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Abstract

Size estimation is particularly important for populations whose members experience dispro-

portionate health issues or pose elevated health risks to the ambient social structures in

which they are embedded. Efforts to derive size estimates are often frustrated when the

population is hidden or hard-to-reach in ways that preclude conventional survey strategies,

as is the case when social stigma is associated with group membership or when group

members are involved in illegal activities. This paper extends prior research on the problem

of network population size estimation, building on established survey/sampling methodolo-

gies commonly used with hard-to-reach groups. Three novel one-step, network-based pop-

ulation size estimators are presented, for use in the context of uniform random sampling,

respondent-driven sampling, and when networks exhibit significant clustering effects. We

give provably sufficient conditions for the consistency of these estimators in large configura-

tion networks. Simulation experiments across a wide range of synthetic network topologies

validate the performance of the estimators, which also perform well on a real-world location-

based social networking data set with significant clustering. Finally, the proposed schemes

are extended to allow them to be used in settings where participant anonymity is required.

Systematic experiments show favorable tradeoffs between anonymity guarantees and esti-

mator performance. Taken together, we demonstrate that reasonable population size esti-

mates are derived from anonymous respondent driven samples of 250-750 individuals,

within ambient populations of 5,000-40,000. The method thus represents a novel and cost-

effective means for health planners and those agencies concerned with health and disease

surveillance to estimate the size of hidden populations. We discuss limitations and future

work in the concluding section.

1 Introduction

Estimating the size of hidden and hard-to-reach populations is of critical importance to health

officials seeking to mitigate the extent of health problems that may be concentrated within

such populations [1], or when “reservoirs” of infection among a hidden population pose a
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health risk to the ambient population in which the hidden population is embedded [2, 3]. In

the former, otherwise treatable maladies can remain unaddressed, multiplying eventual treat-

ment costs when cases are discovered at more advanced stages. Such is the situation, for exam-

ple, with mental illness among homeless and street dwelling populations [4–6]. An embedded

“hidden” population can also frustrate intervention efforts that might otherwise be effective in

the ambient population, preventing control of infection prevalence [7]. One example of this is

the high prevalence of sexually transmitted disease among commercial sex workers [8–10]. In

all such situations, health officials seek to estimate both the overall prevalence levels of mala-

dies within a hidden population and the size of the population itself, in order to know the scope

of treatment needs and overall social risk.

Efforts to ascertain prevalence and size estimates are frustrated by a range of factors that

contribute to the “hiddenness” of the population. Such factors include heavy social stigma that

inhibits the members of the hidden population from revealing their membership status. This is

the case for people who inject drugs (PWID), who may be unwilling to self-identify as such

under ordinary survey conditions [11, 12]. Hiddenness due to stigma can be further com-

pounded when such activities are illegal, when they carry heavy personal costs (such as when

self-identified heterosexual men also have sex with men), or when disease status is unknown

(such as undiagnosed HIV infection rates among PWID). In these situations, conventional

sampling is unreliable, and ordinary multiplier methods based on conventional sampling are

rendered ineffective.

A number of techniques have been devised to address the problems of prevalence and pop-

ulation size estimation. These include capture-recapture [13, 14], chain referral [15, 16],

venue-based sampling [17, 18], cluster sampling [19], and combinations thereof. Among the

most popular is respondent-driven sampling (RDS) [20–22], which has been adapted for use

in many situations, and which is employed widely in HIV surveillance efforts both within the

United States and beyond [23]. RDS employs an incentivized chain referral process to recruit a

sample of the hidden population. Under restricted but recognized conditions, RDS can be

shown to result in a steady-state, “equilibrium” sample, and numerous methods have been

derived for producing reasonable prevalence estimates from such a sample, while accounting

for biases introduced in the referral process [24–29]. The ease of implementing RDS, the fact

that it can operate under conditions of anonymity (via numbered coupons that track referrals),

and its rigorous treatment under a range of statistical assumptions have made it a popular

choice for researchers working with hidden populations [30]. While significant operational,

design and analytical challenges frequently arise in deploying the RDS framework [31–33], the

ability of the RDS-based methods to produce meaningful prevalence data remains, and pres-

ents considerable potential for use in population size estimation. Unfortunately, rigorous strat-

egies for estimating the overall size of the hidden population from RDS data have been less

successful, relying on simulation-based validation that fails to yield analytic insight, and gener-

ating widely varying estimates [34, 35]. While Berchenko and Frost have developed techniques

that combine capture-recapture methods with RDS, their approach requires an initial degree-

biased random sample and a second (independent) respondent driven sample [36]. Their

hybrid schemes have been validated through simulations, and applied in the context of several

field studies [37, 38]. In comparison, the approach we develop here requires only a single RDS

sample, and is evaluated through both mathematical proofs and simulation experiments.

Other specialized methods have been developed to address size estimation for hidden popu-

lations, including capture-recapture procedures (sometimes called mark-recapture or multi-

plier procedures) [39, 40] and network scale-up methods (NSUM) [41]. Multiplier schemes

typically use a sample of the hidden population and some external, often institutional knowl-

edge-base (e.g. arrest records or hospital admissions) for estimation purposes [14, 42]. In these

One-step estimation of networked population size: Respondent-driven capture-recapture with anonymity

PLOS ONE | https://doi.org/10.1371/journal.pone.0195959 April 26, 2018 2 / 39

National Institute on Drug Abuse under Award

Number R01 DA037117 and National Institute for

General Medicine R01 GM118427, as well as

National Science Foundation grants MMS-0851555

and SES-1357619.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0195959


methods, two assumptions must generally be met: (i) the sample is representative of the hidden

population at large, and (ii) everyone in the hidden population is equally likely to be “cap-

tured” in the official statistics being used [43]. While representativeness can sometimes be

assumed (as in the case of RDS), it is often difficult to establish the uniformity of the capture

statistics. Frankly stated, police arrests and hospital admissions can seldom be assumed to

draw randomly from the hidden population. Further, capture-recapture/multiplier methods

often require that the sample be identifiable in the institutional record, implying that expecta-

tions of anonymity on the part of sample respondents be abandoned. When working with hid-

den and highly stigmatized populations, such a sacrifice can be highly detrimental to both

recruitment and informant reliability [44].

Network scale-up methods are also used to establish the size of hidden populations, though

work in this area remains at an early stage. Here members of the entire population (ambient

plus hidden) are asked to report on the number of known associates who fit the hidden popu-

lation criteria [45, 46]. This approach has the advantage of being employable under ordinary

random sampling conditions that can make use of known sampling frames (i.e. mail surveys

and/or random digit dialing) [47]. However, the technique requires that ordinary people know

whom among their associates fit the criteria for inclusion in the hidden category [48, 49]. Such

an assumption faces objections in many of the situations in which we might wish to apply the

technique, as when we seek to estimate the size of populations of PWID or sex workers. In

these types of settings, individuals from the hidden population may go to great lengths to hide

their membership status from friends and associates. Such effects inject “transmission error”

into NSUM calculations, a quantity that is difficult to both detect and measure.

In previous work, we presented a novel capture-recapture methodology for estimating the

size of a hidden population from an RDS sample [50], referred to there as the “telefunken”

method. The method could be easily integrated into a conventional RDS framework, allowing

researchers to continue to take advantage of the wide body of work on RDS and its ability to

yield reliable prevalence estimates. The method was adopted experimentally in the context of

efforts to collect data on commercially sexually exploited children [51] and, later, users of

methamphetamine [52]. Both these studies made use of RDS and took place in New York City.

Subsequent implementations of the technique provided further evidence of its effectiveness

and ease of implementation [34]. The telefunken method was so named because its application

entailed asking each RDS respondent to report on others in the population known to them by

providing an encoding of their associates’ telephone number and demographic features (note

that the technique is in no way related to the German apparatus company, Telefunken). In tak-

ing this approach, the method avoided reliance on official statistics (as needed in scale-up

methods), and the requirement of drawing two independent samples (as needed by capture-

recapture methods). Each individual’s code was created by considering a protocol-specified

number of digits of their phone number, in order from last to first, and encoding each digit as

0/1 based on whether it was even or odd, and again 0/1 based on whether it was low (0-4) or

high (5-9); in this manner, each subject and associate was “identified” by means of a multibit

binary code. This many-to-one encoding allowed for ongoing anonymity for both respondents

and their reported associates, while enabling the matching of contacts across numerous

respondent interviews. In essence, the telefunken method represents a “one-step” approach

which lifts many assumptions normally associated with other capture-recapture methods, and

can be achieved using a single RDS sample from the hidden population. If shown to be effec-

tive, such an approach lends simplicity and greater cost-effectiveness to the size estimation

procedure, potentially allowing for widespread application.

Concerning the issue of anonymity, independently and in roughly the same time period,

Fellows put forward a general framework of Privatized Network Sampling (PNS) design [53].
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PNS addresses two of the major concerns with regard to RDS data, namely the assumption

that coupons are passed at random among alters, and that subjects can accurately report the

number of alters that they have. As PNS is closely related to RDS, the standard RDS estimators

may be used on data collected with a PNS design.

Given the growing interest in telefunken and PNS-like techniques [26, 34, 54], this paper

aims to provide a systematic exposition of its strategy for one-step, anonymity preserving, net-

work-based population size estimation. In what follows we formally describe the technique,

analyze its mathematical properties, and validate its performance through simulations under a

variety of implementation conditions. The simulations show considerable promise for the

technique in scenarios normally associated with research among “hidden populations”. Limi-

tations and next steps toward validation/extension are discussed at the end of the paper.

2 Background

Current network size estimation methods are based on quantifying the “repetition” or overlap

observed across multiple samples [55]—where the category of objects sampled may be nodes,

edges, distances, paths, motifs, or substructures [56, 57], depending on the specific approach

in question.

• Node sampling methods often begin by taking independent uniform random samples of the

population. In interpreting the overlap between samples [58, 59], these methods are based

on the same principle as the well-studied “Coupon collector’s problem” from probability the-

ory, for which maximum likelihood estimators and conservative confidence intervals are

well known [60]. This classic method considers two uniform independent random samples

[61]; in ecology, the method is often referred to as the “mark and recapture” protocol.

Within a population V, the protocol first selects a uniform random “capture” sample S� V,

and then a second (and independent) uniform random “recapture” sample R� V. From

independence assumptions one infers that

jVj
jSj
�
jRj
jS \ Rj

ð1Þ

and hence

jVj �
jSj � jRj
jS \ Rj

: ð2Þ

The right-hand-side expression in (2) is known as the Lincoln-Peterson estimator [62, 63].

Many extensions and improvements to this classical technique have been developed, such as

those making use of weighted sampling techniques [64], or sampling that is biased by the

degree distribution of network nodes [65].

• Edge sampling approaches to population size estimation have also been developed [66–68].

These methods not only consider a sampled set of nodes, but also elicit a sample of their net-

work neighbors. While edge sampling encounters problems associated with a bias toward

high degree nodes, these methods offer potential gains in efficiency in dense graphs and

where independent random sampling of nodes is restricted.

• Lastly, sampling via random walks represents a practical approach that is commonly used in

estimating the size of social networks. Random walk methods start from an arbitrary node,

then move to a neighboring node uniformly at random, and iterate. A typical random walk

visits every node with a frequency proportional to its degree, but this bias can be quantified
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by Markov Chain analysis, and corrected to enable the derivation of an estimate of graph

size from the frequency with which sampled nodes appear (and reappear) during the walk

process. Random walk methods have largely used a sampling with replacement model,

which may, in theory, introduce bias in estimates when the (fractional) size of the sample is

large [24, 69]; however, there is some recent experimental evidence that such concerns may

be overstated [70]. These methods are widely used to measure the size of online social net-

works, and are frequently employed in conjunction with a variety of web crawler data

[71–75].

The approach developed here is inspired by and builds on several of the above strategies,

including random walks and edge elicitation. An outline of this paper follows: In Section 3.1,

we present a population estimator for uniform random samples. This estimator is extended for

respondent-driven samples in Section 3.2. The two estimators are evaluated over a broad

range of graph families (see Subsection 4.1) using a general experimental framework (see Sub-

section 4.2). The experimental results are presented in Sections 4.3 and 4.4. In Section 4.5, we

adapt the estimators for use in networks with clustering, showing in Section 4.6 that the

revised schemes continue to perform well on synthetic networks. In Section 5, we extend the

network size estimation schemes to allow for protection of subject privacy. These anonymity-

preserving extensions are evaluated through simulation experiments in Sections 5.2 and 5.3.

The impact of non-uniformities is assessed in Section 6, with special consideration of degree

bias in RDS seed selection, and bottlenecking due to community structure. The performance

of the proposed estimators is evaluated on a real-world network in Section 7. Finally, discus-

sion and limitations are presented in Section 8.

3 New population size estimators

We seek to generalize the Lincoln-Peterson framework of overlapping capture and recapture

sets (2) to the context of networked populations, and describe it formally in the language of

graphs. The following definition provides graph-theoretic notations which will be necessary in

order to precisely define the proposed sampling and estimation processes.

Definition 1. Let G = (V, E) be a graph. For each v 2 V, denote the degree of v in G as d(v).

Given A� V, denote the (arithmetic) mean degree of vertices in A as:

�dðAÞ≔
1

jAj

X

v2A

dðvÞ ð3Þ

and the (harmonic) mean degree of vertices in A as

~dðAÞ≔
jAj

P
v2A

1

dðvÞ

: ð4Þ

noting that the latter is more robust against the presence of high-degree outliers. If H = (S, F) is a
subgraph on S� V with edge set F� E \ (S × S), the “free neighborhood” of u (in G modulo H) is
defined as

Nðu; FÞ≔ fv j ðu; vÞ 2 E n Fg � V: ð5Þ

Note that when G is allowed to have parallel edges (as is the case when it is obtained through con-
figuration graph sampling), then N(u, F) may be a multiset. The “free ends” of S (in G modulo H)
are taken to be the disjoint union (multiset)

RðS;FÞ≔
a

u2S

Nðu; FÞ � V ð6Þ
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and the “matches” of S (in G modulo H) are taken to be the disjoint union (multiset)

MðS; FÞ≔
a

u2S

ðNðu; FÞ \ SÞ � V: ð7Þ

We denote the respective cardinalities of these multisets as

hRðS;FÞi≔
X

u2S

jNðu; FÞj

hMðS; FÞi≔
X

u2S

jNðu; FÞ \ Sj:

Notation 1. In the arguments that follow, graph-theoretic quantities (such as those formalized
in Definition 1) will sometimes be considered simultaneously in the context of more than one
graph—e.g. G1 = (V1, E1), and G2 = (V2, E2). To avoid ambiguity in such settings, we will make
the context clear by appending the graph as a parameter—e.g. the arithmetic mean degree of ver-
tices in G1 is denoted �dðV1; G1Þ, while the harmonic mean degree of vertices in G2 is expressed as
~dðV2; G2Þ.

Notation 2. Whenever we are considering a multiset X, we will denote to its multiset cardinal-
ity as hXi, while its set cardinality will be written as |X�|. For example, if X = {1, 1, 2, 8, 8, 8} then
hXi = 6, while |X�| = 3.

Definition 2. Given multisets of vertices A, B� V we denote their characteristic functions as
wA; wB : V ! N and define the multisets A\B, A \ B, A [ B by the respective characteristic func-
tions

wAnB; wA\B; wA[B : V ! N

where for each v 2 V

wAnBðvÞ≔ maxf0; wAðvÞ � wBðvÞg

wA\BðvÞ≔ minfwAðvÞ; wBðvÞg

wA[BðvÞ≔ wAðvÞ þ wBðvÞ:

We say that A� B are multisets, if 8v 2 V, we have χA(v)� χB(v).

3.1 Population size from a uniform random sample

With the formalisms of Definition 1 in place, we can define the estimator n1, which, given a

uniform random subset of vertices T� V, yields an estimate of |V|.

Definition 3. Given a graph G = (V, E) and T� V, define

n1ðTÞ≔
jTj � hRðT; ;Þi
hMðT; ;Þi

: ð8Þ

Lemma 1 shows that as the sample size grows, n1 converges to |V|.

Lemma 1. Let G = (V, E) be a graph and let T1� T2� T3� . . .� V be an ascending chain
converging to

S1
i¼1

Ti ¼ V . Then

lim
i!1

n1ðTiÞ

jVj
¼ 1:

Proof. Put Ri≔ R(Ti, ;), Mi≔M(Ti, ;), and Δi≔ Ri\Mi. Note that R1� R2� R3� . . . and

M1�M2�M3� . . . are ascending chains of multisets, and Mi� Ri (i = 1, 2,. . .). Suppose
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u 2 Δi and wRi
ðuÞ ¼ a; clearly 0< a� d(u). Then since the ascending chain (Ti)i = 1, 2,. . . con-

verges to V, there exists a least j0 > i for which wMj
ðuÞ ¼ dðuÞ and therefore wDj

ðuÞ ¼ 0 for all

j� j0. It follows that

\1

i¼1

RinMi ¼ ;

where multiset intersection and difference are as described in Definition 2, and thus

lim
i!1

hRii

hMii
¼ 1

which implies limi!1 n1(Ti)/|Ti| = 1, completing the proof.

The next proposition gives sufficient conditions under which uniform random samples

T� V produce consistent estimates n1(T) * |V| when |V| is large. Concrete realizations of

these conditions are presented in Corollary 1.

Proposition 1. For n = 1, 2,. . . let Gn = (Vn, En) be a graph on |Vn| = f(n) vertices, where f(n)

grows unboundedly. Let cn 2 (0, 1] and take Tn� Vn to be a subset of size |Tn| = bcn � f(n)c

selected using uniform random sampling in Vn. If cn � f(n) diverges as n goes to infinity while

c2

n �
�dðVnÞ ���!Y1 ð9Þ

for some finite constant Θ1 > 0, then n1ðTnÞ

jVnj
necessarily converges to 1.

Proof. Define random variables

�Rn ≔
1

f ðnÞ
hRðTn; ;Þi ¼

1

f ðnÞ

X

u2Tn

dðuÞ ð10Þ

�Mn ≔
1

f ðnÞ
hMðTn; ;Þi: ð11Þ

For uniform random u 2 Vn, E½dðuÞ� ¼ �dðVnÞ. Since |Tn| = bcn � f(n)c diverges, the law of large

numbers and linearity of expectation imply that as n tends to infinity

hRðTn; ;Þi ¼
X

u2Tn

dðuÞ ���!
p X

u2Tn

�dðVnÞ ¼ jTnj �
�dðVnÞ ð12Þ

and thus

cn �
�Rn ¼

1

f ðnÞ
hRðTn; ;Þi ���!

p
cn �

1

f ðnÞ
� jTnj �

�dðVnÞ ¼ c2

n �
�dðVnÞ ���!

p
Y1: ð13Þ

Now for each u 2 Tn we have E[hN(u, Fn) \ Tni] = d(u) � |Tn|/f(n). Again, by the law of large

numbers and linearity of expectation, as n tends to infinity

�Mn ���!
p

�Rn �
jTnj

f ðnÞ
¼ �Rn � cn ���!

p
Y1: ð14Þ

Considering (13) and (14) as preconditions of Slutsky’s theorem [76], we conclude:

n1ðTnÞ

f ðnÞ
¼

1

f ðnÞ
�
cn � f ðnÞ � �Rn

�Mn
���!

d plimn!1cn �
�Rn

plimn!1
�Mn
¼

Y1

Y1

¼ 1:
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The correspondence between Eq (8) in Definition 3 and our previous telefunken estimator

is clear [77]. In addition, Eq (8) demonstrates a parallel structure with the Lincoln-Peterson

estimator shown in expression (2): T represents the first assay (set); R(T, ;) stands for the sec-

ond assay (a multiset); the multiset M(T, ;) is the subpopulation of the first assay that is recap-

tured by the second assay. Of course, in the present setting, the second assay R(T, ;) is far from

independent of the first assay T, since the two sets are intrinsically linked through the network

geometry of G. Nevertheless, the fact that T is a random subset of V is enough to neutralize the

impact of this non-independence and enable consistent estimation of population size.

Corollary 1. Several special cases of Proposition 1 are of interest. In each of these cases, it is
straightforward to verify that as n goes to infinity, cn � f(n) diverges, while c2

n �
�dðVnÞ tends to

some finite strictly positive constant:

• When f(n) = O(n), cn = O(1) is a constant, and �dðVnÞ ¼ Oð1Þ is a constant. In this case, we
have a family of graphs of increasing size and constant average degree, in which we are taking
uniform random samples whose size is a constant proportion of the entire population.

• When f(n) = O(n), cn = O(g(n)/n), and �dðVnÞ ¼ Oðn1� �=gðnÞ2Þ, where g(n) is a function which
diverges, and � > 0 is a constant. For example, if we take g(n) = n�, then cn = O(1/n1−�), and
�dðVnÞ ¼ Oðn1� 3�Þ. As � tends to 0, we approach a family of graphs of increasing size and linear
average degree, in which we are taking uniform random samples of an absolute constant size.
This special limit case is manifested by Erdős-Rényi graphs [78].

3.2 Population size from a respondent-driven sample

Although the n1 estimator shows robust performance under uniform random sampling (see

Section 4.3), random sampling is seldom a feasible strategy with hidden populations. As dis-

cussed above, sampling hard-to-reach populations presents considerable practical challenges

[55], and many current surveys of hidden populations have come to depend on a tracked “peer

referral” process known as respondent driven sampling [21].

For purposes of estimation, we consider a respondent-driven sample to be a random vari-

able based on several parameters: an underlying networked population G = (V, E), a specified

number of seeds |D|, the number of recruiting coupons c to be given to each subject, and the

target sample size r. In our simulation experiments, the sampling procedure begins by ran-

domly choosing |D| initial “seed” subjects in the network. For most of this paper, seeds are

selected uniformly at random, though later, in Section 6, we will report on the differential

impact of non-uniform RDS seed selection—specifically, seed selection that is biased by ego

network size or restricted by the presence of community structures. Each seed subject is given

c recruiting coupons and asked to participate in a “referral” process by distributing these

among their study-eligible peers. Each subject v succeeds in recruiting between 0 and min{c, d
(v)} individuals from their ego network, with the precise number being determined stochasti-

cally according to a specified distribution δR on {0, 1, . . ., c}. Each referred peer is assumed to

come in for their interview at a time that is offset from their recruiter’s interview by an amount

that random and exponentially distributed with rate λW. When one or more of the recruited

peers come in for interview with the coupon given to them by their recruiter, they too are

given c coupons and asked to participate in the referral process. The scheme proceeds recur-

sively in this manner using a finite number of 3r depletable coupons, until all r individuals

have been recruited and interviewed. If (and whenever) the referral process stalls before r sub-

jects have been interviewed, a new seed is recruited. Participation incentives are arranged to
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ensure that no subject will be the recipient of more than one coupon, and thus the process

results in a collection of disjoint directed trees rooted at the seeds [79]. The precise values of

the RDS parameters |D|, c, r and implementation parameters δR, λW for our simulation experi-

ments are detailed in Assumption 2; the stochastic process used to generate the underlying

synthetic networks G(V, E) on which this RDS operates is described in Section 4.1.

Given the tendency of RDS to oversample high degree nodes, issues arise when estimation

techniques attempt to make use of the degree statistics of a respondent driven sample. Special

steps must be taken to account for differences between the average degree of an RDS sample

and the average degree of the population from which the RDS sample is drawn. The simplify-

ing assumption below is needed for our formal proofs of the proposed estimators’ perfor-

mance. We emphasize that this assumption is not enforced (and is often violated) within the

synthetic networks we used in our simulations, through which the proposed estimators’ per-

formance was experimentally evaluated.

Assumption 1. Whenever we are considering H = (S, F) to be a subgraph on S� V obtained
through an RDS process inside graph G = (V, E), we will assume ~dðSÞ � �dðVÞ. This assumption
is justified in prior work [20, 22], is provably true for configuration graphs [24], and is reflective
of the basic fact that the harmonic mean is robust against the presence of high-degree outliers, as
we may expect to face when S is obtained via a non-uniform sampling process like RDS.

The next estimator n2, provides an estimate |V| from a respondent driven sample S� V.

Definition 4. Given a graph G = (V, E), a set S� V, and H = (S, F) a subgraph with edge set
F� E \ (S × S), define

n2ðS; FÞ≔
�dðSÞ� 1

~dðSÞ � jSj � hRðS;FÞi
hMðS; FÞi

ð15Þ

The next proposition gives sufficient conditions under which respondent-driven samples

S� V produce consistent estimates n2(T) * |V| when |V| is large.

Proposition 2. For n = 1, 2, . . . let Gn = (Vn, En) be a graph obtained by configuration graph
sampling via degree distribution Dn, where the vertex set size |Vn| = f(n) grows unboundedly. Let
cn 2 (0, 1], and take Sn� Vn to be a subset of size |Sn| = bcn � f(n)c selected using RDS sampling in
Gn from |Dn| seeds chosen uniformly at random. Define the random variable

Dn ≔
�dðSnÞ � 1

~dðSnÞ
:

Accepting Assumption 1, if cn � f(n)/Dn diverges as n goes to infinity, while

D
2

n � c
2

n �
�dðVnÞ ¼

ð�dðSnÞ � 1Þ
2
� c2

n
~dðSnÞ

���!
p

Y2 ð16Þ

for some finite constant Θ2 > 0, then n2ðSnÞ

jVnj
necessarily converges to 1.

Proof. Let (Sn, Fn) be a subgraph produced by an RDS sampling process in Gn, and let Tn� Vn

be an equal-sized set of vertices chosen by uniform random sampling, i.e. |Tn| = |Sn|. For ran-

dom u 2 Sn and v 2 Tn, as n tends to infinity

jNðu; ;Þj
�dðSnÞ

�
jNðv; ;Þj

�dðTnÞ
¼
jNðu; ;Þj

�dðSnÞ
�
jNðv; ;Þj

�dðVnÞ
¼
jNðu; ;Þj

�dðSnÞ
�
jNðv; ;Þj

~dðSnÞ
���!

p
0: ð17Þ

where the first equality stems from the law of large numbers, and the second from Assumption
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1. Now Sn is an RDS sample and hence is the disjoint union of Dn many trees. It follows that

jFnj

jSnj
¼ 1 �

jDnj

bcn � f ðnÞc
:

Since |Sn| = bcn � f(n)c diverges and cn � f(n)/Dn diverges, we may conclude that

lim
n!1

jFnj

jSnj
¼ 1: ð18Þ

We note that |N(u, Fn)|� |N(u, ;)|, and incorporating (18) back into the final expression in

(17), we deduce

jNðu; FnÞj

�dðSnÞ � 1
�
jNðv; ;Þj

~dðSnÞ
���!

p
0: ð19Þ

Definition 1’s Eq (6) and linearity of expectation then imply that as n tends to infinity

hRðSn; FnÞi ���!
p �dðSnÞ � 1

~dðSnÞ
� hRðTn; ;Þi: ð20Þ

The configuration graph sampling process dictates that as n tends to infinity, for uniformly

random u 2 Sn

E½hNðu; FnÞ \ Sni� ¼ ½
�dðuÞ � 1� �

hRðSn; FnÞi

2jEnj
¼ ½�dðuÞ � 1� �

hRðSn; FnÞi

�dðVnÞ � f ðnÞ
:

Definition 1’s Eq (7), expression (20), the law of large numbers, and linearity of expectation,

together imply that as n tends to infinity

hMðSn; FnÞi �!
p hRðSn; FnÞi

2

�dðVnÞ � f ðnÞ
�!

p 1

�dðVnÞ � f ðnÞ
�

�dðSnÞ � 1

~dðSnÞ

" #2

� hRðTn; ;Þi
2
: ð21Þ

Define the following random variables, closely related to (10) and (11) of Proposition 1:

R�n ≔ hRðSn; FnÞi = f ðnÞ ¼ Dn �
�Rn ���!

p
Dn � cn �

�dðVnÞ ð22Þ

M�

n ≔ hMðSn; FnÞi = f ðnÞ ¼ D
2

n �
�R2

n=
�dðVnÞ ���!

p
D

2

n � c
2

n �
�dðVnÞ ð23Þ

From our assumptions on the convergence of D
2

n � c
2
n �

�dðVnÞ, we see that as n tends to infinity

Dn � cn � R
�

n ¼ D
2

n � c
2

n �
�dðVnÞ ���!

p
Y2 ð24Þ

M�

n ���!
p

Y2 ð25Þ

Considering (24) and (25) as preconditions of Slutsky’s theorem [76], we conclude:

n2ðSnÞ

f ðnÞ
¼

1

f ðnÞ
�
Dn � cnf ðnÞ � R�n

M�
n

���!
d plimn!1Dn � cn � R�n

plimn!1M�
n

¼
Y2

Y2

¼ 1:
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4 Evaluating the n1 and n2 estimators

To evaluate the proposed estimators n1 (8) and n2 (15), we conducted simulation experiments

on samples drawn from synthetic networks using uniform and respondent-driven sampling,

respectively. Underlying networks were selected by configuration sampling techniques [80–

82] relative to Lognormal, Poisson, and Exponential distributions. We also considered Bara-

bási-Albert graphs [83], and Erdős-Rényi graphs [78].

4.1 Synthetic networks

The tendency of RDS to over-recruit high degree nodes is well known, and readily evidenced

in experiments on idealized topologies. Attempts to model peer-referral or “snowball” recruit-

ment processes point to the fact that the degree distribution of nodes can influence the perfor-

mance of mean estimators [84], suggesting Bayesian approaches which make use of degree

distribution data in the derivation of population size estimates [35, 85]. To validate the n1 and

n2 estimators against a wide range of possible topologies, five idealized families of random

graphs were used to perform initial experiments. In later sections, we take up the issue of clus-

tering (Section 4.5), anonymity (Section 5), non-uniformity in the seed selection (Section 6),

and performance on a real-world network (Section 7).

In what follows, configuration graphs were sampled (relative to a specified degree distribu-

tion) by first attaching the prescribed number of free half-edges to each node. Pairs of free

half-edges were then chosen uniformly at random and bound together to form an edge, repeat-

edly, until no free half-edges remain. Note that this sampling process may yield graphs that

have multiple parallel edges and self loops.

Definition 5. Given a set V with |V| = n, for each l 2 R, λ> 1, let distributions DLðlÞ, DPðlÞ,

DXðlÞ, and DRðlÞ : V ! N be defined such that for each v 2 V:

• DLðl;nÞðvÞ ¼ 1þ X where X is a Lognormal random variable with mean λ − 1 and standard
deviation 1.

• DPðl;nÞðvÞ ¼ 1þ X where X is a Poisson random variable with rate parameter λ − 1.

• DXðl;nÞðvÞ ¼ 1þ X where X is an Exponential random variable with mean λ − 1.

Corresponding to each of the three distributions above, let Lðl; nÞ, Pðl; nÞ, Xðl; nÞ, Rðl; nÞ be
the sample spaces of configuration graphs G = (V, E) where |V| = n. Note that a random graph
drawn from these sample spaces will have expected mean vertex degree E½�dðVÞ� ¼ l.

Definition 6. For each l 2 R, λ> 1, let Bðl; nÞ be the sample space of n-vertex Barabási-
Albert graphs G = (V, E). Each such graph is the final output of a process which produces a
sequence of graphs Gi = (Vi, Ei) on Vi≔ {v1, . . . vi} with λ� i� n. The initial graph Gλ = (Vλ,

Eλ) is taken to be the complete graph on λ vertices, i.e. E = Vλ × Vλ. At each stage i> λ of the pro-
cess, node vi (λ< i� n) connects to a random number

Di ≔ jEinEi� 1j ¼
bl=2c with probability 1þ blc � l

1þ bl=2c otherwise:

(

of pre-existing nodes fpi;1; . . . pi;Di
g � Vi� 1. This set is constructed by sequential sampling without

replacement, i.e. as l = 1, . . ., Δi, each of the candidates w 2 Ci, l≔ Vi−1\{vi,1, . . . vi,l−1} is chosen
with a probability that reflects degree-biased preferential attachment

Probðpi;l ¼ wÞ ¼
1þ dðw; Gi� 1Þ

P
w02Ci;l

1þ dðw0; Gi� 1Þ
:
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Here d(w; Gi−1) denotes the degree of vertex w in graph Gi−1 = (Vi−1, Ei−1). The final member of
the resulting sequence Gn = (Vn, En) is output as the sampled graph. Note that if n� λ, the pro-
cess above results in a graph G = (V, E), sampled from Bðl; nÞ, and having expected mean vertex
degree E½�dðVÞ� � l.

Definition 7. For each l 2 R, λ> 0, let Eðl; nÞ be the sample space of n-vertex Erdős-Rényi
graphs G = (V, E), where E� V × V is a random subset constructed uniformly at random by tak-
ing:

Probððu; vÞ 2 EÞ ¼
l=ðn � 1Þ u 6¼ v

0 u ¼ v

(

for each (u, v) 2 V × V. Note that a random graph G = (V, E) drawn from Eðl; nÞ will have
expected mean vertex degree E½�dðVÞ� � l.

4.2 Experimental framework

For each of the 5 families Lðl; nÞ;Pðl; nÞ;Xðl; nÞ;Bðl; nÞ, and Eðl; nÞ defined in Section

4.1, we varied λ = 3, 5, 10; from each of these 15 concrete sample spaces, we used configuration

graph sampling to select 30 random graphs of sizes n = 5000, 10K, 20K and 40K. In each of

these 5 × 3 × 4 × 30 = 1,800 graphs, we generated 30 uniform and 30 RDS samples of size

r = 250, 500 and 750. In this manner, a total of 1, 800 × 30 × 3 × 2 = 324, 000 simulations were

conducted. Section 4.3 reports on simulation experiments in which n1 was applied to uniform

random samples; experiments in which n2 was applied to respondent driven samples are pre-

sented in Section 4.4.

4.3 Evaluating n1 on synthetic networks

The experiments here follow the framework described in Section 4.2 and use uniform random

samples. The 12 graphs in Fig 1 present the performance of the n1 estimator as the true popula-

tion size n is varied from 5 � 103 to 40 � 103 (vertical axis of the grid) and the size of the uniform

sample is varied from 250 to 750 (horizontal axis of the grid). In each of the 12 graphs, the x-

axis varies the average degree λ from 3 to 10. For each choice of λ, the medians and quartile

ranges of n1 are given for each of the 5 graph families. Each of these is determined by 900 simu-

lations (30 graphs times 30 uniformly drawn samples in each graph).

Fig 1 shows that as sample size increases, the medians of n1 converge to the true population

size. For example, when n = 5 � 103 and r = 250, Exponential degree distribution graphs with

λ = 3 have a median n1 value of 5663 (a 13.3% offset from the true value of n = 5 � 103). In com-

parison, when r = 750, the median for this family of graphs is 5204 (just 4.1% offset from the

true value). As the sample size increases from r = 250 to r = 750, the error in the median esti-

mate decreases by 9.2%. The benefit of increasing sample size diminishes as networks grow

larger, however. For example, for a network of size n = 40 � 103, increasing the sample size

from r = 250 to r = 750 causes the error in the median n1 estimate to undergo only a 2%

change.

In addition, Fig 1 shows that as sample size increases, the interquartile range (IQR) of the

estimates decreases. For example, when n = 5 � 103 and r = 250, Lognormal degree distribution

graphs with λ = 10 experience an interquartile range of 1950 in their n1 estimates (35.9% of

the median). In comparison, when r = 750, the interquartile range for this family of graphs

decreases to 1425 (a 26.9% reduction). The magnitude of this effect increases as networks grow

larger. For example, for a network of size n = 40 � 103, increasing the sample size from r = 250

to r = 750 causes the interquartile range of the n1 estimate to undergo a 48.6% decrease.
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Fig 1. Estimator n1 on uniform samples in populations of size n = 5 � 103 to 40 � 103. In each box, the thick line indicates the sample median; the top

of the box is the median of the upper half of the estimated values (75% quartile); the bottom of the box indicates the median of the lower half of the

estimated values (25% quartile); and the whiskers indicate the full range of estimated values. No (finite) outliers were removed.

https://doi.org/10.1371/journal.pone.0195959.g001
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4.4 Evaluating n2 on synthetic networks

The experiments in this and all subsequent sections use respondent-driven samples. The pre-

cise values of the RDS parameters |D|, c, r and implementation parameters δR, λW are given

below.

Assumption 2. In all our experiments where RDS is used to generate samples, we take |D| = 7

random seeds drawn uniformly at random from V. Each subject was given c = 3 coupons.
Depending on the experiment, the sample size r was either 250, 500, or 750. Reflecting our experi-
ences in the field [86], we took the recruiting success distribution δR such that each subject had a
90% chance of recruiting 2 subjects randomly from their ego network, and a 10% chance of
recruiting just 1. [Individuals with an ego network of size 1 were assumed to recruit that one indi-
vidual with 100% probability, while individuals with an ego network of size 0 recruited no one].
The delay between recruiter and recruited subjects’ interview times were assumed to be exponen-
tially distributed with rate λW = 1.

The 12 graphs in Fig 2 present the performance of the n2 estimator as the true population

size n is varied from 5 � 103 to 40 � 103 (vertical axis of the grid) and the size of the RDS sample

is varied from 250 to 750 (horizontal axis of the grid). In each of the 12 graphs, the x-axis varies

the average degree λ from 3 to 10. For each choice of λ, the medians and quartile ranges of n2

are given for each of the 5 graph families. Each of these is determined by 900 simulations (30

graphs times 30 uniformly drawn samples in each graph).

Fig 2 shows that the median of n2 converges to the true population size across a range of

topologies, RDS sample sizes, and overall populations. In addition, Fig 2 shows that as sample

size increases, the interquartile difference decreases. For example, when n = 5 � 103 and

r = 250, Poisson degree distribution graphs with λ = 3 experience an interquartile range of

1676 in their n2 estimates (33.8% of the median). In comparison, when r = 750, the interquar-

tile range for this family of graphs decreases to 524 (a 68.7% reduction). The magnitude of this

effect decreases as networks grow larger, such that, for a network of size n = 40 � 103, increasing

the sample size from r = 250 to r = 750 causes the interquartile range of the n2 estimate to

undergo a 60.8% decrease. However, the total range of estimates as a proportion of the median

decreases as sample size increases, indicating decreasing sample-based variance (a key concern

in RDS sampling [28]).

4.5 Population size estimation in the presence of clustering

Beyond the oversampling of high degree nodes, RDS faces challenges when used in networks

where network clustering is pronounced [49, 87]. While methods are available to assess the

presence of clustering [25], and recent work has proposed new techniques to estimate and

account for clustering from a single RDS sample [88], the effects of this phenomenon on popu-

lation size estimation from RDS samples is seldom discussed. The root of the problem lies in

the fact that RDS walks necessarily sample network neighborhoods. Where neighbors show

high levels of network transitivity, counts of common edges will produce high numbers of

“matches” that appear in the denominator of both n1 and n2. This will bias the estimates of

overall population size derived from these estimators toward underestimation of the total net-

work size.

In the context of random walk techniques, one approach to this problem is to only consider

collisions among nodes that are far away from each other in the sampling chain when inferring

a population size estimate [75]. A similar approach is taken here by considering neighbor over-

lap among respondents whose path distances in the RDS chains are above a specific threshold.

For simplicity, here we take this threshold to be infinity, leaving the consideration of finite

thresholds for consideration in future research. In short, we consider a modification of n2 that
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Fig 2. Estimator n2 on RDS samples in populations of size n = 5 � 103 to 40 � 103. In each box, the thick line indicates the sample median; the

top of the box is the median of the upper half of the estimated values (75% quartile); the bottom of the box indicates the median of the lower half

of the estimated values (25% quartile); and the whiskers indicate the full range of estimated values. No (finite) outliers were removed.

https://doi.org/10.1371/journal.pone.0195959.g002
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discounts matched free ends within a single RDS sampling tree and, for purposes of estima-

tion, only counts those matches that occur across distinct RDS trees. The next Definition

introduces formalisms necessary to make this precise.

Definition 8. Let G = (V, E), take S� V, and let H = (S, F) be a subgraph on S� V with
edge set F� E \ (S × S) obtained by respondent driven sampling from a set of seeds D� S where
|D|> 1. Define the function γ: S! D associating each u 2 S with the unique seed γ(u) 2 D from
which u was discovered through a sequence of referrals. For each u 2 S, the component of u is
denoted

CgðuÞ≔ fv j gðvÞ ¼ gðuÞg � S ð26Þ

while its complement is written ~CgðuÞ≔ SnCgðuÞ. Note that CgðuÞ \ ~CgðuÞ ¼ ;. For each seed s
2 D, we define the cross-seed matches from the Cγ(u) component (in G modulo H) as the disjoint
union (multiset)

Xðs; F; gÞ≔
a

u2CgðsÞ

ðNðu; FÞ \ ~CgðsÞÞ � V ð27Þ

whose cardinality is denoted

hXðs; F; gÞi≔
X

u2CgðsÞ

jNðu; FÞ \ ~CgðsÞj:

The next estimator n3, provides a revised estimate |V| from a respondent driven sample S�
V, discounting matches that occur within the same RDS component.

Definition 9. Given a graph G = (V, E), a set S� V, and H = (S, F) a subgraph on S� V with
edge set F� E \ (S × S). Take D� S satisfying |D|> 1 and

s1 6¼ s2 ¼) Cgðs1Þ \ Cgðs2Þ ¼ ;:

Define

n3ðS; F;D; gÞ≔

X

s2D

�dð~CgðsÞÞ � 1

~dðSÞ
� j~CgðsÞj � hRðCgðsÞ; FÞi

X

s2D
hXðs; F; gÞi

: ð28Þ

The next proposition gives sufficient conditions under which respondent-driven samples

S� V produce consistent estimates n3(T) * |V| when |V| is large.

Proposition 3. For n = 1, 2, . . ., let Gn = (Vn, En) be a graph on |Vn| = f(n) vertices obtained
by configuration graph sampling via degree distribution Dn, where f(n) grows unboundedly. Let
cn 2 (0, 1], and take Sn� Vn to be a subset of size |Sn| = bcn � f(n)c selected using RDS sampling in
Gn from |Dn|> 1 seeds. Define the random variable

Dn ≔
�dðSnÞ � 1

~dðSnÞ
:

Accepting Assumption 1, if cn � f(n)/Dn diverges as n goes to infinity, while

D
2

n � c
2

n �
�dðVnÞ �

jDnj � 1

jDnj
¼
ð�dðSnÞ � 1Þ

2
� c2

n
~dðSnÞ

�
jDnj � 1

jDnj
���!

p
Y3 ð29Þ

for some finite constant Θ3 > 0, then n3ðSn ;Fn;Dn ;gÞ

f ðnÞ necessarily converges to 1.
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Proof. Since each seed s 2 Dn is chosen uniformly at random, and RDS recruits from all seeds

concurrently, and |Sn| = bcn � f(n)c diverges, for random s 2 Dn, we know that

jCgðsÞj ���!
p 1

jDnj
� jSnj ¼

cn � f ðnÞ
jDnj

ð30Þ

j~CgðsÞj ���!
p jDnj � 1

jDnj
� jSnj ¼

jDnj � 1

jDnj
� cn � f ðnÞ ð31Þ

�dðCgðsÞÞ; �dð~CgðsÞÞ ���!
p �dðSnÞ: ð32Þ

Combining (30) and (32), we conclude

hRðCgðsÞ; FnÞi ���!
p hRðSn; FnÞi

jDnj
: ð33Þ

Sufficient reasoning about the configuration graph construction process tells us

hXðs; Fn; gÞi ���!
p 1

jDnj
� hMðSn; FnÞi �

jDnj � 1

jDnj
: ð34Þ

Define the following random variables, closely related to (22) and (23) of Proposition 2:

R�n ≔
X

s2Dn

�dð~CgðsÞÞ � 1

~dðSÞ
� j~CgðsÞj � hRðCgðsÞ; FnÞi=f ðnÞ

M�
n ≔

X

s2Dn

hXðs; Fn; gÞi=f ðnÞ:

As n tends to infinity

R�n ���!
p �dðSnÞ � 1

~dðSÞ
jDnj � 1

jDnj
� cn � f ðnÞ

� �

� R�nðSn; FnÞ

M�
n ���!

p jDnj � 1

jDnj
�M�

nðSn; FnÞ:

where

R�nðSn; FnÞ ���!
p

Dn � cn �
�dðVnÞ

as noted in (22), while

M�

nðSn; FnÞ ���!
p

D
2

n � c
2

n �
�dðVnÞ

as noted in (23). Thus

R�n ���!
p

D
2

n � c
2
n �

�dðVnÞ �
jDnj � 1

jDnj
� f ðnÞ ¼ Y3 � f ðnÞ

M�
n ���!

p
D

2

n � c
2
n �

�dðVnÞ �
jDnj � 1

jDnj
¼ Y3:
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By Slutsky’s theorem [76], it follows that

n3ðSn; Fn;Dn; gÞ

f ðnÞ
¼

1

f ðnÞ � R
�
n

M�
n
���!

d plimn!1
1

f ðnÞ � R
�
n

plimn!1M�
n

¼
Y3

Y3

¼ 1: ð35Þ

4.6 Evaluating n3 on synthetic networks

Prior to examining the performance of n3 on empirical networks, we first look at its perfor-

mance on the synthetic networks used to evaluate n1 and n2. The experiments shown in Fig 3

follow the framework described in Section 4.2 and use respondent driven samples, each

obtained via an RDS process operating as specified in Assumption 2.

The 12 graphs in Fig 3 present the performance of the n3 estimator as the true population

size n is varied from 5 � 103 to 40 � 103 (vertical axis of the grid) and the size of the RDS sample

is varied from 250 to 750 (horizontal axis of the grid). In each of the 12 graphs, the x-axis varies

the average degree λ from 3 to 10. For each choice of λ, the medians and quartile ranges of n3

are given for each of the 5 graph families. Each of these is determined by 900 simulations (30

graphs times 30 uniformly drawn samples in each graph).

Fig 3 shows that the median of n3 converge to the true population size, much like the per-

formance of the n2 estimator. In all the networks, the medians of n3 estimates are all very close

to the their true network populations, regardless the sample size, population size, and type of

network topology. In addition, Fig 3 shows that as sample size increases, the interquartile

range of the estimates decreases. For example, when n = 5 � 103 and r = 250, Lognormal degree

distribution graphs with λ = 3 experience a interquartile range of 1915 in their n3 estimates

(39.1% of the median). In comparison, when r = 750, the interquartile range for this family of

graphs decreases to 604 (a 68.5% reduction). The magnitude of this effect decreases as net-

works grow larger. For example, in a network of size n = 40 � 103, increasing the sample size

from r = 250 to r = 750 causes the interquartile range of the n3 estimate to undergo a (still siz-

able) 55.0% decrease.

5 Subject privacy through hashing

Significant obstacles arise in the direct application of estimators n1, n2, n3 (see (8), (15), and

(28), respectively). In many circumstances where RDS is used, researchers are often required

to measure the sizes of stigmatized networked populations (e.g. people who inject drugs, sex

workers, individuals engaged in specific types of illegal activity, etc.) and within social commu-

nities that naturally seek to remain “unidentified”. In these circumstances, the membership of

sets S and R(S, F) is often not explicitly knowable because individuals are reluctant to unambig-

uously identify themselves or their social network peers.

To formalize and accommodate notions of privacy required under such circumstances

within the estimation procedures described above, we assume that each individual in V = {v1,

v2, . . ., v|V|} has a unique ID; for simplicity we take the ID of vi 2 V to be the integer i (for

i = 1, . . ., |V|). Towards ensuring anonymity, we imagine a hashing [89] function ψ: V! O

that assigns each individual’s ID to a code in O. We thus follow the general framework of Pri-

vatized Network Sampling (PNS) design [53], mimicking the hash functions of telefunken-

type [50].

By taking ψ to be a random (not necessarily 1-to-1) function that is difficult to invert, sub-

jects are convinced that disclosing the hash code of an individual does not unambiguously

identify the individual themselves, and so preserves their privacy.
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Fig 3. Estimator n3 on RDS samples in populations of size n = 5 � 103 to 40 � 103. In each box, the thick line indicates the sample median; the

top of the box is the median of the upper half of the estimated values (75% quartile); the bottom of the box indicates the median of the lower half

of the estimated values (25% quartile); and the whiskers indicate the full range of estimated values. No (finite) outliers were removed.

https://doi.org/10.1371/journal.pone.0195959.g003
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Assumption 3. Suppose V is a set of individuals obtained via RDS referral tree F. While each
vi 2 V is unwilling to disclose their own ID i, and is secretive about the IDs of their peers {j|vj 2 N
(vi, ;)}, they are readily willing to reveal (a) the own hash code ψ(vi); (b) the (multiset of) hash
codes of their peers (outside the referral tree F):

Nc

u ðS; FÞ≔
a

v2NðuÞ
ðu;vÞ =2 F

fcðvÞg � O ð36Þ

and (c) their own network size dðviÞ ¼ hNc
u ðS; FÞi, excluding the referral tree F.

Assumption 4. To simplify our analysis, throughout what follows, we will assume ψ is a func-
tion chosen uniformly at random from the space of all functions from V! O. We will refer to
such a ψ as a “random hash function” from V to O. The action of ψ on the V is illustrated in Fig

4. In Section 6.3, we describe ways to translate the results of this paper to settings where ψ is not a
uniformly random hashing function.

In practice, ψ(v) might be an obtained by amalgamating a well-defined tuple of characteris-

tics of v which are known to v’s friends (e.g. v’s gender, phone number, hair color, approximate

age, racial category, etc.) and then encoding this using a cryptographic function. A related cod-

ing technique was used in our earlier work on estimating the size of the methamphetamine

using population in New York City, where it was referred to as the telefunken code [50].

identifiable subjects

anonymized subjects

hash function

Fig 4. The action of ψ on V.

https://doi.org/10.1371/journal.pone.0195959.g004
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5.1 Revised estimators incorporating hashing

We begin by “lifting” the terms introduced in the earlier Definition 1, to the hashing or PNS

framework [53].

Definition 10. Let G = (V, E) be a graph, and ψ: V! O a random hash function. Let H = (S,

F) be a subgraph on S� V with edge set F� E \ (S × S). The (multiset of) hash codes of the sub-
jects is

Sc ≔ fcðvÞ j v 2 Sg � O: ð37Þ

The ψ-free ends of S (in G modulo H) are taken to be the disjoint union (multiset)

RcðS; FÞ≔
a

u2S

Ncðu; FÞ � O ð38Þ

and the ψ-matches of (in G modulo H) are taken to be the disjoint union (multiset)

McðS; FÞ≔
a

u2S

ðNcðu; FÞ \ ScÞ � O: ð39Þ

We denote their respective multiset cardinalities as

hRcðS; FÞi≔
X

u2S

jNcðu; FÞj

hMcðS; FÞi≔
X

u2S

jNcðu; FÞ \ Scj:

The reader may wish to compare expressions (36), (38), and (39) with the non-hashed analogues
in Definition 1’s expressions (5), (6), and (7).

The next Lemma is foundational and justifies the proposed revised estimates nc

1 , nc

2 , and nc

3 ,

which will be presented subsequently.

Lemma 2. Let G = (V, E) a graph with |V| = n0, sampled from the space of all n0-vertex graphs
by configuration sampling with respect to degree distribution D. Let S� V be an RDS sample col-
lected as a subgraph H = (S, F) be with edge set F� E \ (S × S). Let c≔ |S|/|V|, where c� 1.

Accepting Assumption 1, take ψ: V! O to be a random hash function.

1. Suppose u 2 S reports its own code x≔ ψ(u), the code y≔ ψ(v) of one of its neighbors v 2
Nu(S, F). If w 2 ψ−1(y) \ S is selected uniformly at random, and w has degree d(w), then

Probðw ¼ vÞ ¼
1

n0 � 1

jOj

~dðSÞ
ðdðwÞ� 1Þ

þ 1
:

2. For each code y 2 O, over the space of all random hash functions,

E½hMcðS; FÞi� ¼ m̂ðy; n0Þ
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where

m̂ðy; n0Þ≔
X

w2c� 1ðyÞ\S

1

n0 � 1

jOj

~dðSÞ
ðdðwÞ � 1Þ

þ 1

m̂ðn0Þ≔
X

y2McðS;FÞ

m̂ðy; n0Þ:

Proof. (1) Because ψ is a random function, for any z 2 O

E½jc� 1
ðzÞj� ¼

n0

jOj
:

The expected total number of free ends incident to some vertex in the set ψ−1(y)\{w} is

ðn0 � 1Þð1 � cÞ
jOj

� ~dðSÞ þ
ðn0 � 1Þc
jOj

� ~dðSÞ � 1
� �

and since w 2 S, the expected number of free ends incident to w is d(w) − 1. So

Probðw ¼ vÞ ¼
dðwÞ � 1

ðn0 � 1Þð1� cÞ
jOj

� ~dðSÞ þ ðn0 � 1Þc
jOj
� ~dðSÞ � 1
� �

þ ðdðwÞ � 1Þ
:

dividing through by d(w) − 1, and considering c * 0, the Lemma is proved. Assertion (2) fol-

lows from (1) by linearity of expectation.

Definition 11. If f : R! R is a real-valued function defined on the reals, then we denote
RootOf+[f(x) = 0, x] to be (any one of the positive “roots”) x� 2 R that satisfies the condition
f(x�) = 0, and x� > 0.

Definition 12. Given a graph G = (V, E), and ψ: V! O a random hash function. Fix S� V,

and H = (S, F) a subgraph on S� V with edge set F� E \ (S × S). We define

nc

2
ðS; FÞ≔RootOfþ½f c

2
ðn0; S; FÞ � n0 ¼ 0; n0� ð40Þ

where

f c

2
ðn0; S;FÞ≔

�dðSÞ� 1
~dðSÞ � hS

ci � hRcðS; FÞi

m̂ðn0Þ

and RootOf+ is the root operation described in Definition 11.

Definition 13. Given a graph G = (V, E), a set S� V, and H = (S, F) a subgraph on S� V
with edge set F� E \ (S × S). Let D� S satisfying |D|> 1 and

s1 6¼ s2 ¼) Cgðs1Þ \ Cgðs2Þ ¼ ;:

Take γ: S! D as described in Definition 8. The (multiset of) hash codes of vertices in the compo-
nent of u are denoted

Cc

g
ðuÞ≔ fcðvÞ j v 2 CgðuÞg � Sc ð41Þ

while the codes of the complement set (inside S) are written as

~Cc

g
ðuÞ≔ fcðvÞ j v 2 ~CgðuÞg � Sc:
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Note that Cc
g
ðuÞ \ ~Cc

g
ðuÞmay be non-empty. For each seed s 2 D, we define the cross-seed ψ-

matches from Cc
g
ðsÞ in G modulo H as the disjoint union (multiset)

Xcðs; F; gÞ≔
a

u2CgðsÞ

ðNcðu; FÞ \ ~Cc

g
ðsÞÞ � O: ð42Þ

The reader may wish to compare expressions (41) and (42) with the non-hashed analogues in
Definition 8’s expressions (26) and (27). We also define

~xðy; s; g; n0Þ≔
X

w2c� 1ðyÞ\~CgðsÞ

1

n0 � 1

jOj

~dðSÞ
ðdðwÞ � 1Þ

þ 1

x̂ðs; F; g; n0Þ≔
X

y2Xcðs;F;gÞ

~xðy; s; g; n0Þ:

Definition 14. Given a graph G = (V, E), a set S� V, and H = (S, F) a subgraph on S� V
with edge set F� E \ (S × S). We define

nc

3
ðS; FÞ≔RootOf þ½f c

3
ðn0; S;F;D; gÞ � n0 ¼ 0; n0� ð43Þ

where

f c

3
ðn0; S;F;D; gÞ≔

P
s2D

�dð~CgðsÞÞ� 1

~dðSÞ � h
~Cc

g
ðsÞi � hRcðCgðsÞ; FÞi

P
s2Dx̂ðs; F; g; n0Þ

and RootOf+ is the root operation described in Definition 11.

5.2 Evaluating nc

2 on synthetic networks

The experiments discussed here follow the framework used in prior experiments described

above. Samples are derived using the RDS process operating as specified in Assumption 2. The

hash space size used for the encoding of each agent’s identity was varied from |O| = 2 � 103 to

256 � 103.

The 12 graphs in Fig 5 present the performance of the nc

2 estimator as the true population

size n is varied from 5 � 103 to 40 � 103 (vertical axis of the grid), the sample size is fixed to

r = 500 and the hash space size was varied from |O| = 2 � 103 to 256 � 103 (horizontal axis of the

grid). In each of the 12 graphs, the x-axis varies the average degree λ from 3 to 10. For each

choice of λ, the medians and quartile ranges of nc

2 are given for each of the 5 graph families.

Each of these is determined by 900 simulations (30 graphs times 30 uniformly drawn samples

in each graph).

Fig 5 shows that as hash space size increases, the medians of nc

2 converge to the true popula-

tion size. For example, when n = 5 � 103 and |O| = 2 � 103, Lognormal degree distribution

graphs with λ = 3 have a median nc

2 value of 4705 (a 5.9% offset from the true value of n = 5 �

103). In comparison, when |O| = 256 � 103, the median value for this family of graphs is 4901

(just 2.0% offset from the true value). As the hash space size increases from |O| = 2 � 103 to

|O| = 256 � 103, the error in the median estimate decreases by 3.9%. The magnitude of this phe-

nomenon increases as networks grow larger. For example for a network of size n = 40 � 103,

increasing the hash space size from |O| = 2 � 103 to |O| = 256 � 103 causes the error in the

median nc

2 estimate to undergo a 33.9% change.

In addition, Fig 5 shows that as hash space size increases, the interquartile range of the esti-

mates decreases. For example, when n = 5 � 103 and |O| = 2 � 103, Poisson degree distribution
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Fig 5. Estimator nc

2 on RDS samples of size r = 500 with |O| = 2 � 103 to 256 � 103. In each box, the thick line indicates the sample median; the

top of the box is the median of the upper half of the estimated values (75% quartile); the bottom of the box indicates the median of the lower half

of the estimated values (25% quartile); and the whiskers indicate the full range of estimated values. No (finite) outliers were removed.

https://doi.org/10.1371/journal.pone.0195959.g005
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graphs with λ = 3 experience a interquartile range of 1522 in their nc

2 estimates (32.0% of the

median). In comparison, when |O| = 256 � 103, the interquartile range for this family of graphs

decreases to 793 (a 47.9% reduction). The magnitude of this effect increases as networks grow

larger. For example for a network of size n = 40 � 103, increasing the hash space size from

|O| = 2 � 103 to |O| = 256 � 103 causes the interquartile range of the nc

2 estimate to undergo a

42.1% decrease.

5.3 Evaluating nc

3 on synthetic networks

A second set of experiments shows the performance of the nc

3 performance under identical

hashing conditions used to test nc

2 . These experiments also follow the framework described in

Section 4.2 and use samples derived from an RDS process operating as specified in Assump-

tion 2. The hash space size was varied from |O| = 2 � 103 to 256 � 103.

The 12 graphs in Fig 6 present the performance of the nc

3 estimator as the true population

size n is varied from 5 � 103 to 40 � 103 (vertical axis of the grid), the sample size is fixed to

r = 500 and the hash space size was varied from |O| = 2 � 103 to 256 � 103 (horizontal axis of the

grid). In each of the 12 graphs, the x-axis varies the average degree λ from 3 to 10. For each

choice of λ, the medians and quartile ranges of nc

3 are given for each of the 5 graph families.

Each of these is determined by 900 simulations (30 graphs times 30 uniformly drawn samples

in each graph).

Fig 6 shows that as hash space size increases, the medians of nc

3 converge to the true popula-

tion size. For example, when n = 5 � 103 and |O| = 2 � 103, Lognormal degree distribution

graphs with λ = 3 have a median nc

3 value of 4667 (a 6.7% offset from the true value of n = 5 �

103). In comparison, when |O| = 256 � 103, the median for this family of graphs is 4865 (just

2.7% offset from the true value). As the hash space size increases from |O| = 2 � 103 to |O| =

256 � 103, the error in the median estimate decreases by 4.0%. The magnitude of this phenome-

non increases as networks grow larger. For example for a network of size n = 40 � 103, increas-

ing the hash space size from |O| = 2 � 103 to |O| = 256 � 103 causes the error in the median nc

3

estimate to undergo a 38.4% change.

In addition, Fig 6 shows that as hash space size increases, the interquartile range of the esti-

mates decreases. For example, when n = 5 � 103 and |O| = 2 � 103, Exponential degree distribu-

tion graphs with λ = 3 experience a interquartile range of 1491 in their nc

3 estimates (31.0% of

the median). In comparison, when |O| = 256 � 103, the interquartile range for this family of

graphs decreases to 905 (a 39.3% reduction). The magnitude of this effect increases as net-

works grow larger. For example for a network of size n = 40 � 103, increasing the hash space

size from |O| = 2 � 103 to |O| = 256 � 103 causes the interquartile range of the nc

3 estimate to

undergo a 43.0% decrease.

6 Impacts of non-uniformity

The experiments described in previous sections of this paper assumed an RDS process that

begins with a set of seeds D� V sampled uniformly at random without replacement. More pre-

cisely, D = X|D| is the last entry in sequence X0, X1, . . .X|D|, where X0 = ; and Xi = Xi−1 [ {ui}

with

Prðui ¼ uÞ ¼
1

jVj � jXi� 1j
u 2 VnXi� 1

0 otherwise

8
<

:
ð44Þ
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Fig 6. Estimator nc

3 on RDS samples of size r = 500 with |O| = 2 � 103 to 256 � 103. In each box, the thick line indicates the sample median; the

top of the box is the median of the upper half of the estimated values (75% quartile); the bottom of the box indicates the median of the lower half

of the estimated values (25% quartile); and the whiskers indicate the full range of estimated values. No (finite) outliers were removed.

https://doi.org/10.1371/journal.pone.0195959.g006

One-step estimation of networked population size: Respondent-driven capture-recapture with anonymity

PLOS ONE | https://doi.org/10.1371/journal.pone.0195959 April 26, 2018 26 / 39

https://doi.org/10.1371/journal.pone.0195959.g006
https://doi.org/10.1371/journal.pone.0195959


for each u 2 V. While the uniform model allowed formal analysis of the estimators’ properties

to be tractable, many researchers have noted that practical deployments of RDS often exhibit

bias in seed selection [90–92]. This bias originates in local features of the network topology

(e.g. variation in node degrees) as well as global properties (e.g. the presence of community

structures).

6.1 Degree-biased selection of RDS seeds

We begin by describing experimental findings on the differential impacts of degree-based bias

in initial seed selection on the performance of the nc

3 estimator. Towards this, we define a new

model of seed selection in which a real-valued parameter r 2 R controls degree-based bias. In

particular, expression (44) is generalized to

Prðui ¼ uÞ ¼
er�dðuÞ

P
v2VnXi� 1

er�dðvÞ
u 2 VnXi� 1

0 otherwise

8
><

>:
ð45Þ

for each u 2 V. Note that when ρ = 0 expression (45) reduces to the uniform random selection

of seeds prescribed in (44). When ρ> 0, seed selection is biased towards the network’s high

degree vertices; when ρ< 0, low degree vertices are favored.

The first segment of Table 1 shows that as ρ is varied between -1 and +1, non-uniform seed

selection has no discernable negative differential impact on the performance of RDS estimator

Table 1. Varying seed selection bias (n = 10K, r = 500, |O| = 256 � 103, �dðVÞ ¼ 5).

K ρ μ nc

3

median

nc

3

I.Q.R.

ρ: Seed selection bias 1 -1 N.A. 9966.3 2253.0

-0.5 10104.7 2374.9

-0.4 10057.2 2313.4

-0.3 9956.4 2267.2

-0.2 9981.6 2231.6

-0.1 9868.0 2254.3

0 9909.0 2170.4

0.1 9903.2 2155.1

0.2 9963.4 2271.6

0.3 9766.7 2277.9

0.4 9921.4 2170.2

0.5 9942.7 2307.1

1 9793.4 2165.6

K: Number of components 1 0 0.5 10070.9 2325.5

2 9977.7 2220.8

4 9797.8 2136.7

8 9312.6 2216.2

16 8373.9 1900.0

μ: Cross component probability 8 0 0.1 3088.4 1102.6

0.2 5526.1 1864.7

0.3 7595.0 1961.6

0.4 8639.9 2010.4

0.5 9345.6 2033.6

https://doi.org/10.1371/journal.pone.0195959.t001
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nc

3 . While the data in the first segment of Table 1 are based on 30 RDS samples (r = 500)

on each of 30 graphs from Lðl ¼ 5; n ¼ 104Þ, i.e. graphs with 10K nodes and a Lognormal

degree distribution as described in Section 4.1, the conclusion for the other 5 graph families is

similar.

6.2 Community structures

Next we consider the impact of community structures which can potentially create bottlenecks

for RDS and restrict the reach of subject’s self-reported ego networks [91, 92]. We quantify the

impacts of such structures on the nc

3 estimator through simulation experiments, and towards

this, extend each of the 5 families defined in Section 4.1 to support the controlled presence of

community effects. Two new parameters are introduced: the number of communities K, and

the cross-community connection probability μ. The space Lðl; nÞ, for example, is thus

extended to a space Lðl; n;K; mÞ consisting of graphs of size K � bn/Kc, i.e. approximately n,

which is sampled from as follows:

1. Sample K graphs G1 = (V1, E1), . . .Gk = (Vk, Ek) from Lðl; nÞ as defined in Section 4.1.

Define V ≔
SK

i¼1
Vi to be the vertex set of our sampled graph. Take E ¼

SK
i¼1

Ei to be our

initial approximation of the edge set of our sampled graph, to be updated according to the

rewiring process below.

2. For each i 2 {1, 2, . . ., K}, and each u 2 Vi, with probability μ:

a. Choose j 2 {1, 2, . . ., K}\{i} uniformly at random, and then choose v 2 Vj uniformly at

random.

b. Choose u0 2 N(u) \ Vi uniformly at random.

c. Choose v0 2 N(v) \ Vj uniformly at random.

d. Modify E by removing (u, u0) and (v, v0) from E.

e. Modify E by adding (u, v) and (u0, v0) to E.

3. Completion of step (2) yields the sampled graph (V, E) on K � bn/Kc vertices, having K com-

munities each coming from family Lðl; nÞ and wired together so that roughly μ fraction of

each community’s members has a connection to some member of a different community

(and the degree distribution of the graph as a whole is consistent with the bias of family L).

The families Pðl; n;K; mÞ;Xðl; n;K; mÞ;Bðl; n;K; mÞ, and Eðl; n;K; mÞ, are defined analo-

gously. When μ * 1 or K * 1, community effects are insignificant. As μ! 0+ or K� 1, the

population consists of many effectively isolated communities. Whenever a set of seeds are to

be selected from the network (e.g. to obtain a respondent driven sample), all seeds are chosen

(uniformly at random) from community 1.

The second segment of Table 1 shows that as K is increased from 1 to 16 (while μ is held

fixed at 0.5), increasing the number of communities causes nc

3 to slightly underestimate popu-

lation size. For example, when the network consists of K = 8 communities, a median estimate

falls short of the true value by 7%; for K = 16 communities the deficit becomes 16%. The third

and final segment of Table 1 shows that as μ is decreased from 0.5 to 0.1 (while K is held fixed

at 8), increasing community isolation causes nc

3 to significantly underestimate population size.

For example, when the inter-community connection probability μ = 0.4 the deficit is 14%, but

when μ = 0.2 the estimate produced is roughly 45% of the true value. While the data in the sec-

ond and third segments of Table 1 are based on 30 trials on each of 30 graphs from Lðl; nÞ, i.e.

One-step estimation of networked population size: Respondent-driven capture-recapture with anonymity

PLOS ONE | https://doi.org/10.1371/journal.pone.0195959 April 26, 2018 28 / 39

https://doi.org/10.1371/journal.pone.0195959


graphs with Lognormal degree distribution as described in Section 4.1, the results for the other

5 graph families are quite similar.

6.3 Non-uniform hash functions

The experiments and analyses so far have considered a uniform random hashing function ψ,

and have shown that the size of the hash space |O| has a significant impact on estimator vari-

ance. The uniform hashing assumption is reasonable when each individual’s anonymity-pre-

serving code is based on attributes that have been uniformly randomly assigned across the

population. For example, it is reasonable to expect that a telephone company will assign

numbers to customers randomly, and thus a code that is built from the parity and scale of the

final 4 digits of each individual’s phone number would constitute a uniform random hash

function.

In this section, we describe how to translate the conclusions of previous experiments and

analyses to settings where the hashing function is not uniformly random. This would likely be

the case if ψ were built from each individual’s demographic characteristics (e.g. age, height,

hair color, and race) that are known to vary non-uniformly across the population. For exam-

ple, if subjects and reports were encoded using 4 categories for age, 3 categories for height, 3

for hair color, and 5 categories for race, one could only say that the hash space size was 4 × 3 ×
3 × 5 = 180 if all combinations of these attributes were equally likely to appear. Researchers

employing such non-uniform hashing functions may want to know the equivalent uniform

hash space size |O|, so as to correctly translate the results of previous sections into reasonable

expectations for the non-uniform situation at hand. The following Lemma will assist in defin-

ing this translation:

Lemma 3. Let A, B be finite sets, and ψ: A! B be a uniformly random function. Then

EjcðAÞj ¼ jBj � 1 � 1 �
1

jBj

� �jAj
" #

:

Proof. We seek the expected number of distinct items obtained in sampling |A| elements from

B with replacement. Consider x 2 B, then

Prðfx 2 cðAÞgÞ ¼ 1 � Prðfx =2cðAÞgÞ ¼ 1 � 1 �
1

jBj

� �jAj

:

The result then follows by linearity of expectation.

Proposition 4. Let A, B be finite sets, and ψ: A! B a uniformly random function. Suppose
|A| = x and |ψ(A)| = y, where x, y� 0, then the maximum likelihood estimator of |B| is given by

jBj ¼
xy

y �Wð� x
y ðe

� x
yÞÞ þ x

ð46Þ

where Lambert’s W function is the inverse function of f(W) = WeW.

Proof. Applying Lemma 3, the maximum likelihood estimator is obtained by solving

y ¼ jBj � 1 � ð1 �
1

jBj
Þ
x

� �

ð47Þ

for |B|. Since |B|� y� 0, we may approximate

log
jBj � 1

jBj

� �

� �
1

jBj
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when |B| is large. Then we have

1 � 1 �
1

jBj

� �x

¼ 1 � exp x log
jBj � 1

jBj

� �� �

� 1 � exp �
x
jBj

� �

:

Eq (47) now becomes

y ¼ jBj � 1 � exp �
x
jBj

� �� �

;

which when solved for |B| yields expression (46) above.

Proposition 4 tells us that the image of a set of size x is expected to have size y, provided the

function is a uniform random map into a set whose size is given by expression (46). Such a

combinatorial result can be used to compute the equivalent uniform hash space size in settings

where the hash function is non-uniform. In particular, if we have x = |A| subjects, who provide

us with exactly y = |ψ(A)| distinct codes (y� x), then the equivalent uniform hash space size

|O| is given by expression (46) above.

7 Evaluating estimators on real networks

While a range of degree distributions and randomly occurring clusterings can be expected in

idealized topologies, the performance of RDS-based estimators nc

2 and nc

3 on organically aris-

ing, natural human networks may vary. To test this possibility, we perform a number of ran-

dom-start, RDS-based estimation experiments on the Brightkite data set. Brightkite was once a

location-based social networking service provider where users shared their locations by check-

ing-in. The friendship network was collected using their public API, and consists of |V| =

58,228 nodes and |E| = 214,078 edges [93]. Though originally a directed graph, we symme-

trized the edges for the purposes of these experiments. Since not all users made a public check-

in during the data collection period, the population we used here consists of 51,406 people.

The average clustering coefficient in the network was 0.1723, while the fraction of closed trian-

gles is 0.03979. The diameter (longest-shortest path in the symmetrized network) is 16, though

the 90-percentile effective diameter is 6.

For purposes of the experiment we generated 900 respondent-driven samples of size

r = 250, 500, 750 and hash space size from |O| = 2 � 103 to |O| = 256 � 103 within the Brightkite

network, each obtained via an RDS process operating as specified in Assumption 2. The box-

plot graphs in Fig 7(a)–7(c) show that estimator nc

2 —where no accommodation is made for

the tendency of RDS to oversample tightly clustered network neighborhoods—underestimates

the true population size of 51,406 in every case. Given the high clustering coefficient of the net-

work (17.2%), it seems likely that, for a given sampling tree, the peer-discovery process neces-

sarily walks across close pairs of nodes that shared one or more common vertices. Of note is

that increasing the sample size and hash space size does little to correct for these effects.

Graphs (d-f) in Fig 7 present the boxplots of Brightkite population estimates using estima-

tor nc

3 . As above, we generated 900 respondent-driven samples of size r = 250, 500, 750 and

hash space size from |O| = 2 � 103 to |O| = 256 � 103 within the Brightkite network. We see that

the three different hash space sizes show similar results, while increasing the sample size r
from 250 to 500 and 750 improves the accuracy of the median estimate. Unlike the case in Fig

7(a)–7(c), we don’t see a consistent pattern of underestimation, indicating that the cross-seed

estimator nc

3 was successful in compensating for the clustering found in the network. As

above, the overall size of the hash space has minimal effect on the accuracy of the median
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estimate, but we note that an increase in the RDS sample size improves the accuracy of the

median estimate and produces smaller interquartile ranges.

8 Discussion

The results shown here indicate that size estimates for hidden and hard-to-reach populations

can be derived from RDS samples across a range of topologies, and in the presence of signifi-

cant network clustering. As important, this is accomplished under conditions of anonymity by

way of identity hashing, e.g. using telefunken codes [50] or a Privatized Network Sampling

(PNS) design [53]. The nc

3 estimator joins other successful, RDS-based population estimation

procedures, such as those by Handcock and Gile [85], and Crawford, Wu, and Heimer [35].

Like Crawford et al, we make use of half-edge counts. However, our estimator invokes a differ-

ent strategy—beginning with the original capture-recapture concept—and is shown to be

robust across a wide range of topologies and assumptions.

A notable feature of the nc

3 estimator is that a lower level of variance can be expected at con-

ventional RDS sample sizes. For r = 500 to 750, interquartile ranges were low relative to both

the median estimate and true population size (See segments 1 and 2 of Table 2 which summa-

rize a slice of the data in Fig 6).

Additionally, when hashing was employed towards ensuring subject anonymity, sufficiently

large hash spaces (32 � 103 or larger) and samples sizes (500 or above) produced a narrow

Fig 7. Estimator nc

2 (above) and nc

3 (below) on Brightkite network; |O| = 2 � 103 to 256 � 103, with sample size r = 250, 500, 750. In each box, the thick line indicates

the sample median; the top of the box is the median of the upper half of the estimated values (75% quartile); the bottom of the box indicates the median of the lower

half of the estimated values (25% quartile); and the whiskers indicate the full range of estimated values. Data points that exceeded the third quartile boundary by over

1.5 times the interquartile range (IQR) were treated as outliers and removed.

https://doi.org/10.1371/journal.pone.0195959.g007
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range of estimates (See segment 3 of Table 2 which summarizes a slice of the data in Fig 6).

Given concerns about RDS sample variance generally [28], these results indicate robustness

against the faults of a single sample.

Another consistent feature observed in these experiments is the performance of the nc

3 esti-

mator as graph density increases (See segment 4 of Table 2 which summarizes a slice of the

data in Fig 6). In terms of the interquartile ranges, the estimator exhibits worse performance in

sparse (i.e. �dðVÞ ¼ 3) as opposed to dense networks (i.e. �dðVÞ ¼ 10). Given the edge-sam-

pling focus of our approach, this is not surprising. Fewer total edges suggest fewer total

“matches” to discover, leading to greater variability depending on stochastic factors likely asso-

ciated with the selection of RDS seeds and the random walk features of the RDS sampling pro-

cess. These results suggest limits on the implementation of nc

3 estimator in sparse graphs.

As researchers increasingly turn to RDS methods for sampling hard-to-reach populations,

these results should be of considerable interest to those concerned with what is often referred

to as “the denominator problem”. Where agencies and government administrations seek to

understand both the scope of public health challenges and to measure the effectiveness of their

intervention and promotion efforts, the ability to estimate population size (and with this, pop-

ulation prevalence) is widely needed. The results presented here indicate that “one step” meth-

ods are capable of providing such estimates. Along with the methods mentioned above, this

work has the potential to provide public health officials and planners with means to more

effectively promote the health of hidden populations—and thus the health of the larger popula-

tions in which they are embedded.

8.1 Limitations

In using uniform random samples to estimate population size, it is possible for the proposed

n1 estimator to “fail” if one finds that hM(T, ;)i = 0 in Definition 3. This happens with greater

frequency as the sample size r� n the population size. Fig 8(a) shows the mean failure rate

(the fraction of the 13,500 trials where n1 failed to produce a population estimate), for each

choice of population size n (ranging from 5 � 103 to 40 � 103), and uniform sample size r (cho-

sen to be 250, 500 or 750). We see from Fig 8(a) that the failure rate is non-linear in both r and

Table 2. A cross-section of the experimental findings in this paper.

n r |O| �dðVÞ nc

3

median

nc

3

I.Q.R.

n: Population size 5,000 750 256 � 103 10 4934.3 342.1

10,000 9927.2 1068.6

20,000 20018.7 2731.1

40,000 39964.7 9621.1

r: Sample size 5,000 250 256 � 103 10 4972.7 1080.8

500 4957.0 501.6

750 4934.3 342.1

|O|: Hash space size 5,000 750 2 � 103 10 4875.8 945.1

32 � 103 4938.4 363.1

256 � 103 4934.3 342.1

�dðVÞ: Average degree 5,000 750 256 � 103 3 4797.5 848.5

5 4867.7 565.5

10 4934.3 342.1

https://doi.org/10.1371/journal.pone.0195959.t002
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n. For small uniform samples r = 250, the failure rate of n1 is *0 when n = 10 � 103, but under-

goes an inflection at n = 20 � 103, and rises to 3.9% when the population size again doubles to

n = 40 � 103. Note that we considered each of 5 families Lðl; nÞ;Pðl; nÞ;Xðl; nÞ;Bðl; nÞ, and

Eðl; nÞ defined in Section 4.1, and each λ = 3, 5, 10; from each of these 15 concrete sample

spaces, we used configuration graph sampling to select 30 random graphs of size n. In each of

these 5 × 3 × 30 = 450 graphs, we generated 30 uniform samples (for n1). In this manner, a

total of 450 × 30 = 13,500 simulations were conducted.

Similarly, in using respondent-driven sampling to estimate population size, it is possible for

the proposed n2 (resp. n3) estimators to “fail” if one finds that hM(S, F)i = 0 in Definition 4

Fig 8. Mean failure rate analysis of the proposed estimators.

https://doi.org/10.1371/journal.pone.0195959.g008
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(resp. ∑s2DhX(s, F, γ)i = 0 in Definition 9). Fig 8(b) shows the mean failure rate (the fraction of

the 13,500 trials where n2 failed to produce a population estimate), for each choice of popula-

tion size n (ranging from 5 � 103 to 40 � 103), and RDS sample size r (chosen to be 250, 500 or

750). RDS samples of size r = 250 exhibit an n2 failure rate of *0 when n = 5 � 103, but undergo

an inflection at n = 10 � 103; the mean failure rate rises to 6% when the population size again

doubles to n = 40 � 103. In examining the n3 estimator, Fig 8(c) shows us that when it is used

with RDS samples of size r = 250, it exhibits a failure rate of *0 when n = 5 � 103, but the fail-

ure rate undergoes an inflection at n = 10 � 103, rising to 8.8% when the population size again

doubles to n = 40 � 103. For sample sizes that are 2X and 3X as large (i.e. r = 500 and r = 750)

the inflection point is not yet reached at n = 40 � 103 and mean failure rates remain below

0.1%. This indicates that our estimators based on RDS are more robust against failure than the

n1 uniform sampling estimator, and at typical RDS sample sizes (500� r� 750), they are

robust enough to be used in settings where the population size is expected to be on the order

of n * 40 � 103.

Fig 8(d)–8(e) explore the impact of hash space size on the mean failure rate. Here we con-

sider a fixed sample size r = 500 and vary the size of hash space |O| between 2 � 103 and 256 �

103. We observe that the mean failure rates of nc

2 and nc

3 (again taken across 13,500 experi-

ments) grow linearly as n increases, but that the rate of growth depends on |O|. In particular,

when |O| is too small (in this case 2 � 103 or smaller), the mean failure rate is seen to grow

steeply, even for small networks. The two graphs (d-e) make evident the tradeoff between sub-

ject anonymity/privacy and the failure rates of the estimator. When the hash space size is suffi-

ciently large (32 � 103−256 � 103), failure rates remain low, but smaller hash spaces (which

provide for greater anonymity) may produce greater instability in the estimators. Finally, the

three heatmaps in Fig 8(f) show how the failure rate of nc

3 rises whenever the hash space size or

sample size decreases.

Although 32 � 103 − 256 � 103 may appear to be a very large hash space size, we note

104 � 32 � 103 � 105 � 256 � 103 � 106:

Thus, asking research subjects for the last 5 or 6 digits of their own telephone number and

those digits of their friends’ phone numbers would be sufficient to provide an accurate esti-

mate (assuming that numerical digits are randomly assigned by phone service providers). In

the event that research subjects remain reluctant to reveal precise digits of their own or their

alter’s phone numbers, a telefunken code could be constructed [50] or a Privatized Network

Sampling (PNS) design [53] employed.
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59. Massoulié L, Le Merrer E, Kermarrec AM, Ganesh A. Peer counting and sampling in overlay networks:

random walk methods. In: Proceedings of the twenty-fifth annual ACM symposium on Principles of dis-

tributed computing. ACM; 2006. p. 123–132.

60. Finkelstein M, Tucker HG, Veeh JA. Confidence intervals for the number of unseen types. Statistics &

Probability Letters. 1998; 37(4):423–430. https://doi.org/10.1016/S0167-7152(97)00146-6

61. Sekar CC, Deming WE. On a method of estimating birth and death rates and the extent of registration.

Journal of the American Statistical Association. 1949; 44(245):101–115. https://doi.org/10.1080/

01621459.1949.10483294

62. Lincoln FC. Calculating Waterfowl Abundance on the Basis of Banding Returns. United States Depart-

ment of Agriculture Circular. 1930; 118:1–4.

63. Petersen CP. The Yearly Immigration of Young Plaice Into the Limfjord From the German Sea. Report

of the Danish Biological Station. 1896; 6:5–84.

64. Dasgupta A, Kumar R, Sivakumar D. Social sampling. In: Proceedings of the 18th ACM SIGKDD inter-

national conference on Knowledge discovery and data mining. ACM; 2012. p. 235–243.

65. Katzir L, Liberty E, Somekh O. Estimating sizes of social networks via biased sampling. In: Proceedings

of the 20th international conference on World wide web. ACM; 2011. p. 597–606.

66. Krishnamurthy V, Faloutsos M, Chrobak M, Lao L, Cui JH, Percus AG. Reducing large internet topolo-

gies for faster simulations. In: Networking. vol. 5. Springer; 2005. p. 328–341.

67. Kurant M, Butts CT, Markopoulou A. Graph size estimation. arXiv preprint arXiv:12100460. 2012;.

68. Dasgupta A, Kumar R, Sarlos T. On estimating the average degree. In: Proceedings of the 23rd interna-

tional conference on World wide web. ACM; 2014. p. 795–806.

69. Gile KJ. Improved inference for respondent-driven sampling data with application to HIV prevalence

estimation. Journal of the American Statistical Association. 2011; 106(493):135–146. https://doi.org/10.

1198/jasa.2011.ap09475

70. Barash VD, Cameron CJ, Spiller MW, Heckathorn DD. Respondent-Driven Sampling—Testing

Assumptions: Sampling with Replacement; 2016.

71. Mislove A, Marcon M, Gummadi KP, Druschel P, Bhattacharjee B. Measurement and analysis of online

social networks. In: Proceedings of the 7th ACM SIGCOMM conference on Internet measurement.

ACM; 2007. p. 29–42.

72. Ahn YY, Han S, Kwak H, Moon S, Jeong H. Analysis of topological characteristics of huge online social

networking services. In: Proceedings of the 16th international conference on World Wide Web. ACM;

2007. p. 835–844.

73. Gjoka M, Kurant M, Butts CT, Markopoulou A. Walking in facebook: A case study of unbiased sampling

of osns. In: Infocom, 2010 Proceedings IEEE. IEEE; 2010. p. 1–9.

74. Kurant M, Gjoka M, Butts CT, Markopoulou A. Walking on a graph with a magnifying glass: stratified

sampling via weighted random walks. In: Proceedings of the ACM SIGMETRICS joint international con-

ference on Measurement and modeling of computer systems. ACM; 2011. p. 281–292.

75. Hardiman SJ, Katzir L. Estimating clustering coefficients and size of social networks via random walk.

In: Proceedings of the 22nd international conference on World Wide Web. ACM; 2013. p. 539–550.

76. Slutsky E. Uber stochastische asymptoten und grenzwerte. Metron. 1925; 5(3):3–89.

77. Dombrowski K, Khan B, Wendel T, McLean K, Misshula E, Curtis R. Estimating the Size of the Metham-

phetamine-Using Population in New York City Using Network Sampling Techniques. Advances in

Applied Sociology. 2012; 2(4):245–252. https://doi.org/10.4236/aasoci.2012.24032 PMID: 24672746
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