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SIVcpz closely related to the ancestral HIV-1
is less or non-pathogenic to humans in a
hu-BLT mouse model
Zhe Yuan1,2, Guobin Kang1, Lance Daharsh1, Wenjin Fan1 and Qingsheng Li 1

Abstract
The HIV-1 pandemic is a consequence of the cross-species transmission of simian immunodeficiency virus in wild
chimpanzees (SIVcpz) to humans. Our previous study demonstrated SIVcpz strains that are closely related to the ancestral
viruses of HIV-1 groups M (SIVcpzMB897) and N (SIVcpzEK505) and two SIVcpz lineages that are not associated with any
known HIV-1 infections in humans (SIVcpzMT145 and SIVcpzBF1167), all can readily infect and robustly replicate in the
humanized-BLT mouse model of humans. However, the comparative pathogenicity of different SIVcpz strains remains
unknown. Herein, we compared the pathogenicity of the above four SIVcpz strains with HIV-1 using humanized-BLT
mice. Unexpectedly, we found that all four SIVcpz strains were significantly less pathogenic or non-pathogenic compared
to HIV-1, manifesting lower degrees of CD4+ T-cell depletion and immune activation. Transcriptome analyses of CD4+
T cells from hu-BLT mice infected with SIVcpz versus HIV-1 revealed enhanced expression of genes related to cell survival
and reduced inflammation/immune activation in SIVcpz-infected mice. Together, our study results demonstrate for the
first time that SIVcpz is significantly less or non-pathogenic to human immune cells compared to HIV-1. Our findings lay
the groundwork for a possible new understanding of the evolutionary origins of HIV-1, where the initial SIVcpz cross-
species transmission virus may be initially less pathogenic to humans.

Introduction
The HIV-1 pandemic is a consequence of cross-species

transmission of simian immunodeficiency virus from wild
chimpanzees (SIVcpz) to humans1–3. At least four inde-
pendent cross-species transmissions of SIVs from chim-
panzees and gorillas in Africa to humans have occurred,
which led to infections from HIV-1 groups M, N, O, and P
in humans1–4. Although the HIV-1 pandemic began in the
early 1980s, the SIVcpz spillover from chimpanzees into
humans began much earlier. It was estimated that the date
of the most recent common ancestor (MRCA) of HIV-1
group M was around 1908 (1884−1924)5, whereas the
date of the MRCA of the shared HIV-1 group M and
SIVcpz was estimated as 1853 (1799−1904)6 or 1876

(1847−1907)7. Thus, the most likely time period of cross-
species transmission of SIVcpz as the ancestral HIV-1
group M virus to humans is between 1853 and 1908.
Consistent with these estimates, the earliest spread of
HIV-1 within humans was reported around 1920 in
Kinshasa8. However, there are no recorded AIDS-related
deaths before the first documented HIV-1 infection in the
Congo in 1959, whose actual cause of death remains
unknown9. These data suggest that SIVcpz early cross-
species infections of humans appear to be clinically
“silent” for at least five decades. Many questions regarding
the evolutionary history of HIV-1 and the pathogenicity of
SIVcpz to humans remain unanswered. These questions
are fundamentally important for understanding the evo-
lutionary origins of the devastating pandemic of HIV-1
infections and for predicting the likelihood of the occur-
rence of another HIV-1-like infection in humans, as more
than 30 African non-human primate (NHP) species are
still infected with more than 40 different strains of SIVs3.
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Furthermore, there has been an increase in human
exposure to NHPs10, and there is recent evidence of
continuing cross-species transmissions of SIV from
monkeys10,11 and great apes4,12 to humans.
Humanized-BLT mice infected with HIV-1 can recapi-

tulate the pathogenesis of HIV-1 infection of humans. It
has been extensively documented that hu-BLT mice
infected with different strains of HIV-1, including
JRCSF13–15, MNp13, NL4-313, ADA16, and transmitted/
founder HIV-117, all result in CD4+ T-cell depletion, a
hallmark of HIV pathogenicity and the foundation for
using hu-BLT mice as a model of HIV infection of
humans. Our previous study demonstrated SIVcpz strains
that are closely related to the ancestral viruses of HIV-1
groups M (SIVcpzMB897) and N (SIVcpzEK505) and two
lineages of SIVcpz that are not associated with any known
HIV-1 infection in humans (SIVcpzMT145 and
SIVcpzBF1167), and all can readily infect and robustly
replicate in humanized-BLT mice18. In the current study,
we compared the pathogenicity of these four SIVcpz
viruses with pandemic HIV-1 using the hu-BLT mouse
model. Using reasoning based on our previous finding
that SIVcpz replicated well in hu-BLT mice, we initially
hypothesized that SIVcpz would cause similar levels of
CD4 T-cell depletion and immune activation as HIV-1.
However, our results contradicted our initial hypothesis.
We found, unexpectedly, that the SIVcpz strains that are
closely related to the ancestral viruses of groups M and N,
as well as the lineages of SIVcpz that are not associated
with any known HIV-1 infections in humans, are all sig-
nificantly less pathogenic or non-pathogenic in hu-BLT
mice compared with HIV-1, manifesting significantly
lower degrees of CD4+ T-cell depletion and cell activa-
tion compared with uninfected controls and HIV-1-
infected animals. RNA-Seq analyses also revealed that
CD4+ T cells from SIVcpz-infected animals had lower
expression levels of genes related to cell death, cell cycle
arrest, cytokine/cytokine receptor interactions, inflam-
matory responses, and cell activation, as well as higher
expression levels of genes related to cell survival and
promotion of the cell cycle compared to CD4+ T cells
from HIV-1-infected animals.
This study, for the first time, has experimentally reca-

pitulated the pathogenicity of SIVcpz infection of human
cells in vivo and has demonstrated that SIVcpz strains are
less pathogenic or non-pathogenic in humans compared
with HIV-1 using a hu-BLT mouse model. Our con-
ceptual framework and experimental system are valuable
for gauging the potential risk of SIVs and other zoonotic
pathogens spilling over to humans to cause another HIV-
1-like or other infectious disease. Our data support the
possibility of a new model for the evolutionary origins of
HIV-1, where the SIVcpz cross-species transmission virus

may be initially less pathogenic and gains virulence over
time within the human population.

Materials and methods
Virus stock preparation
Virus stocks were generated as previously reported18.

Briefly, 60 µg of plasmid DNA from infectious molecular
clones of SIVcpz (SIVcpzMB897, SIVcpzEK505,
SIVcpzMT145, and SIVcpzBF1167) and HIV-1SUMA were
transfected into 293T cells. After 48 h of transfection,
culture supernatant was collected from each flask and
filtered through a 0.45-micron filter. Thirty-five milliliters
of filtered medium was loaded into each Ultra-Clear™
Tube (Beckman Coulter) for ultracentrifugation. Virus
ultracentrifugation was conducted with an Optima L-
100X ultracentrifuge and an SW 32 Ti rotor (Beckman
Coulter) at 25,000 rpm for 90min at 4 °C. The super-
natant was discarded, and the pellet was resuspended into
1 ml of fresh medium, aliquoted into 200 µl in sterile
screw-cap vials and stored at −150 °C. Virus stocks were
titrated on the TZM-bl reporter cell line with the X-Gal
Staining Kit (Genlantis). Titers are expressed as TZM-bl
infectious units (IU) per ml.

Generation of hu-BLT mice
Hu-BLT mice were generated as reported at the Uni-

versity of Nebraska-Lincoln according to Institutional
Animal Care and Research Committee-approved proto-
cols17. Briefly, 6- to 8-week-old female NSG mice (NOD.
Cg-Prkdcscid Il2rgtm1Wjl/SzJ, Cat# 005557, the Jackson
Laboratory) were irradiated at a dose of 12 cGy/g body
weight with an RS200 X-ray irradiator (RAD Source
Technologies, Inc., GA) and were implanted with one piece
of thymic tissue sandwiched between two pieces of human
fetal liver tissue under the murine left renal capsule. Within
6 h of surgery, the mice were injected via the tail vein with
1.5–5×105 CD34+ hematopoietic stem cells isolated from
human fetal liver tissues. Human fetal liver and thymus
tissues were procured from Advanced Bioscience Resources
(Alameda, CA). After 9−12 weeks, human immune cell
reconstitution in the peripheral blood was measured by a
FACS Aria II flow cytometer (BD Biosciences, San Jose, CA)
using antibodies against mCD45-APC, hCD45-FITC,
hCD3-PE, hCD19-PE/Cy5, hCD4-Alexa 700, and hCD8-
APC-Cy7 (Cat#103111, 304006, 300408, 302209, 300526,
and 301016, respectively, BioLegend, San Diego, CA). Raw
data were analyzed with FlowJo (version 10.0, FlowJo LLC,
Ashland, OR). All mice used in this study had high human
immune reconstitution with a ratio of hCD45+ cells to a
combination of hC45+ cells and mCD45+ cells in periph-
eral blood greater than 50%. The mice were randomly
assigned into experimental groups with similar immune
reconstitution levels (Table 1).
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SIVcpz and HIV-1 infections of hu-BLT mice
Female hu-BLT mice with high immune reconstitution

were randomly divided into six groups (Table 1).
The mice in each infection group (n= 5/each group)
were inoculated intraperitoneally (IP) with 3 ± 0.2×104

IU of SIVcpzMB897, SIVcpzEK505, SIVcpzMT145,
SIVcpzBF1167, or HIV-1SUMA

19. Mice without inocula-
tion were used as uninfected controls. Peripheral blood
was collected bi-weekly post-inoculation. At 16 weeks
post-inoculation (wpi), mice were euthanized, and the

Table 1 Hu-BLT mice used in this study

Animal ID % hCD45+/(hCD45+ and

mCD45+ cells)

%hCD3+ in

hCD45+
%hCD8+ in hCD45+hCD3+

cells

%hCD4+ in hCD45+

hCD3+ cells

Experimental group

HM658 50.3 54.5 19.1 77.2 HIV-1

HM660 50.1 80.9 16.4 80.2

HM662 63.9 40.4 21.5 74

HM670 69.3 75.1 17.2 79.4

HM695 57 55.9 13.5 85.2

Avg 58.12 61.36 17.54 79.2

HuM 623 79.9 64.6 17.8 81.6 MB897

HuM 624 84.1 63.9 14.5 84.7

HuM 627 88.1 67 13.3 85.7

HuM 628 62.7 57.8 15.6 83.1

HuM 629 75 67.5 12.1 86.7

Avg 77.96 64.16 14.66 84.36

HuM 632 59.2 62.3 12.7 82.8 EK505

HuM 634 76.3 70.4 11.4 87.6

HuM 635 50.7 51.2 20.9 77.3

HuM 639 60 75 12.7 86.1

HuM 640 79.7 73.6 13.5 85.7

Avg 65.18 66.5 14.24 83.9

HM709 55.1 64.5 12.7 80.9 MT145

HM714 80.4 92.7 16.9 80.2

HM718 50.1 88 15.3 80.3

HM719 55.9 79.6 13 83.3

HM723 50.1 85.9 15.1 82.5

Avg 58.32 82.14 14.6 81.44

HM698 56.4 65 12.1 82.2 BF1167

HM702 50.6 56.5 16.5 75.6

HM703 76.8 77.8 13.6 83.3

HM706 68.7 64.9 13.7 82

HM708 50.8 68.2 15.1 79.8

Avg 60.66 66.48 14.2 80.58

HuM 620 79.5 58.2 20.3 78.5 Negative

HuM 621 82.1 57 20.4 78.9

HuM 622 86.4 69.4 11.7 87.3

Avg 82.67 61.53 17.47 81.57
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spleens were collected. Half of the spleen tissue was fixed
in SafeFix II (Fisher Scientific) for immunohistochemical
staining (IHCS), and the other half of the spleen tissue
was used for single cell isolation. The lymphocytes were
separated through Ficoll first. The human lymphocytes
were further sorted using the EasySep™ Mouse/Human
Chimera Isolation Kit (Catalog #19849, STEMCELL
Technologies) and an EasySep™ Magnet (Catalog #18000,
STEMCELL Technologies).

Plasma viral load
Plasma viral loads (pVL) were measured as previously

reported18. Briefly, viral RNA (vRNA) was extracted
using a QIAamp Viral RNA Mini kit (Qiagen). The pVL
were determined using qRT-PCR on a C1000 Thermal
Cycler and the CFX96 Real-Time system (Bio-Rad)
with the TaqMan Fast Virus 1-Step Master Mix (Life
Technologies).

Flow cytometry
Peripheral blood and human lymphocytes from the

spleen were measured by a FACS Aria II flow cytometer
(BD Biosciences, San Jose, CA). Cells were blocked using
Human TruStain FcX and Mouse TruStain fcX Anti-
bodies (Cat# 422302 and 101320, respectively, BioLegend)
prior to staining. Then, cells were stained using antibodies
against hCD45-APC/Cy7, hCD3-FITC, hCD4-PE/Cy7,
hHLA-DR-APC, and hCD38-PE (Cat#304014, 300406,
344612, 307610, and 356604, respectively, BioLegend) as
well as hCD8a-PE/Cy5.5 (Cat# 9536-16, Southern Bio-
tech). Data were analyzed with FlowJo (version 10.0,
FlowJo LLC, Ashland, OR).

Immunohistochemical staining (IHCS), immunofluorescent
staining (IF), and quantitative image analysis (QIA)
Both IHCS and IF were conducted primarily by fol-

lowing our previously published methods20 with the fol-
lowing modifications. For IHCS, rabbit anti-hCD4
monoclonal antibody (EPR6855, 1:100 dilution, Abcam)
was used as the primary antibody, and anti-rabbit/HRP
polymers from the MultiVision Polymer Detection Sys-
tem kit (Thermo Scientific, Cat# TL-012-MARH) were
used to visualize CD4 signals as blue. The sections were
counterstained with eosin. For IF, rabbit anti-hCD4
monoclonal antibody (EPR6855, 1:200 dilution, Abcam)
and sheep anti-hKi67 polyclonal antibody (AF7617-SP,
1:150, Novus Biologicals) were used as the primary anti-
bodies. Alexa Fluor® 647-conjugated donkey anti-sheep
IgG and Alexa Fluor® 488-conjugated donkey anti-rabbit
IgG were used as the secondary antibodies. DAPI was
used for counterstaining. To reduce the autofluorescence
in spleen tissues, tissue sections were subjected to Sudan
Black treatment with 0.3% Sudan Black B (Catalog#
190160250, ACROS Organics) in 70% ethanol stirred in

the dark for 2 h before mounting. For both IHCS and IF,
isotype control antibody or/and without primary antibody
was used as the negative control. For QIA of CD4+
T cells in IHCS sections, CD4+ T cells were quantified
using a positive pixel count algorithm in Aperio’s Spec-
trum Plus analysis program (version 9.1; Aperio ePa-
thology Solutions). QIA of the percentage of Ki67+ cells
within CD4+ T cells in IF sections was performed
manually using the Scanscope marker tool after confocal
images were uploaded into Aperio’s Spectrum Plus ana-
lysis program (version 9.1; Aperio ePathology Solutions).

RNA extraction and mRNA-Seq
RNA-Seq was conducted on human CD4+ T cells

derived from spleen tissues of SIVcpzMB897-,
SIVcpzBF1167-, and HIV-1-infected animals (n= 3/each
group). Human CD4+ T cells were negatively sorted by
magnetic beads using a human CD4+ T Cell Isolation Kit
(Catalog #130-096-533, Miltenyi Biotec). Total RNA was
extracted from sorted human CD4+ T cells using an
RNeasy Plus Mini Kit (Qiagen). A SMARTer® Stranded
Total RNA-Seq Kit (Pico Input Mammalian) was used for
library preparation (Clontech Laboratories, Inc). Libraries
were used for sequencing on an Illumina HiSeq 2500
Rapid Mode at the University of Minnesota Genomics
Center (Minneapolis, MN). Each of the nine sequenced
samples generated more than 240 million 100-bp paired-
end pass filter (PF) reads. The average quality scores were
above Q30 for all the PF reads. All expected barcodes
were detected and balanced.

Transcriptome analysis
Paired-end fastq files were submitted to FastQC21

analysis for quality control. Low quality reads were then
trimmed or removed by Trimmomatic22 to produce a
set of paired and unpaired fastq files. The resulting
paired and unpaired reads for both sets of paired-end
sequencing files were mapped to the reference genome
using Tophat 2.1 and the Illumina iGenome Bowtie
index Ensembl GRch37. Cufflinks 2.2 was used to esti-
mate the relative abundance of the transcripts based on
the previously mapped genome reads23. Cuffmerge was
used to combine the cufflinks output. Cuffdiff was used
to determine significant differences in transcript
expression between SIVcpz and SUMA. The gene
expression difference list was filtered by adjusted q
value < 0.0678 and log2 fold change >2. The gene func-
tion analysis and category annotation were based on
QIAGEN’s Ingenuity Pathway Analysis (IPA, QIAGEN).
Heatmaps were created using the gplots R package and
heatmap.2 function24. The Cuffdiff log2 fold change
output from the comparison of SIVcpz (BF & MB) with
SUMA was plotted with a log2 range from less than −5
to greater than 5.
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Statistics
Two-way ANOVA with Bonferroni post-tests were used

to test for significant differences in pVL, CD4+ T-cell
depletion, CD4+ T cells, and CD4+ T-cell activation for
SIVcpz- and HIV-1SUMA-infected animals at different
time points post-inoculation. All tests were performed
using GraphPad Prism software (GraphPad software, San
Diego, CA, USA). P < 0.05 was considered significant.

Data availability
The raw sequencing data can be found at the NCBI

Sequence Read Archive (SRA) under accession number
SRX7562306.

Results
Viral replication kinetics of SIVcpz and HIV-1 in hu-BLT
mice
There are two subspecies of chimpanzees, Pan troglo-

dytes troglodytes (Ptt) and Pan troglodytes schweinfurthii
(Pts), in Africa that are the natural hosts for SIVcpz. Ptt
chimpanzees are distributed throughout southern
Cameroon, Gabon, and the Republic of Congo and are the
natural host for the ancestral viruses of HIV-1 groups M
and N1–3. Pts chimpanzees are distributed throughout the
Democratic Republic of the Congo and countries to the
East, and SIVcpz virus from this host has not been found
in human infection1–3. Our previous work showed robust
replication of all four SIVcpz strains in hu-BLT mice with
similar viral kinetics compared to HIV-118. In this study,
we compared the plasma viral load kinetics of four SIVcpz

strains, including SIVcpz strains that are closely related to
the ancestral viruses of HIV-1 groups M (SIVcpzMB897)
and N (SIVcpzEK505) and two lineages of SIVcpz that are
not associated with any known HIV-1 infections in
humans (SIVcpzMT145 and SIVcpzBF1167), and current
pandemic HIV-1 using hu-BLT mice. As shown in Fig. 1a,
consistent with our previous results, all four SIVcpz
strains replicated at high levels from the acute to the
chronic stage of infection and had similar pVL kinetics to
HIV-1, regardless of whether they were derived from Ptt
(SIVcpzMT145) or Pts (SIVcpzBF1167) chimpanzees.
There were no significant differences between pVL during
SIVcpz and HIV-1 infection for all the measured time
points, except for 2 weeks post-infection (wpi). While
SIVcpzMB897 was not significantly different compared to
HIV-1 at 2 wpi, the other three SIVcpz strains were sig-
nificantly different from HIV-1 (P < 0.05) (Fig. 1A).

CD4+ T-cell depletion in peripheral blood during SIVcpz
and HIV-1 infection
Next, we investigated the pathological consequences of

the SIVcpz infection of humans using the hu-BLT mouse
model. We quantified CD4+ T cells as a parameter of
pathogenicity in SIVcpz- and HIV-1-infected hu-BLT
mice using flow cytometry. As shown in Fig. 1B, HIV-1-
infected BLT mice had a significant depletion of CD4+
T cells, which is consistent with previously published
work where hu-BLT mice had been infected with different
strains of HIV-113−15,17. CD4+ T cells were significantly
depleted by the first sampled time point of 2 wpi, reaching

Fig. 1 Plasma viral load and CD4+ T-cell kinetics in hu-BLT mice infected with HIV-1 or one of four different strains of SIVcpz. (A) Mean
plasma VL kinetics over the course of 16 weeks pi. Five groups of hu-BLT mice (n= 5/each group) were inoculated with a high dose of SIVcpz closely
related to the ancestral viruses of HIV-1 groups M (SIVcpzMB897) and N (SIVcpzEK505), two lineages of SIVcpz strains that have not been associated
with any known HIV-1 infections in humans (SIVcpzMT145 and SIVcpzBF1167), and HIV-1. Each group is color coded. The dashed line indicates the
detection limit of pVL. Statistical significance is indicated with stars. NS non-significance, *<0.05, **<0.01, ***<0.001. (B) CD4+ T-cell depletion in four
different SIVcpz- and HIV-1-infected hu-BLT mice. The CD4+ T-cell percentage in the total T cells of five groups of infected hu-BLT mice were
quantified. Each group is color coded. Statistical significance is indicated with stars. NS non-significance, *<0.05, **<0.01, ***<0.001
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a nadir at 10 wpi and remaining at this low level until the
end of the study at 16 wpi. In contrast, all four strains of
SIVcpz surprisingly did not cause a significant decline of
CD4+ T cells until 16 wpi in infected hu-BLT mice
(15–20% less than 0 wpi), which contradicts our initial
hypothesis that SIVcpz would cause a similar level of CD4
T-cell depletion as HIV-1. Compared to the HIV-1-
infected group, the CD4+ T-cell counts in the SIVcpz-
infected group were significantly higher (p < 0.001) at all
time points. Compared to the uninfected control group,
there were no significant differences in the CD4+ T-cell
counts in the SIVcpz-infected group until the final time
point of the study at 16 wpi (p < 0.01). There were no

significant differences between any of the SIVcpz strains
in terms of the CD4+ T-cell depletion. Thus, we found
that SIVcpz infection of hu-BLT mice does not result in a
significant decrease of CD4+ T cells despite high viremia.

CD4+ T-cell depletion in the secondary lymphatic tissues
of SIVcpz and HIV-1 infection
To further compare CD4+ T cells in lymphoid tissues

of SIVcpz- versus HIV-1-infected hu-BLT mice, we
quantified CD4+ T cells in the secondary lymphatic tis-
sues, where the majority of the CD4+ T cells reside, using
flow cytometry as well as IHCS and QIA. At 16 wpi, the
animals were killed, a portion of the spleen tissue was

Fig. 2 CD4+ T cells in splenic tissues of SIVcpz- and HIV-1-infected hu-BLT mice at 16 wpi. CD4+ T cells in whole sections of splenic tissues
were detected using immunohistochemical staining. CD4+ T cells are stained blue. Scale bar, 200 µm
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fixed for IHCS and QIA, and another portion was used for
single cell isolation followed by flow cytometry. Figure 2
shows human CD4+ T cells in the splenic tissues of the
five different groups. There was a clear depletion of CD4+
T cells in the spleen tissues of HIV-1-infected mice
compared to SIVcpz-infected and uninfected animals,
both of which contained significantly more CD4+ T cells.
Both methods of CD4+ T-cell quantification in spleen
tissues, including flow cytometry (Fig. 3a) as well as IHCS
and QIA (Fig. 3b), consistently demonstrated much less
CD4+ T-cell depletion during SIVcpz infection compared
with HIV-1 infection. While there was a significant

difference between HIV-1-infected animals and SIVcpz-
infected or uninfected animals, SIVcpz-infected and
uninfected animals did not differ significantly (p values as
shown in Fig. 3).

Immune activation in SIVcpz and HIV-1 infection
Immune activation is another hallmark of HIV-1 disease

progression; therefore, we compared CD4+ T-cell
immune activation as a parameter of pathogenicity
between SIVcpz- and HIV-1-infected hu-BLT mice. We
quantified immune activation of peripheral blood CD4+
T cells using flow cytometry. Figure 4 shows the CD4+ T-

Fig. 3 Quantification of CD4+ T cells in splenic tissues of SIVcpz- and HIV-1-infected hu-BLT mice. (A) The CD4+ T-cell percentage in the total
T cells from splenic tissues of each group (n= 5) were quantified using flow cytometry at 16 wpi. (B) CD4+ T-cell counts per square millimeter of
spleen tissues were quantified after IHCS at 16 wpi. Statistical significance is indicated with stars. NS non-significance, *<0.05, **<0.01, ***<0.001

Fig. 4 CD4+ T-cell activation in SIVcpz- and HIV-1-infected hu-BLT mice. CD38+ HLA-DR+ ratios in the CD4+ T cells of the five groups (n= 5/
each group) were measured. Each group is color coded. Statistical significance is indicated with stars. NS non-significance, *<0.05, **<0.01, ***<0.001
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cell activation kinetics based on the percentage of HLA-
DR+ CD38+ cells in CD4+ T cells throughout the
16 weeks of infection. Compared with the HIV-1-infected
group, CD4+ T-cell activation in the SIVcpz-infected
group was significantly lower (p < 0.001) at all time points
post-infection. When compared to the uninfected control
group, there was no significant difference in CD4+ T-cell
activation in the SIVcpz-infected group at all time points.

We also quantified immune activation in the secondary
lymphatic tissues of SIVcpz- and HIV-1-infected hu-BLT
mice using immunofluorescent staining of human ki67
and human CD4. As shown in Fig. 5, there were many
more CD4+ T cells and fewer Ki67+ cells in the SIVcpz-
infected groups and uninfected control group compared
with the HIV-1-infected group. The percentage of Ki67+
cells in CD4+ T cells was significantly higher in HIV-1-

Fig. 5 Immune activation in splenic tissues of SIVcpz- and HIV-1-infected hu-BLT mice detected using immunofluorescent staining of
human CD4 and Ki67. Human CD4+ T cells are shown in green, human Ki67+ cells in red, and DAPI in blue. Each row is labeled by the virus strain
used for infecting the animals. Scale bar, 50 µm
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infected splenic tissues than in uninfected (p < 0.001) and
all SIVcpz-infected tissues (p < 0.001) (Fig. 6). There were
no significant differences between different SIVcpz strains
and SIVcpz-infected versus uninfected splenic tissues (p >
0.05) (Fig. 6).
We therefore concluded that infection with SIVcpz

strains that are closely related to ancestral HIV-1 results
in significantly less or no immune activation and CD4+
T-cell deletion compared with HIV-1 infection, despite
having similar levels of plasma viral load.

Comparative transcriptome analysis of CD4+ T cells during
SIVcpz and HIV-1 infection
To further understand the underlying mechanism of the

contrasting pathogenicity of SIVcpz- versus HIV-1-
infected hu-BLT mice, CD4+ T cells were isolated from
splenic tissues of SIVcpz-infected (n= 3 for
SIVcpzMB897 infection, n= 3 for BF1167 infection) and
HIV-1-infected (n= 3) animals at 16 wpi using negative
magnetic cell sorting. Both the CD4+ T-cell number and
purity isolated from splenic tissues were normalized
between the SIVcpz and HIV-1 infection groups. RNA
was extracted from the isolated cells for mRNA-Seq. Both
SIVcpzMB897 and SIVcpzBF1167 had similar patho-
genicity profiles in terms of CD4+ T-cell counts and
immune activation, so we compared both SIVcpz-infected
animals with HIV-1-infected animals. As a result, 1448
differentially expressed genes (DEGs) were identified from
a total of 16,210 genes with measured expression using a

threshold of 0.0678 (adjusted Q-value) for statistical sig-
nificance and an absolute value of log2 fold change greater
than 2. We focused on analyzing DEGs in the categories
of cell death and survival, cell activation, cytokine/
inflammation, and cell cycle regulation, corresponding to
the observed differences in CD4+ T-cell death/survival
and immune activation between SIVcpz and HIV-1
infections. Figure 7 shows a heat map of DEGs in
SIVcpz-infected animals compared to HIV-1-infected
animals. In the cell death or survival category (106
DEGs), more than 90% of DEGs follow the pattern of
decreasing expression level of genes related to cell death
and increasing expression level of genes related to cell
survival in SIVcpz-infected animals compared to HIV-1-
infected animals. Nineteen DEGs that code for protective
proteins that promote cell survival or protect against cell
death were upregulated, including AHR25,26, AKR7A227,
ATF428,29, BCAP3130–32, BCL2A133, C11orf8234, DEP-
TOR35, HSP90AB136, HSPA536, JUN37, KLF638,
MAGEA439, NQO140, PAK241, RPS3A42,43, RTKN44,
TMEM14A45, XBP146, and YWHAG47. In the cell cycle
regulation category (19 DEGs), only four DEGs, ANAPC2,
DKK4, SOX14, and SOX17, had decreased expression
levels in SIVcpz-infected animals compared to HIV-1-
infected animals. ANAPC2 prevents the pre-mature entry
of S phase and triggers mitotic exit48. DKK4 and SOX17
are Wnt inhibitors that prevent cell cycle progression or
proliferation49,50. Sox14 overexpression was reported to
induce apoptosis51. Reports have previously shown that
apoptosis goes hand in hand with cell cycle arrest at G2/
M in HIV-infected cells52–54. Almost all the DEGs in the
cell cycle regulation category followed a pattern of
prompting cell cycle progression and halting cell cycle
arrest in SIVcpz-infected animals. For the cytokine and
inflammatory genes category (19 DEGs), all the DEGs
except for two displayed a pattern of decreasing cytokine/
cytokine receptor interaction and decreasing proin-
flammatory responses in SIVcpz-infected animals com-
pared with HIV-1-infected animals. Furthermore, the
cytokine/cytokine receptor pathway (p= 0.004) was sig-
nificantly downregulated in SIVcpz-infected animals
compared with HIV-1-infected animals. For the cell
activation category (84 DEGs), 80% of DEGs followed a
pattern of decreasing cell activation in CD4+ T cells in
SIVcpz-infected animals compared with HIV-1-infected
animals. We also performed transcriptome analysis by
comparing SIVcpzMB897 vs. HIV-1 and SIVcpzBF1167
vs. HIV-1. Both SIVcpz viruses had similar transcriptome
profiles, and individual comparisons yielded comparable
results to the combined transcriptome analysis of SIVcpz
vs. HIV-1. Thus, the transcriptome analysis results were
consistent with the minimal CD4+ T-cell depletion and
immune activation in SIVcpz-infected animals observed
using flow cytometry and IHCS/QIA. Transcriptome

Fig. 6 Quantification of the percentage of Ki67+ cells within CD4
+ T cells in splenic tissues of SIVcpz- and HIV-1-infected hu-BLT
mice after immunofluorescent co-staining of human CD4 and
Ki67. Statistical significance is indicated with stars. NS non-
significance, ***<0.001
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analysis revealed that SIVcpz-infected animals had lower
expression levels of genes related to cell death, cell cycle
arrest, cytokine/cytokine receptor interactions, inflamma-
tory responses, and cell activation, as well as higher
expression levels of genes related to cell survival and pro-
motion of the cell cycle, thus providing critical mechanistic
clues for the differences in pathogenicity observed between
SIVcpz- and HIV-1-infected animals.

Discussion
The HIV-1 pandemic began in the early 1980s as the

consequence of the cross-species transmission of SIVcpz
to humans1–3, resulting in one of the most devastating
infectious diseases in recorded human history. Although
many hypotheses have been proposed to explain the
evolutionary origins of HIV-1, no experimental evidence
exists for evaluating or recapitulating the initial patho-
genicity of SIVcpz to humans after crossing the species

barrier. The long period of clinical “silence” between the
estimated time of SIVcpz cross-species transmission and
the first documented human HIV-1 group M infection in
the Congo9 calls for further study. The date of the MRCA
of the shared HIV-1 group M and SIVcpz was estimated
to be around 18536 or 18767. Thus, the time of cross-species
transmissions of the ancestral group M virus-SIVcpz to
humans is very distant. Although isolated and self-limited
SIVcpz pathogenic infections of humans may explain the
delayed pandemic infection, a plausible hypothesis can be
that SIVcpz initial infections of humans were less patho-
genic or non-pathogenic, with the virus gaining pathogeni-
city over time in the human population. Furthermore, there
is evidence showing continuing cross-species transmission
of SIV from monkeys10,11 and great apes4,12 to humans.
Thus, further evaluation of the pathogenicity of SIVcpz may
be a worthwhile endeavor to enhance our ability to predict

Fig. 7 Functional transcriptome comparison of human CD4+ T cells from spleen tissues of SIVcpz- and HIV-1-infected hu-BLT mice. Heat
map of differentially expressed genes (DEGs) in SIVcpz-infected animals compared with HIV-1-infected animals. Log2 fold change is color coded with
a range from less than −5 to greater than 5
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future spill-over events in addition to better understand the
evolutionary origins of the HIV-1 pandemic.
To better understand the evolutionary history of HIV-1

and to predict the risk of emergence of another HIV-1-like
infectious disease in humans in the future, it is fundamental
to assess the in vivo pathogenesis of SIVcpz to humans.
However, for clear ethical reasons, a study cannot be
directly performed in humans. Hu-BLT mice are the best
available in vivo model of the human immune system,
which has been successfully applied in recapitulating the
major events of HIV-1 pathogenesis in humans, such as
CD4+ T-cell depletion and generalized immune activa-
tion14,15,18,55. We previously studied the infectivity and
transmissibility of multiple SIVcpz strains to humans using
hu-BLT mice18. Herein, we further investigated the patho-
genicity of several SIVcpz strains in humans using this
model. We found that the strains of SIVcpz, including the
SIVcpz strains that are closely related to the ancestral
viruses of the HIV-1 groups M (SIVcpzMB897) and N
(SIVcpzEk505) and two lineages of SIVcpz that are not
associated with any known HIV-1 infections in humans
(SIVcpzMT145 and SIVcpzBF1167), are less pathogenic or
non-pathogenic to humans compared with HIV-1 infection.
There is significantly less or no CD4+ T-cell depletion and
immune activation in SIVcpz-infected animals compared
with HIV-1-infected animals despite similar plasma viral
loads. CD4+ T-cell decline in the peripheral blood of hu-
BLT mice infected with HIV-1 was observed a few weeks
post-HIV-1 infection, which is consistent with previous
reports. The rapid kinetics of CD4+ T-cell depletion
observed in hu-BLT mice after HIV-1 infection are different
from those after human HIV-1 infection, and it was esti-
mated that 2.6 days in adult mice is equivalent to 1 human
year56. In concordance, transcriptome analysis revealed that
SIVcpz-infected animals had lower expression levels of
genes related to cell death, cell cycle arrest, cytokine/cyto-
kine receptor interactions, inflammatory responses, and cell
activation as well as higher expression levels of genes related
to cell survival and promotion of the cell cycle. CD4+ T-cell
depletion and immune activation are the hallmarks of
human HIV-1 infection and disease progression57,58.
Therefore, our findings show that there is pathogenic dis-
crepancy between SIVcpz strains that are closely related to
ancestral HIV-1 and HIV-1.
We would like to note that the SIVcpz strains used in this

study are proximate and may not truly represent the SIVcpz
that initiated that pandemic HIV-1 infection, as it is impos-
sible to ascertain which SIVcpz strains are the true ancestral
HIV-1. However, our studied SIVcpz strains are closely
related to the ancestral strains of HIV-1 groups M and N.
This study is the first to clearly show that SIVcpz strains

that are closely related to the ancestral viruses of HIV-1
groups M and N, as well as the lineages of SIVcpz that are
not associated with any known HIV-1 infections in

humans, are less pathogenic or non-pathogenic compared
with HIV-1 in a hu-BLT mouse model. This could be
analogous to reported cases of HIV-infected non-pro-
gressors who had high viremia but limited CD4 T-cell
depletion59,60. Our findings suggest that SIVcpz or
ancestral HIV-1 virus may be less pathogenic than HIV-1
in humans and support a new model for the evolutionary
origins of HIV-1, where the initial SIVcpz cross-species
transmission virus may initially be less pathogenic or non-
pathogenic and gains virulence over time in the human
population. Future studies are needed to elucidate the
molecular foundation for the differences in pathogenicity
observed in this study between HIV-1 and SIVcpz.
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