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Introduction 

The fowls (Galloanserae; ducks, chicken, and allies) are 
generally regarded as a monophyletic group (Sorenson 
et al. 2003; Cracraft et al. 2004; but see Olson & Fecuc-
cia 1980; Ericson 1996, 1997) that, according to Dickinson 
(2003), consist of eight families with 452 species. Fowls, 
which are typically separated into duck-like (Anseri-
formes) and chicken like species (Galliformes), include 
the most economically important birds on earth. Many 
species in this group have a long history of domestica-
tion for socio-economic reasons (e.g. food, game, feather, 
or display, among others), including chicken (e.g. Gallus 
Gallus), quails (e.g. Coturnix  japonica and Colinus virgin-
ianus), ring-necked pheasants (Phasianus colchicus), tur-
keys (e.g. Meleagris gallopavo), guinea fowls (e.g. Numida 

meleagris),peafowls (Pavo cristatus), ducks (e.g. Anas plat-
yrhynchos), and geese (e.g. Anser anser and A. cygnoides). 
The global economic value of domesticated fowls is enor-
mous. For example, more domestic chicken meat (over 68 
million tons) than beef was produced worldwide in 2004 
(FAO 2007). Income from eggs and poultry in the United 
States was approximately US $29 billion in 2004 (USDA 
2007). Hunting of migratory birds (e.g. ducks and geese) 
in the United States generates US $1.3 billion annually for 
thousands of small businesses (USFWS 2007), and game 
shooting in the UK similarly supports some 70,000 full-
time jobs (PACEC 2006). 

Fowls are likewise of particular interest to many biolo-
gists. The group comprises the sister group of all remain-
ing species of Neognathae [all living birds with the excep-
tion of tinamous (Tinamidae) and ratites (Struthionidae, 
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Abstract
The fowls (Anseriformes and Galliformes) comprise one of the major lineages of birds and occupy al-
most all biogeographical regions of the world. The group contains the most economically important of 
all bird species, each with a long history of domestication, and is an ideal model for studying ecological 
and evolutionary patterns. Yet, despite the relatively large amount of systematic attention fowls have at-
tracted because of their socio-economic and biological importance, the species-level relationships within 
this clade remain controversial. Here we used the supertree method matrix representation with parsi-
mony to generate a robust estimate of species-level relationships of fowls. The supertree represents one 
of the most comprehensive estimates for the group to date, including 376 species (83.2% of all species; all 
162 Anseriformes and 214 Galliformes) and all but one genera. The supertree was well-resolved (81.1%) 
and supported the monophyly of both Anseriformes and Galliformes. The supertree supported the par-
titioning of Anseriformes into the three traditional families Anhimidae, Anseranatidae, and Anatidae, 
although it provided relatively poor resolution within Anatidae. For Galliformes, the majority-rule su-
pertree was largely consistent with the hypothesis of sequential sister-group relationships between Mega-
podiidae, Cracidae, and the remaining Galliformes. However, our species-level supertree indicated that 
more than 30% of the polytypic genera examined were not monophyletic, suggesting that results from 
genus-level comparative studies using the average of the constituent species’ traits should be interpreted 
with caution until analogous species-level comparative studies are available. Poorly resolved areas of 
the supertree reflect gaps or outstanding conflict within the existing phylogenetic database, highlight-
ing areas in need of more study in addition to those species not present on the tree at all due to insuffi-
cient information. Even so, our supertree will provide a valuable foundation for understanding the di-
verse biology of fowls in a robust phylogenetic framework. 
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Rheidae, Casuariidae, Dromaiidae, and Apterygidae)], 
and occupies almost all major biogeographical regions of 
the world (Cracraft et al. 2004). Despite this deep diver-
gence and worldwide distribution, Anseriformes and Gal-
liformes together possess extremely restricted extant spe-
cies richness relative to their sister group (Neoaves), which 
covers over 9000 species (Dickinson 2003). Even so, fowls 
display a remarkable life-history and behavioral diversity 
as well as morphological plasticity (del Hoyo et al. 1992; 
Dunning 1993; del Hoyo et al. 1994; Kear 2005). For exam-
ple, species within Galliformes show more than a 100-fold 
difference in body mass (e.g. from < 100 g for C. japonica to 
approximately 10,000 g for M. gallopavo), and more than a 
20-fold difference in clutch size (e.g. from one for Lophura 
bulweri to approximately 20 for Aepypodius arfakianus). 
Many galliform species tend to be sedentary, whereas 
most Anseriform species migrate long distances. Within 
Galliformes, some grouse are characterized by adapta-
tions to open habitats, whereas megapodes and cracids are 
adapted to forest habitats. Anseriformes are adapted gen-
erally to an aquatic lifestyle (e.g. webbed feet), but their 
reliance on the aquatic habitat differs widely among spe-
cies. Swans and geese often feed on land at some distance 
from water, whereas most ducks forage in or close to wa-
ter. Some fowl species (e.g. Crax alberti and A. laysanensis) 
are recognized as being critically endangered (IUCN 2007), 
whereas others (e.g. P. colchicus and A. platyrhynchos) are 
exploited as overabundant game species. Such remarkable 
diversity in Galloanserae makes it an exceptional group 
for studying a wide range of questions in ecology, evolu-
tion, conservation and management. 

Biologists often employ a comparative approach to 
recognize, test, and interpret adaptive patterns and pro-
cesses in ecology and evolution. To do so properly, a 
phylogenetic framework is essential to account for the 
nonindependence among taxa that arises through the 
process of descent with modification (Felsenstein 1985b; 
Harvey & Pagel 1991). Thus, a large, well-resolved (spe-
cies-level) phylogeny, in addition to its systematic value, 
represents an indispensable tool for testing broad-scale 
hypotheses in nature, greatly increasing the statisti-
cal power of the associated comparative analyses. Cur-
rently, however, it is generally not possible to build 
large, comprehensive trees from a direct, conventional 
analysis of true biological characters, such as DNA se-
quences, due to uneven distribution of research effort 
across taxa resulting in insufficient homologous data 
(Sanderson et al. 2003; Bininda-Emonds 2005). This state 
of affairs also holds for Galloanserae, with a general lack 
of large species-level trees from any single molecular, 
morphological, or combined data set. To date, the most 
comprehensive trees for each of Anseriformes and Gal-
liformes are genus-level trees, with Livezey (1997) sum-
marizing the findings of several partial phylogenies for 
Anseriformes based on morphology and Crowe et al. 
(2006) deriving a tree for Galliformes from an analysis 

of morphological and molecular data from 158 out of the 
292 extant species. 

Instead, supertree analysis provides an alternative 
method to generate comprehensive and rigorous estimates 
of phylogeny (Sanderson et al. 1998; Bininda-Emonds et al. 
2004a). Using formal algorithmic procedures, this method 
combines multiple existing and overlapping source trees, 
each ideally based on independent data sets (see Gatesy 
et al. 2002), and therefore is able to use more of the infor-
mation present in the global systematic database. Super-
tree construction remains a controversial technique and 
has attracted repeated criticism because it uses only the 
topological information of the source trees and thus loses 
contact with the raw data (e.g. Springer& de Jong 2001; 
Gatesy et al. 2002). Biases in some methods have also been 
noted (e.g. Wilkinson et al. 2005, 2007). However, simula-
tion studies have repeatedly shown that supertrees built 
with sufficiently large and numerous source trees repre-
sent the phylogenetic information provided by the source 
trees accurately (Bininda-Emonds & Sanderson 2001; Chen 
et al. 2003; Levasseur & Lapointe 2003; Piaggio-Talice et al. 
2004). With these advantages, comprehensive supertrees 
have been built for a wide range of animals and plants, 
including all extant mammal species (Bininda-Emonds 
et al. 2007), seabirds (Kennedy & Page 2002), shorebirds 
(Thomas et al. 2004), oscine passerine birds (Jønsson & 
Fjeldså 2006), dinosaurs (Pisani et al. 2002), grasses (Sala-
min et al. 2002) and angiosperms (Davies et al. 2004). It is 
beyond the scope of this article to outline the arguments 
for and against supertree construction and the reader is di-
rected instead to the relevant literature (e.g. Gatesy et al. 
2002; Bininda-Emonds et al. 2003). 

Here, we use the supertree method of matrix represen-
tation with parsimony (MRP; Baum 1992; Ragan 1992) to 
generate a robust estimate of species-level phylogenetic 
relationships within Galloanserae. The major objectives 
of this study are: (i) to provide a comprehensive, global 
view of the group’s phylogenetic relationships; (ii) to 
compare this topology to other comprehensive fowl phy-
logenies based on the conventional analysis of molecular 
or morphological characters (e.g. Livezey 1997; Crowe et 
al. 2006); and (iii) to provide a phylogenetic framework 
for future comparative studies of fowl ecology, evolution, 
conservation and management. 

Materials and methods 

Source tree collection 
Phylogenetic information for Galloanserae was collated 
from the published literature by searching online data-
bases, the Web of Science and Zoological Record for the 
years 1971–2006. We used the following search terms: 
phylogen*, phenogram*, cladogram*, cladistic*, taxonom*, 
or fossil* (where the asterisks represent wildcards) in 
combination with any scientific name of each fowl or-
der, family, subfamily, or genus (as given in Dickinson 
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2003) or any major fowl common name (e.g. fowl, game-
bird, grouse, quail, pheasant, waterfowl, duck, goose, and 
swan). Additionally, we examined the references in the 
source articles we collected to obtain additional studies 
containing relevant phylogenetic information. 

The protocol for inclusion or rejection of source trees 
was guided by the issues of data quality (e.g. data in-
dependence and duplication, see Gatesy et al. 2002) fol-
lowing the principles described in Bininda-Emonds et al. 
(2004b) and as implemented in Beck et al. (2006). Gen-
erally, only trees that were based on an actual analysis 
of a novel, independent data set were collected for our 
analysis. Reasons for the exclusion of potential source 
trees included the lack of any explicit underlying data 
set (e.g. as for taxonomies), the simple replication of the 
results of previous studies without any novel analysis, 
or an insufficient number of Galloanserae species for the 
tree to be phylogenetically informative in the context of 
this study. All nonindependent trees were retained at this 
stage, with corrections for any nonindependence being 
applied subsequently via down weighting (see below). 
Nonindependence could arise both between studies (e.g. 
through use of the same data set on an overlapping spe-
cies sample) and/or within the same study (e.g. multiple 
analyses of the same data set using different optimiza-
tion criteria). For example, gene trees derived from MT-
CYB (cytochromeb) and MT-RNR1 (12S rDNA) were held 
to be independent and independent from a tree based 
on morphological data, even if they all appeared in the 
same article. By contrast, all phylogenies based on MT-
CYB would be classified as nonindependent, regardless 
of whether or not they occur in different articles or which 
optimization criteria was used for analysis. 

A total of 400 phylogenetic trees derived from mo-
lecular and/or non-molecular (e.g. morphological or be-
havioral) data, and obtained using distance (e.g. neigh-
bor-joining) or character-based methods (e.g. parsimony, 
maximum likelihood, and Bayesian analysis) were in-
cluded initially as source trees. A topology equivalent to 
the classification of Dickinson (2003) was also included as 
a ‘seed tree’ to increase taxonomic overlap among source 
trees while providing only limited and usually uncontro-
versial phylogenetic information. The use of seed trees 
has been shown to improve the resolution of the supertree 
and to decrease computation time in simulation (Bininda-
Emonds & Sanderson 2001) and when, suitably down 
weighted, does not distort the final topology compared to 
that dictated by the ‘real’ source trees (see Beck et al. 2006). 
All information in the source trees was coded and stored 
exactly as it appeared in the (i.e. without any correction for 
apparent typos and/or synonyms in taxon names) into the 
tree window of MacClare (Maddison & Maddison 2000). 

Standardization of taxon names 
The set of 400 source trees, despite not including all ex-
tant species of Galloanserae, contained a total of 1368 

taxon names because of the inclusion of numerous typos 
and synonyms (including the use of common names) for 
a given species (e.g. ‘Chicken’ or ‘Gallus Gallus domes-
tics’ or ‘Gallus Gallus 1’ for Gallus Gallus), of higher-level 
taxon names (e.g. Gallus or Galliformes), or of extinct 
species (e.g. the Turtlejawed Moa-nalo, Chelychely-
nechen quassus) or of non-fowl species (e.g. the Rock Pi-
geon, Columba livia). 

Therefore, where possible, the names of all terminal 
taxa were standardized to those in Dickinson (2003). Ap-
propriate synonyms for unrecognized names were ob-
tained primarily from the Integrated Taxonomic Infor-
mation Service (ITIS: www.itis.gov) and secondarily from 
additional searches. All non-fowl species were synony-
mized to ‘outgroup’ and higher-level terminal taxa were 
synonymized to the type species of the taxon (e.g. both 
Gallus and Galliformes were synonymized to Gallus Gal-
lus) following Bininda-Emonds et al. (2004b). Ambiguous 
names (e.g. ‘Basal Anseriformes and Galliformes’, ‘Other 
Galliformes’ or ‘Partridge’) and extinct taxa were pruned 
from the source trees. Synonymization was achieved us-
ing the Perl script synonoTree v2.1 (Bininda- Emonds et al. 
2004b). SynonoTree also accounts for cases where the pro-
cess of synonymization yields non-monophyletic species 
by outputting all possible permutations of a given source 
tree where each such species is represented only once in 
each of its possible placements. Finally, all trees contain-
ing the taxon ‘outgroup’ were rooted on this taxon, which 
was subsequently deleted. All other source trees were 
held to be unrooted. Trees that were synonymized so as 
to become phylogenetically uninformative (i.e. contain-
ing less than three or four species for rooted and unrooted 
trees, respectively) were deleted, as were any completely 
unresolved trees. Altogether the synonymization process 
reduced the number of source trees to 385 (from 108 pub-
lished studies; including the seed tree) and 43 trees that 
represented additional permutations of 31 source trees. 
The identity of all trees, together with their final weights 
in the supertree analysis (see below) is provided in the 
online-only supplementary material I. 

MRP supertree construction 
Supertree construction used MRP, which represents by 
far the best investigated and most frequently used super-
tree method (Bininda-Emonds 2004). MRP operates by 
coding the topology of a tree as a series of binary pseudo 
characters, each pseudo character representing one in-
formative node in the tree. Taxa derived from the node 
are scored as 1, those that are not, but are still present on 
the tree are scored as 0, and taxa present only on other 
trees in the entire set are scored as ?. The matrix repre-
sentations of each tree are then combined into a single 
matrix for parsimony analysis. Normally an all-zero out-
group is added to the matrix. However, we used semi-
rooted MRP coding (Bininda-Emonds et al. 2005) as im-
plemented in the Perl script SuperMRP v1.2.1 in which 
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the outgroup was scored with zeros only for rooted 
trees; for unrooted trees, it was scored as ? 

The final MRP matrix consisted of 4713 pseudo char-
acters that were differentially weighted across trees to ac-
count for source-tree nonindependence, whether at the 
level of the underlying data or because of permutations 
of a given tree arising from non-monophyletic taxa, again 
following the guidelines of Bininda-Emonds et al. (2004b). 
The source trees were initially subdivided according to 
data type, with sets of nonindependent studies within 
each category being determined on a case-by-case basis: 
mixed-data analyses (six sets for seven trees), molecular 
data (83 sets for 236 trees), morphological data (1 set for 
59 trees), other data types (13 sets for 22 trees), and un-
specified data (13 sets for 13 trees). Weighting was ap-
plied in a hierarchical fashion, first according to data set 
nonindependence and then to permutation nonindepen-
dence. For example, pseudo characters for each of the 
59 trees in the single morphological data set received a 
weight of 0.017 (= 1/59). However, the pseudo charac-
ters for the morphological study of Livezey (1991) were 
down weighted by an additional factor of two beyond 
this (to 0.008) to account for the two permutations of this 
tree generated by synonoTree. Similarly, weighting was 
applied separately for each set within a category. For ex-
ample, of the 83 molecular data sets, those consisting of a 
single source tree received a relative weight of 1 (= 1/1), 
whereas those with five nonindependent trees (e.g. all 
MT-CYB trees) received a weight of 0.2 (= 1/5). Finally, 
the seed tree of Dickinson (2003) was given a weight of 
0.001 (= at least six times smaller than any other source 
tree) to minimize its impact on the supertree topology be-
yond helping to stabilize the analysis. A nexus-formatted 
file listing the independent data sets and the weights ap-
plied to each is available from TreeBASE (Sanderson et al. 
1994) under the study accession number xxx and matrix 
accession number xxx. 

Parsimony analysis used PAUP* v4.0b10 (Swofford 
2002) and employed a parsimony ratchet (Nixon 1999) 
consisting of 50 batches of 200 replicates initially, fol-
lowed by a brute force search using all optimal trees 
found to that point as starting trees. During the reweight-
ing steps, 25% of the MRP pseudo characters were se-
lected at random and given a weight of two before be-
ing returned to their initial differential weights. Starting 
trees for each batch were obtained using a single random-
addition sequence. All searches used TBR branch-swap-
ping. Ratchet searches allowed only a single tree to be 
retained at any given step, whereas the terminal brute 
force search allowed multiple trees. All instructions for 
the ratchet were produced by the Perl script perlRat v1.0.9 
and implemented in PAUP* as a PAUP block. The ini-
tial ratchet analysis saved a maximum of 10,050 equally 
most parsimonious trees. These trees then served as the 
starting trees for the extended brute-force search saving 
up to 100,000 trees. The strict consensus trees from the 

initial and ratchet and subsequent brute force searches 
were identical, hinting that the ratchet had reached a form 
of ‘convergence’ in that the additional equally most par-
simonious solutions showed conflict with existing areas 
of incongruence rather than generating new conflict (and 
thereby decreasing resolution). The final supertree was 
held to be the strict consensus of the set of 100,000 equally 
most parsimonious solutions (each of length 1418.607). 
Both it and a majority-rule consensus of the same set of 
trees have been deposited with TreeBASE (study acces-
sion number S2245). 

Differential support within the supertree was deter-
mined using the rQS index as implemented in QualiTree 
v1.2.1 (Bininda-Emonds 2003; Price et al. 2005), which 
measures the amount of support and disagreement for 
a given node in the supertree among the set of source 
trees. As such, it avoids the inherent nonindependence 
between MRP pseudo characters, which violates the as-
sumptions underlying such conventional support mea-
sures as the bootstrap (Felsenstein 1985a) or Bremer sup-
port (Bremer 1988) and causing them to be invalid in this 
context. An rQS value varies between +1 and –1, indicat-
ing that all sources trees support or contradict the nodes 
in question, respectively. Empirically, rQS values usually 
tend to be slightly negative (e.g. Price et al. 2005; Beck et 
al. 2006), reflecting the fact that many phylogenies are un-
informative for a given node (thereby scoring zero for it) 
and those that are informative tend to conflict with one 
another, even if slightly. Therefore, even slightly positive 
rQS values should be taken to indicate good support. All 
rQS values for each node on the supertree, together with 
how many source trees support, conflict, or are equivo-
cal with a given node, are presented in the online-only 
supplementary material II. All Perl scripts used in this 
study are freely available from http://www.uni-olden-
burg.de/molekularesystematik/33997.html  or from the 
second author on request. 

Results and discussion 

Taxonomic coverage and resolution 
Our fowl supertree includes 376 species, comprising 
over 83% of all 452 fowl species recognized by Dickinson 
(2003) (Table 1). All 162 Anseriformes species and 74% 
of all 290 Galliformes species are present in the super-
tree. The distribution of the 108 studies yielding source 
trees shows that the number of phylogenetic studies for 
fowls has increased rapidly since the late 1980s, with a 
sharp increase in particular for studies using molecular 
data, either alone or in combination with morphological 
or other data sources (Fig. 1). Overall, Galloanserae are 
relatively well-characterized phylogenetically. The num-
ber of source trees per fowl species present in the tree (1.0) 
was more than that in supertrees of well-studied mam-
malian groups of comparable size [e.g. 0.6 in primates or 
bats (Purvis 1995; Jones et al. 2002), and 0.7 in carnivores 

http://www.uni-oldenburg.de/molekularesystematik/33997.html
http://www.uni-oldenburg.de/molekularesystematik/33997.html
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(Bininda-Emonds et al. 1999)], despite our more conser-
vative source tree inclusion protocol. The value continues 
to exceed those of the mammalian supertrees even when 
we calculate it for all extant species, including those not 
present on the tree (0.83) to make it comparable to the 
mammal values. 

The supertree highlights that poorly characterized 
species (i.e. those missing from the tree entirely or those 
found in only a few source trees) tend to belong to groups 
that themselves are not well-studied. For instance, the ma-
jority of species missing in the supertree are assigned to 
either Odontophoridae (59% missing), Cracidae (32% 
missing), or Phasianidae (20% missing). The uneven dis-
tribution of missing species often appears associated with 
issues of geography and/or accessibility of the species. 
For example, species of the genus Odontophorus, which 
represents almost half of all species in Odontophoridae 
(15 of 32), are found in Neotropical forests, but the genus 
is represented by only a single species (Odontophorus gu-
janensis) in the supertree. Similarly, only a single species 
out of the 20 in Arborophila (Arborophila torqueola), which 

generally inhabit Southeast Asian tropical forests or high 
alpine meadows in the Himalayas and often in widely 
scattered populations, was present in the supertree. Obvi-
ously, deriving a complete phylogenetic estimate of Gal-
loanserae will require an increase in future research effort 
towards these and other missing species. 

Although the limit of 100 000 equally most parsimo-
nious solutions was reached, the strict consensus of them 
was well resolved, containing 304 of a maximum pos-
sible 375 nodes (= 81.1%; Table 1). This degree of reso-
lution was higher than that for many other supertrees 
of comparable scale, including those for primates (79%; 
Purvis 1995), carnivores (78%; Bininda-Emonds et al. 
1999), marsupials (74%; Cardillo et al. 2004), bats (46%; 
Jones et al. 2002), whale and even-toed hoofed mam-
mals (60%; Price et al. 2005), shorebirds (50%; Thomas 
et al. 2004), and seabirds (63%; Kennedy & Page 2002). 
Again, the degree of resolution varied across the tree and 
among the (monophyletic) families in particular, ranging 
from 73% for Anatidae to 100% for Anhimidae and Nu-
mididae. Smaller families tended to show greater reso-
lution, possibly because of their being fewer nodes that 
are likely to vary, but even some relatively large fami-
lies showed high resolution (e.g. 73% for the 15 species 
of Anatidae) indicating general consensus over their in-
ternal relationships. Some cases of decreased resolution 
among and within families appear to derive more from 
a lack of agreement among the source trees than from 
a lack of available information. For example, nearly full 
resolution (94%) for Megapodiidae was achieved on the 
basis of 373 pseudo characters. By contrast, relationships 
within Coturnix  were completely unresolved despite 
having twice as much data available (726 pseudo char-
acters). The occurrence of the poorly resolved groups in 
the supertree also highlights areas in need of more rig-
orous systematic analyses in the future. 

Table 1 Information for major clades of Gallanserae, including number of taxa recognized and covered in this study and 
summary statistics for the supertrees. n/a, not available.	

		  Number of	 Number of 		  Percent resolution (%)
		  species	 species covered 	 Percent
		  recognized* 	 in this study  	 coverage (%) 	 Strict consensus 	 Majority rule 	 rQS

Overall 	 452 	 376 	 83.2 	 81.1 	 96.3 	 0.265
	 Anseriformes 	 162 	 162 	 100 	 73.9 	 97.5 	 0.135
	 Anhimidae 	 3 	 3 	 100 	 100 	 100 	 0.091
	 Anseranatidae 	 1 	 1 	 100 	 0 	 0 	 0
	 Anatidae 	 158 	 158 	 100 	 72.6 	 97.5 	 0.044
	 Galliformes 	 290 	 214 	 73.8 	 86.9 	 95.8 	 0.252
	 Megapodiidae 	 22 	 17 	 77.3 	 93.8 	 93.8 	 0.099
	 Cracidae† 	 50 	 34 	 68 	 n/a 	 n/a 	 n/a
	 Numididae 	 6 	 6 	 100 	 100 	 100 	 0.026
	 Odontophoridae 	 32 	 13 	 40.6 	 91.7 	 100	 0.021
	 Phasianidae† 	 180 	 144 	 80 	 n/a 	 n/a 	 n/a

* According to Dickinson (2003).
† Cracidae and Phasianidae were not monophyletic in the supertrees.

Fig. 1. Temporal distribution of source trees included in the Gal-
loanserae supertree.
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To date, the most comprehensive phylogenies for An-
seriformes and Galliformes (Livezey 1997 and Crowe et al. 
2006, respectively) have been at the genus- and not spe-
cies levels. These trees necessarily assume the monophyly 
of each genus, often forcing the wide range of ecological 
and evolutionary hypotheses that have been examined us-
ing these trees to be based on the average of the respec-
tive biological characters of the constituent species (e.g. 
Keane et al. 2005; Kolmar al. 2007). Crucially, however, 
our species-level supertree showed that more than 30% 
of the polytypic genera were not monophyletic or of ques-
tionable monophyly (Table 2). This suggests that the re-
sults from the genus-level comparative studies using the 
average of the species’ traits should be interpreted with 
caution until analogous species-level comparative stud-
ies are available. 

Anseriformes–Galliformes relationships 
The supertree supported the monophyly of each of the 
orders Anseriformes and Galliformes (Figs 2, 3), reflect-
ing historical agreement on this point (but see Prager 
& Wilson 1976). In addition, both clades enjoyed high 
support as measured by the rQS index (0.252 for An-
seriformes and 0.135 for Galliformes; node numbers 187 
and 2, respectively), meaning that monophyly was di-
rectly specified by the majority of relevant source trees 
in each case. 

Table 2. Genera that were either ‘not monophyletic’ or of 
‘questionable monophyly’ (due to being unresolved with 
respect to another taxon) in the strict consensus supertree.

Family 	 Genus 	 Status

Anseriformes

	 Anatidae 	 Dendrocygna 	 Not monophyletic 	 Fig. 3(B)

	 Anatidae 	 Tachyeres 	 Questionable monophyly 	 Fig. 3(B)

	 Anatidae 	 Tadorna 	 Not monophyletic 	 Fig. 3(B,F)

	 Anatidae 	 Nettapus 	 Not monophyletic 	 Fig. 3(C)

	 Anatidae 	 Netta 	 Questionable monophyly 	 Fig. 3(B)

	 Anatidae 	 Aythya 	 Questionable monophyly 	 Fig. 3(B)

	 Anatidae 	 Melanitta 	 Not monophyletic 	 Fig. 3(B,D)

	 Anatidae 	 Bucephala 	 Not monophyletic 	 Fig. 3(B,E)

Galliformes

	 Megapodiidae 	 Aepypodius 	 Not monophyletic 	 Fig. 3(I)

	 Cracidae 	 Pipile 	 Not monophyletic 	 Fig. 3(A)

	 Cracidae 	 Mitu 	 Not monophyletic 	 Fig. 3(A)

	 Cracidae 	 Pauxi 	 Not monophyletic 	 Fig. 3(A)

	 Cracidae 	 Ortalis 	 Questionable monophyly 	 Fig. 3(A)

	 Cracidae 	 Penelope 	 Questionable monophyly 	 Fig. 3(A)

	 Phasianidae 	 Francolinus 	 Not monophyletic 	 Fig. 3(L,O)

	 Phasianidae 	 Syrmaticus 	 Not monophyletic 	 Fig. 3(N)

	 Phasianidae 	 Coturnix 	 Questionable monophyly 	 Fig. 3(O)

Fig. 2. Simplified representation of the Galloanserae supertree, 
showing interrelationships of and relative species richness of 
the major higher-level groups. Numbers on nodes represent 
node IDs.
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Anseriformes 
The supertree supported the partitioning of Anseri-
formes into the three traditional families (Fig. 2) Anhimi-
dae (screamers), the monotypic Anseranatidae (Magpie 
Goose), and Anatidae (ducks, geese, and swans). Anati-
dae was the sister group to the two other families, which 
was consistent with DNA-DNA hybridization (Sibley 
& Ahlquist 1990), and nuclear and mitochondrial DNA 
studies (e.g. Sorenson et al. 2003). This resolution, how-
ever, conflicted with some morphology-based topolo-
gies (e.g. Livezey 1997) and nuclear DNA studies (e.g. 
RAG-2 exon; see Cracraft et al. 2004), where Anhimidae 
formed the sister group. This uncertainty was also re-
flected in the slightly low rQS value (0.049; node num-
ber 302; Fig. 3A) for the clade containing both Anhimi-
dae and Anseranatidae. 

Based on behavioral patterns, Delacour & Mayr (1945) 
split Anatidae into the two subfamilies Anserinae and An-
atinae, a pattern followed by del Hoyo et al. (1992). This 
classification was amended recently by Livezey (1997) 
and Dickinson (2003), who each recognized five subfam-
ilies, splitting Dendrocygninae and the monotypic Stic-
tonettinae (Freckled Duck) from a redefined Anserinae, 
and Tadorninae from Anatinae. However, the supertree 
did not provide strong support for either scheme, with 
only Anserinae sensu Livezey (1997) and Dickinson (2003) 
being found to be monophyletic within a paraphyletic 
Anatinae (Fig. 3B). 

The supertree revealed a paraphyletic Dendrocygni-
nae with respect to the remaining Anatidae, placing it 
as the first group to evolve in Anatidae (Fig. 3B). This 
basal position of the subfamily reflected the majority of 

Fig. 3. A–P. Component supertrees of the fowl supertree showing species-level relationships. 
—A. Galloanserae. —B. Anatidae. —C. Anserinae. —D. Anatinae I. —E. Anatinae II. —F. Anatinae III. —G. Tadorinae.  
—H. Anas. —I. Megapodiidae. —J. Numididae. —K. Odontophoridae. —L. Phasianidae II. —M. Perdicinae. —N. Tetraoninae. 
—O. Phasianinae I. —P. Phasianinae II. Numbers on nodes represent node IDs. rQS support values for each node on the 
supertree are presented in supplementary material II.
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the source topologies (e.g. Sibley & Ahlquist 1990; Livezey 
1997). However, the internal relationships of Dendrocyg-
ninae in the supertree contradicted most traditional tax-
onomic groupings, including the monophyly of Dendro-
cygna (whistling ducks) and its sister group relationship 
with and Thalassornis. 

The relative position of Stictonettinae also differed 
among the source references. Various authors have linked 
it with any of Dendrocygninae (Woolfenden 1961), An-
serinae (Johnsgard 1965), or Tadorninae/Anatinae 
(Livezey 1997) based on morphological or behavioral 
characters. Our study also reflected this uncertainty, plac-
ing it in a polytomy with all other subfamilies (Fig. 3B). 

Anserinae monophyly has been supported by both 
morphological (e.g. Livezey 1997) and molecular stud-
ies (e.g. Donne-Gousse et al. 2002), a fact reflected in our 
supertree (rQS = 0.042; node number 269; Fig. 3C), with 
22 source trees supporting its monophyly and only six 
contradicting it. Resolution within Anserinae was com-
plete and each of the three polytypic genera recognized by 

Dickinson (2003) (Anser, Branta, and Cygnus) were recov-
ered as monophyletic (Fig. 3C). Anser and Branta formed 
a clade (rQS = 0.042; node number 270; 20 source trees in 
agreement and only four in conflict), consistent with the 
majority of studies recognizing them as the tribe Anser-
ini (true geese, e.g. Livezey 1997). However, disagreement 
among the source trees about the interrelationships of Cyg-
nus, Coscoroba and Cereopsis lead the relative position 
of these genera being somewhat equivocal in the super-
tree (rQS = –0.003 for the clade as a whole and rQS = 0.003 
for the grouping of Coscoroba and Cereopsis; Fig. 3C). 
For example, a morphological study (Livezey 1997) recog-
nized the clade of Cygnus + Coscoroba as the tribe Cygnini 
(swans), and Cereopsis as the independent tribe Cereop-
sini, which was regarded as a distant relative to Cygnus + 
Anser + Branta. However, a recent molecular study placed 
Cereopsis and Coscoroba as sister genera, with Cygnus 
as sister to this clade (Donne- Gousse et al. 2002), as was 
found in this study (Fig. 3C). This latter branching pattern 
is also congruent with the disjunctive geographical origins 

Fig. 3. Continued.



A p h y l o g e n e t i c  s u p e r t r ee   o f  t h e  f o w l s  (G a l l o a n s e r a e ,  A v e s )    473

of the genera, with Cygnus originating in the Northern 
Hemisphere and the other two genera coming from the 
Southern Hemisphere (Donne-Gousse et al. 2002). 

Strong disagreement exists with respect to the compo-
sitions of and interrelationships between Tadorninae and 
Anatinae, which is reflected in the supertree by neither 
subfamily being recovered as monophyletic (Fig. 3B). Nor 
do the two subfamilies form a clade (although the major-
ity of their members do cluster together), with Anserinae 
embedded within them. For instance, whereas Dickinson 
(2003) did not delineate any tribes for the subfamilies in 
his classification, del Hoyo et al. (1992) divided Tadorni-
nae + Anatinae into eight tribes. Independently of this, 
Livezey (1997) also divided Tadorninae into three tribes 
and Anatinae into five tribes. However, despite the sim-
ilar numbers of tribes erected by these two authors, few 
are identical in terms of their composition (e.g. Tadornini, 
comprising Tadorna, Chloephaga, Neochen, Alopochen, 

and Cyanochen). Instead, different compositions are the 
rule. For example, whereas Livezey (1997) included Hy-
menolaimus in Merganettini (Tadorninae), del Hoyo et al. 
1992 considered it to be part of Anatini (Anatinae). 

This supertree reflected these disagreements, with 
only the tribe Malacorhynchini (comprising Malacorhyn-
chus and Salvadorina) being recovered unequivocally as 
monophyletic (Tadornini was monophyletic in the major-
ity-rule supertree), and then strongly so, with 12 source 
trees supporting the clade and none opposing it (rQS = 
0.031; node number 298; Fig. 3D). Moreover, whereas Mal-
acorhynchini formed a clade with Oxyurini (Heteronetta, 
Biziura, Nomonyx, and Oxyura, but also unconventionally 
including Nettapus), this clade was positioned as part of 
a polytomy with Anserinae (or basal to it in the majority-
rule supertree), hinting at the possible non monophyly 
of Tadornine + Anatinae (Fig. 3B). Again, however, this 
uncertainty simply reflects historical disagreement. For 

Fig. 3. Continued.
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example, the DNA-DNA hybridization study of Sibley 
& Ahlquist (1990) placed the Oxyura as sister to the re-
maining Anatidae, which is broadly consistent with our 
results, but Malacorhynchini in Anatinae, and therefore 
not directly related to Oxyura. By contrast, morpholog-
ical evidence (e.g. Livezey 1997) tends to place Malaco-
rhynchini at the base of the whole Anatinae. Thus, the rel-
ative positions of Malacorhynchini and Oxyurini appear 
to differ between molecular and morphological data. This 
conflict was also reflected in the rQS value of –0.018 for 
the relationship between Malacorhynchini and its sister 
clade, with six source trees in agreement and 17 source 
trees in disagreement with this arrangement (node num-
ber 291; Fig. 3D). 

Resolution within the remaining members of Tadorni-
nae and Anatinae (which formed a clade) was generally 
poor (Fig. 3B,D–H), with the clade displaying a large basal 
polytomy and the poor resolution also extending from 

the tribal-level down through the genus- and species-lev-
els. Only 46% (6 of 13) of the polytypic genera within Ta-
dorninae + Anatinae were monophyletic in the supertree, 
and the entire clade was less than 70% resolved. The ma-
jority-rule supertree reveals better overall resolution for 
this clade (97%), and at the species- and the genus-levels 
in these subfamilies in particular. Resolution, however, 
remained poor at the higher taxonomic levels. 

Galliformes 
Traditionally, the relative positions between Megapo-
diidae (megapodes) and Cracidae (chachalacas, curas-
sows, and guans), and among Numididae (guineafowls), 
Odontophoridae (New World quails), and Phasianidae 
(partridges, turkeys, grouse, and pheasants) have been 
contentious. Some authors suggested a sister-group rela-
tionship between Megapodiidae and Cracidae, designat-
ing them as the superfamily Cracoidea (Wetmore 1960), 

Fig. 3. Continued.
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the suborder Craci (del Hoyo et al. 1994), or even as the 
independent order Craciformes (Sibley & Ahlquist 1990). 
However, more recent phylogenies based on morphol-
ogy (e.g. Dyke et al. 2003), molecular data (e.g. Dimcheff 
et al. 2002) or their combination (e.g. Crowe et al. 2006) 
all tend to support Megapodiidae as being sister to the 
remaining Galliformes (including Cracidae), with Craci-
dae then being sister to the remaining forms. Although 
relationships among these groups were unresolved in the 
strict consensus supertree (Fig. 3A), the majority-rule su-
pertree broadly reflected this latter pattern, supporting 
the sequential sister-group relationships of Megapodiidae 
and Cracidae (with the exception of Ortalis vetula, thereby 
making Cracidae non-monophyletic), and the remaining 
Galliformes; these groups formed part of a large poly-
tomy in the strict-consensus supertree (Figs 2, 3). Support 
for these sequential sister-group relationships also comes 
from recent studies based on transposon data (Kriegs et 

al. 2007) that were published after completion of the su-
pertree analyses. 

Our supertree supported Numididae as being sister 
to the remaining families Odontophoridae and Phasian-
idae, with the clade comprising all three families having 
a high rQS value of 0.252 (node number 9; Fig. 3A). This 
arrangement agrees with those derived from nuclear (e.g. 
Armstrong et al. 2001), mitochondrial (e.g. Dimcheff et al. 
2002), and combined morphological and molecular data 
(e.g. Crowe et al. 2006). That being said, the position of 
Odontophoridae remains largely unresolved. For exam-
ple, recent phylogenetic trees derived from DNA–DNA 
hybridization (e.g. Sibley & Ahlquist 1990), morpholog-
ical (e.g. Dyke et al. 2003), and combined morphological 
and molecular data (e.g. Crowe et al. 2006) place the fam-
ily in a variety of positions within Phasianidae. Our su-
pertree follows suit and recovers Odontophoridae as a 
relatively basal group within Phasianidae. However, it is 

Fig. 3. Continued.
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noteworthy that most phylogenetic studies have included 
only a few species of Odontophoridae, such that we lack 
robust phylogenetic information for more than half of all 
species of this family. Thus, the relative position of Odon-
tophoridae indicated here should likewise be regarded 
as tentative and should be revisited in the future with in-
creased taxon sampling. 

The monophyly of Megapodiidae was supported in 
the supertree (rQS = 0.099; node number 159; Fig. 3I) and 
relationships within the family were largely congruent 
with several traditional species-level phylogenies (e.g. 
Jones et al. 1995; Birks & Edwards 2002; Crowe et al. 2006). 
Support for the monophyly of the genus Megapodius in 
particular was strong, with 10 source trees supporting it 
and none directly opposing it (rQS = 0.026; node number 
166). Macrocephalon was recovered as the sister to the 
clade of Eulipoa + Megapodius (rQS = 0.023; node num-
ber 164). Monophyly of Aepypodius was not supported. 

The source trees did not support Cracidae monophyly 
absolutely (Fig. 3A), although the family is monophyletic 
in the majority-rule supertree (and found in 94% of all 100 
000 equally most parsimonious solutions). Much of the 
conflict can be traced to the historical uncertainty regard-
ing the two genera Oreophasis and Ortalis, which have been 
placed within either Cracinae (e.g. Crowe et al. 2006) or Pe-
nelopinae (e.g. del Hoyo et al. 1994; Dickinson 2003). The 
strict-consensus supertree makes no definitive statement 
to resolve this conflict (Fig. 3A); however, the majority-
rule supertree suggests that the affinities of the two genera 
lie with Cracinae. However, Ortalis was not recovered as 
monophyletic in either supertree. Recent analyses combin-
ing molecular data with osteological, integumentary and 
behavioral characters placed Oreophasis and Ortalis within 
Penelopinae and not Cracinae, and with fairly robust boot-
strap support (Frank- Hoeflich et al. 2007). As such, place-
ment of these genera should still be regarded as tentative 

Fig. 3. Continued.
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and should be revisited with increased taxon sampling 
and possibly the use of other, novel data types. Beyond 
this, the subfamilies Cracinae (curassows) and Penelopi-
nae (chachalacas and guans) were found to be monophy-
letic, although the degree of resolution within each var-
ied considerably. Support for Cracinae was strong, with 
26 source trees directly supporting and none directly con-
tradicting it (rQS=0.068; node number 174; Fig. 3A). By 
contrast, relationships within Penelopinae were unclear, 
largely because of the non-monophyly  of Penelope. 

Monophyly of Numididae was directly supported by 
12 source trees and contradicted by only two (rQS=0.026; 
node number 10; Fig. 3J). The species-level relationships 
in the family were completely resolved and each of the 
two polytypic genera (Agelastes and Guttera) was mono-
phyletic. The branching pattern within the family dis-
agreed with that presented by Crowe (1978), but was 
identical to that based later on combined morphological 
and molecular data (Crowe et al. 2006). 

Similarly, monophyly of Odontophoridae was also 
supported, being present in eight source trees and none 
directly contradicting it (rQS = 0.021; node number 146; 
Fig. 3K). Relationships within the family were largely con-
sistent with those based on a wide range of data types, in-
cluding osteological (e.g. Holman 1961), ecological (e.g. 
Johnsgard 1983), allozyme (e.g. Gutierrez et al. 1983), and 
combined morphological and molecular data (e.g. Crowe 
et al. 2006). Philortyx fasciatus has been grouped tradition-
ally with some genera adapted to the forest edge, such as 
Colinus, Callipepla, and Oreortyx (e.g. Holman 1961; John-
sgard 1983), but our supertree placed it as sister to the re-
maining Odontophoridae. Again, however, this relation-
ship, and all other relationships within the family, should 
be interpreted with some degree of caution given the poor 
phylogenetic sampling effort in the family to date. 

Within a polyphyletic Phasianidae, sequential sis-
ter-group relationships of the four subfamilies Perdici-
nae (partridges), Meleagridinae (turkeys), Tetraoninae 

Fig. 3. Continued.
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(grouses), and Phasianinae (pheasants) were broadly re-
covered in the supertree, albeit with some exceptions (Fig. 
3A,L–P). The supertree revealed seven subdivisions of 
Perdicinae, six of which were monophyletic. The first was 
a paraphyletic assemblage of Rhizothera and the mono-
typic genera Galloperdix, Ptilopachus, Haematortyx, and 
Melanoperdix situated basal to Odontophoridae and the 
remaining Phasianidae (Fig. 3A). Among these genera, a 
sister-group relationship between Galloperdix and Ptilopa-
chus was recovered, concurring with the results of Crowe 
et al. (2006). The second group (rQS = 0.042; node num-
ber 143; Fig. 3L) included Xenoperdix, Rollulus, Arboroph-
ila, and Caloperdix. The species composition and branching 
pattern within the group was in agreement with Crowe 
et al. (2006), who designated this group as Arborophili-
nae. Similarly, the third group (rQS = 0.044; node num-
ber 109; Fig. 3M) corresponds to Coturnicinae of Crowe et 
al. (2006) and comprises Old World quails, the partridges 
Coturnix and Alectoris, and some Francolinus species. Re-
lationships within Coturnix were unresolved, however, 

and its monophyly could also not be assured. The fourth 
group (rQS = –0.013; node number 107; Fig. 3L) consisted 
of Francolinus gularis, F. pictus, F. pintadeanus, and F. 
francolinus. In the fifth group, the monotypic Bambusi-
cola formed a clade with the four species of Gallus (Fig. 
3L). Although Gallus is typically allocated to Phasiani-
nae, the grouping found in our supertree does find sup-
port in Crowe et al. (2006), who named it Gallininae. In 
addition, the sister-group relationship between Bambusi-
cola and Gallus was highly supported with an rQS value 
of 0.075 (node number 91; Fig. 3L). The sixth group (rQS = 
–0.018; node number 95; Fig. 3L) consisted of the remain-
ing Francolinus species, meaning that the supertree did 
not support the monophyly of the 41 species of Francoli-
nus. Some authors, however, have suggested on the ba-
sis of morphological and molecular data that this genus 
be subdivided into at least five different genera (Pternis-
tis, Francolinus, Dendroperdix, Peliperdix, and Sclerop-
tila, e.g.Crowe et al. 1992; Crowe et al. 2006). Although our 
results did not reflect these generic designations exactly, 

Fig. 3. Continued.
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branching patterns within Francolinus and its relation-
ships with other genera were largely congruent with 
those in Crowe et al. (1992). The final group, the genus 
Perdix (rQS = 0.031; node number 56; Fig. 3L), was placed 
as the sister taxon to the clade of Meleagridinae + Tetra-
oninae, albeit with some uncertainty (rQS = –0.005; node 
number 36; Fig. 3L), with 30 source trees contradicting 
this placement and 28 supporting it. 

The sister-group relationship of Meleagridinae (two 
species in the genus Meleagris) and Tetraoninae was also 
not strongly supported (rQS = 0.003; node number 37; 
Fig. 3L), although the monophyly of each showed better 
support (rQS = 0.018 and 0.106; node number 55 and 38; 
Fig. 3L, N). Relationships within Tetraoninae were con-
gruent with molecular (e.g. Gutierrez et al. 2000; Dim-
cheff et al. 2002; Drovetski 2002) and combined morpho-
logical and molecular data (e.g. Crowe et al. 2006). The 
only exception was the position of Lagopus, with the low 
rQS value of the clade containing Lagopus and its sister 
group (–0.062; node number 46; Fig. 3N) suggesting dis-
agreement among the source trees. 

The remaining Phasianinae (with the exception of 
Gallus) was split into the peafowl (e.g. Pavo and Polyplec-
tron; rQS = –0.003; node number 24; Fig. 3O) and pheas-
ant groups (e.g. Lophura and Tragopan; rQS = 0.005; node 
number 57; Fig. 3P) separated by the clade comprising 
Perdix, Meleagridinae, and Tetraoninae. Apart from this, 
the species composition and branching pattern within 
each group was highly congruent with phylogenetic trees 
based on molecular and morphological data (e.g. Crowe 
et al. 2006). 

Conclusion 

Our supertree represents a first attempt to derive a com-
prehensive species-level phylogeny of Galloanserae, 
again highlighting the power of a traditional supertree 
approach (sensu Bininda- Emonds 2004) in this regard. 
Those areas where the supertree was either poorly re-
solved or incomplete tend to reflect gaps in the existing 
phylogenetic database (either ongoing disagreement and/
or a lack of sufficient, robust phylogenetic information), 
and highlight areas in need of more study. Some of this 
missing information could perhaps be gleaned from tax-
onomies and other studies that are not based on the direct 
analysis of primary character data. However, given that 
strong disagreement often exists within the studies we 
have included here, we felt it prudent not to include these 
additional sources. Like any phylogenetic hypothesis, our 
supertree is naturally open to further revision and resolu-
tion. In the meantime, however, it will provide a valuable 
foundation to understand the diverse biology of Galloan-
serae in a robust phylogenetic framework. 
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Supplementary Material I 

 

Source trees used to construct the galloanserae supertree subdivided according to the independent data set 

they contributed to. The relative weights for the pseudocharacters associated with each source tree 

are also provided. Number of permutations refers to the number of trees that resulted from the 

synonymization process because of having to accommodate non-monophyletic taxa.   

 

Data set Tree ID Reference Tree source 

Number of 

permuations 

Relative 

weight 

Mix 01 A 09 09 McCracken et al. (1999) Fig 5a  0.500 

Mix 01 A 09 10 McCracken et al. (1999) Fig 5b  0.500 

Mix 02 G 63 08 Bloomer & Crowe (1998) Fig 7  1.000 

Mix 03 G 89 09 Crowe et al. (2006) Fig 4  0.500 

Mix 04 G 64 06 Crowe et al. (1992) Fig 3c  1.000 

Mix 06 G 75 02 Randi et al. (1991) Fig 1b  1.000 

Mol 01 G 04 03 Kimball et al. (1999) Fig 4  0.250 

Mol 01 G 14 05 Kornegay et al. (1993) Fig 5b  0.250 

Mol 01 G 14 07 Kornegay et al. (1993) Fig 6b  0.250 

Mol 01 G 37 02 Avise et al. (1994) Fig 1 (right)  0.250 

Mol 02 G 05 03 Nishibori et al. (2004) Fig 1c  0.500 

Mol 02 G 051 03 Nishibori et al. (2002) Fig 1c  0.500 

Mol 03 G 48 02 Nishibori et al. (2005) Fig 1b 2 0.500 

Mol 04 A 16 01 Zimmer et al. (1994) Fig 3a  0.143 

Mol 04 A 16 02 Zimmer et al. (1994) Fig 3b  0.143 

Mol 04 A 16 03 Zimmer et al. (1994) Fig 3c  0.143 

Mol 04 G 31 09 Garcia-Moreno et al. (2003) Fig a1 (12S ML 

analysis) 

 0.143 

Mol 04 G 31 10 Garcia-Moreno et al. (2003) Fig a1 12S  0.143 



 

Data set Tree ID Reference Tree source 

Number of 

permuations 

Relative 

weight 

POY (equal 

weights) 

Mol 04 G 31 11 Garcia-Moreno et al. (2003) Fig a1 12S (tv 

and gaps 2x 

over ts) 

 0.143 

Mol 04 G 89 13 Crowe et al. (2006) Fig 8 2 0.071 

Mol 05 G 17 01 Sorenson et al. (2003) Fig 1  0.500 

Mol 05 G 17 02 Sorenson et al. (2003) Fig 2  0.500 

Mol 06 G 31 01 Garcia-Moreno et al. (2003) Fig 2b  0.333 

Mol 06 G 31 13 Garcia-Moreno et al. (2003) Fig a2 (coding 

mtDNA) 

 0.333 

Mol 06 G 31 18 Garcia-Moreno et al. (2003) Fig a2 (all 

mtDNA) 

 0.333 

Mol 07 G 02 01 Dimcheff et al. (2002) Fig 2  0.333 

Mol 07 G 02 02 Dimcheff et al. (2002) Fig 3  0.333 

Mol 07 G 39 01 Dimcheff et al. (2000) Fig 6  0.333 

Mol 08 G 02 03 Dimcheff et al. (2002) Fig 4  0.500 

Mol 08 G 45 01 Pereira & Baker (2006) Fig 1  0.500 

Mol 09 A 09 04 McCracken et al. (1999) Fig 2a  0.018 

Mol 09 A 09 05 McCracken et al. (1999) Fig 2b  0.018 

Mol 09 A 09 06 McCracken et al. (1999) Fig 2c  0.018 

Mol 09 A 09 07 McCracken et al. (1999) Fig 3  0.018 

Mol 09 A 14 01 Sraml et al. (1996) Fig 1  0.018 

Mol 09 A 14 02 Sraml et al. (1996) Fig 2  0.018 

Mol 09 A 14 03 Sraml et al. (1996) Fig 3  0.018 

Mol 09 G 01 02 Armstrong et al. (2001) Fig right  0.018 



 

Data set Tree ID Reference Tree source 

Number of 

permuations 

Relative 

weight 

Mol 09 G 04 01 Kimball et al. (1999) Fig 2  0.018 

Mol 09 G 04 02 Kimball et al. (1999) Fig 3  0.018 

Mol 09 G 09 01 Kimball et al. (1997) Fig 1a  0.018 

Mol 09 G 09 03 Kimball et al. (1997) Fig 2a  0.018 

Mol 09 G 10 01 Randi (1996) Fig 5a  0.018 

Mol 09 G 10 02 Randi (1996) Fig 5b  0.018 

Mol 09 G 10 03 Randi (1996) Fig 6a  0.018 

Mol 09 G 10 04 Randi (1996) Fig 6b  0.018 

Mol 09 G 14 04 Kornegay et al. (1993) Fig 5a  0.018 

Mol 09 G 14 06 Kornegay et al. (1993) Fig 6a  0.018 

Mol 09 G 31 07 Garcia-Moreno et al. (2003) Fig a1 

(cytochrome b) 

 0.018 

Mol 09 G 31 16 Garcia-Moreno et al. (2003) Fig a2 

(cytochrome b) 

 0.018 

Mol 09 G 33 03 Zhan & Zhang (2005) Fig 2c  0.018 

Mol 09 G 33 04 Zhan & Zhang (2005) Fig 4a  0.018 

Mol 09 G 35 01 Shibusawa et al. (2004a) Fig 4  0.018 

Mol 09 G 37 01 Avise et al. (1994) Fig 1 (left)  0.018 

Mol 09 G 37 03 Avise et al. (1994) Fig 2 (left)  0.018 

Mol 09 G 37 04 Avise et al. (1994) Fig 2 (right)  0.018 

Mol 09 G 63 02 Bloomer & Crowe (1998) Fig 3  0.018 

Mol 09 G 63 03 Bloomer & Crowe (1998) Fig 4a  0.018 

Mol 09 G 63 04 Bloomer & Crowe (1998) Fig 4b  0.018 

Mol 09 G 63 05 Bloomer & Crowe (1998) Fig 4c  0.018 

Mol 09 G 63 06 Bloomer & Crowe (1998) Fig 5  0.018 

Mol 09 G 65 01 Bush & Strobeck (2003) Fig 1  0.018 



 

Data set Tree ID Reference Tree source 

Number of 

permuations 

Relative 

weight 

Mol 09 G 65 02 Bush & Strobeck (2003) Fig 2  0.018 

Mol 09 G 65 03 Bush & Strobeck (2003) Fig 3  0.018 

Mol 09 G 69 04 Kimball et al. (2001) Fig 2b3  0.018 

Mol 09 G 69 07 Kimball et al. (2001) Fig 3  0.018 

Mol 09 G 71 01 Luzhang et al. (2005) Fig 3  0.018 

Mol 09 G 78 01 Ellsworth et al. (1996) Fig 1  0.018 

Mol 09 G 78 02 Ellsworth et al. (1996) Fig 2a  0.018 

Mol 09 G 78 03 Ellsworth et al. (1996) Fig 2b  0.018 

Mol 09 G 78 04 Ellsworth et al. (1996) Fig 2c  0.018 

Mol 09 G 78 05 Ellsworth et al. (1996) Fig 3  0.018 

Mol 09 G 81 01 Gutierrez et al. (2000) Fig 1a  0.018 

Mol 09 G 81 02 Gutierrez et al. (2000) Fig 1b  0.018 

Mol 09 G 81 03 Gutierrez et al. (2000) Fig 1c  0.018 

Mol 09 G 81 04 Gutierrez et al. (2000) Fig 1d  0.018 

Mol 09 G 84 03 Zhan et al. (2003) Fig 2a  0.018 

Mol 09 G 84 04 Zhan et al. (2003) Fig 2b  0.018 

Mol 09 G 85 01 Tsam et al. (2003) Fig 3a  0.018 

Mol 09 G 85 02 Tsam et al. (2003) Fig 3b  0.018 

Mol 09 G 85 03 Tsam et al. (2003) Fig 3c  0.018 

Mol 09 G 88 01 Wen et al. (2005) Fig 2a  0.018 

Mol 09 G 88 02 Wen et al. (2005) Fig 2b  0.018 

Mol 09 G 88 03 Wen et al. (2005) Fig 2c  0.018 

Mol 09 G 89 10 Crowe et al. (2006) Fig 5 3 0.006 

Mol 09 G 90 01 Butorina et al. (2000) Fig 4  0.018 

Mol 10 G 70 02 Lucchini et al. (2001) Fig 3  1.000 

Mol 11 A 06 02 Kennedy & Spencer (2000) Fig 3  1.000 



 

Data set Tree ID Reference Tree source 

Number of 

permuations 

Relative 

weight 

Mol 12 A 06 03 Kennedy & Spencer (2000) Fig 5  1.000 

Mol 13 A 10 02 McCracken & Sorenson (2005) Fig 4a  0.500 

Mol 13 A 10 03 McCracken & Sorenson (2005) Fig 4b  0.500 

Mol 14 G 81 05 Gutierrez et al. (2000) Fig 1e  0.500 

Mol 14 G 81 06 Gutierrez et al. (2000) Fig 1f  0.500 

Mol 15 A 11 01 Paxinos et al. (2002) Fig 4 2 0.042 

Mol 15 G 33 06 Zhan & Zhang (2005) Fig 4c  0.083 

Mol 15 G 62 01 Randi et al. (2001) Fig 4a  0.083 

Mol 15 G 62 02 Randi et al. (2001) Fig 4b  0.083 

Mol 15 G 62 03 Randi et al. (2001) Fig 4c  0.083 

Mol 15 G 69 03 Kimball et al. (2001) Fig 2b2  0.083 

Mol 15 G 72 01 Moulin et al. (2003) Fig 2  0.083 

Mol 15 G 74 05 Randi et al. (2000) Fig 6d  0.083 

Mol 15 G 74 08 Randi et al. (2000) Fig 6g  0.083 

Mol 15 G 74 09 Randi et al. (2000) Fig 6h  0.083 

Mol 15 G 86 01 Wu et al. (2005) Fig 1  0.083 

Mol 15 G 86 02 Wu et al. (2005) Fig 2  0.083 

Mol 16 A 01 13 Donne-Gousse et al. (2002) Fig 7c  0.500 

Mol 16 G 53 02 Grau et al. (2005) Fig 2  0.500 

Mol 17 G 31 03 Garcia-Moreno et al. (2003) Fig 2d  1.000 

Mol 18 A 01 12 Donne-Gousse et al. (2002) Fig 7b  0.091 

Mol 18 A 03 01 Johnson & Sorenson (1998) Fig 1 4 0.023 

Mol 18 A 03 02 Johnson & Sorenson (1998) Fig 2 4 0.023 

Mol 18 A 05 01 Johnson & Sorenson (1999) Fig 1 2 0.045 

Mol 18 G 05 01 Nishibori et al. (2004) Fig 1a  0.091 

Mol 18 G 05 02 Nishibori et al. (2004) Fig 1b  0.091 



 

Data set Tree ID Reference Tree source 

Number of 

permuations 

Relative 

weight 

Mol 18 G 051 01 Nishibori et al. (2002) Fig 1a  0.091 

Mol 18 G 051 02 Nishibori et al. (2002) Fig 1b  0.091 

Mol 18 G 57 01 Zink & Balckwell (1998) Fig 3a  0.091 

Mol 18 G 57 02 Zink & Balckwell (1998) Fig 3b  0.091 

Mol 18 G 80 01 Wada et al. (2004) Fig 1  0.091 

Mol 19 G 54 01 Pereira & Baker (2004) Fig 2  0.500 

Mol 19 G 54 02 Pereira & Baker (2004) Fig 3  0.500 

Mol 20 G 54 03 Pereira & Baker (2004) Fig 5a  0.500 

Mol 20 G 54 04 Pereira & Baker (2004) Fig 5b  0.500 

Mol 21 A 01 04 Donne-Gousse et al. (2002) Fig 4a  0.032 

Mol 21 A 01 05 Donne-Gousse et al. (2002) Fig 4b  0.032 

Mol 21 A 01 06 Donne-Gousse et al. (2002) Fig 4c  0.032 

Mol 21 A 01 07 Donne-Gousse et al. (2002) Fig 4d  0.032 

Mol 21 A 01 08 Donne-Gousse et al. (2002) Fig 5a  0.032 

Mol 21 A 01 09 Donne-Gousse et al. (2002) Fig 5b  0.032 

Mol 21 A 01 11 Donne-Gousse et al. (2002) Fig 7a  0.032 

Mol 21 A 10 01 McCracken & Sorenson (2005) Fig 2  0.032 

Mol 21 A 12 05 Peters et al. (2005) Fig 5  0.032 

Mol 21 A 12 06 Peters et al. (2005) Fig 6  0.032 

Mol 21 A 13 01 Ruokonen et al. (2000) Fig 2a  0.032 

Mol 21 A 13 02 Ruokonen et al. (2000) Fig 2b 2 0.016 

Mol 21 A 15 01 Young & Rhymer (1998) Fig 2  0.032 

Mol 21 G 04 04 Kimball et al. (1999) Fig 5  0.032 

Mol 21 G 09 02 Kimball et al. (1997) Fig 1b  0.032 

Mol 21 G 09 04 Kimball et al. (1997) Fig 2b  0.032 

Mol 21 G 33 05 Zhan & Zhang (2005) Fig 4b  0.032 



 

Data set Tree ID Reference Tree source 

Number of 

permuations 

Relative 

weight 

Mol 21 G 46 01 Akishinonomiya et al. (1995) Fig 1  0.032 

Mol 21 G 46 02 Akishinonomiya et al. (1995) Fig 2  0.032 

Mol 21 G 59 04 Drovetski (2002) Fig 4 4 0.008 

Mol 21 G 66 01 Akishinonomiya et al. (1996) Fig 2  0.032 

Mol 21 G 67 01 Hennache et al. (2003) Fig 2 3 0.011 

Mol 21 G 69 05 Kimball et al. (2001) Fig 2b4  0.032 

Mol 21 G 70 01 Lucchini et al. (2001) Fig 2  0.032 

Mol 21 G 73 01 Randi & Lucchini (1998) Fig 7  0.032 

Mol 21 G 74 01 Randi et al. (2000) Fig 5  0.032 

Mol 21 G 74 02 Randi et al. (2000) Fig 6a  0.032 

Mol 21 G 74 03 Randi et al. (2000) Fig 6b  0.032 

Mol 21 G 74 04 Randi et al. (2000) Fig 6c  0.032 

Mol 21 G 89 08 Crowe et al. (2006) Fig 3f 2 0.016 

Mol 21 G 89 12 Crowe et al. (2006) Fig 7 3 0.011 

Mol 22 G 31 05 Garcia-Moreno et al. (2003) Fig a1 (ND1)  0.500 

Mol 22 G 31 14 Garcia-Moreno et al. (2003) Fig a2 (ND1)  0.500 

Mol 23 G 48 01 Nishibori et al. (2005) Fig 1a 2 0.250 

Mol 23 G 48 03 Nishibori et al. (2005) Fig 1c 2 0.250 

Mol 24 G 31 06 Garcia-Moreno et al. (2003) Fig a1 (ND2)  0.200 

Mol 24 G 31 15 Garcia-Moreno et al. (2003) Fig a2 (ND2)  0.200 

Mol 24 G 55 02 Birks & Edwards (2002) Fig 5 (right) 2 0.100 

Mol 24 G 55 04 Birks & Edwards (2002) Fig 6 (right) 2 0.100 

Mol 24 G 89 11 Crowe et al. (2006) Fig 6 2 0.100 

Mol 25 A 07 01 Kessler & Avise (1984) Fig 2 (upper)  0.333 

Mol 25 A 07 02 Kessler & Avise (1984) Fig 2 (lower)  0.333 

Mol 25 A 07 03 Kessler & Avise (1984) Fig 3 3 0.333 



 

Data set Tree ID Reference Tree source 

Number of 

permuations 

Relative 

weight 

Mol 26 A 18 01 Tuohy et al. (1992) Fig 7  1.000 

Mol 27 G 49 01 Munechika et al. (1997) Fig 1  1.000 

Mol 28 G 61 01 Ellsworth et al. (1995) Fig 1  0.500 

Mol 28 G 61 02 Ellsworth et al. (1995) Fig 2  0.500 

Mol 29 G 64 05 Crowe et al. (1992) Fig 3b  0.500 

Mol 29 G 64 07 Crowe et al. (1992) Fig 4  0.500 

Mol 31 G 37 05 Avise et al. (1994) Fig 4  1.000 

Mol 32 G 52 03 Pereira et al. (2002) Fig 4  0.500 

Mol 32 G 52 04 Pereira et al. (2002) Fig 5  0.500 

Mol 33 G 31 04 Garcia-Moreno et al. (2003) Fig a1 (all 

characters) 

 0.500 

Mol 33 G 31 19 Garcia-Moreno et al. (2003) Fig a2 (all 

protein genes) 

 0.500 

Mol 34 G 69 02 Kimball et al. (2001) Fig 2b1  1.000 

Mol 35 A 10 04 McCracken & Sorenson (2005) Fig 5 (upper)  0.500 

Mol 35 A 10 05 McCracken & Sorenson (2005) Fig 5 (lower)  0.500 

Mol 36 G 28 04 Cracraft et al. (2004) Fig 275  1.000 

Mol 37 G 55 05 Birks & Edwards (2002) Fig 7 2 0.500 

Mol 38 G 59 05 Drovetski (2002) Fig 5  1.000 

Mol 39 G 26 01 van Tuinen & Hedges (2001) Fig 3  1.000 

Mol 42 A 17 01 Madsen et al. (1988) Fig 2  0.250 

Mol 42 G 19 03 Sibley & Ahlquist (1990) Fig 328  0.250 

Mol 42 G 19 05 Sibley & Ahlquist (1990) Fig 354  0.250 

Mol 42 G 19 06 Sibley & Ahlquist (1990) Fig 357  0.250 

Mol 43 G 18 02 Eguchi et al. (2000) Fig 6b  0.500 

Mol 43 G 50 01 Eguchi et al. (1995) Fig 4a  0.500 



 

Data set Tree ID Reference Tree source 

Number of 

permuations 

Relative 

weight 

Mol 44 G 18 01 Eguchi et al. (2000) Fig 6a  0.500 

Mol 44 G 50 02 Eguchi et al. (1995) Fig 4b  0.500 

Mol 45 G 18 03 Eguchi et al. (2000) Fig 6c  0.500 

Mol 45 G 50 03 Eguchi et al. (1995) Fig 4c  0.500 

Mol 47 G 13 01 Jolles et al. (1979) Fig 3  0.500 

Mol 47 G 14 08 Kornegay et al. (1993) Fig 8  0.500 

Mol 48 G 12 01 Henderson et al. (1981) Fig 7  1.000 

Mol 49 G 08 01 Gutierrez et al. (1983) Fig 1  0.250 

Mol 49 G 08 02 Gutierrez et al. (1983) Fig 2  0.250 

Mol 49 G 08 03 Gutierrez et al. (1983) Fig 3 left  0.250 

Mol 49 G 08 04 Gutierrez et al. (1983) Fig 3 right  0.250 

Mol 50 G 59 03 Drovetski (2002) Fig 3 2 0.500 

Mol 51 G 07 01 Smith et al. (2005) Fig 1 4 0.125 

Mol 51 G 07 02 Smith et al. (2005) Fig 2 2 0.250 

Mol 52 G 38 01 Hedges et al. (1995) Fig 2a  1.000 

Mol 53 G 59 02 Drovetski (2002) Fig 2  1.000 

Mol 54 A 12 03 Peters et al. (2005) Fig 4a 2 0.125 

Mol 54 A 12 04 Peters et al. (2005) Fig 4b 2 0.125 

Mol 55 A 04 01 John et al. (2005) Fig 4  1.000 

Mol 56 G 48 05 Nishibori et al. (2005) Fig 3  1.000 

Mol 57 G 31 02 Garcia-Moreno et al. (2003) Fig 2c  0.200 

Mol 57 G 31 08 Garcia-Moreno et al. (2003) Fig a1 (Cmos)  0.200 

Mol 57 G 31 12 Garcia-Moreno et al. (2003) Fig a2 (Cmos)  0.200 

Mol 57 G 31 17 Garcia-Moreno et al. (2003) Fig a2 (all 

characters) 

 0.200 

Mol 57 G 58 01 Butorina & Solovenchuk (2004) Fig 2  0.200 



 

Data set Tree ID Reference Tree source 

Number of 

permuations 

Relative 

weight 

Mol 59 G 28 07 Cracraft et al. (2004) Fig 278  1.000 

Mol 60 G 24 01 Fain & Houde (2004) Fig 2  1.000 

Mol 61 G 79 01 Backstrom et al. (2005) Fig 1  1.000 

Mol 62 G 17 03 Sorenson et al. (2003) Fig 3  1.000 

Mol 63 G 48 04 Nishibori et al. (2005) Fig 2 2 0.500 

Mol 64 G 01 01 Armstrong et al. (2001) Fig left  0.333 

Mol 64 G 69 06 Kimball et al. (2001) Fig 2b5  0.333 

Mol 64 G 89 14 Crowe et al. (2006) Fig 9 2 0.167 

Mol 65 G 41 01 Pimentel-Smith et al. (2001) Fig 1  1.000 

Mol 66 G 28 05 Cracraft et al. (2004) Fig 277a  1.000 

Mol 67 G 55 01 Birks & Edwards (2002) Fig 5 (left)  0.500 

Mol 67 G 55 03 Birks & Edwards (2002) Fig 6 (left)  0.500 

Mol 68 G 59 01 Drovetski (2002) Fig 1  1.000 

Mol 69 G 15 05 Prager & Wilson (1976) Fig 3a  0.500 

Mol 69 G 15 06 Prager & Wilson (1976) Fig 3b  0.500 

Mol 71 G 11 01 Kathleen et al. (1986) Fig 3I  1.000 

Mol 72 G 36 01 Helm-Bychowski & Wilson (1986) Fig 3I  1.000 

Mol 73 G 15 07 Prager & Wilson (1976) Fig 4a  0.500 

Mol 73 G 15 08 Prager & Wilson (1976) Fig 4b  0.500 

Mol 74 G 15 03 Prager & Wilson (1976) Fig 2a  0.500 

Mol 74 G 15 04 Prager & Wilson (1976) Fig 2b  0.500 

Mol 75 G 15 11 Prager & Wilson (1976) Fig 7  1.000 

Mol 76 G 75 05 Randi et al. (1991) Fig 2a  0.250 

Mol 76 G 75 06 Randi et al. (1991) Fig 2b  0.250 

Mol 76 G 75 07 Randi et al. (1991) Fig 2c  0.250 

Mol 76 G 75 08 Randi et al. (1991) Fig 2d  0.250 



 

Data set Tree ID Reference Tree source 

Number of 

permuations 

Relative 

weight 

Mol 77 G 76 01 Randi et al. (1992) Fig 2a  0.500 

Mol 77 G 76 02 Randi et al. (1992) Fig 2b  0.500 

Mol 79 A 19 02 Patton & Avise (1986) Fig 2  0.333 

Mol 79 A 19 03 Patton & Avise (1986) Fig 3  0.333 

Mol 79 A 19 04 Patton & Avise (1986) Fig 4  0.333 

Mol 80 A 30 09 Livezey (1997) Fig 7c  1.000 

Mol 81 G 28 02 Cracraft et al. (2004) Fig 273  1.000 

Mol 82 A 01 10 Donne-Gousse et al. (2002) Fig 6  1.000 

Mol 83 G 70 03 Lucchini et al. (2001) Fig 4  1.000 

Morph A 02 01 Ericson (1997) Fig 33  0.017 

Morph A 02 02 Ericson (1997) Fig 34  0.017 

Morph A 02 03 Ericson (1997) Fig 35  0.017 

Morph A 02 04 Ericson (1997) Fig 36  0.017 

Morph A 09 01 McCracken et al. (1999) Fig 1a  0.017 

Morph A 09 02 McCracken et al. (1999) Fig 1ba  0.017 

Morph A 09 03 McCracken et al. (1999) Fig 1b2  0.017 

Morph A 09 08 McCracken et al. (1999) Fig 4  0.017 

Morph A 09 11 McCracken et al. (1999) Fig 6a  0.017 

Morph A 20 01 Livezey (1986a) Fig 1  0.017 

Morph A 21 02 Livezey (1986b) Fig 2  0.017 

Morph A 22 01 Livezey (1989) Fig 1  0.017 

Morph A 23 01 Livezey (1991) Fig 1 2 0.008 

Morph A 24 01 Livezey (1995a) Fig 1a  0.017 

Morph A 24 02 Livezey (1995a) Fig 1b  0.017 

Morph A 24 03 Livezey (1995a) Fig 1c  0.017 

Morph A 24 04 Livezey (1995a) Fig 2  0.017 



 

Data set Tree ID Reference Tree source 

Number of 

permuations 

Relative 

weight 

Morph A 24 05 Livezey (1995a) Fig 3  0.017 

Morph A 25 01 Livezey (1995b) Fig 1  0.017 

Morph A 25 02 Livezey (1995b) Fig 2  0.017 

Morph A 26 01 Livezey (1995c) Fig 1  0.017 

Morph A 26 02 Livezey (1995c) Fig 2  0.017 

Morph A 27 01 Livezey (1996a) Fig 1  0.017 

Morph A 27 02 Livezey (1996a) Fig 2  0.017 

Morph A 27 04 Livezey (1996c) Fig 4  0.017 

Morph A 28 01 Livezey (1996c) Fig 1  0.017 

Morph A 28 02 Livezey (1996c) Fig 2  0.017 

Morph A 28 03 Livezey (1996c) Fig 3  0.017 

Morph A 28 04 Livezey (1996c) Fig 4  0.017 

Morph A 28 05 Livezey (1996c) Fig 5  0.017 

Morph A 28 06 Livezey (1996c) Fig 6  0.017 

Morph A 28 07 Livezey (1996c) Fig 7  0.017 

Morph A 28 08 Livezey (1996c) Fig 8  0.017 

Morph A 28 09 Livezey (1996c) Fig 9  0.017 

Morph A 28 10 Livezey (1996c) Fig 10  0.017 

Morph A 28 11 Livezey (1996) Fig 11  0.017 

Morph A 29 01 Livezey (1996b) Fig 1  0.017 

Morph A 29 02 Livezey (1996b) Fig 2  0.017 

Morph A 29 03 Livezey (1996b) Fig 3  0.017 

Morph A 30 01 Livezey (1997a) Fig 1  0.017 

Morph A 30 02 Livezey (1997a) Fig 2  0.017 

Morph A 30 03 Livezey (1997a) Fig 3  0.017 

Morph A 30 04 Livezey (1997a) Fig 4  0.017 



 

Data set Tree ID Reference Tree source 

Number of 

permuations 

Relative 

weight 

Morph A 30 05 Livezey (1997a) Fig 5  0.017 

Morph A 30 06 Livezey (1997b) Fig 6  0.017 

Morph A 32 01 Livezey (1997b) Fig 1  0.017 

Morph A 32 02 Livezey (1997b) Fig 2  0.017 

Morph A 33 01 Livezey & Martin (1988) Fig 10a  0.017 

Morph A 33 02 Livezey & Martin (1988) Fig 10b  0.017 

Morph A 33 03 Livezey & Martin (1988) Fig 10c  0.017 

Morph A 33 04 Livezey & Martin (1988) Fig 10d  0.017 

Morph A 33 05 Livezey & Martin (1988) Fig 10e  0.017 

Morph A 33 06 Livezey & Martin (1988) Fig 10f  0.017 

Morph A 34 01 Bourdon (2005) Fig 2  0.017 

Morph G 32 01 Livezey & Zusi (2001) Fig 2b  0.017 

Morph G 32 04 Livezey & Zusi (2001) Fig 3  0.017 

Morph G 34 01 Dyke (2003) Fig 2  0.017 

Morph G 44 02 Gulas-Wroblewski & Wroblewski 

(2003) 

Fig 4  0.017 

Morph G 56 02 Jones et al. (1995) Fig 22  0.017 

Morph G 63 07 Bloomer & Crowe (1998) Fig 6  0.017 

Other 01 A 09 12 McCracken et al. (1999) Fig 9a  0.250 

Other 01 A 09 13 McCracken et al. (1999) Fig 9b  0.250 

Other 01 A 09 14 McCracken et al. (1999) Fig 9c  0.250 

Other 01 A 09 15 McCracken et al. (1999) Fig 9d  0.250 

Other 02 G 64 02 Crowe et al. (1992) Fig 1b  0.333 

Other 02 G 64 03 Crowe et al. (1992) Fig 1c  0.333 

Other 02 G 64 04 Crowe et al. (1992) Fig 3a  0.333 

Other 03 G 91 02 Crowe (1978) Fig 47  0.500 



 

Data set Tree ID Reference Tree source 

Number of 

permuations 

Relative 

weight 

Other 03 G 91 03 Crowe (1978) Fig 53  0.500 

Other 04 G 23 01 Johnsgard (1999) Fig 1  0.500 

Other 04 G 23 02 Johnsgard (1999) Fig 2  0.500 

Other 05 G 03 01 Dike et al. (2003) Fig 2 2 0.250 

Other 05 G 03 02 Dike et al. (2003) Fig 3 2 0.250 

Other 06 G 74 06 Randi et al. (2000) Fig 6e  1.000 

Other 07 G 72 02 Moulin et al. (2003) Fig 3  1.000 

Other 08 G 06 01 Shibusawa et al. (2004b) Fig 6  1.000 

Other 09 G 16 01 Stock & Bunch (1982) Fig 10  1.000 

Other 11 G 20 01 Johnsgard (1983) Fig 1  1.000 

Other 12 G 21 02 Johnsgard (1973) Fig 1 (down)  1.000 

Other 13 G 22 02 Johnsgard (1988) Fig 3  1.000 

Unsp 01 A 01 01 Donne-Gousse et al. (2002) Fig 1a  1.000 

Unsp 02 A 30 08 Livezey (1997) Fig 7b  1.000 

Unsp 03 G 09 05 Kimball et al. (1997) Fig 3a  1.000 

Unsp 07 G 28 08 Cracraft et al. (2004) Fig 2710  1.000 

Unsp 08 G 33 02 Zhan & Zhang (2005) Fig 2b  1.000 

Unsp 09 G 52 01 Pereira et al. (2002) Fig 2a  1.000 

Unsp 10 G 52 02 Pereira et al. (2002) Fig 2b  1.000 

Unsp 11 G 53 01 Grau et al. (2005) Fig 1  1.000 

Unsp 12 G 56 01 Jones et al. (1995) Fig 21  1.000 

Unsp 13 G 63 01 Bloomer & Crowe (1998) Fig 1  1.000 

Tax Tax Dickinson (2003)   0.001 
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Supplementary Material II 

 

rQS values for the strict consensus supertree, indicating nodal support (± SE) among the set of source trees 

together with the number of source trees supporting, conflicting or equivocal with a given node.  Node 

numbers refer to Figs 2 and 3. 

 

Node 

number 

Clade 

size 

rQS ± SE 

Number of 

matches 

Number of 

mismatches 

Number of 

equivocal matches 

1 376 0.265 ± 0.023 102 0 283 

2 214 0.252 ± 0.023 99 2 284 

3 13 0.055 ± 0.012 22 1 362 

4 12 0.000 ± 0.011 9 9 367 

5 11 0.034 ± 0.014 21 8 356 

6 4 0.039 ± 0.011 16 1 368 

7 3 0.008 ± 0.005 3 0 382 

8 2 0.008 ± 0.005 3 0 382 

9 163 0.252 ± 0.024 104 7 274 

10 6 0.026 ± 0.010 12 2 371 

11 4 0.047 ± 0.012 20 2 363 

12 3 0.018 ± 0.009 10 3 372 

13 2 0.005 ± 0.004 2 0 383 

14 2 0.005 ± 0.004 2 0 383 

15 157 0.018 ± 0.011 12 5 368 

16 155 -0.018 ± 0.007 0 7 378 

17 154 -0.016 ± 0.006 0 6 379 

18 152 -0.023 ± 0.024 40 49 296 

19 139 0.005 ± 0.013 13 11 361 

20 135 0.213 ± 0.027 103 21 261 



 

Node 

number 

Clade 

size 

rQS ± SE 

Number of 

matches 

Number of 

mismatches 

Number of 

equivocal matches 

21 90 -0.034 ± 0.017 15 28 342 

22 86 0.000 ± 0.028 56 56 273 

23 68 -0.094 ± 0.023 22 58 305 

24 12 -0.003 ± 0.015 16 17 352 

25 5 0.034 ± 0.014 21 8 356 

26 3 0.094 ± 0.015 37 1 347 

27 2 0.036 ± 0.010 14 0 371 

28 2 0.047 ± 0.011 18 0 367 

29 7 0.021 ± 0.007 8 0 377 

30 3 0.013 ± 0.007 6 1 378 

31 2 0.016 ± 0.007 7 1 377 

32 4 0.008 ± 0.007 5 2 378 

33 3 0.013 ± 0.007 6 1 378 

34 2 0.005 ± 0.004 2 0 383 

35 56 0.148 ± 0.025 80 23 282 

36 22 -0.005 ± 0.020 28 30 327 

37 20 0.003 ± 0.022 37 36 312 

38 18 0.106 ± 0.019 50 9 326 

39 17 0.008 ± 0.017 24 21 340 

40 15 0.148 ± 0.020 63 6 316 

41 6 -0.026 ± 0.019 22 32 331 

42 2 0.021 ± 0.015 21 13 351 

43 4 0.055 ± 0.015 28 7 350 

44 2 0.052 ± 0.013 24 4 357 

45 2 0.055 ± 0.014 25 4 356 

46 9 -0.062 ± 0.020 17 41 327 



 

Node 

number 

Clade 

size 

rQS ± SE 

Number of 

matches 

Number of 

mismatches 

Number of 

equivocal matches 

47 6 0.034 ± 0.019 32 19 334 

48 2 0.021 ± 0.007 8 0 377 

49 4 0.039 ± 0.019 34 19 332 

50 3 0.049 ± 0.014 25 6 354 

51 2 -0.013 ± 0.015 13 18 354 

52 3 0.029 ± 0.017 26 15 344 

53 2 0.096 ± 0.015 37 0 348 

54 2 0.075 ± 0.013 29 0 356 

55 2 0.018 ± 0.008 8 1 376 

56 2 0.031 ± 0.009 12 0 373 

57 34 0.005 ± 0.018 24 22 339 

58 25 0.008 ± 0.013 14 11 360 

59 24 0.088 ± 0.015 36 2 347 

60 22 0.016 ± 0.018 26 20 339 

61 20 -0.023 ± 0.009 2 11 372 

62 17 0.023 ± 0.017 26 17 342 

63 12 0.016 ± 0.013 16 10 359 

64 11 0.013 ± 0.006 5 0 380 

65 10 0.005 ± 0.007 5 3 377 

66 4 -0.003 ± 0.006 2 3 380 

67 3 -0.003 ± 0.006 2 3 380 

68 2 -0.003 ± 0.006 2 3 380 

69 6 0.034 ± 0.009 13 0 372 

70 3 0.008 ± 0.006 4 1 380 

71 2 0.013 ± 0.007 6 1 378 

72 3 0.005 ± 0.008 6 4 375 



 

Node 

number 

Clade 

size 

rQS ± SE 

Number of 

matches 

Number of 

mismatches 

Number of 

equivocal matches 

73 2 0.018 ± 0.007 7 0 378 

74 5 0.023 ± 0.014 19 10 356 

75 2 0.013 ± 0.006 5 0 380 

76 3 0.034 ± 0.009 13 0 372 

77 2 -0.016 ± 0.008 2 8 375 

78 3 0.026 ± 0.008 10 0 375 

79 2 0.026 ± 0.008 10 0 375 

80 2 0.005 ± 0.004 2 0 383 

81 2 -0.003 ± 0.007 3 4 378 

82 9 -0.003 ± 0.015 16 17 352 

83 3 0.010 ± 0.005 4 0 381 

84 2 0.005 ± 0.005 3 1 381 

85 6 0.021 ± 0.015 20 12 353 

86 5 0.044 ± 0.010 17 0 368 

87 4 0.018 ± 0.009 9 2 374 

88 3 -0.010 ± 0.010 5 9 371 

89 2 -0.003 ± 0.007 3 4 378 

90 18 0.010 ± 0.016 20 16 349 

91 5 0.075 ± 0.017 37 8 340 

92 4 0.073 ± 0.013 28 0 357 

93 3 0.029 ± 0.011 14 3 368 

94 2 0.005 ± 0.013 13 11 361 

95 13 -0.018 ± 0.009 2 9 374 

96 12 0.003 ± 0.010 8 7 370 

97 7 0.005 ± 0.005 3 1 381 

98 6 0.018 ± 0.010 11 4 370 



 

Node 

number 

Clade 

size 

rQS ± SE 

Number of 

matches 

Number of 

mismatches 

Number of 

equivocal matches 

99 4 0.029 ± 0.010 13 2 370 

100 3 0.013 ± 0.010 10 5 370 

101 2 0.005 ± 0.005 3 1 381 

102 2 -0.013 ± 0.009 3 8 374 

103 5 -0.013 ± 0.010 5 10 370 

104 4 0.005 ± 0.005 3 1 381 

105 3 0.010 ± 0.005 4 0 381 

106 2 0.010 ± 0.005 4 0 381 

107 4 -0.013 ± 0.009 3 8 374 

108 3 0.013 ± 0.006 5 0 380 

109 45 0.044 ± 0.022 43 26 316 

110 39 -0.018 ± 0.011 5 12 368 

111 37 -0.008 ± 0.005 0 3 382 

112 36 -0.031 ± 0.009 0 12 373 

113 35 -0.005 ± 0.012 9 11 365 

114 31 -0.008 ± 0.010 6 9 370 

115 7 0.052 ± 0.011 20 0 365 

116 2 -0.003 ± 0.011 8 9 368 

117 5 0.057 ± 0.013 24 2 359 

118 4 0.026 ± 0.012 15 5 365 

119 3 0.047 ± 0.011 19 1 365 

120 2 0.044 ± 0.010 17 0 368 

121 24 0.023 ± 0.010 12 3 370 

122 23 0.013 ± 0.009 8 3 374 

123 16 0.013 ± 0.009 8 3 374 

124 12 0.003 ± 0.010 8 7 370 



 

Node 

number 

Clade 

size 

rQS ± SE 

Number of 

matches 

Number of 

mismatches 

Number of 

equivocal matches 

125 8 -0.003 ± 0.010 7 8 370 

126 7 0.005 ± 0.010 9 7 369 

127 6 0.005 ± 0.005 3 1 381 

128 5 -0.008 ± 0.009 4 7 374 

129 4 0.016 ± 0.007 7 1 377 

130 2 0.018 ± 0.010 11 4 370 

131 4 0.000 ± 0.005 2 2 381 

132 3 0.010 ± 0.005 4 0 381 

133 7 0.010 ± 0.005 4 0 381 

134 6 0.000 ± 0.005 2 2 381 

135 5 0.000 ± 0.005 2 2 381 

136 3 0.005 ± 0.005 3 1 381 

137 2 0.010 ± 0.005 4 0 381 

138 4 0.005 ± 0.004 2 0 383 

139 3 0.005 ± 0.004 2 0 383 

140 2 0.005 ± 0.004 2 0 383 

141 2 0.005 ± 0.004 2 0 383 

142 6 0.099 ± 0.017 43 5 337 

143 4 0.042 ± 0.010 16 0 369 

144 3 0.005 ± 0.009 7 5 373 

145 2 -0.003 ± 0.005 1 2 382 

146 13 0.021 ± 0.007 8 0 377 

147 12 0.065 ± 0.015 29 4 352 

148 7 0.026 ± 0.015 21 11 353 

149 6 0.068 ± 0.015 31 5 349 

150 4 0.018 ± 0.007 7 0 378 



 

Node 

number 

Clade 

size 

rQS ± SE 

Number of 

matches 

Number of 

mismatches 

Number of 

equivocal matches 

151 2 0.031 ± 0.009 12 0 373 

152 2 0.026 ± 0.008 10 0 375 

153 5 0.005 ± 0.004 2 0 383 

154 4 0.016 ± 0.006 6 0 379 

155 3 0.005 ± 0.004 2 0 383 

156 2 0.005 ± 0.004 2 0 383 

157 2 0.005 ± 0.004 2 0 383 

158 2 -0.003 ± 0.005 1 2 382 

159 17 0.099 ± 0.015 38 0 347 

160 5 0.021 ± 0.009 10 2 373 

161 3 0.026 ± 0.012 16 6 363 

162 2 0.021 ± 0.008 9 1 375 

163 2 0.003 ± 0.003 1 0 384 

164 11 0.023 ± 0.013 18 9 358 

165 10 0.036 ± 0.010 14 0 371 

166 9 0.026 ± 0.008 10 0 375 

167 2 0.018 ± 0.007 7 0 378 

168 7 0.026 ± 0.008 10 0 375 

169 5 0.016 ± 0.008 8 2 375 

170 3 0.018 ± 0.007 7 0 378 

171 2 0.008 ± 0.007 5 2 378 

172 2 0.021 ± 0.008 9 1 375 

173 2 0.026 ± 0.008 10 0 375 

174 14 0.068 ± 0.013 26 0 359 

175 13 -0.003 ± 0.012 10 11 364 

176 12 -0.003 ± 0.012 11 12 362 



 

Node 

number 

Clade 

size 

rQS ± SE 

Number of 

matches 

Number of 

mismatches 

Number of 

equivocal matches 

177 7 0.013 ± 0.006 5 0 380 

178 6 0.003 ± 0.006 3 2 380 

179 2 0.008 ± 0.006 4 1 380 

180 4 0.013 ± 0.006 5 0 380 

181 3 0.008 ± 0.006 4 1 380 

182 2 0.013 ± 0.006 5 0 380 

183 5 0.021 ± 0.010 12 4 369 

184 2 0.000 ± 0.007 4 4 377 

185 3 0.016 ± 0.007 7 1 377 

186 2 0.000 ± 0.007 4 4 377 

187 162 0.135 ± 0.017 52 0 333 

188 158 0.044 ± 0.010 17 0 368 

189 156 0.044 ± 0.011 18 1 366 

190 155 0.010 ± 0.006 5 1 379 

191 153 0.049 ± 0.012 20 1 364 

192 151 0.177 ± 0.022 77 9 299 

193 111 0.039 ± 0.017 30 15 340 

194 94 0.062 ± 0.021 44 20 321 

195 4 -0.029 ± 0.012 6 17 362 

196 3 0.042 ± 0.011 18 2 365 

197 2 0.008 ± 0.005 3 0 382 

198 3 0.008 ± 0.011 10 7 368 

199 2 0.023 ± 0.009 11 2 372 

200 41 0.062 ± 0.015 30 6 349 

201 35 -0.026 ± 0.010 2 12 371 

202 34 0.010 ± 0.016 20 16 349 



 

Node 

number 

Clade 

size 

rQS ± SE 

Number of 

matches 

Number of 

mismatches 

Number of 

equivocal matches 

203 29 -0.026 ± 0.010 2 12 371 

204 26 0.029 ± 0.010 13 2 370 

205 23 0.042 ± 0.016 28 12 345 

206 6 0.023 ± 0.009 11 2 372 

207 5 0.023 ± 0.009 11 2 372 

208 4 0.039 ± 0.011 17 2 366 

209 3 0.034 ± 0.009 13 0 372 

210 2 0.008 ± 0.005 3 0 382 

211 17 0.016 ± 0.011 12 6 367 

212 4 0.036 ± 0.011 16 2 367 

213 13 0.008 ± 0.015 17 14 354 

214 2 0.013 ± 0.009 9 4 372 

215 11 0.036 ± 0.010 14 0 371 

216 10 0.036 ± 0.010 14 0 371 

217 9 0.026 ± 0.010 12 2 371 

218 8 0.029 ± 0.010 13 2 370 

219 5 0.008 ± 0.009 8 5 372 

220 3 0.000 ± 0.011 9 9 367 

221 2 0.005 ± 0.010 9 7 369 

222 2 0.008 ± 0.005 3 0 382 

223 3 0.008 ± 0.009 8 5 372 

224 2 -0.003 ± 0.009 6 7 372 

225 3 0.039 ± 0.010 15 0 370 

226 3 0.003 ± 0.009 7 6 372 

227 2 0.013 ± 0.009 9 4 372 

228 5 0.078 ± 0.014 30 0 355 



 

Node 

number 

Clade 

size 

rQS ± SE 

Number of 

matches 

Number of 

mismatches 

Number of 

equivocal matches 

229 3 0.049 ± 0.011 19 0 366 

230 2 0.034 ± 0.011 16 3 366 

231 2 0.039 ± 0.011 17 2 366 

232 6 0.057 ± 0.012 22 0 363 

233 4 0.023 ± 0.009 11 2 372 

234 3 0.023 ± 0.009 11 2 372 

235 2 0.034 ± 0.009 13 0 372 

236 2 0.036 ± 0.010 15 1 369 

237 2 0.010 ± 0.005 4 0 381 

238 4 0.010 ± 0.005 4 0 381 

239 2 0.010 ± 0.005 4 0 381 

240 8 0.016 ± 0.009 9 3 373 

241 2 0.005 ± 0.007 5 3 377 

242 6 0.018 ± 0.009 9 2 374 

243 5 0.010 ± 0.005 4 0 381 

244 4 0.010 ± 0.005 4 0 381 

245 3 0.010 ± 0.005 4 0 381 

246 2 0.010 ± 0.005 4 0 381 

247 2 0.008 ± 0.005 3 0 382 

248 2 0.008 ± 0.009 7 4 374 

249 8 0.005 ± 0.011 10 8 367 

250 5 -0.003 ± 0.007 3 4 378 

251 4 -0.003 ± 0.007 3 4 378 

252 3 0.008 ± 0.005 3 0 382 

253 2 0.008 ± 0.005 3 0 382 

254 2 0.008 ± 0.005 3 0 382 



 

Node 

number 

Clade 

size 

rQS ± SE 

Number of 

matches 

Number of 

mismatches 

Number of 

equivocal matches 

255 2 -0.013 ± 0.007 1 6 378 

256 2 0.010 ± 0.005 4 0 381 

257 14 0.057 ± 0.015 28 6 351 

258 8 0.042 ± 0.011 17 1 367 

259 7 0.042 ± 0.013 21 5 359 

260 6 0.047 ± 0.011 18 0 367 

261 5 0.008 ± 0.005 3 0 382 

262 4 0.008 ± 0.005 3 0 382 

263 2 0.008 ± 0.005 3 0 382 

264 6 0.003 ± 0.006 3 2 380 

265 5 0.016 ± 0.006 6 0 379 

266 2 0.008 ± 0.005 3 0 382 

267 3 0.008 ± 0.005 3 0 382 

268 2 0.008 ± 0.005 3 0 382 

269 23 0.042 ± 0.014 22 6 357 

270 15 0.042 ± 0.013 20 4 361 

271 10 0.023 ± 0.010 12 3 370 

272 8 0.013 ± 0.010 10 5 370 

273 6 0.005 ± 0.009 7 5 373 

274 4 0.016 ± 0.009 9 3 373 

275 3 0.003 ± 0.007 4 3 378 

276 2 0.013 ± 0.007 6 1 378 

277 2 -0.005 ± 0.005 1 3 381 

278 2 -0.003 ± 0.007 3 4 378 

279 2 -0.008 ± 0.007 2 5 378 

280 5 0.023 ± 0.008 9 0 376 



 

Node 

number 

Clade 

size 

rQS ± SE 

Number of 

matches 

Number of 

mismatches 

Number of 

equivocal matches 

281 2 -0.003 ± 0.008 4 5 376 

282 3 0.008 ± 0.008 6 3 376 

283 2 0.010 ± 0.006 5 1 379 

284 8 -0.003 ± 0.012 11 12 362 

285 2 0.003 ± 0.011 9 8 368 

286 6 0.010 ± 0.005 4 0 381 

287 2 0.010 ± 0.005 4 0 381 

288 4 0.021 ± 0.007 8 0 377 

289 3 0.010 ± 0.005 4 0 381 

290 2 0.010 ± 0.005 4 0 381 

291 14 -0.018 ± 0.011 6 13 366 

292 12 -0.003 ± 0.007 3 4 378 

293 11 0.013 ± 0.010 10 5 370 

294 10 0.005 ± 0.011 10 8 367 

295 9 0.003 ± 0.012 12 11 362 

296 2 0.016 ± 0.006 6 0 379 

297 6 0.055 ± 0.012 21 0 364 

298 2 0.031 ± 0.009 12 0 373 

299 2 0.013 ± 0.008 7 2 376 

300 2 0.016 ± 0.006 6 0 379 

301 2 0.031 ± 0.009 12 0 373 

302 4 0.049 ± 0.018 33 14 338 

303 3 0.091 ± 0.015 36 1 348 

304 2 0.005 ± 0.004 2 0 383 
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