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A B S T R A C T

Concentrations of 26 trace elements including essential (Mg, Ca, Cr, V, Mn, Fe, Co, Ni, Cu, Zn, Se, Sr and Mo) and
toxic (As, Cd and Pb), were determined in the liver, kidney, brain, hair, muscle, and stomach contents of the
small Indian mongooses inhabiting eight areas on three Hawaiian Islands, Oahu, Maui and Hawaii. There were
significant differences in concentrations of some metals among the habitats. Cadmium concentrations in mon-
gooses from the macadamia nut orchards on Island of Hawaii were relatively higher than those in populations
from other seven areas. Lead concentrations in mongooses from the Ukumehame firing range were significantly
higher than those from other areas. Compared to data reported in mongooses from other countries, Pb con-
centrations in the brain were higher in the animals from Hawaiian islands, but almost similar levels were ob-
served in the liver and kidney. Intriguingly, brain concentrations of Pb in three specimens from the Ukumehame
firing range exceeded 3.79 µg g−1 WW, which was the mean cerebral Pb level in rats that caused some toxic
symptoms after administration in the previous study. Furthermore, two fetuses exhibited higher brain Pb con-
centrations than each of their dams. These results prompted us to consider the potential exposure and health
effects of Pb derived from firing range operations on the small Indian mongoose and other animal species
including human.

1. Introduction

The small Indian mongoose (Herpestes auropunctatus) belongs to the
order Carnivora in the family Herpestidae (15 genera, 34 species), and
its original habitats are Iran, Iraq, Afghanistan, Pakistan, India, Nepal,
Bhutan, Bangladesh, Myanmar, southern China, and Hainan Island
(Gilchrist et al., 2009). This species has been introduced to at least 76
islands and areas such as Cuba, Jamaica, Puerto Rico, Hawaii, Okinawa,
Mauritius, Guiana, Croatia, etc. to reduce crop depredation by field
rodents and reduce incidence of snake bites in humans (Barun et al.,
2011). Jamaica was the first area where this species was introduced in
1872 and the habitat of this species has expanded globally since then.
Additionally, these introduced individuals have caused some negative
impacts on crop damage, extinction of endemic species, and hosts of
zoonotic diseases hazardous to humans in their introduced areas. The
introduction of the small Indian mongoose as a biocontrol technique in

these areas has been concluded as a “failure”. This species has been
designated as one of “100 of the World's Worst Invasive Alien Species”
by the International Union for Conservation of Nature (IUCN) (Lowe
et al., 2000).

In Japan, the small Indian mongoose was introduced to two islands,
Okinawa and Amamioshima in 1910 and 1979, respectively (Yamada
et al., 2015). Some endemic rare species decreased considerably be-
cause of predation by this species, and hence an extermination project
started in 2005 (Fukasawa et al., 2013). The Javan mongoose (Herpestes
javanicus) in Horai et al. (2006) was identified as the small Indian
mongoose (Herpestes auropunctatus) by Watari et al. (2011).

Meanwhile, the small Indian mongoose is considered as a valuable
indicator for environmental monitoring because this species is an op-
portunistic predator that has been shown to have relatively high trace
element levels in tissues. In animals at higher trophic levels, it is con-
cerning that toxic effects by bio-accumulative contaminants of some
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heavy metals have become more evident (Burger et al., 2000). Our
study group previously conducted biomonitoring survey on trace ele-
mental pollution in Japan, and found relatively high some metal levels
in the mongoose population from Amamioshima (Horai et al., 2006)
and Okinawa (Watanabe et al., 2010) compared with other terrestrial
wildlife.

In Hawaii, rapid urban and small industrial development during the
second half of the twentieth century, especially in Honolulu, has led to
a degradation of the aquatic environment (De Carlo and Anthony,
2002). Metal contamination in the marine environment is a profound
and biologically relevant problem in the main Hawaiian islands, where
elevated concentrations of metals such as Cr, Cu, Zn and Pb in
streambed sediments have been reported (McMurtry et al., 1995; De
Carlo et al., 2005; Hédouin et al., 2009). The elevated metal levels are
caused by an increase in human populations with high traffic densities,
as well as by volcanic activity (McMurtry et al., 1995; Andrews and
Sutherland, 2004). Furthermore, De Carlo et al. (2005) reported in
National Water Quality Assessment (NAWQA) study that V, Cr, Cu and
Ni in Oahu have been derived primarily from anthropogenic activity
such as automotive traffic, population density and agricultural land use.
Lead concentrations in selected fish species, Cuban limia (Limina vittata)
and Mozambique tilapia (Oreochromis mossambicus), collected from the
Manoa Stream in Oahu were the highest among data of 109 station
recorded by the National Contaminant Biomonitoring Program (NCBP)
station of the US Fish and Wildlife Service (Schmitt and Brumbaugh,
1990). There are some assessment studies of metal contamination in
aquatic regions of Hawaii using sediments (De Carlo and Anthony,
2002; De Carlo et al., 2005; Hédouin et al., 2009; Hédouin et al. (2011))
and fishes (Schmitt and Brumbaugh, 1990). Although a few studies on
contaminants have been conducted using roadside and road-deposited
dust and soils also in the terrestrial regions of Hawaii (Sutherland et al.,
2000; Sutherland et al. (2001)), the impact of metal contamination of
terrestrial animals, especially higher trophic species, remains

unexplored. Heavy metals enter aquatic ecosystems from urban, in-
dustrial, and agricultural runoff, and are augmented by natural geolo-
gical processes (Mailman, 1980). Thus, characterizing the degree of
trace element contamination on the Hawaiian terrestrial environment is
important to manage and conserve both terrestrial and aquatic eco-
systems. The objective of this study was to compare the trace element
concentrations in the liver, kidney, muscle, brain, and hair of the small
Indian mongoose collected from the Hawaiian Islands and to evaluate
the contamination status of trace elements in the Hawaiian terrestrial
environment.

2. Materials and methods

2.1. Sample collection

Liver, kidney, brain, and thigh muscle tissues, and hair of the small
Indian mongoose were collected from 6 subadults and 38 adults in-
habiting eight different areas (Lualualei-rural agricultural area, Waimea
Valley-rural garden, Ukumehame firing range, Upper Wainaku maca-
damia nut orchard, Amauulu Road, Waiakea forest reserve, Hilo
Airport, and Kilauea military reservation) in the three islands, Oahu,
Maui, and Hawaii, during 2010–2013 (Fig. 1). Growth stage was de-
termined by tooth-wear criteria (Woods and Sergile, 2001). In brief, all
teeth of juveniles are sharp, whereas adult teeth are worn, broken and/
or rounded. Stomach content was collected from 23 adult individuals.
Two females from the Upper Wainaku macadamia nut orchard samples
of 38 adults had fetuses, and the liver, kidney, and brain were collected
from each fetus. Sample data is shown in Table 1. All the tissue and
stomach content samples were kept at −25 °C until chemical analysis.

All applicable international, national and/or institutional guidelines
for the use of animals were followed. All procedures performed in
studies involving animals were in accordance with the ethical standards
of the institution at which the studies were conducted.

Fig. 1. Sampling locations of the small Indian mongooses in the Hawaiian islands, USA.
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2.2. Chemical analysis

All excised mongoose tissue samples were dried on petri dishes
covered with Teflon sheets at 80 °C for 16 h, and then uniformly
homogenized to a fine powder using a porcelain mortar. Approximately
0.1 g of the dried powder sample was digested in a microwave system
with nitric acid. Concentrations of 26 elements (Li, Mg, Al, Ca, V, Cr,
Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Mo, Ag, Cd, In, Sn, Sb, Ba, Pb
and Bi) were determined with an inductively coupled plasma-mass
spectrometer (ICP-MS; HP4500, Hewlett–Packard, Avondale, PA, USA).
Yttrium was used as an internal standard for ICP-MS measurements.

Accuracy of the analysis was verified using two standard reference
materials, bovine liver (1577b) and DOLT (Dogfish liver tissue) -4
provided by the National Institute of Standards and Technology (NIST)
and the National Research Council of Canada (NRC), respectively. The
ranges of recovery rates of the elements in 1577b and DOLT-4 samples
by this procedure were from 90.2% (Ag) to 105% (Sr), and 86.4% (V) to
106% (Mo), respectively. To compare with trace element levels from
previous studies, dry weight concentrations obtained in this study were
converted to a wet weight basis using water content values measured in
this study; dry weight element concentration× (100-water content in
each sample (%))/100=wet weight element concentration.

2.3. Statistical analysis

Significant differences in concentrations among the sampling areas,
and tissues were analyzed using the Steel-Dwass test. Differences of
trace element concentrations between males and females were de-
termined using Mann-Whitney’s U tests. Correlation between the metal
concentrations in tissues was examined using the Spearman’s rank test.
A p value less than 0.05 was considered to be statistically significant. All
the statistical analyses were executed using the Statcel 3 program
(Yanai, 2011).

3. Results

3.1. Comparison of trace element concentrations among tissues

Trace element concentrations in the liver, kidney, brain, muscle,
hair, and stomach content samples of the small Indian mongooses col-
lected from Hawaiian islands are shown in Table 2. In comparison to
the levels among the four soft tissues, liver, kidney, brain, and muscle,
significantly higher concentrations of Al, V, Mn, Fe, Co, Cu, Zn, Ga, and
Mo were observed in the liver. In the kidney, Ni, Se, and Cd con-
centrations were significantly higher than those in the other three tis-
sues. Calcium and Mg concentrations were significantly higher in the
brain and muscle when compared to the other tissues examined.

The metals and metalloids in the hair and stomach contents with
significantly higher concentrations than in the four soft tissues were Li,
Mg, Al, Ca, V, Cr, Mn, Fe, Co, Ni, Zn, Ga, As, Sr, Ag, Ba, and Pb.
Furthermore, Al, Ca, Cr, Zn, Ga, Sr, Sn, Ba and Pb concentrations were
significantly higher in the hair than in the stomach contents, while, Li,
Mg, V, Mn, Fe, Co, Ni, As, and Ag concentrations in the stomach con-
tents were significantly higher contents than those in the hair.

3.2. Comparisons of trace element concentrations between dams and fetuses

To understand the transference of trace elements from dam to fetus,
we compared the trace element concentrations in liver, kidney, and
brain tissues of the two pairs of dams and fetuses (Table 3). The fetus/
dam ratios of the trace element concentrations in each tissue are shown
in Fig. 2. In the liver, fetus/dam ratios of Ca, Cu, Sr, and Ba con-
centrations were more than 2.0, and in the kidney, the ratios of Li, Ca,
Cr, Fe, Ni, and Ba concentrations exceeded 2.0 in both pairs. As for the
brain, the trace elements that showed the ratios more than 2.0 were Li,
Al, Ca, Ni, Ga, Ba, and Pb. Especially, concentrations of alkali-earthTa
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metals, such as Ca and Ba, were higher in all tissues of the fetuses than
in the dams. Thus, larger numbers of trace elements that showed the
fetus/dam ratios more than 2.0 were found in the brain. For instance,
Pb concentrations in the brain of the fetuses were higher than those of
the dams, but the Pb levels in the fetus livers were lower compared to
their dams. Similar trends were also observed also for V and As.

3.3. Comparisons of Ni, Cd, Pb concentrations in tissues from Hawaiian
islands to other regions

We compared the tissue levels of trace elements in the small Indian
mongooses analyzed in this study with tissue data reported in the same
species from mainland Kyusyu (Kagoshima), Amamioshima island and
Okinawa island (Ryukyu Archipelago) (Watanabe et al., 2010; Horai
et al., 2006; Unpublished data).

Of the four soft tissues from the Hawaiian mongooses, Ni and Cd
concentrations were highest in the kidney, and the renal Ni con-
centrations were significantly higher in Hawaii mongooses than those
from Kagoshima and Amamioshima (Fig. 3a). Also in the brain, sig-
nificantly higher Ni levels were observed in the specimens from Hawaii
than Kagoshima, but there was no significant difference between Ha-
waii and Amamioshima (Fig. 3b). Similarly, liver Ni residues in mon-
gooses were higher in Hawaii than in Kagoshima but comparable to
those in Amamioshima. In contrast, there was no significant difference
of Cd levels in the kidney from Hawaii and the other Japanese loca-
tions, however, a wider range of Cd concentrations was observed
among Hawaiian mongoose samples (Fig. 3c).

Comparisons of Pb concentrations in the liver, kidney, and brain
among the four areas are shown in Fig. 4. In the liver, the Pb levels in
mongooses from Hawaii were significantly lower than those from
Amamioshima (Fig. 4a), and there were no significant differences in the
renal Pb levels between Hawaii and each Japanese habitat (Fig. 4b).
However, the Pb concentrations in the brain from Hawaii were sig-
nificantly higher than those from Kagoshima and Amamioshima
(Fig. 4c).

3.4. Spatial differences in Ni, Cd, and Pb concentrations in tissues from
Hawaiian islands

As shown in Figs. 3 and 4, a wide range of Ni, Cd, and Pb con-
centrations was observed in the small Indian mongooses from Hawaii.
Therefore, we examined spatial differences in concentrations of these
metals in tissues.

There were no significant differences in Ni concentrations in the
kidneys of mongooses among the eight locations of Hawaiian islands
(Fig. 5a). However, significant differences in Cd concentrations in the
kidneys were found; the specimens from the Ukumehame military firing
range showed lower levels than those from the macadamia nut orchard,
Amauulu, Hilo Airport and Kilauea military reservation in Hawaii is-
land (Fig. 5b). When classifying the eight locations into three island
groups, Oahu, Maui, and Island of Hawaii, Cd concentrations in the
Island of Hawaii were significantly higher than those in Oahu
(p < 0.05) and Maui (p < 0.01).

There were no significant differences of Pb concentrations in the
liver and kidney of the small Indian mongooses collected from the eight
areas in Hawaii, although the median Pb concentrations in each organ
from the Ukumehame military firing range were the highest among all
the locations (Fig. 6a and b). The median Pb concentration in the brain
from the firing range was 12.1 µg g−1 DW, which was considerably
higher than median values from the other locations, with the levels
significantly higher than those from the Kilauea military reservation
(Fig. 6c).

We examined the relationship of Pb with As or Sb concentrations at
the Ukumehame firing range (Fig. 7a) and at seven other locations
(Fig. 7b). Significant correlations between Pb and As or Sb concentra-
tions were observed in the brain, and hair from the firing range, while
there were significant correlations for hair from the other seven zones
(Fig. 7a and b). The slopes between As and Pb concentrations in the hair
(y= 0.0085x+ 0.183; r=1.00) and the brain (y=0.0097x− 0.0431;
r=1.00) and between Sb and Pb concentrations in the hair
(y= 0.0249x+ 0.408; r=0.979) and the brain (y=0.0325x− 0.706;
r=1.00) from the firing range were approximate each other (Fig. 7).

Fig. 2. Fetus/dam ratios of trace element concentrations in liver, kidney and brain tissues of the two pairs (#32 (○) and #35 (■)) of fetuses and dams.
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4. Discussion

Anthropogenic activities can cause widespread accumulation of
heavy metals, which when not submitted to natural biodegradation can
accumulate in living organisms and circulate in trophic chains (Damek-
Poprawa and Sawicka-Kapusta, 2003). The use of a bioindicator species
can provide valuable data in monitoring the quality of the environment
through exposure and accumulation of contaminants in the animal
habitat (Adham et al., 2011). In the present study, concentrations of 26
trace elements including essential and toxic elements were determined
in the liver, kidney, muscle, hair, and stomach content of 44 small In-
dian mongooses collected from eight locations in the three Hawaiian
islands; Oahu, Maui, and the Island of Hawaii.

Essential metal concentrations of Mn, Fe and Cu were higher in the
liver than in the kidney, muscle and brain. This pattern was consistent
with previous studies observed in mongooses collected from Okinawa
(Watanabe et al., 2010), Amamioshima (Horai et al., 2006), and Ka-
goshima (Watanabe et al., 2010). Iron is distributed mainly in the liver
as stored Fe in some terrestrial mammalian species such as rat, rabbit,
brown bear (Ursus arctos), gray wolf (Canis lupus), Eurasian lynx (Lynx
lynx), golden jackal (Canis aureus) (Lazarus et al., 2017) and humans

(Underwood, 1977). Among the body organs, the liver and spleen
usually show the highest Fe concentrations, followed by the kidney,
heart, skeletal muscle, and brain, which contain only half to one-tenth
of the levels in the liver and spleen (Underwood, 1977). In some marine
mammals, such as fin whale (Balaenoptera physalus), Risso’s dolphin
(Grampus. griseus), striped dolphin (Stenella. coeruleoalba) and common
bottle-nose dolphin (Tursiops. Truncatus) (Capelli et al., 2008), it has
been shown that Fe concentrations in the livers were higher than those
in the muscle and kidney.

It is known that liver is the organ with the highest Cu content in
some mammalian species (Underwood, 1977). Higher levels of Cu in
the liver than in other organs have been also found in humans (Wada,
1985) and some wild mammals such as small rodents (Fritsch et al.,
2010), brown bear, gray wolf, Eurasian lynx, golden jackal (Lazarus
et al., 2017), harbor seal (Phoca vitulina) (Agusa et al., 2011), Caspian
seal (Phoca caspica) (Watanabe et al., 2002), Baikal seal (Phoca sibirica)
(Watanabe et al., 1996), S. coeruleoalba, T. truncates, and Ziphius.

Fig. 3. Comparisons of Ni concentrations in the a) kidney and b) brain, and c)
Cd concentrations in the kidney of the small Indian mongooses from Hawaii
with data of specimens from the three habitats in Japan. 1,3) Watanabe et al.,
2010, 2) Horai et al., 2006.

Fig. 4. Comparisons of Pb concentrations in the a) liver, b) kidney and c) brain
of the small Indian mongooses from Hawaii with data in specimens from the
three habitats in Japan. 1,3) Watanabe et al., 2010, 2) Horai et al., 2006.
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cavirostris (Capelli et al., 2008). Moreover, an avian species, the great
cormorant (Phalacrocorax carboalso) had higher Cu levels in the liver
compared with other organs (Nam et al., 2005). Similarly, relatively
higher concentrations of Mn in the liver have been shown in humans
(Underwood, 1975; Wada, 1985), some wild terrestrial mammals
(Lazarus et al., 2017), and marine mammals (Watanabe et al., 1996,
2002, Capelli et al., 2008, Agusa et al., 2011), and avian species (Nam
et al., 2005, Horai et al., 2007).

In mongooses from the Hawaiian Islands, Cd concentrations were
the highest in the kidney of the four soft tissues analyzed. This result
was consistent with data reported in the mongoose populations from
four habitats in Japan (Horai et al. 2006; Watanabe et al., 2010) In the
case of humans, it is known that Cd exists mainly in the kidney
(Underwood, 1975). In some terrestrial mammals (Fritsch et al., 2010;
Lazarus et al., 2017), marine mammal (Watanabe et al., 1996, 2002,
Capelli et al., 2008, Agusa et al., 2011; Reed et al. 2015, Mahfouz et al.,
2014), and avian species (Nam et al., 2005; Horai et al., 2007;
Zaccaroni et al., 2011; Cui et al., 2013), the Cd accumulation was more
abundant in the kidney than in the other organs and tissues. Together,
distribution patterns of Mn, Fe, Cu and Cd in the liver and kidney of
small Indian mongoose population from Hawaii were similar to mon-
gooses from Japan as well as other terrestrial and marine mammals.
Cadmium concentration in the brain of small Indian mongoose and

other terrestrial mammals were similar to European otter (Lutra lutra),
mustelids (Martes martes, M. foina, Mustela putorius) and raccoon
(Nyctereutes procynoides) (Kalisinska et al., 2016).

Understanding the transference of trace elements between dam and
fetus in wild mammals may provide useful information on future gen-
eration effects of metal exposure in humans, but there are limited stu-
dies in this regard. In the present study, we showed the distribution
pattern of trace elements by analyzing liver, kidney, and brain samples
from two pairs of fetus and dam. The fetus/dam concentration ratios of
Ca and Ba exceeded 2.0 in the liver, kidney, and brain (Fig. 2). Rossipal
et al. (2000) reported in humans that Ca concentrations in umbilical
cord sera (UCS) were significantly higher (p < 0.005) than those in
maternal serum; the median level in UCS amounted to 120% of the
maternal value. Thus, it is likely that the physiological requirement of
Ca in the fetus is relatively high.

However, Se and Cd concentrations in the liver and kidney tissues of
fetuses were lower than those in the two respective organs of their dams
(Fig. 2). Similar phenomena were previously reported in fetus-dam
pairs of common dolphins (Delphinus delphis) (Lahaye et al., 2007). In
the present study, higher concentrations of 11 elements (Mg, Al, Ca, V,
Cr, Ga, As, Rb, Sr, Ba, and Pb) in the brain, 3 elements (Ni, Cd, and Sn)
in the kidney, and 7 elements (Mn, Fe, Co, Cu, Zn, Se, and Mo) in the
liver were found in the fetuses than in the dams. Thus, more elements
with higher levels than in dams accumulated in the brain of the fetuses
(Fig. 2). It has been reported in experimental animals that parental
exposure to some hazardous chemicals induces developmental dys-
function in the central nervous system of offspring (Kuwagata et al.,
2009). In particular, fetuses and young children are at the greatest risk
on neurotoxic effects by Pb exposure (ATSDR, 2007). Lead can cross the
placenta and reach the developing brain of the fetus, whose incomplete
blood barrier makes it more vulnerable to toxicant exposure than that
in adults (Grandjean and Lanrigan, 2007).

Nickel, Cd and Pb concentrations were relatively higher in the or-
gans of small Indian mongooses from the Hawaiian islands as compared
to mongooses from Japan, suggesting the considerable pollution by the
three metals in Hawaii. Records show environmental bioaccumulation/
pollution of these three metals potentially from sustained natural (vo-
canic), agricultural (sugarcane) or small industrial sources. Nickel and
Pb residues in Hawaii has been reported by De Carlo et al. (2005) and
Schmitt and Brumbaugh (1990) from chemical analysis of sediment and
fish samples. The results of the present study are consistent with their
findings although sample species were different. Cadmium levels in
Island of Hawaii were found to be significantly higher than those in
Oahu and Maui, suggesting the regional difference in Cd pollution
(Fig. 5). According to the Hawai‘i Department of Health Hazard Eva-
luation and Emergency Response (DOH HEER, 2012), Cd concentra-
tions in soils in Hawaii island (median; 0.840mg/kg) were significantly
higher than those in Maui (median; 0.395mg/kg, p < 0.05), and re-
latively higher than those in Oahu (median; 0.775mg/kg). None of the
soil samples from 32 locations in Hawaii Island were below the detec-
tion limit (LOD), whereas 15 of 41 samples from Oahu and 5 of 23
samples from Maui were below the LOD (DOH HEER, 2012). This
higher Cd background levels on Hawaii island as compared to Maui and
Oahu coincides our data of Cd bioaccumulation mongooses between the
three Hawaii islands.

Higher Cd environmental background levels in Hawaii island may
be an artifact of island geographic differences. Cd concentrations in
soils tend to increase with higher clay content, and Cd shows stronger
correlations with levels of Fe, Mn, and organic matter (DOH HEER,
2012). In examining soil order classifications, it was found that the
proportions of basaltic soils (lava flows) and histosols which are organic
soils containing over 50% organic matter, on Hawaii Island were
markedly higher than those on Maui and Oahu islands (DOH HEER,
2012). Anthropogenic Cd tends to accumulate in surface soils due to
atmospheric deposition (from fossil fuel combustion and certain in-
dustrial activities) and the application of fertilizers to agricultural land

Fig. 5. Comparisons of a) Ni and b) Cd concentrations in the kidney of the small
Indian mongooses from eight different habitats of the Hawaiian islands.
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(DOH HEER, 2012).
Comparisons of Pb concentrations in the liver, kidney, and brain

among the four areas have been shown in Fig. 4. Lead concentration in
brain tissues from Hawaii was especially noteworthy. In Hawaii, Pb
levels in the brain of small Indian mongooses from the Ukumehame
military firing range were relatively higher than those in other seven
locations; the median (min-max) values (µg g−1 WW) were 0.004
(n=1), 0.0688 (0.0136–0.0887), 2.68 (0.395–1510), 0.0088
(0.00597–0.0354), 0.00607 (0.00288–0.00925), 0.0715
(0.0156–0.129), 0.0268 (0.0134–0.614), 0.037 (0.0111–0.0598) for
Waimea Valley, Lualualei-rural agricultural, Ukumehame military

firing range, Upper Wainaku macadamia nut orchard, Waiakea forest
reserve, Amauulu Rd., Hilo Airport, Kilauea military reservation, re-
spectively (Fig. 6c). The median Pb values from the firing range was
highest compared to some wild terrestrial (Kalisinska et al., 2016) and
marine (Cardellicchio et al., 2002; Romero et al., 2017) mammals. Lead
concentrations in all the brain samples from the Ukumehame firing
range and two of the eight from Hilo Airport exceeded the mean Pb
level observed in the brain of male rats (0.239 µg g−1 WW), which were
exposed to 50mg/L Pb and had increased ambulatory activity mea-
sured as lines crossed (Mansouri et al., 2012). Cao et al. (2013) reported
that rats exposed to PbS nanoparticles showed an increased average
number of errors and escape latency, and their hippocampi had pa-
thologically changed. The average Pb levels in the hippocampus and
cortex of rats were approximately 1.5 and 0.9 µg g−1 WW in the low
dose group, and approximately 2.1 and 1.4 µg g−1 WW in the high dose
group, respectively. In the present study, the median Pb level in the
brain of the small Indian mongoose from the Ukumehame firing range
exceeded 2.1 µg g−1 WW. Dewanjee et al. (2013) examined the toxic
effects of Pb exposure in Wister rats, and reported the mean cerebral Pb
level in the rats exposed to Pb-acetate was 3.79 µg g−1 WW ± 0.25,
and showed significant decreases in the number of total erythrocytes,
monocytes, and neutrophils. Moreover, cellular necrosis, diffused
edema, and encephalomacia were observed in the rat brain. There were
three individuals from the Ukumehame firing range which exceeded
3.79 µg g−1 WW in brain tissue. Interestingly, Pb concentrations in the
subadult brains were relatively higher than those in the adults from the
Ukumehame firing range (Suppl. 1). As described earlier, Pb levels in
the brain of two fetuses were also higher than those in their dams from
the Wainaku macadamia nut orchard (Suppl. 2). Brain is thought to be a
target organ on Pb toxicity, especially fetuses and subadults.

One of the signs of Pb intoxication in vertebrate animals consists of
a reduction in body weight (Goyer et al., 1970; Ma, 1989). Ma (1989)
reported body weight reduction in wood mice (Apodemus sylvaticus)
from an area polluted with Pb pellets from shotgun ammunition. In the
present study, the median body weight of adult females (n=3) from
the firing range was 400 g, whereas that from all other areas (n=12)
was 450 g. On the contrary, the median body length from the firing
range specimens was similar to that from others (29.5 cm). The body
weight of only one adult male individual from the firing range was
378 g. The median body weight of adult males from other areas
(n= 22) was 697 g. The difference in the median body weights be-
tween two groups correlates to their body lengths; one from the firing
range was 27.0 cm and another from the other areas was 31.5 cm.
However, the body weight of an adult male from the other area which
had similar body length (27.5 cm) to the one from the firing range
(27 cm) was 421 g. These observations suggest that body weight re-
duction in adult mongooses from Ukumehame firing range may be
correlated to increased Pb bioaccumulation.

We compared Pb concentrations among the liver, kidney, muscle,
brain, and hair by separating the sampling locations into two groups,
the firing range and all other areas. For the both groups, the highest Pb
concentrations were found in the hair; the tissue with the second
highest levels were the brain for the Ukumehame firing range and
kidney for other locations (Suppl. 3).

The distribution of Pb in mammalian tissues generally reflects the
following order: bone > kidney > liver > brain > muscle (Ma,
1996). In previous studies, kidney was the main organ of Pb con-
centration in the soft tissues of small mammals such as wood mice
(Apodemus sylvaticus), bank voles (Clethrionomys glareolus), shrews
(Sorex araneus), white-footed mice (Peromyscus leucopus), and shorttail
shrew (Blarina brevicauda) from a shooting range (Ma 1989; Stansley
and Roscoe, 1996). In the present study, brain was the main organ of Pb
accumulation in the soft tissues of mongoose from the firing range. No
significant differences in Pb concentrations between liver and kidney
were found. There were no specimens that exceeded 25 µg/g DW of
renal Pb concentration which was considered diagnostic of Pb

Fig. 6. Comparisons of Pb concentrations in the a) liver, b) kidney and c) brain
of the small Indian mongooses from eight different habitats in Hawaiian islands.
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intoxication in mammals (Ma, 1989), whereas hepatic Pb concentration
(29.5 (9.79) µg/g DW (WW)) in one mongoose exceeded this value.
Lewis et al. (2001) categorized hepatic and renal Pb levels in avian and
mammalian species as background at< 1 µg/g WW, indication of
subclinical exposure at 1–2 µg/g WW, and potential clinical Pb poi-
soning at 6 µg/g WW or more. In the present study, median Pb con-
centrations in the liver and kidney from the firing range were 1.97
(0.547) and 1.79 (0.422) µg/g DW (WW), respectively. In contrast, the
medians of Pb concentrations in the two soft tissues from other loca-
tions were 0.461 (0.119) µg/g DW (WW) in the liver and 0.679
(0.114) µg/g DW (WW) in the kidney. Comparing to above Lewis’
classification (2001), Pb levels in the liver and kidney in six of nine
individuals (66.7%) from the firing range exceeded 1 µg/g WW,
whereas the concentrations in three livers (8.57%) and six kidneys
(17.1%) of 35 specimens from the other zones were more than the
considered normal value. Namely, the proportion of mongooses from
the firing range which exceeded the normal value of Pb concentration
was higher than that from the other areas. Moreover, Pb levels in the
two livers exceeded 2 µg/g WW. In the other locations, there was one
specimen from Hilo airport that had hepatic and renal Pb concentra-
tions exceeded 1 µg/g WW; the values were 4.32 and 1.84 µg/g WW,
respectively.

There were significant positive correlations between Pb and As or Sb
concentrations in the brain and hair from the firing range (Fig. 7a).
Moreover, the slopes in the concentrations of Pb and As or Sb from the
firing range were similar between the brain and hair (Fig. 7a). How-
ever, such correlations were not observed for the other seven locations
(Fig. 7b). Lead shot pellets generally contain As and Sb, which are
added to increase hardness (Krachler et al., 2001). Takamatsu et al.
(2010) reported that proportional ranges of Pb, Sb and As were
93.7–99.3%, 1.5–6.3%, and 0.21–0.97%, respectively, in the elemental
composition among five commercial shot pellet samples. These ob-
servations imply that mongooses inhabiting the Ukumehame military
firing range have been exposed to As, Sb, and Pb derived from the shot
pellet in the field.

In the previous study by Andrade et al. (2013), Pb concentrations in
the brain of rats administrated a mixture of Pb and As, were sig-
nificantly higher than those in ones which were exposed to only Pb.
Cobbina et al. (2015) also reported Pb exposure to binary mixtures
induced significant increase in Pb levels in the brain of mice. Moreover,
in their study, brain showed higher Pb concentrations compared to liver
of the mice which were treated with a toxic metal mixture. Considering
the above observations, mongooses from the firing range might pre-
ferentially accumulate Pb in the brain. In the present study, it was
found that a main organ of Pb accumulation was brain rather than liver
and kidney but the cause is unclear at present. Pb bioavailability in

wildlife is affected by soil characteristics such as redox potential, pH,
ionic strength, concentration of reducing agents, presence of reactants
(e.g. acids, bases, sulfate, carbonate) and so on (SAAMI, 1996). Fur-
thermore, Jorgensen and Willems (1987) reported that the transfor-
mation rate to more soluble Pb species was markedly reduced when soil
pH and/or organic matter contents were high. Therefore, higher cere-
bral Pb concentrations in the small Indian mongooses from the firing
range might be derived from various environmental parameters such as
soil condition, chemical species, metal levels in background and or-
ganisms in its habitat, and other factors.

5. Conclusions

The present study showed that environmental bioaccumulation of
Ni, Cd and Pb pre-existed in the Hawaiian Islands, especially, Ni in
Oahu, Pb in Maui, and Cd in Hawaii island. The median Pb con-
centrations in each organ from the Ukumehame military firing range in
Maui were highest among all the locations. Especially, the level in the
brain was extremely higher than in the liver and kidney. Lead con-
centrations in the liver, kidney and brain of several mongooses from the
firing range exceeded toxic levels. This probably factored into the re-
duced body weight in the small Indian mongooses from that area. Lead
concentrations in subadult and fetus brains of the mongooses were
much higher than those in adults. This elevates the need to closely
monitor the real health risks of Pb and other toxic metals on human and
wildlife habituating or using habitats on or near firing ranges.
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