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A space-time stochastic climatological approach to 
daily global solar radiation 

Istvan Matyasovszky*, Istvan Bogardi 

Civil Engineering Department, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0531, USA 

ABSTRACT A stochastlc climatological model 1s presented to descnbe the space-tlme behav~or  of dally 
global solar rad~at ion  measured by pyranometers Due to the difficulty ot describing dally global radi- 
ation by common probability distnbutions, a nonparametric technique, the Abramson kernel estimator 
1s used The space-time c l~matolog~cal  model of dally global radiation consists of a transformed multi- 
vanate  autoregressive (AR) process conditioned on large-scale atmospheric circulation patterns The 
transformation 1s necessary to establish a relat~onship between the probabihty distribution of global 
radiat~on and a normal variable used in the AR model In order to check the stochastic model a slrnula- 
tlon study was performed for 7 locations in Nebraska, USA Although a spllt sampllng approach could 
not be used due  to the relatively small sample size the simulated probab~lity distr~butions reproduced 
the empirical distnbutions quite correctly Also the space-time dependency was ma~n ta ined  The 
methodology may be  a useful tool to estlmate local/regional radiation under climate change 

KEY WORDS: Global solar radiation . Probabillty distribution Kernel estimator . Space - t~me  model . 
Circulation patterns . Do~vnscaling 

1. INTRODUCTION 

The purpose of this paper is to develop a stochastic 
clin~atological model to descllbe the daily amount of 
global solar radiation (direct and diffuse incoming 
solar rad~ations).  The model considers both the spatial 
and temporal dependency and is conditioned on a set 
of types of large-scale atmospheric circulation. 

Basic meteorological elements, like temperature, 
precipitation, or wind speed, have been intensively 
examined concerning both their temporal and spatial 
behavior. However, no comprehensive statistical 
analysis has been performed for global radiation, 
although radiation is one of the most important meteo- 
rological factors. The spatial and temporal distribution 
of global radiation governs the main meteorological 
processes. For instance, temperature is highly depen- 
dent on incoming global radiation. A given portion 
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of global radiation is utilized by evapotranspiration 
which has both meteorological and hydrological 
importance. This portion depends on surface albedo, 
water supply, wind speed,  vegetation, and other para- 
meters. Global radiation also has a key role in melting 
processes, a n  important factor of the hydrological 
cycle. Photosynthetically active radiation, the 0.4 to 
0.7 v m  wavelength interval of direct radiation, is one of 
the principal factors governing the type and growth of 
vegetation. 

The first step of a stochastic analysis is to model the 
underlying variable at a given location and time as a 
random variable. For instance, daily mean temperature 
may be represented as a normal variable, daily precip- 
itation amount is described by a gamma distribution, or 
wind speed is modeled, among others, by a Weibull 
distribution (Essenwanger 1976). However, no similar 
model is available for daily global radiation. Therefore, 
the first goal of this paper is to estimate the probability 
distribution of daily global radiation. Daylight duration 
and cloudiness are the most important factors influenc- 
ing global radiation. Daylight duration provides the 
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characteristic annual cycle of global radiation at mod- 
erate and high latitudes, while cloudiness causes the 
high variability around its actual mean. Since also 
cloudiness has an annual cycle, the temporal variabil- 
ity of global radiation can be very complex. Mathemat- 
ically speaking, the shape of the probability density 
function of global radiation can be very different for 
different periods. Therefore, the method for estimating 
the probability distribution of global radiation should 
be flexible. In this paper, a nonparametric approach, 
namely the so-called Abramson kernel estimator, is 
used to estimate the probability density. 

Consecutive daily radiation values are statistically 
dependent, therefore, a time series model is necessary 
to reproduce this temporal dependency. For this pur- 
pose, first order autoregressive (AR) processes are 
used here. However, AR processes have been devel- 
oped principally for Gaussian processes, but global 
radiation does not follow a Gaussian distribution. 
Therefore, a transformation establishing a relationship 
between the probability distributions of the global 
radiation and a normal random variable will be intro- 
duced. A natural way to describe the spatial variability 
of global radiation is to use multivariate AR processes 
when the components of the vector variable represent 
the locations. 

Many studies have demonstrated that the stochastic 
behavior of meteorological elements can be consid- 
ered as a result of large-scale forcing and local effects 
(Lamb 1977, Sowden & Parker 1981, Bardossy & Cas- 
pary 1990, Leathers 1991, Leathers et al. 1991). Forcing 
can be characterized by typical large-scale circulation 
patterns (CPs) of the atmosphere and the local influ- 
ence can be described by linking the meteorological 
variables to CP types. Specifically, the parameters of 
the multivariate AR process are CP type dependent. 

In recent years considerable effort has focused on 
both the methodology and application of downscaling 
low spatial resolution output of General Circulation 
Models (GCMs). Attention is directed principally to 
temperature and precipitation; the space-time model 
developed in this paper can be used for downscaling 
daily global radiation by substituting the observed CP 
data with GCM-generated CP data. 

The paper is organized as follows. First, the radiation 
and CP data sets are defined. Then the probability dis- 
tribution of daily global radiation is estimated after a 
brief theoretical overview of kernel estimators. The 
conditional multivariate AR model is introduced and 
discussed in the next section. The stochastic model is 
then applied with 7 stations by a simulation study com- 
paring the observed and simulated statistics. The pos- 
sibility of using the model for downscaling purposes is 
outlined. Finally, a section for discussion and conclu- 
sions is provided. 

2. DATA SETS 

Seven automated weather stations having the 
longest records were selected in Nebraska, USA 
(Fig. 1). The data sets available from the Nebraska 
State Climate Office, High Plains Climate Center cover 
a relatively short common period from July l ,  1982 to 
December 31, 1993. 

Geopotential data are represented by the National 
Meteorological Center (NMC) grid point analyses of 
the 700 hPa pressure surfaces available from the 
National Center for Atmospheric Research (NCAR). 
The analysis is based on daily values (12:OO h UTC) at 
40 points on a diamond grid covering the sector 25" to 
60" N, 80" to 125" W for the period January 1962 
through June 1989. This data set is used to classify 
daily CPs in order to develop a set of daily types. Note 
that the conditional space-time stochastic model is 
developed using data sets from July 1, 1982 to June 30, 
1989, which is a relatively short period for a stochastic 
analysis including split sampling. 

Classification schemes of spatial meteorological vari- 
ables are often based on macrocirculation patterns 
characterized by the spatial distribution of either sea 
level air pressure, or low or middle level tropospheric 
pressure heights. There are several possibilities com- 
bined with considerable experience for classifying daily 
CPs. One of the main approaches includes subjective 
classifications when meteorological experience is ap- 
plied. These classifications are subjective because they 
reflect the subjectivity of meteorologists, but are objec- 
tive in the sense that they are based on the physical be- 

I l 

Fig 1. Radiation measurement stations: coordinates of loca- 
tions used in the analysis: l ,  Mead (latitude 41.08" N, longi- 
tude 96.30°W, elevation 366 m); 2, Champion (40.23ON, 
101.43" W, 1029 m); 3,  McCook (40.14" N, 100.35" W, 729 m); 
4 ,  Dickens (41.00' N,  100.56" W, 945 m) ;  5,  Arthur (41.39' N,  
100.31° W, 1097 m); 6, West Point (41.49" N, 96.49' W, 442 m); 

7, Clay Center (40.32" N, 98.09' W, 552 m) 
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havior of the atmosphere. Baur et al. (1944) defined 29 
types for Europe: a list of these circulation patterns and 
the corresponding meteorological descriptions can be 
found in Hess & Brezowsky (1969). Another classifica- 
tion scheme for the extratropical latitudes of the North- 
ern Hemisphere was developed in Dzerdzeevskii 
(1968). In contrast, Lamb (1972) introduced circulation 
patterns for the British Isles, a relatively small area. 

Recently, high-speed computers and the appearance 
of modern mathematical clustering algorithms have 
made it possible to use so-called objective classifica- 
tion methods (Hartigan 1975). Objectivity means here 
that a given algorithm makes the data processing auto- 
matic, although the choice of algorithm includes sub- 
jectivity. The so-called hierarchical algorithms are rel- 
atively simple, but need large computer storage even 
for moderate sample sizes since each sample element 
is handled as a possible cluster. The most common 
techniques are based on correlation coefficients or sum 
of squared differences of maps (Lund 1963, lrchofer 
1973). A mathematically well-developed and comput- 
erized nonhierarchical technique is the k-means 
method (MacQueen 1967), but in recent years, princi- 
pal component analysis (PCA) (Craddock & Flood 
1969, Kutzbach 1970) and PCA coupled with clustering 
(Key & Crane 1986) have been preferred. 

In the present paper a k-means algorithm is used on 
the basis of an Euclidian distance of daily CPs. Before 
using the k-means method a PCA is performed 
because a conjunctive use of these techniques usually 
provides the most separable system of clusters with the 
most concentrated clusters (Gong & Richman 1992). 
The periods from April to September (summer) and 
from October to March (winter) were examined sepa- 
rately, and pressure height values at each grid point 
are standardized to exclude the annual cycle. The 
number of CP types was chosen as a compromise 
between the increasing number of clusters and the 
decreasing sum of inner distances within each cluster. 
The inner distance of a given cluster is defined as the 
mean of squared differences between the cluster cen- 
ter and cluster elements. Using this concept, 9 types for 
both winter and summer seems to be a good compro- 
mise in the present case. The relative frequencies of 
CP types are shown in Table 1; a more detailed 
description of CP types can be found in Matyasovszky 
& Bogardi (1996). 

Table 1. Relative frequency of CP types 

CP1 CP2 CP3 CP4 CP5 CP6 CP7 CP8 CP9 

Summer . l35 ,096 ,090 ,082 116 ,105 184 .l08 ,084 
Winter .099 ,185 ,068 .093 ,120 ,094 ,097 . l21 ,123 

3. ESTIMATION OF THE PROBABILITY 
DISTRIBUTION 

The Parzen-Rosenblatt kernel density estimate, ;(X), 

from a sample {xl, x2, ..., X,,} of size n is given by 

1 1 X-X, 
= ;z,.(,) ,=l (1) 

where K(z) is a so-called kernel function satisfying cer- 
tain properties to provide an appropriate estimate of 
f(x) (Rosenblatt 1956, Parzen 1962). The bandwidth b 
tends to zero as n tends to infinity. 

A possibility for choosing the kernel is that K(z) itself 
is a density function because K(z) is required to inte- 
grate to unity. K(z) with support [-l, l ]  is called a kernel 
of order k if the condition 

is satisfied. 
The choice of kernels is based on the asymptotic 

properties of the estimator (Eq. 1). Minimum variance 
kernels minimizing the asymptotic variance of Eq. (1) 
can be found in Gasser et al. (1985). Muller (1984) dis- 
cussed a more general class of kernel functions which 
minimizes the variance of the hth (h 5 0) derivative of 
the kernel estimate. All the above kernels, however, 
may be used only in the case when f(x) is defined over 
the interval - to m, unless the kernels are modified 
near the endpoints. Muller (1991) has developed a very 
general formulation to have kernels applicable for any 
density at any X and for any k. 

In parametric density estimation, the parameters are 
estimated by maximum likelihood (ML), least squares 
(LS), or other methods. A natural way to estimate the 
bandwidth is, therefore, to use these concepts for 
kernel estimators. The LS for estimating b based on a 
minimization of the cross-validated integrated mean 
square error (IMSE) of Eq. (1) was suggested by 
Rudemo (1982). Hall & Marron (1987) demonstrated 
the optimality of LS for density estimation in terms of 
IMSE. They showed that no other bandwidth selection 
procedure can deliver smaller IMSE than the cross- 
validated LS. 

Mean square error of j(x) is governed by f(x) and 
f ( k ) ( ~ )  [the Mh derivative of f(x)]. This fact motivates the 
choice of locally varying bandwidths. A smaller band- 
width near the peaks of f(x) reduces bias and a larger 
bandwidth in the flat regions of f(x) reduces variance. 
Therefore, it may be expected that a proper strategy 
for choosing local bandwidth, b(x), yields smaller 
IMSE than the IMSE stemming from ordinary band- 
width selection for global bandwidth, b. In general, the 
construction of a local bandwidth estimator entails a 2- 
step procedure. The first step produces a pilot estima- 
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tor, f, using a fixed bandwidth and the second stage 
yields the local bandwidth estimator. This second step 
requires a reformulation of Eq. (1). A frequently used 
type of varying bandwidth is the so-called Abramson 
estimator defined by 

because the choice b(x,) = hf-"'(xi) eliminates the 
asymptotic bias of i The parameter h in Eq. (2) can be 
estimated by cross-validation as described by Hall 
(1992). 

The Abramson technique with Muller's (1991) kernel 
under k = 2 and X = 1 was used to estimate the proba- 
bility density function of daily global radiation. Fig. 2 
shows, as an example, the histogram and the estimated 
density at Mead in July and January. Note that the 
densities are smooth enough to satisfy a subjective 
smoothness property required for any estimate of 
probability distributions, while they fit the histogram 
accurately. The sharp peak of the densities at high 
radiation values corresponds to clear or slightly cloudy 
sky, while a second smaller mode at moderate and low 
radiation values is due to overcast sky. 

4. CONDITIONAL MODELING ON CP TYPES 

4.1. Conditional probability distribution 

The probability distribution of daily global radiation 
will be formed as a superposition of probability distrib- 
utions conditioned on CP types. Because radiation has 
a strong annual cycle (Fig. 3) relatively short periods 
should be analyzed separately within the year. How- 
ever, if the density function is estimated, for instance, 
on a monthly basis the number of observations avail- 
able for different CP types is very small and the esti- 
mation of the density can be highly inaccurate. There- 
fore, we assume that the shape of the density is 
'similar' under longer periods (say seasons) and a 'uni- 
versal' density can be defined for each season. Taking 
a simple example, the density function f(x) of a normal 
variable having expected value m and standard devia- 
tion d can be obtained as f(x) = l /d . cp((x-m)/d) where 
cp is the density function of the standard normal vari- 
able (zero expected value, unit standard deviation). In 
our terminology, therefore, the density cp is universal 
for normal distributions. In the present case, the uni- 
versal density is estimated by the Abramson technique 
after an appropriate transformation of original data. 
The inverse of this transformation, then, results in the 
final estimate for each day. 

Fitting sine and cosine waves of 1 yr and '4 yr per- 
iods to radiation data the mean, ~ ( t ) ,  and standard 

July 

January 

Fig. 2. Histogram (solid line) and estimated probability den- 
sity function (dotted line) of daily global radiation at Mead in 

July (top) and January (bottom) 

deviation, o(t), can be estimated. Fig. 3 shows the 
annual cycle of the mean and standard deviation. 
These curves are used to standardize the radiation 
data set X,, x2, ..., XT by 

y = ( X  - ) ( t )  f =l, 2, ..., T 

Taking those standardized data which are accompa- 
nied with the same CP type in a given season a subset 
of the original data is obtained for each CP type in each 
season. The density function g j (y )  for CP type J in a 
season is taken universal and is estimated by using the 
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Fig. 3. Annual cycle of daily global radiation at Mead 
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Abramson technique for each data subset. Then the 
corresponding probability density function 4(x)  of daily 
global radiation for day t is estimated as 
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Fig. 4 shows the probability density function of daily 
global radiation for June 15 and January 15 under 3 
different CP types. These dates, typical days of sum- 
mer and winter seasons, represent the almost largest 
and smallest average radiations in the year. In summer, 
the densities are similar in the sense that the most 
probable values of radiation appear almost the same, 
but the magnitude of the peaks and thus the width of 
the densities are highly different. In the other words, 
the most probable radiation values are independent 
from the type of large-scale circulation, but the vari- 
ance of radiation are depend on circulation. This latter 
phenomenon is obviously a consequence of the cloudi- 
ness variability corresponding to different CP types. In 
winter, the densities differ substantially, one of the CP 
types exhibits strong bimodality. Comparing the 2 sea- 
sons, CP types in summer can separate the behavior of 
radiation in a smaller degree since the cloudiness aris- 
ing from convective effects decreases the role of differ- 
ent types of large-scale circulation. 

4.2. Space-time stochastic model 

To reproduce the space-time statistical structure of 
local climatic factors, a suitable model should be 
chosen. Autoregressive processes represent a well- 
developed and commonly used tool to model time 

series. They have been developed principally for 
Gaussian processes, but global radiation does not fol- 
low a Gaussian distribution. Therefore, it is desirable 
to construct a transformation establishing a relation- 
ship between the distribution of the global radiation 
and a normal distribution. 

For mathematical formulation some notations are 
introduced as follows: a,  having possible values j = 
1, 2, ..., Jrepresents the CP type as a random variable 
at  time t  ( J i s  the number of types). Furthermore, let the 
vector X(t )  = (X(t,u,), X(t,u2), ..., X(t,uK)) represent the 

January 

Fig. 4. Estimated probability density function of daily global 
radiation conditioned on different CP types at  Mead on 

June 15 (top) and January 15 (bottom) 
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Using the multivariate version of the so- 
called Yule-Walker equations (Priestley 
1981), the matrices B, and C, can be calcu- 
lated from 

daily global radiation at  locations u l ,  u2, ..., UK and time used to calculate W(t). Finally, the transformation 
t and let W(t) be a K-dimensional normal random Eq. (4) is used for each component of W to obtain a 
vector at  time t. We suppose for simplicity that each daily global radiation vector X. These steps are 
component of the vector W(t) has unit variance. The repeated until a time series length applicable for statis- 
temporal evolution of W(t) is modeled by first-order tical analysis is achieved. This length is chosen to be 
autoregressive [AR(l)] processes. equal to the observed data set length. 

Any component of daily global radiation X of X(t) for Radiation is variable both in space and time. The 7 
CP type j can be calculated from the corresponding stations represent 2 regions, namely Stns 1, 6 and 7 
component W of W(t) as are located in eastern Nebraska and Stns 2,  3, 4 and 

5 in western Nebraska (Fig. 1). Table 2 shows corre- 
X = F.-' I (Ww)) (4) lations of global radiation among stations. As is 

where F,(x) is the distribution function of global radia- expected, stations within regions have high correla- 
tion for CP type j corresponding to the density (Eq. 3), tions while low correlations are observed between 
and 0 is the standard normal dstribution 
function. When CP type j occurs at  time t, 

where the superscript T denotes trans- 
pose and the conditional expectations 
E [ W ( t )  W(t-i) I a,= j], i =  0 , l  are the co- 
variance matrices G,, of W(t) for lags 
i =  0 , l  and CP type j. U(t) represents a 
K-dimensional standard normal variable 
which consists of K standard normal 
uncorrelated random variables. The 
matrices Go,, G,, can be estimated from 
radiation data using correlations of radia- 
tion indicator series as proposed for daily 
precipitation in Bardossy & Plate (1992). 

W(t) is described by an  AR(1) process 
defined as: 

5. APPLICATION 

Table 2. Correlations of daily global radiation among stations 

The space-time stochastic model of 
daily radiation is applied with simulation 
techniques to the 7 stations in the follow- 
ing way. First, a set of circulation patterns 
has to be selected. This may be an  
observed data set, but circulation patterns 
may also be generated by simulation 
using a Markov chain model (Bardossy & 

Plate 1990, Bogardi et  al. 1992). Genera- 
tion of a time series of process W(t) and 
thus X(t) starts with the simulation of the 
white noise process U(t). Eq.  (5) is then 

July 
Observed 

1 2 3 4 5 6 7 

1 1.000 0.490 0.573 0.601 0.408 0.777 0.689 
2 1.000 0.830 0.867 0.688 0.370 0.524 
3 1.000 0.862 0.562 0.383 0.577 
4 1.000 0.773 0.482 0.611 
5 1.000 0.536 0.554 
6 1.000 0.728 
7 1.000 

Simulated 
1 2 3 4 5 6 7 

1 1.000 0.423 0.477 0.432 0.490 0.888 0.695 
2 1.000 0.768 0.763 0.701 0.404 0.555 
3 1.000 0.748 0.632 0.450 0.600 
4 1.000 0.875 0.383 0.585 
5 1.000 0.469 0.629 
6 1.000 0.670 
7 1 .ooo 

January 
Observed 

1 2 3 4 5 6 7 

1 1,000 0.476 0.527 0.490 0.456 0.938 0.824 
2 1.000 0.875 0.865 0 852 0.489 0.666 
3 1.000 0.902 0.831 0.508 0.723 
4 1.000 0.912 0.473 0.677 
5 1.000 0.461 0.621 
6 1.000 0.806 
7 1.000 

Simulated 
1 2 3 4 5 6 7 

1 1.000 0.556 0.660 0.585 0.529 0.927 0.783 
2 1.000 0.853 0.882 0.829 0.615 0.697 
3 1.000 0.897 0.775 0.715 0.789 
4 1.000 0.906 0.646 0.755 
5 1.000 0.580 0.711 
6 1.000 0.833 
7 1.000 
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regions. Both the correlation values and the differ- 
ence between high and low correlations are  some- 
what smaller in July than January due to the 
stronger local effects (convective activity). The simu- 
lated correlation matrices reproduce these character- 
istics. 

Autocorrelations with a confidence interval for the 
95"L probability level are shown in Fig. 5. In July, 
the autocorrelations indicate a weak but long 'mem- 
ory' of daily global radiation. The simulation under- 
estimates the autocorrelations for Days 1 to 5, but 
overestimates them after the fifth day. January 
exhibits smaller autocorrelations; only a small corre- 
lation for 1 day lag should be considered signifi- 

- Obscrved 

... Simulated 

- Observed 
. . .  Simulated 

Fig. 5. Observed and simulated autocorrelations of daily 
global radiation at Mead in July (top) and January (bottom) 

Table 3. Comparison of observed and simulated statistics of 
daily global radiation 

July January 
Obs. Simul. Obs. Slmul. 

Mean (MJ m-*) 
Stn 1 23.5 24 .1  7 2 6.8 
Stn 2 25.6 26.2 8 4 7.9 
Stn 3 25.3 26.5 8 9 8 .5  
Stn 4 25.1 25.7 8 4 8.0 
Stn 5 25.0 25.4 8.1 7.8 
Stn 6 24.2 25.1 7.4 6.9 
Stn 7 24.2 24.9 7.9 7 .3  

Standard deviation (MJ m-2) 
Stn 1 5.8 5.8 2.4 3.2 
Stn 2 4.8 4.5 2.4 3.4 
Stn 3 5.4 4.6 2.6 3.4 
Stn 4 5.4 5.0 2.4 3.5 
Stn 5 5.2 5.1 2.3 3.8 
Stn 6 5.5 5.0 2 .5  3.1 
Stn 7 4.6 4.3 2.6 3.6 

cantly different from zero. This almost negligible 
memory is due  to the cyclonic activity which is much 
stronger in the winter season than in summer. Simu- 
lated autocorrelations fit the observed values satis- 
factorily. Probably, using a higher order AR process 
the autocorrelations could be  reproduced also in 
summer, but then the number of parameters to be 
estimated would be too large when using the current 
short data set. The choice of AR(1) process is a com- 
promise between model accuracy and number of 
model parameters. 

Table 3 summarizes a comparison of observed and 
simulated means and  standard deviations of daily 
global radiation. Although the mean is somewhat over- 
estimated in July and  underestimated in January the 
bias does not look considerable. Simulated means fit 
the observed means especially well in July. The 
standard deviation is also reproduced properly in July, 
but is overestimated in January. The observed and 
simulated probability distribution functions (Fig. 6) 
strengthen the above facts. 

The origin of inaccurate reproduction of observed 
standard deviation in January is related to the proce- 
dure  of radiation data standardization, density estima- 
tion and transformation of these densities. The stan- 
dardization provides homogeneity in the mean and 
standard deviation of the standardized data,  but does 
not yield identical probability distributions of those 
data. Probably, even the season is too long a period to 
obtain truly universal densities. The actual length of 
radiation data available in the present case, however, 
does not make it possible to use considerably shorter 
periods than seasons. 
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Fig. 6. Observed and simulated probability distribution functions of daily global radiation at Mead (left) and Dickens (right) in 
July (top) and January (bottom) 

6. POSSIBILITIES FOR DOWNSCALING 

A possible application of the presented methodol- 
ogy is to downscale the low spatial resolution output 
of General Circulation Models (GCMs). Various 
downscaling techniques have been developed to 
overcome the scale differences between GCM outputs 
and local climatic variables (Giorgi & Mearns 1991). 
One of these techniques includes the so-called CP 
type approach used mostly with precipitation (Bar- 
dossy & Plate 1992, Wilson et al. 1992, Matyasovszky 
et al. 1993a) and temperature (Matyasovszky et al. 
1994, Easterling 1995). However, daily solar radiation 
could be also downscaled using the stochastic model 

presented. Since the most reliable output of GCMs 
found to be the large-scale daily atmospheric circula- 
tion patterns (e.g. Simmons & Bengtsson 1988) the 
idea is to use only this GCM information as follows. 
Every GCM-generated daily CP is assigned to one of 
the CP types defined on observed CPs. The similarity 
of daily CPs is based on an Euclidian distance as in 
the case of observed data. Thus, a set of GCM-gener- 
ated CP types is obtained. This set can be used 
directly or a new set of types can be simulated after 
fitting a Markov chain to the original set of CP types. 
Then, the space-time model is applied with the simu- 
lation procedure using daily CP types corresponding 
to the GCM output. 
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The most important concerns regarding this type of 
downscaling include: (1) sensitivity of results on classi- 
fication schemes and the number of CP types, (2) the 
dilemma of whether CP types obtained from observed 
data may be used for GCM output, i.e. whether 
observed CP types are consistent with GCM-gener- 
ated CPs, (3) sensitivity of results to the use of different 
GCMs. These problems have been addressed by, 
among others, Vaccaro (1992), Wilson et al. (1992), 
Matyasovszky et al. (1993131, and Matyasovszky &Bog- 
ardi (1996). 

7. DISCUSSION AND CONCLUSIONS 

The research reported in this paper addressed 2 
main questions: estimation of the probability distribu- 
tion of daily global radiation, and development of a sto- 
chastic climatological model to describe the space-time 
behavior of daily global radiation. 

In contrast to several climatic elements, no appro- 
priate model is available for the probability distribu- 
tion of radiation characteristics. In this paper a non- 
parametric technique, the Abramson kernel density 
estimator, was presented to estimate the probability 
density of global radiation. The densities are  smooth 
enough to satisfy a subjective smoothness property 
required for any estimate of probability distributions, 
while they fit the histograms accurately. Kernel den- 
sity estimators have both advantages and disadvan- 
tages. A disadvantage is that no simple estimation 
equation is available and the calculation of the den- 
sity at any point requires the entire data set. An 
advantage is its high flexibility, not a single paramet- 
ric distribution could produce such different densities 
than those shown in Fig. 4.  

The space-time stochastic behavior of daily global 
radiation is described, after a transformation, by a 
multivariate autoregressive (AR) process. Condition- 
ing on the types of large-scale circulation patterns 
results in quite different densities. An application of 
the model with a simulation procedure shows that both 
the spatial and temporal variability of daily solar radia- 
tion are reproduced. 

The following conclusions can be drawn from this 
study: 

(1) Due to the complex processes influencing solar 
radiation, common probability distributions can be 
rarely found to characterize daily radiation. To this 
end,  flexible nonparametric approaches, e.g. the 
Abramson kernel method, can be  used to estimate the 
probability distribution. 

(2) The space-time properties of daily global radia- 
tion can be described with a transformed autoregres- 
sive process. The transformation provides the relation- 

ship between daily global radiation and a normal ran- 
dom variable. 

(3) Daily global radiation is shown to be  highly 
dependent on the prevailing daily atmospheric circula- 
tion pattern. Thus, it makes sense to use the stochastic 
model of global radiation conditioned on CP types. 

( 4 )  Using a simulation procedure the stochastic cli- 
matological model reproduces the observed space- 
time stochastic properties of daily global radiation at 
7 locations in Nebraska. 

(5) The space-time stochastic model can be used for 
downscaling of the low resolution output of GCMs. 

Acknowledgements. Research leading to this paper has been 
partly supported by grants from the U.S. National Science 
Foundation, EAR-9205717/9217818, and the Great Plains 
Regional Center of the National Institute for Global Environ- 
mental Change. The additional support of the Center for 
Infrastructure Research of the University of Nebraska is also 
acknowledged 

LITERATURE CITED 

Bardossy A, Caspary H (1990) Detection of climate change in 
Europe by analyzing European circulation patterns from 
1881 to 1989. Theor Appl Climatol 42 155-167 

Bardossy A, Plate E (1990) Modeling daily rainfall using a 
semi-Markov representation of circulation pattern occur- 
rence. J Hydro1 66:33-47 

Bardossy A, Plate E (1992) Space-time model for daily rainfall 
using atmospheric circulation patterns. Water Resour Res 
28:1247-1260 

Baur F, Hess P, Nagel H (1944) Kalendar der Groswetterlagen 
Europas 1881-1939. Bad Homburg 

Bogardi I, Matyasovszky 1, Bardossy A, Duckstein L (1993) 
Application of a space-time stochastic model for daily 
precipitation using atmospheric circulat~on patterns. 
J Geophys Res 98(D9):16653-16667 

Craddock JM,  Flood CR (1969) Eigenvectors for representing 
the 500 mb geopotential surface over the Northern Hemi- 
sphere. Q J R Meteor01 Soc 95:5?6-593 

Dzerdzeevskii BL (1968) Circulation mechanisms in the 
atmosphere of the northern hemisphere in the twent~eth 
century. Institute for Geography, Soviet Academy of Sci- 
ences, Moscow 

Easterling DR (1995) Statistical generation of surface air tem- 
perature for the central USA using a general circulation 
model simulation. Proceedings of 6th International Meet- 
ing on Statistical Climatology. University College, Gal- 
way, p 201-202 

Essenlvanger 0 (1976) Applied statistics in atmospheric 
sclence Part A. Frequencies and curve fitting. Elsevier, 
Amsterdam 

Gasser T,  mulle er HG, Marnrnitzch V (1985) Kernels for non- 
parametric curve estimation. Q J R Statlst Soc B 47: 
238-252 

Giorgi, Mearns (1991) Approaches to the simulation of 
regional climate change: a review. Rev Geophys 29: 
191-216 

Gong X. Richman MB (1992) An examination on methodolog- 
ical issues in clustering North American precipitation. 
Proceedings of 5th International Meeting on Stochastic 
Climatology. Atmospheric Environment Service. Toronto. 
pJ103-5108 



Clim Res 7: 11-20, 1996 

Hall P (1992) On global properties of variable bandwidth den- 
sity estimators. Ann Stat 20:762-778 

Hall P, Marron JS (1987) Extent to which least squares cross- 
validation minimizes integrated squared error In nonpara- 
metric density estimation. Prob Theory Re1 Fields 74: 
567-568 

Hartigan J (1975) Clustering algorithms. Wiley, New York 
Hess P, Brezowsky H (1969) Katalog der Grosswetterlagen 

Europas. Berichte des Deutchen Wetterdienstes Nr 113 Bd 
15 2, Neu bearbeitete und erganzte Aufl., Offenbach a. 
Main 

Key J ,  Crane RG (1986) A comparison of synoptic classlfica- 
tion schemes based on 'objective procedures' J Climatol 
6:375-386 

Kirchofer W (1973) Classification of European 500 mb pat- 
terns. Arbeitsbericht der Schweizerischen Meteorologis- 
chen Zentralanstalt No. 43, Geneva 

Kutzbach JE (1970) Large-scale features of monthly mean 
Northern Hemisphere maps of sea-level pressure. Mon 
Weather Rev 98:f 08-721 

Lamb HH (1972) British Isles weather types and a register of 
the daily sequence of circulation patterns, 1861-1971. 
Cieophys Mem. No 116, London 

Lamb HH (1977) Climate, present, past and future Vol. 2: 
Climatic history and the future Methuen & CO Ltd, 
London 

Leathers DJ (1991) Relationship between 700 mb circulation 
variation and Great Plains climate. Great Plain Res 1. 
58-76 

Leathers DJ, Yarnal B. Palecki MA (1991) The Pacific/North 
American teleconnection pattern and United States cli- 
mate. Part I: Regional temperature and precipitation asso- 
ciations. J Clim 4:517-528 

Lund IA (1963) Map-pattern classification by statistical meth- 
ods. J Appl Meteor01 2:56-65 

MacQueen J (1967) Some methods for classification and 
analysis of multivariate observations. Proc 5th Berkeley 
Symp on Math Stat and Prob, Vol 1. Unlvers~ty Press, 
Berkeley, p 281-297 

Editor: V. Meentemeyer, Athens, Georgia, USA 

Matyasovszky I ,  Bogardi I (1996) Downscaling two versions of 
a GCM to estimate local hydroclimat~c factors under ell- 
mate change. Hydrol Sci J 41:117-129 

Matyasovszky I ,  Bogardi I ,  Bardossy A, Duckstein L (1993a) 
Space-time precipitation reflecting climate change. 
Hydrol Sci J 38.539-558 

Matyasovszky I, Bogardi I, Bardossy A, Duckstein L (1993b) 
Estimation of local precipitation statistics reflecting cli- 
mate change. Water Resour Res 2913955-3968 

~Matyasovszky I ,  Bogardi I, Bardossy A, Duckstein L (1994) 
Local temperature estimation under climate change. 
Theor Appl Climatol 50:l-13 

Muller HG (1984) Smooth optimum kernel estimates of densi- 
ties, regression curves and modes. Ann Stat 12:766-774 

Muller HG (1991) Smooth optimum kernel estimators near 
endpoints. Biometrika 78:521-530 

Parzen E (1962) On the estimation of probability density func- 
tion and mode. Ann Math Stat 33:1065-1076 

Pnestly MB (1981) Spectral analysis and time series. Acade- 
mlc Press, New York 

Rosenblatt M (1956) On some nonparametric estimates of a 
density function. Ann Math Stat 27:832-837 

Rudemo IM (1982) Empirical choice of histograms and kcrncl 
density estimators. Scand J Stat 9:65-78 

Simmons AJ, Bengtsson L (1988) Atmospheric general clrcu- 
lation models: thelr design and use for climate studies. In: 
Schlesinger M (ed) Physically-based modelling and simu- 
lation of climate and climatic change. NATO AS1 Ser 
Kluwer Academic, Boston, p 627-652 

Sowden IP, Parker DE (1981) A study of climatic variability of 
daily Central England temperatures in relation to the 
Lamb synoptic types. J Climatol 1:3-10 

Vaccaro JJ (1992) Sensitivity of ground\vater recharges esti- 
mates to climate variability and change, Columbia 
Plateau, Washington. J Geophys Res 97(D3):2821-2833 

Wilson LL, Lettenmaier DP, Skyllingstad E (1992) A hierarchi- 
cal stochastic model of large scale atmospheric circulation 
patterns and multiple station daily precipitation. J Geo- 
phys Res 97(D3):2792-2809 

Manuscript first received: September 18, 1995 
Revised version accepted: May 15, 1996 


	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	8-22-1996

	A space-time stochastic climatological approach to daily global solar radiation
	Istvan Matyasovszky
	Istvan Boragdi

	tmp.1538602479.pdf.sEdAK

