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INTRODUCTION

Life history strategies of zooplankton reflect physi-
ologically and behaviorally plastic responses to envi-

ronmental heterogeneity (Lampert 2011). In turn, the
vertical distribution of zooplankton is determined by
active habitat selection based on environmental con-
ditions and species-specific physiological and eco-
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ABSTRACT: Diel vertical migration (DVM) of some zooplankters in eutrophic lakes is often com-
pressed during peak hypoxia. To better understand the indirect consequences of seasonal
hypolimnetic hypoxia, we integrated laboratory-based experimental and field-based observa-
tional approaches to quantify how compressed DVM can affect growth of a cladoceran, Daphnia
mendotae, in central Lake Erie, North America. To evaluate hypoxia tolerance of D. mendotae, we
conducted a survivorship experiment with varying dissolved oxygen concentrations, which
demonstrated high sensitivity of D. mendotae to hypoxia (≤2 mg O2 l−1), supporting the field obser-
vations of their behavioral avoidance of the hypoxic hypolimnion. To investigate the effect of tem-
porary changes in habitat conditions associated with the compressed DVM, we quantified the
growth of D. mendotae, using a 3 (food quantity) × 2 (temperature) factorial design laboratory
experiment. Neither food quantity nor temperature affected short-term growth in body length of
D. mendotae. However, D. mendotae RNA content (an index of short-term condition) decreased
under starvation, indicating an immediate response of short-term feeding on condition. We further
evaluated the effect of hypoxia-induced upward shifts in vertical distribution by quantifying the
RNA content of D. mendotae from central Lake Erie before and during peak hypoxia. Despite high
temperature and food quantity in the upper water column, RNA content in field-collected D. men-
dotae remained low during peak hypoxia. Furthermore, D. mendotae collected during peak
hypoxia consisted of only small-bodied (<~1.25 mm) individuals, suggesting that behavioral
avoidance of the hypoxic hypolimnion may also have indirect fitness costs.

KEY WORDS:  Anoxia · RNA:DNA ratio · Food web · Great Lakes · Eutrophication · Zooplankton
ecology
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logical preferences that optimize fitness (Wright &
Shapiro 1990, Lampert 2011). In particular, behav-
ioral selection of suitable growth conditions and
avoidance of potential mortality risks (e.g. predation,
ultraviolet radiation) can drive zooplankton diel ver-
tical migration (DVM) in aquatic ecosystems (Lam-
pert 2011, Williamson et al. 2011).

In eutrophic lakes, dissolved oxygen (DO) concen-
trations of less than 2 mg O2 l−1 (i.e. hypoxia) in the
hypolimnion can disrupt normal DVM of zooplank-
ton during summer (Hanazato et al. 1989, Wright &
Shapiro 1990, Lass et al. 2000). Thermal stratification
of these lakes facilitates hypoxia development in the
hypolimnion during summer as high rates of micro-
bial decomposition and respiration deplete hypolim-
netic oxygen (Yerubandi et al. 2008). While some
zooplankton species (e.g. Daphnia pulicaria) can
 tolerate hypoxia to some extent (creating hypoxia-
mediated temporary predation refugia; Larsson &
Lam pert 2011), seasonal hypoxia can make the hypo -
limnion uninhabitable for intolerant species (Wright
& Shapiro 1990, Vanderpleog et al. 2009a). As a
result, hypoxia-intolerant zooplankton may experi-
ence direct hypoxia-induced mortality if they remain
in the hypolimnion, or an alternative diel cycle of
habitat conditions if they are forced to move to the
upper water column (vertical habitat compression;
Taylor & Rand 2003, Pothoven et al. 2009, Vander-
pleog et al. 2009a).

Vertically migrating zooplankton experience a vari-
ety of environmental gradients as they move through
depth layers (Lampert 1989, Lampert et al. 2003). Her-
bivorous zooplankton such as Daphnia nor mally mi-
grate downward into the dark hypolimnion during the
day (i.e. light-dependent vertical migration), whereas
these individuals will migrate upward into the epil-
imnion at night to seek habitat conditions that often
favor enhanced growth (e.g. warm temperature and
greater food availability) (Lampert 2011). Numerous
studies have examined DVM of Daphnia spp. and their
physiological and ecological responses to varying wa-
ter temperatures and food (i.e. phytoplankton) con-
centrations encountered during these migrations (e.g.
Orcutt & Porter 1984, Stich & Lampert 1984, McKee &
Ebert 1996). However, the relative importance of tem-
perature and food to Daphnia growth appears to be
highly variable, species-specific, and context-depen-
dent (Stich & Lampert 1984, Havel & Lampert 2006).

In seasonally-stratified lakes, migrating Daphnia
ex perience a steep temperature gradient from the
epilimnion to the hypolimnion. While aggregations of
phyto plankton often occur in the epilimnion during
summer, high phytoplankton concentrations in the

metalimnion or hypolimnion (deep chlorophyll max-
ima, DCM) are not uncommon (e.g. Williamson et al.
1996, Cole et al. 2002) and may decouple tempera-
ture and food concentration gradients (Williamson
et al. 1996, Winder et al. 2003). With behavioral
avoidance of the hypolimnion during peak hypoxia,
hypoxia-intolerant Daphnia spp. may temporarily
experience truncated diel cycles of temperature and
food concentration gradients, which can affect growth
and reproduction in eutrophic lakes (Larsson &
 Lampert 2011).

We describe laboratory experiments and field ob -
servations that sought to elucidate how seasonal
hypo limnetic hypoxia can affect the growth of the
cladoceran Daphnia mendotae in a large seasonally
stratified lake, central Lake Erie (USA and Canada;
Fig. 1). Field surveys suggested that D. mendotae are
highly intolerant of hypoxia; during the peak hypoxia
season in summer, individuals virtually disappeared
from the hypolimnion, where DO concentration was
below 2 mg O2 l−1 (Fig. 2c) (Vanderpleog et al. 2009a).
To quantitatively evaluate DO tolerance of D. men-
dotae, we first conducted survivorship experiments
with varying DO concentrations. While remaining in
the upper water column during the day can affect
predation risk, D. mendotae that avoid the hypo -
limnion also will experience an alternative diel cycle
of habitat conditions. To investigate the indirect sub-
lethal effect of seasonal hypoxia development (i.e.
temporary changes in habitat conditions due to trun-
cated DVM), we quantified the effect of differential
food quantity on growth and RNA content (a bio-
chemical indicator of condition) at temperatures typ-
ical of the hypolimnion and epilimnion in central
Lake Erie. Finally, to explore how alternative habitat
conditions (e.g. temperature and food concentration)
resulting from truncated DVM affect realized growth
potential, we examined a temporal change (from
pre- to peak-hypoxia seasons) in RNA content in
D. mendotae from central Lake Erie.
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Fig. 1. Location of Study Site B (depth: 23.2 m) in the central
basin of Lake Erie, with bathymetry shown by 10 m contour 
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Fig. 2. Temperature (°C), dissolved oxygen (mg O2 l−1), chlorophyll a (µg l−1), light (photosynthetically active radiation−PAR,
µmol m−2 s−1), and distribution (gray bar = day; black bar = night) of Daphnia mendotae at Site B in central Lake Erie during (a)
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MATERIALS AND METHODS

Laboratory experiment 1: temperature and DO
effects on survivorship

To test the independent and interactive effects of
temperature and DO concentration on survival of
Daphnia mendotae, we conducted a 6 h survivorship
experiment using 2 temperature treatments (10 and
25°C) and 4 DO concentration treatments (1, 2, 4, and
8 mg O2 l−1; i.e. 8 total treatments). While DO con -
centration in the epilimnion of Lake Erie rarely drops
below 4 mg O2 l−1, and temperature in Lake Erie’s
hypolimnion never reaches 25°C, we included these
ecological threshold treatments to allow for a full ex -
perimental design. Moreover, relatively warm tem -
peratures coupled with low DO are common in many
aquatic systems (e.g. wetlands, reservoirs, estuaries),
and our experiments may be informative of responses
in these types of systems.

We used Daphnia mendotae neonates that we
reared at ~20°C from a single clone originally col-
lected from Lake Erie. Doing so for this and the sub-
sequent experiment allowed us to remove individual
size and age as confounding effects. Further, small
individuals (<1.0 mm), including Daphnia neonates,
have been shown to exhibit DVM in response to
varying habitat conditions (Kessler & Lampert 2004),
although the degree of DVM exhibited by neonates
can be less than adults in some systems (Kessler 2004).

Daphnia mendotae used in our experiments were
fed freeze-dried green algae (Chlorella sp.) (Wilson
& Hay 2007). Experimental water was collected from
oligotrophic Gull Lake, Michigan, USA, filtered, and
autoclaved prior to use. The experimental water was
transferred to capped Pyrex bottles (125 ml; n = 5 per
treatment, i.e. N = 40). High (8 mg O2 l−1) and low
(1, 2, and 4 mg O2 l−1) DO concentrations were then
prepared by bubbling ambient air and nitrogen,
respectively.

We began the experiments by adding 2 Daphnia
mendotae neonates (<24 h old) to each bottle without
food. While Daphnia can tolerate lower DO concen-
trations when acclimated over time (Zeis et al. 2004),
the experimental animals were not acclimated (tem-
perature or DO) prior to the experiments, be cause
our objective was to evaluate DO tolerance of D.
mendotae in response to abrupt shifts in temperature
and DO concentration that they experience during
their DVM. Bottles were immediately sealed to mini-
mize changes in DO concentration and placed in
incubators to maintain constant temperatures (10 or
25°C) with an 11 h light:13 h dark photoperiod. At

 regular intervals (1, 2, 4, and 6 h after start of the
experiments), D. mendotae survivorship was recorded.
DO concentration was measured at the end of the
experiment.

Laboratory experiment 2: temperature and food
quantity effects on growth and condition

To test the independent and interactive effects of
temperature and food quantity on the growth and
condition of Daphnia mendotae, we conducted a 30 h
experiment with 3 food quantity treatments (starva-
tion: 0 mg dry wt l−1; low ration: 0.25 ± 0.02 mg dry wt
l−1; and high ration: 1.2 ± 0.05 mg dry wt l−1) and
2 temperature treatments (10 and 25°C) (i.e. 6 total
treatments). We used the same D. mendotae clone for
this experiment as was used in the survivorship
experiment. At the start of the experiment, we mea-
sured the body length (from the anterior margin of
the head to the base of the tail spine; ±0.001 mm) of
15 random individual neonates under a dissecting
microscope, using their mean length as the initial
length for all treatments. Samples were then pre-
served in RNA Later™ (Ambion) for subsequent mea-
surements of RNA content (Go rokhova & Kyle 2002).
We began the experiments by adding 1 neonate to a
100 ml Pyrex bottle (n = 6 per treatment, i.e. N = 36)
filled with autoclaved Lake Erie experimental water
without (starvation) or with freeze-dried Chlorella sp.
Freeze-dried algae was preferred over live algae to
minimize potential confounding factors related to
algal growth. Bottles were then placed in incubators
(10 or 25°C) with an 11 h light:13 h dark photoperiod.
During the day, the bottles were turned every 4 h to
resuspend food (dead cells of Chlorella, a very small
alga, sink at a rate of ~4.2 mm h−1). After 30 h, D.
mendotae were re moved from the bottles, and their
body lengths measured under a dissecting micro-
scope before storage in RNA Later™ (Gorokhova &
Kyle 2002, Gorokhova 2005).

Field collections

Daphnia mendotae were collected from central
Lake Erie (Site B; Fig. 1) on 17−18 June, 16−17
August, and 17−18 September of 2005 using a full
water column tow (at 0.5 m s−1) with a 0.5 m diameter,
metered zooplankton net (153 µm mesh). All samples
were concentrated using a 64 µm sieve and trans-
ferred into 1.5 ml tubes filled with RNA Later™
(<5% sample vs. RNA Later™ in a tube) (Gorokhova
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& Kyle 2002). In the laboratory, D. mendotae were
identified, measured (±0.001 mm), and transferred
into individual tubes for subsequent nucleic acid ana -
lyses. Prior to use, all glassware and equipment used
in processing zooplankton samples were cleaned with
RNAse Erase™ (MP Biomedicals).

RNA content analyses

RNA content of Daphnia mendotae from laboratory
experiments and field collections was determined
by total fluorescence following established methods
(e.g. Gorokhova & Kyle 2002, Roberts et al. 2011).
Daph nia mendotae samples were removed from
RNA Later™, rinsed with RNAse-free water, and
homo genized in extraction buffer (50 µl, 1% sarcosyl
in TE buffer) (Höök et al. 2008). Samples underwent
a repeated sequence (n = 3) of an ultrasound bath
(30 s) and an ice bath (1 min) (Holmborn et al. 2009),
and were shaken for 2 h at room temperature (Höök
et al. 2008). The subsamples (5 µl) and TE buffer
(65 µl) then were transferred to a microplate well.
After RiboGreen (Molecular Probes; 70 µl) was added
to each well, fluorescence was measured using a
microplate reader (FLx800, Bio-Tek instruments with
KCjunior software) (Roberts et al. 2011). Fluoro -
metric determination was repeated after digestion
with diluted (1:99) RNAse (5 µl) and dark incubation
for 30 min at 37°C (Gorokhova & Kyle 2002, Höök et
al. 2008). DNA and RNA contents of samples were
determined through comparison with DNA and RNA
standards. The overall standard curve slope ratio
(mDNA/mRNA) was 2.54 ± 0.09 (mean ± SE).

Statistical analyses

Normality of data and homogeneity of variance
were evaluated using Shapiro-Wilks W test and Lev-
ene’s test, respectively. Prior to analyses, data were
log10-transformed as necessary to meet statistical
assumptions.

Statistical differences in final survival rate among
treatment groups in Expt 1 were tested using 2-way
log-linear analysis of frequency (Quinn & Keough
2002). Statistical differences in growth, relative
changes in body length and RNA content, among
treatment groups in Expt 2 were tested using 2-way
analysis of variance (ANOVA). We performed F-tests
to test significance of differences (planned post hoc
comparisons) between specific treatment groups (Rux-
ton & Beauchamp 2008).

We evaluated statistical significance of the rela-
tionship between body length and RNA content of
field-collected Daphnia mendotae using linear re -
gression. Preliminary analysis of differences in RNA
content of D. mendotae among months, using analy-
sis of covariance (ANCOVA) with body length as a
covariate, showed a violation of the homogeneous
slopes assumption. Thus, we used the Wilcox modifi-
cation of the Johnson-Neyman procedure (Quinn &
Keough 2002). We evaluated differences in mean
body length among months using 1-way ANOVA,
which, if significant, was followed by Tukey’s hon-
estly significant difference (HSD) test. All statistical
analyses were performed at the significance level of
p < 0.05 using STATISTICA 7.1 (StatSoft), except for
the Wilcox procedure, which was performed with
WILCOX v.3.2 (Wilcox 1987).

RESULTS

Laboratory experiment 1: temperature and DO
effects on survivorship

At 25°C, the survival rate of Daphnia mendotae
exposed to 8 mg O2 l−1 remained 100%, whereas at
10°C, it slightly dropped after 2 h but remained at
~90% until the end of the experiment (Fig. 3). When
D. mendotae was exposed to 4 mg O2 l−1 at 25°C, the
survivorship began declining after 1 h and reached
only ~60% survival at the end of the experiment
(Fig. 3). However, neonates exposed to 4 mg O2 l−1 at
10°C showed high survivorship (~90%) even after 6 h
(Fig. 3). When D. mendotae were exposed to 2 and
1 mg O2 l−1, survivorship immediately decreased,
falling below 50% for 3 of these 4 treatments (sur-
vival remained higher, ~70%, in the 2 mg O2 l−1 at
25°C treatment; Fig. 3). While log-linear analyses
showed no difference between temperature treat-
ments (partial likelihood ratio χ2 = 0.06, df = 1, p =
0.80), DO treatments significantly affected survival
(χ2 = 53.8, df = 3, p < 0.001). A significant  DO–
temperature interaction also was observed (χ2 = 8.88,
df = 3, p < 0.05); in particular, survivorship of neo -
nates exposed to the treatment with 2 mg O2 l−1 at
25°C was substantially higher (~70%) than at 10°C
(~35%) at the end of experiment (Fig. 3).

Laboratory experiment 2: temperature and food
quantity effects on growth and condition

No difference in growth was observed among the
temperature (F1, 30 = 0.39, p = 0.54) or food quantity
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(F2, 30 = 0.04, p = 0.96) treatments, nor was an interac-
tion observed (F2, 30 = 0.24, p = 0.78); body length of
Daphnia mendotae, averaged across all treatments,
increased by ~20% over 30 h (Fig. 4a). By contrast,
RNA content (our proxy for condition) responded to
the experimental treatments. Whereas temperature
did not affect RNA content (F1, 30 = 1.70, p = 0.20),
food quantity did (F2, 30 = 3.98, p < 0.05), with no inter-
action between food quantity and temperature being
detected (F2, 30 = 0.31, p = 0.97; Fig. 4b). Despite the
lack of a significant temperature effect, the RNA con-
tent of individuals exposed to 10°C was consistently
lower than those exposed to 25°C, regardless of food
availability. Further, at 10°C, RNA content of D. men-

dotae in the starvation treatment decreased from ini-
tial content, whereas no changes from initial RNA
content were evident in the low- and high-ration
treatments (Fig. 4b). At 10°C, RNA content in the
starvation treatment was significantly lower than in
the low ration treatment groups (F1, 30 = 7.61, p < 0.05;
Fig. 4b). Additionally, no relationship was found
between relative changes in body length and RNA
content (F1, 4 = 0.76, p = 0.45; Fig. 5).

Field observations

Body length of field-collected Daphnia mendotae
ranged from 0.7 to 1.9 mm during June, 0.6 to 1.7 mm
during August, and 0.5 to 1.2 mm during September
(Fig. 6a−c). Mean body length of D. mendotae col-
lected during September (0.9 ± 0.1 mm) was signifi-
cantly lower than those collected during June (1.2 ±
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0.1 mm) or August (1.1 ± 0.1 mm) (F2, 72 = 5.9, p < 0.05;
Fig. 6a−c). RNA content of D. mendotae was posi-
tively related to body length during all sampling
months (Fig. 6a−c). Body length-specific RNA con-
tent during June was higher than during August
(Wilcox procedure, T347 = 3.50, p < 0.05; Fig. 6a,b).
However, body length-specific RNA content during
September did not differ from that of August (Wilcox
procedure, T330 = 3.52, p > 0.05; Fig. 6b,c).

DISCUSSION

Our short-term survivorship experiments demon-
strated great sensitivity of Daphnia mendotae to DO
availability. When exposed to hypoxia (1 or 2 mg O2

l−1), survival declined rapidly, with 50% of the indi-
viduals dying in these treatments within 4 h (with the
exception of individuals exposed to 2 mg O2 l−1 at
25°C, which was likely due to some of the replicates
exhibiting slightly higher DO concentrations than
planned). This rapid decline in survivorship suggests
that D. mendotae have a considerably lower toler-
ance of hypoxia than other daphnid species such as
D. magna (Nebeker et al. 1992) and D. pulicaria

(Larsson & Lampert 2011). These inter-
specific differences also support findings
from field observations. For example,
Vanderploeg et al. (2009a) found that D.
longiremis migrated into the hypolimnion
even during severe hypoxia (≤1.0 mg O2

l−1) in central Lake Erie, whereas D. men-
dotae did not, almost disappearing from
the hypoxic hypolimnion during summer.
Tolerance of hypoxia also can be temper-
ature-dependent; because oxygen con-
sumption decreases with decreasing tem-
perature, aquatic organisms tend to be
more tolerant to low DO concentration at
low temperature than at high tempera-
ture (Vargo & Sastry 1977, Johnson &
McMahon 1998). Data from our survivor-
ship experiment, however, did not indi-
cate that substantial drop in temperature
in the hypolimnion would influence DO
tolerance of D. mendotae.

Vanderploeg et al. (2009a) suggested
that sensitivity to hypoxia was responsi-
ble for differences in vertical distribution
among zooplankton species including
Daphnia mendotae in central Lake Erie
during summer. In that study, a substan-
tially lower proportion (<1%) of the D.

men dotae population was found in the hypoxic hypo -
limnion during late summer (September) relative to
the pre-hypoxia period (Vanderpleog et al. 2009a).
However, information on the sensitivity of D. mendo-
tae to DO availability was previously un known to
Vanderploeg et al. (2009a), thus limiting their ability
to discern whether distributional differences among
months was due to behavioral avoidance of low DO
conditions or hypoxia-induced mortality. Given our
findings herein, we now know that D. mendotae is
extremely sensitive to changes in DO availability, as
shown with some other Daphnia sp. (Lass et al. 2000).
Further, because the total population size of D. men-
dotae remained high in central Lake Erie in Septem-
ber (August: 5085 ind. m−3 vs. September: 6450 ind.
m−3, Vanderploeg et al. 2009a; see Fig. 2 herein), we
agree with Vanderploeg et al. (2009a) that hypoxia
avoidance (rather than hypoxia-induced mortality in
the hypolimnion) plays a large role in driving vertical
distribution patterns of D. mendotae.

This hypoxia-induced vertical habitat compression
likely causes zooplankton to experience short-term
changes in habitat conditions that can influence
growth and future fitness. Daphnia mendotae from
Lake Michigan, for example, expressed higher growth
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rates at epilimnetic temperatures
(21°C) than at hypo limnetic tempera-
tures (8°C) after 5 d (Pangle & Peacor
2010). By contrast, our experimental
data showed that relatively large dif-
ferences in water temperature (10 vs.
25°C) and food density did not affect
D. mendotae growth in length over
30 h. While this lack of response in
body growth to temperature or food
availability may reflect a relatively
short experimental period, nutrients
from maternal invest ments likely
contributed to energetic needs for D.
mendotae neonates (Kess ler 2004)
and thereby blurred potential
responses to food or temperature.

Unlike body growth, RNA content
in Daphnia mendotae responded to
changes in food quantity in our ex -
periment; the RNA content of starved
D. mendotae did not increase during
30 h, indicating an immediate res -
ponse to short-term starvation in
RNA production. Because RNA pro-
duction is a precursor to protein syn-
thesis (i.e. growth; Elser et al. 2000),
it is an ecologically relevant indicator
for short-term condition and growth
potential (e.g. McKee & Ebert 1996,
Gorokhova & Kyle 2002). In fact,
since RNA production also has been
shown to de cline under suboptimal
habitat conditions, such as low food
availability (Zhou et al. 2001, Norkko
et al. 2005), RNA content may be a
more sensitive indicator of both posi-
tive and negative habitat conditions
than coarser measures of change in
size.

Although the temperature treat-
ment effect on RNA content in our
growth experiment was not statisti-
cally sig ni ficant, RNA content in
Daphnia mendotae exposed to epil-
imnetic temperature (25°C) appeared
to be consistently higher than in
those exposed to temperature more
representative of Lake Erie’s
hypolimnion (10°C). Weak tempera-
ture effects on RNA production also
have been ob served in other zoo-
plankton species such as the cope-
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pods Calanus finmar chicus (Wagner et al. 2001) and
Acartia bifilosa (Gorokhova 2003). Moreover, lack of
an in crease in RNA content in D. mendotae at 10°C
suggests that our study individuals may have experi-
enced some temperature-induced costs, including
reduced feeding and digestion rates, regardless of
food availability. Thus, the lack of  significant differ-
ences among the experimental treatments may not
necessarily indicate the absence of a temperature
effect on RNA production in D. mendotae.

During the pre-hypoxia period from June to
August in central Lake Erie, size-specific RNA con-
tent of the Daphnia mendotae population dropped
considerably. This change in RNA content may
reflect a shift in vertical distribution of D. mendotae
that altered ambient conditions experienced by indi-
viduals (e.g. temperature; Vanderpleog et al. 2009a),
thereby affecting growth potential. Based on August
habitat quality (e.g. high temperature and algal
abundance), growth of D. mendotae is likely to bene-
fit from remaining in the epilimnion and metalimnion
(Guisande et al. 1991, Loose & Dawidowicz 1994).
However, ~22% of the D. mendotae population ap -
peared to migrate downward and remain in the hypo -
limnion during August (Vanderpleog et al. 2009a).
These migrating individuals may thus have experi-
enced suboptimal habitat conditions for growth (e.g.
less food and lower temperature) in August, which
may have depressed energetic gain (e.g. feeding and
digestion rates) and subsequently RNA production,
as observed in our laboratory experiments.

During the peak-hypoxia period in September,
central Lake Erie Daphnia mendotae remained in the
upper water column, likely in response to the hypo -
limnetic hypoxia development. Surprisingly, despite
habitat conditions in the upper water column that
should favor RNA production and growth (as ob -
served in our laboratory experiment), size-specific
RNA content of D. mendotae in September changed
little from August (i.e. it remained low). Furthermore,
samples of D. mendotae collected from central Lake
Erie during September also consisted of only small
individuals (<~1.25 mm, ~24% reduction in average
size), which contrasts the larger range of sizes col-
lected during June and August. While seasonal
(intrinsic) population dynamics may have influenced
growth potential to some extent (Tessier et al. 1992),
low RNA content and small body size in September
may have resulted from alternative extrinsic mecha-
nisms in the upper water column of central Lake Erie;
in particular, food quality (e.g. Müller-Navarra &
Lampert 1996) and risk of size-dependent predation
(e.g. Tessier et al. 1992).

Although higher chlorophyll a concentrations were
found in the metalimnion and epilimnion of central
Lake Erie during September than during June (Van-
derpleog et al. 2009a), food quality (i.e. phytoplank-
ton community composition) may not have been
equally high in the upper water column in September
due to the presence of blue-green algae, possibly
negatively affecting Daphnia mendotae RNA pro-
duction (Vrede et al. 2002) and growth (Pangle &
Peacor 2010). Densities of toxic cyanobacteria such
as Microcystis aeruginosa, which are a relatively
poor food resource and can be harmful to cladoceran
zooplankton (Wilson et al. 2006), have been increas-
ing in recent years (post-2003) during late summer
and fall in Lake Erie (OEPA 2010).

Enhanced size-dependent predation by plankti-
vores may also may occurred during the peak-
hypoxia period in central Lake Erie. Densities of
 epilimnetic and metalimnetic planktivores, such as
emerald shiners Notropis atherinoides, Leptodora
kindti and Bythotrephes longimanus, remained high
in September (Pothoven et al. 2009; Vanderploeg et
al. 2009a), while demersal, invertivorous fishes such
as yellow perch Perca flavescens and rainbow smelt
Osmerus mordax moved upward to avoid the hy -
poxic hypolimnion during this time (Pothoven et al.
2009, Roberts et al. 2009). Collectively, these plankti-
vores congregated around the thermocline and fed
primarily on zooplankton instead of benthic macro -
invertebrates (Pothoven et al. 2009, Roberts et al.
2009). Furthermore, the body size of Daphnia can be
reduced by the presence of predators alone as an
adaptive response to size-dependent predation risk
(Dodson 1988). Kairomones released from predatory
zooplank ton B. longimanus also have been shown to
reduce growth of Great Lakes D. mendotae (Pangle
& Peacor 2006).

CONCLUSIONS

Changes in growth have ecological and evolution-
ary implications for life-history strategies (e.g. clutch
size) in zooplankton (Orcutt & Porter 1984, Hanazato
& Dodson 1995, Weetman & Atkinson 2002). Data
from our laboratory and field studies demonstrate
that the cladoceran D. mendotae is highly sensitive
to hypoxia, which appears to influence its vertical
migration behavior in central Lake Erie. During the
peak-hypoxia period, the majority of Daphnia men-
dotae (and many other zooplankton taxa; Vander-
pleog et al. 2009a) remained in the upper water col-
umn to avoid the hypoxic hypolimnion, congregating
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around the thermocline along with other organisms
such as planktivorous fishes (Roberts et al. 2009,
Vanderploeg et al. 2009b). In turn, this compression
of organisms into a small portion of the water column
likely exposed hypoxia-intolerant D. mendotae to
suboptimal habitat conditions (e.g. low quality food
and enhanced predation risk), which may have con-
tributed to reduction in average body length and
RNA content observed herein. Because hypoxia com-
monly occurs in thermally-stratified aquatic ecosys-
tems, including lakes, reservoirs, and coastal marine
ecosystems (Smith 2003), and is expected to become
more pervasive with climate change (Justić et al.
1996, Kling et al. 2003, Ficke et al. 2007), we encour-
age more research in this arena. Because each
aquatic species can detect and respond to hypoxia
differently, which in turn can drive shifts in vertical
distributions and species overlap, we especially
encourage investigations that focus on the indirect
(sub lethal) effects of hypoxia. Only through such
investigations will we truly understand the ecological
impacts of hypoxia in aquatic ecosystems.
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