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Summary: Blood flow is an essential contributor to plaque growth, composition and initiation. It is 

sensed by endothelial cells, which react to blood flow by expressing >1000 genes. The sheer 

number of genes implies that one needs genomic techniques to unravel their response in disease. 

Individual genomic studies have been performed but lack sufficient power to identify subtle 

changes in gene expression. In this study, we investigated whether a systematic meta-analysis of 

available microarray studies can improve their consistency.  

 We identified 17 studies using microarrays, of which 6 were performed in vivo and 11 in 

vitro. The in vivo studies were disregarded due to the lack of the shear profile. Of the in vitro 

studies, a cross-platform integration of human studies (HUVECs in flow cells) showed high 

concordance (>90%). The human data set identified >1600 genes to be shear responsive, more 

than any other study and in this gene set all known mechanosensitive genes and pathways were 

present. A detailed network analysis indicated a power distribution (e.g. the presence of hubs), 

without a hierarchical organization. The avg. cluster coefficient was high and further analysis 

indicated an aggregation of 3 and 4 element motifs, indicating a high prevalence of feedback and 

feed forward loops, similar to prokaryotic cells. 

 In conclusion, this initial study presented a novel method to integrate human-based 

mechanosensitive studies to increase its power. The robust network was large, contained all 

known mechanosensitive pathways and its structure revealed hubs, and a large aggregate of 

feedback and feed forward loops.    

 
Keywords: bioinformatics, network biology, network structure, mechanobiology, microarrays, 
human. 
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Introduction 

 Blood flow plays a key role in atherosclerosis, both in the initial and advanced stages of the 

disease, and during subsequent interventions to alleviate the disease (1-3). The information 

generated by the blood flow is transmitted by endothelial cells, which are exquisitely sensitive to 

the magnitude and direction of the blood flow, through a process called mechanotransduction. 

Mechanotransduction is the propensity of cells to react to mechanical cues, and this mechanism 

consists of a variety of mechanosensors that drive signaling pathways enabling the cell to react to 

the mechanical cues by changing its protein signature. Endothelial cells, the mechanosensitive 

nature of which has been extensively studied, reacts to blood flow by switching on between 1000-

2000 genes, activating >8 transcription factors and >10 signaling pathways. The sheer number of 

signaling molecules involved in a cellular response implies that we need to use a genomic 

approach to study mechanotransduction and use bioinformatics techniques to infer signaling 

networks (1-3).  

 In a previous paper (2), we summarized all findings on genome-wide studies and concluded 

that the large variability in results reported between researchers was due to a large variability of 

bioinformatics analysis, necessitating the need to standardize this approach. Furthermore, 

integrative analysis is a relatively inexpensive way to gain new biological insight by making use of 

data accumulated through the years. Increasing sample size and statistical power allows for the 

discovery of subtle differences in gene expression and results in more reliable and generalized 

findings that are less likely to be due to study-specific artifacts (4-9). In addition, each individual 

study addresses only a small part of the global solution, therefore the merging of diverse 

conditions on the same biological problem allows for the interrogation of a greater proportion of the 

“solution space” that is relevant to the biological problem under investigation (8).  

This paper describes an initial approach to increase the power of individual microarray studies 

through a pipeline that integrates Affyrmetrix, Illumina and Agilent platforms and applies them to 

previously reported microarray studies performed to identify mechanosensitive signaling pathways.   
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How to aggregate single microarray studies. 

 
Initial selection of studies 
 
 Studies have been collected from three databases: PubMed, Gene Expression Omnibus 

(GEO) (10) and ArrayExpress (11). A systematic search has been conducted to find all studies 

whose abstract and/or title contain at least one of the following keywords: endothelial cell, fluid 

mechanical forces and gene expression. Supplemental Figure 1 illustrates the flow chart for study 

collection and characterization. In total, PubMed, GEO and ArrayExpress returned 209, 142 and 

60 studies respectively. After removing duplicates and screening for relevance, 82 studies were 

identified and further evaluated. Amongst these, 9 papers were reviews and 16 original research 

papers had incorrect datatype (e.g., methylation or miRNA expression datasets) and therefore 

were excluded. The remaining 57 studies were formally reviewed and summarized resulting in a 

final set of 17 studies considered for building the integrated mechanoresponsive gene expression 

profile. Exclusion criteria of the studies were: no raw data available, sample size less than three, 

incompatible factors (e.g., knockdown genes) and studies that included first generation 

microarrays with low coverage.  

 Figure 1 illustrates the different shear stress conditions across the studies considered, 

grouped by species and microarray platform. Studies have conducted analysis on Affymetrix, 

Agilent, Illumina and spotted cDNA platforms using human umbilical venous endothelial cells 

(HUVEC), porcine arterial endothelial cells (PAEC) and bovine arterial endothelial cells (BAEC). 

Shear stress conditions have been grouped in a descriptive phenotype variable, which consists of 

five levels: static, low, moderate, high and complex shear stress. Low, moderate and high refer to 

the magnitude of shear stress used for steady uniform shear. Low shear includes samples from 1 

to 10 dyne/cm2, moderate shear captures samples from 11 to 35 dyne/cm2 and high includes 

samples with shear between 75 and 284 dyne/cm2. The complex category includes all non-uniform 

shear stress waveforms (e.g., oscillatory, pulsatile). As can be seen in Figure 1, there is no 

consistency in the shear stress conditions used across studies.  
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 For the purpose of this study, we have focused on the analysis of single color arrays 

(Affymetrix, Agilent and Illumina). This allowed us to test the feasibility of the integrative approach 

without the additional complexity of combining data from two-color, which are obtained as log 

ratios with expression values obtained from single color arrays. Of the remaining single color 

arrays, only a small number of samples had been subjected to complex shear (e.g., oscillatory 

shear or shear with gradient). Hence, only samples with uniform shear have been retained for 

integration.  

 The primary factor considered in the analysis was shear stress pattern that had been 

characterized by three parameters: waveform, directionality and magnitude. Secondary factors that 

were considered include: species, flow system and platform.  

 

Platform specific preprocessing 

 Affymetrix datasets were normalized using the Robust Multiarray Analysis (RMA) algorithm 

(12) implemented in Affy R package (13), as it has consistently been shown to perform amongst 

the top ranked methods in terms of sensitivity to biological variation (14-17). In addition, it has 

been shown to improve cross-platform comparability (18) and it has been used by studies that 

successfully performed cross-platform integration of expression values (19-21).  

 Illumina datasets were normalized using methods implemented in the Lumi R package (22). 

Raw data were log2 transformed and quantile normalized. No background correction was used. 

This approach has been shown to perform well before (23) and (22).   

 Agilent datasets were normalized using methods implemented in the Limma R package 

(24). Raw data were background corrected using the ‘normexp’, log2 transformed and quantile 

normalized. Agilent is frequently used for its two-color arrays, which allow the hybridization of two 

samples on the same chip. Therefore the recommendations for two-color arrays have been used, 

since the error model for single channel Agilent is expected to be very similar (25, 26).   
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Annotation of Microarray Platforms 

All probes have been mapped at the gene level using human Entrez IDs as the common identifier 

between platforms. Entrez ID has been selected since it is stable over time, well curated and has 

previously been shown to achieve high mapping rates between platforms (27). Probes mapping to 

the same Entrez ID were combined into a single value by taking the mean. A summary of the final 

mapping statistics is shown in supplemental Table 1, depicting the total number of Entrez IDs 

covered by each array, alongside the number of mapped and excluded probes.  

Following the successful annotation of each individual platform, we compared the coverage of the 

four human arrays (Affy U133, Lumi HT12, Lumi Ref8 and Ag44k). Collectively, the probes on the 

four arrays target a total of 22,478 unique Entrez IDs, out of which 14,030 are common amongst all 

four human platforms (Supplemental Figure 2).  

There is an overlap of 7,743 genes between human and bovine platforms and an overlap of 12,641 

genes between human and mouse. The 7,743 genes common between bovine and human arrays 

capture 85% of the bovine array, but only 55% of the human arrays. This is because of the low 

coverage of the bovine array, which includes a total of 9,902 genes. The mouse array has a more 

extensive coverage of human genes (a total of 15,963) and therefore 90% of the common human 

is captured by the mouse array.  

 

Systematic biases and cross-platform correction 

 Systematic biases and cross platform correction was performed using ComBat (28-30). 

ComBat was chosen based on its demonstrated ability to perform well in small sample studies (28, 

29, 31) and the fact that it uniquely allows a design with multiple covariates (e.g., species, shear 

regime) is very important for our study, which has an imbalanced design. Its ability to remove batch 

effects due to different experimental runs has been demonstrated in Affymetrix arrays (28, 29, 32, 

33), Illumina arrays (34) and two-color arrays (35). In all of the above papers, Combat improved 

the consistency of gene lists suggesting that the biological signal was still intact. Combat also 

demonstrated the potential for cross-platform normalization based on merging technical replicates 

(19, 21).  
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 Finally, individual studies were assessed for technical and biological outliers by 

arrayQualityMetrics (36). ArrayQualityMetrics implements automatic detection of outliers based on 

empirically calculated thresholds. MDS plots were used to assess the uniformity of replicates and 

ensure that samples were clustered by experimental condition. The relative contribution of each 

factor to the overall variability was assessed using the Principal Variance Component Analysis 

(PVCA) method (37). Inter-study concordance was assessed through mean-mean expression 

plots. The goodness of the line of best fit (r2) was calculated as a measure of inter-study 

concordance. 

Finally, differentially expressed shear responsive genes are detected using the moderated t-test of 

the LIMMA package. The moderated t-statistic has the same interpretation as an ordinary t-statistic 

except that the standard errors for every gene are adjusted using an empirical Bayes method 

which takes into account information from all the genes. Shrinking the standard errors towards a 

pooled estimated makes the analysis more stable (38). P-values were corrected for multiple testing 

using the Benjamini–Hochberg procedure. Functional enrichment analysis for Gene ontology 

terms, canonical pathways and transcription factor binding sites was performed with the online tool 

WebGestalt (39). Annotations were selected for enrichment based on FDR p-value less than 0.05. 

 

Results of the different steps in microarray normalization 

The different steps described above will have different effects in the total variance between 

microarray studies and within microarray studies. These effects will be discussed in more 

detail below. 

 

Normalization of individual studies 

 Prior to merging, the studies were checked for technical and biological outliers using 

exploratory clustering of samples with multidimensional plots to assess the uniformity of within-

study replicates. In addition, variance component analysis was performed using principal variance 

component analysis (PVCA) (37). The Mun09 dataset includes samples subjected to 12 dyne/cm2 



  

8 

shear stress with static cultures as controls. Sample clustering of normalized data revealed the 

existence of batch effects in the dataset, which contributes to 27.8% of total variation. The MDS 

plot in Supplemental Figure 4 demonstrates sample separation related to experimental run, with 

Run 1 (circles) forming a particularly distinct group. Following batch effect correction, the variation 

due to experimental run has been reduced to 0%, with clear separation of samples by the four 

experimental conditions. Following batch correction, the shear stress factor contributed to 86% of 

total variation. 

 White11 investigates the shear stress response at 15 dyne/cm2 and 75 dyne/cm2. Sample 

clustering of normalized data demonstrates consistent grouping of samples by shear stress 

magnitude (x-axis direction in Supplemental Figure 5). There is a minor batch effect captured by 

the second principle component (y-axis direction in Supplemental Figure 5). Following batch effect 

correction, the proportion of variation in expression data relating to phenotype increased from 

62.6% to 81.5%, with a corresponding decrease in the variation linked to batch effects (from 7.9% 

to 1.3%).  

 The study of Conway10 includes three shear stress environments: static control, 1 

dyne/cm2 and 75 dyne/cm2. Initial clustering of samples indicated a batch effect that was quantified 

by variance analysis at 34.6% of the total variation (Supplemental Figure 6). Following batch effect 

correction, the samples of all shear stress levels form three spatially distinct groupings, whose 

percentage of variation related to shear stress, increased from 48.5% to 86.1% (Supplemental 

Figure 6). There was still some interaction between shear stress and batch effect quantified at 

15%. 

 Lorenz15 studies the gender-specific effects of shear stress response. HUVECs isolated 

from three female and three male donors, were subjected to 6 dyne/cm2 shear stress or kept in 

static conditions, resulting in a paired experimental design. Exploratory MDS plots on Lorenz15 

showed unexpected shifts in expression values in response to experimental conditions for which 

we were unable to correct for by batch adjustment. Initial analysis of all samples in the dataset 

(Supplemental Figure 3) indicated that two of the male samples (Run 4 and Run 5) demonstrated 

no response to shear stress. Further, one of the female samples (Run1, circles) demonstrated an 

enhanced response with a shifted distribution that was identified as a technical outlier by array 
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quality metrics. Given the evidence of unreliability in the expression data, the entire Lorenz15 

dataset was eliminated from the pipeline.  

 The final dataset considered for the integration of flow studies conducted in human 

endothelial cells was the Ni11 study, which includes samples at 15 dyne/cm2 and oscillatory shear 

stress. For the purpose of this study, only the 15 dyne/cm2 samples were retained. As we were 

unable to retrieve information on experimental runs from the publication associated with this study 

(40), no variance component analysis was conducted. Sample clustering did not indicate the 

existence of batch effects; uniform sheared samples clustered together and away from the 

oscillatory shear stress samples (data not shown).  

 

Integration of studies to generate a merged expression dataset 

 Following cross-study normalization, sample distributions showed a great degree of 

similarity, with a clear separation of samples into three respective shear stress phenotype’s. In 

variance component analysis, 66.2% of variation in normalized data has been linked to shear 

stress phenotype (Figure 2). There is, however, some study-effect remaining in the data as 

indicated by the 24% variation attributed to an interaction between phenotype and platform.  

 Four samples out of the 26 samples have been identified as outliers and removed from 

further analysis. One of the White11 15 dyne/cm2 samples has clustered away from the rest of the 

moderate shear stress samples (Figure 3A). In addition, the three low shear stress samples from 

Conway10 study clustered with the moderate shear stress samples and therefore were removed 

as outliers (data not shown). As a consequence, >90% of variation was attributed to the shear 

stress phenotype (Figure 3).  

 In order to explore further the concordance between the different studies, we have 

analyzed the agreement between the expression values of all the 15 dyne/cm2 samples across 

studies. In total, there are 9 samples, three samples from each of Conway10, Ni11 and White11 

studies (Figure 4). Prior to cross-study normalization, the average r2 value was 0.60 (Figure 4a), 

which increased to an average of 0.94 after applying cross-study normalization (Figure 4b), 

indicating the high agreement between studies from different platforms. Similar results were 
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obtained for the concordance between the static samples in Conway10 and Mun09. Following 

cross-study normalization, r2 increased from 0.70 to 0.96. 

 In the second phase of the project, we have attempted to expand the set of integrated 

studies to cross-species datasets. Two additional studies have been considered, Dolan12 and 

Dolan13, which subject bovine aortic endothelial cells to a wide range of shear conditions (static 

controls, 20 dyne/cm2, 35 dyne/cm2, 100 dyne/cm2 and 284 dyne/cm2). After an extensive analysis 

employing all tools described above, only 147 differentially expressed genes were detected. In that 

aggregated dataset, the main known mechanosensitive genes were not differentially expressed 

and we decided not to pursue this analysis due to this outcome.  

 

Identification of shear responsive genes   

 In order to verify that the biological variation has not been affected by the normalization 

steps, shear responsive genes have been identified through differential expression analysis of the 

static and moderate shear stress samples in the integrated dataset. In total, 1,628 shear 

responsive genes have been identified with a p<0.05. A query for the most related diseases in the 

set of differentially expressed genes returned cardiovascular diseases with an enrichment score of 

32.51 (p<0.001). Enrichment analysis for transcription factor binding sites identified key 

transcription factors known to be involved in the endothelial cell shear response including AP1, NF-

kB, p53, MEF2, NRF2 and PPARγ (41-44). Amongst the top unregulated genes were  KLF2 (fold 

change=5.2 ), KLF4 (fold change=16) and NRF2 (fold change=1.9), which have been attributed to 

regulate up to 70% of the atheroprotective endothelial cell transcriptional program (42). The list 

includes upstream regulators of these transcription factors, including ERK5, MEF2, KEAP1, 

HDAC5, as well as downstream genes controlled by these transcription factors, which have been 

associated with shear stress and include eNOS (endothelial nitric oxide synthase 3), THBD 

(thrombomodulin), HMOX1 (heme oxygenase (decycling) 1), NQO1 (NAD(P)H dehydrogenase, 

quinone 1), CYP1B1 (cytochrome P450, family 1, subfamily B, polypeptide 1), SELE (E-selectin), 

ICAM1 (intercellular adhesion molecule 1) and plasminogen activator inhibitor type 1 (SERPINE1) 

(45-48). 
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 Functional enrichment analysis for Gene Ontology biological processes and 

KEGG/Wikipathway canonical pathways revealed a strong involvement of phospoproteins 

(p<0.001) with a widespread response of all five MAPK pathways (enrichment score (ES)=2.88, 

p<0.001), and processes regulating cell communication (p<0.001) including adherent junction (ES 

= 4.12), focal adhesions (ES= 2.75), regulation of actin cytoskeleton (ES=2.39), tight junctions 

(ES=2.48), and integrin mediated cell adhesion (ES=3.49). Top enriched signaling pathways 

include the Keap1-Nrf2 Pathway (ES= 6.15), oxidative stress (ES= 4.36), Wnt Signaling (ES=2.44), 

and TGF-beta signaling pathways (ES=3.27). These findings are in line with current literature (49-

51). 

 In summary, the pipeline presented in this study provides an implementation of methods to 

integrate Affymetrix, Illumina and Agilent at the gene expression level, which has not been 

previously reported within the literature. It identified ~1650 differentially expressed genes, one of 

the most ever reported (52, 53). Furthermore, the identified, differentially regulated genes 

contained all known mechanosensitive pathways, demonstrating the effectiveness of our 

approach.  

 

 

Network-analysis 

We subjected the aggregated human genes to a network analysis applying weighted gene co-

expression analysis (54) and visualized a network consisting of the 10,000  highest expressers 

with Cytoskape(55). As can be seen in Figure 5, the network is highly interconnected, displays a 

power law distribution (panel B), while the cluster coefficient was independent of node size (panel 

C).  The power law distribution means that a few nodes have a high interaction with other nodes, 

while the majority of nodes have only minimal interaction with their neighbors. The highly 

interactive nodes or hubs have been used successfully to identify new leads for drug development.   

This Is based on the concept of robustness of networks, where low interacting nodes were not 

influential by deleting them but hubs were (56-58). In addition, the avg. cluster coefficient was 

independent of degree of freedom of the nodes, which specify the absence of a hierarchical 

structure (59-61). As the avg. cluster coefficient, and thus the presence of higher order structures 
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was higher than expected (e.g. on basis of a random network distribution) we counted the 

presence of three node (negative and positive feedback loops) and four node motifs (feed-forward 

loops). We detected >50 of these motifs, which is concordant to the presence of feedback loops in 

our detected mechanosensitive pathways (e.g. MAPK, Wnt, and NF-kB). 

In conclusion, the present approach enables to study robust gene networks. The new findings 

suggest this approach could be used in the future to study gene networks in disease where 

rewiring and loss of function of several pathways and hence small communities have been 

reported in several other fields than cardiology.   
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Legends 

 
Figure 1. Experimental factors in the flow studies considered for building the integrated 
dataset 
Each study is represented by a different box, which is colored according to the microarray platform 
used. The species and shear stress regime used is also indicated. Shear stress conditions have 
been grouped in a descriptive phenotype variable, which consists of five levels: static, low, 
moderate, high and complex shear stress. Low, moderate and high refer to the magnitude of shear 
stress used for steady uniform shear. The number in each box shows the specific shear stress 
value (in dyne/cm2) used. The complex category includes all non-uniform shear stress waveforms 
(e.g. oscillatory, pulsatile).  
 
 
Figure 2. Merging of human expression datasets.  
(A) Sample clustering of the merged human endothelial cell dataset. For each study the 
normalized batch corrected data were used. Each point on the plot is a sample, where colour 
corresponds to the shear stress environment. B) Visualizes the same MDS plot as in (A), with 
individual samples colored according to the different studies instead of shear stress environment. 
C) The bar chart plot the proportion of variance (y-axis) captured by each of the known factors (x-
axis). D) Expression values, density distribution plots for each sample, coloured according to 
individual studies. 
 
Figure 3. Cross-study normalization of the integrated human endothelial cell dataset 
(A) Sample clustering of the integrated human endothelial cell dataset following cross-study 
normalisation. Each point on the plot is a sample, where colour corresponds to the shear stress 
environment. B) Visualises the same MDS plot as in (A), with individual samples coloured 
according to the different studies instead of shear stress environment. C) The bar chart plot the 
proportion of variance (y-axis) captured by each of the known factors (x-axis). D) Expression 
values, density distribution plots for each sample, coloured according to individual studies.  
 
Figure 4. Mean-mean scatter plots of 15 dyne/cm2 samples across studies.  
A) Mean-mean plots before cross-platform normalisation. B) The same pairwise comparisons after 
cross-platform normalisation. Each plot shows the mean expression levels of 15 dyne/cm2 samples 
from one study, plotted against the mean expression level of 15 dyne/cm2 samples from another 
study. The axis labels indicate the studies compared. Under perfect conditions, the points on the 
mean-mean scatter should fall on the theoretical y=x line, plotted in blue. The red line corresponds 
to the line of best fit to the data. The goodness of fit (r2), is showed under each plot and it 
quantifies the fraction of variance explained by the line of best fit. r2  is a measure of inter-study 
concordance.  
 
Figure 5: Network analysis of robust mechanosensitive genes. 
A)Displayed is the network structure f the 10,000 highest gene expressors obtained from the fusion 
of 4 human microarray studies (see text for details). On the top the network is present and below 
the number and composition of motifs are displayed. Note the high number of 3, 4, and 5-element 
motifs in this network, B) The inverse relationship between (log) . number of degrees (number of 
connections per node) and (log) number of nodes is representative of a power law. This implies 
that hubs, which may be used for drug development, C) The relationship between (log) number of 
degress and average cluster coefficient indicates the a hierarchical clustering in this network is 
present.   
 
 
Supplemental Figure 1. Flow Chart for study collection and characterisation. Studies were 
collected from three sources: PubMed, ArrayExpress and GEO database. Search commands used 
are: amicroarray*, expression profil*, transcriptome, whole-genome, transcript*, transcriptional 
analysis, Affymetrix, Illumina, transcriptomics,  b : endothelial, endothelium, HUVECs, MAECs, 
BAECs, PAECs, c : shear stress, flow NOT flow cytometry, laminar, disturbed, hemodynamics, 
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mechanosensitive, mechanical force, atheroprotected, athero-protected, atherosusceptible, athero-
susceptible, atherosusceptibility, atheroprone.  
 
Supplemental Figure 2. Entrez ID overlap between the array versions included in the 
integration study.  
A) Overlap between the four human array versions. 14030 are common amongst all four arrays 
refereed to as  “common-human” list.  The individual mapping rates are shown in the table. The 
rate is calculated by obtaining the set of common Entrez IDs between the two platforms and 
dividing it by the total number of Entrez IDs in the source platform. B) Overlap between common 
human Entrez IDs and bovine (top) (or mouse (bottom)) Entrez Ids which have been mapped to 
human Entrez IDs, using NCBI homolog information. Cross-species mapping rates to individual 
human arrays are shown in the table 
 
Supplemental Figure 3. Lorenz15 sample clustering 
The study consists of three female and three male samples subjected to 6 dyne/cm2 shear stress 
or kept in static conditions, resulting to a paired experimental design. Sample clustering of all 
samples (A), female samples only (B) and male samples only (C) is plotted using multidimensional 
scaling plots. Each point on the plot is a sample, where colour corresponds to sheared stress 
environment and the symbol corresponds to the experimental run of the sample. The inconsistent 
trend in the shear stress responses have been highlighted by pairing static and low shear samples 
from each donor to emphasize the directionality of the response. Male samples (C) show a diverse 
range of responses to shear stress, indicating underlying problems in experimental data. One of 
the female samples ((B), Run1, circles) demonstrates an enhanced response with a shifted 
distribution which has been identified as a technical outlier by array quality metrics. 
 
Supplemental Figure 4. Mun09 study: Sample clustering and variance component analysis.  
The bar charts show the proportion of variance (y-axis) captured by each of the known study 
factors (x-axis), before (A) and after (C) batch effect correction. Batch effects define the 
experimental run of a given sample, Passage defines the age of the cells used, which were either 
young or senescent, and shear stress defines the shear environment the cells were subjected to. 
Sample clustering before (B), and after (D), batch effect correction is plotted using 
multidimensional scaling plots. Each point on the plot is a sample, where colour corresponds to the 
shear stress environment and the symbol corresponds to the experimental run of the sample.  
 
Supplemental Figure 5. White11 study: Sample clustering and variance component analysis 
The bar charts plot the proportion of variance (y-axis) captured by each of the known study factors 
(x-axis), before (A) and after (C) batch effect correction. Sample clustering before (B), and after 
(D), batch effect correction is plotted using multidimensional scaling plots. Each point on the plot is 
a sample, where colour corresponds to the shear stress environment and the symbol corresponds 
to the experimental run of the sample.  
 

Supplemental Figure 6. Conway10 study: Sample clustering and variance component 
analysis 
The bar charts show the proportion of variance (y-axis) captured by each of the known study 
factors (x-axis), before (A) and after (C) batch effect correction. Sample clustering before (B), and 
after (D), batch effect correction is plotted using multidimensional scaling plots. Each point on the 
plot is a sample, where colour corresponds to sheared stress environment and the symbol 
corresponds to the experimental run of the sample.  
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