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Abstract 

Electrochemical and electro-discharge machining processes are the two major electro-machining processes with unique capabilities. 
Electrical Discharge Machining (EDM) and Electrochemical Machining (ECM) offer a better alternative or sometimes the only 
alternative in generating accurate 3-D complex shaped macro, micro and nano features and components of difficult–to-machine 
materials. Technological advances reported in electrochemical and electro discharge machining processes, which reflect the state of 
the art in academic and industrial research and applications, are briefly reviewed in this paper. 
 
© 2013 The Authors. Published by Elsevier B.V. Selection and/or peer-review under responsibility of Professor Bert Lauwers  
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1. Introduction 

    The demand for macro- and micro- products and 
components of difficult-to–machine materials such as 
tool steel, carbides, super alloys and titanium alloys has 
been rapidly increasing in automotive, aerospace, 
electronics, optics, medical devices and communications 
industries. In spite of their exceptional properties many 
of these difficult-to-machine materials seem to have 
limited applications. These materials pose many 
challenges to conventional machining processes (such as 
turning and milling). For example titanium alloys are 
susceptible to work hardening and its low thermal 
conductivity and higher chemical reactivity result in 
high cutting temperature and strong adhesion between 
the tool and work material leading to tool wear. 
Electrical Discharge Machining (EDM) and 
Electrochemical Machining (ECM) offer a better 
alternative or sometimes the only alternative in 
generating accurate 3-D complex shaped features and 
components of these difficult –to- machine materials. 
This paper presents a brief review of the state-of-the art 
research and developments in modeling, surface 
integrity, monitoring and control, tool material and tool 

wear and hybrid processes. Recent reports on emerging 
nano-scale electro machining are also reviewed. The 
second section describes the research activities in ECM. 
EDM research efforts are presented in third section.  
Nano electro machining (nano-EM) is briefly discussed 
in section four. The last sections provide summary and 
acknowledgements. 

2. Electrochemical machining 

Electrochemical machining (ECM) is a non-
traditional machining process in which material is 
removed by the mechanism of anodic dissolution during 
an electrolysis process [1, 2]. A D.C. voltage (10-25 
volts) is applied across the inter-electrode gap between 
pre-shaped cathode tool and an anode workpiece. The 
electrolyte (e.g. NaCl aqueous solution) flows at high 
speed (10-60 m/s) through the inter-electrode gap (0.1-
0.6 mm). The current density is usually 20 to 200 
Amperes per cm square. The anodic dissolution rate, 
which is governed by Faraday’s laws of electrolysis, 
depends on the electrochemical properties of the metal, 
electrolyte properties and electric current/voltage 
supplied. ECM generates an approximate mirror image 
of the tool on the workpiece. Advantages of ECM over 

Available online at www.sciencedirect.com

© 2013 The Authors. Published by Elsevier B.V.
Selection and/or peer-review under responsibility of Professor Bert Lauwers

Open access under CC BY-NC-ND license. 

Open access under CC BY-NC-ND license. 

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


14   K.P. Rajurkar et al.  /  Procedia CIRP   6  ( 2013 )  13 – 26 

other traditional machining processes (e.g. turning and 
milling) include its applicability regardless of material 
hardness, no tool wear, comparable high material 
removal rate, smooth and bright surface, and the 
production of components of complex geometry with 
stress-free and crack-free surfaces [3]. Therefore, ECM 
has been applied in many industrial applications 
including turbine blades, engine castings, bearing cages, 
gears, dies and molds and surgical implants. A recently 
conducted study of technological and economical 
comparison of roughing operation of titanium and nickel 
based blisks by milling, EDM and ECM shows 
depending on the geometry, ECM is comparable in 
machining titanium alloy. EDM has been found to be a 
better alternative for smaller batch sizes whereas ECM is 
more suitable for large scale production [4]. The 
research and technological development activities in 
ECM process, its variants and related hybrid processes 
are continuing to address its emerging applications.  
Pulse electrochemical machining (PECM) is a variation 
of ECM where a pulsed power is used instead of DC 
current. PECM leads to higher machining accuracy, 
better process stability and suitability for control. These 
advantages are due to the improved electrolyte flow 
conditions in the inter-electrode gap, enhanced 
localization of anodic dissolution, and small and stable 
gaps found in PECM [5,6]. When applied for 
micromachining PECM is referred as pulse 
electrochemical micromachining (PECMM). ECM 
process mechanism has been used in developing a 
pulse/pulse reverse approach to electro-polishing and 
thorough-mask electro-etching with applications to 
automotive planetary gears, fluid control valves, medical 
stents and superconducting radio-frequency cavities [7]. 
As mentioned earlier ECM applications include 
aerospace [8, 9], biomedical [10, 11], deburring [12], 
energy [13-17], deep hole machining for automotive 
applications [18-20], and tribology [21]. 
 

2.1. ECM Process modeling, simulation and Tool 
Design 

In ECM and its variant processes, it is essential to 
estimate the anode material removal thickness at a given 
time increment. The material removal thickness is a 
function of current density distribution at the gap 
including the varying electrical conductivity of the 
electrolyte. The electrolyte properties depend on the 
temperature and gas bubble formation, which in turn 
depend on the velocity and pressure fields besides 
current density. Therefore ECM modeling involves a set 
of mass, heat electric charge transfer equations [22]. The 
non-contact nature of ECM has resulted in the need for 
the modeling of the ECM process for the prediction of 

anodic profile. A review of the mass transfer issues in 
ECM with the problems associated with ECM processes 
is given in [23].   Numerical modeling of the ECM 
process considering the hydrodynamics involved in the 
process was studied in [24]. The end anode shape 
resulting after ECM using a triangular shaped cathode 
was modeled in this study.  A similar model for curved 
cathode considering electrolyte condition over curved 
surfaces was modeled in [25]. Cathode design in die 
sinking ECM with shaped electrodes is important as the 
inverse shape of the cathode is obtained on the 
workpiece (anode). A convergence analysis on the 
performance of Finite Element Method (FEM) as a tool 
for cathode design modeling is given in [26]. For the 
Electrochemical finishing process the variation of gap, 
taking into account the pulse current was modeled in 
[27]. The model was for a rotating anode (workpiece) 
and stationary cathode. Apart from predicting the gap, 
the model predicts the surface roughness values after the 
finishing process is completed [27]. Simulation of the 
heat generated during the ECM process and its effective 
dissipation using electrolytic flow was studied in [28]. It 
was found that a hollow cathode and pulse voltages help 
in the effective control of the heat generated. Numerical 
simulation of the ECM process taking into account the 
temperature effects was studied in [29,30] and the 
temperature distribution was found to have an influence 
on the shape of the anode with regions of higher 
temperature showing higher machining rates. For better 
accuracy and simplification of tool design, a smaller gap 
size and a stable gap state (by reducing the non-
uniformity of electrolyte conductivity) are required. 
Recently, it is shown that the dimensional accuracy and 
productivity of electrochemical shaping of airfoils can 
be enhanced by applying ECM followed by PECM [31]. 

2.2.  Process control and monitoring 

The inter-electrode gap is a critical parameter that 
needs to be controlled during the machining process in 
ECM and its variant processes. Setting and maintaining 
a small yet stable gap size in ECM is very important to 
achieve better dimensional accuracy and control. A trial 
and error approach was used in [32] to improve the 
machining accuracy of ECM process by adjusting the 
process parameters. Current and voltage signals are the 
basis for the gap monitoring in several of the control 
techniques used for ECM gap monitoring [33-36]. In one 
study the forces induced on the tool electrode due to the 
electrolyte was used as a measure of the inter-electrode 
gap [37]. Machine vision based gap monitoring was 
developed in [38] with gap control up to 200 μm. As 
ECM parameters and control are still largely dependent 
on the human operators’ experience, expert systems 
automating the process are needed [22]. Some examples 
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of expert systems currently implemented include 
artificial neural networks [39-41] and fuzzy logic 
controls [42, 43]. 
 
Micro ECM monitoring is based on voltage and current 
feedback signals from oscilloscopes [44] or current 
sensors [44-47]. The waveform observed during the 
process of ECM can be used to predict the MRR, hole 
accuracy and machining time [44]. Short circuit 
detection and prevention enabling better process stability 
and precise machining are further advantages from using 
in process control during micro ECM. Short circuits and 
sparks depend on the process parameters like machining 
voltage, pulse parameters and electrolyte concentration. 
Parametric optimization of these parameters can be used 
to machine with no spark affected zone (figure 1) [46].  

 

 

 

Fig. 1. Waveforms of (Top) Spark affected hole; (Bottom) No spark 
affect hole [46] 

2.3. Process capabilities 

ECM is capable of machining on a wide variety of 
conductive, hard to machine, engineering materials like 
metals [15, 48-50], semiconductors [51-53] and 
composites [46, 54-56]. Features as small as 0.5 μm can 
be machined using ECM (figure 2). The theoretical limit 
for the minimum gap width (precision) during ECM 
based on the charging time constant, and pulse 
limitations is estimated to be 20 nm [59]. Surface finish 
values as low as 100 nm can be achieved using 
electrochemical finishing techniques. [60]. A study of 
ECM generated surface characteristics of titanium 
revealed that higher rates of electrolyte flow resulted in 
improved material removal rate and better surface finish 
[9]. High aspect ratio microstructures with dimensions as 
small as 1 μm were fabricated on silicon for MEMS 
application using photo assisted ECM with HF 
electrolyte. The 4 step process uses photolithography, 
chemical etching and anisotropic electrochemical 
machining to machine highly dopes n-type silicon 
[51,58].  Other ECM process capable of machining 

silicon are wire ECM [61], laser assisted ECM [62], 
abrasive assisted ECM [63] and pulsed ECM [52]. When 
compared with milling and EDM, ECM is the most cost 
effective method for machining of Ti alloys [4]. 

Several studies have been conducted on the 
fabrication of microelectrodes using ECM [33, 54, 64-
67]. Tool handling issues are minimized with the in 
process manufacturing of tools used in ECM. Ultra high 
aspect ratio micro tools (>450) were produced using 
pulsed ECM using reverse currents [50]. These tools can 
be used to machine high aspect ratio micro holes using 
ECM or EDM. These electrodes also find biomedical 
application as neural implants (figure 3) [10]. Surface 
finish achieved through this process was 0.3 μm. The 
surface roughness of micro tools was also improved with 
the use of ECM combined with a honing process to get 
very fine finish (Ra 0.02 μm).  Wedge shaped tools with 
tip radius 0.6 μm were machined using the PECM 
process in [68]. These tools were then coated with 
diamond like layer for mechanical machining 
applications. Vibration assisted ECM of micro tools was 
studied in [69]. Micro tools with varying cone angles 
and reverse conical shapes were obtained with changes 
in vibration parameters of the process. 
 

  
Fig. 2. (Left) Micro ECM on Au workpiece [57]; (Right) High aspect 

ratio microstructures on Silicon using ECM [58] 
 
 

 
 
 
 
 
 
 

 
 

 

Fig. 3. High aspect ratio microelectrode [10] 

 
Holes with complex internal structures and undercuts 

can be machined using ECM that are otherwise almost 
impossible to be machined using any other process 
(figure 4, 5) [13, 14, 70].  The non-contact nature of 
machining enables the drilling holes having an 
inclination of 40º using wedged shape electrodes [71]. 
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Tools with spherical ends manufactured by a single 
discharge EDM process were found to produce holes 
with no taper [72].   
 
 
 
 
 
 
 
 
 
Fig.  4. Micro holes machined using ECM with grove array [70] 

 

 

 

 

 

Fig. 5.  Tabulator cooling hole with spiral duct [13] 

 

2.4. Electrolytes 

The electrolytes used in ECM depend on the type of 
material to be machined. Acidic, basic and neutral 
aqueous solutions have been used as electrolyte in ECM 
[73]. Dilute acidic solutions are preferred method for 
ECM of steel due to the solubility of the metal debris in 
to the electrolyte. Tungsten carbide composites are 
machined using alkaline and neutral solutions due to the 
formation of passive oxide layer in acidic solutions [46]. 
The choice of electrolyte is also known to influence the 
surface characteristics of the material being machined 
[73]. A non-aqueous electrolyte (NH4NO3/NH3) was 
used in the ECM of Molybdenum as in aqueous 
electrolytes Mo forms complexes with OH- ions [74]. 
The environmental concerns arising from the use of 
toxic electrolytes are one of the limiting factors in the 
widespread implementation of ECM in the industry. 
Environmentally friendly ECM using nontoxic 
electrolytes like water [8, 75] and citric acid [76] have 
been recently reported to establish ecofriendly micro 
ECM capabilities. 

2.5. Tools 

The tools used in ECM are of two types shaped and 
unshaped tools. The first variation is ECM sinking in 
steady state process. In this process the tool profile is a 
3-D negative image of the required surface profile. The 
tool is allowed to sink in to the work piece at a constant 
feed rate until the required shape is obtained on the work 
piece. Another variation is the ECM shaping process. In 
this process a universal simple shaped tool (e.g. 
cylindrical or spherical) is moved along a specified path 
to obtain the required shape of the work piece. The 

major requirements for a material to be used as a tool in 
ECM are high electrical and thermal conductivity, 
corrosion resistance and rigidity to withstand the 
electrolytic flow. Common tool materials include 
platinum, titanium, tungsten, tungsten carbide and 
copper [77]. Tool design forms a major part of the 
modeling efforts of ECM process for the shaped tool 
ECM process [78]. Modeling of tool design based on a 
given workpiece geometry using FEM was reported in 
[79]. 

One of the major advantages of ECM is the 
scalability of the process with the use of multiple 
electrodes on the same machining setup. ECM using 
multiple electrodes machined to machine arrays of micro 
holes was studied in [80-82] (figure 6) resulting in 
increased productivity. Taper induced on the workpiece 
during ECM drilling is a major concern. Some of the 
tool designs for the reduction of taper include dual pole 
tools [83], insulated tools [84], and tools with shaped 
ends [72]. A simple procedure for the tool insulation 
with a 3 μm thick layer is given in [85]. Tungsten micro 
tools coated with nickel were shown to be more 
corrosion resistant and improve the machining rates 
during ECM [77]. In the shaped tube electrochemical 
machining (STEM) process acidic electrolyte is 
delivered through the tool electrode. This process is used 
in the drilling of cooling holes in turbines [20]. ECM 
using electrolyte flow generated through extraction 
(reverse of STEM) is reported in [86, 87] resulting in 
improved process stability and accuracy.  Low frequency 
tool vibrations were found to improve machining rate 
and accuracy due to the enhancement in the electrolyte 
flow conditions [88]. A detailed analysis of the effects of 
tool geometry, electrolyte immersion depth, size and 
length on the machining rate, accuracy and gap size is 
given in [89]. 

 
  

Fig. 6. Micro hole array fabricated using multiple electrodes [80] 

     
Jet electrochemical machining (JECM) is a variation 

of ECM where the electrolyte is pumped through a 
nozzle to form a jet. DC power is supplied between the 
nozzle and the workpiece with the current being 
transferred by the jet electrolyte. Complicated shapes 
were machined with the motion to the nozzle [90, 91]. A 
flat electrolyte jet was used in [92] to produce micro 
milled surfaces and electrochemical turning applications 
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(figure 7). The use of DC power was attributes to the 
higher machining rates when compared with pulsed 
ECM. Accuracy of ± 5 μm and structures with aspect 
ratios of 3 have been machined using JECM [93].   

 
 
 
 
 
 
 

Fig. 7. JECM : (Left) Micro turning [92]; (Right) Micro reactor [93] 

Electrochemical machining using wire electrodes 
(WECM), comparable to the wire EDM process, have 
been developed to machine high aspect ratio micro 
structures [94-99]. With the optimization of wire travel 
speed, feed rate, vibration and electrolyte flow rate high  
precision microstructures with aspect ratio 30 were 
produced as shown in figure 8 [95]. The wire electrode 
used in WECM can also be produced in situ using ECM. 
Wires with diameters as small as 6 μm were produced in 
situ in [98]. The wire used in WECM needs to be rigid 
enough to withstand the forces due to generated bubbles 
and inadvertent physical contact between tool and 
workpiece [94]. 

 
 
 
 
 
 
 
 

Fig. 8. WECM : (Left) Square helix [84]; (Right) micro gear [94]  

2.6. Hybrid ECM 

ECM has been combined with several other 
machining processes to enable improved machining 
characteristics. A hybrid machining center consisting of 
electro discharge machining (EDM), electrochemical 
machining (ECM) and mechanical milling was 
developed in [100]. The hybrid process integrated the 
advantages of each of the machining process to produce 
micro structures on difficult to cut carbides with lower 
residual stress, high efficiency and low surface 
roughness (<100 nm). Ultrasonic assisted 
electrochemical finishing process was studied and found 
to improve the surface finish when compared to regular 
electrochemical finishing [101].  
    The combination of EDM and ECM processes on the 
same setup is capable of generating highly complex and 
precise 3 dimensional structures [102]. Low resistivity 
deionized water which has the properties of a dielectric 

as well as a conductive fluid to some extent has been 
used to develop a process which involves simultaneous 
EDM and ECM. The process reduces the surface 
roughness giving a better surface finish (figure 9) [103, 
104]. 

In Laser assisted ECM a laser beam is focused on an 
area exposed to the electrolyte jet, which dissolves a 
specific region improving precision and surface 
roughness. This process also reports a higher material 
removal rate due to temperature increase in the region 
targeted by the laser beam [105]. 
 
 
 
 

 

 

Fig. 9. Micro milling using a combination of ECM and EDM [104] 

 

The machining precision decreases with increasing 
depth but can be improved by increasing the speed of the 
electrolyte jet [106]. It has been reported that the local 
temperature rise does not cause any thermal damage and 
so the machined surface is free of stress [107]. This 
process has the capability to generate complex 3 
dimensional patterns like micro-stents [108]. 

In abrasive ECM, abrasives like silicon carbide are 
suspended freely in the electrolyte in the vicinity of the 
work piece. These abrasives along with a wire cathode 
are responsible for slicing silicon wafers with better 
production rate, less cost and good surface integrity [63]. 
Abrasive electrochemical grinding using resin-bonded 
wheels have been reported, however, the deficiencies of 
the process like wheel wear still remain a challenge 
[109]. Electrochemical grinding has been used to 
machine small holes with sharp edges. The process 
involves coating the tool electrode with abrasives and 
rotating it at high speed. Initially material is removed 
through the action of ECM and then the holes are ground 
for better finish through contact machining [110]. 

Ultrasonic electrochemical machining involves 
vibrating the tool electrode to agitate the abrasives 
suspended in the electrolyte for a good surface finish. A 
study of the geometry and type of the electrode which 
gives a well-polished surface is reported and the effect 
of ultrasonic energy is acknowledged [101]. This energy 
is also responsible for the removal of debris from the 
machining zone and creation of optimal hydrodynamic 
conditions affecting the surface layer [111]. The use of 
magnetic as well as ultrasonic energy has been reported 
to remove sludge out of the electrode gap. The process 
gives a very good surface finish in smaller time [112]. 
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An extensive review of hybrid machining technologies 
with ECM as either a primary or one of the constituent 
processes has been reported in [113] with a special 
emphasis on interactions among the participating 
processes. A theoretical model and experimental 
verification for optimizing the performance of 
electrochemical discharge machining process and 
comparison of resulting surface quality with EDM 
milling are presented in [114]. Recently, precision 
machining of small holes of diameters 0.6 mm with 
sharp edges and without burrs been demonstrated in 
[115].  A hybrid process involving micro-milling and 
electrochemical turning using a flat electrolyte jet has 
shown to generate accurate, complex micro patterns in 
metallic sheets and rods in [116].  

3. Electro discharge machining 

Electro Discharge Machining (EDM) is a non-contact 
electro-thermal machining process. Precise machining 
can be done on electrically conductive and semi-
conductive materials using this unconventional 
machining process. EDM can be used to drill circular 
and non-circular holes, generate profiles and make 
complex shaped dies of both macro and micro sizes. 
Both the micro EDM and the micro EDM have great 
potential and research work is going on in this field to 
improve the machining process and equipment. Recently 
a related process, electro machining at the nano scale has 
been reported. 

3.1. Process mechanism 

EDM is a thermo-electric machining process in which 
the material removed or eroded from the work piece due 
to the energy from a series of electric discharges 
generated between the tool electrode and the work piece 
electrode immersed in a dielectric medium.  The electric 
discharges or sparks produced at the gap remove the 
work as well as tool material by melting and 
evaporation. The dielectric medium acts as a deionizing 
medium between the electrode and the work piece, thus 
providing the optimal conditions for spark generation 
and also flushes the debris formed in the spark gap  
[117,118]. The erosion mechanism in EDM is a very 
complex phenomenon and involves many physical 
processes. Therefore, the exact physical phenomenon 
taking place in the spark gap (gap between the electrode 
and work piece) continues to be a topic of research 
[117,118]. Molecular dynamics simulation of the process 
shown in figure 10 reveals that the material removal 
mechanism can be explained by two ways; one by 
vaporization and the other by the bubble explosion of 
superheated metal. It was also observed that the material 

removal efficiency is between 0.2 and 0.5 owing to the 
resolidification of the melted material pool [119]. 
 
 
 
 
 
 
 
 
 
 
 
Fig.  10. Material removal process of electrode [119] 

3.2. Power supply 

With improved response characteristics power 
transistor circuit having large current handling capacity 
replaced the relaxation type power supply initially used 
in EDM. However, the relaxation type pulse generators 
are still used for finishing process because short pulse 
duration with constant pulse energy is difficult to obtain 
in transistor type pulse generator [118]. A transistor 
controlled RC type fine finish power supply using anti 
electrolysis CPLD based pulse control circuit is reported 
in [120]. This equipment can achieve a fine surface 
finish of 0.22 μm Ra. Experimental comparison between 
RC type pulse generator and transistor type pulse 
generator on tungsten carbide has been provided in  
[121]. In a twin electrode machining system, transistor 
type pulse generator and RC pulse generator have been 
used for rough machining and finishing respectively 
(figure 11).  

 
 
 
 
 
 
 
 
 
 

 
 

 

 

 

 

 

 

Fig.11. View of micro electrode tool machining by the twin-wire EDM 

system [122].  
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3.3. Gap monitoring and control 

The gap between the electrode and the work material 
(spark gap) should be monitored to avoid short circuit, 
open circuit or arcing. The presence of left over debris 
due to either short pulse off-time and/or insufficient 
flushing can change the electrical conductivity at the gap 
and may result in non-uniform and unstable discharge 
process. These developments lead to arcing and unstable 
machining which results in damage to work piece and 
tool and adversely affects the process performance. 
Therefore, extensive research and developments efforts 
have been reported in the field of monitoring and control 
of EDM process over last few decades. The prediction of 
on-set of arcing based on the collection and, modeling 
and analysis of gap voltage and/or current signal and 
follow-up corrective actions based on the control 
modeling and hardware has been the main objective of 
these efforts [123-127]. The conventional control system 
monitors the gap voltage and retracts the electrode along 
the direction of the command trajectory. Recently, 
wavelet transform method has been applied to monitor 
EDM gap discharge status [128]. A pulse discriminator 
for linear motors equipped EDM and control strategy for 
high efficiency deep-hole drilling is proposed in [129]. 
A quick retract method of control is reported to have 
30% increase in the material removal rate without 
affecting the efficiency and surface roughness [130]. 

3.4. Electrode 

High conductivity, heat resistance and high melting 
point are the main desired properties for an EDM tool. 
The most common materials used in EDM tooling are 
copper, graphite, tungsten and tungsten carbide. 
Research is being done on many new materials including 
composites for EDM tooling. A ZrB2-Cu tool was 
developed and tested. This composite showed higher 
material removal rate (MRR) and lesser tool wear rate 
(TWR) as compared to copper but had some 
shortcomings in average surface roughness and over-cut. 
[131]. To avoid damage on the electrode of micro EDM 
and also to handle the tool with ease a ‘peeling’ tool is 
proposed. Zinc is electroplated on a tungsten core. With 
a single discharge the zinc coating ‘peels’ off, exposing 
the tungsten. Another advantage of using a peeling 
electrode is that when the core becomes worn out and 
short the removal of the coating can be repeated by 
another discharge to expose fresh electrode. [132]. To 
improve the uniformity and stability, a collection very 
small tubes called “bunched electrode” can provide 
higher MRR and also better flushing. A bunched 
electrode is formed by bunching a number of hollow 
celled electrodes with an end contour as required in the 
die (in case of die sinking EDM). With bunched 

electrodes it is possible to apply a higher peak current 
and hence higher MMR can be achieved [133,134]. 

3.5. Dielectric medium and flushing 

A suitable dielectric for EDM should be able to 
provide suitable conditions for initiation and 
maintenance of good effective electric discharges, cool 
the electrodes and to carry away the debris from the 
spark gap (flushing). The most common dielectric 
mediums used are hydrocarbon oils such as Kerosene. In 
wire-EDM deionized water is used. Distilled water has 
also been used for some special applications. In air 
assisted water EDM air and water act as the dielectric 
medium. There are two nozzles, one for tap water and 
the other for compressed air near the spark gap. When 
machining is done the gas-water mixture acts as the 
dielectric medium. [135]. This process has the potential 
to significantly reduce environmental pollution. Powder 
mixed dielectric has been shown to improve surface 
finish for large area dies.  Recently powder mixed near 
dry EDM uses (PMND-EDM) uses powder, gas and 
liquid as a 3-phase dielectric and this process is found to 
give a higher MMR owing to the larger energy density in 
discharge channel [136].  Dry EDM process is used to 
machine carbon nano fibres (CNF) for improving the 
uniformity of the field emission (figure 12). Dielectric 
medium is not used in this process to avoid 
contamination. Instead a high speed jet of gas is used as 
the dielectric medium [137]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12. Emission Images at a low electric field range: (a), (b) before 

and (c), (d) after the EDM treatment [137]. 

3.6. Surface integrity 

Surface integrity is one of the most important issues 
with EDM. Discharge pulse energy is one of the 
important factors that affect surface integrity. The 
surface roughness of the material increases with the 



20   K.P. Rajurkar et al.  /  Procedia CIRP   6  ( 2013 )  13 – 26 

increase in current and voltage. The crater size varies 
with pulse energy though it also depends on the material 
properties. The thermal action in EDM may cause micro 
cracks, induces residual stresses, and changes the micro 
hardness of the sub-surface and surface layers, results in 
carbon and hydrogen diffusion. Extensive studies have 
been reported on EDM surface integrity in last 2 or 3 
decades [138-141]. In a recently reported study on the 
feasibility of using Wire-EDM for potential applications 
in aerospace, it was found that employing ultra high 
frequency/short duration pulses result in extremely low 
level of workpiece damage [142]. The recast layer 
formed can be removed by using gentle or finish 
machining condition or electrochemical process or 
precision grinding.  In the study of surface integrity 
properties of Al2O3 composite machined by EDM, it was 
concluded that surface roughness increases with 
discharge current and pulse-on time. But by carefully 
selecting the EDM parameters materials can be 
machined without any significant loss to surface 
integrity [143]. Recent study of a comprehensive 
comparison on surface integrity (surface finish, 
microstructure, micro hardness and residual stress) using 
CH- and water-based dielectrics in Wire EDM reveals 
that surface roughness of close to 0.1 micron and very 
thin rim zone of less than 0.3 micron can be obtained 
[144]. Zn-coated wire electrode along with an optimized 
machining technology adequate surface integrity can be 
obtained in machining titanium alloys [145].  A 
comparative study of  fatigue strength and other surface 
integrity aspects generated by grinding and Wire EDM 
of titanium alloy 9 Ti-6Al-4V was recently reported in 
[146] with a conclusion that a standard Wire-EDM 
process with instabilities has a better fatigue life than a 
standard grinding process adjusted for a good looking 
surface. 

3.7Micro-EDM 

Extensive research and development efforts have 
been reported in the EDM literature for the last 2 
decades.  Comprehensive reviews of physical and 
chemical machining processes including Micro-EDM 
and Micro-ECM have been presented in [147-148]. 
Besides process mechanism, surface integrity and 
sensing and control, tooling and tool wear in micro-
EDM continue to be an important topic of research. 
Tungsten having a high melting point and tensile 
strength is the predominant material in micro-EDM 
[149,150]. Tungsten carbide and copper have also been 
used as tool material in micro-EDM [151-152].   

Tool wear in micro-EDM is significantly affected by 
polarity and thermal properties of electrode material 
[118].  The boiling point in addition to the melting point 
of the electrode material plays an important role in 

micro-EDM tool wear process [153]. The suggested 
EDM micro EDM tool wear compensation techniques 
include the linear compensation and uniform wear 
method [154-157]. 

3.8  Hybrid EDM and Extended process capabilities 

An application of vibration including vibrations at 
ultrasonic frequency to maintain uniformity and stability 
at the gap by providing an extra motion to dielectric and 
generated debris has been an important topic of research. 
A combination of ultrasonic vibrations and planetary 
tool movement generates micro holes with aspect ratio 
as high as 29 (figure 13) [158]. 

 
 
 
 
 
 
 

 
Fig. 13. Micro-hole (a) Entrance (b) Exit [1158] 

 
Micro milling by EDM has been used to fabricate 

micro components with complex shapes shown in figure 
14 [159]. A micro array with an aspect ratio of 33 shown 
in figure 15 has been machined by reverse-EDM [160]. 
 

 

 

 

 

 

 

 
A micro-compressor on a Ø 1 

mm cylinder

 
 
 
 
 
 
 
 

Turbine impeller 

Fig. 14.: Micro components made by EDM-milling [159] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 15 SEM micrograph of a micro array made by reverse-EDM 

process [160] 
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EDM has also been used to produce medical devices. 
EDM was successfully used to machine a magnesium 
alloy WE43, a bio-compatible material [161]. A micro 
ball joint made by EDM is shown in figure 16. The 
diameter of the rod and the ball are 100 μm and 290 μm 
respectively and they are made by WEDM. The socket is 
fabricated by electroforming method [162]. 
 

 
 
Fig. 16. A micro ball joint[162]. 

4. Nano Electro Machining (nano-EM) 

�����In a recently introduced machining technique at the 
nano scale called nano Electro machining (nano-EM), 
an atomically sharp electrode tool immersed in an 
organic oil medium is used to generate sub-15 nm 
scale features on hydrogen flame annealed atomically 
flat gold film (Figure 17).  

  
 
 
 
 
 
    
 
 
 
 
 

  A scanning tunneling microscope (STM) is used to 
carry out the process [163]. It was found that upon 
machining the tool tip end radius was sharper and the 
tool surface was modified to a nanocrystalline matrix of 
tungsten oxide and tungsten carbide which are expected 
to extend the tool life (Figure 18) [164].  Modifications 
occur as a result of only the electric field. 
 

 
  
       Figure 18 :  Nano-EM tool gets covered with a protective and 

conducting layer of nanocrystalline WO3, C, W and WC.  
 
 
  Nano-EM has also been carried out in atmospheric 

air using STM as the platform and an in-situ process 
of evaluating the tool quality before and after 
machining has been used by monitoring current-
displacement (I-Z) spectroscopy curves. The related 
experimental results show that this dry nano-EM is 
capable of generating consistent nano-features with 
good repeatability [165]. A feasibility study of 
fabricating nano-holes on graphene conducted 
recently has shown that nano-EM is capable of 
fabricating 3-4 nm size features with visible atomic 
arrangement of carbon in graphene [166]. A pulse 
generator reported in [167] for nano-EDM uses a 
coupling method in which the pulse generator is 
coupled to the tool electrode by a capacitor. This 
coupling leads to energy minimization to accomplish 
nano-EDM. 

5. Summary 

Recent advancements in various aspects of 
electrochemical and electro-discharge machining that 
reflect the state of the art in these processes are 
presented in this paper. ECM and EDM technologies 
have been successfully adapted to produce macro, micro 
components with complex features and high aspect 
ratios for biomedical and other applications. These 
processes are also being attempted at the nano-scale. 
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