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a b s t r a c t

Natural history collections spanning multiple decades provide fundamental historical baselines to mea-
sure and understand changing biodiversity. New technologies such as next generation DNA sequencing
have considerably increased the potential of museum specimens to address significant questions regard-
ing the impact of environmental changes on host and parasite/pathogen dynamics. We developed a new
technique to identify intestinal helminth parasites and applied it to shrews (Eulipotyphla: Soricidae)
because they are ubiquitous, occupy diverse habitats, and host a diverse and abundant parasite fauna.
Notably, we included museum specimens preserved in various ways to explore the efficacy of using
metabarcoding analyses that may enable identification of helminth symbiont communities from histor-
ical archives. We successfully sequenced the parasite communities (using 12S mtDNA, 16S mtDNA, 28S
rDNA) of 23 whole gastrointestinal tracts. All gastrointestinal tracts were obtained from the Museum of
Southwestern Biology, USA, and from recent field collections, varying both in time since fixation (ranging
from 4 months to 16 years) and preservation method (70% or 95% ethanol stored at room temperature, or
flash frozen in liquid nitrogen and stored at �80 �C). Our proof of concept demonstrates the feasibility of
applying next generation DNA sequencing techniques to authoritatively identify the parasite/pathogen
communities within whole gastrointestinal tracts from museum specimens of varying age and fixation,
and the value of future preservation of host-associated whole gastrointestinal tracts in public research
archives. This powerful approach facilitates future comparative examinations of the distributions and
interactions among multiple associated groups of organisms through time and space.

� 2018 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Museum collections were built to discover and document
biodiversity and now serve as primary informatics resources for
understanding the history and future of the biosphere (e.g.,
Hoberg et al., 2013; McLean et al., 2016). Specimen archives have
also proved central to recent exploration of the effects of changing
environments on organismal population decline (Shaffer et al., 1998;
Suarez and Tsutsui, 2004; Rowe et al., 2011). Voucher specimens
held in museum repositories, including ethanol (EtOH)-preserved
organisms, are essential biodiversity infrastructure that can lead

to a better understanding of the ecology, evolution and distribution
of free living vertebrate and invertebrate animals as well as their
diverse associated parasites, pathogens and other symbionts.

New technologies in molecular ecology, especially high
throughput DNA sequencing, have rejuvenated the museum collec-
tion enterprise and prompted novel uses for museum samples.
Specimens too degraded for classical PCR and Sanger sequencing
can now be integrated through the use of next generation sequenc-
ing (NGS) technologies (Bi et al., 2013; Guschanski et al., 2013;
Besnard et al., 2016). These new methods have been applied to
studies of the evolutionary history and phylogeography of a variety
of vertebrate (e.g., McCormack et al., 2012; Besnard et al., 2016;
Melville et al., 2017) and invertebrate taxa (e.g., Haponski and
Stepien, 2016; Yuan et al., 2016; Allen et al., 2017) and to explore
the microbiomes of a wide range of animals (e.g., Phillips et al.,
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2012; Bourne et al., 2013; Carrillo-Araujo et al., 2015; Jiménez and
Sommer, 2017). Our study extends this approach to characterise
communities of helminth parasites in preserved vertebrate
specimens.

Helminths represent a wide array of parasitic organisms
belonging to three phyla (Platyhelminthes, Nematoda, Acantho-
cephala) and most have complex life cycles, often using both inver-
tebrates (commonly mollusks and arthropods) and vertebrates as
hosts. Due to these obligate, diverse host relationships, parasites
may act as indicators of ecosystem quality, with healthier and
more heterogeneous ecosystems having higher parasite species
richness (Hudson et al., 2006). Given current threats to biodiver-
sity, particularly through anthropogenic environmental perturba-
tion, understanding temporal changes in the diversity and
distribution of both free-living organisms and their parasites will
be critical for predicting future ecosystem responses. This is espe-
cially true for the changing dynamics of emerging pathogens and
infectious diseases (Hoberg et al., 2013; Brooks et al., 2014). A
number of parasitic worms are recognised pathogens of humans,
domestic animals, and wildlife, although the level of pathogenicity
of the majority of helminths, especially those parasitizing wild ani-
mals, is unknown. Rapid and comprehensive assessments of patho-
gens, including helminths, remain difficult (Hoberg et al., 2015).
Identification of helminth species requires time-intensive process-
ing by expert taxonomists, which becomes problematic given rig-
orous sample sizes, from multiple hosts, and with broad
geographic coverage. This is particularly important for the identifi-
cation of voucher specimens, as misidentification almost certainly
leads to perpetuation of errors.

Our model system involves the helminth faunas of shrews, but
could easily be scaled taxonomically, spatially and temporally.
Many vertebrate species harbour diverse assemblages of hel-
minths, and insectivorous small mammals in the genus Sorex
(long-tailed shrews) are a prime example. Shrews in North Amer-
ica, north of Mexico, occupy diverse habitats and host a speciose
and abundant parasite fauna, which comprises 97 currently known
helminth species, including nine trematodes, 39 cestodes, 50
nematodes, and four acanthocephalans (likely representing only
a fraction of true species diversity). This diversity reflects a diet
consisting almost exclusively of invertebrates that act as interme-
diate hosts (Kinsella and Tkach, 2009). It is extremely rare to find a
shrew (Sorex spp.) uninfected with helminths, especially cestodes.
Indeed, most shrews harbour hundreds of individual cestodes
ranging in size from less than 1 mm to 90 mm in length, with
the majority in the range of 1–10 mm (Kinsella and Tkach, 2009).
At any given time, a single shrew may be infected with representa-
tives of several genera of cestodes and nematodes, including mul-
tiple congeneric species.

The 10 largest mammal archives in North America (National
Museum of Natural History, Museum of Southwestern Biology
(MSB), American Museum of Natural History, Berkeley Museum
of Vertebrate Zoology, Field Museum, Kansas University Natural
History Museum and Biodiversity Research Center, University of
Michigan Museum of Zoology, University of Alaska Museum, Royal
Ontario Museum, Carnegie Museum of Natural History) collec-
tively house over 2.3 million small mammal specimens. Although
most are stored as dried skins and skeletons without gastrointesti-
nal (GI) tracts, a large number of whole specimens are stored in
70–95% EtOH or frozen at �20 �C. Relatively fewer specimens —
over 500,000 — have parts or organs, including the GI tracts, frozen
at �80 �C. Whether GI tracts are frozen or EtOH-preserved, the hel-
minths in these preserved GI tracts are seldom of sufficient quality
for morphological identification due to contraction or degradation.
To document the helminth diversity in wild rats, Tanaka et al.
(2014) developed a metabarcoding approach that targets the 18S
rDNA of helminths in DNA extractions from fecal samples. In this

study we developed a similar approach, but one that increases
detectability (Stat et al., 2017) by leveraging multiple genes to
examine the helminth diversity within whole GI tracts of shrews
as a convenient model, with the methodology being applicable to
a broad spectrum of vertebrate hosts. We test the feasibility of
using NGS technologies to identify parasite biodiversity and com-
munity structure within museum-archived whole GI tracts, specif-
ically targeting collections where the quality of helminth samples
is too poor for morphological identification. Herein, we outline
our new approach to identifying the helminth community in a ser-
ies of whole GI tracts from shrew specimens that had been pre-
served over varying lengths of time (4 months to 16 years).

2. Materials and methods

2.1. Sample collection

Twenty-three whole GI tracts from shrews in the genus Sorex
were sampled from museum specimens from the Museum of
Southwestern Biology at the University of New Mexico in Albu-
querque, USA (Table 1). Museum samples varied, with GI tracts
being preserved: (i) still within the shrew host and fixed in 95%
EtOH (abdomen punctured and placed directly into EtOH) and
moved to 70% EtOH for long-term storage at room temperature
(n = 6); (ii) flash frozen in liquid nitrogen (LN) and stored at
�80 �C (n = 17); or (iii) fixed and preserved in 95% EtOH and stored
at room temperature (n = 2; GI tracts were split at time of collec-
tion, with the small intestine of each GI tract fixed in LN and the
large intestine fixed in 95% EtOH) (Table 1). GI tracts were carefully
removed from each animal or vial using UV sterilised and bleached
(10%) micro-forceps and dissection scissors, and placed into a ster-
ile glass Petri dish. GI tracts were straightened within the Petri
dish, cut in half, and each half opened lengthwise using sterile fine
dissection scissors under a dissecting microscope.

2.2. DNA extraction from whole GI tracts

DNA was extracted from each half of the opened GI tracts using
the ZR Fecal DNA MiniPrepTM kit (Zymo Research, Irvine, CA, USA)
following the manufacturer’s instructions with minor modifica-
tions. Each half of the GI tract from an individual shrew was
extracted separately to avoid overloading spin columns. DNA
eluted from each GI tract half (�150 mL each) was combined into
a single sterile microcentrifuge tube. To determine the best
method for whole gut extraction, opened GI tracts were either
placed directly into the ZR BashingBeadTM lysis tube or the intesti-
nal content was scraped using sterile forceps into the lysis tube.
Samples within the ZR BashingBeadTM lysis tube were lysed by bead
beating for �25 min utilizing the Disruptor GenieTM (Scientific
Industries, Inc., Bohemia, NY, USA) or for �15 min using the Tis-
sueLyser II (Qiagen, Hilden, Germany). Eluted DNA (2 mL from each
sample) was quantified using the QubitTM dsDNA Broad Range
Assay Kit (ThermoFisher Scientific, Waltham, MA, USA) on a QubitTM

fluorometer. Following quantification, the remaining eluted DNA
from each sample (if possible) was standardised to 50 ng/mL in
new sterile 1.5 mL microcentrifuge tubes.

2.3. Reference library generation

Helminths obtained from fresh shrew GI tracts were fixed for
standard morphological examination (e.g. heat relaxed and fixed
in 70–80% EtOH) and used to help design NGS primers and generate
DNA reference libraries for each genetic locus used in this study.
Processing varied depending on the particular helminth taxonomic
group (cestodes, nematodes, etc.). For armed cestodes (presence of
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rostellar hooks), the scolex was removed from individual worms
with armed rostellums (those that bear hooks for attachment)
and mounted in Berlese’s clearing medium as a voucher. DNA was
extracted from the remaining part of the cestode using the Zymo
Research Genomic DNA-tissue MicroPrep kit following the manu-
facturer’s protocol. Unarmed cestodes (lacking rostellar hooks)
were processed using the posterior end of the strobila for DNA
extraction (ZR MicroPrep kit). The remaining part of these cestodes
was either placed in 80% EtOH as a voucher or stained and perma-
nently mounted in Damar gum. For nematodes, the anterior and
posterior ends were preserved in 80% EtOH as a voucher of mouth-
parts and genitalia, respectively, and the middle section of the
worm was used for DNA extraction (ZR MicroPrep kit).

PCR and Sanger sequencing was accomplished using standard-
ised primers and annealing temperatures (Table 2), different from
metabarcoding primers. For mitochondrial genes (16S and 12S)
GoTaq Colorless Master Mix (Promega, Madison, WI, USA) was
used in PCRs; for 28S rDNA, Quick load OneTaq mastermix (New
England Biolabs, Ipswich, MA, USA) was used.

2.4. Primer design for NGS

Primers were designed using Python (van Rossum, 1995) and
Biopython (Cock et al., 2009) scripts that are part of the U.S. Geo-
logical Survey Alaska Science Center Bioinformatics pipeline (Men-
ning, D.M., Talbot, S.L., 2018. Python scripts for bioinformatics,
2017. U.S. Geological Survey data release, https://doi.org/10.
5066/F74F1NZ4). Briefly, all available nematode and cestode 28S
rDNA and12S and16S mtDNA sequences were downloaded from
NCBI GenBank into respective FASTA files. Each FASTA file was
aligned using MEGA6 (Tamura et al., 2013). Aligned FASTA files
were used to locate potential primer sites (conserved regions
greater than 17 bp). Once potential primers were developed, the
original unaligned FASTA files were screened to verify that only
individual species would be identified and that no potential
sequences had more than one unique generic/specific epithet
descriptor (primer sequences in Table 3). Locus-specific primers
were appended with Illumina Nextera (Illumina Inc., San Diego,
CA, USA) P5 and P7 adapters with dual indices.

Table 1
Shrew gastrointestinal tract samples obtained from the Museum of Southwestern Biology Division of Mammals, New Mexico USA.

Sample ID Preservation type Collection Year Locality Species DNA (ng/ll)

MSB:Mamm:259288
(AF51992)

Whole organism in 70% EtOH 2001 Canada, Yukon Sorex cinereus 93.1

MSB:Mamm:156005
(NK153868)

Whole organism in 70% EtOH 2004 Canada, Northwest territories Sorex cinereus 1.0

MSB:Mamm:195886
(NK151517)

Whole organism in 70% EtOH 2007 New Mexico Sorex monticola 1.6

MSB:Mamm:250051
(NK213643)

Whole organism in 70% EtOH 2011 Alaska Sorex monticola 37.8

MSB:Mamm:266233
(NK216541)

Whole organism in 70% EtOH 2013 Alaska Sorex monticolus 72.1

MSB:Mamm:266518
(NK216528)

Whole organism in 70% EtOH 2013 Alaska Sorex monticola 9.5

MSB:Mamm:291145
(NK261915)

GI flash frozen in LN2, stored at �80 �C 2015 New Mexico Sorex cinereus 303

MSB:Mamm:291146
(NK261916)

GI flash frozen in LN2, stored at �80 �C 2015 New Mexico Sorex monticola 220

MSB:Mamm:291147
(NK261917)

GI flash frozen in LN2, stored at �80 �C 2015 New Mexico Sorex monticola 309

MSB:Mamm:291148
(NK261920)

½ GI flash frozen in LN2, stored at �80 �C 2015 New Mexico Sorex monticola 207

MSB:Mamm:291148
(NK261920)

½ GI in 95% EtOH, stored at �20 �C 2015 New Mexico Sorex monticola 76.8

MSB:Mamm:291149
(NK261921)

½ GI flash frozen in LN2, stored at �80 �C 2015 New Mexico Sorex monticola 225

MSB:Mamm:291149
(NK261921)

½ GI in 95% EtOH, stored at �20 �C 2015 New Mexico Sorex monticola 58.3

MSB:Mamm:291150
(NK261932)

GI flash frozen in LN2, stored at �80 �C 2015 New Mexico Sorex cinereus 195

MSB:Mamm:291151
(NK261933)

GI flash frozen in LN2, stored at �80 �C 2015 New Mexico Sorex cinereus 151

MSB:Mamm:291152
(NK261934)

GI flash frozen in LN2, stored at �80 �C 2015 New Mexico Sorex monticola 78.7

MSB:Mamm:291153
(NK261935)

GI flash frozen in LN2, stored at �80 �C 2015 New Mexico Sorex monticola 144

MSB:Mamm:291154
(NK261936)

GI flash frozen in LN2, stored at �80 �C 2015 New Mexico Sorex cinereus 110

MSB:Mamm:291155
(NK261937)

GI flash frozen in LN2, stored at �80 �C 2015 New Mexico Sorex monticola 213

MSB:Mamm:291156
(NK261938)

GI flash frozen in LN2, stored at �80 �C 2015 New Mexico Sorex monticola 164

MSB:Mamm:291157
(NK261939)

GI flash frozen in LN2, stored at �80 �C 2015 New Mexico Sorex monticola 159

MSB:Mamm:291158
(NK261940)

GI flash frozen in LN2, stored at �80 �C 2015 New Mexico Sorex cinereus 238

MSB:Mamm:291159
(NK261946)

GI flash frozen in LN2, stored at �80 �C 2015 New Mexico Sorex monticola 207

MSB:Mamm:291160
(NK261947)

GI flash frozen in LN2, stored at �80 �C 2015 New Mexico Sorex monticola 165

MSB:Mamm:291161
(NK261948)

GI flash frozen in LN2, stored at �80 �C 2015 New Mexico Sorex cinereus 129
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2.5. DNA library preparation and sequencing

Libraries were prepared for sequencing on an Illumina platform.
Precautions against contamination were taken. DNA extraction and
initial library preparation steps were completed in a laboratory
designated for pre-PCR protocols conducted on low copy and
highly degraded DNA. Filtered barrier tips where always used,
and plastics and reagents (when appropriate) were all UV treated
prior to use. DNA extracts were amplified by PCR in triplicate for
each locus (16S mtDNA, 12S mtDNA, 28S rDNA). Positive and neg-
ative controls were included for all loci. Negative controls con-
sisted of ultra-pure sterile water and positive controls for
cestodes consisted of one Monocercus, five individual Mathevolepis,
two individual Lineolepis sp., one Staphylocystis, three Ditestolepis
and six Soricinia. Positive controls for nematodes consisted of a
mix of 15 individuals of two species of Longistriata. PCR amplifica-
tions were carried out in a 25 lL volume; 4 lL of template DNA,
2.5 lL of each primer (1.0 mM), 0.5 lL of dNTPs (0.2 mM), 2.5 lL
of 1X PCR Gold buffer (ThermoFisher), 2 lL of 2.0 mM MgCl2,
0.5 lL of 2% BSA, and 1 unit (0.2 lL) of AmpliTaq Gold Polymerase
(ThermoFisher). Thermocycler conditions were: initial denatura-
tion at 95 �C for 10 min, 30–35 cycles of denaturation at 94 �C for
30 s, annealing at 55 �C for 30 s, extension at 72 �C for 60 s, fol-
lowed by a final extension at 72 �C for 30 min and a final hold at
4 �C. Following PCR amplification, libraries were normalised. PCR
triplicates for each locus were pooled by sample, mixed by vortex-
ing and visualised on an agarose gel. Following verification of
amplification, 25 mL of each pooled PCR product were subaliquoted
and enzymatically purified using 1 mL of ExoSAP-IT (ThermoFisher)
per aliquoted sample and the purified PCR product was quantified
using a Broad Range Quant-iT dsDNA assay kit (ThermoFisher).
After quantification, PCR products were diluted to equal concentra-
tions (no less than 30 ng/mL) using ultra-pure water; if a sample
was less than 30 ng/mL then equal volumes (5 mL) were used.
Diluted samples were pooled by locus into a 1.5 mL microcen-
trifuge tube (5 mL each), and excess primers were removed from
a 25 mL subaliquot from each pooled locus using a Qiagen MiniE-
lute Gel Purification Kit (Qiagen, Valencia, CA, USA) following the
manufacturer’s protocol. Gel purified libraries were quantified
using a High Sensitivity Quant-it dsDNA assay kit (ThermoFisher),

diluted to 4 nM, and pooled in equimolar amounts across loci.
Libraries were sequenced on an Illumina MiSeq (paired-end reads;
2� 250 bp cycles with two 8 bp index reads; 15% PhiX). Machine-
processed sequencing output has been deposited under National
Center for Biotechnology Information (NCBI) Sequence Read
Archive (SRA) under BioProject PRJNA397927, together with the
NCBI Biosample Object Accession numbers SAMN07495800-
SAMN07495824 for each shrew GI tract. Associated study meta-
data is available through the U.S. Geological data release,
https://doi.org/10.5066/P9YH4C20.

2.6. Bioinformatics analysis

Paired-end reads were processed and analysed using the
mothur software package (v 1.37.3) by following the MiSeq SOP
analysis pipeline (Kozich et al., 2013). Each genetic locus was pro-
cessed and analysed separately. Paired reads were assembled into
contigs. Contigs with ambiguous bases and those outside a target
range of lengths (for each locus) were removed (Table 4). Duplicate
contigs were merged. Contigs were aligned to their respective ref-
erence databases based on sequences (16S and 12S mtDNA, and
28S rDNA) generated from morphologically identified helminths
by authors S.E. Greiman and V.V. Tkach (personal reference data-
bases). Contigs were filtered to remove overhangs at each end
and poorly aligned reads. Duplicate contigs were again merged.
Contigs were further clustered allowing two nucleotide differences
between contigs to reduce noise. Chimeric sequences were identi-
fied and removed using the VSEARCH algorithm through mothur.
Assembled reads were classified using the Bayesian classifier uti-
lizing the appropriate reference and taxonomy file for each locus.
Following classification, contigs were clustered into operational
taxonomic units (OTUs) using the cluster.split command, which
uses taxonomic information to split the reads into bins and then
clusters within each bin.

Errors are inherently associated with amplification, sequencing
and mapping of reads to OTUs, making it difficult to distinguish
between amplification artifacts and low abundance OTUs. We
therefore applied a filter to remove false positive detections by
subtracting the number of reads detected in the negative controls
for a given OTU from the number of reads assigned to that OTU

Table 2
PCR and Sanger sequencing primers for helminth references libraries used in this study.

Genetic Locus (annealing temp) Primer Sequence (50–30)

28S (56 �C) PCR
Cestl2 (Tkach et al., 2013) AAGCATATCAATAAGCGG
1500RC (Tkach et al., 2013) GACGATCGATTTGCACGTC
Sequencing (PCR primers and the following)
c250f (Tkach et al., 2013) GTCGGGTTGTTTGAGATTGC

16S (48 �C) PCR/Sequencing
16SF (Littlewood et al., 2008) TGCCTTTTGCATCATGCT
16SR (Littlewood et al., 2008) AATAGATAAGAACCGACCTGG

12S (45 �C) PCR/Sequencing
12SF (Casiraghi et al., 2004) GTTCCAGAATAATCGGCTA
12SR (Casiraghi et al., 2004) ATTGACGGATGRTTTGTACC

Table 3
Primer sequences used for next generation amplicon sequencing in this study
(without adapters and index sequences).

Primer name Gene Primer sequence (50–30)

12S_F_Long 12S mtDNA ATAAATAAGTAAAATTTGGC
12S_R_Long GTACCACCTCTAAATAATCTTC
28S_F_Ces 28S rDNA GAGTAAACAGTACGTGAAGC
28S_R_Ces CCACCGGTCGTGGTGTTC
16S_F_Ces 16S mtDNA CAATTAATTATGCTACCTT
16S_R_Ces CGTCTGTTTATYAAAAACATTTC

Table 4
Sequence length selection criteria used in the screen.seqs command of the bioinfor-
matics programme Mothur for next generation amplicon sequence processing for
each genetic locus (16S mitochondrial, 12S mitochondrial, and 28S ribosomal RNA)
targeted in this study.

Gene Minimum length Maximum length

16S (helminth) 106 118
28S (helminth) 280 290
12S (helminth) 118 130
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within each sample. Additionally, OTUs with fewer than 15 reads
within a sample were excluded from the analysis; 15 reads
represent the application of the following minimum threshold
ranges (0.007–6.8% (16S mtDNA)), (0.07–20.8% (28S rDNA)),
(0.006–16.5% (12S mtDNA)).

OTU abundances for each locus and sample were visualised on a
stacked bar plot using the data visualisation package, ggPLOTs, in
the statistical programming language R. Shannon diversity (alpha
diversity statistic) indices were calculated separately for each focal
shrew species (Sorex cinereus and Sorex monticola), fixation method
(70% EtOH, 95% EtOH, LN), and extraction source (whole gut,
intestinal scrape), and for each locus. A Kruskal–Wallis rank sum

test was used to look for significant differences amongst the Shan-
non diversity values and amongst taxon abundances for each
genetic locus and metadata category. P values less than 0.05 were
considered significant.

3. Results

3.1. Extraction quantities

Variation in DNA quantities was observed for the different
sample fixations, with freshly collected GIs (collected in 2015

Fig. 1. Stacked bar plots showing the relative abundance of each operational taxonomic unit for each shrew gastrointestinal tract across the three genetic loci, 28S ribosomal
RNA, 16S mitochondrial DNA, and 12S mitochondrial DNA. (A) Cestode genera abundances within 23 shrew gastrointestinal tracts based on 28S rDNA Illumina paired-end
reads. (B) Cestode genera abundances within 23 shrew gastrointestinal tracts based on 16S mtDNA Illumina paired-end reads. (C) Nematode taxa abundances within 23
shrew gastrointestinal tracts based on 12S mtDNA Illumina paired-end reads.
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and stored in LN) having higher concentrations of DNA after
extraction (Table 1).

3.2. Illumina sequencing

Over 8.7 million paired reads were obtained for all genetic loci
across the 23 whole GI tract samples and the positive and negative
controls. Of the >8.7 million sequences, those passing filtering/
quality criteria (Supplementary Tables S1–S9) included over
270,000 for 28S rDNA, over 3.5 million for 16S mtDNA and over
3.2 million for 12S mtDNA.

3.3. OTU identification

3.3.1. Positive controls
All six OTUs used for the positive controls were identified for

16S mtDNA, while only five OTUs were identified for 28S rDNA,
with only Monocercus not found for 28S. Both OTUs used for the
12S Longistriata were identified for 12S mtDNA. Ditestolepis and
Soricinia used for the positive controls were collected from Mongo-
lia and represent the first available sequences for these taxa, and
thus were not included in the reference database, thus Ditestolepis
was likely identified as Cyclophyllidea unknown and Soricinia was
likely identified as Hymenolepididae unknown.

3.3.2. 28S rDNA (cestodes)
Twenty-three unique OTUs were identified for the 28S rDNA

gene; however, after applying filtering thresholds, 18 unique OTUs
remained. OTUs were further grouped at the genus level (Fig. 1A,
Supplementary Tables S1–S3). There were differences in the iden-
tified OTUs for both samples (MSB shrew accession numbers:

NK261920 and NK261921) where the GI tracts were split between
95% EtOH (stored at room temperature) and LN. In addition, Uro-
cystis and Staphylocystoides were not detected from the EtOH pre-
served (large intestine) half of the GI tract for either sample,
whereas both parasite genera were detected from the frozen half.

3.3.3. 16S mtDNA (cestodes)
Twenty-one unique OTUs were identified for the 16S mtDNA

gene; however, after applying filtering thresholds, 18 unique OTUs
remained. OTUs were further grouped at the genus level (Fig. 1B,
Supplementary Tables S4–S6). There were differences in the iden-
tified OTUs for one (MSB NK261920) of the two samples where the
GI tracts were split between 95% EtOH (stored at room temp) and
LN, with the EtOH fixed GI missing Urocystis compared with the LN
fixed GI. There was no difference in the identified OTUs for the
other split GI tract (MSB NK261921).

3.3.4. 12S mtDNA (nematodes)
Five unique OTUs were identified for the 16S mtDNA gene,

however, after applying thresholds, four unique OTUs remained
(Fig. 1C, Supplementary Tables S7–S9).

3.4. Alpha diversity

3.4.1. 28S rDNA (cestodes)
A significant difference in alpha diversity was detected amongst

the different sample fixation types (Kruskal–Wallis, P = 0.016;
Fig. 2A), but not between shrew species (Kruskal–Wallis,
P = 0.683), or between extraction methods (Kruskal–Wallis,
P = 0.082) based on 28S rDNA data. Slight variations in OTUs
present amongst the different fixation types were observed, with

Fig. 2. Box plots comparing the Shannon Diversity index (alpha diversity) values for (A) cestode genera infecting 23 shrew gastrointestinal tracts based on 28S rDNA Illumina
paired-end reads between the different sample fixation methods; (B) cestode genera infecting 23 shrew gastrointestinal tracts based on 16S mtDNA Illumina paired-end reads
between the different sample fixation methods; (C) nematode taxa infecting 23 shrew gastrointestinal tracts based on 12S mtDNA Illumina paired-end reads between the
different sample fixation methods. Significant differences (P < 0.05) between either fixation method or shrew species computed with a Kruskal–Wallis rank sum test are
indicated with letters above the box plots. Outliers are indicated by empty circles above the maximum whisker or below the minimum whisker, the upper quartile is
indicated by the top portion of the box, above the median value line, and the lower quartile is indicated by the lower portion of the box, below the median value line.
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Staphylocystoides and Urocystis being absent from EtOH preserved
samples. Based on a Kruskal–Wallis test among individual cestode
taxa for sample fixation type, a higher abundance of tapeworms in
the genus Staphylocystoides was detected in GI tracts preserved in
LN (P = 0.015) compared to 70% or 95% EtOH preserved samples,
although not significant (P = 0.08) (Supplementary Fig. S1).

3.4.2. 16S mtDNA (cestodes)
A significant difference was detected in alpha diversity among

the different sample fixation types (Kruskal–Wallis, P = 0.009;
Fig. 2B) but not between shrew species (Kruskal–Wallis,
P = 0.180) or between extraction methods (Kruskal–Wallis,
P = 0.446) based on 16S mtDNA data. Slight variations in OTUs
amongst the different fixation types were observed, with Urocystis
and Soricinia (although only two samples were infected with Sori-
cinia) being absent from EtOH preserved samples and Locker-
rauschia being absent from LN preserved samples. Based on a
Kruskal–Wallis test amongst individual cestode taxa for sample
fixation type, there was a higher abundance of tapeworms of the
genus Staphylocystoides (P = 0.04) in LN samples compared with
their abundances in either 70% or 95% EtOH preserved samples
(Supplementary Fig. S2), and a higher abundance of tapeworms
in the genus Lineolepis (P = 0.007) in 95% EtOH and LN preserved
samples compared with their abundances in 70% EtOH preserved
samples (Supplementary Fig. S3).

3.4.3. 12S mtDNA (nematodes)
There was a significant difference in alpha diversity amongst

the different sample fixation types (Kruskal–Wallis, P = 0.024)
(Fig. 2C), but not between shrew species (Kruskal–Wallis,
P = 0.73), or between extraction method (Kruskal–Wallis,
P = 0.97) for samples based on 12S mtDNA. Based on a Kruskal–
Wallis test amongst individual nematode taxa for sample fixation
type, there was a higher abundance of the nematode Longistriata
alainchabaudi (P = 0.029) in 70% EtOH preserved samples compared
with their abundances in either 95% EtOH or LN preserved samples
(Supplementary Fig. S4).

4. Discussion

Emerging pathogen and other biological research relies on cor-
rect species determination, which requires taxonomic expertise;
however, despite the importance of taxonomy, this discipline is
in rapid decline (Drew, 2011; Brooks et al., 2014; Lees and Pimm,
2015). Fourteen years ago, Hebert et al. (2003) suggested that the
best option for supporting a capability for authoritative and sus-
tainable taxonomic identification was a system relying on DNA
barcode sequences. Since then, large amounts of DNA barcode data
have been generated and made available in public databases. How-
ever, the success of a DNA barcode-based approach relies initially
on a broad taxonomic panel of authoritatively determined organ-
isms that subsequently serve as the source for appropriate diag-
nostic DNA markers among a diverse array of often closely
related taxa (Joly et al., 2014). The importance of authoritative
knowledge of taxonomic experts is highlighted by the fact that
no more than 10% of global pathogens have been documented
(Brooks and Hoberg, 2013), and among these documented taxa,
very little is known regarding their evolution and ecology
(Hoberg et al., 2015). Approximately 75% of named parasitic flat-
worms (cestodes, trematodes) are known only from their original
descriptions, and therefore little can be extrapolated regarding
their host diversity, geographic range, or disease dynamics
(Poulin and Morand, 2004). The availability of trustworthy hel-
minth barcode sequences is limited, although the application of
definitive sequence data for identification of parasites in geographically

extensive and site intensive sampling has been clearly demon-
strated (e.g., Kutz et al., 2007; Brooks et al., 2014).

NGS methodologies have not been widely applied in studies of
helminth communities, despite their obvious considerable poten-
tial in addressing a variety of questions. Tanaka et al. (2014) uti-
lised primers amplifying the variable V9 region of the eukaryotic
18S rDNA gene, which has several drawbacks. First, it amplifies
across a wide range of eukaryotic organisms, including mammals,
thereby requiring mammal blocking primers. Because we used
whole shrew GI tracts to keep helminth communities intact, the
amount of host DNA was much greater than that of helminth
DNA. Second, we attempted to design new 18S primers for hel-
minth taxa only; however, we could not find a sufficiently con-
served region for identification of closely related species. Third,
in the Tanaka et al. (2014) study, the rats were infected with a
fairly low diversity of helminth parasites, including only a single
cestode species, and therefore they did not have to differentiate
among multiple cestode species within a single host individual, a
clear difference from our shrew system.

We have identified and generated our own DNA barcode
libraries for 16S mtDNA, 28S rDNA, and 12S mtDNA, for a majority
of helminth species currently known from shrews of the genus
Sorex in North America. We combined multiple DNA markers,
including both nuclear and mitochondrial rDNA, to more accu-
rately identify helminth communities. For example, the 28S rDNA
locus, although the most abundant in GenBank for cestodes, is
highly conserved, so finding a barcode region variable enough to
identify closely related species is challenging. 28S rDNA sequences
can be identical in congeneric shrew cestode species that are
otherwise easily distinguishable by morphology and mtDNA
(Tkach et al., 2013). Conversely, mitochondrial barcoding genes
alone may be problematic due to high intraspecific variability.

Taxonomic assignment for helminth sequences is based on
specimen identified reference databases developed by S.E. Greiman
and V.V. Tkach. This constitutes a reliable basis for accurate subse-
quent identification using NGS data. However, despite high rich-
ness of helminth parasites already known from shrews in North
America, a substantial number of species have yet to be formally
described. Often, well-fixed samples suitable for proper morpho-
logical identification are lacking, resulting in some sequences cat-
egorised into either Cyclophyllidea unclassified or
Hymenolepididae unclassified. Increased sampling of fresh shrew
samples for proper fixation and identification of helminths will
help fill in the gaps in the reference databases, improving taxo-
nomic designation of helminths in future metabarcoding studies.
Our study emphasises the need for the integration of classical par-
asitological and molecular techniques with more modern tech-
niques for identifying helminths from a large sample of hosts
(Hoberg et al., 2015). At the same time, host identification should
be similarly confirmed through integration of molecular and mor-
phological approaches (Dunnum et al., 2017).

Additionally, the 28S rDNA and 16S mtDNA reference databases
are not 100% matching, resulting in slight differences in OTU
designation. This variation arose due to past sequencing efforts
that focused solely on 28S rDNA. Our data demonstrated signifi-
cant differences in estimates of taxon read abundance based on
sample fixation for 16S mtDNA, but not 28S rDNA. This was
evident in observations of higher read abundance of Lineolepis
tapeworms from specimens preserved in 95% EtOH and LN
compared with their abundances in samples fixed in 70% EtOH.
We hypothesize that this result reflects differences in the reference
databases, with several species of Lineolepis still missing 16S
mtDNA sequences, but not 28S rDNA. Future efforts should aim
to increase taxon availability in both reference databases. Existing
metabarcoding sequence datasets can then be retroactively
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enhanced and re-analysed as more reference sequences from
identified taxa become available.

NGS sequencing allowed for accurate designation of helminths
to genera, and in many cases to species. However, due to gaps in
our sequence reference databases, and a significant number of
undescribed species of cestodes from shrews in North America,
we limited the reported taxonomic designations to the level of
genus. With the exception that Monocercus (see below for explana-
tion) was not identified using our 28S primers, positive controls
were accurately identified using our sequencing method with all
six cestode taxa identified using the 16S primers, five of six being
correctly identified for 28S, and both nematode taxa being cor-
rectly identified for 12S. Twenty-two unique helminth OTUs were
identified, including four nematodes and 18 cestodes. The 18 ces-
tode OTUs were further reduced to nine genera and two unclassi-
fied (Cyclophyllidea and Hymenolepididae) (Fig. 1). Based on 28S
rDNA, shrews were infected with an average of 3.4 genera of tape-
worms (not including unclassified Hymenolepididae or Cyclophyl-
lidea), with one shrew infected with seven different (identified)
genera of tapeworms. Based on 16S, shrews were infected with
4.8 genera of tapeworms (not including unclassified Hymenolepi-
didae or Cyclophyllidea), with one shrew infected with as many
as eight different (identified) genera of tapeworms.

In regard to the slight variation seen in OTU identification for
the two samples where the GI tract was split between LN (small
intestine) and 95% EtOH (stored at room temperature) (large intes-
tine) (i.e. Staphylocystoides and Urocystis missing from the EtOH
preserved GI tract for 28S and Urocystismissing for one of the sam-
ples from the EtOH preserved GI for 16S), we hypothesize that this
variation is not caused by the different fixative, but instead due to
the portion of the GI tract used for 95% EtOH (i.e., large intestine).
Both Staphylocystoides and Urocystis are minute cestodes that are
found in the upper part of the small intestine, so most of the asso-
ciated cestode tissue would be located in the portion of the small
intestine fixed in LN, and therefore be preferentially amplified in
that part of the GI tract compared with the large intestine.

Although we examined the differences in helminth alpha diver-
sity among shrew species, this study was designed primarily to test
the feasibility of utilizing NGS approaches to identify the helminth
community within whole GI tracts of varying age and fixation type.
Therefore, differences in alpha diversity should be taken with some
caution. The sample sizes and geographic coverage used here for
methods development constitute only a small subset of fluid pre-
served or frozen samples available in museum collections. Sorex
cinereus and S. monticola are among the most widespread and
abundant shrew species in North America, and are largely sym-
patric throughout their ranges, making them an ideal system for
examining variation in host, helminth and microbiome communi-
ties over time (e.g., long term, seasonal) and space. The approach
can be used, however, to study helminth communities and their
temporal and spatial dynamics in a broad diversity of small mam-
mals, other vertebrate taxa and a variety of ecosystems across ter-
restrial, freshwater and marine environments.

Slight variation in the perceived parasite fauna was observed
between the 28S rDNA and 16S mtDNA sequencing (Fig. 1A and
B). One contributing factor to this variation is the ability of the
16S primers to better amplify tapeworms in the genus Monocercus
than the 28S primers. This was an expected result, as our 28S rDNA
primers were designed almost exclusively to amplify tapeworms in
the family Hymenolepididae, whereas Monocercus belongs to the
family Dilepididae. All genera of cestodes infecting Sorex in North
America, except for Monocercus, belong to the family Hymenolepi-
didae (Kinsella and Tkach, 2009). Again, unequal availability
among reference databases for 16S mtDNA and 28S rDNA may also
contribute to differential detection, as evidenced by a substantial
number of unclassified Hymenolepididae sequences in both our

28S rDNA and 16S mtDNA sequence data, with variation between
the two. Future work will include development of primers to target
an approximately 480 bp fragment of cytochrome c oxidase sub-
unit I (COI) for improved identification of helminth taxa (i.e., ces-
todes, digeneans, nematodes) to species in combination with
other loci. In addition, we anticipate development of primers to
target the invertebrate diet of the shrews, coupled with surveys
of the invertebrate community at a given collection site. This addi-
tional biodiversity will provide insight into complex parasite life
cycles through identification of intermediate hosts, as well as sea-
sonal changes in shrew diet.

Significant differences (albeit small) in alpha diversity were
observed for helminth taxa for both 28S and 16S between locality
(northern and southern North America) and fixation type. The 28S
EtOH preserved samples were found to not be infected with Sta-
phylocystoides or Staphylocystis (only one EtOH specimen was
infected with Staphylocystis based on 16S). Based on this, it may
be possible that the 28S primers amplify Staphylocystoides DNA less
efficiently from more degraded samples. At the same time, the 16S
primers more easily pick up this degraded DNA due to the shorter
fragment size of the target region and greater number of remaining
copies of the mitochondrial DNA. In addition, the 16S primers did
not amplify Urocystis (only one shrew was found to be infected
based on 28S) or Soricinia (only two shrews were found to be
infected overall with Soricinia) DNA in EtOH preserved samples,
but did identify Lockerrauschia DNA in only EtOH preserved sam-
ples. Given that slight variation in OTUs is not related solely to
one type of fixative (i.e. Lockerrauschia only found in EtOH pre-
served samples), it is likely that variation is a result of locality
and not preservation.

In this study we attempted to pool all target loci for sequencing
on a single MiSeq run. Although we obtained usable data for each
locus, we found that depending on the size (in base pairs) of a
given target region, we would obtain different numbers of
sequence reads. Smaller targets such as 16S mtDNA (�110 bp)
and 12S mtDNA (�120 bp) produced greater numbers of sequences
than larger targets, 28S rDNA (�280 bp) and 16S rDNA (�300 bp),
with 3.5 million and 3.2 million sequences compared with 270,000
and 545,000 sequences, respectively. Therefore, we recommend
sequencing each locus in a separate run, sequencing loci of similar
sizes together (e.g. 28S rDNA with 16S rDNA and 12S mtDNA with
16S mtDNA), or including higher representation of longer frag-
ments (relative to the shorter fragments) in the pooled library.
Costs of sequencing will remain similar with these approaches,
as we were not limited by the sequencing output of the MiSeq,
and therefore, sequencing costs are largely defined by the total
number of unique barcodes available. Through reduction of the
number of loci per sequencing run, the number of samples can
be increased to 384 samples for a single locus run.

Although our main goal was to develop and test a method to
identify helminth parasites from museum archived samples, we
believe a discussion of general sampling techniques to maximize
long-term specimen use is warranted. Historically, field collection
has focused on individual taxonomic groups, with little emphasis
on collecting samples for other syntopic species or for disciplines
other than systematics. With technological advancements in
museum storage, DNA sequencing techniques, and field collection
protocols, samples should be collected in ways that maximize their
use by diverse specialists in the future (mammalogists, parasitolo-
gists, bacteriologists, stable isotope researchers, entomologists,
etc.). Here we will briefly focus on sampling protocols from shrews
as an example of how the utility of field collected samples can be
maximised for future parasitological and microbial research.

Helminth parasites of shrews quickly degrade upon death of the
host, making them difficult to study. Degradation can be limited,
however, by using live traps (pitfalls) that are regularly checked
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every few hours. Upon death, a quick method for dissection and
preservation of the parasites and microbes for targeted sequencing
is needed. One such method is to remove the intestinal tract with
clean forceps, place it directly into a 2 mL sterile cryovial, and pre-
serve it in LN. These frozen samples can be effectively used for both
helminth and microbial metabarcoding identification. Further, a
new ‘gold standard’ for biodiversity discovery involving metage-
nomics would also integrate a subset of parasite specimens from
each host and locality properly fixed for morphological examina-
tion as vouchers to be distributed or held in recognised museum
repositories. Thus, the process of biodiversity discovery would
serve to build increasingly fine scale pictures of helminth commu-
nities and faunal structure over space and time.

Our study outlines a novel multi-locus metabarcoding approach
for efficiently identifying the helminth symbiont communities
within museum archived and freshly collected whole GI tracts of
vertebrates. The protocol successfully amplified helminth DNA
from variously fixed samples (4 months–16 years old) in museum
archives. Metabarcoding approaches, as outlined here, show the
potential to increase the use and impact of the vast number of
samples held in natural history museums. As we shift from
response to anticipation of emerging disease, such capacity is crit-
ical in public health research, surveillance, and in building accurate
pictures of distribution for parasites across the biosphere. In partic-
ular, it allows for development of temporal baselines necessary for
reliable comparisons across past and present biotic communities.
Such comparisons can provide increased resolution in ecological
modelling and other capacities to anticipate and identify accelerat-
ing changes in distributions and interactions among assemblages
of both hosts and pathogens (e.g., Hope et al., 2013, 2016; Brooks
et al., 2014; Cook et al., 2016).
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