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Abstract: Community saturation can help to explain why biological invasions fail. However, 

previous research has documented inconsistent relationships between failed invasions (i.e., 

an invasive species colonizes but goes extinct) and the number of species present in the 

invaded community. We use data from bird communities of the Hawaiian island of Oahu, 

which supports a community of 38 successfully established introduced birds and where 37 

species were introduced but went extinct (failed invasions). We develop a modified approach 

to evaluate the effects of community saturation on invasion failure. Our method accounts  

(1) for the number of species present (NSP) when the species goes extinct rather than during 

its introduction; and (2) scaling patterns in bird body mass distributions that accounts for the 

hierarchical organization of ecosystems and the fact that interaction strength amongst species 

varies with scale. We found that when using NSP at the time of extinction, NSP was higher 

for failed introductions as compared to successful introductions, supporting the idea that 

increasing species richness and putative community saturation mediate invasion resistance. 

Accounting for scale-specific patterns in body size distributions further improved the 

relationship between NSP and introduction failure. Results show that a better understanding 
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of invasion outcomes can be obtained when scale-specific community structure is accounted 

for in the analysis. 

Keywords: body size; community assembly; community structure; competition; Hawaii; 

Introduced; Oahu 

 

1. Introduction 

Biological invasions provide an opportunity for testing ecological theory, including assessments of 

the role of competition in community assembly and structure. Invasion biologists have suggested  

that invasion resistance increases in strongly interacting communities as community saturation is 

approached [1–3]. Previous analysis used the numbers of invasive species present (NSP) as a surrogate 

of potential community saturation and compared NSP for failed versus successful introductions [4,5]. 

Because invasive and remaining native species are strongly segregated by habitat and altitude, the 

outcome of invasion success or failure in ecosystems is most likely associated with the structural and 

functional attributes of communities, and interactions between, species [6,7]. Supporting the idea that 

the structure of the existing community influences the relative success of invasions, Moulton [4] found 

higher NSP values for failed introductions in the lowland avifauna of the Hawaiian island of Oahu. A 

higher failure rate for introductions when more introduced species were present suggested that the bird 

community was approaching saturation. However, NSP values were significantly higher for failed 

introductions on Oahu only for introductions up to the year 1960, but when the species list was updated 

through 1981 [4], NSP values were not-significantly (p < 0.235) higher for failed introductions, despite 

the number of invasive species having increased. This finding is counterintuitive because if competition 

and invasion resistance increase as communities become saturated, then differences in NSP between 

failed and successful introductions should be even more pronounced following additional introductions.  

The approach based on NSP by Moulton and colleagues [4,8,9] is useful to evaluate the role of 

community saturation on invasion success or failure. A recent study of successful versus unsuccessful 

vertebrate introductions in Florida, USA, supported a NSP effect for mammals, herpetofauna and fish 

but not for birds [5]. Refinements of the method are needed to explore its full potential and for testing 

current theories about mechanisms conferring resistance to invasions. Here we advance an alternative 

that allows for improved inference. This is achieved by using NSP at the time a species goes extinct 

(NSPe) to evaluate unsuccessful establishment instead of NSP at the time a species is introduced (NSPi). 

NSPe considers that introduction is not equivalent to establishment, meaning that a species can be introduced 

in a first stage to an ecosystem which then can, but must not necessarily, become established in a second 

stage [10]. Second, although NSP may serve as a surrogate of relative invasion resistance [11], the 

quantitative evaluation of competitive interactions is impossible with census data, which is a potentially 

severe limitation in any analysis of competitive effects, and thus the importance of community 

saturation. We therefore take an indirect approach to assess competitive interactions qualitatively within 

the community of introduced birds. We use techniques and theory which account for scale-specific 

structures and processes in the environment and which is mirrored in the structure of ecological 

communities [12–14], particularly birds [15,16].  
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Peterson et al. [17] suggested that groups of species operating at the same range of scale may represent 

strongly competitive units regardless of their taxonomic or functional similarity. Exploiting resources at 

different spatiotemporal scales in the environment reduces the strength of interactions between differently 

sized species relative to interactions among animals that operate at similar scales [18]. Consider the 

hypothetical invasion of a bird community by a raven that weighs 1000 g and occupies a large home 

range. The addition of the raven to the community increases the NSP by one, but it is unlikely that it 

interacts with the extant small-bodied birds as intensely as another small-bodied bird would. It may be 

ecologically more relevant to assess how the raven interacts with other species of similar body mass.  

Animal body mass is a useful index for linking animal community structure with scales of resource 

use (see [19]). The average adult body mass of a species strongly correlates with many ecological 

attributes, including energy use, movement, home range size, and foraging [20,21]. The ecological scales 

at which a species operates corresponds with average species body mass, making body mass a useful 

index of the scale at which an animal perceives and exploits its environment [12,22]. 

Here we assess the importance of scale-specific patterns and NSPe of introduction outcomes. We test 

the hypothesis that relationships between introduction success and failures as a function of NSP become 

better discernable in analyses that account for scale versus approaches that do not.  

2. Experimental Section 

Study Site and Analyses 

The Hawaiian island of Oahu has lost nearly its entire native avifauna in lowland habitats (<1000 m 

elevation) since European colonization [23]. A diverse community of introduced birds has replaced the 

native avifauna. The development of this introduced community has been well documented, and the fate 

of species introductions is relatively well known [4,24–28]. These species represent a community 

distinct from that of the surviving native species. Native species are mostly restricted to native forests at 

high elevations [23,24,29]. Non-indigenous species are mostly restricted to lower elevation landscapes 

with a high degree of anthropogenic transformation [30]. The present introduced bird community 

includes approximately 38 successfully established species, primarily passeriformes (26 species), but 

also four Galliformes, three Columbiformes, two Psittacidae, one Tytonidae, one Apodidae, and one 

Ciconidae. Thirty-seven species from the same families have been introduced but subsequently failed to 

establish breeding populations or went extinct after a period of establishment in the island. 

We used the species list of Moulton [4] for passeriform introductions with the addition of all other 

families of introduced birds [23,27,31]. This list includes all known avian introductions to Oahu, both 

successful and unsuccessful, since European colonization through the year 1993. Although introduction 

effort was not available for most species, limiting an assessment of propagule size on introduction 

success [32], we highlight that we were interested in the consequences of community assembly processes 

when invaders have become established for some time in the ecosystem rather than in the factors that 

potentially mediate their establishment per se. 

Introductions were ranked by year of introduction, and the number of other introduced species (NSP) 

present in the community was calculated for each successful or failed introduction (Table 1). The NSP 

values for the successfully introduced and unsuccessfully introduced species were then compared using 
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a 1-tailed t-test (if the data were normally distributed and variance homogenous) or using a 1-tailed 

Mann-Whitney U-test. In our analysis we compared NSP for successful introductions with both the NSP 

at the time of introduction and NSP at the time of extinction for failed introductions. This comparison is 

appropriate because if competition is one of the factors driving species success or failure, it is the number 

of species present in the community at the time of extinction that is most relevant. For species that failed 

immediately, NSP at the time of introduction and extinction are identical. 

Table 1. Order and fate of introductions of birds introduced to Oahu. Numbers in  

parentheses after the birds’ names indicate membership of the body size group revealed by 

the discontinuity analysis. 

Species Year of Introduction Year of Extinction NSPi NSPe 

Gallus gallus (3) 1000 1935 0 31 
Columba livia (2) 1850  1  
Callipepla californica (3) 1855 1941 2 28 
Alauda arvensis (2) 1870  3  
Numida meleagris (3) 1874 1908 4 15 
Phasianus colchicus (3) 1875  5  
Passer domesticus (2) 1879  8  
Acridotheres tristis (3) 1879  8  
Streptopelia chinensis (3) 1879  8  
Lonchura punctulata (1) 1883  10  
Carpodacus mexicanus (2) 1883  10  
Pavo cristatus (3) 1896  11  
Amandava amandava (1) 1900  13  
Garrulax canorus (2) 1900  13  
Colinus virginianus (3) 1906 1926 14 23 
Syrmaticus soemmerringii (3) 1907 1920 15 14 
Coturnix chinensis (2) 1921 1927 14 22 
Geopelia striata (2) 1922  19  
Grallina cyanoleuca (3) 1922 1936 19 31 
Geopelia humeralis (3) 1922 1938 19 27 
Geophaps lophotes (3) 1922 1927 19 22 
Phaps chalcoptera (3) 1922 1927 19 22 
Alectoris chukar (3) 1923 1928 20 23 
Chalcophaps indica (3) 1924 1928 22 23 
Rollulus rouloul (3) 1924 1930 22 27 
Rhipidura leucophrys (2) 1926 1937 23 29 
Parus varius (2) 1928 1963 23 30 
Leiothrix lutea (2) 1928  23  
Geopelia cuneata (2) 1928 1931 23 28 
Paroaria coronata (2) 1928  23  
Mimus polyglottos (2) 1928  23  
Streptopelia decaocto (3) 1928 1944 23 24 
Zosterops japonica (1) 1929  27  
Cettia diphone (1) 1929  27  

  



Diversity 2015, 7 233 

 

 

Table 1. Cont. 

Species Year of Introduction Year of Extinction NSPi NSPe 

Cyanoptila cyanomelana (2) 1929 1958 27 24 
Cardinalis cardinalis (2) 1929  27  
Paroaria dominicana (2) 1931 1932 29 31 
Sturnella neglecta (3) 1931 1937 29 29 
Copsychus saularis (2) 1932 1976 31 40 
Chrysolophus pictus (3) 1932 1941 31 28 
Chrysolophus amherstiae (3) 1932 1941 31 28 
Lophura nycthemera (3) 1932  31 28 
Passerina cyanea (1) 1934  31 31 
Lonchura malacca (1) 1936  31  
Copsychus malabaricus (2) 1940  26  
Passerina leclancherii (1) 1941  28 24 
Garrulax caerulatus (3) 1947  24  
Syrmaticus reevesii (3) 1957  24 39 
Francolinus pondicerianus (3) 1959  25  
Bubulcus ibis (3) 1959  25  
Gracula religiosa (3) 1960  26  
Tyto alba (3) 1961  27  
Vidua macroura (1) 1962  30 38 
Gallus sonneratii (3) 1962  30 41 
Meleagris gallopavo (3) 1962  30 40 
Serinus mozambicus (1) 1964  31  
Lonchura oryzivora (2) 1964  31  
Estrilda troglodytes (1) 1965  39 38 
Estrilda melpoda (1) 1965  39  
Lagonosticta senagala (1) 1965  39 41 
Estrilda caerulescens (1) 1965  39  
Uraeginthus angolensis (1) 1965  39 42 
Uraeginthus bengalus (1) 1965  39 38 
Sicalis flaveola (2) 1965  39  
Pycnonotus jocosus (2) 1965  39  
Pycnonotus cafer (2) 1966  39  
Francolinus erckelii (3) 1967  40  
Uraeginthus cycnocephala (1) 1969  40 42 
Myiopsitta monachus (3) 1970  41 38 
Nandayus nenday (3) 1971  41 40 
Tiaris olivacea (1) 1974  41  
Amazona viridigenalis (3) 1975  42  
Estrilda astrild (1) 1981  38  
Psittacula krameri (3) 1982  36  
Lonchura malabarica (1) 1984  37  

We also determined NSP values among species operating at the same range of scale to account for 

strong interactions among those species as compared to interactions among species operating at different 



Diversity 2015, 7 234 

 

 

scales. We used the methods similar to those described in [33] to objectively determine scaling patterns 

in the established bird community, based on their body mass distributions, which reflects the hierarchical 

organization of ecosystems [12,22].  

Body mass estimates were obtained from [34] and body mass distributions were analyzed using 

simulations that compared the observed data with a null distribution established by estimating a 

continuous unimodal kernal distribution of the log-transformed data [35]. Significance of discontinuities 

in the data (significantly large gaps between adjacent body masses that represent transitions between 

scaling regimes [22]) was determined by calculating the probability that the observed discontinuities 

were randomly generated by comparing observed values with the output of 1000 simulations from the 

null distribution. Groups of species of similar body mass (body mass aggregations) are defined by the 

discontinuities detected. Species within a body mass aggregation are assumed to exploit their 

environment at the same range of scale [12,17,36]. After determining the significant discontinuities in 

the successfully introduced Oahu bird community, we proceeded to compare NSP values as described 

above, but comparisons were made within body mass aggregations to take into account the strong 

interactions among species operating at the same scale as compared to relatively weak interactions 

among species operating at different scales. Body mass estimates for three failed species (Serinus 

leucopygius, Luscinia akahige and Erithacus komadori) were unavailable so these species were omitted 

from our analysis.  

Finally, we used correlation analysis to test the hypothesis that the strength of association between 

the number of extinctions and the NSP at the time of extinction becomes stronger when scale is 

accounted for in the analyses. We also examined whether extinction rates show non-linear patterns, i.e., 

whether extinctions are increased upon a threshold in the number of species composing the invaded 

community. These relationships were examined for the unscaled data and for each body mass 

aggregation group identified by the discontinuity analysis. 

3. Results and Discussion 

Of the 75 bird species that have been introduced to Oahu as of 1991, 38 introductions were successful 

and 37 failed [4,27]. The mean NSP value for the successful introductions was 24.6 and for unsuccessful 

introductions the mean NSPi was 25.4 (Table 2). There was no difference between these two groups  

(p = 0.374, 1 tailed t-test). However, when we considered NSPe for unsuccessful introductions median 

values for successful introductions (26) and for unsuccessful introductions (29) were significantly 

different (p = 0.026, 1 tailed Mann-Whitney U-test; Table 2). 

The body mass distribution of the introduced bird community of Oahu was significantly discontinuous; 

that is, we identified birds operating in different scaling regimes. Two very distinct breaks in the body 

mass distribution were detected, leading to the conclusion that there were three distinct body mass 

aggregations or scales (Figure 1). From an ecological perspective the bird species composing these body 

mass aggregations presumably exploit the environment at small, meso and large scales, respectively. 

The first aggregation of species had body masses ranging from 7.5 to 14 g (11 successful and 8 

unsuccessful species; Table 1). Body masses of the second aggregation of birds ranged from 20 to 56 g 

(15 successful and 7 unsuccessful; Table 1). The third aggregation included birds that weighed more 

than 86 g; contrary to patterns observed in body mass aggregations 1 and 2, we observed almost double 
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the number of unsuccessful vs. successful introductions in this third body mass group (12 successful and 

22 unsuccessful; Table 1).  

Table 2. Mean or median NSPi or NSPe values for Oahu birds in three different body mass 

categories, with body mass data pooled, and for unscaled data. Number of observations is 

given in parentheses. 

 
Number of Species Present (NSP) 

Successful Failed p-value 

Body mass aggregation 1 NSPi 6.27(11) 8.88(8)** 0.090 
Body mass aggregation 1 NSPe  6.27(11) 10.5(8)** 0.020 
Body mass aggregation 2 NSPi* 11(15) 11(7)** 0.137 
Body mass aggregation 2 NSPe 8.33(15) 12.57(7)** 0.026 
Body mass aggregation 3 NSPi* 8(12) 9.5(22)** 0.144 
Body mass aggregation 3 NSPe 8(12) 9.77(22)** 0.047 
Pooled data NSPi* 8(38) 11(37) 0.051 
Pooled data NSPe* 8(38) 12(37) 0.002 
Unscaled data NSPi 24.58(38) 25.43(37) 0.374 
Unscaled data NSPe* 26(38) 29(37) 0.026 

* Comparisons made with the Mann-Whitney Rank Sum Test because either the data were not normally 

distributed or variances were not equal. Otherwise, comparisons represent t-tests. 

** Numbers in parentheses indicate the number of observations that are specific to each scale. 

 

Figure 1. Body mass structure of the Oahu introduced bird community. The upper axis shows 

the location (black circles) of successfully introduced bird species along a log body mass axis. 

Gray rectangles represent the three identified body mass aggregations. Gap Statistic is a 

measure of the deviation of the observed body mass distribution from the unimodal null model. 

Comparing the NSPi values of successful versus unsuccessful species, probability values were 

marginally significant (p = 0.09) for small-scale species in the first body mass category, and 
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nonsignificant for the other two body mass categories (p > 0.10; Table 2). Comparison of NSPe values 

for failed species yielded significant results for all three body mass aggregations (p < 0.05; Table 2). 

When data were pooled across body mass aggregations, the comparison between successful and failed 

species was either marginal (p = 0.05), using NSPi or highly significant (p < 0.01), using NSPe. 

Correlations between NSP at the time of extinction and the number of extinctions were positive and 

significant when conducted with both unscaled data and for the data segregated into three scales. These 

correlations were higher for the scaled data in all three body mass categories (r = 0.540, 0.683, and 0.507, 

respectively) than for the unscaled data (r = 0.467). Comparing the number of failed invasions versus 

the NSP at the time of extinction suggests that a threshold may be present (Figure 2 upper panel). Only 

two species were lost from the community when there were fewer than 20 species present, but when 

more than 20 species were present the number of extinctions dramatically increased. Similar nonlinear 

patterns were found when examining the same relationships within body mass groups with the number 

of extinctions increasing upon thresholds of 12 species for body mass aggregations 1 and 2 and 9 species 

for body mass aggregation 3 (Figure 2 lower panel). 

 

Figure 2. Plots of the number of extinctions versus the number of species present at the  

time of extinction. Upper panel, all species; Lower panel, species segregated into three body 

mass categories. 
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Our results indicate that calculating NSP at the time of extinction, rather than at the time of 

introduction, and scaling the community to account for differences in interaction strength between 

species in different size classes both represent improvements over earlier analyses of introduced bird 

communities [4,5]. For species that went extinct, calculating NSP at the time of extinction rather than at 

the time of introduction is less conservative and assays patterns of invasion resistance in the community 

more realistically. Scaling communities prior to such an analysis also represents an improvement, 

because of the strong interaction among species operating over the same or similar ranges of scale 

relative to species operating at grossly different scales. 

If competition is one of the forces in the community assembly process [37], we would expect that to 

be manifested at the time of extinction rather than the time of introduction. For example, Callipepla 

californica was introduced in 1855, when only one other species was present. However, it went extinct 

in 1941 when 28 species were present. Clearly the consideration of NSP at the time of introduction is 

less appropriate than NSP at the time of extinction. For species that went extinct immediately following 

introduction, NSPe and NSPi are identical.  

Correlations between NSP at the time of extinction and the number of extinctions were positive and 

significant but higher for the scaled data in all three body mass categories than for the unscaled data. We 

also found that thresholds exist when comparing the number of failed introductions with the NSP at the 

time of extinction, and also these patterns were consistently found for unscaled data or data scaled into 

body mass aggregations. This finding of thresholds is consistent with the conclusions derived from 

computer models [1,2] and suggests that if competitive interactions are indeed the ultimate factor shaping 

the island bird community, they do not become significant in producing community structure until 

saturation is approached. Most importantly, and supporting our hypothesis, this relationship is 

strengthened when the community is segregated into body size categories, accounting for scaling 

relationships in ecosystems.  

Scaling interactions within communities is one of many different approaches that have been taken to 

compartmentalize biological interactions in communities. However, most efforts are based on phylogeny 

and thus ignore an often substantial portion of the community. The model of Peterson et al. [17] accounts 

for both phylogeny and scale. We used that model to guide our analysis based on segregating the 

community based on species body size. The two breaks in scale (discontinuities) we identified and used 

to guide our aggregation of the community into three body mass categories are prominent, unmistakable, 

and based on an objective identification of scaling patterns in ecological communities. Our results 

support the model of Peterson et al. [17] that suggests the importance of scaling species interactions and 

conclusions suggesting the prominent role of competition in structuring animal communities [8,24,38–41]. 

However, it should be noted that differences in taxonomic and guild diversity exist among the three body 

size categories. Specifically, all species in the first body mass category are passeriformes, and all except 

two (Cettia diphone and Zosterops japonica) are primarily seed eaters [42]. There is more taxonomic 

and guild diversity among species in the second body mass category, which consists of both 

Passeriformes and Columbiformes. The largest body mass category consists of six different families 

with a greater diversity of feeding strategies. Additionally, the size range of members of the largest body 

size category is greater than the body size range of species in the first two body size categories.  

Despite this higher variability in the third body mass aggregation, we found that the number of failed 

invasions is comparatively higher in this aggregation (22 species or 65% of all species found in this 
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aggregation) compared to aggregations 1 (8 species; 42%) and 2 (7 species; 31%). Previous research has 

shown that establishment success is more likely in large-bodied birds [43], but our analysis suggests that 

larger-bodied species also fail more often to persist in the bird communities. That extinction risk is higher 

in birds with higher body masses is consistent with patterns found for large mammals [44] and other bird 

communities [45]. Single or combined effects related to small population sizes, lower reproductive rates 

and larger home or geographic ranges have been suggested to increase the extinction risk in large-bodied 

birds [45]. Although the causes mediating the patterns observed for birds in the largest body mass 

aggregation on Oahu Island, cannot be ascertained with the data at hand, the pattern itself is consistent 

with a large body of theory and empirical findings.  

4. Conclusions  

Our study underscores the usefulness of body mass as a predictor of ecological processes [12,19,22,46,47]. 

Our results particularly underscore the benefit for elucidating clearer patterns of invasion outcomes when 

body mass is partitioned into scale-specific patterns. Further research is warranted to assess the 

generality of pattern found in this study also for other organism groups. 
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