8 sample locations for laboratory analysis 
were sufficient to describe the spatial distribution of soil hydraulic properties within 
this field. While the proposed strategy may increase overall effort, rising scrutiny 
for agricultural water-use could make this technology cost-effective.  

Keywords: Water use efficiency, Soil hydraulic parameters, Irrigation management, 
Soil spatial variability 

Introduction 

Water scarcity is predicted to be the major limitation to increasing ag-
ronomic outputs to meet future food and fiber demands (UNDP 2007). 
With the agricultural sector accounting for 80–90% of all consump-
tive water use and an average water use efficiency of less than 45% 
(Hezarjaribi and Sourell 2007; Molden 2007), major advances must 
be made in irrigation water management. Currently, irrigation is a 
key component of global food security, accounting for ~40% of global 
food production and ~20% of all arable land (Molden 2007; Schultz 
et al. 2005). Precision agriculture offers the technologies to address 
and manage for infield variability and incorporate that variability into 
management decisions (Howell et al. 2012). 

According to a 2012 U.S. Department of Agriculture (USDA) Cen-
sus of Agriculture report, Nebraska ranks first nationally in irrigated 
area approximately 3.4 million irrigated hectares, and about 70% of 
that area has center pivot irrigation (USDA 2012). Conventional cen-
ter pivot systems manage a field as a uniform unit, thus ignoring the 
heterogeneity across the field, and often management decisions are 
based on average field conditions (i.e. average soil hydraulic proper-
ties, average soil water content (SWC); McCarthy et al. 2014). Conse-
quently, expected crop yield may differ in sub-regions of a field due 
to variations in SWC and physical properties. Variable-rate irrigation 
(VRI) and variable-speed irrigation (VSI) systems can vary applica-
tion depth in relation to the spatial variability of soil properties (He-
zarjaribi and Sourell 2007). VSI varies the speed of the pivot to ad-
just application depth in sectors and VRI uses nozzle control to vary 
application depth in irregularly shaped management zones. Addition-
ally, fertigation inputs can be managed for site-specific field condi-
tions and soil properties to ensure minimal chemical loss in the run-
off (Hedley 2015). Due to the high temporal variability in SWC, the 



Finkenbiner  et  al .  in  Prec is ion  Agriculture ,  2018        3

incorporation of VRI has the potential to increase crop water use ef-
ficiency and yield (Haghverdi et al. 2015b). The major limitation to 
implementing this technology often lies in the management of spa-
tial datasets and the writing of irrigation prescription maps that ad-
dress variables impacting yield and SWC (Evans et al. 1996; Howell 
et al. 2012). This requires efficient and accurate methods for measur-
ing the subfield scale spatial variability of soil properties including 
porosity, saturated hydraulic conductivity, unsaturated hydraulic con-
ductivity, available water, texture and depth (Hezarjaribi and Sourell 
2007; Pan et al. 2013; Ranney et al. 2015). Managing irrigation rates 
and times based on hydraulic properties allows for irrigators to pre-
scribe application depths based on the SWC below field capacity and 
above maximum allowable depletion. 

Land managers use several methods to address and manage for in-
field variability and to delineate irrigation management zones (IMZs) 
including available soil spatial datasets, yield maps, electrical resistiv-
ity/conductivity (EC) surveys, and commercially available instruments. 
Unfortunately, soil spatial datasets are often not at resolutions appro-
priate for field-scale management (Bobryk et al. 2016). One strategy 
land managers use is the delineation of IMZs within a field based on 
EC surveys. High resolution spatiotemporal modeling using EC surveys 
has been used to characterize dynamic SWC patterns in relation to crop 
needs (Hedley et al. 2013). Unfortunately, EC is sensitive to tempera-
ture, SWC, texture, clay content and salinity (Haghverdi et al. 2015a; 
Rodriguez-Perez et al. 2011), thus making exact boundary determina-
tion challenging. Most EC systems are used to delineate management 
zones only after harvest and before planting in nonfrozen soils, thus 
limiting mapping opportunities in cold climates. While changes in SWC 
do account for over 50% of variability in soil EC readings (Brevik et al. 
2006), the dynamic nature of SWC causes EC and clay measurements 
to vary temporally (McCutcheon et al. 2006) making the use of a single 
EC survey problematic. Martini et al. (2016) investigated this temporal 
variability and emphasized the importance of multiple surveys to cap-
ture the dynamic SWC patterns represented by EC surveys. Other im-
pacting factors, beyond SWC, include groundwater levels and the con-
centration of the pore water solution, which influence the electrical 
conductance pathway (Martini et al. 2016). Additional commercially 
available methodologies are available for measuring soil physical vari-
ability, however they were not explored in this study [e.g. Trimble Soil 
Information System (SIS) (Trimble Inc., Sunnyvale, CA)]. 
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Beyond EC surveys, other hydrogeophysical instruments (see e.g. 
Binley et al. 2015; Coopersmith et al. 2014; Franz et al. 2016; Villar-
reyes et al. 2011) offer promising opportunities in precision agricul-
ture. One such instrument to be explored in this work is the cosmic-
ray neutron probe (CRNP), which has been used within agricultural 
systems to approximate SWC at the field- to small-watershed-scale 
(Franz et al. 2015). The CRNP detects epithermal neutron energies re-
flected from the soil, which are inversely related to SWC (Zreda et al. 
2012). For this study, the CRNP was used to measure SWC at high spa-
tial and temporal resolutions to characterize its dynamic nature over 
the growing season. One key advantage to using the passive, non-in-
vasive, and soil-temperature-invariant CRNP method is that SWC data 
can be collected using a wide variety of commercially available vehi-
cles from harvest until the following season when the crop is too tall 
for the vehicle (~0.20 m for this work). While not performed here, 
CRNP surveys, mobile CRNP measurements, with taller crop heights 
can easily be collected from taller-bodied farm equipment (e.g. trac-
tor, sprayer, etc.). For this work, a standard multivariate analysis, Em-
pirical Orthogonal Functions [EOF, (Perry and Niemann 2006)], was 
used to characterize the spatial variability of SWC across the study 
site using CRNP surveys collected between 2015 and 2016. EOF anal-
yses have been proven to be an accurate method for large sample 
sizes or more than 5 days of SWC monitoring (Werbylo and Niemann 
2014). Within intensely monitored agricultural systems, EOF analysis 
has also been used to identify dominant parameters controlling spa-
tial and temporal patterns of surface SWC without being affected by a 
single random process (Korres et al. 2010). Furthermore, EOF analy-
sis provides a framework to estimate underlying SWC variations con-
structed using historical SWC observations to forecast SWC patterns 
for unobserved times. 

The objectives of this study were to: (1) improve the delineation 
of management zones within a field and (2) estimate the relevant 
spatially-distributed soil hydraulic properties (i.e. field capacity and 
wilting point) to inform irrigation prescriptions. Laboratory mea-
sured hydraulic parameters were compared to values from the USDA 
soil survey dataset, then correlated with an EC map, and then to the 
CRNP-derived EOF surface. Lastly, a cross validation bootstrapping 
analysis was performed to compare and contrast the various candi-
date environmental covariates. The CRNP surveys, when combined 
with the EOF analysis, were hypothesized to be the best predictor of 
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soil hydraulic property spatial variability compared to traditional and 
widely-used methods. It was also hypothesized that the EOF surface 
would be a good candidate for more accurately delineating IMZs. To 
illustrate the potential increase in water use efficiency versus effort 
(i.e. time, energy, and cost) of the various strategies discussed, Fig. 
1 presents a conceptual diagram with a set of existing technologies/
methodologies. The figure serves as a guide to the reader and will be 
further discussed later in this paper with respect to the specific find-
ings from this field site.  

Materials and methods 

Study site 

The selected study site is a 53-ha field (circle with ~400 m radius) 
irrigated with a variable-rate irrigation (VRI) pivot near Sutherland, 
NE (41.065393°, −101.102663°) (Fig. 2). The field contains signif-
icant topo-edaphic gradients, i.e. soil and topographic properties, 
making it an ideal candidate for VRI. Figure 2 illustrates the eleva-
tion (provided by a local crop consultant using a Real Time Kine-
matic (RTK) Global Positioning System (GPS)) and topographic wet-
ness index (TWI) of the study site. The TWI calculates SWC spatial 
patterns based on the up-slope contribution area and slope (Sorensen 

Fig. 1. Conceptual diagram of potential increase in water use efficiency versus ef-
fort for various soil hydraulic datasets/ techniques.  
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et al. 2006). The field was planted with soybean (Glycine max L.) in 
2014 and popcorn maize (Zea Mays var. everta) from 2015 to 2016. 
The soybean yield averaged ~3.8 Mg/ha and the popcorn yields aver-
aged ~5.3 Mg/ha. Using data from an Automated Weather Data Net-
work (AWDN) site located near North Platte, NE (~40 km from study 
site), the authors estimated annual temperature highs to be around 
18 °C and lows to be about 2 °C ( http://www.hprcc.unl.edu/awdn.
php , accessed 25 January 2017). The authors used the AWDN dataset 
to estimate decadal annual average precipitation at 445 mm year−1 

with 325 mm falling between May and September. Additionally, the 
authors estimated potential annual evapotranspiration to be at 1475 
mm year−1 with 925 mm occurring between May and September. Ac-
cording to the local producer, applied irrigation varies between 150 
and 300 mm year−1 depending on the year. Soil classifications from 

Fig. 2. Field site located near Sutherland, NE (field center: 41.065393°, 
−101.102663°), illustrating latitude, longitude, soil core sampling locations (black 
dots), 1 m elevation contours, and the calculated topographic wetness index (TWI) 
(m).  

http://www.hprcc.unl.edu/awdn.php
http://www.hprcc.unl.edu/awdn.php
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the available USDA SSURGO (Soil Survey Staff 2016) spatial and tab-
ular dataset were used to estimate texture and soil hydraulic proper-
ties at the study site. SWC at field capacity (cm3 cm−3), correlating to 
a soil water pressure of −33 kPa, and wilting point (cm3 cm−3), corre-
lating to a soil water pressure of −1500 kPa, were averaged for each 
of the map units from 0 to 0.3 m (Fig. 3). The USDA SSURGO data-
base delineated contiguous areas with similar soils as a single map 
unit. In general, the eastern region of the field has sandier soils and 
the western region is a mixture of sandy and silt loams. The field has 
a wide gradient in field capacity (0.090–0.307 cm3 cm−3) and wilt-
ing point (0.027–0.164 cm3 cm−3) values depending on soil classifica-
tion. The TWI product (Fig. 2) correlates well with the classifications 
from the SSURGO dataset with wetter regions of the field relating to 
finer soil textures.  

Hydrogeophysical datasets 

An electrical conductivity (EC) survey measuring bulk apparent elec-
trical conductivity (ECa, mS m−1) was collected on 24 February 2016 
using a DUALEM-21S sensor (DUALEM, Milton, Canada). The DUALEM 
sensor has dual-geometry receivers at separations of 1 and 2.1 m from 
the transmitter, which provided four simultaneous depth estimates of 
ECa every second (Dualem Inc. 2013). The ~2.1 m horizontal co-pla-
nar sensor estimated ECa values for this study (see DUALEM manual 
for approximate depth of exploration curves for each sensor configu-
ration). The DUALEM was towed behind an all-terrain vehicle (ATV) 
on a plastic sled at speeds of 8–15 km h−1 with ~7–9 m spacing, taking 
about 75 min to complete the survey. A Hemisphere GPS XF101 DGPS 
(Juniper Systems, Inc., Logan, UT) unit recorded the location of each 
measurement. Following basic quality assurance and quality control 
of the raw ECa data (Franz et al. 2011), a spatial map with 5 by 5 m 
resolution was created using an inverse-distance weighting procedure. 

Ten mobile cosmic-ray neutron probe (CRNP) surveys to estimate 
soil water content (SWC) were completed at the site from March 
2015–June 2016 using an ATV driven in a similar pattern and rate as 
the previously described EC survey. The mobile CRNP records epith-
ermal neutron intensity integrated over one-minute counting inter-
vals. The change in epithermal neutron intensity is inversely corre-
lated to the mass of hydrogen in the measurement volume (Zreda et 
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al. 2012). A main advantage of the CRNP survey, when compared to 
the EC survey, is the temperature-invariance. The CRNP method has 
no interaction with the electromagnetic atom shells and the neutrons 
interact with the atomic nuclei instead. The soil’s atomic energy vari-
ation due to ambient temperature changes is negligible compared to 
the epithermal neutron intensities (see Glasstone and Edlund 1952 
for a description of neutron scattering cross section temperature de-
pendence and Campbell et al. 1948 for a description of electrical con-
ductivity temperature dependence). Depending on local conditions 
(i.e. elevation, water vapor, AWC, etc.), the CRNP measurement vol-
ume is roughly a disk, with a 130–250 m radius circle and penetration 
depth of 0.15–0.40 m (Köhli et al. 2015). For simplicity, a constant 
penetration depth of 0.3 m was assumed for all surveys. Atmospheric 

Fig. 3. The USDA SSURGO map unit key (MUKEY), soil descriptions, and their re-
spective SWC at field capacity and wilting point. According to the World Reference 
Base (WRB) FAO soil classifications, the soils are a luvic kastanozem.  
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hydrogen pools within the CRNP footprint were accounted for by a 
relative humidity and temperature sensor mounted on the ATV. Lat-
tice water, soil organic carbon equivalent and bulk density were mea-
sured at 0.015, 0.0083, and 1.62 g cm−3, respectively. Interference 
of the biomass in the total CRNP measurement volume was consid-
ered negligible because the surveys were collected over bare soil or 
when the crop height was less than 0.20 m. The authors note that 
SWC changes are by far the largest change in hydrogen mass within 
the measurement footprint (McJannet et al. 2014). Numerous valida-
tion studies across the globe (see e.g. Bogena et al. 2013; Hawdon et 
al. 2014; Franz et al. 2015, 2016; Iwema et al. 2017, among others) 
have shown the CRNP to have area-average measurement accura-
cies of less than 0.03 cm3 cm−3 against a variety of industry standard 
SWC point scale probes. The calculated SWC within the measurement 
volume in a non-linearly weighed average with increased sensitivity 
near the CRNP (Schrön et al. 2017). In order to provide a SWC map, 
first a spatial map of neutron intensity was estimated, then a cali-
bration function was applied following details in Franz et al. (2015) 
for agricultural fields. The neutron intensity map is created in two 
steps. First, a drop-in-the-bucket preprocessing step is applied, where 
a dense grid is generated (here 20 by 20 m) and all raw data points 
are found within a certain radius (here 50 m). The size of the pro-
cessing grid and average radius where varied in order to minimize 
any spatial interpolation artifacts (i.e. bulls eyes around observa-
tions points). Note, that future work should investigate how the size 
of the CRNP measurement disk, non-linear weighting of neutron in-
tensity, and underlying length scale of soil heterogeneity affect the 
spatial interpolation algorithm. However, this was beyond the scope 
of the current study. Following the selection of grid size and search 
radius, the average of all raw data found within the search radius is 
assigned to the grid center. This oversampling approach is necessary 
for sharpening the image quality and is a common strategy used in 
remote sensing analyses (see Chan and Njoku 2014) when overlap-
ping area average observations are collected, like the CRNP in this 
study. Next, an inverse-distance-weighted approach is used on the 
resampled 20 m grid to provide the 5-m neutron intensity estimate. 
Finally, the neutron intensity gridded estimate is converted to SWC 
following Franz et al. (2015). The authors refer the reader to the rap-
idly growing CRNP literature (see Zreda et al. 2012) instead of pro-
viding full details of the methodology here. 
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Soil sampling and laboratory analysis 

Thirty-one sample locations (Fig. 2) were chosen based on the 
SSURGO database soil classifications, EC map and EOF analysis in 
a stratified random sampling scheme. Undisturbed soil cores (250 
cm3) were collected inside stainless steel cylinders at ~ 0.2 m depth 
at each sample location. The soil cores were placed in a cooler and 
transported back to the laboratory where they were stored in a 4 °C 
refrigerator for later analysis. Soil water retention curves were es-
timated for each of the soil cores using a Decagon HYPROP (Deca-
gon Devices, Pullman, WA, USA). Saturated soil samples were ex-
posed to evaporation in the laboratory and weighed throughout the 
experiment. Evaporation methods are proven to be a fast and reli-
able method for determining soil hydraulic properties within the sat-
urated to moderate SWC range (Peters and Durner 2008; Schindler 
et al. 2010). The matric potential was continuously monitored by 
two tensiometers inserted at the base of the soil cores at two differ-
ent lengths within the core. The tensiometers and instrument bases 
were degassed using a vacuum pump. The HYPROP software (Deca-
gon Devices, Pullman, WA, USA) calculated data points along the re-
tention curve and unsaturated hydraulic conductivity curve. An aver-
age measured bulk density of 1.62 g cm−3 and porosity of 38.9% were 
assigned for each of the undisturbed samples to generate soil wa-
ter retention curves. Following the HYPROP analysis, a WP4C Dew-
point PotentiaMeter (Decagon Devices, Pullman, WA, USA) was used 
to approximate tension for the moderate to dry SWC ranges. The soil 
cores were dried at 105 °C for 24 h before collecting 1–9 sub-sam-
ples per sample. Varying volumes of water were added to the sub-
samples to obtain SWC near wilting point and to further character-
ize the soil water retention curves. The sub-samples were sealed for 
24 h after water was added to allow for the water to disperse evenly 
throughout the subsample. Inside the measurement chamber of the 
WP4C, the dew point temperature of the moist air was measured by 
a chilled mirror and the sample temperature was measured by an 
infrared thermometer. Those two values were then used to calculate 
relative humidity and thus, potential of the soil water. The WP4C 
has an accuracy of ±0.05 MPa from 0 to −5 MPa and 1% from −5 to 
−300 MPa (Decagon Devices, Inc. 2015). 
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Statistical analysis 

In order to illuminate the underlying spatial variability of the SWC 
maps, an empirical orthogonal function (EOF) analysis was used on 
the ten CRNP SWC maps. Full details on the multivariate statistical 
EOF analysis are provided elsewhere (Korres et al. 2010; Perry and 
Niemann 2006) and only a brief summary is provided here. The EOF 
analysis decomposes the observed SWC variability measured by the 
CRNP surveys into a set of orthogonal spatial patterns (EOFs), which 
are invariant in time, and a set of time series called expansion coeffi-
cients, which are invariant in space (Perry and Niemann 2006). Mul-
tiplication of the EOFs and expansion coefficients will exactly recon-
struct the original pattern. Often the number of needed coefficients 
(i.e. eigenvectors) to reconstruct most of the data is less than the orig-
inal dataset (i.e. determined by the ranked eigenvalues), thus the pro-
cedure can be used as a way to reduce the dimensionality of the data-
set while preserving the key information. The authors note that EOF 
is nearly identical to Principal Component Analysis save the splitting 
of axis of variation into spatial and temporal coefficients instead of 
arbitrary linear combinations. 

A bootstrap validation analysis was used to: (1) determine the ac-
curacy of the regressed hydraulic parameter to the measured hydrau-
lic parameter and (2) determine how many soil samples and their 
corresponding hydraulic parameters were required for the root mean 
square error (RMSE) to converge. The hydrogeophysical datasets ex-
plored for this analysis were the CRNP EOF surface derived from the 
SWC surveys, the CRNP EOF surface derived from the corrected neu-
tron counts (i.e. pressure, intensity, and water vapor corrections), ECa 
survey and elevation. Each hydrogeophysical dataset was randomly 
divided into a training set, ranging in size from 3 to 30, and a test-
ing set for 1000 random iterations. The training sets and their cor-
responding laboratory measured soil hydraulic properties (i.e. field 
capacity, wilting point, available water content (AWC)) were used to 
build a simple linear model to predict the remaining laboratory mea-
sured soil hydraulic property values. The mean RMSE and standard 
deviation of the RMSE for the 1000 simulations were calculated for 
the predicted hydraulic property values and the laboratory measured 
soil hydraulic property values. This analysis followed similar meth-
ods from Gibson and Franz (2018). 
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Results and discussion 

Hydrogeophysical mapping and EOF analysis 

The apparent electrical conductivity (ECa) map for the field is illus-
trated in Fig. 4 and provides additional spatial information on soil 
texture variability as compared to the USDA SSURGO map (Fig. 3). 
This type of information has been used for the delineation of irriga-
tion management zones (IMZs; Pan et al. 2013). As noted previously, 
the ECa map is subject to field conditions at the time of the sampling 
(Martini et al. 2016). Therefore, areas of high EC measurements in 
the southwest quadrant of the field may be due to increased soil cat-
ions, soil water content (SWC), and/or temperature anomalies at the 
time of sampling. At a first glance, the delineated soil boundary by 
the USDA SSURGO database displays some spatial correlation to the 
ECa map. However, there is high variability of ECa values within each 
USDA SSURGO soil classification, which has been observed in other 
research (Brevik et al. 2006). Thus, the soil classification from the 
SSURGO dataset may or may not be the appropriate boundaries for ir-
rigation management zones (IMZs) within the field. This uncertainty 
of exact IMZ boundaries and questionable repeatability of ECa makes 
this method problematic, particularly given the high initial capital for 

Fig. 4. Apparent bulk electrical conductivity map (ECa) collected on 24 February 
2016 using a Dualem-21S sensor.  
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precision agricultural equipment. The result here suggests the use of 
soil survey datasets and ECa be used in tandem to delineate IMZs for 
precision agriculture, which is supported by the results of Brevik et 
al. (2006). 

Figure 5 illustrates the large spatiotemporal variation in SWC over 
the ten dates observed using the CRNP rover. Despite regions of the 
field with finer soil textures and higher ECa generally having a higher 
SWC in each of the soil moisture maps, there is inconsistency in the 
spatial distribution of the SWC. For example, compare the SWC spa-
tial distribution for the survey dates of June 10, 2015, and May 11, 
2016. Table 1 summarizes the SWC minimum, maximum, mean and 
standard deviation for each CRNP survey date in Fig. 5. The ten CRNP 
rover surveys were used to perform Empirical Orthogonal Function 
(EOF) analysis. Figure 6 illustrates the first and second EOF coeffi-
cients at the study site. The EOF analysis contextualizes the behav-
ior of the SWC (and thus underlying soil hydraulic properties) at any 
given point in the field relative to the mean SWC as a whole. There-
fore, points in the field that are relatively wet persistently will have 
positive coefficients and points in the field that are relatively dry will 
have negative coefficients. Here the first EOF coefficients explained 
79.6% of the spatial SWC variability followed by 5.6% explained by 
the second EOF. Therefore, only the first EOF was considered in the 
subsequent analyses. Statistical bootstrapping of the SWC indicated 
that five CRNP surveys at different SWC conditions were sufficient to 
estimate the first EOF coefficients to within 5% of the values using 
data from all ten surveys. This reduction in required number of CRNP 
surveys is critical for economic considerations beyond a research study 
(see “Recommendations for future soil hydraulic property sampling”). 
The first EOF map provides detailed information for the delineation 
of IMZs. Given the removal of the time-varying component of the sig-
nal the authors argue that the map is a superior method to delineate 
IMZs as compared to the USDA SSURGO dataset and ECa mapping. 
The first EOF map is a continuous surface; thus, it can be applied at a 
variety of spatial scales and used within existing agricultural manage-
ment software (such as a shapefile input). The remaining questions 
are: (1) is the EOF map a better predictor of soil hydraulic property 
spatial variation compared to the SSURGO database and ECa maps and 
(2) is the information provided by an EOF map economical for a pro-
ducer to implement into current agricultural practices? 
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Fig. 5. Ten CRNP rover SWC surveys collected between March 2015 and June 2016 
(see Table 1).  
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Table 1. Summary of the minimum SWC, maximum SWC, mean SWC and SWC standard 
deviation (SD) for the ten CRNP surveys (Fig. 5). 

CRNP survey date 	 Minimum 	 Maximum 	 Mean 	 SD 
	 (cm3 cm−3) 	 (cm3 cm−3) 	 (cm3 cm−3)	 (cm3 cm−3) 

03/25/15 	 0.082 	 0.318 	 0.162 	 0.055 
05/18/15 	 0.116 	 0.388 	 0.244 	 0.062 
05/26/15 	 0.162 	 0.449 	 0.274 	 0.065 
06/08/15 	 0.127 	 0.336 	 0.220 	 0.041 
06/10/15 	 0.101 	 0.412 	 0.247 	 0.059 
06/15/15 	 0.102 	 0.455 	 0.225 	 0.062 
02/24/16 	 0.124 	 0.376 	 0.223 	 0.060
05/09/16 	 0.157 	 0.369 	 0.241 	 0.052
05/11/16 	 0.185 	 0.491 	 0.300 	 0.059 
06/06/16 	 0.124 	 0.302 	 0.201 	 0.045

Fig. 6. The first EOF surface depicting the underlying dominant spatial structure 
created from the ten CRNP rover SWC surveys in Fig. 5 and Table 1.   
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Soil hydraulic properties from sampling analysis 

Using each of the thirty-one undisturbed soil cores, soil hydraulic 
properties were estimated from soil water retention curves gener-
ated using the Hyprop software. To illustrate the type of data gener-
ated, three of the soil cores from different soil textures and their re-
spective field capacity and wilting point values are shown in Fig. 7. 
Table 2 summarizes the SWC at field capacity (−33 kPa), SWC at wilt-
ing point (−1500 kPa) and calculated available water content (AWC, 
cm3 cm−3) for each of the thirty-one soil cores. AWC was calculated by 
subtracting the SWC at −1500 kPa from the SWC at −33 kPa. In gen-
eral, areas of the field with lower EOF values also have lower SWC at 
field capacity and wilting point. The EOF values are representative of 
the orthogonality of the SWC spatial patterns, therefore assumptions 
regarding in-field heterogeneity can be based off of the new EOF sur-
faces. Additionally, SWC at field capacity and wilting point is higher 
for finer soils and lower in coarser texture classes. AWC is higher for 
areas of the field with finer textured soils. 

Fig. 7. Soil water retention functions from three undisturbed soil cores. Values be-
fore pF (absolute value of the log10 of soil tension, (MPa)) of three were recorded 
using the Decagon Hyprop and values after a pF of three were recorded using a 
WP4C Dewpoint PotentiaMeter.  
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Comparison of landscape position and hydrogeophysical datasets 
with laboratory analysis 

Figure 8 illustrates scatterplots of AWC, elevation, topographic wet-
ness index (TWI), ECa and EOF datasets with the laboratory mea-
sured field capacity and wilting point values from the soil water re-
tention curves generated using the Hyprop and WP4C instruments. 
Table 3 summarizes the linear correlation coefficient (r2) and root 
mean square error (RMSE) for the graphs illustrated in Fig. 8. The 
first EOF coefficients have the largest linear correlation coefficient 
(r2) with calculated AWC, laboratory measured SWC at field capacity 
and laboratory measured SWC at wilting point (Table 3). Compared 
to ECa, the CRNP and EOF analysis increased the linear correlation r2 

by 0.218 and reduced the RMSE by 0.012 cm3 cm−3 for measured SWC 
at field capacity. Table 3 exemplifies the weak relationship between 
laboratory measured SWC at field capacity and elevation, laboratory 
measured SWC at wilting point and elevation, calculated AWC and el-
evation, laboratory measured SWC at field capacity and TWI, labora-
tory measured SWC at wilting point and TWI, and calculated AWC and 
TWI. Therefore, the hypothesis that the first EOF provides superior 

Fig. 8. Laboratory measured SWC at field capacity (FC) and wilting point (WP) com-
pared to AWC, elevation, TWI, measured ECa, and the first EOF surface from the 
CRNP rover SWC surveys.  
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spatial information correlating to the accurate prediction of three key 
soil hydraulic parameters (i.e. field capacity, wilting point, available 
water content) is justified for this field. 

In addition to providing more accurate soil hydraulic property spa-
tial datasets, EOFs can be used to generate new data products for use 
with variable-rate irrigation (VRI), variable-speed irrigation (VSI), 
and other commercial field equipment. As an illustration here, new 
field capacity, wilting point and AWC products were generated for this 
field using the relationships between the first EOF surface, elevation, 
and the laboratory measured hydraulic parameters (Fig. 9, Table 3). 
The authors note that additional single or multivariate linear/ non-
linear functions could be explored to better characterize the observed 
trends in the data. 

In the interest of exploring the feasibility of implementing CRNP 
and EOF analysis for the delineation of IMZs, a statistical bootstrap-
ping analysis was performed (Table 4) to predict the number of soil 
samples needed to accurately estimate field capacity, wilting point and 
AWC following a similar analysis by Gibson and Franz (2018). Each of 
the hydrogeophysical datasets (elevation, ECa survey, CRNP neutron 
count EOF, CRNP SWC EOF) was randomly divided into training and 
testing sets, with training set sizes ranging from 3 to 30, for 1000 it-
erations. The results from Table 4 suggest with fewer soil samples the 
neutron and SWC EOF surfaces are a more accurate predictor of soil 
hydraulic properties. When linearly correlating the CRNP SWC EOF 
to estimates of SWC at field capacity and AWC, RMSE is reduced ap-
proximately 20–25% compared to evaluations with ECa and elevation 
datasets. Wilting point estimates saw reductions in RMSE of 5–9% 
when comparing the CRNP SWC EOF to ECa and elevation datasets. 

Table 3. Linear regression r2 and RMSE for measured SWC at field capacity, measured SWC at wilting point and 
calculated AWC versus elevation, TWI, the ECa map and the first EOF surface. 

	 Elevation (m) 	 TWI (m) 	 ECa (mSm−1) 	 EOF (–) 	 ECa (mSm−1)  	 EOF (–)  
					     + Elevation (m)	 + Elevation (m) 

SWC at field capacity 	 r2 = 0.297, 	 r2 = 0.005, 	 r2 = 0.385, 	 r2 = 0.603, 	 r2 = 0.393,	 r2 = 0.630,
    (cm3/cm3) 	 RMSE = 0.064 	 RMSE = 0.076 	 RMSE = 0.060	 RMSE = 0.048	 RMSE = 0.061	 RMSE = 0.047 

SWC at wilting point 	 r2 = 0.047, 	 r2 = 0.011,	 r2 = 0.070, 	 r2 = 0.166, 	 r2 = 0.070, 	 r2 = 0.210,
    (cm3/cm3) 	 RMSE = 0.016 	 RMSE = 0.017 	 RMSE = 0.016 	 RMSE = 0.015 	 RMSE = 0.017 	 RMSE = 0.015 

AWC 	 r2 = 0.321, 	 r2 = 0.012, 	 r2 = 0.411, 	 r2 = 0.613, 	 r2 = 0.422, 	 r2 = 0.632,
    (cm3/cm3) 	 RMSE = 0.055 	 RMSE = 0.067 	 RMSE = 0.051 	 RMSE = 0.042 	 RMSE = 0.052 	 RMSE = 0.041
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Fig. 9. Resulting spatial estimates of a SWC at field capacity (FC = −4.314 + 
0.473(EOF) + 0.005(Elevation)), b SWC at wilting point (WP = −1.182 + 0.073(EOF) 
+ 0.001(Elevation)) and c AWC (AWC = −3.132 + 0.399(EOF) + 0.003(Elevation)) 
using derived relationships between the first EOF surface, elevation and the labora-
tory measured soil hydraulic parameters. The soil sampling locations are indicated 
by black circles and the corresponding r2 and RMSE values for each of the spatial 
products are located in Table 3. See Table 4 for bootstrap analysis quantifying sta-
tistical fit and number of training and validation samples.     
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Table 4. Results from the bootstrapping analysis 

Hydrogeophysical 	 Training 	 SWC at field capacity  	 SWC at wilting point 	  AWC 
dataset 	 set size 	  (cm3/cm3) 		   (cm3/cm3) 	  (cm3/cm3) 

		  RMSE 	 SD 	 RMSE 	 SD 	 RMSE 	 SD 

SWC EOF 	 3 	 0.0653 	 0.0235 	 0.0203 	 0.0070 	 0.0551 	 0.0192 
SWC EOF 	 4 	 0.0638 	 1.2390 	 0.0202 	 0.3940 	 0.0537 	 1.0155 
SWC EOF 	 5 	 0.0542 	 0.0691 	 0.0173 	 0.0244 	 0.0466 	 0.0697 
SWC EOF 	 6 	 0.0529 	 0.0359 	 0.0169 	 0.0085 	 0.0454 	 0.0341 
SWC EOF 	 7 	 0.0521 	 0.0256 	 0.0167 	 0.0054 	 0.0447 	 0.0220 
SWC EOF 	 8 	 0.0516 	 0.0191 	 0.0166 	 0.0053 	 0.0443 	 0.0175 
SWC EOF 	 9 	 0.0512 	 0.0105 	 0.0164 	 0.0035 	 0.0440 	 0.0135 
SWC EOF 	 10 	 0.0509 	 0.0098 	 0.0164 	 0.0034 	 0.0437 	 0.0068 
SWC EOF 	 20 	 0.0488 	 0.0103 	 0.0158 	 0.0026 	 0.0417 	 0.0095 
SWC EOF 	 30 	 0.0460 	 0.0221 	 0.0149 	 0.0053 	 0.0386 	 0.0204 
Neutron EOF 	 3 	 0.0671 	 0.0224 	 0.0202 	 0.0067 	 0.0564 	 0.0186 
Neutron EOF 	 4 	 0.0657 	 1.4190 	 0.0201 	 0.3348 	 0.0551 	 1.1464 
Neutron EOF 	 5 	 0.0545 	 0.0682 	 0.0173 	 0.0227 	 0.0469 	 0.0701 
Neutron EOF 	 6 	 0.0532 	 0.0300 	 0.0169 	 0.0077 	 0.0457 	 0.0265 
Neutron EOF 	 7 	 0.0525 	 0.0163 	 0.0167 	 0.0057 	 0.0451 	 0.0207 
Neutron EOF 	 8 	 0.0521 	 0.0173 	 0.0166 	 0.0043 	 0.0447 	 0.0126 
Neutron EOF 	 9 	 0.0517 	 0.0128 	 0.0165 	 0.0033 	 0.0444 	 0.0100 
Neutron EOF 	 10 	 0.0513 	 0.0097 	 0.0164 	 0.0028 	 0.0441 	 0.0076 
Neutron EOF 	 20 	 0.0491 	 0.0103 	 0.0158 	 0.0025 	 0.0421 	 0.0096 
Neutron EOF 	 30 	 0.0458 	 0.0212 	 0.0151 	 0.0055 	 0.0394 	 0.0210 
ECa 	 3 	 0.0788 	 0.0224 	 0.0222 	 0.0064 	 0.0695 	 0.0194 
ECa 	 4 	 0.0779 	 0.7268 	 0.0222 	 0.4195 	 0.0686 	 0.8176 
ECa 	 5 	 0.0689 	 0.0982 	 0.0188 	 0.0274 	 0.0590 	 0.1063 
ECa 	 6 	 0.0672 	 0.0467 	 0.0184 	 0.0087 	 0.0572 	 0.0450 
ECa 	 7 	 0.0662 	 0.0281 	 0.0182 	 0.0069 	 0.0563 	 0.0225 
ECa 	 8 	 0.0656 	 0.0181 	 0.0180 	 0.0056 	 0.0558 	 0.0167 
ECa 	 9 	 0.0652 	 0.0145 	 0.0179 	 0.0044 	 0.0554 	 0.0133 
ECa 	 10 	 0.0648 	 0.0135 	 0.0178 	 0.0041 	 0.0551 	 0.0111 
ECa 	 20 	 0.0627 	 0.0093 	 0.0172 	 0.0034 	 0.0535 	 0.0076 
ECa 	 30 	 0.0605 	 0.0222 	 0.0166 	 0.0073 	 0.0518 	 0.0176 
Elevation 	 3 	 0.0841 	 0.0225 	 0.0214 	 0.0071 	 0.0742 	 0.0197 
Elevation 	 4 	 0.0833 	 1.2948 	 0.0214 	 0.3674 	 0.0735 	 1.2446 
Elevation 	 5 	 0.0729 	 0.1050 	 0.0182 	 0.0222 	 0.0627 	 0.1071 
Elevation 	 6 	 0.0711 	 0.1062 	 0.0178 	 0.0128 	 0.0611 	 0.0404 
Elevation 	 7 	 0.0700 	 0.0230 	 0.0175 	 0.0062 	 0.0602 	 0.0220 
Elevation 	 8 	 0.0695 	 0.0177 	 0.0174 	 0.0050 	 0.0597 	 0.0141 
Elevation 	 9 	 0.0690 	 0.0131 	 0.0173 	 0.0043 	 0.0594 	 0.0116 
Elevation 	 10 	 0.0686 	 0.0130 	 0.0172 	 0.0035 	 0.0591 	 0.0104 
Elevation 	 20 	 0.0663 	 0.0102 	 0.0166 	 0.0027 	 0.0570 	 0.0094 
Elevation 	 30 	 0.0626 	 0.0236 	 0.0156 	 0.0058 	 0.0537 	 0.0218 

The hydrogeophysical datasets (EOF derived from CRNP SWC estimates, EOF derived from the 
CRNP corrected neutron counts, ECa values and Elevation) were divided into different training sets 
and the mean RMSE and standard deviations (SD) of the RMSE of the predicted soil hydraulic 
properties and the laboratory measured soil hydraulic properties are reported for 1000 random 
simulations. Note the total sample size was 31.
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Here, 6–8 sample locations for laboratory analysis were sufficient to 
describe the spatial distribution of soil hydraulic properties for this 
field. After eight soil samples, relatively small reductions in RMSE 
and standard deviation occurred for this particular field. Similar soil 
sampling sizes and results were found by Gibson and Franz (2018). 

Recommendations for future soil hydraulic property sampling 

Given the results of this work the authors propose a sampling strat-
egy for better quantifying soil hydraulic properties that can be imple-
mented in practice. 

(1) Complete a minimum of five CRNP rover surveys for the area 
of interest, with survey datasets selected to capture a range of 
SWC, to accurately estimate spatial SWC using the first one or 
two sets of EOF coefficients. As previously stated, the presented 
work used a bootstrapping analysis to indicate five CRNP surveys 
at different SWC conditions were sufficient to estimate the first 
EOF coefficients to within 5% of the values using data from all 
ten surveys. The five CRNP surveys and EOF correlations from 
this work are further supported by Gibson and Franz (2018). 
EOF coefficients could be calculated based on the neutron inten-
sity measurements (Table 4), saving processing time and elim-
inating the need for terrestrial hydrogen pool datasets. How-
ever, the authors suggest using the CRNP SWC product as it has 
a greater physical meaning to soil hydraulic properties. Based 
on additional data (Gibson and Franz 2018) from fields across 
the Midwest, the authors found similar relationships and rec-
ommendations for the required minimal number of CRNP sur-
veys. An example of real-world implementation might involve a 
service provider investing in CRNP technology and cooperating 
with multiple producers to perform the CRNP rover surveys. Ad-
ditionally, the CRNP surveys could be completed simultaneously 
with other field operations (i.e. ATV, tractor, sprayer) and over 
several growing seasons. 

(2) Using the EOF coefficients from the CRNP SWC maps, 6–8 soil 
sample locations (Table 4) should be selected across a range of 
EOF values. The collection and analysis of soil cores to deter-
mine their soil retention curves and hydraulic parameters can 
be time consuming, laborious and expensive. Therefore, using 
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the EOF surface to minimize the number of and placement of ex-
tracted soil cores is critical. The bootstrap analyses indicated a 
diminishing return of information beyond 6–8 samples for this 
53 ha field. Similar sample sizes were reported in Gibson and 
Franz (2018). 

(3) Next, measure the soil hydraulic properties of interest (e.g. field 
capacity, wilting point, AWC) for the collected soil samples. Soil 
samples can be sent to a soil laboratory or analyzed in one’s lab 
using the Hyprop/WP4C combination for this work. 

(4) New data products can be generated using the relationship be-
tween EOF and the observed hydraulic parameters from the soil 
cores. These new data products can be produced at a variety of 
scales and different file types to operate within existing agricul-
tural software and machinery.  

(5) In addition, the EOF surface can be used to delineate manage-
ment zones. Here the authors suggest using a 1st order polyno-
mial relationship describing the relationship between the first 
SWC EOF surface, elevation, and the laboratory measured SWC 
at field capacity (r2 = 0.63, RMSE = 0.05 cm3 cm−3) and wilting 
point (r2 = 0.21, RMSE = 0.02 cm3 cm−3) to delineate IMZs (Table 
3). This should be done in conjunction with the USDA SSURGO 
data to better refine key boundaries. IMZs can be based on the 
EOF surface, the field capacity surface or the AWC surface. 

This research is of increasing importance for agricultural regions 
with ever-increasing water restrictions where small changes in wa-
ter allocation rates and times may greatly impact crop yields. For ex-
ample, at the current depletion rate, 35% of the Southern High Plains 
Aquifer is expected to be unable to support irrigation in the next 30 
years (Scanlon et al. 2012). Consequently, there will be an increased 
effort to accurately map soil hydraulic properties and delineate high 
spatial and temporal irrigation prescription maps. Referring to Fig. 1, 
the feasibility of the CRNP and EOF analyses for management prac-
tice may soon be economically viable for many regions where maxi-
mizing water use for obtaining higher yields is paramount. The au-
thors have shown here that the strong correlation with observed soil 
hydraulic parameters to the first EOF surface provides additional spa-
tial variability information compared to EC mapping alone. If a land 
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manager only used an EC map for estimating soil hydraulic properties, 
areas of a field may be biased depending on conditions at the time of 
sampling. In order to minimize error and improve IMZs, CRNP and 
EOF analysis should be used to increase the correlation between soil 
hydraulic properties and irrigation application rates (Fig. 8, Table 3), 
which will subsequently improve irrigation prescription maps. CRNP 
and EOF analysis also provides irrigators with datasets they can use 
to generate dynamic prescription irrigation maps. Future research 
could investigate how increases in r2 and reductions is RMSE using the 
CRNP and EOF analysis could translate into increased water use effi-
ciency with precision agricultural technologies. Additionally, studies 
could investigate whether high spatial resolution datasets of soil hy-
draulic properties increase water use efficiency while maintaining or 
increasing crop yields. 

Summary and conclusions 

Irrigation constitutes the largest component in global water use, yet 
within agricultural systems there is low water use efficiency. There-
fore, improvements can be made in how irrigation application rates 
and times are managed. Traditional methods include the use of avail-
able soil property datasets, EC mapping, or commercially available in-
struments to delineate irrigation and land management zones. This 
research explored the utility of a hydrogeophysical sensor, called the 
CRNP, which measures near-surface soil water content (SWC) (top 
~30 cm). In addition, when combining the CRNP SWC maps with the 
multivariate EOF analysis the authors found a better covariate for lab-
oratory measured soil hydraulic properties for a field in west-central 
Nebraska, USA. The measured soil hydraulic properties were also com-
pared to other readily available landscape and geophysical datasets 
including elevation, TWI and ECa maps. Based on this work the au-
thors present a future sampling strategy to better understand spatially 
varying hydraulic properties within a field, as well as the delineation 
of IMZs. The new data products could be used within current irriga-
tion management practice to improve water use efficiency by provid-
ing soil spatial datasets for the management of irrigation rates and 
times in relation to depletion below field capacity and above wilting 
point. Having an accurate quantification of field capacity and wilting 
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point is especially important when volumetric SWC sensors are used 
for irrigation management. The authors do note that the strategy pre-
sented here constitutes a significant increase in effort as compared to 
more traditional and widely used techniques. However, as irrigation 
allocations become more stringent, there will likely be an increased 
rate of adoption of precision techniques that require more accurate 
mapping of soil hydraulic properties. The technology and framework 
presented here provides one potential strategy to better utilize preci-
sion agricultural technologies to increase water use efficiency while 
maintaining crop yields in varying topo-edaphic landscapes.      
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