
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

Agronomy & Horticulture -- Faculty Publications Agronomy and Horticulture Department

10-5-2018

Overexpression of the Sorghum bicolor
SbCCoAOMT alters cell wall associated
hydroxycinnamoyl groups
Hannah M. Tetreault
University of Nebraska-Lincoln, hannah.tetreault@ars.usda.gov

Erin D. Scully
University of Nebraska-Lincoln, erin.scully@ars.usda.gov

Tammy Gries
USDA-ARS, tgries2@unl.edu

Nathan A. Palmer
USDA-ARS, nathan.palmer@ars.usda.gov

Deanna L. Funnell-Harris
University of Nebraska-Lincoln, Deanna.Funnell-Harris@ars.usda.gov

See next page for additional authors
Follow this and additional works at: http://digitalcommons.unl.edu/agronomyfacpub

Part of the Agricultural Science Commons, Agriculture Commons, Agronomy and Crop
Sciences Commons, Botany Commons, Horticulture Commons, Other Plant Sciences Commons,
and the Plant Biology Commons

This Article is brought to you for free and open access by the Agronomy and Horticulture Department at DigitalCommons@University of Nebraska -
Lincoln. It has been accepted for inclusion in Agronomy & Horticulture -- Faculty Publications by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.

Tetreault, Hannah M.; Scully, Erin D.; Gries, Tammy; Palmer, Nathan A.; Funnell-Harris, Deanna L.; Dien, Bruce S.; Sarath, Gautam;
Clemente, Thomas E.; and Sattler, Scott E., "Overexpression of the Sorghum bicolor SbCCoAOMT alters cell wall associated
hydroxycinnamoyl groups" (2018). Agronomy & Horticulture -- Faculty Publications. 1114.
http://digitalcommons.unl.edu/agronomyfacpub/1114

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fagronomyfacpub%2F1114&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/agronomyfacpub?utm_source=digitalcommons.unl.edu%2Fagronomyfacpub%2F1114&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/ag_agron?utm_source=digitalcommons.unl.edu%2Fagronomyfacpub%2F1114&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/agronomyfacpub?utm_source=digitalcommons.unl.edu%2Fagronomyfacpub%2F1114&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1063?utm_source=digitalcommons.unl.edu%2Fagronomyfacpub%2F1114&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1076?utm_source=digitalcommons.unl.edu%2Fagronomyfacpub%2F1114&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/103?utm_source=digitalcommons.unl.edu%2Fagronomyfacpub%2F1114&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/103?utm_source=digitalcommons.unl.edu%2Fagronomyfacpub%2F1114&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/104?utm_source=digitalcommons.unl.edu%2Fagronomyfacpub%2F1114&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/105?utm_source=digitalcommons.unl.edu%2Fagronomyfacpub%2F1114&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/109?utm_source=digitalcommons.unl.edu%2Fagronomyfacpub%2F1114&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/106?utm_source=digitalcommons.unl.edu%2Fagronomyfacpub%2F1114&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/agronomyfacpub/1114?utm_source=digitalcommons.unl.edu%2Fagronomyfacpub%2F1114&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors
Hannah M. Tetreault, Erin D. Scully, Tammy Gries, Nathan A. Palmer, Deanna L. Funnell-Harris, Bruce S.
Dien, Gautam Sarath, Thomas E. Clemente, and Scott E. Sattler

This article is available at DigitalCommons@University of Nebraska - Lincoln: http://digitalcommons.unl.edu/agronomyfacpub/
1114

http://digitalcommons.unl.edu/agronomyfacpub/1114?utm_source=digitalcommons.unl.edu%2Fagronomyfacpub%2F1114&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/agronomyfacpub/1114?utm_source=digitalcommons.unl.edu%2Fagronomyfacpub%2F1114&utm_medium=PDF&utm_campaign=PDFCoverPages


RESEARCH ARTICLE
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Abstract

Sorghum (Sorghum bicolor) is a drought tolerant crop, which is being developed as a bioe-

nergy feedstock. The monolignol biosynthesis pathway is a major focus for altering the

abundance and composition of lignin. Caffeoyl coenzyme-A O-methyltransferase

(CCoAOMT) is an S-adenosyl methionine (SAM)-dependent O-methyltransferase that

methylates caffeoyl-CoA to generate feruloyl-CoA, an intermediate required for the biosyn-

thesis of both G- and S-lignin. SbCCoAOMT was overexpressed to assess the impact of

increasing the amount of this enzyme on biomass composition. SbCCoAOMT overexpres-

sion increased both soluble and cell wall-bound (esterified) ferulic and sinapic acids, how-

ever lignin concentration and its composition (S/G ratio) remained unaffected. This

increased deposition of hydroxycinnamic acids in these lines led to an increase in total

energy content of the stover. In stalk and leaf midribs, the increased histochemical staining

and autofluorescence in the cell walls of the SbCCoAOMT overexpression lines also indi-

cate increased phenolic deposition within cell walls, which is consistent with the chemical

analyses of soluble and wall-bound hydroxycinnamic acids. The growth and development of

overexpression lines were similar to wild-type plants. Likewise, RNA-seq and metabolite

profiling showed that global gene expression and metabolite levels in overexpression lines

were also relatively similar to wild-type plants. Our results demonstrate that SbCCoAOMT

overexpression significantly altered cell wall composition through increases in cell wall asso-

ciated hydroxycinnamic acids without altering lignin concentration or affecting plant growth

and development.
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Introduction

Sorghum (Sorghum bicolor) is a C4 grass being developed as a feedstock for conversion of bio-

mass to biofuels. Indigenous to Africa, this crop exhibits high levels of drought tolerance and

an ability to grow under low nutrient conditions, which allows it to be sustainably grown on

marginal lands [1]. Sorghum is an ideal system for bioenergy research due its relatively small

diploid genome (~730 Mb) and a wide range of genetic resources that includes a high quality

reference genome [2]. Improving biomass yields and biomass composition are necessary to

foster the replacement of petroleum-derived chemical precursors with those derived from lig-

nocellulosic sources [3–5].

Cell walls, which are comprised of three main polymers cellulose, hemicellulose and lignin,

are a major target for improving bioenergy conversion of sorghum biomass into biofuels and

other renewable products [6, 7]. Lignin polymers are cross-linked to a hemicellulose network,

and essential to the viability of land plants, however lignin impedes deconstruction of plant

cell wall polysaccharides into fermentable sugars and substantially increases the costs of cellu-

losic ethanol production [6, 8, 9]. Therefore, considerable efforts have been directed toward

altering lignin concentration and composition. Recently, there has been increasing interest in

developing ways to valorize lignin for a range of applications [7, 10, 11].

The monolignol biosynthesis pathway is a major target for altering lignin content and com-

position, because this well-characterized and highly conserved pathway across vascular plants

synthesizes the monomers of lignin polymers [12–14]. Lignin is polymerized through the oxi-

dative radicalization of three major monolignols; p-coumaryl, coniferyl and sinapyl alcohols,

which form p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) lignin subunits, respectively

(Fig 1). Mutational, antisense and RNA interference (RNAi) approaches have been successfully

used to impair the function of genes encoding monolignol biosynthetic enzymes, and have

resulted in plants with reduced lignin content in several species [15–19]. In sorghum and

other C4 grasses, the brown midrib (bmr) phenotype has been useful to identify a non-redun-

dant set of mutants impaired in lignin synthesis [20]. Three sorghum Bmr genes have been

Fig 1. The monolignol biosynthesis pathway in sorghum based on consensus model from dicot and monocot

plants (adapted from [25, 26]). Enzymes along the pathway (gray) represent: PAL, phenylalanine ammonia lyase;

C4H, cinnamate 4-hydroxylase; 4CL, 4-coumarate-CoA ligase: HCT, p-hydroxycinnamoyltransferase; C3H,

4-coumarate hydroxylase; CSE, caffeoyl shikimate esterase; CCoAOMT, caffeoyl-CoA-O-methyltransferase; CCR,

cinnamoyl-CoA reductase; F5H, ferulate 5-hydroxylase; COMT, caffeic acid O-methyltransferase; CALDH, cinnamyl

aldehyde dehydrogenase CAD, cinnamyl alcohol dehydrogenase. Gray lines indicate proposed steps in the pathway.

https://doi.org/10.1371/journal.pone.0204153.g001
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characterized and shown to encode enzymes in monolignol biosynthesis; Bmr2 (4-coumarate-

CoA ligase, 4CL), Bmr6 (cinnamyl alcohol dehydrogenase, CAD) and Bmr12 (caffeic acid O-

methyltransferase, COMT) [21–24].

In addition to COMT, the other S-adenosyl-L-methionine (SAM)-dependent O-methyltrans-

ferase, caffeoyl coenzyme-A O-methyltransferase (CCoAOMT) is involved in monolignol bio-

synthesis. This enzyme preferentially catalyzes the methylation of the 3-hydroxyl group of

caffeoyl-CoA to generate feruloyl-CoA that is required for the synthesis of both G- and S-lignin

(Fig 1) [27]. In contrast, COMT preferentially catalyzes the methylation of the 5-hydroxyl group

of 5-hydroxyconiferaldehyde to produce sinapaldehyde in the synthesis of S-lignin. In some

cases, these two methyltransferases may function interchangeably in the methylation of their

preferred forms of caffeoyl or 5-hydroxyconiferoyl groups [28]. However, sorghum COMT can

utilize caffeic acid, 5-hydroxyconiferaldehyde and 5-hydroxyconiferyl alcohol as substrates, but

not caffeoyl alcohol or caffeoyl-CoA [29]. Furthermore, sorghum CCoAOMT displayed a strong

preference for caffeoyl-CoA as a substrate, and did not efficiently bind nor has enzymatic activ-

ity for 5-hydroxyferuloyl-CoA or caffeic acid [30]. These studies indicate the function of COMT

is in the synthesis of S-lignin, whereas the function of CCoAOMT is to synthesize feruloyl-CoA.

Feruloyl-CoA is a substrate for cinnamoyl-Coenzyme A reductase (CCR) of monolignol

synthesis [31]. In addition, feruloyl-CoA is the substrate for ester-linked ferulates within cell

walls [32–36], which are major features of grass cell walls together with other esterified hydro-

xycinnamic acid residues. Both ferulic and p-coumaric acids can be esterified to arabinose resi-

dues of glucuronoarabinoxylans (GAX) through the activity of BAHD acyltransferases using

feruloyl-CoA and coumaroyl-CoA as substrates [36], which ultimately leads to cross-linking

between GAX polymers, lignin and structural proteins in cell walls [37]. The creation of these

cross-linkages is hypothesized to enhance defenses against pathogen invasion [38, 39]. Hydro-

xycinnamates including ferulic acid have been associated with inhibiting the growth of the

pathogenic fungi Fusarium spp. in sorghum [40–43]. Ferulic acid is being proposed as a natu-

ral product for a range of applications including use as a natural food preservative to inhibit

lipid peroxidation [44]. Ferulic acid is well recognized for its antioxidant activity [44–46], but

also as a natural skin protectant against UV irradiation [47–49]. The ferulate fraction of bio-

mass already has value for its potential commercial uses.

There have been several studies that have investigated the effects of decreasing CCoAOMT
expression on lignin biosynthesis, and very few studies have examined effects of increasing

CCoAOMT levels in plants. Decreasing CCoAOMT gene expression in tobacco produced

dwarfed plants and an increase in lignin S/G ratio [27, 50] and decreased lignin content and

increased S/G ratio in maize [51]. In the present study, SbCCoAOMT was overexpressed in sor-

ghum to increase capacity of this step of phenylpropanoid metabolism and assess the potential

impact on cell wall composition and plant health. Previously, overexpression of SbMyb60, a

positive regulator of the lignin biosynthetic pathway in sorghum, resulted in the induction of

many genes from the monolignol biosynthetic pathway, and led to increased lignin content

and total energy [52, 53]. Herein, overexpression of SbCCoAOMT increased monolignol bio-

synthesis in sorghum, which led to changes in cell wall composition and an increase in the

total energy of the biomass. These changes to cell wall composition could enhance sorghum

biomass for a range of renewable fuel or chemical applications.

Materials and methods

Generation of transgenic SbCCoAOMT overexpression lines

The coding region of sorghum (Sorghum bicolor) CCoAOMT (Sobic010G052200.1) was amplified

by PCR with the primers SbCCoAOMT_PciI-F, 5ʹ-CCGACATGTCCACCACGGCGACCGAG-3ʹ;
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and SbCCoAOMT_XbaI-R 5’- TGTTCTAGATCACTTGACGCGGCGGCA-3’, using Turbo

Pfu polymerase (Agilent) and University of Georgia EST clone PH1_9_G09_A002 (GenBank

accession CF428636) as the template. The coding region was subcloned between the E35S CaMV

promoter and the 35S CaMV terminator as a PciI and XbaI fragment and subjected to automated

DNA sequencing to confirm DNA sequence fidelity. The pZP211 binary vector containing an

E35S::SbCCoAOMT cassette was transformed into Sorghum bicolor (RTx430; grain; [54]) using

Agrobacterium tumefaciens as described in Scully et al. (2016). Two independent transformation

events (ZG 234-3-9A and ZG 234-1-28B), referred to as SbCCoAOMT-9a and SbCCoAOMT-28b,

were selected for further characterization from eleven independent events based on robust

CCoAOMT expression, CCoAOMT protein accumulation and identification on homozygous

lines.

Plant materials and growth conditions

Seeds (T3 generation) for each transgenic and wild-type (RTx430) lines were planted in a soil

mixture with a 1:2:1:1 ratio of soil: peat moss: vermiculite: sand and arranged in a randomized

complete block design at the University of Nebraska-Lincoln greenhouse facility. Plants were

grown under a 16:8 h light:dark cycle and supplemented with high-pressure sodium lights.

Greenhouse temperatures were maintained at 29–30˚C and 26–27˚C during day and night,

respectively. Watering was conducted as needed and fertilization (Dyna Green All Purpose 12-

12-12) was applied weekly. Two sets of plants were grown, one set of plants for an early harvest

at 5 to 6-weeks and a second set grown to maturity. For the first set of sampled plants, the fifth

leaf from the base and 10 cm of stalk tissue were harvested, immediately flash-frozen in liquid

nitrogen, ground using a freezer mill (SPEX SamplePrep) and stored at -80˚C for RNA-seq,

Western blots and metabolomics. Additional leaf and stalk material were also collected from

this group of plants for microscopy. The second set of plants were grown to maturity, seed

heads were separated from stover biomass and all tissue was dried in forced-air ovens at 50˚C.

Experiments were conducted at the University of Nebraska Lincoln in Lincoln, Nebraska. Bio-

mass was subsequently ground in a Wiley mill fitted with a 2-mm mesh screen (Arthur H.

Thomas Co), followed by grinding on a cyclone mill fitted with a 1-mm mesh screen (UDY

Co.) and stored for fiber, bomb calorimetry, thioacidolysis and phenolics analyses.

RNA extraction, library preparation and sequencing

Total RNA was extracted from leaf and stalk tissue from three individual plants per line.

Approximately 100 mg of homogenized plant material was added to 1 ml of TriPure Isolation

Reagent (Roche Diagnostics) then RNA was extracted and purified using the RNA Clean and

Concentrator Kit (Zymo Research). RNA was treated with an on-column DNase treatment

(Zymo Research). RNA quality was assessed using an Agilent 2100 Bioanalyzer (Agilent Tech-

nologies) and two micrograms of total RNA per sample were utilized for TruSeq™ library prep-

aration and RNA sequencing on an Illumina HiSeq2500 platform, generating 100 bp single-

end reads. The barcoded libraries were multiplexed and sequenced across two lanes. RNA-Seq

libraries, indexing and sequencing were performed at the University of Nebraska Medical Cen-

ter DNA Sequencing Core Facility, Omaha, NE (https://www.unmc.edu/vcr/cores/vcr-cores/

genomics/next-generation/index.html).

Sequence analysis, assembly and differential expression analysis

High quality Illumina reads were mapped to the S. bicolor genome v3.1 (phytozome.jgi.doe.

gov/pz/portal.html) using HISAT2 v2.0.5 (Kim et al., 2015) with default parameters (S1 Table).

Files containing mapped reads were sorted and formatted for downstream analysis using
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SAMtools v1.3.1 (Li and Durbin, 2009) and the Subread v1.5.1, program featureCounts (Liao

et al., 2013) was used to generate the count matrix for differential expression analysis. Differen-

tial expression analyses were performed using DESeq2 package v1.14.1 (Love et al., 2014)

implemented in the R statistical environment v3.3.2 (R Development Core Team 2013). A

principal components analysis was also used to depict the relationships between the

SbCCoAOMT lines and wild-type and the variability among biological reps from the same

treatment. Count data for statistical analysis were normalized using DESeq2 default settings

and a variance stabilizing transformation was applied to correct for heteroscedasticity (Love

et al., 2014).

Genes expressed at low-levels (less than 1 count across samples) were removed from the

count matrix and differentially expressed genes between SbCCoAOMT and wild-type stalks

and leaves were identified at a FDR adjusted p-value�0.05 using Wald tests (Love et al., 2014).

Gene annotations from S. bicolor v3.1 genome were retrieved from Phytozome (phytozome.

jgi.doe.gov/pz/portal.html) and matched to the expressed genes using R scripts. Weighted

gene co-expression network analysis (WGCNA, version 1.43) [55] was used to identify groups

of DEGS with similar expression patterns across the two SbCCoAOMT overpression lines and

tissues as described in [53]. Briefly, the following parameters were used with the blockwiseMo-

dules function: TOMtype = “signed”, mergeCutHeight = 0.25, minModuleSize = 30. The

RNA-seq datasets analyzed for this study are available at NCBI’s Sequence Read Archive under

SRP158629.

Histological staining and microscopy

Midribs from the fifth leaf and stalk tissue taken from ~10 cm from the bottom of each plant

were collected from 5 to 6-week old transgenic and wild-type plants. Tissues were fixed in Eth-

anol: acetic acid (3:1 v/v), embedded in 7% agarose and 100 μM sections were cut using a Leica

VT1200s vibratome (Leica Microsystems). Sections were hydrated for 30 min and stained for

15 s in phloroglucinol-20% HCl. Sections were imaged using an Olympus BX-51 light micro-

scope (Olympus Co.) at 4x magnification. For confocal imaging, sections were mounted in

water on glass slides and imaged with a Nikon A1R confocal laser scanning microscope

(Nikon Instruments Inc.) using 405 and 488 nm lasers at 20x magnification to observe the

autofluorescence. Identical settings were used for all samples.

Western blot and immunodetection

Proteins from SbCCoAOMT overexpression lines and wild-type plants were isolated from

ground leaf and stalk tissue collected from the first set of greenhouse grown plants. Proteins

were extracted using an extraction buffer containing protease inhibitor (Sigma-Aldrich Co.

P9599) (Sattler et al., 2009). Protein concentrations were measured using the Pierce 660nm

Protein Assay (Thermo Fisher Scientific). Western blot analysis was conducted as previously

described in Sattler et al. (2009). Briefly, the membrane was probed with primary antibody

(polyclonal rabbit anti-SbCCoAOMT) at a 1:1000 dilution. Actin content was used as a loading

control, and determined using a mouse anti-Actin monoclonal antibody (Sigma-Aldrich Co.,

A0480) at a 1:20,000 dilution. The secondary antibodies goat anti-rabbit (CCoAOMT; Sigma-

Aldrich Co., A0545) and goat anti-mouse (Actin) IgG + horseradish peroxidase (Sigma-

Aldrich Co., A4416) were used at dilutions of 1:8000 and 1:20,000, respectively. The secondary

antibody was detected using chemiluminescence with Amersham ECL Western blotting

reagent (GE Healthcare). Imaging of chemiluminescence was performed on a BioRAD Chemi-

Doc XRS+ instrument (BioRAD).
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Phenotypic evaluation and fiber analysis

Phenotypic traits were measured on the second set of plants grown to maturity. Day of inflo-

rescence emergence was recorded, and height and numbers of tillers were measured immedi-

ately before harvest. Seeds were removed at maturity and total seed weight was measured.

Total number of seeds was estimated for a given plant by weighing 100 seeds per plant and

dividing total seed mass by mass for 100 seeds then multiplying by 100. Water and ethanol

extractives, structural carbohydrates (cellulose, xylan, galactans, and arabinan), Klason lignin

(e.g. acid insoluble lignin), and acetate were determined using the standard two-stage acid

digestion protocol [56]. Moisture contents were determined by drying samples in a static oven

at 105˚C for 18–24 h. Sugars and acetate concentrations were measured using a Ultimate 3000

HPLC system equipped with a refractive index detector (Thermo Scientific, MA) an analytical

column suitable for separation of sugars and organic acids (Aminex HPX-87H Column, 300 x

7.8 mm, Bio Rad Laboratories, Inc. Hercules, CA). Samples were injected at 20 μL and eluted

with 5 mM sulfuric acid at 0.6 ml/min and 65˚C. Fiber analysis was also performed on ground

stover to determine cell wall components using a detergent digestion protocol as described by

Vogel et al. (1999). Neutral detergent fiber (NDF), acid detergent fiber (ADF) and acid deter-

gent lignin (ADL) concentrations were estimated using the ANKOM 200 fiber analyzer

(ANKOM Tech Co.) (Vogel et al., 1999). Relative percentage of cell wall components were cal-

culated using component concentrations extracted on a dry weight basis (Sarath et al., 2007).

Stover from four biological replicates was analyzed in duplicate.

Analysis by thioacidolysis

Stover from SbCCoAOMT transgenic and wild-type plants were treated for thioacidolysis fol-

lowed by gas chromatography-mass spectrometry (GC-MS) to determine relative lignin sub-

unit composition (p-hydroxyphenyl, guaiacyl, and syringyl lignin). Samples were prepared

and analyzed as described in Palmer et al. (2008). Analysis was performed in duplicate on four

biological replicates per line.

Analysis of soluble and cell wall-bound phenolics

Soluble aromatic components were extracted from 100 mg of stover for transgenic and wild-

type plants as described in Sarath et al. (2007). Briefly, soluble aromatic components were

extracted using 1.5% acetic acid in 50% methanol. Wall-bound aromatics were extracted using

residual plant material suspended in 4.0 M NaOH incubated at 90 ˚C for 2 h, released aromat-

ics were extracted into ethyl acetate after acidification with 6.0 M HCl. Ethyl acetate extracts

were vacuum-dried and each extract (soluble and wall-bound) were derivatized with tri-

methylsilyl (TMS) and trifluoroacetamide (MSTFA) (Thermo Fisher), and toluic acid was

included in this reaction as an internal standard for quantification. The products were ana-

lyzed using GC-MS. Relative abundances of soluble and wall-bound phenolic compounds

were determined by the peak areas of major ions. Between-sample normalization was per-

formed using the peak area for the internal standard, toluic acid. Analysis was performed in

duplicates on six biological replicates per line.

Bomb calorimetry

Total energy content of stover was determined using a Parr 6400 bomb calorimeter (Parr

Instrument Co.). Approximately 200 mg of dried plant material combined with 600 mg of

mineral oil was combusted to estimate energy value per gram dry weight. Total energy of each

biomass sample was calculated by subtracting the total energy released from combustion of
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mineral oil alone from the combined mineral oil and biomass sample and also standardizing

by sample weight. Total energy was measured on six biological replicates in technical dupli-

cates. In addition, to determine whether lignin or other cell wall components were contribut-

ing to energy differences between SbCCoAOMT overexpression lines and wild-type, energy

levels were measured on stover from four biological replicates in technical duplicates after neu-

tral detergent and acid detergent ANKOM washes.

Metabolomics

Primary metabolites were extracted from 60–80 mg of leaf and stalk tissue from 35S::

SbCCoAOMT overexpression lines and wild-type plants with 80% MeOH in water. Samples

were extracted by disruption of the ground tissues with 5–6 cycles with the Bullet Blender

(Next Advance) by addition of 0.5 μm ZrO beads to each suspended sample. The extracts were

centrifuged for 15 min at 15000 x g and 4˚C and the supernatant was vialed and kept at 4 ˚C in

the autosampler of an Agilent LC-1200 HPLC system (Agilent). LC-MS/MS data were

acquired on a 4000QTrap (Sciex) operating in MRM mode. Waters Amide XBridge (4.6 x 100

mm, Milford, MA) was run at 0.5 mL min-1 with a linear gradient from 95% acetonitrile to

95% 20 mM Ammonium Acetate/Ammonium Hydroxide pH = 9.5 over 20 minutes. Analysis

of samples in the positive and negative ionization modes were performed as separate injection

sets and preprocessing was done for each ionization mode independently. Compounds identi-

fied in positive ionization mode were normalized with respect to 15N-labeled proline standard

(2.31 μM) and are presented as nmol gram-1. Compounds identified in negative ionization

mode were normalized with total ion chromatogram and are presented as % area gram-1. The

list of putatively identified compounds (181 metabolites in both leaf and stalk) are listed in S2

Table.

Statistical analysis

Statistical analysis of results from phenolics analysis, fiber analysis, bomb calorimetry, agro-

nomic evaluations and thioacidolysis analysis were performed using “lmer” function of pack-

age “lme4” (Bates, 2005) in R (v3.3.2, R Foundation for Statistical Computing). Data were

tested for normality using the Wilkes-Shapiro test in R and were log transformed if the data

failed to meet normality. Pairwise comparisons among lines were performed using Tukey’s

Honest Significant Differences test at α�0.05 using package “multicomp” [57].

Results

Overexpression of SbCCoAOMT in sorghum

Previously structural and functional analysis of caffeoyl-CoA O-methyltransferase

(SbCCoAOMT, Sobic.010G052200.1) indicated that this protein preferentially catalyzes O-

methylation of hydroxy-cinnamoyl-CoA substrates, and is involved in monolignol biosynthe-

sis in sorghum [30]. In order to determine the effects of increased SbCCoAOMT
(Sobic.010G052200.1), SbCCoAOMT was overexpressed in one of the very few transformable

sorghum lines, RTx430 under the control of constitutive E35S promoter (Fig 2A). Based on

robust CCoAOMT protein accumulation two of the eleven transformant events,

SbCCoAOMT-9a and SbCCoAOMT-28b, were further characterized. Immunoblot analysis was

performed on protein accumulation in leaves and stalks using the polyclonal antibody against

CCoAOMT (Fig 2B). Monoclonal antibodies against actin were used as a loading control, and

the intensity of the actin bands was relatively consistent among all samples within each tissue

type. The bands corresponding to the CCoAOMT protein were highly abundant in both the
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SbCCoAOMT-9a and SbCCoAOMT-28b (Fig 2B). In contrast, these bands were not visible in

wild-type leaf and stalk extracts at this exposure interval, however, the protein was detected in

wild-type leave and stalk extracts exposed for a longer time interval (S1 Fig). This experiment

indicated that overexpression of SbCCoAOMT resulted in an increased accumulation of this

protein in both leaf and stalk tissue for both of the events evaluated.

Phenotypic and stover analysis of SbCCoAOMT overexpression lines

We observed no significant changes in growth and development associated with overexpres-

sion of SbCCoAOMT when comparing either transgenic line with the wild-type (Table 1). We

also found overexpression of SbCCoAOMT did not trigger significant variation in monomer

Fig 2. Overexpression of SbCCoAOMT in sorghum. (A) 35S::SbCCoAOMT binary cassette used for sorghum (RTx430) transformation.

T-DNA contained sorghum SbCCoAOMT gene (Sobic.010G052200.1) under the control of the E35S CAMV promoter with CAMV

E35S terminator to end transcription. (B) Immunoblot detection of CCoAOMT from leaves (top) and stalks (bottom). Protein extracts

from wild-type and SbCCoAOMT transgenic lines were separated by SDS-PAGE, transferred to membrane, and probed with polyclonal

antibodies raised against the recombinant SbCCoAOMT protein. Each lane represents a biological replicate from homozygous lines.

Monoclonal antibodies raised against actin protein were used as a protein loading control.

https://doi.org/10.1371/journal.pone.0204153.g002

Table 1. Agronomic traits of wild-type (RTx430) and 35S::SbCCoAOMT plants.

Wild-type (± 1 SE) SbCCoAOMT-9a (± 1 SE) SbCCoAOMT-28b (± 1 SE) p-value

Inflorescence emergence (days) 110.63 (1.04) 115.75 (1.56) 113.50 (1.56) 0.0613

Plant height (cm) 102.13 (3.46) 94.08 (4.66) 92.08 (4.66) 0.1230

Number of tillers 2.00 (0.29) 2.00 (0.43) 1.75 (0.43) 0.8761

Total seed weight (g) 50.71 (4.91) 46.34 (7.32) 59.14 (7.32) 0.4461

Estimated total number of seeds 1244.40 (123.09) 1174.78 (183.49) 1318.79 (183.49) 0.8458

Values presented represent least square means (lsmean) (± 1 SE).

https://doi.org/10.1371/journal.pone.0204153.t001
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composition of lignin with similar levels of H-, G- and S-lignin subunits and S:G ratio across

wild-type and transgenic lines (Table 2). Similarly, the lignin concentration did not differ in

the SbCCoAOMT overexpression lines relative to wild-type, which was determined by the two

methods Klason lignin (Acid Insoluble Lignin) (p = 0.8268) (Table 3) and acid detergent lignin

(ADL) (p = 0.5564) (Fig 3C), and was consistent with the lack of differences in lignin monomer

concentrations. Overexpression of SbCCoAOMT also did not affect the abundances of struc-

tural carbohydrates in stover (Table 3). Likewise, fiber analysis revealed levels of NDF and

ADF were not significantly different between SbCCoAOMT and wild-type (p = 0.4066 and

p = 0.2576, respectively) (Fig 3A and 3B).

To better characterize changes made to the phenolic components of cell walls, soluble and

cell wall-bound phenolic compounds were extracted from mature stover and relative abun-

dance of several phenolic compounds including compounds derived from the monolignol

pathway and several other organic acids was measured by GC-MS (S3 Table). While lignin

content and composition did not differ between overexpression lines and wild-type plants,

phenolic compounds were clearly different with respect to wall-bound and soluble residues.

Notably, the levels of cell wall-bound and soluble ferulic acid were significantly higher

(p = 0.0248 and p� 0.001, respectively) between transgenic lines and wild-type (Fig 4A), solu-

ble ferulic acid levels in SbCCoAOMT-9a and SbCCoAOMT-28b stover were 2.0 and 0.5-fold

higherthan wild-type, respectively (Fig 4A). Sinapic acid was also significantly greater in

SbCCoAOMT-9a and SbCCoAOMT-28b stover than wild-type for both cell wall-bound and

soluble fractions (p = 0.0361 and p = 0.0442, respectively; Fig 4B). Soluble sinapic acid relative

to wild-type were 0.6 and 0.4- fold higher in SbCCoAOMT-9a and SbCCoAOMT-28b,

Table 2. Lignin composition determined via thioacidolysis GC-MS for wild-type (RTx430) and 35S::SbCCoAOMT stover.

Wild-type (± 1SE) SbCCoAOMT-9a (± 1SE) SbCCoAOMT-28b (± 1SE) p-value

H-lignin 0.045 (0.014) 0.045 (0.006) 0.050 (0.008) 0.8514

G-lignin 1.428 (0.378) 1.519 (0.271) 1.659 (0.271) 0.8350

S-lignin 0.949 (0.331) 1.048 (0.185) 0.971 (0.154) 0.9378

S/G ratio 0.618 (0.063) 0.715 (0.041) 0.587 (0.016) 0.1420

The relative abundance of peak area ion for p-hydroxyphenyl (H-lignin), guaiacyl (G-lignin) and syringyl (S-lignin) subunits to internal standard (4,4’-

Ethylidenebisphenol) determined by GC/MS. Values presented represent least square means (lsmean) (± 1 SE).

https://doi.org/10.1371/journal.pone.0204153.t002

Table 3. Plant cell wall traits of wild-type (RTx430) and 35S::SbCCoAOMT plants.

Component (mg g-1) Wild-type (± 1SE) SbCCoAOMT-9a (± 1SE) SbCCoAOMT-28b (± 1SE) p-value

Extractables 310.92 (10.87) 401.45 (124.55) 400.86 (15.54) 0.8522

Glucan 236.36 (5.44) 227.85 (15.43) 224.41 (6.10) 0.6990

Xylan 139.69 (4.53) 136.01 (10.10) 132.89 (3.41) 0.7766

Arabinan 13.95 (1.56) 14.64 (1.56) 14.01 (0.91) 0.9263

Galactan 5.34 (0.29) 5.59 (0.32) 6.51 (0.29) 0.0492

Acetate 5.82 (1.23) 12.47 (4.60) 13.44 (4.64) 0.3544

Acid Soluble Lignin 8.69 (0.25) 8.82 (0.56) 9.38 (0.21) 0.4188

Acid Insoluble Lignin 91.15 (1.50) 88.90 (3.59) 88.89 (3.31) 0.8268

Sum (out of 1000) 917.21 (11.52) 923.86 (11.20) 915.84 (7.67)

The abundances of cell wall components were measured according to the analytical procedure of the National Renewable Energy Laboratory. All values are represented

in terms of mg g-1 of biomass. Values presented represent least square means (lsmean) (± 1 SE).

https://doi.org/10.1371/journal.pone.0204153.t003
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Fig 3. Analysis of mature stover from wild-type and 35S::SbCCoAOMT transgenic plants (A) neutral detergent

fiber (NDF), (B) acid detergent fiber (ADF) and (C) acid detergent lignin (ADL). NDF, ADF and ADL determined

using an ANKOM fiber analyzer. Values presented are least square means (+1 SE). Samples with different letters are

statistically different from one another at α� 0.05 using Tukey’s HSD test.

https://doi.org/10.1371/journal.pone.0204153.g003
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respectively (Fig 4B), while wall bound levels of sinapic acid were 0.4-fold higher in both lines

relative to wild-type. One other soluble phenolic, p-hydroxymandelic acid, was found to be sig-

nificantly higher in SbCCoAOMT-28b than wild-type with a 50% increase (S3 Table). The phe-

nolic composition suggests that overexpression of SbCCoAOMT increased levels of two

phenolic acids from the monolignol biosynthesis pathway, which were incorporated into the

cell wall.

Total energy of stover harvested from SbCCoAOMT overexpression lines was 61 and 75 cal

g-1 greater than wild-type for SbCCoAOMT-28b and SbCCoAOMT-9a, respectively (p = 0.006)

(Fig 5A). To better characterize the source for the observed increase in total energy among the

cells walls of the overexpression lines, total energy was measured from stover following NDF

and ADF washes (Fig 5B and 5C). During the NDF wash, sugars, lipids, pectins, starches, solu-

ble proteins and phenolics are removed (soluble components), leaving three cell wall polymers

and wall-bound phenolics. Total energy concentrations for all lines increased after NDF, 9.4%,

10.3% and 9.1% for wild-type, SbCCoAOMT-9a and SbCCoAOMT-28b, respectively (Fig 5B).

Total energy for SbCCoAOMT-9a NDF washed stover was greater than wild-type samples by

124 cal g-1 (p = 0.0094), but not significantly different between SbCCoAOMT-28b and wild-

type NDF washed stover. By contrast after the ADF wash, which removes hemicellulose, wall-

bound proteins and phenolic groups, total energy decreased by 0.85%, 4.3% and 2.2% for wild-

type, SbCCoAOMT-9a and SbCCoAOMT-28b, respectively and did not differ between

SbCCoAOMT transgenic lines and wild-type (p = 0.7668) (Fig 5C). This result indicated that

the increased energy observed in the stover from SbCCoAOMT-9a overexpression line was

derived from acid labile cell wall-bound moieties. Hence, the source for increased energy levels

(Fig 5A and 5B) likely originates from the higher levels of wall-bound (esterified) phenolic

acids (Fig 4A and 4B).

The cell walls from leaf midrib and stalk cross-sections were observed using phloroglucinol

staining to visualize lignin and phenolic groups. Both SbCCoAOMT overexpression lines

showed more intense staining than wild-type. Increased phloroglucinol staining was observed

around the vascular bundles of both overexpression lines compared to wild-type in both the

leaf midrib (Fig 6A–6C) and stalk (Fig 6D–6F). The parenchyma cells of the leaf midrib sec-

tions also showed greater phloroglucinol staining in sections from 35S::SbCCoAOMT lines rel-

ative to wild-type, which was especially evident in the cross sections from SbCCoAOMT-9a

plants (Fig 6B). The increased staining is likely due to phloroglucinol reactive groups other

than lignin within the cell walls of the SbCCoAOMT overexpression lines, because lignin (ADL

and Klason lignin) did not differ between SbCCoAOMT and wild-type (Fig 3C and Table 3).

Confocal microscopy was used to visualize cell wall associated phenolic compounds through

Fig 4. Relative abundance of wall-bound and soluble (A) ferulic acid and (B) sinapic acid. Ferulic acid and sinapic

acid was analyzed via GC-MS. Values presented are least square means (+ 1 SE). Samples with different letters for wall-

bound and soluble fractions are statistically different from one another at α� 0.05 using Tukey’s HSD test.

https://doi.org/10.1371/journal.pone.0204153.g004
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Fig 5. Total energy from wild-type and 35S::SbCCoAOMT (A) mature stover, (B) after neutral detergent fiber

wash and (C) after neutral detergent and acid detergent washes. Total energy content was determined using a Parr

6400 bomb calorimeter. Values presented are least square means (+ 1 SE). Samples with different letters are statistically

different from one another at α� 0.05 using Tukey’s HSD test.

https://doi.org/10.1371/journal.pone.0204153.g005
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autofluorescence, and many compounds of monolignol biosynthesis fluoresce when illumi-

nated by ultraviolet light [58, 59]. Developing stalk cross-sections in both SbCCoAOMT-9a

and SbCCoAOMT-28b showed greater autofluoresence in vascular bundles and to a lesser

extent the parenchyma cells surrounding the vascular bundles compared to wild-type (Fig 6G–

6I). These differences were more pronounced in the SbCCoAOMT-9a line compared to wild-

type. No significant alterations in levels of autofluorescence were observed from leaf midrib

sections between wild-type and both transgenic events (S2 Fig). Together, the phloroglucinol

staining and autofluorescence indicated SbCCoAOMT overexpression increased the deposition

of phenolic compounds within sorghum cell walls.

Effect of SbCCoAOMT overexpression on monolignol biosynthetic genes,

transcriptome and metabolome

Overall, there were no major differences in the number of mapped RNA-seq reads between tis-

sues or among the three lines (S1 Table). The transcriptomes of 35S::SbCCoAOMT transgenic

leaves were partially differentiated from wild-type plants along the second principal compo-

nent (PC2, which accounted for 22% of the variance) (Fig 7A). In stalk, SbCCoAOMT-9a could

be somewhat differentiated from wild-type while the stalk transcriptomes of SbCCoAOMT-

28b and wild-type overlapped significantly (PC1, which accounted for 51% of the variance)

(Fig 7B). This result indicated that overexpression of SbCCoAOMT did not significantly impact

Fig 6. SbCCoAOMT overexpression induced changes in cell wall composition in leaves and stalk tissue. A to F,

visualization of cell wall after phloroglucinol-staining of leaf midrib (A-C) and stalk tissue (D-F) taken from wild-type

and 35S::SbCCoAOMT transgenic plants (indicated on top of each panel). G to I, autofluorescence observed with a

Nikon A1R confocal laser scanning microscope from wild-type and 35S::SbCCoAOMT stalk cross-sections. Scale

bar = 500 μm (A-F); 200 μm (G-I).

https://doi.org/10.1371/journal.pone.0204153.g006
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the global expression patterns relative to wild-type. In corroboration with the RNA-seq princi-

pal component analysis there were a total of 480 genes differentially expressed among either

SbCCoAOMT lines compared to wild-type with 333 genes up-regulated and 147 genes down-

regulated (Fig 7C–7E and S4 Table). SbCCoAOMT overexpression increased and decreased

expression of 1.0% and 0.4% of all genes, respectively based upon ~34,496 genes annotated in

the sorghum genome [2]. 133 and 214 genes were identified as up-regulated in SbCCoAOMT-

9a leaves and stalk tissue, respectively compared to wild-type and 46 and 99 genes down-regu-

lated in SbCCoAOMT-9a leaves and stalk tissue, respectively compared to wild-type (Fig 7C–

7E and S4 Table). SbCCoAOMT-28b leaves and stalk tissue had fewer differentially expressed

genes compared to wild-type with 50 and 51 genes up-regulated and 28 and 17 genes down-

regulated in leaves and stalk tissue, respectively. Only 15 genes of the 480 differentially

expressed genes were impacted in both transgenic events and both tissue types (Fig 7C and

7D; S4 Table). In SbCCoAOMT-9a and SbCCoAOMT-28b leaves, 221 genes were differentially

expressed in leaf tissue from both lines while 344 genes were differentially expressed in stalk

tissue from both events. Hierarchical clustering analysis of the 480 DEGs could be broadly seg-

regated into 7 distinct clusters based on expression patterns across tissue type (labeled A-G;

Fig 7E). Most clusters showed patterns of up-regulated or down-regulated genes that were spe-

cific to a single line, however were not always consistent across SbCCoAOMT overexpression

lines. Clusters C and G were the exception, which contained genes with expression patterns

consistent across both SbCCoAOMT overexpression lines. Genes encoding for acyl-CoA N-

acyltransferase (Sobic.005G055150), 3-deoxy-o-arabino-heptulosonate phosphate synthase

(DAHP; Sobic.001G351000), a peroxidase precursor (Sobic.001G235800), several glycosyl

Fig 7. Overview of differentially expressed genes for SbCCoAOMT-9a (9a) and SbCCoAOMT-28b (28b) in leaf and

stalk tissue compared to wild-type. Principal components analysis of RNA-seq data on individual samples from wild-

type and SbCCoAOMT in (A) leaf and (B) stalk tissue. Venn diagrams of (C) increased and (D) decreased genes

detected in RNA-seq experiments. (E) Heatmap analysis of differentially expressed genes in leaves (L) and stalks (S) for

wild-type (WT), SbCCoAOMT-9a (9a) and SbCCoAOMT-28b (28b). Differentially expressed genes were determined

using DESeq2 with a threshold of FDR<0.05; LFC> 1.0. Numbers within regions in venn diagram indicate common

and unique genes within each sector. Raw counts of genes that were differentially expressed in at least one 35::

SbCCoAOMT line relative to wild-type were log-transformed and Z-score standardized for a normalized expression

value. Heatmap was prepared using hierarchial clustering analysis in JMP 12.2.0 (SAS Institute Inc.). Letters (A-G)

within heatmap indicate hierarchial clusters of genes.

https://doi.org/10.1371/journal.pone.0204153.g007
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transferases (Sobic.001G083900, Sobic.003G297700 and Sobic.004G224400) and shikimate

kinase (Sobic.006G235500) were contained in cluster C and elevated in both 35S::

SbCCoAOMT lines compared to wild-type plants (S4 Table). Acyl-CoA N-acyltransferase tran-

script levels were elevated in leaves and stalk tissue for SbCCoAOMT-9a and SbCCoAOMT-28b

relative to wild-type. The expression of DAHP synthase and shikimate kinase genes, which is

involved in aromatic amino acid synthesis, were increased only in SbCCoAOMT-9a and

SbCCoAOMT-28b stalks with relative to wild-type. Transcripts of a peroxidase precursor

(Sobic.001G235800), assigned to phenylpropanoid biosynthesis KEGG pathway, were elevated

in stalk tissue relative to wild-type for both SbCCoAOMT-9a and SbCCoAOMT-28b. Cluster G

contained 50 genes that are down-regulated in SbCCoAOMT overexpression lines relative to

wild-type plants, and based on KEGG pathway there are single genes involved with endocyto-

sis (K07904; Sobic.009G003800), plant-pathogen interaction (K13447; Sobic.007G148300) and

ubiquitin mediated proteolysis (K04506; Sobic.003G092500).

Even though overexpression of SbCCoAOMT did not appear to significantly modulate the

global expression patterns, the expression profiles of the major ten genes involved in the

monolignol biosynthetic pathway were evaluated. These genes are identified as the major

genes in the monolignol biosynthetic pathway based on amino acid similarity of previously

identified genes and on robust gene expression in stalk tissue [52, 60]. CCoAOMT transcript

levels in leaves showed an approximately 60-fold increase relative to wild-type for

SbCCoAOMT-9a and SbCCoAOMT-28b with no significant differences between the two lines

(Fig 8). However, in stalks, there were more moderate increases in CCoAOMT transcript levels

that were 12.5 and 33-fold higher in SbCCoAOMT-9a and SbCCoAOMT-28b relative to wild-

type. In stalks, mean expression levels of CCoAOMT in SbCCoAOMT-28b were 89.7% greater

than SbCCoAOMT-9a (Fig 8). Although SbCCoAOMT expression was consistently higher for

both transgenic events in both tissues, SbCCoAOMT expression in stalk tissue exhibited greater

variability relative to leaf. Phenylalanine ammonia lyase (PAL) is the first enzyme of the mono-

lignol biosynthetic pathway that catalyzes the deamination of phenylalanine to trans-cinnamic

Fig 8. Impact of SbCCoAOMT overexpression on SbCCoAOMT. Expression of caffeoyl-coA O-methyltransferase

(CCoAOMT; Sobic.010G052200.1) were quantified using the RNA-seq dataset. Asterisks indicate levels of significance

for differential expression of SbCCoAOMT transgenic event compared to wild-type determined using DESeq2 (FDR: ��

p� 0.01).

https://doi.org/10.1371/journal.pone.0204153.g008
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acid, a precursor for the lignin, flavonoid and other phenylpropanoid biosynthetic pathways.

Expression levels of the most highly expressed PAL gene (Sobic.004G220300) in both stalk and

leaf tissue were significantly greater in the SbCCoAOMT-9a transgenic line than wild-type (S3

Fig). Other PAL-like genes (Sobic.004G220600, Sobic.005G134501, Sobic.004G220700 and

Sobic.004G220400) also had greater transcript levels in SbCCoAOMT-9a leaf and stalk tissues

(S4 Table). Besides PAL, the expression levels of other genes in the monolignol biosynthesis

pathway did not differ between 35S::SbCCoAOMT and wild-type plants in either stalk or leaf

tissues (S3 Fig).

Weighted gene co-expression network analysis (WGNCA) further illustrated the minor

impacts of SbCCoAOMT overexpression on sorghum stalks and leaves. Three out of a total of

23 co-expression modules identified were associated with SbCCoAOMT overexpression lines

(Fig 9 and S4 Fig), which was divided into three primary groupings. Module 7 consisted of 565

genes that were up-regulated in SbCCoAOMT stalks relative to wild-type (Fig 9A), whereas

module 8 consisted of 433 genes up-regulated in SbCCoAOMT leaves relative to wild-type (Fig

9B). Module 7 genes were predominantly related to pentose phosphate pathway, phenylala-

nine, tyrosine and tryptophan biosynthesis, starch and sucrose metabolism and phenylpropa-

noid biosynthesis KEGG pathways. Module 8 genes tended toward up-regulation in leaves of

both SbCCoAOMT overexpression lines and were part of glycolysis, photosynthesis, purine

and pyrimidine metabolism, starch and sucrose metabolism and porphyrin and chlorophyll

metabolism KEGG pathways. Module 14 included 112 genes that are induced in

SbCCoAOMT-9a leaves relative to wild-type (Fig 9C) and genes within this module were part

of fatty acid elongation, phenylalanine metabolism and phenylpropanoid biosynthesis KEGG

pathways. Although overexpression of SbCCoAOMT minimally impacted global gene expres-

sion, WCGNA identified expression patterns of phenylpropanoid-related gene that were

increased in the overexpression lines.

The monolignol biosynthesis pathway requires phenylalanine or tyrosine as substrates and

NADPH, SAM and CoA as cofactors; the metabolites associated with these pathways were fur-

ther investigated. Phenylalanine is derived from the shikimate biosynthesis pathway, some of

the metabolites involved in this pathway were altered. Concentrations of shikimate were signif-

icantly higher in stalk tissues from SbCCoAOMT-9a transgenic plants (S2 Table). Concentra-

tions for other shikimate pathway metabolites detected via LC-MS included tryptophan,

shikimate-3-phosphate, phenylalanine and phenyllactic acid, were not significantly different

Fig 9. Weighted gene co-expression network analysis (WGCNA) of differentially expressed genes in sorghum 35S::

SbCCoAOMT stalks and leaves. Expression patterns of genes assigned to co-expression module (A) 7, (B) 8 and (C) 14. Module 7

and 8 represent genes upregulated in SbCCoAOMT stalk and leaves, respectively, whereas module 14 are upregulated in

SbCCoAOMT-9a stalks and leaves.

https://doi.org/10.1371/journal.pone.0204153.g009
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between overexpression lines and wild-type plants. Metabolites associated with NAD+ and

NADP+ including aspartate, quinolinate, pyrophosphate, nicotinate, and glutamine were not

significantly different between overexpression lines and wild-type plants. However, dihy-

droxy-acetone-phosphate was decreased in overexpression lines relative to wild-type leaf tissue

and glutamate was increased in overexpression lines relative to wild-type stalk tissue. Concen-

trations of metabolites associated with S-adenosyl methionine (SAM) biosynthesis pathway

2-oxo-4-methylthiobutanoate, S-adenosyl-methioninamine and S-methyl-5-thioadenosine

were not significantly different between overexpression lines and wild-type plants. Metabolites

erythrose-4-phosphate and glucose-6-phosphate involved in the pentose phosphate pathway

were not significantly different in SbCCoAOMT transgenic lines relative to wild-type in both

leaves and stalk tissues, however, phosphoenolpyruvate, was significantly lower in

SbCCoAOMT-28b leaves compared to wild-type plants. Metabolites associated with CoA

metabolism were not significantly different between SbCCoAOMT transgenic lines and wild-

type plants. In leaf tissue from SbCCoAOMT transgenic plants there are significant decreases

in aconitate metabolites, which is an intermediate product of citrate to isocitrate and the basic

way of citrate synthesis is with oxaloacetate condensation with acetyl-CoA. In general, less var-

iability among the metabolite profiles was observed between biological replicates of leaves

(S5A and S5B Fig) relative to stalks (S5C and S5D Fig).

Discussion

The effects of SbCCoAOMT overexpression (Sobic.010G052200.1), whose gene product is a

central enzyme of monolignol biosynthesis [61], were investigated in sorghum, an emerging

C4 bioenergy crop. The results of this study demonstrated that overexpression of SbCCoAOMT
was sufficient to stimulate the biosynthesis of ferulate and sinapate, which led to their incorpo-

ration into cell walls as soluble and esterified groups and increased energy content of sorghum

stover.

Genes of the monolignol biosynthetic pathway have been targeted using antisense and

RNAi engineering techniques to lower lignin content and alter lignin composition of plants

and improve deconstruction of cell walls for the conversion into liquid biofuels [6, 62]. In con-

trast, few studies have evaluated the consequences of overexpression or ectopic expression of

these genes in herbaceous plant species. This strategy provides a means to increase enzyme

concentration and rate of reaction in vivo, which can lead to increased energy content of bio-

mass for thermal conversion, and higher levels of phenolic compounds in biomass for chemi-

cal end-uses. Previously, the consequences of inducing lignin synthesis through the

overexpression of a transcriptional activator SbMyb60 were evaluated in grain sorghum. Over-

expression of this transcription factor in sorghum resulted in increased lignin content and

increased levels of aromatic compounds, which elevated total energy levels in sorghum bio-

mass. However, overexpression of SbMyb60 affected growth and development of sorghum

resulting in reduced height, delayed flowering and altered plant architecture. [52, 53].

The overexpression of CCoAOMT overexpression in sorghum did not significantly affect

growth, unlike the downregulation of CCoAOMT through RNAi or antisense tools other plant

species [28, 50, 63]. Although this enzyme is required for the synthesis of both G and S sub-

units, CCoAOMT suppression in maize, alfalfa, Arabidopsis and tobacco led to reductions in G

subunits, lignin concentrations and plant growth [28, 50, 51, 63]. Overall, levels of S lignin

were not impacted in any of these studies. In contrast, our findings showed that stover from

mature plants did not differ in terms of S/G ratio or levels of subunits S-lignin and G-lignin

between 35S::SbCCoAOMT and wild-type, which indicated the increased levels of

SbCCoAOMT did not impact lignin composition. In addition, analysis of both Klason and
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ADL lignin concentrations demonstrated that lignin was unaffected in stover and no detect-

able differences in growth or development were observed in SbCCoAOMT overexpression

lines. Thus, CCoAOMT overexpression alone is not sufficient to increase lignin or alter its

composition in sorghum.

While overexpression of SbCCoAOMT did not impact lignin, it did increase the accumulation

of soluble and wall-bound hydroxycinnamic acids in the stover. Both transgenic events accumu-

lated higher levels of ferulate and sinapate in both cell wall-bound and soluble fractions from sto-

ver, which are products derived from monolignol biosynthesis. The higher levels of these

compounds likely result from the accumulation of feruloyl-CoA, the product of CCoAOMT.

Similarly, both ferulate and sinapate levels were elevated when SbMyb60 was overexpressed in
planta [52, 53]. Although the likely route from feruloyl-CoA to sinapic acid is through the

monolignol biosynthesis enzymes CCR, F5H and COMT, alternative paths may exist. In alfalfa

(Medicago sativa), MsCCoAOMT is able to methylate 5-hydroxyferuloyl-CoA [64], which could

in part explain the increased levels of sinapic acid in the CCoAOMT overexpression lines. How-

ever, no enzymatic activity was detected with 5-hydroxyferuloyl-CoA as the substrate for

SbCCoAOMT, and its protein structure and substrate docking indicated there are steric clashes

within active site that likely prevent substrate binding [30]. Higher levels of esterified phenolic

acids in the cell wall were also observed under fluorescence microscopy in the stalks from both

transgenic events. Cell wall autofluorescence has been associated with esterified ferulic acid resi-

dues [59]. Thus, the increased autofluorescence and phloroglucinol staining observed in

SbCCoAOMT transgenic stalks are likely the result of increased esterified ferulic acid and sinapic

acid residues in cell walls. Deposition of esterified ferulate is also a plant defense response against

biotic incursion [65], and the induction and accumulation of CCoAOMT transcripts and pro-

tein has previously been observed in pathogen incursion [66, 67]. Here, SbCCoAOMT overex-

pression resulted in the accumulation of cell wall-bound ferulic acid without an elicited defense

response, which could ultimately lead to increased resistance to pests and pathogens.

An intriguing outcome of the current study was the substantial increases in total energy of

sorghum biomass from the SbCCoAOMT overexpression lines compared to wild-type without

any observable negative impacts on plant growth or changes to lignin content. The total energy

levels in SbCCoAOMT biomass were elevated by 60–75 cal g-1, which represents a considerable

increase in total energy per gram of biomass. Overexpression of SbCCoAOMT appears to

increase the amount of energy captured and stored in sorghum biomass. Based on the energy

levels of neutral and acid detergent washed stover, the increased energy observed in the

CCoAOMT overexpression lines can be attributed to cell wall bound (esterified) phenolic

compounds, whose linkages are resistant to neutral detergent, but not to acid detergent. Simi-

larly, overexpression of the sorghum SbMyb60 transcription factor led to the identification of

one line (Myb-ZG-124-1-2a) whose SbMyb60 expression level was only modestly elevated rela-

tive to wild-type. While ADL and Klason lignin levels did not differ between stover collected

from Myb-ZG-124-1-2a and wild-type, this line had higher total energy levels compared to

wild-type and to the rest of the SbMyb60 lines included in the study, and the soluble and wall

bound hydroxycinnamates (caffeic, ferulic and sinapic acids) were also elevated relative to

wild-type in this line [52, 53]. The results from both the SbCCoAOMT and SbMyb60 overex-

pression studies suggest that increasing levels of ester-linked phenolic compounds, such as

ferulic and sinapic acids, contributes to energy levels in biomass. Although SbCCoAOMT over-

expression increases the availability of both feruloyl and sinapoyl groups for esterification in

the cell wall, no changes in G- or S- lignin were observed, which indicates that the induction of

additional pathway steps are necessary to incorporate these subunits into the lignin polymer.

RNA-seq analysis allowed for a comprehensive view of how overexpression of 35S::

SbCCoAOMT impacted both global gene expression and the expression levels of genes coding
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monolignol biosynthetic enzymes in sorghum. Overall, overexpression of SbCCoAOMT did

not affect the expression of genes encoding monolignol biosynthetic enzymes, except for

SbCCoAOMT (Sobic10G052200.1), whose elevated transcript levels also resulted in the accu-

mulation of the corresponding protein in both transgenic lines (Figs 2B and 8). The expression

levels of PAL, which catalyzes the first step of monolignol biosynthesis pathway, was signifi-

cantly up-regulated only in SbCCoAOMT-9a leaf and stalk tissues. In contrast to our study,

repression of CCoAOMT in petunia, via RNAi, downregulated the expression of a CCR gene,

whose gene product catalyzes next step in the monolignol biosynthesis following CCoAOMT

[68]. In general, these results show that altering expression of CCoAOMT causes only minor

perturbations to expression levels of genes encoding monolignol biosynthetic enzymes.

Although overexpression of SbCCoAOMT did not have a major impact on global gene

expression in either stalks or leaves, the expression of genes encoding enzymes linked to cell

wall biosynthesis were elevated in SbCCoAOMT lines and correlates with patterns of gene-

expression network analyses. Expression levels of a DAHP synthase (Sobic.001G351000) and a

shikimate kinase (Sobic.006G235500), which both encode enzymes in aromatic amino acid

synthesis [69], were also elevated in the two transgenic lines compared to wild-type in stalk tis-

sues. Higher expression of DAHP synthase and shikimate kinase transcripts and higher levels

of shikimate quantified through metabolite profiling indicate that SbCCoAOMT overexpres-

sion may stimulate flux through the shikimate pathway, which ultimately lead to the synthesis

of aromatic amino acids required for the monolignol biosynthesis [31]. Although DEG analy-

sis presented relatively few genes associated with cell wall biosynthesis, WGNCA analysis cor-

roborated patterns of genes up-regulated in stalk tissue for both transgenic events that were

related to pentose phosphate pathway, aromatic amino acid biosynthesis and phenylpropanoid

biosynthesis. Hence, SbCCoAOMT overexpression may result increases in the substrate and

cofactors required monolignol pathway.

Utilization of biomass as a carbon-neutral resource has received increased attention due to

its availability, sustainability, renewability and energy security [8, 70]. Thermochemical con-

version of biomass spans a range of technologies, which includes pyrolysis, gasification and

direct combustion. Pyrolysis is the thermal decomposition of lignocellulosic biomass, and

leads to valuable products including char, liquid (tar and oil) and gas products (syngas) [71].

We demonstrate overexpression of CCoAOMT can increase the energy density of biomass,

which may be beneficial to thermoconversion processes. Alternatively, ferulic acid is a poten-

tial valuable co-product from the hydrolysis of biomass to produce sugars from cell wall poly-

saccharides, and it has a wide range of biomedical applications that include antioxidant, anti-

inflammatory, UV-protectant and anti-microbial activities with potential usage in nutraceuti-

cal, cosmetic and food products [72].

In conclusion, this study demonstrates that SbCCoAOMT can be manipulated to modify

cell wall composition of soluble and wall-bound phenolic compounds without significant neg-

ative impacts on plant growth and development and minimal impacts on other biochemical

pathways. Moreover, this study indicated that overexpression of SbCCoAOMT increased levels

of phenolic compounds derived from the monolignol biosynthesis pathway, which may have

potential applications in the emerging bioenergy sector.

Supporting information

S1 Fig. Overexpression of SbCCoAOMT in wild-type sorghum. Immunoblot detection of

CCoAOMT from leaves (top) and stalks (bottom). Protein extracts from wild-type were sepa-

rated by SDS-PAGE, transferred to membrane, and probed with polyclonal antibodies raised

against the recombinant SbCCoAOMT protein. Monoclonal antibodies raised against actin
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protein were used as a protein loading control. The exposure was increased to detect the pres-

ence of the CCoAOMT protein in wild-type extracts.

(TIF)

S2 Fig. SbCCoAOMT overexpression induced changes in cell wall composition in leaf mid-

rib from wild-type and SbCCoAOMT transgenic plants (indicated on top of each image).

Autofluorescence observed with a Nikon A1R confocal laser scanning microscope. Scale

bar = 200 μm.

(TIF)

S3 Fig. Impact of SbCCoAOMT overexpression on monolignol biosynthesis pathway genes.

Global expression of monolignol biosynthesis genes were quantified from RNA-seq dataset:

Phenylalanine ammonia lyase (PAL; Sobic.004G220300.1), cinnamate-4-hydroxylase (C4H;

Sobic.002G126600.1), 4-coumarate-CoA ligase (4CL; Sobic.004G062500.1), hydroxycinna-

moyl CoA:shikimate hydroxylase (HCT; Sobic.004G212300.1), p-coumarate-3-hydroxylase

(C3H; Sobic.009G181800.1), cinnamyl CoA reductase (CCR; Sobic.007G141200.1), ferulate-

5-hydroxylase (F5H; Sobic.001G196300.1), caffeic acid O-methyltransferase (COMT;

Sobic.007G047300.1) and cinnamyl alcohol dehydrogenase (CAD; Sobic.004G071000.1).

Asterisks indicate levels of significance for differential expression of SbCCoAOMT transgenic

event compared to wild-type determined using DESeq2 (FDR: �� p� 0.01).

(TIF)

S4 Fig. Expression profiles for all 16 weighted gene co-expression network analysis

(WGCNA) identified from sorghum stalks and leaves. Expression profiles of 16 co-expres-

sion modules were obtained from WGCNA.

(TIF)

S5 Fig. Sparse partial least squares-discriminant analysis (sPLS-DA) on metabolite data

from LC-MS negative and positive mode. (A) Leaf negative, (B) leaf positive, (C) stalk nega-

tive and (D) stalk positive mode with the top ranked 20 metabolites.

(TIF)

S1 Table. Summary of paired-end Illumina reads and mapping results using HISAT2. a

Post processing b Number inside parentheses indicate the percentage of total reads.

(XLSX)

S2 Table. Analysis of metabolites from wild-type (RTx430), SbCCoAOMT-9a and

SbCCoAOMT-28b biomass using LC/MS positive and negative mode. Values represent

mean and ± 1 SE. Values in bold text indicate those that were statistically significantly different

(p�0.05).

(XLSX)

S3 Table. Analysis of soluble and wall-bound phenolics from wild-type (RTx430),

SbCCoAOMT-9a and SbCCoAOMT-28b biomass using GC-MS. Values represent peak area

of major ion and ± 1 SE (10^4). Values in bold text indicate those that were statistically signifi-

cantly different (p�0.05).

(XLSX)

S4 Table. Differentially expressed genes for SbCCoAOMT-9a and SbCCoAOMT-28b in

leaf and stalk tissue compared to wild-type. Normalized counts, venn diagram designation,

and log fold change (LFC) with associated p-value (FDR p<0.05).

(XLSX)
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