
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

CSE Conference and Workshop Papers Computer Science and Engineering, Department of

10-1-2015

A-Maze-D: Advanced Maze Development Kit
Using Constraint Databases
Shruti Daggumarti
University of Nebraska-Lincoln, srd291@gmail.com

Peter Revesz
University of Nebraska-Lincoln, prevesz1@unl.edu

Corey Svehla
University of Nebraska-Lincoln, csvehla1236@huskers.unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/cseconfwork

Part of the Computer Engineering Commons, Electrical and Computer Engineering Commons,
Graphics and Human Computer Interfaces Commons, Other Computer Sciences Commons, and
the Software Engineering Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in CSE Conference and Workshop Papers by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.

Daggumarti, Shruti; Revesz, Peter; and Svehla, Corey, "A-Maze-D: Advanced Maze Development Kit Using Constraint Databases"
(2015). CSE Conference and Workshop Papers. 315.
http://digitalcommons.unl.edu/cseconfwork/315

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/189482089?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F315&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/cseconfwork?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F315&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F315&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/cseconfwork?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F315&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F315&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F315&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F315&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F315&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F315&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/cseconfwork/315?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F315&utm_medium=PDF&utm_campaign=PDFCoverPages


1

A-Maze-D: Advanced Maze Development Kit
Using Constraint Databases

Shruti Daggumati, Peter Z. Revesz, and Corey Svehla
Department of Computer Science and Engineering

University of Nebraska-Lincoln
Lincoln, Nebraska 68588-0115

Email: sdagguma@cse.unl.edu, revesz@cse.unl.edu, csvehla@unl.edu
http://cse.unl.edu/revesz Telephone: (1+) 402 472–3488

Abstract—In this paper, we describe the A-Maze-D system which
shows that constraint databases can be applied conveniently and
efficiently to the design of maze games. A-Maze-D provides a
versatile set of features by a combination of a MATLAB library and
the MLPQ constraint database system. A-Maze-D is the first system
that uses constraint databases to build maze games and opens new
ideas in video game development. Keywords—nimation, constraint
database, maze, MLPQ, moving objects, video gamenimation, con-
straint database, maze, MLPQ, moving objects, video gamea

I. INTRODUCTION

The rapidly growing video game industry has a revenue
of approximately twelve billion U.S. dollars per year in the
United States alone (Statista [8]). The efficient development
of new video game products is needed to supply the growing
demands for video games that have become ubiquitous on our
computers, consoles, and phones.

A large set of video games require the representation of a
map, usually some kind of maze, and other spatial objects. In
addition, video games also routinely require the representation
of moving objects. Hence video games have a strong connec-
tion with geographic, spatial and moving object (also called
spatio-temporal) databases. Since these types of databases can
be viewed as special cases of constraint databases (Kanellakis
et al. [2], Revesz [3]), we propose A-Maze-D, an Advanced
Maze Development kit with a novel design based on the MLPQ
system (Revesz et al. [4]). The MLPQ system, developed at
the University of Nebraska-Lincoln, is one of the systems
that implements and visualizes constraint databases and has
been used already in many spatial and moving object database
applications.

Our proposed A-Maze-D system provides a large set of
useful features that enable game development where the main
objective is to find the way out of a maze with limited
viewing distance from an overhead view. We describe in detail
the features that are the most important in developing maze
games. We envision that with a growing set of features, the
development can be extended from maze games to a plethora
of different types of video games.

This paper is organized as follows. Section 2 describes some
related work on mazes and constraint databases. Section 3
presents the A-Maze-D system. Section 4 provides some
conclusions and future work.

II. RELATED WORK

A. Mazes and Maze Games

A maze is a complex passage with multiple branches where
the user needs to find the best route. In most mazes, the walls
are fixed and do not change as the user progresses through the
maze. Maze solving computer algorithms that try to find the
best path to an exit or the fastest way to attain a prize have
been implemented many times before. However, the typical
solutions do not take into account a user’s limited vision and
inability to mark the walls as hindrances for solving the mazes.
In Section 3, we specifically allow the option of representing
the limited vision of a user.

In games like Super Mario World, there are levels where the
user needs to solve a maze and has limitations as to what they
can see. We see this type of maze in many different games
including some Legend of Zelda games. In addition, in video
games such as Super Mario World if the user has failed a
level numerous times then the system offers the ability for
the system to show the proper way to finish the level where
obstacles of all kinds are taken into account and the shortest
path is used.

In well-known games such as Pac-Man, the objective is to
collect all the pellets and to live as long as the ghosts do not
eat the user. In other games, the goal is to rescue a princess
or to find the treasure and the end of the journey. We choose
to favor the idea of there being some form of treasure at the
end of the levels.

Mazes form also an important element in biology in the
study of learning. Rodents were first used in mazes by Willard
Small from Clark University (Small [5]). Using rodent burrows
as a design a maze was created to test the cognitive abilities of
rodents. Soon after these early experiments, different animals
were used for testing purposes ranging from monkeys to birds
(Watson [7]). James Watson also sent rodents through a maze
with some sensory deprivations. Fleming Perrin of the Uni-
versity of Chicago tested humans where he blindfolded each
person and let them solve a dodecagonal maze (Perrin [6]).
However, rats remain in biology the primary test subject for
mazes. Many of these types of experiments can be modeled
in our maze choice game.

Mathematical Models and Computational Methods

ISBN: 978-1-61804-350-4 89



2

B. Constraint Databases

Constraint databases (Kanellakis et al. [2], Revesz [3])
provide an extension of relational databases where the input
data consists of constraint relations. Each constraint relation
is a set of constraint tuples. In constraint tuples, the attributes
are referred to by variables and the possible values of the
attribute variables are restricted by constraints. In particular,
the MLPQ constraint database system uses linear constraints
on the attribute variables (Kanellakis et al. [2], Revesz [3]).

III. THE A-MAZE-D (ADVANCED MAZE DEVELOPER) KIT

The A-Maze-D, short for Advanced Maze Developer, kit is a
versatile system that enables efficient development of complex
maze games. The A-Maze-D system consists of a MATLAB
library that allows the easy translation of input data into MLPQ
system input files. Once all stationary and moving objects are
translated into MLPQ input files, the input files can be opened
and animated in the MLPQ system. The animation lasts until
some choice point is reached. The choice point requires that
the user enter some input parameters, such as whether to turn
left or right at the current location in the maze, to fire some
bullets, to start a conversation or some other action. Once the
input parameters are entered the corresponding animation can
continue until the next choice point.

We organize the description of the A-Maze-D system into
the following subsections. Section III-A shows how A-Maze-
D can specify stationary objects such as mazes with either
straight or curved walls. Section III-B describes the specifica-
tion of moving objects such as persons, exploding objects and
shields.

A. Stationary Objects

The main stationary object in a maze game is the maze
itself. Figure 1 shows two mazes with walls that are composed
of straight lines, while Figure 4 illustrates a maze with curved
lines. The implementation of mazes, especially with curved
walls, can be a tedious software engineering task. However,
we show below that using the A-Maze-D system mazes can
be developed efficiently whether the mazes have straight or
curved walls.

Mazes with straight walls: Suppose that we would like to
implement the maze shown on the left side of Figure 1. At
first, we record the corner points for each wall as shown with
highlights in Figure 2.

Each wall needs to have a different id. In the case of the
maze in Figure 2 we need six walls with the (x, y) corner
points shown in Table III-A.

A-Maze-D has a library of MATLAB scripts that contains
a function called buildWalls that takes as input the set of
points and turns them into an MLPQ input file that represents
the walls. The basic idea behind the buildWalls function is
illustrated in Figure 3, which shows on the left a simple table
with two points and on the right their implied meaning. The
buildWalls function also needs a parameter that specifies the
width for the wall. In this case for simplicity we chose a width

Fig. 1. Examples of mazes with straight walls.

Fig. 2. Examples points on a maze.

of one. As can be seen, the (a, c) and (b, d) points define a
parallelogram with width one and whose lower boundary line
is the line segment from (a, c) to (b, d).

The buildWalls function transforms the points described in
Table III-A into the following MLPQ input file:

Mathematical Models and Computational Methods

ISBN: 978-1-61804-350-4 90



3

TABLE I
INPUT: CORNER POINTS ON THE MAZE.

id X Y
1 100 0
1 0 0
1 0 88
1 80 88
2 120 0
2 200 0
2 200 88
2 100 88
3 0 44
3 88 44
4 22 22
4 176 22
4 176 66
5 110 22
5 110 44
5 154 44
5 154 88
6 22 66
6 154 66

Fig. 3. The points from the table are represented visually on the right.

begin %MLPQ%
R(id,x,y) :- id=1, x>=0, x<=100, y=0.
R(id,x,y) :- id=1, x=0, y>=0, y<=88.
R(id,x,y) :- id=1, x>=0, x<=80, y=88.
R(id,x,y) :- id=2, x>=120, x<=200, y=0.
R(id,x,y) :- id=2, x=200, y>=0, y<=88.
R(id,x,y) :- id=2, x>=100, x<=200, y=88.
R(id,x,y) :- id=3, x>=0, x<=88, y=44.
R(id,x,y) :- id=4, x>=22, x<=176, y=22.
R(id,x,y) :- id=4, x=176, y>=22, y<=66.
R(id,x,y) :- id=5, x=110, y>=22, y<=44.
R(id,x,y) :- id=5, x>=110, x<=154, y=44.
R(id,x,y) :- id=5, x=154, y>=44, y<=88.
R(id,x,y) :- id=6, x>=22, x<=154, y=66.
end %MLPQ%

Mazes with curved walls: The A-Maze-D system uses multi-
ple MATLAB scripts in order to attain the smoothest-looking
curved walls. For example, Figure 4 shows a maze where
all walls are curved except for six straight walls that are all
horizontal and are used to block further passage in maze at
dead ends.

Fig. 4. Example of a curved maze.

Let us illustrate the A-Maze-D functions using the bottom
curved wall, which is a segment of the parabola y = (x/4)2.
An approximation of the parabola can be specified by five
points as shown in Figure 4. Our MATLAB script takes the x
coordinates and the parabolic function y = (x/4)2 to generate
Table III-A. The script can take any other polynomial function.
In case the boundary of the wall cannot be described by the
user as a polynomial function, the A-Maze-D system also
provides an alternative MATLAB script that makes a cubic
spline interpolation for the given sample points of the wall.

TABLE II
EXAMPLE CORNER POINTS ON A MAZE.

id X Y
1 -5 1.5625
1 -3 0.5625
1 0 0
1 3 0.5625
1 5 1.5625

The more points we choose for the approximation, the
smoother-looking parabolic curved wall we obtain. However,
the smoother representation generates a larger MLPQ input
file, which means generally a slower visualization and ani-
mations of the maze game. Given the above input data, the
A-Mazed-D system already generates a large MLPQ output
file, which begins as follows:

begin %MLPQ%

R(id,x,y) :- id=1, x>=-4.0000, x<=-3.9200,
-0.640043x - y = 1.560172.

R(id,x,y) :- id=1, x>=-3.9200, x<=-3.8400,
-0.588340x - y = 1.357495.

R(id,x,y) :- id=1, x>=-3.8400, x<=-3.7600,
-0.541344x - y = 1.177033.

...

end %MLPQ%

Mathematical Models and Computational Methods

ISBN: 978-1-61804-350-4 91



4

Fig. 6. Color Scheme Window

Fig. 7. Maze color changes from green (on the left)to orange (on the right)

Fig. 5. Color Example

Color Change: We call color animation when stationary or
moving objects change color over time. Color animation can
provide important visual cues to the users. For example, in our
maze we could make the walls change color that would show
some type of time limit where the walls will start to change to
a specific color when the user is running out of time. MLPQ

handles color animation by allowing the user to choose two
different colors for each relation.

When an MLPQ input file is loaded into the MLPQ system,
then next to each spatial or moving object relation there
are two colored boxes as shown in Figure 5. The first box
represents the starting color, and the second box the ending
color for the displayed relation during the animation. The
MLPQ system provides a random pair of colors for each
relation after a new file is uploaded. To change the colors to
the desired values, we can double click on one of the boxes.
Then a color scheme window will pop up as shown in Figure 6.
This window allows the user to create the specific color of their

Mathematical Models and Computational Methods

ISBN: 978-1-61804-350-4 92



5

choice for the selected box. For example, Figure 7 shows two
snapshots of the color animation of a maze, which changes
from green to orange.

B. Moving Objects

Player Movement: Movement of the player is guided by
choices that the player can select in MLPQ. When the player
chooses a movement option in the maze, the A-Maze-D
system animates the player moving through the maze until the
player reaches the next choice point where another decision is
required. At any moment in time, each player is assumed to
occupy a 4 by 4 square area. The movement of the square is
represented by the attributes x, y and t, which denoted time.
For a moving object, x and y are functions of time represented
by linear constraints in the MLPQ system input files. The A-
Maze-D system uses another MATLAB script to generate the
MLPQ file.

The MATLAB script will automatically compile this and
return the movements for your player to take. Once the
constraints are created from the script you then have to put
them in your MLPQ maze file with the proper relations. The
code below is one example that shows how the constraints are
stored inside the MLPQ file.

Fig. 8. A moving point within a maze.

For example, Figure 8 shows the movement of the player
from location (110, 110 to location (99, 55). Besides these
beginning and ending points, we also record some of the other
points that are on the way with the restriction that all turning
points need to be included in the list. In this case, the selected
points can be represented in the following table:

TABLE III
INPUT: CENTER POINTS FOR PLAYER MOVEMENT ON THE MAZE.

id X Y
1 110 11
1 11 11
1 11 33
1 99 33
1 99 55

The A-Maze-D system generates the following MLPQ file
for the input shown in Table III-B.

begin %MLPQ%

player(id,x,y,t) :- id=1,
x + t >= 119,
x + t <= 121,
y > 10, y <= 11,
t >= 10, t <= 109.

player(id,x,y,t) :- id=1,
x >= 10, x <= 12,
y - t > -99,
y - t <= -98,
t >= 109, t <= 131.

player(id,x,y,t) :- id=1,
x - t >= -121,
x - t <= -119,
y > 32, y <= 33,
t >= 131, t <= 219.

player(id,x,y,t) :- id=1,
x >= 98, x <= 100,
y - t > -187,
y - t <= -186,
t >= 219, t <= 241.

end %MLPQ%

The A-Maze-D system generates an animation using MLPQ
as a basis.

Searchlight: The A-Maze-D system also allows a limited field
of view for the game player by adding a larger square relation
around the moving player. The complement of that larger
square will be displayed in black over the actual maze. For
example, Figure 9 shows the limited field of view provided
by a search light. The searchlight follows the player as he or
she moves in the maze.

Explosions: The A-Maze-D system can represent explosions
and other expanding objects. For fireworks can be represented
as an object that expands until it ceases to exist. The A-Maze-
D system provides a function that gives as input the beginning
and the ending shapes of the exploding object and gives as
output a parametric rectangles representation of the expanding
object that is an accepted MLPQ input file.

Color Change: Color animation can be applied to moving
objects too similarly as it is applied to stationary objects. For
example, the firework could be black at the beginning and
gradually lighted up and become completely red in the end.

Mathematical Models and Computational Methods

ISBN: 978-1-61804-350-4 93



6

Fig. 9. Searchlight Example

IV. CONCLUSION AND FUTURE WORK

Constraint databases and video games have been around
for a long time, but they have never been combined together
before. The A-Maze-D system shows that constraint databases
can be applied conveniently and efficient to design of maze
games. A-Maze-D provides a versatile set of features by a
combination of a MATLAB library and the MLPQ constraint
database system. This is the first time that maze games have
been created using constraint databases.

In the future we would like to try implement different
game types in constraint databases and see how well they can
be converted over from the normal game development into
constraint databases. We believe the best way to do this is
testing out different types of games and see how well they
perform. A few examples to name would be to test games
that are more like Tetris where one needs a faster reaction or
one’s actions are limited by the time allotted.

Examining new possible features that constraint databases
can provide for game development is another area we would
like to research more and test out. Constraint databases have
been used before in the animation of human faces. Hence an
intriguing possibility is to allow players to speak to each other.
Whenever a player wants to say something a pop-up window
would open and show an animation of the player’s face as he
or she speaks.

REFERENCES

[1] M. Lewis and J. Jacobson, Game engines, Communications of the ACM,
45.1, 27, 2002.

[2] P. C. Kanellakis, G. M. Kuper and P. Z. Revesz, Constraint query
languages, Journal of Computer and System Sciences, 51 (1), pp. 26-52,
1995.

[3] P. Z. Revesz, Introduction to Databases: From Biological to Spatio-
Temporal, New York, USA: Springer, 2010.

[4] P. Z. Revesz, R. Chen, P. Kanjamala, Y. Li, Y. Liu and Y. Wang,
The MLPQ/GIS constraint database system, ACM SIGMOD International
Conference on Management of Data, ACM Press, 2000.

[5] W. S. Small, Experimental study of the mental processes of the rat. II
The American Journal of Psychology, pp. 206–239, 1901.

[6] F. A. C. Perrin, An experimental and introspective study of the human
learning process in the maze. Psychological Monographs: General and
Applied, 16.4, i-97, 1914.

[7] John B. Watson, Kinsthetic and organic sensations: Their role in the
reactions of the white rat to the maze. The Psychological Review:
Monograph Supplements, 8.2, 1907.

[8] ”Monthly U.S. Video Game Industry Revenue 2015 — Statistic.” Statista.
Web. 13 Apr. 2015. http://www.statista.com/statistics/201093/revenue-of-
the-us-video-game-industry/

Mathematical Models and Computational Methods

ISBN: 978-1-61804-350-4 94


	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	10-1-2015

	A-Maze-D: Advanced Maze Development Kit Using Constraint Databases
	Shruti Daggumarti
	Peter Revesz
	Corey Svehla

	tmp.1519047827.pdf.uon_Q

